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The ground state of the toric code, that of the two-dimensional class D superconductor, and the partition sum
of the two-dimensional Ising model are dual to each other. This duality is remarkable in as much as it connects
systems commonly associated to different areas of physics—that of long-range entangled topological order,
(topological) band insulators, and classical statistical mechanics, respectively. Connecting fermionic and bosonic
systems, the duality construction is intrinsically nonlocal, a complication that has been addressed in a plethora
of different approaches, including dimensional reduction to one dimension, conformal field theory methods, and
operator algebra. In this paper, we propose a unified approach to this duality, whose main protagonist is a tensor
network (TN) assuming the role of an intermediate translator. Introducing a fourth node into the net of dualities
offers several advantages: the formulation is integrative in that all links of the duality are treated on an equal
footing, (unlike in field theoretical approaches) it is formulated with lattice precision, a feature that becomes
key in the mapping of correlation functions, and their possible numerical implementation. Finally, the passage
from bosons to fermions is formulated entirely within the two-dimensional TN framework where it assumes an
intuitive and technically convenient form. We illustrate the predictive potential of the formalism by exploring
the fate of phase transitions, point and line defects, topological boundary modes, and other structures under the
mapping between system classes. Having condensed-matter readerships in mind, we introduce the construction
pedagogically in a manner assuming only minimal familiarity with the concept of TNs.
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I. INTRODUCTION

Where they exist, dualities are powerful aides in under-
standing the physics of nominally different complex systems.
As a case in point, consider the ground state of the toric
code (TC), that of a topological superconductor (SC) in
symmetry class D, and the partition sum of the classical two-
dimensional Ising model (IM)—three of the main protagonists
of this paper. In a sense to be made precise in the follow-
ing, these systems are connected by duality transformations
[1–9]. In the case at hand, these draw connections between
bosonic and fermionic systems, ground states and partition
sums, and between classical and quantum systems. They also
link systems, which are at the forefront of interest to differ-
ent communities. For example, the toric code ground state
is a paradigmatic example of a long-range entangled state
of matter (hence featuring intrinsic topological order) [10],
while the topological superconductor is a free fermion system
belonging to the family of topological insulators [11]. All
three systems display phase transitions—between an ordered
phase and a topological spin liquid, a trivial and a topological
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superconductor and a ferro- and a paramagnet, respectively—
and the duality establishes the equivalence between these.
The same applies to physics at various defect structures, for
example, the formation of gapless boundary modes in the
superconductor related to the behavior of anyonic excitations
at the boundary of the toric code.

Dualities in condensed matter physics are generically es-
tablished via a toolbox of recurrent concepts. These include
the mappings between d-dimensional quantum systems and
(d + 1)-dimensional partition sums, the taking of continuum
limits mapping to (conformal) field theories and dimensional
analysis, or the comparison of operator commutator algebras
on different sides of the duality. For example, one way to
go from the two-dimensional Ising model to the supercon-
ductor, is to first apply an anisotropic scaling deformation
to map the former to the transverse magnetic field quantum
Hamiltonian, then equate this bosonic system to a fermionic
Majorana chain via Jordan-Wigner [12–14] transformation,
and finally rediscretize time to arrive at the two-dimensional
lattice Hamiltonian describing a superconductor in the Majo-
rana basis [5–7].

In this paper, we consider the TC/SC/IM triplet to illus-
trate how tensor networks (TN) offer an efficient and intuitive
alternative approach to duality [15–18]. The idea is to place
a TN in the so-called matchgate category [19–23] as an in-
termediate between the three systems. There are manifold
advantages to bringing in a fourth system as a translator. First,
the TN comes in two incarnations, a bosonic and a fermionic
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one, and the passage between the two is established directly
on the two-dimensional lattice by what in effect is a “two-
dimensional Jordan-Wigner transformation” [12–14,24]. In
this way, we may pass from bosons to fermions avoiding
dimensional detours. (The operation is conceptually similar,
but somewhat more direct than previous constructions [4,6]
based on the commutator algebra.)

Second, the mapping is microscopic and explicitly relates
to the operator contents of all three theories. This level of de-
tail, which is lost in continuum approaches, supports intuition
and is essential in the construction of dual representations
of correlation functions. We will illustrate this point on the
equivalence between free Majorana correlation functions of
the SC with more complex correlations between composites
of spin and disorder operators [25,26] (for a definition of
disorder operators, see below) in the IM.

Finally, the approach keeps all three partners of the duality
construction in permanent sight. In this regard, it is different
from previous approaches focusing on one specific link of
the duality. The principle behind this high level of versatility
is that a tensor network per se (unlike a Hamiltonian) has
no preassigned physical interpretation. More precisely, while
for a TN with open indices these are identified with physi-
cal degrees of freedom, for a TN without open indices, the
interpretation of individual tensors and their indices is not
canonical. This ambiguity can be exploited to yield relations
between seemingly unrelated physical systems. For example,
the partition sum of a two-dimensional statistical-mechanics
model with local interactions affords interpretation in terms
of a two-dimensional tensor network. Alternatively, consider
the ground state of a spin system represented as a projected
entangled pair state (PEPS), i.e., a tensor network on a two-
dimensional graph with open indices corresponding to the
Hilbert spaces of the local spins [27]. The overlap of this
state with itself can again be interpreted as a classical partition
function. It is then natural to go one step further and establish
a local correspondence between these systems by looking at
the respective fine structure of their TN representations.

Supplemented with a boson-fermion mapping on the level
of the TN, these ideas become even more powerful. Below,
we will use such ambiguities of TN representations as a re-
source to discuss the full web of dualities in a comprehensive
manner. In particular, we discuss a local equivalence between
the partition sum of the IM and expectation values of the
ground state of the toric code with string tension [8]. After
a boson-fermion mapping, one can furthermore equate the
TN to a Grassmann integral describing the ground state of a
band-insulator Hamiltonian in symmetry class D.

While the technical elements of this construction are
known in the theory of matchgate tensor networks, we here
present them in a comprehensive manner, aiming to intro-
duce the key ideas to the community of condensed-matter
physicists. This endeavor is not just of pedagogical value: all
three systems linked by the duality show rich behavior when
translational symmetry is broken via the introduction of spa-
tial phase boundaries, or defect structures. Examples include
vortices, and the formation of gapless boundary modes in
the superconductor, the binding of anyonic excitations at the
ends of line defects in the toric code, or the physics carried
by string-like “disorder operators” in the Ising model. All

these are subject of the duality mapping. However, the specific
ways in which they transform are not always obvious. For
example, the above-mentioned Majorana correlation function
probes the propagation of quasiparticles injected into the su-
perconductor ground state from one point to another. In the
Ising context it becomes more complex, and now describes the
correlations of a composite of a spin and a disorder operator.
The definition of the latter is nontrivial because it responds to
the precise positioning of the composite operator on the Ising
lattice [25,26].

This and various other mappings will illustrate the appli-
cation of the TN construction and are meant to introduce
some powerful tricks of TN algebra to condensed-matter prac-
titioners. In a follow up publication [28] we will push this
framework into less charted territory, including the presence
of translationally invariance breaking disorder, the inclusion
of nonlinear correlations in the TN, and that of geometrically
distorted (“holographic”) background geometries [29].

The remainder of this paper is structured as follows. In
Sec. II, we introduce the formalism of matchgate tensor
networks and their representation as free fermion partition
functions. Section III is the main focus of this work. It con-
tains the derivation of the aforementioned dualities for the
translation invariant case and discusses the phase transitions
across the different systems. In Sec. IV, we extend the dual-
ities to situations where translation invariance is broken and
discuss how the duality map between different correlation
functions. We summarize our paper in Sec. V and provide an
outlook to future research.

II. MATCHGATE TENSOR NETWORKS

The workhorse by which the connections discussed in this
work will be drawn are matchgate tensor networks (MGTN)
[19–23]. Matchgate tensors are a class of tensors whose en-
tries are restricted in a particular way such that the contraction
of the tensor network (on a planar graph) can be performed
efficiently [20]. These restrictions imply that matchgate ten-
sor networks can be interpreted as free fermionic systems
in a sense to be made precise in the following. This prop-
erty makes them natural candidates to study the free fermion
side of the aforementioned dualities. The relation between
matchgate tensors and the other two systems, the toric code
ground-state expectation values and the partition function of
the two-dimensional Ising model is less obvious and will be
the main focus of Sec. III. In the following, we introduce these
objects in a manner assuming only a minimal level of famil-
iarity with TNs (for introductory reviews, see Refs. [27,30–
33]).

A. Bosonic matchgate tensors

Matchgate tensors. A bosonic normalized, even matchgate
(MG) tensor T tensor carries n indices i j = 0, 1 of bond di-
mension two. As such it is described by complex coefficients
Ti1i2···in such as T0100.... To make it a matchgate tensor, we
need to add further structures. Concretely, a matchgate tensor
satisfies the following rules:

(i) (Normalization) T0···0 = 1.
(ii) (Evenness) If i1 + · · · + in is odd, Ti1···in = 0.
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FIG. 1. Translation invariant two-dimensional square lattice ten-
sor network of tensors T (left) and tensor network with incisions
(right) that allow to calculate arbitrary n-point correlation functions
of local observables, here 〈O1(x1)O2(x2)〉.

(iii) (Gaussianity) The
(n

2

) = n(n − 1)/2 so-called second
moments Ti1···in with i1 + · · · + in = 2 are independent. We
collect them in an antisymmetric n × n- matrix AT = −A,
where A12 = T110···0, A13 = T1010···0, etc.

By definition, higher moments of T , i.e., entries with i1 +
· · · + in > 2, are given by Pfaffians of submatrices of A. These
submatrices are obtained by deleting all rows and columns k
for which ik = 0. For example, for a tensor with six indices
the tensor entry T111100 is given by PfA|56, where A56 is the
submatrix of A obtained by deleting the rows and columns 5
and 6. For a tensor with four indices, the matrix

A =

⎛
⎜⎜⎝

0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞
⎟⎟⎠ (1)

uniquely specifies all tensor entries. For example, T1100 = a12,
T1010 = a13, etc. The only nontrivial higher moment is given
by T1111 = Pf(A).

Matchgate tensor networks. We now consider two-
dimensional square-lattice networks of matchgate tensors as
shown in Fig. 1. First consider the fully contracted TN, with-
out open physical indices. As such, it is just a number (much
as a partition sum is just a number), and not very interesting in
its own right. To obtain information about, e.g., correlations,
we may cut bonds to define open indices. For example, we
can calculate the correlation function 〈O1(x1)O2(x2)〉 of local
observables O1,2 by incisions at two points x1, x2 as shown in
Fig. 1.

B. Mapping to Gaussian fermionic tensor networks

Bosonic matchgate tensor networks afford a reinterpreta-
tion as Gaussian fermionic tensor networks [20]. To establish
this connection, we first review the concept of (Gaussian)
fermionic tensor networks as such.

Fermionic tensor networks have been introduced to rep-
resent many-body states of fermions [34–39]. In one [38] of
several optional representations a fermionic tensor Tf with n
indices of bond dimension two contains n Grassmann vari-
ables θ j ,

Tf = Ti1...inθ
i1
1 . . . θ in

n (2)

(see also Refs. [40]). We may identify these with fermion
states, θi �→ c†

i |0〉, which are either occupied or unoccupied
depending on the value i j = 0, 1. Throughout, we work with

tensors of even fermion parity, Ti1...in = 0 if i1 + · · · + in
mod 2 = 1.

For two tensors A = Ai1i2...θ
i1
A1θ

i2
A2 . . . and B =

Bk1k2...θ
k1
B1θ

k2
B2 . . ., the formal product AB represents a

superposition of states with up to 2n fermions via the
above identification. We define a contraction of indices A j
and Bl by projection onto all states with equal occupation of
A j and Bl fermions. The basic mathematical identity realizing
this contraction reads∫

dθA jdθBl eθBl θA j θ
kl
Blθ

i j

A j = δkl i j .

This contraction carries an orientation as contracting A j with
Bl differs from contracting Bl with A j. Before using the
identity above the Grassmann variables θA j and θBl first need
to be permuted through the remaining variables such that they
come to stand upfront in the indicated order. The contraction
of generic indices thus comes with a sign factor.

The generalization to multiple tensors T α , α = 1, . . . , N
with nα fermions each is straightforward: introduce the
vector θ = (θ11, . . . , θ1n1 , . . . , θN1, . . . θNnN ) containing all
fermionic modes, and an antisymmetric matrix C indicating
the pattern of (oriented) contractions as Cαi,β j = 1, if the ith
mode of tensor T α is contracted with the jth mode of tensor
T β . The contraction of the network is then implemented by
the integral

TN(C,T ) =
∫

(dθ )C e
1
2 θT Cθ T 1 . . . T N , (3)

where (dθ )C is a shorthand notation for the product of all
ordered pairs dθαidθβ j with Cαi,β j = 1.

Gaussian fermionic tensor networks. A tensor T with n
indices is a fermionic Gaussian (fG) tensor if there exists a
real antisymmetric n × n-matrix A = −AT such that

TfG = e
1
2 θT Aθ , θT = (θ1, . . . , θn) . (4)

The tensor product of two fG tensors T1, T2 is again a Gaussian
tensor given by

T1T2 = e
1
2 θT (A1⊕A2 )θ , θ = (θ1, θ2) . (5)

Including the contractions in Eq. (3), we write the contracted
fermionic Gaussian tensor network as

TN(C,A) =
∫

(dθ )C e
1
2 θT (A+C)θ , (6)

where A = ⊕iAi is the direct sum of all individual character-
istic functions of the tensors Ti.

Note that a real fermionic Gaussian tensor network can be
interpreted as the partition sum Z = ∫

dθe−S with the weight

S = i

2
θT Hθ , H = i(A + C) , (7)

where H = H† and H = −HT . Within the framework of the
tenfold symmetry classification of free fermions systems, this
is a Hamiltonian in symmetry class D.

Matchgates as Gaussian fermionic tensors. Equation (4)
implies the advertised connection between fermionic Gaus-
sian and bosonic matchgate tensors: Given a bosonic TMG with
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second moments A, we define

TfG = (TMG)i1...inθ
i1
1 . . . θ in

n = e
1
2 θT Aθ . (8)

The indicated ordering of Grassmann variables is an essential
element of the map TMG �→ TfG.

The assignment Eq. (8) remains formal unless we have
settled the following consistency issue: For a (partially) con-
tracted matchgate tensor network one may either first turn
to a fermionic representation of the individual tensors and
then contract according to Eq. (6), or contract first and then
fermionize the result. We must make sure that the ordering
of operations does not matter. Referring for a detailed dis-
cussion to Appendix A, we need to choose an orientation of
contracted fermionic bonds and a matching ordering of con-
tracted bosonic indices. It turns out that for any tensor network
patch with disk topology an assignment consistent according
to the above criterion is possible. More precisely, the order of
operations is inessential up to a known factor depending on
the parity of the number of uncontracted boundary fermion
modes, which does not have an affect of bulk properties of
the tensor network. We caution that more care is required
in situations with more complex boundaries. These arise, for
example, in the calculation of n-point correlation functions,
corresponding to n additional punctures of the patch (see
Sec. IV A for the discussion of such a setting). We finally note
that in our approach the above two-dimensional construction
is key to the duality between bosonic and fermionic systems;
it here assumes a role otherwise taken by the one-dimensional
Jordan-Wigner transformations in approaches operating by
dimensional reduction.

C. Factorizing tensors

As a final prerequisite for formulating our duality, we need
a few added structures: A Z2-tensor TZ2 has bond dimen-
sion 2 and is defined by the parity condition (TZ2)abcd =
δa+b+c+d mod2,0. It is straightforward to verify that the Z2

tensor satisfies the matchgate condition. In a next step, we
generalize the tensor to the presence of additional weights, Wi

attached to the links, cf. Fig. 3(a) below, where the Z2 tensors
are circles, and the weights boxes. The latter are defined
as Wi = diag(1,wi ), i.e., diagonal matrices. This generaliza-
tion, too, satisfies the matchgate condition, with the defining
matrix given by Ai j = wiw j . Conversely, matchgate tensors
whose Gaussian weights can be written in this way are called
factorizing.

While simple parameter counting shows that not every
matchgate tensor can be factorizing [41], they will be suf-
ficient for our purposes. Specifically, the uniform matchgate
tensor defined by a single parameter a is the simplest example
of a factorizing matchgate and its weights are Wi = W :=
diag(1,

√
a).

III. DUALITIES FROM MATCHGATE TENSOR
NETWORKS

In this section, we will employ the bosonic and the
fermionic TNs introduced above as tools to establish the dual-
ity between the three systems mentioned in the introduction,
the ground state of the toric code, that of the two-dimensional

FIG. 2. Phase transitions in a homogeneous single parameter
matchgate tensor network interpreted in terms of three different
physical systems. The control parameters a± = √

2 ± 1. In the lower
panel, c denotes the topological (Chern) index.

class D superconductor, and the partition sum of the classical
Ising model. Our focus here, will be on the physics of the
translationally invariant bulk systems, and their respective
phase transitions. The fully contracted bosonic TN then cor-
responds to the partition function of the IM and likewise, the
norm of a toric code ground state with string tension, while
the fully contracted fermionic TN evaluates to the Pfaffian of a
free-fermion Hamiltonian in symmetry class D. However, the
identifications between these three systems can be made lo-
cally on patches of the respective tensor networks. In Sec. IV,
we take advantage of this fact and extend the mappings to
correlation functions and defect structures, starting what could
be called a dictionary between the different models dual to
each other.

Previous work

To put our discussion into a larger context, we begin this
section with a review of previous studies of specific links of
the duality web.

IM → SC. Previous mappings of the classical Ising parti-
tion sum onto the SC ground state can roughly be divided into
two categories. The first starts from a representation of the
Ising partition function on a L × L square lattice as a product
of L transfer matrices, where each 2L × 2L matrix represents
one column of the Ising model. This formulation stands in the
tradition of Onsager’s solution [12], which was subsequently
simplified by Kaufman [13], and later by Schultz, Mattis,
and Lieb [14]. One-dimensional Jordan-Wigner transforma-
tions are then performed on the 2L-dimensional representation
spaces of the transfer matrix to arrive at an interpretation in
terms of (Majorana) fermion ground states [42].
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FIG. 3. (a) A factorizing matchgate tensor decomposes into a Z2 tensor and weight matrices. (b) Graphical notation for the Z2 tensor (white
circle), the weight matrices W (unfilled square), the Hadamard matrix H (half-filled circle), the Kronecker δ tensor (black circle), and the IM
transfer matrix (black square). (c) Tensor identities used to transform a MGTN to the partition sum of the IM. (d) Transforming a weighted
Z2-tensor network (left) to the Ising partition function tensor network (right) via a gauge transformation.

A more isotropic approach has been developed by Kac
and Ward [43] who have expressed the partition function
in terms of the determinant of a 4L × 4L matrix by purely
combinatorial considerations. This was followed by Hurst and
Green [44] who suggested a formulation using the Pfaffian
method (later refined by Blackmann and others [1–3,5]). They
noted that the matrix for which one computes the Pfaffian is
essentially that of a tight-binding Hamiltonian and as such
can be interpreted as a free fermion system in two dimen-
sions. This approach was recast in the language of Grassmann
variables by Berezin [4] and a formulation close in spirit to
the one discussed below has been presented by Dotsenko and
Dotsenko in Ref. [6].

Finally, in more recent papers [7,45–47], the connection
between the IM and noninteracting fermions was discussed
in the context of network models and a connection between
network models and Gaussian fermionic tensor networks was
noted in Ref. [48].

TC → IM. To the best of our knowledge, the duality of
the IM partition sum and a TC with string tension was first
explored by Castelnovo and Chamon [8] and later generalized
in Ref. [9].

The duality discussed here relates expectation values of the
ground-state wave function of the toric code with string ten-
sion to the partition function of the two-dimensional classical
Ising model. Note that this is a restricted notion of duality
that does not coincide with the conventional duality relating
operators to operators. Instead, we consider local patches of
a two-dimensional tensor network and identify them either as
constituents of the wave-function expectation value or of a
partition function of a two-dimensional classical-mechanical
system. This notion of duality is to be contrasted with the
well-known duality between the toric code Hamiltonian and

the transverse field quantum Ising model discussed, e.g., in
Ref. [49].

SC → TC. We are not aware of previous mappings of the
TC ground state to that of the SC, although they are of course
implied by the sequence TC → IM → SC.

This work

Our starting point in this paper is a translationally invariant
matchgate tensor network on a square lattice as shown in
Fig. 1. Its tensors are characterized by a single real parameter
a via ai j = a [see Eq. (1)]. All three target systems, IM, TC,
SC, too are controlled by single parameters, to be interpreted
as dimensionless coupling strength, the string tension and the
band-inversion parameter, respectively. Our discussion will
show how these are to be related to the TN parameter a.
In each case, the parameter a drives a phase transition—the
Ising ferro/paramagnetic transition, the transition between a
topological spin liquid and an ordered state, and the transition
between a topological and a trivial superconductor (cf. Fig. 2).
While the latter two are between states of different topological
order, the first is a conventional symmetry breaking transition.
The equivalence between these drastically different types of
phase transitions is not a contradiction since the duality trans-
form establishing it is intrinsically nonlocal.

A. Classical two-dimensional Ising model

We start by discussing the interpretation of a factorizing
matchgate tensor network as the partition function of the clas-
sical two-dimensional Ising model. This connection follows
from the option to realize the even parity constraint obeyed
by matchgate tensors in terms of superpositions of weighted
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closed loops reminiscent of the high-temperature expansion
of the Ising partition function. Here, we derive the equiva-
lence exploiting the invariance of a tensor network under basis
changes in the virtual space.

We start from a representation of our tensors in terms of Z2

tensors with weights W [see left panel in Fig. 3(d)]. Next, we
insert products of Hadamard matrices

H = 1√
2

(
1 1
1 −1

)
(9)

at all legs as shown in the center of Fig. 3(d). With H =
H† = H−1, this is conceptually a gauge transformation. It is
straightforward to verify using the relations shown in Fig. 3(c)
that this operation induces a transformation (Z2 tensors) �→
(2 × δ tensors) where the δ tensor is defined by the condition

δabcd = δabδbcδcd (10)

[see Fig. 3(b)]. The transformed weight matrices assume the
form [50]

T :=
√

2HW 2H = 1√
2

(
1 + a 1 − a
1 − a 1 + a

)
. (11)

Assuming a < 1, we define β > 0 by

Jβ = artanh(a) (12)

and h00 = h11 = −J and h01 = h10 = J , in order to identify T
with the transfer matrix of the Ising model,

T =
(

e−βh00 e−βh01

e−βh10 e−βh11

)
. (13)

The identification of the two nonvanishing configurations (all
links 1 or all links 0) admitted by the central δ tensor identified
with an Ising spin then implies an equivalence of the tensor
network with the classical partition sum of the Ising model.

The two-dimensional Ising model has its magnetic phase
transition at 2Jcβc = ln(1 + √

2), or a− := √
2 − 1, consis-

tent with the above assumption a < 1 (see the upper panel
of Fig. 2). In the opposite case, a > 1, we apply a global
rescaling of each bond by a−1 to send the weight matrices
to W = diag(a−1/2, 1). We then use the invariance of the
Z2 tensors under a simultaneous spin flip σ⊗4

x to transform
to weights W ′ = σxW σx = diag(1, a−1/2), i.e., we effectively
map a �→ a−1. In this case, the phase transition is at a+ =
a−1

− = √
2 + 1. For a < 0, a global rescaling a �→ −a shows

the equivalence to the a > 0 parameter domain. We conclude
that our one-parameter family of tensor networks supports
the four parameter intervals, a < −1,−1 � a < 0, 0 � a <

1 and 1 � a, which are individually equivalent to the Ising
models with critical points at a = ±a±, respectively.

B. Toric code with string tension

We now turn to our second interpretation of a factorizing
matchgate tensor network and show how it is related to the
wave function of the toric code with string tension. (For a
direct link TC ↔ IM, not using a TN intermediate, we refer
to Refs. [8,51].)

The toric code Hamiltonian (without string tension) [10] is
given by

HTC = −
∑

v∈vertices

∏
i∈v

σ (i)
z −

∑
p∈plaquette

∏
i∈p

σ (i)
x , (14)

and its ground-state vector |�0〉 is an equal weight super-
position of closed loops of |1〉-vectors in a background of
|0〉-vectors on the underlying square lattice. The toric code
is a most paradigmatic example of a Z2 spin liquid and at
the same time the most studied code for topological quantum
error correction [52].

This state affords a representation in terms of a simple Z2

factorizing matchgate tensor network [53–55]: First consider
a configuration with uniform a = 1. This is equivalent to a
network of Z2 tensors with trivial weights. The job of the
former is to admit configurations with 0,2, or 4 |1〉 state
vectors at each vertex, with equal weight. Summation over all
of these is equivalent to a uniform weight closed loop super-
position. To turn this sum into a quantum state, we add 3-leg
δ tensors at each vertex [see Fig. 4(a)]. The tensor product
of uncompensated physical indices then defines the quantum
ground state.

In the toric code context, the loop sum may be turned into
a weighted one by adding string tension, which penalizes or
favors loops of increasing length. To mimic this effect, we
generalize the tensor network to the presence of weights W =
diag(1,

√
t ) per half-edge defining the state vector |�(t )〉.

Each |1〉 link now comes with a factor t , compared to 1 for
|0〉 links. In the extreme case of t = 0, we obtain a trivial
ferromagnet polarized in the |0〉 state, in the opposite limit
t → ∞ the system is polarized in the |1〉 state.

The exact parent Hamiltonian of this state is given by H =
HTC + HST with

HST =
∑

v∈vertices

∏
i∈v

e− ln t σ (i)
z . (15)

In the vicinity of t  1, the string tension term reduces to
a conventional on-site magnetic field Hamiltonian HST 
−2 ln t

∑
i σ

(i)
z .

The critical values of the string tensions inducing a
transition between the topological spin liquid state and ferro-
magnetic states with |1〉 or |0〉 polarization t2 = a± = √

2 ± 1
can be derived via the mapping to the classical Ising model.
The idea is to detect a phase transition via the emergence
of power-law correlations in correlation functions Ct,αβ =
〈�(t )|OαOβ |�(t )〉, where Oα and Oβ are local operators of
the spin variables at sites α and β. The operator insertion
between two states means that we are now dealing with a two
layered tensor network where all physical indices except for
those at α, β of that representing |�(t )〉 are contracted with
that representing 〈�(t )| [see Fig. 4(b)]. The consequences of
this almost complete contraction are detailed in Appendix C
and can be summarized as follows: the contraction of the δ

tensors sitting on the bonds effectively causes a collapse of
double bonds (representing bra and ket state) to a single one.
On this effective bond, we have the square of two amplitude
weights, i.e., the effective weight W 2 = diag(1, t ). This is
equivalent to a matchgate tensor with uniform A matrices for
which ai j = t2 and implies criticality at t2

± = a±, in agreement
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FIG. 4. Toric code with string tension. (a) Ground-state vector |�(t )〉 represented as a PEPS, physical indices coming out of the plane.
(b) The overlap 〈�(t )|�(t )〉 given by contracting the physical indices of the PEPS and its conjugate, represented by the mirror image.

with the values reported in Refs. [8,9,51] (see middle panel of
Fig. 2).

C. Class D superconductor

Our third construction establishes a connection to the topo-
logical SC. For the convenience of readers not well versed in
the physics of topological superconductivity, a brief review is
included in Appendix B. The punchlines of this discussion are
that (a) the free fermion Hamiltonian of a class D supercon-
ductor affords a representation in terms of a Majorana bilinear
form

Ĥ := i�T H�, (16)

where H is the first quantized Hamilton matrix, and the com-
ponents of � Majorana operators, to be identified as real and
imaginary parts of complex fermion creation and annihilation
operators. (b) In a translationally invariant system, the eigen-
states of H define Bloch bands, labeled n, which individually
carry Chern numbers cn. (c) Transitions between states of
different topology change these numbers (at a conserved total
number

∑
n cn = 0) and are signaled by a change of the Z-

valued topological index c = ∑N
n=1 cn over Chern numbers

carried by individual Bloch bands, n = 1, . . . , N , with band
energies below the superconductor band gap at ε = 0. (d)
Such changes of integer invariants require touching of the
bands n and n + 1 involved in the change of Chern numbers.
In the vicinity of these hotspots in the Brillouin zone, the
local Hamiltonian may be approximated by a two-dimensional
Dirac Hamiltonian

H (2) = κ (q1σ1 + q2σ3 + (m + αq2)σ2) + O(q3), (17)

where κ is an overall real constant, q = (q1, q2)T is the mo-
mentum difference from the band touching point, m a mass
parameter measuring the distance to the critical point, and α

a parameter entering the second-order expansion in the lo-
cal dispersion relation. In this representation, the assignment
of Chern numbers reads (cn, cn+1) = (0, 0) for mα > 0, and
(+1,−1) for mα < 0, i.e., the topological index is determined
by the sign of the mass gap. [Exchange q1 ↔ q2 corresponds
to the sign change (−1,+1).]

Let us now turn to the interpretation of the matchgate
tensor network in terms of a topological superconductor. We
consider the fermionic version of a matchgate tensor network
given by Eqs. (6) and (7) and restrict our attention to a square
lattice with tensors of uniform weights Aα

i j = a. The bilin-
ear form in Eq. (7) can now be compared to the Majorana
bilinear form in Eq. (16) and we can discuss the “effective
Hamiltonian” defining the matchgate tensor network. To do
so we go to momentum space. Noting that the TN structure
includes unit cells comprising four Majorana fermions with
all to all connection of equal strength a (cf. Fig. 5), the bilin-
ear form becomes H̃ = ∑

k �kHk�−k . The tensor network is
represented by the effective four band Hamiltonian

H = i a

⎛
⎜⎜⎝

0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎞
⎟⎟⎠

+ i

⎛
⎜⎜⎝

0 0 eikx 0
0 0 0 eiky

−e−ikx 0 0 0
0 −e−iky 0 0

⎞
⎟⎟⎠.

FIG. 5. Lattice structure comprising four-site unit cells with all
to all connection of uniform strength a extended to a square lattice.
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TABLE I. Chern numbers carried by the four bands of the system
for positive values of the parameter a. (The pattern is symmetric
around a = 0 and in this way can be extended to negative values.)
The phase transitions changing the topological index c occur at a±.

a ∈ (0, a−) (a−, 1) (1, a+) (a+, ∞)

c4 –1 –1 0 0
c3 1 0 –1 0
c2 –1 0 1 0
c1 1 1 0 0
c 0 1 1 0

The numerical brute force computation of Berry curvatures for
this Hamiltonian reveals a sequence of six topological phase
transitions at a values (

√
2 − 1, 1,

√
2 + 1)) =: (a−, 1, a+)

and the negative of these. Labelling the energy bands 1,2,3,4
in ascending order in energy, we have N = 2 occupied bands
n = 1, 2 with a pattern of Chern numbers shown in Table I:
Starting from a topologically trivial phase at a > a+, a phase
transition involving bands n = 2, 3 at a = a+ (see Fig. 6)
defines the entry into a topological superconductor phase with
c = 1. At a = 1, a phase transition involving the topological
order of bands 1,2 (and 3,4) leads to a redistribution of band
Chern numbers without changing the total topological index
c. Finally, at a = a−, we have a transition back to c = 0; how-
ever, this vanishing value is nontrivial in that it implies two
bands with mutually canceling nonvanishing index, c1 = 1
and c2 = −1.

To obtain an explicit low-energy reduction of the system
near, say, the critical point a = a−, we verify that at the
momentum hotspot k = (π, π ) our Hamiltonian has two zero-
eigenvalue states,

v1 := 1
2 (−

√
2,−1, 0, 1), (18)

v2 := 1
2 (0, 1,

√
2, 1). (19)

Setting a = a− + m/(2(1 + √
2)), and ki = π + qi, the two-

band reduction H (2) of the Hamiltonian obtained by projection
onto the space spanned by v1,2 assumes the form of the Hal-
dane [56] Chern insulator

H (2) = − 1
2 (sin(q2)σ3 + sin(q1)σ1

+ (2 + m − cos(q1) − cos(q2))σ2). (20)

For m > 0 and m < 0, the two bands associated to this Hamil-
tonian carry winding (Chern) numbers (0,0) and (−1, 1),
respectively. The low-energy Dirac approximation Eq. (17)
(with κ = − 1

2 ) is obtained by expansion in q up to second
order.

We have thus identified different topological phases of the
fermionic tensor network. The phase transition at the critical
values a± of the tensor weights would be signalled by the
divergence of the correlation length in the tensor network. One
may ask how other hallmarks of topological superconductors
are manifested in the tensor network description. However,
all interesting phenomena such as edge modes or even sim-
ple correlation functions require to consider nontranslation
invariant tensor networks. This will be the focus of the next
section. To conclude, the identifications above establish the
equivalence between the TN and the SC, and from here one
may—via the nonlocal boson-fermion mapping outlined in
Sec. II—pass to the bosonic systems TC and IM. Notice
how in our discussion of the fermion system, the emphasis
shifted from real space to momentum space structures. Nev-
ertheless, the full microscopic structure of the system remains
under control, and this will become essential in the next sec-
tion when we turn to the discussion of correlation functions.

IV. EXTENSION TO INHOMOGENEOUS STRUCTURES

So far, we have looked at the duality between our three
systems in the translationally invariant case. However, they
all show rich behavior when translational invariance is bro-
ken by domain walls or other defect structures, examples
including vortices binding Majorana zero modes in the SC
[57], nonlocal “disorder” operators describing the correlations
between endpoints of defect links in the IM [25], anyonic
excitations as endpoints of error strings in the TC [10], or the
long-rangedness of correlation functions at criticality (where
we consider a correlation function as the result of an inser-
tion of infinitesimally weak probing inhomogeneities.) The
general duality must include a mapping between these defect
structures, and their accompanying correlations. However, we
anticipate that the passage from fermionic to bosonic systems
involved in going from the SC to the IM or the TC will
introduce an element of nonlocality: the correlation between
objects that are local in one setting may turn into the insertion
of nonlocal string like objects in another.

FIG. 6. A cut at ky = 0, π, π (left, center, right) through the two-dimensional dispersion relation at parameter values a = a+ + 0.3, b +
0.04, a− + 0.02 close to the topological phase transition points. Notice how the transition at b involves the formation of a Dirac point between
the occupied bands c = 1, 2.
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These complications find their perhaps most vivid mani-
festation in the duality mapping of the simplest correlation
function probing the superconductor, that between two Majo-
ranas, Eq. (22) below. The dual representation of this function
in the Ising context is famously complex [6,25] and it involves
the pairing of a spin and a disorder operator to a hybrid
operator. The simultaneous appearance of a local (spin) and a
nonlocal (disorder) operator reflects that we are representing
the correlations of a fermion in the language of a bosonic
model. Specifically, the spin-disorder dual of the Majorana
correlation function responds sensitively to the relative place-
ment of the two compound operators, as discussed in Ref. [25]
and explored explicitly in a dual fermionic description in
Ref. [6].

In the following, we show how the tensor network allows
one to map defect structures and correlation functions with
maximal explicitness. We will illustrate the construction on
two examples. The first is the mapping of the above SC
Majorana two-point correlation function. We will construct
local pairs of spin and disorder operators as fractionalized
representatives of the Majorana, and address the importance
of their relative ordering on the lattice. The second example is
motivated by the question what form these structures assume
in the TC language. We find that for general parameter values
the answer assumes the form of an exponentially decaying and
not very illuminating ground-state operator expectation value.
However, the analysis of the latter becomes more rewarding
once we introduce a spatial domain wall, i.e., an object, which
in superconductor language defines the surface of a topolog-
ical insulator. In this case, our correlation function describes
the spatial extension of a topological boundary mode, and we
will discuss how this object turns into a nondecaying string
operator expectation value in the toric code.

A. Correlation functions

Correlation functions are described by a TN modified at
the two points between which correlations are measured.
These modifications can interfere with the fermionization
procedure discussed in the previous section. Specifically,
if the observables under consideration are of odd fermion
parity, the mapping between bosonic and fermionic represen-
tations introduces a string-like object connecting the two point
observables. To illustrate the principle—and to be entirely
concrete—we start out from the fermionic two point corre-
lation function

〈θiθ j〉 :=
∫

(dθ )C θiθ j e
1
2 θT (A+C)θ , (21)

where C denotes the signed adjacency matrix of the network
and A the collection of all matchgate tensor generating ma-
trices. We may think of this as the contraction of a fermionic
tensor network subject to two incisions as illustrated in Fig. 7.
Doing the integral, we obtain

〈θiθ j〉 ∝ H−1|i j , (22)

with the Hamiltonian H = i(A + C). Close to a critical point,
e.g., a = a−, H can be approximated by the two-band Hamil-
tonian (17) linearized around qx, qy = 0. At criticality, m = 0,
the gap vanishes and the correlation function approaches an

FIG. 7. (Top) Fermionic TN for 〈θiθ j〉 divided into fermion par-
ity even regions A and Ā. (Center) The TN after fermion-to-boson
mapping. We obtain a bosonic weighted Z2 TN with σz matrices
(transparent yellow squares) acting along a defect line on the dual
lattice (yellow) and projections onto the state vector |1〉 at the sites
i and j, respectively. (Bottom) The TN of the IM partition function
obtained via a Hadamard gauge transformation. The σz matrices are
transformed to transfer matrices TDL of inverted coupling strengths
J → −J (filled-yellow squares) along the defect line and the spins
at site i and j (blue dots) contribute a sign factor to the partition
function leading to the expression in Eq. (25). The dashed-gray
line represents a (potential) boundary between regions of different
a values discussed in Sec. IV B.

013302-9



C. WILLE, J. EISERT, AND A. ALTLAND PHYSICAL REVIEW RESEARCH 6, 013302 (2024)

l−1 power law where the exponent follows from dimensional
analysis and l is the distance between i and j. However, in ad-
dition to this asymptotic distance behavior, we have additional
short-range lattice structures to consider. A single point i =
((x, y)b) is defined by unit cell coordinates (x, y) and an in-
tracell index b = 1, . . . , 4. It turns out that only pairs i, j with
select combinations of this data survive projection onto the
two-band reduction, and hence are long-range correlated. For
example, considering points separated along the x direction,
we find 〈θ(x,y)1θ(x+l,y)1〉 = 0, while 〈θ(x,y)1θ(x+l,y)3〉 ∝ 1/l .

Fermion boson mapping. We next aim to represent this
correlation function in the language of the bosonic TN. The
challenge here is the presence of fermion parity odd tensors
at sites i and j. To deal with this situation, we decompose the
tensor network into two parts, which are individually fermion-
parity even. The first of these, A, contains θi and θ j , and hence
is fermion even in total. The complement, Ā, contains the rest
of the tensor network. For the sake of simplicity, we chose
A to be as small as possible, namely as a chain of tensors
connecting sites i and j (see Fig. 7 top). Referring to Appendix
A 1 for a more detailed discussion, the goal now is to contract
all tensors in A and reorder the fermionic modes into standard
ordering. (The tensors of Ā can be assumed to be in standard
ordering to begin with.) As a necessary byproduct, this opera-
tion introduces a string of fermion parity tensors between sites
i and j. In a final step, we contract the bosonic versions of A
and Ā to obtain a bosonic tensor network in standard ordering.

In bosonic language, the above parity string is expressed
through σz matrices acting on the virtual bonds of the TN (see
Fig. 7 center). The θ modes themselves become projections
onto spin-up, i.e., |1〉-state at sites i and j. The resulting
bosonic tensor network is shown in the middle panel of Fig. 7.
Having defined two alternative representations of the TN sub-
ject to point sources at sites i and j, we now turn to the
interpretation of these structures in terms of condensed matter
correlation functions.

SC. Equation (22) affords an obvious interpretation as the
Majorana ground-state correlation function of a superconduc-
tor. Specifically, we think about the right-hand side of Eq. (23)
as the ground-state, or zero energy, ε = 0, matrix element
Gi j of the resolvent G = (ε − H )−1. (Due to the presence
of a spectral gap and the absence of convergence issues in
the Majorana functional integral, it is not necessary to shift
ε into the complex plane as for generic Green’s functions.)
Its algebraic decay then reflects the long-range correlation of
Majorana quasiparticles at the gap closing transition of the
topological superconductor.

IM. Next, we interpret the bosonic incarnation of the
sourced tensor network in terms of an Ising model correlation
function. As before, we obtain the corresponding partition
sum by performing a Hadamard transform (see Fig. 3), which
in the presence of sources has the following effect: the |1〉
projections become projection to the |−〉 state, meaning, if
the spin at position i is up, we obtain a minus sign. The same
holds for the spin at position j. We identify the parity string
as a defect line (DL) and observe that the transfer matrices at
all bonds crossed by that defect line are given by

TDL =
√

2HW 2σzH = 1√
2

(
1 − a 1 + a
1 − a 1 + a

)
. (23)

Comparing this to the result in Eqs. (11) and (12), we note that
these are transfer matrices with inverted coupling strength,
i.e., TDL = TJ→−J .

In summary, the tensor network after Hadamard transform
shown at the bottom of Fig. 7 is a spin-spin correlation func-
tion of sites i and j, but with a Hamiltonian HDL that has a
modified coupling strength J �→ −J along a defect line

Zcorr,i j =
∑

{si}=±1

sis je
−βHDL({si}) . (24)

The specific path entering the construction of the defect line
depends on the arbitrary choice made in dividing the tensor
network into A and Ā.

These building blocks entering the construction of the Ising
representation of the fermion correlation function have a long
history of research. Specifically, σz string line defects extend-
ing from a point of the lattice along arbitrary paths to infinity
are called disorder operators and and have been introduced in
Ref. [25]. They owe their name to the fact that they assume
finite expectation values in the disordered high-temperature
phase of the IM, and they are related by (Kramers-Wannier)
duality to the native local spin operators. Composite corre-
lation functions involving pairs of disorder operators (now
connected by a finite defect line) and spin operators were
considered in the same reference, where the importance of the
precise relative positioning of spin and disorder operator (ad-
dressed above in the language of the Majorana representation)
was discussed. In a lattice construction conceptually close to
the present one but formulated directly with the framework
of the IM, Ref. [6] investigated the braiding properties of
the composite operator to demonstrate that it defines an ef-
fective (Majorana fermion). Within our present construction
the bridge between free Majorana fermions and composite IM
operators is established in the explicit and arguably maximally
concise mapping of the fermionic to the bosonic TN.

TC. We finally turn to the an interpretation of the correla-
tion function in terms of toric code ground-state expectation
values. To be more precise, we consider the bosonic TN in the
middle panel of Fig. 7 and try to identify a toric code ground-
state vector |�〉 such that 〈�| . . . |�〉 corresponds to the given
TN locally and the ellipses stand for appropriate operators to
be identified as well. For general a values, this procedure leads
to complicated and not very revealing expressions. However,
at the toric code fixed point, a = 1, i.e., in the absence of string
tension, the construction becomes straightforward. Focusing
on this case, we note that for a = 1 the weight matrices are
identity matrices, meaning that we can omit them in the pic-
torial representation of the TN in the middle panel of Fig. 7.

We next note that the TN modified for the presence of
source terms has a number of specific features, which help
to identify the state vector |�〉 and the operators featuring in
the expectation value. First, it is missing a bond to the left
(right) of site i ( j). This missing bond suggests to choose |�〉
as the ground-state vector of the toric code with holes at sites
i and j. In the context of the toric code, the minimal surface
bounding these holes is known as a smooth boundary. The
ground state of a toric code containing smooth boundaries is a
superposition of all closed loops of spin-up states [58], where
the loops are allowed to include boundary links (cf. Fig. 8).
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FIG. 8. Toric code with smooth boundaries. The Hamiltonian in
the bulk (shaded in grey) is given by the conventional square-lattice
Hamiltonian. Along the boundary all vertex operators are modified
such that they are given by a product of σz matrices acting on the
edges inside the grey shaded region only. The plaquette operators
remain the same.

The remaining features of the TN we need to reproduce are the
string of sign flips along the defect line, and the |1〉 projections
at sites i and j.

The constructive modeling of these structures is a nice
illustration of tensor network constructions and detailed in
Appendix C. We here simply state the result and note that
the state we are looking for is |�〉 := Sx |��〉, where |��〉 is
the ground state of the TC with smooth boundaries mentioned
above and Sx = σx ⊗ · · · ⊗ σx is a string of σx matrices (bit
flips) between sites i and j. Applied to the ground state, this
operator generates an excited state with two m anyons located
at the endpoints of the string (cf. Fig. 9) [10]. The overlap

FIG. 9. Toric code with smooth boundaries around two holes that
arise from the correlation function “incisions” at sites i and j (cf.
Fig. 7 center). The string of σx matrices, Sx (blue), creates parity
violations (m-excitations) at its end-points. The string of σz matrices,
Sz (yellow), connects the incision sites and creates e excitations at its
endpoints.

〈Sx��|Sx��〉 reproduces the |1〉 projection of the TN in the
middle panel of Fig. 7.

The sought-after operator replacing the ellipses in
〈�| . . . |�〉 is Sz = σz ⊗ · · · ⊗ σz—a string of σz matrices
(phase flips) along a path connecting sites i and j on the dual
lattice. This operator is known to generate an excited state
with e anyons at its endpoint (cf. Fig. 9) [10]. Here, the e
anyons lie inside the two holes with smooth boundary and
instead give rise to another (orthogonal) ground state of the
Hamiltonian with smooth boundary. The expectation value of
this operator for a TC ground (or excited) state reproduces the
string of sign flips in the TN.

In summary, the expectation value reducing to the TN in
the middle panel of Fig. 7 and satisfying the above locality
condition is given by 〈�|Sz|�〉 = 〈Sx��|Sz|Sx��〉. Since the
support of Sx and Sz can be chosen to be nonoverlapping, these
two operators commute. With S2

x = 1, we find 〈�|Sz|�〉 =
〈��|Sz��〉.

Let us discuss this result. We have seen that the presence of
the Sx strings is irrelevant in the expectation values. The job of
these operators was to implement the |1〉 projections, which
in turn were dual to the spin operators in the Ising context.
Since a = 1 translates to Jβ = ∞ [cf. Eq. (12)] this dual
IM is deeply within the ferromagnetic phase, where spins are
uniformly aligned and hence drop out of correlation functions.
We next note that the operator Sz applied to the ground state
generates a state with two e anyons at its endpoints. This
state is orthogonal to the state vector |��〉 and the over-
lap 〈��|Sz��〉 is trivially zero. This, again, is expected by
duality—the Sz operator corresponds to the disorder correla-
tion function in the IM, which vanishes in the ferromagnetic
phase.

We thus conclude that all the so far effort has led to the dual
TC representation of a trivially vanishing correlation function.
This vanishing is due to the fact that we are considering
correlations on top of a bulk background, which, for a = 1,
is fully gapped. However, the situation becomes more inter-
esting, when we allow for the presence of a system boundary
spatially aligned to our probe operators.

B. Boundary phenomena

Turning back to the TN, assume a separation of our system
into a “topological” region, R defined by a value a > a− of
the coupling constant, and a “nontopological” complement
with a < a−. In SC language, this will define an interface
between a topological and a nontopological superconductor,
which we know supports gapless Majorana boundary modes.
On this basis, we anticipate that the TC representation, too,
will support long-range correlations, which we can probe by
putting two observation points i and j next to it. This is the
setup considered in the following.

Consider the TN in the middle panel of Fig. 7 where now
the weight matrices above the dashed line have a < a−. For
simplicity, we set a = 0, which reduces these matrices to
projections onto the state vector |0〉. Below the dashed line,
where a > a−, we choose a = 1, implying that the weights
become unit matrices. In effect, this network has all bonds
above the dashed line, including those that are crossed by it,
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FIG. 10. Deforming and removing a Sz-string at a smooth boundary by repeated application of identity (4) from Fig. 17.

removed. This defines a maximally simple interface between
a topological region and “vacuum”.

TN. In TN language, the above construction introduces an-
other smooth boundary along the interface, in addition to that
surrounding the correlation function observation points. As
before, we aim to identify the correlation function generalized
for the presence of the interface with a suitable ground-state
expectation value. Reconsidering the construction in the pre-
vious section, we conclude that it remains unchanged, only
that the ground state in question now is that of the system
with the generalized boundary |��,|〉. In the expectation value
〈Sx��,||Sz|Sx��,|〉, the Sx string is irrelevant as before, lead-
ing to 〈��,||Sz|��,|〉.

So far, we have not specified the positioning of the sites i
and j relative to the boundary. The situation gets interesting
when they come close to it (as depicted in the middle panel of
Fig. 7). Once they touch, the holes surrounding i and j are “cut
open” and partially lie outside the bulk. This has a dramatic
effect. While previously, we found that 〈��|Sz|��〉 = 0, we
now find that 〈��|Sz|��〉 = 1. This follows from the fact that
the e-excitation at the end of the Sz string are no longer trapped
in the bulk, instead, they lie outside of the bulk region and
by using a sequence of straightforward TN manipulation [cf.
identity (4) in Fig. 17], we can remove them entirely from the
system. The intuition behind this construction is illustrated in
Fig. 10.

V. SUMMARY AND DISCUSSION

In this paper, we have considered three reference sys-
tems, which are individually of outstanding importance to
condensed-matter research: the toric code as an exactly solv-
able model of long range entangled matter, the class D
superconductor as an example of a topological insulator, and
the two-dimensional Ising model as a maximally simple proxy
for systems with a discrete symmetry breaking phase transi-
tion. These three system classes are dual to each other. More
precisely, the duality connects the ground states of the TC
and the SC with the partition sum of the IM. Being exact,
it extends to all phenomena displayed by the three partner
systems, including their topological or thermal phase transi-
tions, the buildup of algebraic correlations at criticality, and
the presence of topological boundary modes at domain walls.
These equivalences are remarkable in that they connect phe-
nomena conventionally addressed in different hemispheres of
physics—such as the phase transition between a spin polar-
ized phase and a topological spin liquid vs the band closing
transition between a trivial and a topological superconductor.

The dualities discussed in this paper are largely known in
principle, and have been derived in previous paper by different
methods. As they include the duality between fermionic and

bosonic systems, a standard approach is to take a detour via a
transient mapping to one-dimensional quantum systems, for
which Bose-Fermi duality is established by Jordan-Wigner
transformation. An alternative approach is to look at them
through the coarse graining lens of CFT and establish equal-
ities between differently realized operators in, say, the Ising
and the free Majorana CFT at criticality. These approaches
illustrate the principle, but arguably lack in the microscopic
resolution required when it comes to the precise comparison
of correlation functions. To the best of our knowledge, this
point has first been made in Ref. [6], an observation being
that, e.g., the free Majorana correlation function in the SC be-
comes that between a spin and a disorder composite operator
in the IM where the exact positioning of the two compound
operators on the lattice becomes crucial. That reference has
solved the problem by staying on the two-dimensional lattice
and employing (string-) operator algebra to demonstrate that
the spin-disorder operator satisfies the commutation relations
of a Majorana fermion.

In this paper, we have proposed an alternative and more
comprehensive approach to the duality, the key idea being
to use a tensor network as an intermediate. While at first
sight a formulation introducing a fourth player into a situa-
tion that looks complicated already may not look appealing,
engaging a translator TN has various advantages. First, the
TN comes in two incarnations, a bosonic and a fermionic
one, the passage between the two being explicit, with no
dimensional detours required. Second, both realizations of
the TN are elementary. Being bond dimension two networks,
the compound tensors involved in the construction of the net
assume the form of 2 × 2 matrices, binary Kronecker δ’s and
Z2-parity projection tensors. After passing through a mild
learning curve, one can use powerful graphical relations of
tensor algebra as a resource to obtain results, which arguably
assume a substantially more complicated and tedious form
in different formulations. Another attractive feature is that
the fermionic TN assumes the form of a Gaussian Majorana
integral. As an alternative to using tensor relations, one may
proceed via techniques otherwise employed in the analysis of
free fermion systems, an approach naturally relevant to the
understanding of the superconductor. In this way, we not only
bridge different frameworks within a single formalism, but
also the mindsets of different scientific communities.

While the present paper has focused on known manifesta-
tions of the duality in the focus of attention, there are several
obvious extensions into less charted territory. The first is a
generalization to nontranslationally invariant systems, which,
depending on the context, means bit errors, random magnetic
exchange, or static impurities. The tensor network construc-
tion has no issues with the presence of spatially fluctuating
bonds, and a natural approach will be to perform ensemble
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FIG. 11. Tensor contraction versus fermionization. The diagram
is noncommutative in general. During the fermionization process,
we need to choose an ordering of the fermionic modes. We always
choose so-called standard ordering defined in the main text. For the
fermionic contraction, we need to choose a bond orientation and
again choose a standard orientation.

averaging directly on the level of the TN to generalize the
latter to an effective continuum field theory [29]. Other gen-
eralizations include the addition of nonlinear contributions to
the TN, asking if they, too, afford a condensed-matter inter-
pretation. One may also study geometric deformations of the
TN, for instance the hyperbolic geometries entering the con-
struction of holographic networks. Here again, it is natural to
ask if and how the holographic bulk boundary correspondence
manifests itself in the dual system classes.
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APPENDIX A: MAPPING BOSONIC TO FERMIONIC
TENSOR NETWORKS

In the following, we discuss how the map from bosonic
to fermionic tensors behaves under tensor contraction. In par-
ticular, we investigate under which conditions the diagram in
Fig. 11 is commutative or almost commutative, in a sense
to be specified momentarily. We recapitulate that we need
to choose an orientation for the contraction of the fermionic
bonds and an ordering of the contracted bosonic tensor for
their fermionization. We will focus on rectangular tensor net-
work patches on a square lattice and show that a particular
choice of orientations and orderings yields consistent results.

The assignments are as follows. We fix the orientation of all
fermionic bonds to be left to right for horizontal links and top
to bottom for vertical links. We define the index ordering of

FIG. 12. Contraction of fermionic tensors. The contracted tensor
can be brought into standard ordering at the cost of introducing a
sign-correction indicated by the red dots corresponding to matrices
si j = (−1)| j|δi j .

the tensors to be clockwise with the start point at the top most
index along the left edge (cf. Fig. 12). We refer to this pattern
as standard ordering. With this choice, the fermionized con-
tracted bosonic tensor network is identical to the contraction
of the tensors fermionized individually up to a correction of
sign factors that depends solely on the fermion parities of the
fermionic modes at the left boundary of the patch.

To see this, we consider the initial ordering or all fermionic
modes in the uncontracted tensor networks Oinitial and perform
a particular reordering to the ordering Orect. This produces a
sign factor S = (−1)σ (Oinitial,Orect ). We show that Orect is com-
patible with the contraction of fermionic bonds, i.e., we can
readily perform the integration over Grassmann variables and
are left with a tensor that only has fermionic modes at its
boundary. In particular the ordering of the boundary modes
coincides with the standard ordering [see Fig. 13(d)]. We
evaluate the sign factor S [see Fig. 13(e)] and find that it only
depends on the fermionic parities of the fermionic modes at
the left boundary of the patch.

1. Fermion to Boson mapping for correlation functions

We now describe the steps of the mapping in more detail.
On a square lattice (cf. Fig. 14), the product of a single 4-
leg matchgate tensor and a pre-exponential θ factorizes into
a 3-leg matchgate tensor and a single θ as illustrated by the
example

e
1
2 θiai jθ j θ3 = (1 + a12θ1θ2 + a14θ1θ4 + a24θ2θ4)θ3 . (A1)

We next divide the tensor network into the parts A and Ā as
indicated above (cf. Fig. 7) and contract the tensor network A.
Part A is the interesting part and is itself composed of fermion-
parity even tensors and two fermion-parity odd tensors whose
ordering has to be stated explicitly (as they do not commute).
The ordering is inherited from the definition of the correlation
function, here it is θiθ j . A convenient partitioning of A is to
split-off θ j from the rest. Everything but θ j can be contracted
as usual and gives rise to a tensor with fermionic modes in
standard ordering. In our case, this is a clockwise orientation
with starting point on the topmost edge on the left side of the
patch.

We now only need to contract the remaining θ j mode with
the rest and reorder the product to standard ordering. To do
so, we need to move θ j past all fermionic modes such that
standard ordering is reached. In the example in Fig. 7 this
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FIG. 13. (a) Identities for contracting and reordering fermionic modes. (1) Contraction of a fermionic bond. If the modes to be contracted
(red arrow) occur in consecutive order in the ordering of all fermionic modes (red line) they can be integrated out and removed from the
tensor network. (2) Manipulating the ordering of fermionic modes. The total fermion parity of the tensors is even. Thus, when the ordering
string “encircles” a tensor, we can decouple it from the ordering string. (3) Cyclic permutation of the fermionic modes of a parity even tensor
according to θ

j
2 θ k

3 θ l
4θ

i
1 = (−1)iθ i

1θ
j

2 θ k
3 θ l

4 yields a sign factor (−1)i represented as a red dot. (b) A tensor network with ordering Orect. Fermionic
bonds are integrated out sequentially using rule (1) to arrive at a fully contracted network with boundary modes ordered in standard ordering.
(c) Calculating the sign factor σ (Orect,Oinitial ). We deform the global ordering string according to rule (2) several times. In the last equality we
use the cyclic permutation rule (3) to obtain the initial ordering. In this process we obtain the sign factor represented by the red dots along the
left edge of the network.

corresponds to moving θ j past all modes on the bottom seg-
ment of the already contracted strip. This induces a sign factor
depending on the fermion parity of the corresponding edges
as indicated by yellow dots in the figure. With the standard
ordering and even-parity in place we can now transform the
tensor network to a bosonic tensor network as before and
rewrite it as a weighted Z2-tensor network.

APPENDIX B: CLASS D TOPOLOGICAL
SUPERCONDUCTORS

1. Band structure, topological invariants, and Dirac
representation

The Bogoliubov-de Gennes Hamiltonian of spin-triplet su-
perconductor in the absence of time-reversal invariance (the
defining signatures of symmetry class D) is conventionally
represented as

Ĥ := (C†,C)

(
h �

�† −hT

)(
C
C†

)
=: ψ†H̃ψ, (B1)

FIG. 14. Region A of the tensor network, containing the individ-
ual modes θi and θ j and a string of connecting tensors such that the
total parity of A is even. (Left) Division of the region A into two parity
odd patches (ordered). The first patch is contracted and emerges with
standard ordering. The second one is given by the single mode θ j .
(Right) The contraction of the two patches emerges with nonstandard
ordering. Reordering it to standard ordering brings about a string of
sign factors along the modes at the bottom.

where C = {Ci} is a vector of (spinless) lattice fermion cre-
ation operators, and � = −�T an antisymmetric lattice order
parameter. In this language, the class D symmetry of the
matrix Hamiltonian H̃ assumes the form HT = −σxHσx, the
Pauli matrix acting in particle-hole space. From here, we
may pass to a real (“Majorana”) representation via unitary
transformation

ψ =
(

C
C†

)
:= 1√

2

(
η + iν
η − iν

)
=: U�, (B2)

with � = (η, ν)T , and U = 1√
2
(1 i
1 −i). A quick calculation

shows that in this Majorana representation our Hamiltonian
assumes the form Ĥ = i�T A� with the real antisymmetric
matrix

A =
(−ihA − i�+ hS − �−

−hS + �− −ihS + i�+

)
, (B3)

hS/A = 1

2
(h ± hT ), �± = 1

2
(� ± �†). (B4)

Conversely, any even-dimensional antisymmetric matrix may
be represented in the block form Eq. (B3), and in this way one
may pass from the complex Bogoliubov-de Gennes represen-
tation to the Majorana representation, and back.

According to the general classification of topological
insulators and superconductors, the two-dimensional super-
conductor in class D is a Chern insulator, carrying a Z-valued
topological index c. This index is in turn obtained by summa-
tion c = ∑N

n=1 cn over Chern numbers carried by individual
Bloch bands, n = 1, . . . , N , with band energies below the
superconductor band gap at ε = 0. (Recall that single-particle
energies of a superconductor occur in pairs ±ε, and that the
presence of an order parameter generically implies a band gap
around ε = 0.)
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To compute the numbers cn, we label the band eigenvectors
as |n, k〉 in terms of their two-dimensional crystal momenta
k ∈ T2 and define the Berry connection

a(n, k) := i〈n, k|d|n, k〉 = i〈n, k|∂ki |n, k〉dki (B5)

and its associated curvature

f (n, k) := da(n, k) = i(∂k j 〈n, k|)(∂ki |n, k〉)dk j ∧ dki. (B6)

Integration of the latter over the Brillouin zone then yields the
Chern numbers as

cn := 1

2π

∫
T2

f (n, k). (B7)

One is often interested in detecting changes of topologi-
cal invariants upon crossing a topological phase transition
point, i.e., situations where the Chern numbers (cn, cn+1) →
(cn ± 1, cn+1 ∓ 1) of two neighboring bands change via the
transient appearance of a band gap closure at a Dirac point.
The simplest possible case (cn, cn+1) = (0, 0) → (±1,∓1)
may be conveniently described in terms of a minimal two-
band reduction, where the Hamiltonian reduced to the two
bands is described as a two-dimensional matrix Hamiltonian,
H (2)

k := ∑3
a=1 ca(k)σa, and the class D symmetry in Majorana

representation

(HT )k = HT
−k = −Hk (B8)

requires c1(−k) = −c1(k), c2(k) = c2(k), c3(−k) = −c3(k).
In the vicinity of a phase transition point, the Hamiltonian
reduces to the Hamiltonian in Eq. (17). In this reduction,
the above definition of Chern numbers counts the number of
windings of the coefficient vector (q1, q2, m + cq2) around
the origin as a function of q. It is straightforward to verify that
this criterion translates to the assignment of Chern numbers
mentioned in the main text.

2. Majorana zero mode

We may upgrade our band insulator to one with a topo-
logically degenerate ground space by adding Z2 vortices.
Assuming a gauge where the entire π flux carried by a half-
flux quantum vortex is picked up along one lattice bond, a Z2

vortex is realized by the insertion of a line defect along which
the sign of the hopping amplitude is inverted, 1 → −1. On
the same basis, a vortex pair corresponds to a line defect of
finite length. Now assume each of its two vortex centers to be
surrounded by a region with a > a+ in which the system is
topologically trivial, or represents an effective vacuum. One
may show (see Appendix B 2) that at the boundaries to the
topologically nontrivial outer region with a < a+ zero energy
Majorana states γ forms. (While a finite vortex core region
facilitates the identification of the edge mode, its size may
be shrunk to zero without compromising the topologically
protected Majorana state.) The two Majoranas bound by a vor-
tex pair define a complex fermion state ψ , whose occupation
parity realizes the Z2 degeneracy of the bivortex ground state.
While the vortices cannot be individually removed, one may
“fuse” them either by contracting the connecting string, or by
extending the vortex disk areas. Depending on the occupation
of the previously nonlocal fermion, one is then either left

FIG. 15. A pair of Z2 vortices realized by a string of sign in-
verted hopping amplitudes (bonds intersected by dashed line). At
the interface between regions with a > a+ (dark shaded) and a < a+
(light shaded) zero energy Majorana edge modes form. The fusion
of the two vortices leads to a topologically trivial configuration
(equivalently, a 2π vortex)

with a vacuum state, or with a local and gapped fermion, in
accordance with the fusion rule γ ⊗ γ = 1 ⊕ ψ .

Vortex zero mode. For completeness, we here demonstrate
the formation of the vortex state and its zero mode by explicit
computation. Assuming a core sufficiently large to admit a
continuum representation in terms of the effective Hamilto-
nian (6), we consider a disk of radius R with topological
control parameter m < 0 and m > 0 inside and outside the
disk perimeter. With ki = −i∂i, and switching to polar coor-
dinates we have ∂1 = cos φ∂r − 1

r sin φ∂φ and ∂2 = sin φ∂r +
1
r cos φ∂φ . Using these identities, the Dirac Hamiltonian (with
κ = 1 for simplicity) assumes the form

H = i(cos φσ1 + sin φσ3)∂r

+ i

r
(− sin φσ1 + cos φσ3)∂φ + m(r)σ2. (B9)

We are interested in the existence of zero-mode solutions
Hψ = 0. The structure of the Hamiltonian suggests that it
should be possible to apply a rotation around σ2 to bring
it to a simpler form. Specifically, consider the equivalent
equation H̃ψ̃ = 0, with H̃ = UHU −1 and ψ̃ = Uψ where
U = exp(− i

2φσ2). It is straightforward to verify that

H̃ = i

(
∂r + 1

2r

)
σ1 + i

r
∂φσ3 + m(r)σ2.

[Note: Naively, the second term in parentheses appears to vio-
late Hermiticity. However, this is not so. It is actually required
to make i(∂r + 1

2r ) Hermitian with respect to the measure rdr
of polar integration.] Assuming φ independence of the zero
mode, we are left with the equation(

∂r + 1

2r
− m(r)σ3

)
ψ̃ (r) = 0.

Now decompose |ψ̃〉 = ψ+|↑〉 + ψ−|↓〉 in terms of eigenvec-
tors of σ3. This leads to(

∂r + 1

2r
∓ m(r)σ3

)
ψ±(r) = 0,
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FIG. 16. Collapsing the double layer 〈�(t )|�(t )〉 TN to a single layer TN via a sequence of local deformations. All identities used follow
from the definitions of the Z2 and the δ tensor in Fig. 3(b).

with the solutions (prenormalization)

ψ±(r) =
(

R

r

)1/2

exp

(
±

∫ r

R
ds m(s)

)
.

Since m(r) > 0 for r > R, we retain ψ− as a normalizable
option. Tidying up, we obtain

ψ (r, φ) = N
(

R

r

)1/2

exp

(
−

∫ r

R
ds m(s)

)
ei φ

2 |↓〉

for the zero mode of our system. At this point, it becomes
clear why a (half-) vortex is required to realize this solution:
the wave function as such obeys antiperiodic boundary condi-
tions, ψ (r, φ + 2π ) = −ψ (r, φ). Such states are not tolerated.
However, if we assume π flux inserted at the origin, the
additional phase twist adds to that of φ̃ to define a state with
periodic boundary conditions. In the Majorana representation
with its real antisymmetric Hamiltonian, the π -flux insertion
may be realized in terms of a line defect of bonds with sign
inverted hopping amplitude as indicated in Fig. 15.

APPENDIX C: DETAILS ON TENSOR NETWORK
CONTRACTIONS FOR TORIC CODE GROUND STATES

In this Appendix, we provide some details on tensor net-
work contractions and identities used to derive results for the
toric code ground-state expectation values. The identity in
Fig. 4(b) is derived using a sequence of local deformations
shown in Fig. 16. Here, we use that δ tensors can be duplicated
and that a local double layer patch can be reduced to a single
layer patch as shown in the inset of the figure. Finally, we use
that a loop of δ tensors can be contracted to an identity matrix
as shown in the last equality.

Next, we provide further details on the interpretation of
the TN representing a correlation function in Sec. III B Fig. 7
(center) as a ground-state expectation value of the toric code
in the case, where the parameter a determining the weight
matrices in the tensor network are a = 1 inside and a = 0
outside a region R.

In particular we show how a TN with a sign string can
be interpreted as 〈��|Sz|��〉 and how the TN with parity
violations at sites i and j originating from the |1〉-state pro-
jections is given by 〈Sx��|Sx��〉. All of these identifications
are derived using the general rules for the “interaction” of σx

and σz matrices with Z2 and δ tensors shown in Fig. 17.

1. Sign string

Here, we show how the expectation value 〈��|Sz|��〉 is
identified with a TN with a string of sign-flips (generated by
σz matrices) on the dual lattice. To see this consider Fig. 18.
On the very left, we show a local patch of the double layer
of |��〉 and �̄� sandwiching a physical σz-error string. We
again use a δ tensor doubling and then make use of the fact
that a σz matrix can be moved through a δ tensor according
to identity (3) in Fig. 17. After the contraction of the δ-tensor
loops, we obtain a purely virtual TN with the sign flip string
as desired.

FIG. 17. TN identities for the interaction of Pauli matrices σx

(blue square) and σz (yellow square) with Z2 tensors (grey circles)
and δ tensors (black circles). (1) A pair of σx matrices applied to any
pair of indices can be absorbed by a Z2 tensor. (2) The same holds for
σz matrices and δ tensors, which is equivalent to identity (3). A string
of σx (σz) matrices can be pulled through a δ(Z2) tensor as shown in
identities (2) and (4).
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FIG. 18. The overlap 〈�(t )|Sz|�(t )〉 reduced to a single layer MGTN with sign string following the same reductions as in Fig. 16.

2. |1〉-projections and parity violations

In the main text, we have shown how the |1〉 projections
can be gauged away. Here, we provide an alternative
interpretation and show how the projections onto the |1〉 state
can be interpreted as the overlap 〈Sx��|Sx��〉 establishing
a connection with the m excitations in the toric code. We start
by taking a closer look at the state vector Sx |��〉 and its
tensor network representation in Fig. 19(a). By using identity
(2) from Fig. 17 we can trade a σx matrix acting on the
physical index for two σx matrices acting on the virtual level.
We also note that a 3-leg Z2 tensor is identical to a 4-leg Z2

tensor with one index projected to the state vector |0〉 [first
equality in Fig. 19(a)]. Now, if we are working with a TC
ground state with string tension (a �= 1), we encounter the

problem that the σx matrices do not commute with the weight
matrices, which obstructs further simplifications. However, at
the fix point (a = 1), the weight matrices reduce to identity
matrices [second equality in Fig. 19(a)]. In this case, we can
absorb pairs of σx matrices at the Z2 tensors using identity
(1) from Fig. 17. We are left with σx matrices acting on the
|0〉 states at the end of the string Sx, which give rise to the
|1〉-state projections we set out to identify.

Now, we consider the overlap 〈Sx�|Sx�〉 and show that it
gives rise to a single layer TN with |1〉 projections at the end
of the Sx-string. A local patch of the double layer TN around
site i is shown in Fig. 19(b). In analogy to the reductions in
Fig. 16, we can reduce the TN to a single layer TN with |1〉
projections at the site i.

FIG. 19. (a) Local patch of the state vector Sx |��〉. In the second equality we restrict to the fix point, t = 1. For t �= 1, the noncommuta-
tivity of σx and the weight matrices obstruct the simple reduction procedure. (b) Contracting 〈Sx��|Sx��〉 to a single layer TN.
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