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The manipulation of topologically ordered phases of matter to encode and process quantum information
forms the cornerstone of many approaches to fault-tolerant quantum computing. Here we demonstrate that
fault-tolerant logical operations in these approaches can be interpreted as instances of anyon condensation.
We present a constructive theory for anyon condensation and, in tandem, illustrate our theory explicitly
using the color-code model. We show that different condensation processes are associated with a gen-
eral class of domain walls, which can exist in both spacelike and timelike directions. This class includes
semitransparent domain walls that condense certain subsets of anyons. We use our theory to classify topo-
logical objects and design novel fault-tolerant logic gates for the color code. As a final example, we also
argue that dynamical “Floquet codes” can be viewed as a series of condensation operations. We propose
a general construction for realizing planar dynamically driven codes based on condensation operations on
the color code. We use our construction to introduce a new Calderbank-Shor-Steane–type Floquet code
that we call the Floquet color code.
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I. INTRODUCTION

Topological quantum error-correcting codes [1–6] have
provided the basis of many promising approaches to real-
ize a fault-tolerant quantum computer. These codes are
based on topological phases that robustly store quantum
states in nonlocal degrees of freedom [7,8]. Additionally,
there exist a number of distinct ways of performing log-
ical operations on topologically protected quantum states,
using unitary dynamics [2,3], measurement-based methods
[9–15], or combinations thereof [16–18]. Performing these
logical operations, however, is generally very resource
intensive and so it remains a significant technical challenge
to realize these current designs for quantum computing
architectures. It is therefore important to develop novel
methods of implementing robust operations that are avail-
able with topological phases in order to find more practical
ways of performing the logical operations that we need for
universal fault-tolerant quantum computing.
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The color code [5] is a topological quantum error-
correcting code with a rich structure that can be harnessed
for topological quantum computing. Its study was first
motivated by its multitude of available transversal logic
gates. In addition to these local constant-depth unitary log-
ical operations, which are inherently fault tolerant, the
color code can also demonstrate various fault-tolerant
measurement-based code deformations [10,12–15]. All
together, these operations can be combined to give univer-
sal low-overhead fault-tolerant quantum computing [12,
13,19,20], with resource requirements that are favorable
over those of the surface code.

The versatility of the color code for performing fault-
tolerant logic gates can be attributed to the underlying sym-
metries among its quasiparticle excitations when viewed as
a topological model [21–23]. Furthermore, the color code
can be decomposed into copies of more elementary phases
[23–27]. All together, these properties mean that the color
code offers an excellent test bed both to design practical
ways of performing fault-tolerant quantum computation
as well as to investigate the fundamental phenomena of
topological phases that enable robust logical operations.

In this work, we develop a theory of topological quan-
tum computing in terms of anyon condensation [28–32] for
stabilizer codes, where we use the color code as a guiding
example. Anyon condensation implements a special type
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of topological phase transition by identifying a subset of
anyons of the phase with the vacuum particle of a conden-
sate. We find that anyon condensation offers a natural way
of describing many aspects of quantum computation with
topological stabilizer codes. In particular, it offers a con-
cise and unified language for the logical operations avail-
able in the color code, as well as other code-deformation
and code-switching schemes. Furthermore, the scheme we
present to perform anyon condensation is constructive in
microscopic lattice models, i.e., it allows us to construct
topological stabilizer codes exemplifying and implement-
ing the various features and operations described abstractly
by anyon condensation. In Table I and the following

paragraphs, we give an overview of the results obtained
from implementing anyon condensation in the color code
in various ways.

As as first example, we consider condensing the anyons
in a disk-shaped region of the color-code lattice. This
allows us to recover the punctures with different types of
boundaries that have been discovered earlier in the litera-
ture [5,23]. The boundaries that we produce can be viewed
as a nonlocal degree of freedom, the state of which is
determined by the type of anyons it has condensed, i.e.,
absorbed through local processes. Punctures provide the
standard mechanism to encode quantum information in
a topological code and, given these properties, we can

TABLE I. Anyon condensation on topologically ordered phases in various regions of space-time. We distinguish three types of con-
densation—maximal, partial, or trivial—depending on the number of anyons that are condensed. The different types of condensation
are shown in the columns in the table and are discussed in Secs. III B 1–III B 3. We apply condensation to different regions of the
space-time lattice, represented by the shaded regions in the figures of the leftmost column, over different sections of the work. In the
first row, we condense anyons in the spatial bulk. This introduces features such as punctures, semipunctures, and invertible domain
walls (Sec. IV). In the second row, we introduce temporal domain walls using anyon condensation over the entire bulk at an instant
in time. This gives us protocols to initialize, manipulate, and read out logical qubits in the color code (Sec. V). In the third row, we
condense anyons across a narrow subregion of the bulk, in order to obtain end points of domain walls (Sec. VI). Finally, we perform a
dynamic condensation, where different anyons are condensed at different time steps. Using the partial condensation in the color code,
we obtain a general construction for dynamically driven codes through this procedure (Sec. VII).

Maximal (Sec. IIIB1) Partial (Sec. IIIB2) Trivial (Sec. IIIB3)
Partial bulk Boundaries and punctures Condensates and semipunctures Invertible domain walls
(Sec. IV) (Sec. IVA) (Sec. IVB) (Sec. IVC)

Full bulk Readout or initialization Partial readout or initialization Transversal gates
(Sec. V) (Secs. VB and VC) (Sec. VF) (Sec. VA)

1D line Corners Semitransparent domain walls Twist defects
(Sec. VI) (Sec. VIB) (Sec. VIC) (Sec. VIA)

Dynamical Floquet codes
(Sec. VII) (Sec. VII)
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create and braid different punctures to robustly encode and
manipulate quantum information.

In addition to known punctures, the theory of anyon
condensation allows us to generalize the types of punc-
tures that can be produced in the color code. Specifically,
we discover what we coin a semipuncture, where only
a single boson of the color code is condensed within
a disk-shaped region. We regard these new objects as
semipunctures in the sense that a pair of semipunctures,
of the appropriate type, can be combined to give known
types of punctures. Indeed, a standard puncture is obtained
by condensing a larger subset of color-code bosons in
some region. As we will show, new types of code defor-
mation become available by manipulating these general-
ized punctures, leading to new approaches to fault-tolerant
logic.

We also view bulk-condensation operations from a dif-
ferent perspective by examining how a topological phase
transforms over time. In general, we observe a domain
wall in a (2 + 1)-dimensional [(2 + 1)D] space-time pic-
ture as the system undergoes a phase transition between
two distinct phases. In the example of the color code,
we can condense a maximal subset of bosons, formally
known as a Lagrangian subgroup of the anyon model,
which transforms the phase onto the vacuum phase. Alter-
natively, we can also condense a smaller subset of bosons,
such that we transform the system onto the toric-code
phase. These operations all have important applications
in fault-tolerant quantum computation, for logical state
readout or, inversely, state preparation. As we will show,
we find that the anyon-condensation perspective shows
us how to address individual color-code logical qubits
for readout operations, by condensing a smaller subsets
of bosons to perform logical measurements. We touch
on the interplay between spatial and temporal bound-
aries and how different boundary configurations relate
to the fault tolerance of a given protocol. As an exam-
ple, we show how the theory of anyon condensation
can be used to design more general stability experi-
ments [33] to evaluate the error-correction capabilities
of the color code as it undergoes fault-tolerant logical
operations.

Anyon condensation is also invaluable in the classifica-
tion of twist defects. Twist defects are obtained by termi-
nating a domain wall that connects a topological phase to
itself. In earlier work [21–23], 72 twist defects have been
shown to exist when the color-code phase is connected
trivially to itself. More generally though, we find that addi-
tional domain walls can be obtained by merging a phase to
itself via a nontrivial condensate [34,35]. This gives rise to
a semitransparent domain wall where certain charges can
pass through the domain, whereas others either condense
or confine. We demonstrate the importance of these more
general types of domain wall for fault-tolerant quantum
computation by investigating how semitransparent domain

walls appear in lattice-surgery operations with the color
code [20].

As a final example, we rederive and generalize recently
proposed constructions of dynamically driven “Floquet”
codes [36] from the perspective of color-code anyon con-
densation. We argue that the transformations used to read
out the stabilizers of dynamically driven codes can be
viewed as a sequence of condensation operations, where
at each step we condense a different color-code anyon.
Our construction enables us to discover more general
classes of dynamically driven codes. We propose one such
example that we call the Floquet color code; a Calderbank-
Shor-Steane– (CSS) type Floquet code on the honeycomb
lattice. We find that since our construction is based on the
well-studied color code, we obtain a constructive way of
designing the boundary stabilizers of dynamically driven
codes [37], by appealing to the physics of the parent color-
code theory. Furthermore, we present numerical results
showing that the Floquet color code has a threshold that is
very competitive with other known Floquet codes [38]. We
remark that the Floquet color code has independently been
discovered in other very recent work [39,40]. Furthermore,
we note that a recent experiment has demonstrated an error
detection measurement for the Floquet color code [41].

A. A guide for the reader

We develop the theory of anyon condensation for
Abelian-anyon models in the earlier sections of this work
and we investigate various instances of anyon conden-
sation with the color code, and its applications to fault-
tolerant quantum computing, in the following sections of
the paper. We have therefore written the latter sections
of the paper in a self-contained way, assuming that the
reader is familiar with the theory we present in the former
sections. We summarize this structure in Table I, where
the different examples of anyon condensation in the lat-
ter sections of the paper are presented in the rows of the
table, with respect to the different types of anyon conden-
sation that are represented by the columns of the table.
Furthermore, we offer the following guide for the reader to
navigate through the various sections of the paper, where
we emphasize the dependence of the latter sections on
requisite material from former sections.

In Sec. II, we review the requisite background for the
color-code model and we identify its keys properties that
enable it to give rise to a number of nontrivial condensation
operations. We then give a general theory for anyon con-
densation in Sec. III. Specifically, we distinguish between
maximal, partial, and trivial condensation. These differ-
ent types of anyon condensation are distinguished by how
excitations are transmitted across the domain wall that is
produced by the condensation operation. Again, the differ-
ent types of condensation are represented by the columns
of Table I.
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Assuming that the reader is familiar with the material
presented in Secs. II and III, the microscopic examples
of condensation in the following sections can be read
independently. Indeed, Secs. IV and V are self-contained.
Section IV investigates domain walls that spatially sep-
arate the color code from one of its condensates—the
vacuum phase, the toric code, or the color code itself.
This is represented by the first row of Table I. Then, in
Sec. V, we investigate the different types of condensation
over timelike domain walls, as shown in the second row of
Table I.

Section VI builds on the ideas that we begin to develop
in Secs. IV and V. In this section, we describe new topo-
logical features that are produced by interfacing two phases
with an intermediate condensate. Specifically, at the micro-
scopic level, we show that we can make nontrivial domain
walls between the color code and itself to produce differ-
ent types of twist defects, where the color-code phase is
interfaced with a nontrivial condensate. This construction
is represented in the third row of Table I.

Finally, we discuss our Floquet-code construction from
the perspective of anyon condensation in Sec. VII. The
picture we present for Floquet codes in terms of conden-
sation operations is represented by the fourth and final
row of Table I. This section can be read independently of
Secs. IV–VI.

II. PRELIMINARIES

The color code is a topologically ordered phase of matter
that gives rise to anyonic quasiparticle excitations. We start
this section by introducing the theory of Abelian-anyon
models (Sec. II A) before turning our attention to the color
code. We introduce the color-code anyons and a micro-
scopic color-code lattice model (Sec. II B). We relate the
color code to another well-known topological phase, the
toric code (Sec. II C). In particular, we discuss first how
the color code can be unfolded into two decoupled layers
of toric codes (Sec. II D). Lastly, we introduce a space-
time interpretation of topological error-correcting codes
(Sec. II E).

A. Anyons

Anyons are quasiparticles that exist in two spatial
dimensions [2,42]. We denote the set of all anyons of a
phase, and the data describing their behavior, by the anyon
model C. We label single anyons as lower-case letters
a,b,c ∈ C. The trivial anyon, or the vacuum, which is
part of every anyon model, is denoted as 1. Let us now
discuss how fusion, exchange, and braiding of anyons is
described.

Fusion is the process of bringing two anyons close
together such that they behave as a third anyon within the
same anyon model. We denote fusion by the “×” oper-
ation. Here, we concentrate on Abelian-anyon models,

where fusion outcomes are unique. The fusion rules of
Abelian anyon models are of the form a × b = c for
a,b,c ∈ C. Fusion with the vacuum anyon is trivial,
a × 1 = a. Furthermore, each anyon has an antiparticle
with which it fuses to the vacuum. In the topological
phases of interest here, namely, the color code and toric
code, all anyons are their own antiparticles, such that
a × a = 1.

Exchanging two identical Abelian anyons results in a
complex phase. If we exchange the position of a pair of a
anyons, we denote the obtained phase as θa. This phase is
called spin and for qubit-stabilizer codes takes values ±1.
Anyons for which the self-exchange results in a +1 (−1)
phase are called bosons (fermions).

Braiding is the process of moving one anyon around
another before returning it to its initial position. Let us say
that we braid anyon a around a second stationary anyon b;
this process results in a phase called monodromy, denoted
as Ma,b. For the color-code and toric-code phases, the mon-
odromy can only take values Ma,b = ±1, allowing us to
use a shorthand formulation in which we call braiding
either trivial (Ma,b = +1) or nontrivial (Ma,b = −1).

In fact, it is worth pointing out that the self-consistency
conditions governing Abelian-anyon models lead to a
number of redundancies in the data. The identity Ma,b =
θaθb/θa×b, for example, lets us determine the self-
exchange statistics of any anyon by decomposing it into
two different anyons, the spin and relative braid statistics
of which are known.

We can define a microscopic local Hamiltonian, com-
posed of commuting Pauli interaction terms acting on
qubits such that the ground space is the common +1
eigenspace of all the terms that give rise to a topologi-
cal phase. We say that violated interaction terms occupy
quasiparticle excitations. These excitations may behave
like anyons. Unitary rotations create and transport anyons,
allowing us to study their fusion, self-exchange, and braid-
ing explicitly [43]. In the next two sections, we study two
specific examples of Hamiltonian models, the color code
and the toric code.

B. The color code

In what follows, we introduce a lattice model realiz-
ing the color code [5], before turning our attention to the
anyonic excitation that it hosts.

We employ the language of stabilizer codes [44] to
describe the microscopic lattice models realizing topolog-
ically ordered phases. Stabilizer codes are defined by an
Abelian subgroup of the Pauli group that we call the stabi-
lizer group. Importantly, the common +1 eigenspace of the
elements of the stabilizer group specifies the code space
of a code. The group therefore does not include −1, as
this operator has only negative eigenvalues. We measure
stabilizer operators to detect errors.
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(a) (b)

FIG. 1. The lattice model of a color code. A physical qubit is
placed on every vertex. As shown on the right, each plaquette
hosts two stabilizers, one acting in the X basis and one in the Z
basis. (a) Pauli rotations on the two qubits of an edge create a pair
of anyons on the plaquettes at the end points of said edge. In the
displayed examples we show a pair of rx (gz) anyons created at
the end points of a string of Pauli-X (Pauli-Z) rotations supported
on a red (green) edge. (b) A single-qubit Pauli rotation creates a
triplet of anyons. This process can also be understood as fusing
two anyons into the third anyon of the triplet.

The color code can be defined on any trivalent lattice
that is three-colorable with respect to its faces. We use the
colors red, green, and blue. It is also helpful to assign col-
ors to the edges of the lattice. The color of an edge is given
by the color of the faces it connects. In this work, we focus
on the hexagonal lattice, as shown in Fig. 1.

To specify the color code, we assign physical qubits to
the vertices of the three-colorable lattice and stabilizers are
associated to the plaquettes of the lattice. We index the
plaquettes with the symbol p . Each plaquette hosts two sta-
bilizer generators, one of which acts in the X basis on all
qubits supported on the plaquette, sp

X , and the other in the
Z basis, denoted sp

Z . We will refer to them as X -type or
Z-type stabilizers, respectively. Note that by multiplying
the two stabilizer generators on any plaquette, we obtain a
Y-type stabilizer at plaquette p , i.e., sp

Y = sp
Zsp

X .
Given the stabilizers of a code, we can introduce a com-

muting Hamiltonian consisting of the negative sum of a set
of stabilizer generators. For topological stabilizer codes,
these Hamiltonian terms commute and can be chosen to be
geometrically local. In the color code, we usually pick the
plaquette terms sp

X and sp
Z acting in the Pauli-X and Pauli-

Z basis on all qubits surrounding a plaquette p , as depicted
in Fig. 1. This yields the following Hamiltonian:

HCC = −
∑

p

sp
X −

∑

p

sp
Z . (1)

The ground-state space of this Hamiltonian coincides with
the code space of the stabilizer code. Excited eigenstates
are reached when some plaquette terms are violated. These
states differ from states in the ground-state space by Pauli

rotations on single qubits. We associate the violated pla-
quette terms with anyonic excitations and say that they are
created by said Pauli rotations.

Let us now discuss color-code anyons and their proper-
ties. The color-code phase contains 16 anyons. Apart from
the vacuum excitation, there are nine nontrivial bosons.
Each boson has one of three color labels, r, g, or b, as
well as one of three Pauli labels, x, y, or z. The labels are
given by the color of the violated plaquette and the basis
of the Pauli rotation that creates and moves the anyons. As
an example, we say that a red plaquette the stabilizer(s)
of which are violated by an applied Pauli-X rotation is
associated with an anyon labeled rx [see, e.g., Fig. 1(a)].

Throughout this work, we find it instructive to order the
nine color-code bosons in a 3 × 3 table [23], such that
bosons in any given row (column) share their Pauli (color)
label. This table is referred to as the color-code boson
table:

rx gx bx
ry gy by
rz gz bz

. (2)

Let us review how the data of the color-code anyons are
captured by the boson table in Eq. (2). All color-code
anyons are their own antiparticles; hence two identical
anyons fuse to the trivial anyon. For example, we obtain
rx × rx = 1. Bosons that lie in the same row or column
fuse to the third boson in said row or column. Exam-
ples of such fusions are bx × by = bz or gy × by =
ry. Braiding between two bosons from the same row or
column is trivial, e.g., Mrx,ry = Mgz,bz = +1, whereas
bosons from differing rows and columns braid nontrivially,
e.g., Mgx,rz = −1.

Fusing two bosons that differ in both Pauli and color
label results in one of six fermions:

f1 = rx × bz = ry × gz = gx × by, (3)

f2 = rz × bx = ry × gx = gz × by, (4)

f3 = bz × gy = gx × rz = bx × ry, (5)

f4 = rz × gy = gx × bz = rx × by, (6)

f5 = rx × gy = bx × gz = by × rz, (7)

f6 = bx × gy = rx × gz = ry × bz . (8)

Writing color-code fermions in terms of their composite
bosons lets us infer all of their relevant data. For exam-
ple, using rules that we have defined in Sec. II A), we
find that fermions labeled with an even-number label braid
trivially with fermions labeled by an odd number, e.g.,
Mf1,f4 = +1, whereas two distinct even (odd) fermions
braid nontrivially, e.g., Mf3,f5 = −1.

To store quantum information in the color code, we can
either place the code on a topologically nontrivial manifold
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(a) (b) (c)

FIG. 2. The triangular color code with (a) three colored bound-
aries and (b) three Pauli-type boundaries, where the colored
boundaries are defined in Ref. [5] and the Pauli boundaries
are defined in Ref. [23]. We rederive all of these boundaries
in Sec. IV A in terms of anyon condensation. Each code patch
encodes one logical qubit with a code distance of d = 7 and
d = 6, respectively. Plaquettes with a single-colored letter host
only one stabilizer generator acting in the basis indicated by the
letter [see (c)].

or we can introduce boundaries. We define the different
boundary types of the color code in terms of anyon con-
densation in Sec. IV A. The prototypical example of an
quantum error-correcting code in the color-code phase is
the triangular color code, depicted in Fig. 2(a). We asso-
ciate a code distance d with the code, given by the weight
of its least-weight logical operator. The code depicted in,
e.g., Fig. 2(a) has a code distance d = 7. Importantly, we
have a infinite family of codes that can be parametrized
by their code distance. Assuming that we have access to a
sensible decoder [24,45–55], we can correct all error con-
figurations that affect fewer than some number of qubits
that diverges in the code distance d. As we discuss in
Sec. IV A, logical operators in the color code appear as
strings along nontrivial paths. In codes with boundaries,
such paths may connect distinct boundaries or enclose
punctures. This means that by increasing the system size,
i.e., by separating boundaries further apart or enlarging
punctures, we can increase the code distance. This in turn
means that we can tolerate more errors. Assuming that
errors happen sufficiently rarely, we can decrease the prob-
ability of a logical error occurring arbitrarily close to zero
by increasing the code distance.

C. The toric code

In this section, we discuss the well known toric code
phase; a topologically ordered phase that is closely related
to the color code. The toric code, introduced by Kitaev
in Ref. [2], is widely regarded as the prototypical exam-
ple of a topological stabilizer code. Its associated phase
is referred to as the toric code phase, or simply the toric
code. Here, we will briefly review its anyonic excitations
and introduce an example of a microscopic lattice model
in the toric code phase.

There are four anyons in the anyon model of the low-
energy theory of the toric code. The particle 1 represents
the vacuum, or the trivial anyon. Particles e and m are
bosonic anyons with θe = θm = +1 and f is a fermion
with θf = −1. The anyons fuse as follows: e × e = m ×
m = f × f = 1 and e × m = f. Any two nonidentical
nontrivial anyons braid nontrivially, e.g., Me,m = −1.

In Fig. 3, we shows a construction for the toric code that
is particularly helpful for our discussion throughout this
work. We start with a hexagonal lattice, place a physical
qubit on each vertex, and color the plaquettes as in Fig. 3.
Each plaquette hosts a stabilizer generator acting on the

(a)

(b)

FIG. 3. The lattice model of the toric code. The left-hand side
of the figure shows the triangular lattice with additional two-
valent vertices, while the right-hand side shows an equivalent
representation of the same model on a three-colorable hexagonal
lattice. To show their equivalence, the lattice on the left overlays
the lattice on the right in the middle of the figure. On the right-
hand side of the figure, a physical qubit is placed on every vertex
of the hexagonal lattice to the right of the figure. Red edges host
a two-body XX stabilizer. As indicated by the colored letters, red
plaquettes are stabilized by an X -type stabilizer. Blue and green
plaquettes host a Z-type stabilizer. Note how the XX term on red
edges surrounding a blue or a green plaquette multiply to the X -
type stabilizer on said plaquette. Since they host both types of
stabilizers, we color the green and blue plaquettes fully. The e
and m excitations are created and moved by Z and X rotations, as
is shown in (a) and (b). On the left-hand side, we show the same
model defined on the standard toric code lattice, where qubits are
placed on the lattice edges [2]. We mark qubits on the gray lattice
with large black vertices. Pauli-X (star) stabilizers are associated
with the vertices of the gray lattice and Pauli-Z (plaquette) stabi-
lizers to the faces of the model. We give a key for the different
types of stabilizer operators at the bottom of the figure.
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surrounding qubits in a Pauli basis defined by the color
of the plaquette. Green and blue plaquettes host weight-
6 Z-type stabilizers. Red plaquettes and red edges host
weight-6 and weight-2 X -type stabilizers, respectively.
The same stabilizers are obtained when following Kitaev’s
original toric code construction [2] on a triangular lat-
tice decorated with additional two-valent vertices on every
edge, as shown in Fig. 3. In Kitaev’s original description
of the toric code model, qubits are placed on the edges of
some arbitrary lattice. Then, Pauli-X stabilizers are associ-
ated with the vertices of the lattice and Pauli-Z stabilizers
are associated with the faces of the lattice. Specifically,
Pauli-X vertex stabilizers (Pauli-Z plaquette stabilizers)
are the product of Pauli-X (Pauli-Z) terms on qubits asso-
ciated with edges adjacent to their respective lattice vertex
(plaquette). See also the matching-code construction [56],
which describes a construction for microscopic stabilizer
models in the toric code phase based on Kitaev’s honey-
comb model [42], including the model described here. The
excitations on red plaquettes and edges are e anyons. The
blue and green plaquettes host the m anyon.

D. Unfolding the color code

The color code is equivalent to two decoupled layers of
the toric code [24,26,57], meaning that the anyon model
from two decoupled layers of toric codes is equivalent to
the anyon model of the color code. One way of mapping
the color-code anyon labels to the labels given by two
layers of toric codes is

r g b
x e 1 e e 1 e
y e m f f m e
z 1 m m m m 1

, (9)

where 1, e, m, and f are the toric code anyons and their
position in the tuple ab represents on which of the two
layers they live. We refer to Eq. (9) as the standard unfold-
ing. There are, however, 72 valid ways to perform the
unfolding, which can be obtained by applying one of the
72 anyon-permuting symmetries of the color code [21,23]
to the standard mapping in Eq. (9). Furthermore, we can
identify the six fermions of the color code as follows:

f1 = f 1, f3 = e f, f5 = m f, (10)

f2 = 1 f, f4 = f e, f6 = f m . (11)

E. Error correction in (2 + 1)D space-time

In two-dimensional (2D) topological stabilizer codes,
we detect errors by measuring stabilizer generators to
obtain a list of violated stabilizers [1,2]. In reality, how-
ever, these stabilizer measurements may be imperfect and
may give incorrect outcomes. To achieve tolerance to noise
in the presence of measurement errors, we must repeat the

measurements multiple times [1,58]. This transforms the
space in which the stabilizer violations live into a (2 + 1)D
space-time.

As we have described, violated stabilizers can be asso-
ciated with anyonic quasiparticles. This association carries
over to the case where we consider the full space-time pic-
ture of the stabilizer readouts. In fact, from a condensed-
matter perspective, this is very natural, as all 2D topolog-
ically ordered phases and processes happening therein are
described in as a (2 + 1)D space-time. In what follows, we
make this connection explicit.

We begin by replacing the stabilizer generators asso-
ciated with plaquettes with detection cells [1,58,59]. For
simplicity, we assume that all stabilizer readouts are per-
formed in parallel. Each detection cell is associated with
one position in space-time (s, t), given by the location
of a stabilizer generator s and a time step t. A detection
cell compares the outcome of the measurement of stabi-
lizer s during the tth round with the result obtained for
s in the (t − 1)th round [see Fig. 4(a)]. Thus, they detect
changes in measurement outcomes that might be caused by
errors on the physical qubits they support or when a faulty
measurement result is obtained.

Now, we associate anyonic quasiparticles with (single
or sets of) violated stabilizer cells. A detection cell (s, t)
detects errors occurring on physical qubits in the support
of s between time steps t − 1 and t [see Fig. 4(b)]. This
is exactly analogous to the purely 2D viewpoint, as we
show it in Fig. 1, where we interpret errors as creating sets
of anyons with neutral total charge. Importantly, a detec-
tion cell (s, t) also detects measurement errors affecting

(a) (b) (c) (d)

FIG. 4. When performing multiple rounds of stabilizer mea-
surements on a 2D topological error-correcting code, one has to
consider the (2 + 1)D space-time of the process. (a) Stabilizers
(top) turn into detection cells (bottom) consisting of measure-
ments in two consecutive time steps. A detection cell heralds
a defect if the two measurements do not agree. (b) If an error
(orange) occurs in between two consecutive rounds of measure-
ments, surrounding detection cells light up. (c) Measurement
errors (orange) light up the detection cells below and above. (d)
General error configurations move anyons through the (2 + 1)D
space-time. In the depicted process, two measurement errors
and two errors on physical qubits create a total of four anyonic
charges.
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s in round t − 1 or in round t. Thus, a single measure-
ment error occurring when measuring the stabilizer at s
in round t thus violates two detection cells, (s, t − 1) and
(s, t) [see Fig. 4(b)]. Such a process can be thought of as a
pair creation in the time direction of an anyon associated
with the violation of s. In general, strings are composed
of both measurement errors as well as errors on physical
data qubits and create pointlike anyons in space-time. As
an example, we shown a world line of a color-code anyon
in Fig. 4(d).

Thus, a 2D topological error-correcting code where
measurements are repeated over time corresponds to a
microscopic model realized in (2 + 1)D space-time. This
allows us, on the one hand, to explicitly study topological
processes taking place in time using topological stabilizer
codes as toy models. On the other hand, we can draw on
the wealth of results obtained in the mathematical study of
topologically ordered (2 + 1)D phases of matter and apply
them in real-world error-correcting schemes. With this in
mind, let us turn our attention to anyon condensation.

At the end of Sec. II B, we have touched on the fault tol-
erance of the color code. Here, let us make this definition
more precise while including errors affecting the mea-
surements of stabilizer terms. As we have seen, errors
in (2 + 1)D space-time can be interpreted as segments
of strings with anyons at their end points. Crucially, due
to measurement errors, these error strings can also travel
along the temporal direction.

Logical errors occur when sufficiently many errors
appear along nontrivial paths, connecting distinct bound-
aries [1,60]. Importantly, these can be spatial boundaries
(see Sec. IV A) as well as temporal boundaries (see
Sec. V B). This means that we need to include errors affect-
ing measurement outcomes into our definition of the code
distance d. The code distance d of a code is the low-
est number of errors—including measurement errors—that
results in a nondetectable and nontrivial logical error. In
this work, we call a protocol fault tolerant if d grows exten-
sively with the system size. In other words, by increasing
the system size in the two spatial directions and in the
temporal direction, we can reach an arbitrarily low logi-
cal error rate, assuming a suitable decoder and a physical
error rate below threshold.

III. ANYON CONDENSATION

In this section, we will walk through the theory of anyon
condensation in Abelian-anyon models [28,61], focusing
on the color-code phase as a concrete example. In par-
ticular, we show that anyons in the condensed phase of
an Abelian anyon model can be identified with cosets of
a bosonic subgroup of the anyon model (see Sec. III A).
Based on properties of the condensed subgroup, we sort
condensation into three types (see Sec. III B). We specif-
ically describe domain walls in the context of anyon

condensation in Sec. III C. In later sections, we show
that the theory of condensation that we develop here
underlies the physics of topologically protected opera-
tions on the encoded logical information before and after
some code transformation. To describe the details of code
deformations, in Sec. III D we show how to implement
anyon condensation at the microscopic level for topolog-
ical stabilizer models, where the string operators of the
anyons are Pauli operators. We find that in this class of
models, condensation can be implemented by measuring
low-weight string operators on a code state of what we call
the parent code.

A. Condensation in Abelian-anyon models

Anyon condensation is a mechanism to relate certain
anyon models to each other. Given a parent Abelian anyon
theory C, a C condensate CB is obtained by identifying
a subgroup of bosons B ⊂ C with the trivial charge. An
anyon in the condensed theory CB is related to a coset of
anyons a B ⊂ C.

In particular, we start by choosing a bosonic subgroup,
meaning a subgroup of bosons that is closed under fusion
and that contains only bosons with trivial mutual braid
statistics. Next, we identify this subgroup {b1,b2, . . .} =
B ⊂ C with the trivial charge,

b ≡ 1 ∀ b ∈ B. (12)

Hence, a pair of anyons a,b ∈ C that differ by fusion with
some elements of B become identified in the condensate.
In the remainder of the paper, we use the notation

a � b iff a B = b B. (13)

Let us look at the different ways in which anyons of the
parent theory can be affected by condensation. The anyons
of the parent theory C fall into two classes:

(a) Deconfined: Any anyon a that braids trivially with
all elements in B is deconfined:

a ≡ a B iff Ma,b = 1 ∀ b ∈ B. (14)

The anyon a from the parent theory then defines the
anyon a B in the condensed theory.

(b) Confined: If a ∈ C braids nontrivially with at least
one element in B, the topological spin of a B
becomes ill defined and a therefore becomes con-
fined. The object a B is not an anyon in the
condensed theory.

Anyons of a condensate CB, defined by condensing a
bosonic subgroup B ⊂ C, are in one-to-one correspon-
dence with a subset of cosets {aB | Ma,b = 1 ∀ b ∈
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B}. The modular data of the condensate is given by the
parent theory:

θaB = θa, MaB,cB = Ma,c. (15)

The constraint on B being a set of bosons, all of which
braid trivially with a and b, ensures that the topologi-
cal numbers of a and b are the same. Furthermore, it is
apparent that B must be closed under fusion.

Throughout this work, we will make use of symmetries
in a given parent theory to relate different condensates. A
symmetry of anyon model C is a permutation of the anyon
labels that leaves the anyonic data invariant. The group
formed by all these permutations is called the automor-
phism group of the anyon model, Aut(C). In general, a
symmetry in the parent maps a bosonic subgroup B to a
(potentially different) bosonic subgroup B′. The fact that
it is a symmetry of the parent indicates that CB is in the
same phase as CB′ . Symmetries that preserve B turn into
symmetries in the condensate.

B. Types of condensation

In this section, we define different types of anyon con-
densation. We use the color-code anyon model to exem-
plify different condensation mechanisms.

1. Maximal condensation

We maximally condense a parent theory if we condense
a Lagrangian subgroup L [61,62] of bosons. A Lagrangian
subgroup is a maximal bosonic subgroup, i.e., there exists
no anyon of C not included in L that braids trivially with all
elements in L. When a Lagrangian subgroup is condensed,
all nontrivial anyons get confined and the condensate is
equivalent to the trivial phase.

The color code has six Lagrangian subgroups, each
possessing three nontrivial bosons [23]. They can be asso-
ciated with any one of the three color labels or one of the
three Pauli labels:

LCC
r = {1,rx,ry,rz}, (16a)

LCC
g = {1,gx,gy,gz}, (16b)

LCC
b = {1,bx,by,bz}, (16c)

LCC
x = {1,rx,gx,bx}, (16d)

LCC
y = {1,ry,gy,by}, (16e)

LCC
z = {1,rz,gz,bz}. (16f)

The Lagrangian subgroups are expressed using boson
tables (see Eq. (2)). Condensed anyons are marked by a
black circle and confined charges with a . The top
three rows show LCC

r , LCC
g , and LCC

b and the bottom three

rows show LCC
x , LCC

y , and LCC
z , respectively:

, , ,

, , .

2. Partial condensation

If the bosonic subgroup B is not maximal, we have
partial condensation. In this case, some of the anyons con-
fine while some remain deconfined, depending on their
braiding properties with the bosons in B.

In the color code, we can choose any one of the nine
nontrivial bosons to be condensed. In all cases, the result-
ing condensed phase is the toric code. We can depict this
using the boson table in Eq. (2). The condensed anyon is
marked with a black circle . We now have four decon-
fined color-code charges; those that braid trivially with .
Two of the deconfined charges are identified with the elec-
tric charge anyon e of the toric code and marked with a .
The other two deconfined color-code anyons get identified
with the magnetic flux m of the toric code and marked with

. The remaining four bosons are confined: we mark this
with a . There are in total 18 ways to condense the color
code to the toric code. For each of the nine choices of con-
densed boson, we have an additional binary choice of how
to identify the deconfined charges with the e and m anyons
of the toric code. Some examples are shown here:

, , ,

, . . . .

The different ways of obtaining the toric code through
condensation in the color code can be related to the color-
code symmetries [21,23], which we will discuss in the
context of trivial condensation.

3. Trivial condensation

Trivial condensation is where no nontrivial boson is
condensed. The resulting phase after trivial condensation
is the same as the initial phase. All types of trivial conden-
sation are in one-to-one correspondence with symmetries
of the parent theory, which are given by the automorphism
group of the anyon model, Aut(C). These are all the pos-
sible ways of relabeling the anyons such that the anyon
data are preserved. We will discuss the consistency condi-
tions that such a relabeling has to fulfill in more detail in
Sec. III C.
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The color-code symmetries can be read directly from
the boson table, as discussed in detail in Ref. [23]. Per-
muting any rows or columns changes the anyon labels but
leaves all the anyonic data invariant. Additionally, due to
the duality between Pauli and color labels, reflections on
the diagonals map the anyon model back to itself. This
leads to the automorphism group (S3 × S3)� Z2, which
contains 72 elements. An example color-code symmetry
is the following:

rx gx bx
ry gy by
rz gz bz

→
gy gx gz
by bx bz
ry rx rz

.

C. Domain walls and anyon condensation

A domain wall is a one-dimensional (1D) subregion
along which two phases interface. The types of interfaces
that we consider in this work correspond to gapped domain
walls between two (Abelian) topologically ordered phases,
C and C ′ [34,63]. Anyon condensation proves to be a useful
tool to study this class of domain walls. Furthermore, it is
worth pointing out that this description is agnostic toward
the space-time direction along which the phases are inter-
faced. This means that our following prescription will hold
for domain walls that cut along any plane of the (2 + 1)D
space-time.

We can interface two anyon models, C and C ′, if and
only if they share a common condensate CB � C ′

B′ . The
domain wall can then be interpreted as a thin strip of the
condensate between the two phases, as shown in Fig. 5.
Anyons in B (B′) condense at the domain wall. Anyons
that braid nontrivially with any of the condensed anyons
get confined to one side of the domain wall, meaning that
they cannot move without creating additional excitations.
Anyons that braid trivially with all bosons in B (B’) are
deconfined and can move through the domain wall. For this
reason, in this context we call them “mobile.”

We can derive consistency conditions on how the any-
onic data on one side of the domain wall relate to the
other following Fig. 6. Let a, b, and c be anyons in C
that, when moved through a domain wall, get mapped to

FIG. 5. Two phases C and C ′ can be interfaced via a domain
wall if and only if they share a common condensate CB = C ′

B′ .
A domain wall between them can be interpreted as a thin strip of
the condensate phase.

(a) (b) (c)

FIG. 6. We consider two topologically ordered phases, C and
C ′, and their anyons, a,b,c ∈ C and a′,b′,c′ ∈ C ′. A sequence
of equivalent world lines of anyons undergoing (a) fusion, (b)
self-exchange, and (c) braiding processes on either side of a
domain wall that separates C and C ′, is shown by the dashed line.
We can deform the world lines smoothly to lie on either side
of the domain wall. This allows us to derive consistency condi-
tions relating the data describing the anyons on either side of the
domain wall to each other. The second row shows the processes
taking place partially on either side of the domain wall.

a′,b′,c′ ∈ C ′. World lines realizing the three processes
of fusion, self-exchange, and braiding can be smoothly
deformed to lie on either side of the domain wall. Hence,
they must result in consistent outcomes. This implies that
the anyonic data on either side of the domain wall must be
the same, i.e., we have that

a × b = c ⇒ a′ × b′ = c′ with

θa = θa′ and Ma,b = Ma′,b′ .
(17)

Furthermore, we can obtain the conditions on anyons that
condense at a boundary in this fashion. To this end, we
equate C ′ to the trivial phase, which we can think of as only
hosting the trivial anyon. This means that all processes
happening on this side of the domain wall must be trivial.
From this, we obtain closure under fusion and the triviality
of self-exchange and braiding of condensible anyons (see
Eq. (15)).

Domain walls can be classified by the number of bosons
they can condense. For the color code, this means that the
domain walls fall into three classes: opaque, semitrans-
parent, and invertible. All types will appear with different
applications in Secs. IV–VI.

Opaque domain walls are obtained when a full
Lagrangian subgroup of bosons can condense from both
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sides. The corresponding condensate is the trivial phase
and they have no mobile anyons.

We call a domain wall semitransparent if certain anyons
remain mobile while others condense at the domain wall.
Semitransparent domain walls within the same phase can
be terminated within the bulk.

Invertible domain walls can only be realized within
the same phase using trivial condensation. Anyons cross-
ing the domain wall need to preserve their data; hence
invertible domain walls are in one-to-one correspon-
dence with the elements of the automorphism group of
the anyon model, Aut(C). The end points of invertible
domain walls are called twist defects and behave simi-
larly to non-Abelian anyons in terms of fusion and braiding
[15,23,64–66].

D. Anyon condensation in stabilizer models

So far, we have discussed anyon condensation at an
abstract level, in terms of anyons. In what follows, we
turn our attention to microscopic realizations of topolog-
ically ordered phases using stabilizer models. In particular,
we describe how to derive a stabilizer model for a con-
densate from a stabilizer model of a parent phase SC .
Microscopically, we achieve this by adding hopping terms
of the condensed bosons to the stabilizer, effectively mod-
eling the process of anyon condensation. While we only
consider qubit stabilizers explicitly here, the procedure
can be generalized to stabilizers on qudits [67], and even
for non-Pauli models [32], if one knows the microscopic
description of the string operators of the code. Finally, we
show how to make the construction explicit by construct-
ing the toric-code stabilizer model (see Sec. II C) from the
color-code stabilizer model (see Sec. II A).

To bridge from the abstract notion of anyon condensa-
tion to microscopic models, let us reframe stabilizer opera-
tors of topological codes in terms of anyons and their string
operators. Both the color code and the toric code, as intro-
duced in Sec. II, are topological lattice models the code
space of which corresponds to the ground space of a topo-
logically ordered Hamiltonian. In any topological-lattice-
model elementary excitations—anyons—are created at the
end points of string operators that are supported on 1D sub-
regions [see, e.g., Fig. 1(a)]. This means that any closed
string operator does not create any excitation and thereby
leaves the ground space invariant. In this reading, stabiliz-
ers correspond to contractible loops of the aforementioned
string operators. Measuring a stabilizer is equivalent to
performing an interferometric charge measurement [43].

We now make the abstract notion of anyon condensation
from Sec. III explicit in microscopic lattice models. In a
condensate, we require that string operators that transport
condensed bosons B do not change the state, as we identify
them with the trivial charge. We achieve this by adding
all open string operators transporting bosons in B to the

stabilizer group. This can be achieved by, e.g., adding the
set of shortest hopping terms as generators of the stabilizer
group.

These string operators violate some of the original stabi-
lizer terms. To recover a commuting stabilizer group that
describes the condensate, the terms of the original stabi-
lizer group that do not commute with the new hopping
terms are removed. This step corresponds to removing
confined charges from the anyon model of the condensed
phase.

In the following, we give a recipe to construct the stabi-
lizer group of a condensate from a parent theory C and its
stabilizer group SC and a bosonic subgroup B ⊂ C:

(1) Define the group SB of open string operators for
anyons in B, generated hopping terms.

(2) Remove the stabilizers from SC that do not com-
mute with SB. These correspond to the closed string
operators of the anyons that braid nontrivially with
at least one anyon in B. We denote the reduced
stabilizer group as S̃C .

(3) The stabilizer group of the condensed phase CB is
given by S̃C ∪ SB.

This construction shows how the toric code is a conden-
sate of the color code. We can view the XX stabilizers
on the red links, characteristic for the microscopic real-
ization of the toric code introduced in Sec. II C, as the
hopping terms of the rx anyon in the color code. Follow-
ing the procedure laid out above, where SC is the color
code and SB is generated by the XX terms on the red
links of the color-code lattice, the stabilizer group S̃C ∪ SB
corresponds to closed string operators of the anyons that
braid trivially with rx. Explicitly, the color-code anyons
get mapped to the toric-code anyons as follows: rx ≡ 1,
ry � rz ≡ e, gx � bx ≡ m and f1 � f3 ≡ f. Conden-
sation in the entire bulk results in a stabilizer model in the
condensed phase.

IV. DOMAIN WALLS IN THE COLOR CODE

In the coming sections, we investigate explicit micro-
scopic examples of anyon condensation in the color-code
model. In this section, we first consider a condensed color-
code phase that is spatially distinct from the color-code
phase itself (see Fig. 7). We consider three types of anyon
condensation in this setting, where the different types of
condensation are discussed in Sec. III B. The anyons are
condensed on a subregion of the lattice labeled R, where,
for simplicity, we assume that R is a disk-shaped region
and that the color code is embedded on a manifold with a
topology equivalent to that of a sphere. Upon completing
the condensation operation, we obtain a domain wall at the
boundary of R, denoted ∂R. The application of maximal,
partial, or trivial condensation transforms R to lie within
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FIG. 7. In this section, we consider the condensation of anyons
in given subregion (shaded in cyan). We keep the subregion con-
stant in time in order to create spacelike domain walls between
the parent phase and the condensed phase.

the trivial phase, the toric code phase, or the color-code
phase, respectively.

In Sec. IV A, we investigate the condensation in region
R to the trivial phase. This enables us to rederive qubit
encodings with punctures [12,13,23] in terms of anyon
condensation. In Sec. IV B, we consider the condensation
of region R to obtain a toric-code phase. This allows us
to introduce new types of domain walls between these
distinct topological phases. We also introduce the notion
of a semipuncture, which enables us to demonstrate new
code deformations between different puncture encodings.
To give a clearer perspective on semi punctures, we also
reinterpret these objects in terms of the unfolded picture
[23,24,26]. For completeness, in Sec. IV C, we consider
the condensation of region R onto the color code itself.
This enables us to incorporate known transparent domain
walls and twist defects for the color code [21,23] into our
theory of anyon condensation.

A. Boundaries to the vacuum

Here, we describe the boundaries between the color code
and the vacuum using the language of anyon condensation.
We show how boundaries can be used to encode quantum
information in a robust manner as logical qubits. Finally,
we discuss the structure of the logical Pauli operators.
We give a physical interpretation of them, both as unitary
operators acting on the logical state as well as Hermitian
operators used to perform measurements.

We obtain the trivial phase from the color-code phase by
condensing a complete Lagrangian subgroup of the color-
code bosons. Hence, when applying such a condensation
to a region R of the system, we create a domain wall on
∂R that interfaces the color code with the trivial phase.
Such a domain wall is referred to as a boundary [4]. As
we have discussed in Sec. III B 1, there are six Lagrangian
subgroups in the color-code anyon model, translating to
six boundaries that terminate the color code in the spatial
direction [23]. These six boundaries fall into two classes:
colored boundaries and Pauli boundaries. Colored bound-
aries are obtained if we choose to condense all three bosons

with the same color label and we obtain Pauli boundaries
if the three bosons that are condensed share a Pauli label.
The colored boundaries correspond to the columns of the
boson table in Eq. (2) and the Pauli boundaries correspond
to the rows of the table.

To create a puncture microscopically, we condense
anyons by adding hopping terms to the stabilizer group, as
described in Sec. III D. To create a puncture with a col-
ored boundary, we consider all the edges of the chosen
color that lie within R and perform Bell-pair measurements
on the pairs of physical qubits supported on these edges
[13] [see Fig. 8(a)]. To create a puncture with one of the
three Pauli boundaries, the prescription from Sec. III D
dictates that we should add the two-qubit Pauli rotations

(a)

(b)

FIG. 8. Punctures with different types of boundaries can be
used to encode logical qubits. (a) A puncture with a colored
boundary. It is introduced when all three red bosons get con-
densed within a disk-shaped region R. Microscopically, conden-
sation is achieved by adding two-body XX and ZZ stabilizers
on red edges These edges are highlighted in the center of the
puncture. (b) A puncture terminated by a Pauli-X boundary. We
produce the puncture by adding single-qubit X terms supported
on qubits in the interior of R to the stabilizer. Some of the logical
operators for these logical qubits are shown, where we assume
that the string exiting the figure on the right terminates on a
second boundary of appropriate type. Empty circles are used on
qubits where the logical operators have common support, where
the logical operators act on these qubits in different bases.
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in the appropriate Pauli basis on all the edges within
region R.

Alternatively, we can condense all charges with a com-
mon Pauli label using single-qubit Pauli measurements
in the chosen basis on all qubits within R. These single-
qubit Pauli rotations act as simultaneous hopping terms
of all three bosons with the chosen Pauli label. This can
be seen in Fig. 1(b), where we apply a single-qubit Y
rotation to decompose an ry anyon into a gy and a by
anyon while simultaneously moving the charge in the pro-
cess. Importantly, the two bosons gy and by have a joint
charge equivalent to the ry boson; hence we can regard
the single-qubit Pauli-Y rotation as moving an ry charge.
Likewise, we can interpret the same single-qubit rotation
as a hopping operator for the green or the blue bosons. The
same argument holds for bosons with a Pauli-X or -Z label
and single-qubit Pauli-X or -Z rotations. The creation of
a Pauli-X puncture using single-qubit X measurements is
shown in Fig. 8(b).

Let us now look at the physics of how a puncture can
be used to encode and manipulate logical qubits. To do so,
we give a physical interpretation of logical Pauli operators.
As the boundary of a puncture can condense four anyons
(including the trivial charge 1), the puncture can be in one
of four states, corresponding to the four condensed bosons
(including 1). A red puncture can, e.g., contain one of
the following charges: {1,rx,ry,rz}. Similarly, a Pauli-
X puncture as an example of a Pauli puncture contains
one of these four bosons: {1,rx,gx,bx}. Hence, a sin-
gle puncture constitutes a four-dimensional Hilbert space
that we can use to store quantum information in a robust
manner. However, the dimension of the Hilbert space asso-
ciated with a single puncture only describes the dimension
of the logical subspace in the asymptotic limit of a large
number of punctures. This is because we require that the
charges that describe the internal states of multiple punc-
tures respect global charge conservation [2]. In general
then, the ground-state degeneracy scales like 2ϒ , where
ϒ = 2(#punctures − C), in which C is some small correc-
tion that depends on the boundary types of the different
punctures. We find that for generic configurations of punc-
tures, we have C = 2. This correction can be lower for
special cases where there are punctures with only one or
two types of boundary.

In general, we might prefer to encode qubits over small
subsets of punctures, as this enables us to perform log-
ical operations on the encoded information. One simple
encoding using punctures consists of a pair of punctures
with the same type of boundary. This puncture configu-
ration encodes two logical qubits. In Fig. 9(a), we show
a pair of red punctures and its logical operators, while in
Fig. 9(b) we show a pair of Pauli-X punctures. Alterna-
tively, a triple of colored punctures, one of each color, can
also be used to encode logical qubits fault tolerantly. This
puncture configuration also encodes two logical qubits, as

FIG. 9. Four different configurations of punctures are shown.
The type of boundary is indicated by the bosons that are con-
densed inside the puncture, marked on the boson table shown
inside each puncture. Each configuration encodes two logical
qubits, where the logical operators are depicted in the figure.
String operators act on edges of their respective color and the
basis is given by the line style: dashed lines correspond to the X
basis, wavy lines to Y, and solid lines to Z.

shown in Fig. 9(c). Similarly, three Pauli punctures, again
one of each type, encode two logical qubits [see Fig. 9(d)].
Note how the left and the right halves of the figure are
related by a duality of the color code between the color
and the Pauli labels.

Labeling different logical states by the anyon type that
occupies the puncture allows us to identify the logical Pauli
operators. Importantly, Pauli operators are both unitary and
Hermitian, meaning that we can interpret them as changing
a state or being used as a measurement. Viewing the logical
operators as unitaries, we require their microscopic real-
izations to either change the occupation of a puncture or to
apply a relative phase depending on the condensed charge
within a puncture. We achieve this by applying string oper-
ators transporting anyonic charges between punctures or
by wrapping an anyonic string operator around a puncture
to the encoded state.

Specifically, we can write down an overcomplete set of
logical operators as string operators that move a charge
from any one puncture to another, provided that the two
punctures can condense a common charge that we wish
to move. We can convince ourselves that we can find
a set of strings that do not cross, such that all of these
hopping operators commute. These string operators that
hop charges between punctures anticommute with loop-
like string operators that wrap around a puncture. Natu-
rally, these looplike string operators correspond to hopping
operators for charges that are confined by the puncture
that is enclosed by the loop. When viewed as a Pauli-
measurement operator, this set of looplike operators can be
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physically interpreted as operators that measure the charge
content of a given puncture.

The weight of the least-weight logical operator, i.e., the
code distance d in the quantum error-correction literature,
is proportional to the circumference of the punctures and
their relative separation. A large code distance is obtained
by choosing large punctures that are well separated.

So far, we have viewed the logical Pauli operators as
unitary operators. Now, let us consider them as Hermitian
measurements. The naive way to perform a logical Pauli
measurement is to measure the string operators described
above. This prescription has two problems for experi-
mental realization, however. First, the number of qubits
participating in the parity measurement grows with the cir-
cumference or separation of the punctures, leading to a
parity measurement on extensively many qubits. A naive
implementation of this measurement is not fault tolerant.
Second, a single error either on a physical qubit or in
the measurement apparatus might change the outcome.
In order to obtain a fault-tolerant readout consisting of
geometrically local few-qubit measurements, we can fol-
low a procedure similar to the one introduced in Ref. [1].
The language of anyon condensation lends itself nicely to
describe fault-tolerant protocols for readout. This is the
topic of Sec. V B.

B. Domain walls to partial condensates

Condensation of a single boson in a region R transforms
the color code into the toric code. The boundary ∂R consti-
tutes a domain wall between the two phases. As discussed
in Sec. III B 2, there are 18 possible ways to interface the
two phases. They differ in which anyons are condensed,
confined, or remain mobile when approaching the domain
wall and to which anyons of the condensed phase the
mobile anyons are mapped.

In Fig. 10, we show an example where the rx boson gets
condensed in the top half of the lattice. The four bosons
gy, gz, by, and bz that all braid nontrivially with rx
become confined. The two remaining red bosons, ry and
rz, as well as the two remaining bosons with a Pauli-
X label, gx and bx, braid trivially with rx. Hence, they
remain mobile and can pass through the domain wall. Upon
crossing the domain wall, the mobile charges are mapped
to one of the two toric-code bosons. In the example shown,
we map ry and rz to e and gx and bx to m.

Microscopically, we introduce this domain wall by fol-
lowing the prescription given in Sec. III D to condense a
single boson. Concretely, we designate a boson with a spe-
cific color and Pauli label to be condensed. In the example
shown in Fig. 10, we choose to condense rx. To con-
dense the boson, we add two-body hopping terms to the
stabilizer. Their support and the basis in which they act
are given by the labels of the boson. To condense rx,
we add XX terms on all red edges in R to the stabilizer

(a)
(b)

(c)

FIG. 10. A domain wall (gray dashed line) between the toric
code (top) and the color code (bottom). Fully colored-in pla-
quettes host stabilizers acting in both sp

X and Sp
Z stabilizers. Red

plaquettes marked with an X host only the X -basis stabilizers;
sp

X . The red edges in the top half of the figure host XX stabiliz-
ers. The color-code anyons either (a) condense or (c) confine at
the domain wall. Otherwise, they (b) remain deconfined as they
pass through the domain wall.

group. Finally, we update the stabilizer by removing terms
that do not commute with the introduced hopping terms.
In this example, we remove the Z-basis stabilizers on red
plaquettes.

Let us now examine the properties of the partially
condensed region from the perspective of unfolding. By
choosing a suitable unfolding, where we separate the color
code into two disjoint copies of the toric code, we can iden-
tify the feature obtained by partial condensation in R as a
puncture on one of the two copies of the toric-code. Hence,
we dub such a feature a “semipuncture.”

With this observation, we discover the value of view-
ing the color-code phase from the perspective of the boson
table. Let us stress that we obtain a puncture on one copy
of the toric code only assuming that we choose a suitable
unfolding map. As we have discussed in Sec. II D, there are
72 different choices of unfolding map onto copies of the
toric code. However, under the same unfolding map, there
are certain semipunctures that are obtained by condensing
other choices of boson, which do not immediately divide
into a puncture on a single copy of the toric-code. Rather,
we require the use of additional domain walls to describe
all of the semipunctures for any fixed unfolding map.

We therefore find the unfolded picture to be somewhat
unsatisfying, because different color-code semipunctures
manifest themselves differently in the toric-code picture.
On the other hand, in the color-code picture, all of the
bosons are equivalent, up to symmetries among relabel-
ing of their color and Pauli labels. We then argue that the
color code and its corresponding boson table offer a clearer
way to describe these generalized topological features that
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(a)

(b)

(c)

FIG. 11. An rx semipuncture shown in both the color-code
picture and the unfolded toric-code picture for a suitable choice
of unfolding. (a) The microscopic model, together with different
types of creation operators in the vicinity of the semipuncture.
Specifically, the rx anyon condenses at the semipuncture, the
bx anyon deconfines and remains mobile, and bz is confined,
i.e., cannot enter the semipuncture. (b) A macroscopic represen-
tation of the same semipuncture in the color-code picture. We
explicitly label the semipuncture with a boson table that marks
the condensed boson in the center of the semipuncture. (c) The
semipuncture in an unfolded picture. We choose the unfolding
map shown in Eq. (9) to reveal the semipuncture picture.

we have introduced here, as the boson table symmetrizes
the classification of all of the different semipunctures we
can produce. We depict these contrasting descriptions in
Fig. 11.

Naturally, like punctures, we can use semipunctures to
encode logical information. We show examples of logical
encodings using semipunctures in Fig. 12. We can describe
the physics of the associated logical operators equivalently
to that of the logical operators encountered in Sec. IV A.
They are string operators that connect semipunctures or
string operators that wrap around the semipuncture. The
discovery of semipunctures also opens the door for the
design of new types of code deformations. As an example,
we show that we can transform between different config-
urations of punctures using semipunctures to mediate the
transition. As an example, in Fig. 13 we show that we

(a)

(b)

(c)

FIG. 12. Encoding logical qubits using semipunctures. We
indicate the type of semipuncture by marking the condensed
boson on the shown boson table. The logical string operators are
presented, where the colors of the lines indicate on which color of
edges they act. The dashed, wavy, and solid lines correspond to
operators acting in the X , Y, and Z basis, respectively. (a) and (b)
encode one logical qubit each, whereas (c) encodes two logical
qubits. The second set of logical operators in (c) are supported to
the exterior of the semipuncture configuration we have presented.

can transform between the logical-qubit encoding shown
in Fig. 9(b) onto the encoding in Fig. 9(c), where we make
use of the six semipunctures at an intermediate step. We
add that we have already encountered the six-semipuncture
encoding in Fig. 12(c). In addition to this example, we find
that semipunctures also emerge when performing a read-
out addressing only some of the logical qubits encoded in
a color code. We discuss this example in Sec. V F.

The examples that we present show us that the discovery
of semipunctures may be helpful to find new fault-tolerant
logical operations. These may be helpful to, e.g., reduce
the resource overhead of color-code–based quantum com-
putation. Furthermore, considering that they can be com-
bined with corners to obtain mixed boundary semipunc-
tures [68,69], we have presented a significant landscape
to design and explore code-deformation protocols in the
future.
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FIG. 13. A code-deformation protocol that is mediated by
semipunctures. We find that we can switch between a puncture
encoding where each of the three punctures has a differently
colored boundary onto an encoding where three punctures all
have distinct types of Pauli boundary. We achieve this by split-
ting each of the colored punctures into two semipunctures. Next,
the semipunctures are moved and fused to form three Pauli-type
punctures. The left-hand part of the figure shows the space-time
diagram of the protocol, while the right-hand part shows the
(semi)puncture configuration at intermediate time steps.

C. Invertible domain walls

When condensing a set of anyons, we implicitly or
explicitly make use of the symmetries of the underlying
topological phases. This is also true in the trivial case,
where no nontrivial anyons are condensed. This leaves
us interfacing the parent phase with itself while applying
an anyon-permuting symmetry. These symmetries are the
automorphisms of the anyon model Aut(C). In the case of
the color code, there are 72 such automorphisms, as we
have briefly summarized in Sec. III B 1. To each automor-
phism, we can associate one domain wall (for a detailed
discussion on automorphisms of the color code and the
associated spatial domain walls, see Ref. [23]).

Anyons are distinguished by their fusion and braid-
ing properties. Consider applying a symmetry given by
the automorphism Aut(C), i.e., trivial condensation, in a
simply connected closed region R. This creates an invert-
ible domain wall along the boundary ∂R. We say that the
domain wall acts as Aut(C) on the anyon crossing it.

However, note that there is no way of detecting the
domain wall using only operations based on moving
the color-code anyons, i.e., fusion and braiding. This is
because, by definition, the relative behavior of the anyons
is independent of the presence of the domain wall (see
Fig. 6).

Domain walls can, however, be terminated. In doing so,
we create so-called “twist defects” at the end points. This
is the topic of Sec. VI A. Alternatively, we can consider
applying an automorphism on an entire code patch, hence
applying a transversal logical operation on the encoded
qubits. This is the topic of Sec. V A.

V. TEMPORAL DOMAIN WALLS

In this section, we discuss temporal domain walls. They
are commonplace in topological quantum computation, as
they describe initialization or injection of a code state, the
application of a locality-preserving gate, or the readout
step at the end of a computation. Temporal domain walls
are introduced by changing the stabilizer group over time
(see Fig. 14). In particular, here we argue that anyon con-
densation is a well-suited framework, not only to describe
temporal domain walls but also to construct them micro-
scopically as topologically protected deformations of the
stabilizer group. In this sense, our treatment of temporal
domain walls in this section is exactly analogous to that of
spatial domain walls discussed in Sec. IV.

On a high level, quantum information is processed by
changing logical operators over time. Since logical Pauli
operators in 2D topological error-correcting codes are any-
onic string operators, keeping track of how anyons get
mapped when passing through a domain wall gives us a
physical interpretation for the action of different topologi-
cal operations on logical qubits.

As we show in Sec. V A, we can relate locality-
preserving gates with invertible domain walls. This
enables us to include transversal gates [5,70] in our theory
of anyon condensation. We also find that initialization and
readout can be interpreted in terms of anyon condensation.
In Sec. V B, we go through the details of fault-tolerant state
readout [12,13] in terms of the anyon-condensation picture
that we have introduced. We develop this discussion fur-
ther in Sec. V C, where we describe at the microscopic
level details of a readout operation in terms of error-
correction in space-time. In Sec. V D, we elaborate on the

FIG. 14. In this section, we create temporal domain walls
between the parent phase and the condensed phase. We achieve
this by condensing anyons in the whole spatial bulk after (or
before) a given point in time. The region of the space-time
diagram in which the condensation takes place is shaded in cyan.
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(a) (b) (c)

FIG. 15. Transversal gates in the triangular color code cor-
respond to invertible domain walls in the time direction. The
action of the domain walls (purple) is depicted by the effect of
an anyon crossing it. Dashed (solid) world lines crossing the
domain wall correspond to anyons with a Pauli-X (-Z) label. (a)
In the triangular color code with colored boundaries, a domain
wall that turns the Pauli-Z label into the Pauli-X label changes
the logical Z operator into X . (b) For the triangular color code
with Pauli boundaries, the domain wall needs to permute the
color labels of the anyons in order to act as a logical Clifford
gate. (c) In a rectangular color code where two opposite bound-
aries are red and two opposite boundaries are blue, a transversal
Hadamard implements the logical gate H 1 ◦ H 2 ◦ SWAP1,2. The
dashed, wavy, and solid lines correspond to the Pauli-X , -Y, and
-Z basis, respectively.

theory of temporal boundaries further by showing how
temporal boundaries interact with spatial boundaries dur-
ing certain known color-code state-preparation procedures
[12,13,19].

In Sec. V E, we describe new stability experiments for
the color code that exemplify nicely the interplay between
different types of spatial and temporal boundaries. This
builds on recent work introducing the notion of a stability
experiment [33]. Finally, in Sec. V F, we introduce partial
initialization and partial readout for the color code. This
gives us new readout protocols based on semitranspar-
ent temporal domain walls. These operations enable us to
address specific logical qubits encoded on some region of
the color-code lattice, without interacting with other qubits
encoded on the same region.

A. Invertible domain walls and Clifford gates

A temporal invertible domain wall corresponds to a
symmetry of the anyon model, Aut(C). This means that
all anyons can traverse the domain wall and in doing so
get mapped to potentially different anyons. As the logical
Pauli operators are associated with anyon strings, they get
permuted. Thus, the introduction of an invertible tempo-
ral domain wall acts as a logical Clifford gate. We show
examples in Fig. 15.

In the triangular color code, all single-qubit Clifford
gates are transversal [5]. This leads to an apparent mis-
match between the number of different invertible color-
code domain walls, 72 [21,23], and the size of the Clifford

group acting on one qubit, six if we ignore phases. We
assume the applied symmetry to not change the bound-
aries of the code in order to preserve the code space.
In the example of the triangular color code with colored
boundaries, a symmetry that permutes any of the color
labels would also change the boundary type of some of
the boundaries. Similarly, any symmetry that applies the
duality transformation exchanging the Pauli and the color
labels of the anyonic charges of the color code trans-
forms colored boundaries into Pauli boundaries. Thus, we
exclude them here. This leaves us with the |S3| = 6 sym-
metries, which solely permute the Pauli labels. These are
exactly the elements of the Clifford group without phases.
Applying any of these gates transversally on all physical
qubits applies the equivalent logical gate [5].

Interestingly, this argument holds true for any boundary
configuration that contains only colored boundaries—or,
equivalently, any configuration only containing Pauli
boundaries. Meaning that any such code contains exactly
six gates that can be applied transversally as an invertible
temporal domain wall. In the case of the square color code
with RBRB boundaries [see Figs. 15(c) and 24], a gener-
ating set for the transversal gates that can be realized is as
follows. A Hadamard gate H applied transversally to all of
the physical qubits exchanges the logical operators Z1 ↔
X 2 and X 1 ↔ Z2, corresponding to a logical swap gate
followed by a Hadamard gate on each logical qubit, H 1 ◦
H 2 ◦ SWAP1,2. This transversal gate is shown in Fig. 15(c).
The gate exchanging the Pauli-Y and -Z basis when applied
transversally to all physical qubits is, up to phases, equiv-
alent to the application of H 1 ◦ CNOT1,2 ◦ H 1. The other
three nontrivial single-qubit Pauli-permuting gates can be
generated from the two given examples. On the logical
level, they can all be composed of controlled-NOT (CNOT)
gates and Hadamard gates.

Similarly, through the duality between the color labels
and the Pauli labels, we can argue that any color code that
is terminated exclusively by Pauli boundaries also has six
transversal Clifford gates. It may be interesting to relax
the assumption that the boundaries before and after the
transversal gates have to match. This might also combine
in a nontrivial way with the code deformations that we
have introduced in Sec. IV B, which smoothly transform
between different boundary types.

Lastly, we point out that invertible temporal domain
walls have applications beyond the implementation of log-
ical gates. Certain Floquet codes [36–38,71–73] can be
interpreted as so-called automorphism codes, where invert-
ible domain walls on different subregions are periodically
introduced [74]. In particular, in this reading of the honey-
comb code [36], every time step introduces a domain wall
around 1

3 of the plaquettes, such that after three steps an
automorphism has been applied to the whole code. In this
work, we argue that anyon condensation is a well-suited
tool to study and construct Floquet codes (see Sec. VII).
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(a)

(b)

FIG. 16. Reading out logical qubits by condensing anyons.
Two red punctures, as shown in (a), encode two logical qubits.
A red string connecting the two punctures constitutes a logical
operator. To read out the logical operators X 1 and Z2, we can
measure the XX and ZZ parity on all red links in a region R
encompassing the two punctures, as depicted in (b). This pro-
cess condenses all red anyons and creates one large red puncture
in R. The inverse process initializes the two logical qubits in an
eigenstate of X 1 and Z2.

B. Initialization and readout

In this section, we study the readout, and implicitly the
initialization, of logical qubits encoded in color codes.
These processes are naturally described as maximal anyon
condensation. We discuss the relationship between the
logical operators that we address in the process and the
Lagrangian subgroups that are condensed. The condensa-
tion of anyons in time introduces temporal domain walls.
We defer a detailed discussion of temporal boundaries to
Sec. V C.

We begin by revisiting the encoding scheme encoun-
tered in Sec. IV A, where two red punctures are encod-
ing two logical qubits. Specifically, we show how to
simultaneously read out logical operators X 1 and Z2 [see
Fig. 16(a)]. Both of these logical operators, X 1 and Z2,
can be interpreted as string operators that transport red
anyons between the punctures. Hence, they are composed
of two-body hopping terms on red edges [see Fig. 16(a)].

To read out the logical operators, we begin by defining a
region R on which X 1 and Z2 can be fully supported. Then,
we measure all red hopping terms in R, i.e., the XX and ZZ
parities on all red edges. These measurements can be com-
bined to infer the values of X 1 and Z2. Choosing a suitable

region R allows us to correct for errors on the value of
the logicals (for details, see Sec. V D). Likewise, this read-
out scheme is used to perform measurement-based logical
gates in lattice-surgery protocols presented in Ref. [20] and
in Sec. VI D of this work.

The above example can be understood in terms of anyon
condensation. In particular, we condense all red anyons
LR when measuring the red hopping terms. In fact, it is
straightforward to generalize the concept of condensing
anyons to read out logical qubits to topological stabilizer
codes. The logical Pauli operators {Li} that can be read
out simultaneously have to be composed of hopping terms
of bosons contained in the same Lagrangian subgroup L.
This guarantees that we read out a commuting set of logi-
cal operators, as their corresponding anyons braid trivially,
by the definition of a Lagrangian subgroup.

Let us look at how we read out logical Pauli operators
at the physical level. To this end, we consider two differ-
ent stabilizer groups, SC, being the stabilizer group of a
topological stabilizer code C, and SM , which is generated
by the microscopic hopping terms of the anyons in L (see
Sec. III D). Note how all logical operators in question are
contained in this stabilizer, Li ∈ SM . Thus, condensing the
Lagrangian subgroup L by measuring the generators of SM
measures the eigenvalues of Li. Due to the construction in
terms of anyon condensation, we guarantee the geometric
locality and thus the bounded weight of the operators that
we measure.

To initialize logical qubits in a certain eigenstate of their
logical Pauli operators, we follow an equivalent procedure,
reversing the time direction. Concretely, this means that we
change from an initialization stabilizer group SI to the sta-
bilizer group SC of the code. We construct SI to contain the
hopping terms composing Li, thus initializing the system in
eigenstates of Li. Note that the sign that the logical Pauli
Li carries depends on the choice of signs for the generators
of Si.

The described initialization and readout protocols con-
dense a full Lagrangian subgroup of anyons. This intro-
duces boundaries between the code and the vacuum, which
lie perpendicular to the time direction. In the color-code
readout example from Fig. 16, for instance, we introduce
a red temporal boundary between the color code and the
vacuum phase. We can depict this using the space-time
picture (see Fig. 17). The microscopic details of temporal
color-code boundaries are discussed in Sec. V C.

C. Microscopics of temporal boundaries

It is helpful to view fault-tolerant logical operations
in the complementary three-dimensional (3D) space-time
picture. In this picture, we identify spatial domain walls
as lying perpendicular to a spatial direction. On the other
hand, we identify domain walls that lie perpendicular to the
time direction with temporal domain walls. In fact, we find
that the space-time picture reveals a duality between the
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(a) (b)

FIG. 17. The space-time diagrams corresponding to the read-
out process depicted in Fig. 16. (a) During readout, the two punc-
tures turn into one large puncture. (b) Initialization is achieved
by flipping the time direction, i.e., by starting with one large red
puncture that then gets deformed into two smaller red punctures.
In both cases, the horizontal boundaries are temporal boundaries.

spatial domain walls that we have introduced in Sec. IV A
and the temporal domain walls. Here, we will describe this
duality in the microscopic picture, focusing on boundaries.

We conduct our investigation into the behavior of dif-
ferent types of charges, identified by different types of
detection cells, by focusing on two examples. In one exam-
ple, we discuss a temporal boundary where we read out
logical qubits using single-qubit Pauli-X measurements
and a second example where we read out the color code
with Bell measurements on the green edges. In short, we
study a temporal Pauli boundary as well as a temporal
color boundary. We remark, though, that focusing on these
two cases is without loss of generality, due to the Pauli-
label and color-label exchange symmetries of the color
code. Likewise, while we concentrate on the readout step
by investigating the detection cells obtained by deform-
ing SCC onto SM , we can reproduce the same discussion at
the initialization step by, instead, deforming the stabilizer
group SI onto SCC. This case differs only in the sense that
the direction of time is reversed, as discussed in Sec. V B.

The characteristic features of spatial boundaries are their
ability to condense a Lagrangian subgroup of bosonic exci-
tations of the underlying anyon model. In the space-time
picture, we replace the notion of stabilizers for identify-
ing pointlike charges with that of a detection cell (see
Sec. II E). Moreover, for each distinct anyon that we can
measure in the 2D picture, we have a corresponding detec-
tion cell in the space-time picture. We therefore find a
one-to-one correspondence between our description for
bosonic charges in the space-time picture with the more
conventional 2D idealization of the color code. Adopting
this perspective, we find that we can view the charges
in space-time to either condense or confine at a tem-
poral boundary between the color code and the vacuum
phase. Moreover, we find that we can obtain a temporal
boundary that corresponds to any of the six Lagrangian
subgroups of bosonic charges in the color-code model. Fol-
lowing the prescription given in Sec. III D, we realize the
found temporal boundaries explicitly in microscopic lattice
models.

Let us begin our discussion by considering the tempo-
ral boundary at which we read out the color code with
Pauli-X measurements. We will identify the condensed
charges before looking at confined charges. A signature of
a boundary being able to condense a given type of charge,
a, is that an individual charge of that type can be cre-
ated locally at the boundary, seemingly violating the fusion
rules in the bulk of the system. Indeed, the fusion rules of
an anyon model are modified close to a boundary in gen-
eral. As such, identification of a configuration of errors that
give rise to a single charge close to a boundary is indica-
tive of the fact that a boundary condenses (the antiparticle
of) that given charge type.

In Fig. 18(a), we show an error configuration in which a
single rx charge is created at the temporal boundary where
we measure all qubits in the Pauli-X basis. Specifically, we
show a measurement error on the final reading of the six-
body Pauli-Z stabilizer. Its only corresponding detection
cell indicates the detection of a rx boson, where we recall
the convention that we have adopted in which Pauli-Z sta-
bilizers detect bosons with Pauli-X labels. Indeed, this is
the final detection cell of this type that we measure in this
readout process, as we cannot infer the values of Pauli-Z
stabilizers from the choice of readout operation. Identifi-
cation of a single rx charge signifies that rx charges are
condensed at this boundary. We show the charge config-
uration at a spatial boundary in Fig. 18(b) to emphasize
the analogy between this temporal boundary and a spatial
boundary. In both cases, we can find similar error configu-
rations in which detector cells identify individual charges
of any color, provided that they have a Pauli-X label. For
a temporal X boundary, they are introduced by measure-
ment errors to Pauli-Z stabilizers of the appropriate color.
For a spatial boundary, they are created by an XX error
supported on an edge of the appropriate color.

(a) (b)

FIG. 18. Condensed charges at Pauli-X type boundaries in the
temporal and spatial direction. (a) The final reading of the sta-
bilizers of the color code before we make a transversal Pauli-X
measurement on all the physical qubits, thereby condensing all
charges with a Pauli-X label. A measurement error (marked in
orange) on the final reading of a Pauli-Z stabilizer before the
code is read out gives rise to a detector cell that identifies a sin-
gle rx charge in the space-time picture. (b) An analogous charge
configuration at a spatial Pauli-X boundary. We show an error
configuration that gives rise to a single rx charge.
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(a) (b) (c)

FIG. 19. Configurations of confined charges at a Pauli-X
boundary. (a) A physical Pauli-Z error close to the temporal
domain wall created by measuring all physical qubits in the
Pauli-X basis creates a configuration of confined charges. (b) We
compare the confined charges of the temporal Pauli-X bound-
ary to an analogous configuration of charges created at a spatial
Pauli-X boundary of the color code. We show the error and the
charge configuration on the 2D lattice. (c) A single measure-
ment error, marked by the orange qubit, that occurs on one of
the physical-qubit measurements at the readout step creates a
configuration of confined charges equivalent to that shown in (a).

While certain charges are condensed at a temporal
boundary, we find that other types of charges are confined.
Let us posit that since charges with Pauli-X labels are
condensed at Pauli-X boundaries, all charges with other
labels must be confined. In Fig. 19(a), we show a single
Pauli-Z error that gives rise to a configuration of color-
code charges that is allowed by the bulk-fusion rules that
are confined at a Pauli-X boundary. We contrast this con-
figuration in the space-time picture with an analogous
configuration of defects at a spatial boundary in the 2D pic-
ture in Fig. 19(b). In the space-time picture of Fig. 19(a),
these detection cells are completed by taking the last
six-body reading of the Pauli-X –type stabilizers and com-
paring them with the values of the same stabilizers that are
inferred from the single-qubit measurements made at the
readout step. Indeed, we can find no error configuration
that locally annihilates any one of the individual charges
of this configuration such that the fusion rules of this error
configuration are violated. We find the same configuration
of charges if we have a measurement error at the final
readout step [see Fig. 19(c)].

We can attribute the confinement of charges during this
condensation procedure to a fault-tolerant readout step.
Measurement errors at this final readout step also give rise
to confined subsets of charges. In Fig. 19(c), we show
a measurement error that occurs on one of the physical
qubits during the readout step. We find that this configura-
tion of charges identified by the detection cells is identical
to that of Fig. 19(b), i.e., a physical error that produces a
configuration of charges that is consistent with the fusion
rules of the bulk phase. We can compare the detection of
confined charges to the detection of condensed charges at
this temporal boundary, to find that it is not a priori obvi-
ous that we should expect to detect charges that respect
the color-code fusion rules close to a temporal bound-
ary. The confining effect during the readout enables us

to employ standard decoding methods to identify errors
during readout.

With this example, let us finally note that the distinc-
tion between the confined charges with a Pauli-Y label
and those with a Pauli-Z label is not well defined at the
Pauli-X boundary. At the microscopic level, this is due
to the fact that at the final time step where we infer the
values of Pauli-X stabilizer detection cells at readout, we
do not make a Pauli-Z detection-cell measurement. Macro-
scopically too, this is a generic feature of a boundary that
condenses charges with a Pauli-X label. This is due to the
fact that we can locally create individual charges with a
Pauli-X label of any color and arbitrarily fuse them with
the confined charges that are in the vicinity of this bound-
ary. As such, charges with a Pauli-Y label and a Pauli-Z
label are indistinguishable when they are close to a Pauli-X
boundary. This is another example of how anyon conden-
sation leads to identification of distinct confined anyons, as
described in Sec. III A.

Let us next look at the temporal boundary created by
making Bell measurements on the lattice edges for some
choice of color. Without loss of generality, we choose to
make Bell measurements on the green edges. Like the tem-
poral domain we have already discussed that gave rise to
a Pauli-X –type boundary, here we find that the temporal
domain wall that we produce is analogous to that of a green
color-code boundary.

Again, we begin by looking at the condensed charges
in this example. In Fig. 20(a), we show a measurement
error during a reading of a six-body Pauli-X stabilizer.
Given that we cannot infer the values of the green stabi-
lizers from the Bell measurements that we measure during
readout, this is the final reading of this specific detection
cell. This means that the detection cells give rise to a
syndrome configuration showing a single gz charge. We
show the charge configuration next to a green boundary of

(a) (b)

FIG. 20. A condensed charge at green boundaries. (a) A sin-
gle measurement error on the final reading of a green six-body
stabilizer immediately before the readout step is identified by a
single detection cell only. This is consistent with the behavior of
a temporal boundary that condenses green charges in the space-
time picture. (b) A configuration of physical errors that creates
a single green charge at a spatial boundary of the color code, as
shown in two dimensions.
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(a) (b)

FIG. 21. Confined charges at green boundaries. (a) Errors sup-
ported on a blue edge create charges at two blue detection cells.
This is an example of a configuration for confined charges at a
green boundary. (b) An analogous configuration of charges to
that of (a), shown at a green spatial boundary in two dimensions.

the color code in two dimensions in Fig. 20(b). One can
check that we could have equivalently made a single gx
or gy charge with different configurations of measurement
errors at the final reading of the green stabilizer. We there-
fore observe physics that is consistent with that of a green
boundary at the temporal domain wall that we have cre-
ated in the space-time picture, where we have performed a
measurement that condenses the green charges to read out
the logical qubit.

Lastly, let us look at the confined charges at the green
temporal boundary. In Fig. 21(a), we show a two-qubit
error supported on a blue edge. The figure shows detec-
tion cells identifying a pair of bx charges. We compare
the charge configuration found at the temporal boundary
to the more familiar green spatial boundary shown in two
dimensions in Fig. 21(b).

We can also look at charges at the temporal boundary
created by making Bell measurements at the green edges.
In Fig. 22(a), we show a single measurement error that
occurs during the Bell-measurement readout step. We note
that one can find a physical error on a single qubit that
occurs just before the readout, which is equivalent to this

(a) (b)

FIG. 22. Charges at green boundaries. (a) A measurement
error on a two-body measurement that occurs during readout cre-
ates charges at two detection cells, a blue cell and a red cell. This
is an allowed charge configuration at a green boundary, where
individual green charges can be created locally. (b) An analo-
gous configuration of charges to that of (a) shown at a green
spatial boundary in two dimensions. We note that the net charge
in both of the displayed charge configurations is that of a green
anyon. This is consistent with the behavior of a boundary that
condenses green charges where individual green charges can be
created locally.

measurement error in the sense that the two local errors
give rise to an equivalent charge configuration. Here, we
focus on a measurement error. The figure shows detec-
tion cells identifying a pair of charges, an rx charge and
a bx charge. While this charge configuration is inconsis-
tent with the fusion rules that are allowed in the bulk of the
color code, this configuration is in fact allowed at a bound-
ary that condenses green charges. Indeed, as we can create
green charges locally at a green boundary, the coloring of
the confined red- and blue-labeled charges with the same
Pauli label becomes ill defined. As such, the creation of any
even parity of charges that take any color other than green
is allowed near to a green boundary. We have observed
similar physics at the Pauli-X boundary discussed earlier
in this section, except that whereas in the previous exam-
ple the Pauli labels have become ill defined, here, in this
example, the color labels become ambiguous. We compare
the charge configuration found at the temporal boundary
to the more familiar green spatial boundary shown in two
dimensions in Fig. 21(b).

In fact, the last example of a blue and a red charge close
to a green boundary has an unusual quirk that we finally
point at here. Specifically, we can take two different per-
spectives on this charge configuration. At a microscopic
level, we can view it as a pair of confined charges. Alter-
natively, from a more macroscopic perspective, we can
view the charge as a single green charge. The fusion rules
of the color code are such that the union of a red and a
blue charge with the same Pauli label fuse to give a green
charge. As such, we can view the charge configurations
shown in Fig. 22 as demonstrating a net charge that has
a green label from a global perspective. Of course, as we
have mentioned, this is consistent with the physics of a
green boundary, where individual green charges can be
created locally.

D. Interplay between temporal and spatial boundaries
and fault tolerance

To investigate the fault-tolerance properties of a quan-
tum computation in topological stabilizer codes, the space-
time picture is essential. In this section, we begin by
using the established framework of anyon condensation to
describe error detection at boundaries. We then analyze the
fault tolerance of a space-time computational scheme by
studying the configuration of its boundaries.

In Sec. V C, we have developed a microscopic the-
ory for the temporal boundaries in the space-time picture.
This allows us to view fault-tolerant quantum computa-
tional protocols with the color code as space-time vol-
umes enclosed by one of six boundaries in both the space
and time directions, where the boundary types correspond
to the Lagrangian subgroups of the color code. We can
analyze these volumes to determine processes that give rise
to logical errors.
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At any given time step of a computation, the logical
state of the encoded qubits is determined by the parity
of charges condensed at the boundaries (or other con-
densation objects, such as twist defects, as discussed in
Sec. VI). A nontrivial logical Pauli error corresponds to an
anyon string supported on a topologically nontrivial path.
This means that it cannot be deformed continuously to a
point. Note that one has to take into account how anyon
strings interact with boundaries and other types of defects
when deforming them through space-time. Fault tolerance
is achieved when the support of any nontrivial logical error
grows with the system size.

To ensure fault tolerance, we have to pick a suitable
boundary configuration in our computation such that all
of the nontrivial logical errors have a macroscopic length.
To illustrate this, let us look at different temporal bound-
aries to initialize the triangular color code (see Fig. 23).
We find that the X boundary is a valid temporal bound-
ary to initialize this code in a logical X eigenstate. This
is because it confines all bosons with a Pauli-Z or Pauli-Y
label. This leaves only the three spatial colored boundaries
for the logical Z-error (Y-error) strings to terminate [see
Fig. 23(c)].

(a)

(c) (d)

(b)

FIG. 23. A triangular color code with colored boundaries can
be initialized (and read out) fault tolerantly using one of the three
temporal Pauli boundaries. In (a), we show as an example how
initializing a X eigenstate is achieved by preparing all physical
qubits in an eigenstate of the single-qubit X operator, creating a
temporal X boundary. If a colored boundary is used, as shown
in (b) with the example of a red temporal boundary, the process
is not fault tolerant and corresponds to the state injection of the
single-qubit state on the qubit in the top corner of the code. To
see why this is the case, we can check the support of the logical
operators in the space-time picture of the process. In (c), we can
see that the weight d is maintained throughout the process. On the
other hand, in (d), we can find a constant-size logical operator on
one of the corners.

If we use a red boundary, on the other hand, we can now
find a logical error with constant support. It spans between
the spatial green and blue boundaries as well as the tempo-
ral red boundary [see Fig. 23(d)]. Such configurations can
easily be spotted by keeping the space-time diagram of a
computational operation in mind. Finally, we would like
to point out that even this non-fault-tolerant protocol has
its uses in quantum computational schemes. In Ref. [19],
a similar protocol is proposed to inject logical non-Pauli
eigenstates from single qubits into patches of color code.
The equivalent readout protocol teleports the state of the
logical qubit onto a single physical qubit.

As a last example, consider the square color code in
Fig. 24. In Sec. V B, we have discussed how the logi-
cal qubits can be initialized and/or read out using anyon
condensation. The basis in which the logical qubits are ini-
tialized and/or read out is determined by the strings that can
condense at the boundary that is introduced by the conden-
sation. For example, the red temporal boundary in Fig. 24
reads out (initializes) the parity of X 1 and Z2. Importantly,
a subset of the logical Paulis are red anyon strings con-
necting the two red boundaries. Let us turn our attention to
the case when the temporal boundary has a different color
than all the logical strings that can condense at any spatial

(a)

(b) (c)

FIG. 24. (a) We show a rectangular patch of color code encod-
ing two logical qubits and its logical operators. This code can
be read out or initialized in five different ways in a fault-tolerant
manner. (b) An example where all red edges get initialized and/or
read out with Bell-pair stabilizers, i.e., XX and ZZ. This cor-
responds to initializing and/or measuring X 1 and Z2. Choosing
instead the blue-colored temporal boundary (not shown) would
initialize and/or measure Z1 and X 2. (c) This figure corresponds
to interfacing to the vacuum with the Pauli-X boundary by ini-
tializing and/or measuring every single qubit in the X basis.
This prepares and/or reads out X 1 and X 2. Similarly, choosing
the temporal Z boundary corresponds to the initialization and/or
readout of Z1 and Z2 (not shown). Lastly, using the temporal
Pauli-Y boundary, we initialize and/or read out the product of
Z1X 2 and X 1Z2 (not shown).
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boundary, e.g., a green boundary for the code in Fig. 24.
In fact, the logical Pauli-Ys can be represented by green
string operators connecting opposing corners. Hence, one
might assume that we can use a green temporal bound-
ary to initialize. However, this process is not fault tolerant.
Again, we can see this by looking at the boundary config-
uration in the space-time picture. Here, at all four corners
of the code, a green temporal boundary is interfaced with
a red and a blue spatial boundary. This means that we can
find a operator of constant support that changes the par-
ity of the charges condensed at these three boundaries with
constant support, similar to the one shown in Fig. 23(d).
Nonetheless, this protocol can be used as an injection or
teleportation scheme between the rectangular color code
and a [[4, 2, 2]] code, where the qubits in the corners are the
physical qubits of this small code.

The two cases in which we have described an injec-
tion or a teleportation between a small code and a color
code can be interpreted as a code-switching [75] protocol.
Indeed, here we see that we switch between a 2D and a
zero-dimensional (0D) code. Alternatively, by condensing
anyons in the bulk but not along a boundary of the code,
we can switch between a 2D and a 1D code. We can also
extend this to the third spatial dimension and interpret the
gauge-fixing protocol presented in Ref. [75] as a condensa-
tion procedure. Specifically we can obtain a 2D color code
from a 3D color code by condensing its charges in the bulk,
up to its boundary.

So far, we have discussed the fault tolerance in initial-
ization and readout protocols considering relatively simple
examples in which the logical qubits have been encoded in
the spatial boundary configuration. In general, all conden-
sation objects have to be considered, such as corners and
twists, which are the subject of Sec. VI.

The combination of anyon condensation with the space-
time picture results in some no-go [76–80] theorems for
stabilizer-based topological quantum computation. In any
topological stabilizer code, nontrivial anyon strings define
the logical Pauli operators. From this, we can deduce that
temporal domain walls can only be used to initialize log-
ical Pauli eigenstates, apply logical Clifford operations,
or perform Pauli-basis readouts. To promote this set of
topologically protected operations to an universal one, one
needs to make use of topological codes in higher spatial
dimensions [75]. Alternatively, one could include some
operation that is not topologically protected, such as the
described state injection, to inject non-Pauli eigenstates.
Combined with state-distillation protocols [81] or other
appropriate means, this allows us obtain a universal set of
fault-tolerant logical operations.

E. Stability experiments in topological codes

In the following, we discuss memory and stability exper-
iments in topological error-correcting codes. We find that

the theory of spatial and temporal boundaries that we have
introduced is well suited to explain stability experiments as
well as to devise variants thereof. After reviewing memory
and stability experiments for general topological codes, we
turn to the color code and show how it can be used to
perform a combined memory-stability experiment.

To test the performance of an error-correction code as a
quantum memory, we can perform a memory experiment.
These experiments consist of three parts. First, we begin by
fault tolerantly initializing the logical qubit(s) of the code
in a certain state. Next, we let the code idle for a given
period of time while measuring its stabilizer generators.
Finally, we measure the logical qubit(s) and verify whether
or not they have remained in the initialized state. For topo-
logical codes, such experiments check if we can tolerate
the errors affecting the physical qubits and the gadgets used
to perform the stabilizer measurements.

In addition to strings of errors introducing unwanted
transformations to logical qubits, logical errors may also
occur during a computation due to strings of faults that
align in the timelike direction in the space-time picture.
This can be a problem, e.g., when we perform gates by
code deformations. In recent work [33], a simple experi-
ment has been proposed to check the performance of the
toric code against timelike logical errors. The experiment
is called the stability experiment and consists of a patch of
toric code that does not encode any logical qubits. How-
ever, it is initialized and read out in a manner that allows
us to check for occurrences of strings of noncorrectable
errors in the measurements of the stabilizer generators. As
the direction of these measurement errors is in the time
direction, the experiment effectively checks for temporal
logical errors. These are errors connecting distinct tem-
poral boundaries. Considering the full space-time of the
experiment, we can see that it is equivalent to a memory
experiment “rotated by 90◦,” i.e., where one of the spa-
tial directions is exchanged with the temporal direction.
The following discussion of said experiments in terms of
spatial and temporal boundaries allows us to construct sta-
bility experiments for any topological stabilizer code. We
turn to the color code as a concrete example. Interestingly,
we find that we can use the color code to perform a stability
and a memory experiment simultaneously.

In its simplest form, a stability experiment constitutes
a cylinder in space-time with one type of spatial bound-
ary wrapping around the cylinder and a second type of
temporal boundary capping it off at the top and bottom.
We call the Lagrangian subgroups describing the temporal
boundaries L1 and the spatial boundary L2. A space-time
sketch of the experiment is shown in Fig. 25. We are inter-
ested in the anyonic charges that can condense at the top
and bottom but not at the sides of the cylinder. These are
charges that are not contained in the Lagrangian subgroup
describing the spatial boundary L2 but can condense at
the top or bottom boundary or at the corner between the
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(a) (b) (c)

FIG. 25. The space-time diagram of a simple stability exper-
iment. The temporal boundaries at the top and the bottom are
of one type and the spatial boundaries on the sides are of a
different type. (a) Errors occurring during the experiment cor-
respond to string operators creating anyons in space-time. We
depict different types of anyons using different colors. The sta-
bility experiment is concerned with anyons that can condense
only at the top or bottom boundary (drawn in purple) or at the
corners (cyan). Errors creating anyons that can condense on a
spatial boundary (orange) are not relevant to the outcome of the
experiment. (b) A successful experiment, as the errors together
with the applied corrections (green) lead to an even number of
string operators of the considered anyons through any time slice
(dark blue). This implies that the evaluated conserved quantities
are indeed conserved. (c) A failed experiment. Here, the errors
together with the applied correction lead to a temporal logical
error. We see this as a violation of the conserved quantity, since
an odd number of string operators cross a given time slice.

two boundaries. More precisely, we consider anyons in
L1 × L2\L2. Depending on the boundaries used, a dif-
ferent number of anyons fulfill the required property. The
stability experiment then consists in checking whether an
even or odd number of string operators corresponding to
the anyons in question cross a given time slice. This can
be inferred from the parity of a set of stabilizer measure-
ments. In Ref. [33], the product of this set of stabilizer
measurements is called a conserved quantity [2,82].

In the color code, a stability experiment can be per-
formed using any combination of spatial and temporal
boundaries, as long as two different boundaries are used.
This is true since for any pair of different boundaries
described by the Lagrangian subgroups L1 and L2, respec-
tively, there exists at least one boson that is in L1 but
not in L2. To maximize the significance of a performed
experiment, we want to maximize the number of conserved
quantities, i.e., maximize the number of bosons in L1 but
not in L2. This is achieved by picking either two colored
boundaries or two distinct Pauli boundaries. If we sup-
pose that initializing single-qubit states and performing
single-qubit measurements is simpler than preparing and

(a) (b) (c)

FIG. 26. (a) A surface-code memory experiment. (b) A
surface-code stability experiment. If we overlay the two, we
obtain a combined stability and memory experiment. As shown
in (c), this can be realized within a single color code. It looks
like a cube in space-time, where opposite boundaries are of the
same type. A suitable boundary configuration has, e.g., two pairs
of Pauli boundaries and one pair of colored boundaries.

measuring Bell pairs, using Pauli boundaries is experimen-
tally simpler.

As mentioned above, the goals of stability and memory
experiments are similar. In both, we check for the presence
of a logical error by validating the parity of a space-time
slice perpendicular to the direction of the logical operator.
The difference is the direction in which the logical oper-
ator runs, a spatial direction for the memory experiment
and a temporal direction for the stability experiment. If
we overlay two code patches in the toric-code phase, one
used to carry out a stability experiment and a second one
to perform a memory experiment, we obtain a code patch
in the color-code phase. This is sketched in Fig. 26. Such
a code is capable of simultaneously checking for the pres-
ence of temporal and spatial logical errors within the same
experiment, using certain anyon parities. The correspond-
ing space-time diagram is shown in Fig. 26. A range of
color-code boundary conditions are suitable to carry out
such a combined memory-stability experiment. We might,
e.g., initialize and terminate the experiment using tempo-
ral Pauli-Z boundaries and terminate the code in the spatial
directions using red and Pauli-X boundaries on opposite
sides. The microscopic lattice model of this experiment,
together with instructions for initialization, readout, and
evaluation, are given in Fig. 27 and its caption.

F. Partial initialization and readout

A temporal domain wall introduced by partial conden-
sation condenses a subset of bosons that do not form a
Lagrangian subgroup. This implies that the logical Pauli
operators that correspond to the condensed anyons get ini-
tialized or read out, depending on the orientation of the
domain wall. However, since some anyons remain mobile
through the introduced semitransparent domain wall, some
logical degrees of freedom remain encoded throughout this
process. We hence call the effect of semitransparent tempo-
ral domain walls partial initialization and partial readout.
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(a) (b) (c)

FIG. 27. The combined memory-stability experiment using
the color code. (a) We initialize the code using a Pauli-Z bound-
ary by preparing all physical qubits in the |1〉 state. (b) The
stabilizers of a rectangular patch of color code with two red
and two Pauli-X boundaries are measured for d rounds. (c)
We terminate the experiment by performing single-qubit Pauli-
Z measurements on all physical qubits. After error correction, a
successful experiment reveals an even parity in all blue and green
X -type stabilizers and a +1 outcome for the depicted red string
operator.

Note that a semitransparent domain wall can also act non-
trivially on the mobile anyons and hence implement logical
gates on the associated logical degrees of freedom.

Let us now illustrate partial condensation on exemplary
instances of the color code. First, consider two qubits
encoded in two punctures in the color code (see Fig. 28).
This is equivalent to the example shown in Sec. V B in

(a)

(b)

FIG. 28. Two red punctures as shown here encode two logical
qubits. (a) The logical operators X1 and Z2. They can be chosen to
have the exact same support. However, it is still possible to read
out one but not the other. (b) To measure, e.g., X1, we measure
the XX terms on the red edges in a region RL. The width d of the
region determines how many fault readouts can be tolerated.

Fig. 16, where we condense a full Lagrangian subgroup to
read out two logical qubits at once. We now perform a par-
tial condensation to obtain the value of one logical degree
of freedom while leaving another one encoded. For exam-
ple, we can measure the eigenstates of X 1 while leaving
the second qubit encoded. We achieve this by condensing
rx in region R. The second logical qubit remains encoded,
as its logical operators commute with all the rx hopping
terms while not being a combination thereof. Similarly,
reversing the process lets us encode a second qubit in the
punctures. The condensation of different bosons leads to
the partial readout of different logical degrees of freedom.
For instance, if we condense ry, we measure the value of
X 1Z2. The logical degree of freedom that remains encoded
is a logical parity qubit with X ≡ X 1 � Z2 and Z ≡ Z1X 2.

As a second example, let us return to the rectangular
color-code patch (see Fig. 29). First, let us consider the
partial condensation of the rx anyon. To condense rx,
we measure the XX hopping terms on all red edges. From
these measurements, we infer the value of the logical oper-
ator X 1. The second logical qubit remains encoded in the
obtained code. We identify this to be a surface code (see
Fig. 3). Similarly, condensation of rz by measuring red
ZZ terms measures Z2, leaving the first qubit encoded in
the surface code that we produce. If we choose to con-
dense ry, we measure the product X 1Z2. The surface
code now encodes a parity qubit with the logical operators

(a)

(b) (c)

FIG. 29. (a) A color code encoding two logical qubits and its
logical operators. A color-code boson gets condensed to obtain
a toric code, encoding one logical qubit. Depending on which
boson is chosen to be condensed, one logical operator is being
read out. The asterisks are placeholders for the Pauli label of
the condensed boson. (b) The readout of X 1, Z2, or X 1Z2 if the
chosen boson is rx, rz, or ry, respectively. (c) Similarly, we
condense bx, bz, or by to read out X 2, Z1, or Z1X 2. Conden-
sation of a green boson results in a partial teleportation of one
of the logical qubits into a [[4, 1, 2]] code supported on the four
corner qubits.
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X ≡ X 1 � Z2 and Z ≡ Z1X 2. These new logical operators
are composed of hopping terms of the deconfined bosons
e ≡ rx � rz and m ≡ gy � by, respectively. Condensa-
tion of one of the three blue bosons, bx, by, or bz, lets
us infer the value of the logical Pauli operators X 2, Z1X 2,
or Z1, respectively. Condensation of a green boson leads
leaves one logical qubit encoded in the obtained surface
code. The other qubit, however, is not read out but is now
encoded in a [[4, 1, 2]] code that is supported on the four
corner qubits.

The fault tolerance of a computation in the color code
involving partial initialization (readout) can be assessed
with the same methods as described in Sec. V D. Together
with spatial domain walls, this completes the space-time
picture of computations in the color code and provides a
unified tool to design and study topologically protected
computational protocols in 2D topological stabilizer codes.

VI. TERMINATING THE COLOR-CODE DOMAIN
WALLS

In this section, we terminate the domain walls realizable
in the color code and study the features emerging at the end
points. To terminate a domain wall, we can condense color-
code anyons in a 1D spatial open region. This is depicted
as a (1 + 1)-dimensional object in (2 + 1)D space-time
in Fig. 30. Depending on the type of condensation we
apply, we obtain different types of domain walls between
the color code and itself. While we start the discussion by
terminating invertible domain walls, we extend the theory
here to include opaque and semitransparent domain walls
as well.

In what follows, in Sec. VI A we review the theory
of twist defects in the color code [23] and describe how
they are manifest in the space-time picture. In Sec. VI B,
we investigate the corners of the color code [23], i.e.,
twist defects that divide two distinct boundary types. We
reinterpret corners in terms of the condensates of their
adjacent boundaries, to incorporate corners into our theory
of anyon condensation with the color code. In Sec. VI C,

FIG. 30. In this section, we create domain walls between the
parent phase and itself. We create them by condensing a 1D spa-
tial region, as depicted by the (1 + 1)-dimensional cyan region
in the (2 + 1)D space-time figure.

we use the theory of anyon condensation to classify a
new type of domain wall that we refer to as semitrans-
parent domain walls. This elaborates on the theory that
has been briefly introduced in Ref. [20], where semitrans-
parent domain walls have been employed in fault-tolerant
quantum-computing processes with the color code. Finally,
in Sec. VI D, we discuss the physics of lattice surgery
of the color code [19,20], in terms of the semitranspar-
ent domain walls that we have discussed throughout this
section using the language of anyon condensation.

A. Invertible domain walls and twist defects

Anyon models have associated domain walls that trans-
form the anyons onto other anyon types as the domain
walls are crossed [34,64,65]. These domain walls can be
terminated, where we call their end points twist defects or
simply “twists.” For the color code, the 72 distinct twist
defects are described macroscopically and microscopically
in Refs. [21,23]. Here, we will briefly recall some impor-
tant results that we make use of in the following sections.
In particular, we show three examples of invertible domain
walls in the lattice model. Furthermore, we talk about the
twist defects that terminate at invertible domain walls and
how they can be used to store logical qubits. Finally, we
discuss how domain walls and twist defects manifest in
the space-time picture of topological phases of matter.

Let us start by showing microscopic realizations of three
different invertible domain walls and their twist defects
(see Fig. 31). In each case, the stabilizers along the domain
wall are changed. In the case of the color-permuting
domain wall presented in Fig. 31(a), the support of the sta-
bilizers is changed according to the new lattice geometry.
This change is such that the tricolorability of the faces is
violated by the addition of twist defects to the lattice. This
inconsistency in the coloring leads to a permutation of the
color label of anyons moving around the twist defect. The
domain wall that we show in Fig. 31(b) does not change
the lattice geometry but, instead, we change the basis in
which the stabilizers along the domain wall act. This leads
to a permutation of the Pauli labels of anyons crossing it.
Finally, Fig. 31(c) shows a domain wall implementing the
duality symmetry between the color and the Pauli label
of the color-code anyons. The three domain walls that we
show generate all 72 invertible domain walls in the color
code [23].

The twist defects at the end points of the domain wall
can condense certain color-code anyons. As such, we can
find string operators that transport appropriate choices of
anyonic excitations between twist defects. These string-
like operators correspond to logical operators from the
perspective of quantum error correction. By arranging con-
figurations of twist defects on the lattice such that all the
twist defects are sufficiently well separated, we encode
logical qubits robustly. Twist defects that condense many
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(a)

(b)

(c)

FIG. 31. Three invertible domain walls (purple dashed line)
in the color code and the twist defects terminating them (purple
cross). In each case, we show one example of an anyon crossing
the domain wall. (a) An example of a color-permuting domain
wall. Here, the red and blue color labels of anyons crossing
the domain wall get exchanged. The green plaquette at the end
point hosts only one stabilizer acting in the Y basis on the seven
qubits in its support. (b) A Pauli-label-permuting domain wall
that exchanges the Pauli-X and Pauli-Y labels. (c) The duality
domain wall that exchanges the color label with the Pauli label.

charges thus increase the size of the logical Hilbert space
more than twists that only condense fewer anyons. For-
mally, we capture this by assigning a quantum dimension
to each type of twist defect [64,83–85]. For details on twist
defects in the color code, see Ref. [23].

In a space-time picture, we keep track of the position
of the twist defect and the position of the physical defect
line over time. In doing so, we obtain a 2D membrane for
the domain wall that is terminated by the 1D world line
of the twist defect, as shown in Fig. 32. As the (2 + 1)D
topological space-time that we consider is isotropic from a
macroscopic perspective, we can deform the world lines of
the twist defects arbitrarily and the processes they undergo
will be equivalent up to continuous deformations of the
world lines of the twist defects. On the other hand, the

FIG. 32. In space-time, domain walls correspond to 2D mem-
branes and their 1D boundaries are twist defects. We show a pair
of twist defects being created and moved apart before they are
brought back together and annihilated.

orientation of domain walls affects the microscopic details
of the implementation of a defect braiding process in a
physical system. These microscopic processes are distinct
from an error-correction point of view.

The interactions between twist defects and other topo-
logical features are also discussed in Refs. [15,23].
Notably, it is interesting to examine the interactions that
can occur as twist defects approach boundaries. The pro-
cess that occurs depends on two degrees of freedom; first,
by the automorphism associated with the domain wall,
which gives rise to the twist defect at its end point, an ele-
ment in Aut(C), and, second, by the Lagrangian subgroup
that specifies its bosonic condensate L.

We distinguish two cases on how these degrees of
freedom—or, equivalently, how the twist defect and the
boundary—interplay with each other. In the first case, the
associated symmetry leaves the Lagrangian subgroup of
the boundary invariant, i.e., Aut(L) = L. In this case, an
individual twist effectively vanishes at the boundary. We
can regard this as twist condensation, named to reflect
the analogy between this process and anyon condensation,
where an anyon is absorbed, or “vanishes” at the boundary.
In contrast, if the associated anyon symmetry nontrivially
alters the elements of the Lagrangian subgroup associ-
ated with the boundary, such that Aut(L) = L′ �= L, then
the presence of the twist nontrivially changes the physics
of the boundary. Specifically, we find that the twist is
confined at the boundary. This object has been termed a
“corner” [15,23], as they are often found at the corners of
topological codes. We discuss corners in Sec. VI B.

B. Corners between boundaries

Corners are points on a boundary at which the boundary
type changes. They are important features of topological
error-correcting codes proposed for quantum computation,
such as the surface code [1] and the triangular color code
[5] depicted in Fig. 2(a). In the following, we offer two
constructive interpretations that can give rise to equiva-
lent corners. First, we view them as confined twist defects.
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This allows us to make statements about the computational
power of different types of corners. Second, we use the
language of anyon condensation to introduce two distinct
boundaries such that a corner is prepared between them.
This allows for a general procedure to construct corners in
topological error-correcting codes.

Earlier in this paper, we have already encountered cor-
ners (see, e.g., Fig. 23), which features the triangular
color code. This code is terminated by three distinct color
boundaries and the three points at which the boundary
type changes are corners. We say that an anyon can con-
dense at a corner if it is contained in the union of the
two Lagrangian subgroups that describe the boundaries
interfacing at the corner. Note that the union of two dis-
tinct Lagrangian subgroups, each consisting of anyons of a
given color label, contains a generating set of all color-
code anyons. As such, a corner interfacing two colored
boundaries can condense all 16 color-code anyons. Indeed,
the same holds true for corners that interface two dis-
tinct Pauli boundaries. We discuss corners that interface
a colored boundary with a Pauli boundary later in this
section.

Let us now interpret corners as confined twist defects
(see Sec. VI A). To this end, we start with a uniform bound-
ary between the color code and the vacuum. Next, we
introduce a pair of twist defects and move them close to
the boundary. This may change the type of boundary, as
anyons now need to cross a domain wall before reaching
the boundary. If the anyon-permuting symmetry applied
when crossing the domain wall changes the Lagrangian
subgroup corresponding to the boundary, then the confined
twist defects correspond to a nontrivial corner. If, however,
the automorphism corresponding to the twist defect leaves
the Lagrangian subgroup invariant, we say that the twist
defect condenses and no nontrivial corner is introduced.
We show an example of a confining twist in Fig. 33(a).
Here, a color-Pauli-duality twist transforms a red boundary
into a Pauli-X boundary. Importantly, this interpretation
shows us that we can pull the corners out far away from the
boundaries, where they can be braided as bulk twist defects
to perform logical gates [15]. Similarly, this interpretation
allows us to modify the lattice realization of topological
codes, which can increase the number of encoded qubits.
This is done in Refs. [23,86], where the corners are moved
as twists into the center of the lattice. Finally, the insight
that we can identify corners with twists can be of use in
designing lattice-surgery protocols in certain topological
error-correcting codes. In, e.g., Ref. [87], a twist-based
modification of the lattice-surgery protocol is presented
that allows all three logical Pauli operators in a patch of
surface code to be addressed.

A second interpretation of corners is found by not-
ing that they can be created by condensing different
Lagrangian subgroups in adjacent regions. This is shown
in Fig. 33(b). Here, we see three neighboring regions in

(a)

(b)

FIG. 33. Corners are the points at which the boundary changes
type. They can be interpreted as condensed twist defects. (a)
A domain wall close to the boundary, to demonstrate how an
invertible domain wall can change the boundary type. (b) This
figure explains how to construct boundaries microscopically
using anyon condensation. In the red and gray regions, we con-
dense the red and the Pauli-X Lagrangian subgroups LR and LX ,
respectively.

which, from left to right, we condense the Lagrangian
subgroups LR, LX , and LR. We therefore create a red,
a Pauli-X , and a red boundary, respectively. The cor-
ners appear at triple points, where the boundaries of these
two condensed regions meet the color-code phase. This
perspective shows us that corners can be interpreted as
end points of opaque domain walls, as shown in Table I.
An opaque domain wall is essentially a narrow puncture,
which, if it consists of two distinct boundaries, features
nontrivial corners at its end points.

Let us now use the second interpretation that we have
presented for corners to generalize this class of topologi-
cal features. Our new construction generalizes the notion
of corners that we have already encountered, as the two
Lagrangian subgroups describing the neighboring bound-
aries have nonzero overlap. This means that there exists
a nontrivial anyon a for which a ∈ L and a ∈ L′. We
dub these corners “semicorners” by, again, appealing to
the unfolded picture of the color code. In an appropri-
ate unfolded picture, we find that color-code semicorners
appear as nontrivial corners on only one of the two toric
code layers. As opposed to the corners between two dis-
tinctly colored boundaries (or two Pauli boundaries), semi-
corners cannot condense all of the species of color-code
anyons. The corner between a red colored boundary and,
e.g., a X -Pauli boundary condenses the following anyons:
{1,rx,ry,rz,gx,bx,f2,f3}.

As an example of their utility, we can use semicorners to
transform color codes with colored boundaries into color
codes with Pauli boundaries. We show this process in
Fig. 34, where semicorners are depicted as gray lines. As a
middle stage of this transformation, we encounter a color
code that hosts all six distinct color-code boundaries. In the
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FIG. 34. The space-time picture of a triangular color code
undergoing a transformation that changes its boundary type. We
show the space-time process on the left while depicting three
instances of the 2D code at different times to the right of the
figure. In separate pictures of the lattice, we show the various
deformations for both the logical Z and logical X operators over
time. We start at the bottom with a triangular color code with
colored boundaries. We then split each of its corners into two
semicorners and move them apart. When they meet a semicorner
originating from a distinct corner, they fuse together to form a
corner interfacing two Pauli boundaries. The dotted, wavy, and
solid lines correspond, in turn, to the Pauli-X , -Y, and -Z basis.

following, we unfold this code (see Fig. 35). Interestingly,
we obtain the surface code with a twist [86].

C. Semitransparent domain walls

We have seen examples of topological features that con-
dense charges, confine charges, and also allow deconfined
charges to remain mobile. In general, we can find topolog-
ical features that allow all three of these processes to occur

(a) (b)

(c)

FIG. 35. (a) The hexagonal color code that is terminated by all
six different boundaries, hosting six semicorners. (b) The same
code unfolded as two stacked toric code layers. The different
boundaries correspond to stacked toric code boundaries or a com-
bination of folds and toric-code domain walls, drawn in purple.
(c) To obtain one single layer of toric code, we unfold the top
layer to the left. This leaves us with one central twist defect. This
code is known as the twisted surface code [86].

over the charges of some anyon model. A semitransparent
domain wall permits all three of these processes to occur.
We obtain a semitransparent domain wall if we perform
partial condensation along a 1D subregion of the lattice.
More generally, we can obtain and classify all of the semi-
transparent domain walls by composing them with other
domain walls.

In what follows, we classify the semitransparent domain
walls of the color code using an abstraction based on the
color-code boson table in Eq. (2). This allows us to divide
all 162 semitransparent domain walls into eight classes.
We can therefore explore how they can be used to store
and manipulate logical qubits. We will also describe the
physics of a semitransparent domain wall for the color
code by viewing it in the unfolded picture. We note that
the exposition given in this subsection expands on the
discussion given in the appendix of Ref. [20]. Before
we present our general classification of semitransparent
domain walls, let us first show an explicit microscopic
example.

We introduce a semitransparent domain wall to the color
code by applying a partial condensation to a 1D subregion
of the lattice. As discussed in Sec. III B 2, one color-code
boson is chosen to be identified with the trivial charge
in order to perform a partial condensation. In Fig. 36(a),
we show a domain wall where the rx anyon is chosen
to be condensed on the color-code lattice. One can check
that this domain wall condenses the rx charge no mat-
ter on which side it approaches the domain wall. For a
general semitransparent domain wall, however, this is not
the case and anyons approaching the domain wall from
opposite sides might behave differently. We can construct
one such example microscopically by composing two dis-
tinct bosons to be condensed along adjacent 1D regions. In
Fig. 36(b), we show a horizontal semitransparent domain
wall that we construct by condensing rx above the domain
wall and gy below the domain wall. We follow the pro-
cedure laid out in Sec. III D to obtain a valid stabilizer
realization.

We obtain a clearer understanding of the physics of
semitransparent domain walls of the color code by unfold-
ing them into two layers of the toric code [24,26]. In
Fig. 37(a), we show an example of an unfolded semitrans-
parent domain wall. Here, the top layer hosts a narrow
puncture, while the bottom layer is connected across the
domain wall. Anyons on the bottom layer can pass through
the domain wall, i.e., they remain mobile, while anyons on
the top layer either condense or confine according to the
chosen boundary type of this toric code layer. While this is
the simplest example of an unfolded semitransparent color-
code domain wall, the general case can be obtained from
it readily. More precisely, we redundantly obtain all pos-
sible semitransparent domain walls in the color code from
this simple example by adding transparent domain walls
to either side of the displayed semitransparent domain
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(a)

(b)

(d)

(c)

FIG. 36. Four different semitransparent domain walls realized
microscopically in the color code. Each colored plaquette hosts
an X - and a Z-type stabilizer. All exceptions and additional stabi-
lizers are given in the bottom right of the figure. In each case, we
present the lattice realization of the domain wall and show dif-
ferent anyons crossing the domain wall. In (a), we additionally
show the rx charge condensing and a by charge being confined
to one side of the domain wall. Next to the lattice realization
of the domain wall, we draw the effect the domain wall has on
all color-code anyons in terms of the color-code boson table, as
discussed in the main text. (b), (c) and (d) show other examples
of semitransparent domain walls together with their correspond-
ing boson tables. Deconfined excitations are also shown on each
lattice.

wall. One such example is shown in Fig. 37(b), where we
additionally introduce a layer-swapping domain wall.

Clearly, one can conceive of many different types of
semitransparent domain wall for the color code. In order
to catalogue the semitransparent domain walls of the color
code, we will once again make use of the boson table in
Eq. (2). Specifically, we take two copies of the boson table,
one corresponding to the “top side” of the domain wall and
the other corresponding to the “bottom side.” Examples are
shown on the right of the domain walls in Fig. 36. We make
use of the notation introduced in Sec. III B 2 to denote
anyons that condense, those that confine, and those that
remain deconfined. On either side, one of the nine bosons
is condensed, marked by a label. The other eight bosons

(a)

(b)

FIG. 37. We show two semitransparent color-code domain
walls after unfolding. (a) In the simplest case, the domain wall
corresponds to a narrow puncture on one layer (top), while the
other layer (bottom) is continued. This means that charges on the
bottom layer remain mobile, while charges on the top layer con-
dense or confine. From this simple example, we can construct all
semitransparent domain walls in the color code by adding a trans-
parent domain wall. One such example is shown in (b), where a
layer-swapping domain wall is introduced.

then get marked by , , or , depending whether they
confine or deconfine at the domain wall. Charges marked
with remain confined to their corresponding side of the
domain wall. The remaining anyons are deconfined and
remain mobile, i.e., can be moved across the domain wall.
We label these remaining anyons or , correspond-
ing to electric and magnetic charges, respectively. Upon
transmission through the domain wall, anyons marked with
the ( ) labels of the top side are mapped onto anyons
marked with the ( ) labels of the bottom.

This characterization using two boson tables suffices to
find the total number of semitransparent domain walls.
First of all, we can choose which of the nine color-code
bosons we condense, , on both the top side and bottom
side of the domain wall, arbitrarily. This fixes the confined
charges on each grid. We have one final degree of freedom,
namely, how the mobile charges from the top get mapped
to the mobile charges on the bottom. Without loss of gen-
erality, let us arbitrarily fix the and labels on the top
grid. There are now two possible choices to configure the

and labels on bottom grid. Given these rules, let us
now count the semitransparent domain walls. Given the
nine choices of condensing anyons on the top- and bottom-
side grid, we obtain 9 × 9 = 81 semitransparent domain
walls. Then, together with the binary choice for how to
configure the and labels on the bottom grid, we arrive
at 81 × 2 = 162 semitransparent domain walls.

010342-30



ANYON CONDENSATION AND THE COLOR CODE PRX QUANTUM 5, 010342 (2024)

Let us now consider the end points of these semitrans-
parent domain walls. We call them “semitwists.” We will
also briefly discuss how they can be characterized and
used to store quantum information in a robust manner. To
interpret semitwists, we can follow the unfolding proce-
dure above to obtain two decoupled layers of toric code.
See Ref. [69], where objects that can be interpreted as
semitwists on a single layer of the toric code are discussed.
In the case of the color code, we find that for any domain
wall, there exists an unfolding in which it is composed of a
narrow puncture (with possibly two distinct boundaries) on
one layer of toric code and an invertible domain wall (pos-
sibly the trivial one) on the other. Hence, the semitwists
can be regarded as corners “on top of” twists.

Both corners as well as twist defects can condense
certain charges. This can be used to encode logical infor-
mation in pairs of semitwist defects. The associated logical
operators are either string operators transporting a charge
from one semitwist to another or strings wrapping around
a pair of semitwists. Examples of the logical operators
associated with semitwists are shown in Fig. 38.

Each of the 162 semitwists can be associated with one
of eight classes. The classes are obtained by checking if
the condensing anyons on the top side and the bottom side
share both their color and Pauli label (class 1), just the
Pauli label (class 2), just the color label (class 3), or neither

(a)

(b)

FIG. 38. Two pairs of semitwists are shown, together with
some of the logical operators they support. (a) The unfolded
version, where the semitransparent domain walls correspond to
punctures on the top layer and an invertible toric-code domain
wall on the bottom layer. (b) The same configuration in the color
code. Here, we omit the logical operators X 2 and Z2 for clarity.
In the toric code, we represent operators corresponding to elec-
tric (magnetic) anyons e (m) with orange (blue) lines. In the color
code, we draw the color corresponding to the color label (red or
blue, here) and the Pauli-X (-Z) label corresponds to the dashed
(solid) lines.

TABLE II. The 162 semitransparent domain walls in the color
code can be separated into eight classes. Here, we show an exam-
ple of one member of the class as well as the number of distinct
domain walls in each class.

1 2 3 4

A

9 18 18 36

B

9 18 18 36

of the two labels (class 4). Within each class, we introduce
a subclass A or B depending on how the mobile anyons
get mapped when crossing the domain wall. If “rows get
mapped to rows” and “columns get mapped to columns,”
we are in subclass A, whereas if “rows get mapped to
columns” and vice versa, we are in subclass B. Table II
shows an example of a semitransparent domain wall in the
boson-table notation for each of the eight classes as well as
the number of elements in each of the classes.

Figures 36(a)–36(d) correspond to the classes 1A, 4B,
4A, and 1B, respectively. Examples of members of classes
2 and 3 are obtained by adding a color- or Pauli-permuting
invertible domain wall to either side of one of the examples
shown. This is shown in Fig. 39, where a semitransparent
domain wall in class 1A gets transformed to a class 3A (2A)
domain wall by complementing it with a Pauli- (color-)
permuting invertible domain wall.

Semitransparent domain walls have previously been
described abstractly in Ref. [34]. In general, a domain
wall is described by two “tunneling maps” describing how
the bulk excitations get transformed when approaching the
domain wall from either side. In this picture, nontranspar-
ent domain walls correspond to noninvertible tunneling
maps. In the Appendix, we describe how to explicitly
calculate the tunneling map in the sector of trivial wall
excitations for phases equivalent to stacks of toric code,
based on Ref. [63]. Calculation of the full tunneling map
for arbitrary phases goes beyond the scope of this work but
will be covered in future work (see Ref. [88]).

Let us conclude this section by remarking that semi-
transparent domain walls appear in color-code lattice-
surgery protocols [19,20]. In fact, lattice surgery with the
color code makes use of all the domain walls presented in
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(a)

(b)

FIG. 39. Semitransparent domain walls change type when
combined with an invertible color-code domain wall. Here, we
show a domain wall in class 1A (as depicted in Fig. 36(a), marked
by the gray dashed line, and how it transforms when an invertible
domain wall (dashed purple line) is introduced next to it. In (a) a
Pauli-label–permuting domain wall, equivalent to the one shown
in Fig. 31(b), is introduced next to it, transforming it to a domain
wall in class 3A. In (b) we introduce a color-permuting domain
wall, as depicted in Fig. 31(a), to obtain a class 2A domain wall.

this work so far—opaque, semitransparent, and invertible
ones in both the temporal and spatial orientations. This is
the subject of Sec. VI D.

D. Lattice surgery

Lattice surgery is a protocol to make fault-tolerant joint
measurements of Pauli observables between multiple log-
ical qubits [14,15,23,89]. These fault-tolerant operations
are carried out by merging and subsequently splitting
disjoint code patches, which we achieve by changing
the measured stabilizer terms. A sufficiently large set
of lattice-surgery operations can implement the Clifford
group by measurement. Together with the preparation of
noisy magic states and distillation protocols, we recover a
universal set of fault-tolerant logic gates.

Lattice-surgery methods give rise to resource-efficient
proposals for implementing fault-tolerant logical gates
in topological error-correcting codes [14,19,20,89]. In
Ref. [20], the color code has been shown to have an advan-
tage over other topological codes in terms of the resource
cost of its implementations. Achieving this advantage
requires the use of all different types of color-code

boundaries and domain walls. In what follows, we aim
to tie together the above discussion of anyon conden-
sation in the color code in order to understand the
role of these boundaries and domain walls appearing in
overhead-efficient color-code lattice-surgery-based quan-
tum computation.

Let us begin by considering a simple example of a
lattice-surgery operation that captures many elements of
the physics of more complex merging and splitting oper-
ations. In its simplest form, lattice surgery merges two
disjoint color-code lattices along their adjacent boundaries
before they are subsequently split [19]. This is shown in
Fig. 40. In the initial configuration, we start with two
disjoint triangular color codes. Next, the two codes are
merged. To achieve this merging operation, we measure
stabilizers between the two red boundaries of the two code
patches to create one large code patch. Finally, we split
the two codes again by measuring the initial stabilizers to
return to the original code space.

Looking at the stabilizers measured during the lattice-
surgery protocol depicted in Figs. 40(c) and 40(f), we can

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 40. Lattice surgery between two triangular color codes.
(a) The space-time diagram of the operation, where two distinct
triangular color-code patches are merged and then split again.
The purple region depicts a domain wall. (b)–(d) Time slices of
the process. In (b), we depict the initial configuration, where we
start with two logical qubits encoded in two disjoint triangular
color codes. In (c), we measure additional stabilizers supported
on qubits on the red boundaries of both original triangular color
codes. In doing so, we obtain two bits of classical information
from reading out the X 1X 2 and Z1Z2 logical parities. Merging
the codes as shown introduces a trivial domain wall in the purple
region. In (d), we revert to the initial configuration by measuring
the initial stabilizer generators to split the big code patch. (e)–(g)
Two possible ways of reading out only X 1X 2 shown to the left
and right of these panels, where time steps progress sequentially
from (e) through to (g). In this case, a semitransparent domain
wall is introduced in the purple region. Two different microscopic
realizations are shown. The left one does not require the use
of additional auxiliary qubits [for the microscopic details of the
stabilizers, see Fig. 41(2)]. The one on the right does require aux-
iliary qubits but features only stabilizer measurements of weight
6 or lower. Note that the obtained semitransparent domain wall
in this case is the one introduced earlier in Fig. 36(a).
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see that the product of the red X -type (Z-type) stabilizers
in the seam is the product of two logical operators of the
original code patches, namely, X 1X 2 (Z1Z2). Hence, by
measuring these additional stabilizers, we obtain the logi-
cal readings for the logical operators X 1X 2 (Z1Z2). Finally,
we split the code patch to obtain the two initial triangular
color codes again. Their logical qubits are now prepared
in a Bell state, with the explicit state depending on the
outcome of the logical parity measurements.

Domain walls play a central role in lattice-surgery oper-
ations. Let us study the domain walls that we obtain along
the seam when performing lattice surgery in our example
of two triangular color codes. In the process depicted in the
left of Fig. 40, we have converted an opaque domain wall
[Fig. 40(b)], which consisted of two red boundaries and
did not let any anyons pass from one code to the other, into
a fully transparent domain wall [Fig. 40(c)], effectively
joining the two codes together.

Performing a different measurement leads, in general,
to a different domain wall. For instance, consider the case
depicted on the right of Fig. 40. Here, we measure only
X 1X 2. This requires us to find a set of commuting stabiliz-
ers that multiply to X 1X 2 while leading to a logical code
patch that still encodes one logical qubit. We show a valid
solution in Fig. 40(f). Note that this measurement results in
the semitransparent domain wall shown in Fig. 36. Similar
protocols have been considered in Refs. [19,90].

Let us generalize the observed behavior and investigate
the connection between the different types of domain walls
and the types of Pauli word(s) being measured. Micro-
scopic examples for the case of two code patches are given
in Fig. 41. In this encoding, we show two code blocks,
where both the top and bottom code block encode two log-
ical qubits over a red boundary with blue boundaries on
either side. The red boundary of the upper patch supports
the logical operators X 1 and Z2 and the red boundary of
the lower patch supports X 3 and Z4.

(0) The trivial case, in which no measurement is per-
formed, results in an opaque domain wall. This
occurs when logical qubits are left idling.

(1) Invertible domain walls are obtained if two com-
muting Pauli words that address two different logical
degrees of freedom on each boundary are measured.
In the example presented in Fig. 41(1), we measure
X 1X 3 and Z2Z4.

(2) As discussed before, a semitransparent domain wall
is obtained if only one of the two degrees of free-
dom supported on each boundary of a code patch is
addressed. As an example, a measurement of X 1X 3,
as in Fig. 41(2), results in a semitransparent domain
wall.

(3) If one of the boundaries involved in the lattice
surgery has support on an even number of qubits, as
is the case for the rectangular color code, it supports

FIG. 41. The four cases of possible measurements for two-
patch color-code lattice surgery. The logical operators supported
on the interfacing boundaries of the code patches are shown in
the top left. (0) The trivial case, in which no parity measure-
ment is performed, leads to an opaque domain wall between the
two patches. (1) An invertible domain wall is obtained if two
different logical operators on each boundary are addressed. A
semitransparent domain wall is obtained when only one of the
logical operators is addressed in both code patches (2) or in just
one of the code patches (3).

two commuting logical operators. In this case, it is
possible to perform two commuting measurements
involving the same logical operator on the other
code patch. For instance, as in Fig. 41(3), we might
measure X 1X 3 and X 1Z4. Such a measurement also
leads to a semitransparent domain wall.

Having discussed the different cases arising in two-
patch color-code lattice surgery, let us now move on to
measurements of Pauli code words with support on a
larger number of patches. General lattice-surgery opera-
tions are discussed in more detail in Ref. [20]. We con-
sider the example shown in Fig. 42. Here, we aim to
measure the two Pauli words W1 = X 1X 2X 3141516 and
W2 = Z1Z2X 314Z516, which are encoded on five distinct
patches of color code. Note that the two Pauli words
commute: [W1, W2] = 0. This implies that we are able to
measure them at the same time using color-code-based lat-
tice surgery [20]. In the example, we find triangular code
patches (see Fig. 2) as well as a rectangular code patch
(see Fig. 24). Note how the rectangular patch encodes two
logical qubits, indexed 4 and 5, leading to Pauli words of
length n = 6. To perform the measurement, we introduce
an auxiliary patch in the center, such that it neighbors a
boundary of each of the five code patches surrounding it.
Furthermore, we choose the boundaries interfacing with
code patches that are acted on nontrivially by both W1
and W2 to be red, and of Pauli type if they are acted
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(a)

(b)

(c)

FIG. 42. An example of two Pauli words being measured in
parallel using color-code lattice surgery. In the example shown,
we measure W1 = X 1X 2X 3141516 and W2 = Z1Z2X 314Z516.
The boundary configuration on the data patches [shown in (a)]
and the logical Pauli words that we are reading out, W1 and W2,
determine the boundary configuration on the auxiliary patch. For
instance, the boundary interfacing with the fifth qubit is a Pauli-
X boundary, as it is only involved in one of the two Pauli-word
measurements that we perform. The auxiliary patch is initialized
and read out using a red temporal boundary. This ensures that it
is not initialized in an eigenstate of the logical operators depicted
in (b) and we therefore avoid obtaining information about indi-
vidual logical Pauli observables during the merging step. During
readout we obtain information about the products W1W3 and
W2W4, where W3 = X AX BX C and W4 = ZAZBZDZE , shown in
(c), are the products of the logical operators in (b). These are
then measured during the readout step. During the splitting step
where we measure the red edge terms, we measure the values of
W3 and W4, thereby enabling us to recover the values of the Pauli
words W1 and W2.

on nontrivially only by one of W1 and W2, such as the
Pauli-X boundary interfacing with code patch number 5.
The exception is the boundary interfacing with the code
patch encoding qubit number 6, which only gets acted on
trivially by both W1 and W2.

Let us study the auxiliary central patch in its own right.
It encodes five logical qubits, which we label based on
the logical operators that are supported on the bound-
aries interfacing the code patches [see Fig. 42(b)]. In
the lattice-surgery protocol, we measure the parity of the
depicted logical operators on the auxiliary code patch and

the logical operators on the surrounding code patches.
In order to measure only W1 and W2, and no additional
information, we initialize the auxiliary code patch using
a red temporal boundary, ensuring that it is not initial-
ized in an eigenstate of the depicted logical operators. As
shown in Fig. 42(c), the products of the logical opera-
tors in (b) are red strings, namely, W3 = X AX BX C and
W4 = ZAZBZDZE . Thus, initializing with a red temporal
boundary initializes the auxiliary code patch in an eigen-
state of W3 and W4. Now, by performing the merging step
in the lattice-surgery protocol, we measure the products
W1W3 and W2W4. Importantly, the measurements that we
have performed do not commute with W3 and W4. Thus,
in order to infer W1 and W2, the values of W3 and W4
need to be obtained during the splitting step [14]. This is
achieved by reading out the auxiliary code patch using a
red temporal boundary.

In the example we have examined, we encounter all
types of domain walls. The opaque domain wall between
the auxiliary code patch and the triangular code patch
encoding logical qubit number 6 is maintained through-
out the protocol. The domain walls between the auxiliary
patch and the triangular code patches numbers 1 and 2 are
invertible or fully transparent. Note that the domain wall
to the patch number 2 is nontrivial, as it joins a red bound-
ary and a Pauli-X boundary together. The two domain
walls between the auxiliary patch and the patch encoding
qubits 3 and 4 as well as the one encoding qubit number 5
are semitransparent. Here, the former is of type (3) in the
above discussion, while the latter is of type (2).

With this example, we hope to have elucidated how
color-code lattice surgery can be used to efficiently per-
form logical gates on a wide range of logical encodings by
making use of its rich set of domain walls. This should aid
the design of further schemes using unconventional encod-
ings, such as the thin color code proposed in Ref. [20],
which might be preferable in architectures with biased
noise.

To conclude this part of the work, let us summarize how
to translate from a circuit describing a quantum compu-
tation to a fault-tolerant implementation using the color
code. We make our summary using the example presented
in Fig. 43, where we make use of all of the features dis-
cussed in Secs. IV–VI. The operations that we present give
rise to a universal set of fault-tolerant logical operations
for topological stabilizer codes, where non-Clifford gates
are performed with magic state distillation. As we have
now elaborated, all of these operations are described, both
macroscopically and microscopically, using the unifying
language of anyon condensation.

VII. DYNAMICALLY DRIVEN CODES

Dynamically driven “Floquet” codes [36] are a
generalization of subsystem codes where a time-ordered
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FIG. 43. A circuit (left) is translated to a fault tolerant com-
putation in the color code (right). All fault-tolerant logic gates
are described with the condensation processes that we present
in Secs. IV–VI. The spatial boundaries dictate the number of
encoded qubits per code patch. Logical qubits are initialized (a)
and read out (b) with temporal boundaries. A partial readout
(c) corresponds to a domain wall obtained by partial condensa-
tion. Transversal gates (d) are applied using invertible domain
walls corresponding to trivial condensation. To perform par-
ity measurements between logical qubits, we deform the spatial
boundaries of the code patches and introduce domain walls
between them in lattice-surgery protocols (e).

sequence of gauge-operator measurements, or “checks,” is
specified to measure the syndrome data. This generalizes
subsystem codes [91] that are described by a generating set
of all check measurements with no explicit time ordering.
The honeycomb code [36] is an example of a Floquet code
that has received considerable attention [37,38,71–73] fol-
lowing its recent discovery, due to its practical imple-
mentation. Specifically, the honeycomb code has weight-6
stabilizers that are inferred using only weight-2 parity
measurements. Furthermore, the honeycomb code can be
realized on a planar lattice with boundaries [37].

The honeycomb code demonstrates the significance of
specifying the order in which check operators are measured
[36]. If we describe the honeycomb code as a subsystem
code, where its gauge group is generated by its full set of
check measurements, we arrive at a subsystem code that
encodes no logical qubits (for an introduction to subsys-
tem codes, see Ref. [91]). Nevertheless, by specifying a
constrained sequence of measurements where only a sub-
set of the generators of the gauge group are measured at
each time step, we find that each round of check measure-
ments projects the system onto a new instantaneous code,
such that logical qubits with an arbitrarily high distance are
encoded in the system.

Here, we find that anyon condensation gives us a com-
plementary perspective of dynamically driven codes. To
this end, we present a general construction for new types
of such codes that we call dynamically condensed color
codes, among which the honeycomb code is included. We
obtain this generalization from the observation that all of

FIG. 44. In this section, we derive dynamically driven codes
by condensing the confined charges of different instances of the
partially condensed color code in an ongoing sequence. The
figure shows condensation operations in the space-time picture
as colored planes that lie orthogonal to the timelike direction.

the instantaneous codes of the honeycomb code are exam-
ples of partially condensed color codes. By regarding the
color code as a parent theory from which the instanta-
neous toric code states of a dynamically driven code can
be derived, we can identify new transitions between dif-
ferent instances of the toric code via sets of weight-2
projective measurements that act on the edges of the color-
code lattice. Specifically, we find that we can reproduce
the transformations of dynamically driven codes by con-
densing color-code anyons that have been confined by a
previous condensation operation. Using other choices of
edge measurements to make checks on the color-code lat-
tice gives us additional freedom to design new dynamically
driven codes. A sketch of our framework is shown in
Fig. 44.

We use our construction to introduce one specific exam-
ple of a Floquet code that is of Calderbank-Shor-Steane
(CSS) type. We find that by measuring only weight-2 par-
ity checks on the edges of a three-colorable lattice, we can
infer the values of both Pauli-X –type and Pauli-Z–type
stabilizers for each plaquette. We can use the outcomes
of these stabilizers to detect the occurrence of errors. As
the stabilizers that we measure are precisely those of the
color code, we term the code the Floquet color code. We
note that this code defined with periodic boundary condi-
tions has been discovered independently in Ref. [39]. Let
us remark that one might regard this choice of name as a
misnomer. Although we measure check operators that infer
the values of color-code stabilizers, the Floquet color code
emulates the ground space of the toric-code phase.

The Floquet color code represents a generalization
beyond other examples of known dynamically driven
codes. When expressed as a subsystem code, where the
check operators are the generators of a gauge group, the
Floquet color code has no geometrically local stabilizer
operators. In contrast, the honeycomb code, for example,
maintains a constant set of stabilizer operators the cardinal-
ity of which is extensive in the system size. This is related
to the fact that the Floquet color code emulates the toric-
code phase. Although we measure all of the color-code
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stabilizers over a period of the Floquet color code, we
never produce a simultaneous eigenstate of all of the color-
code stabilizers at a single instant of the period of the
Floquet color code. Specifically, this is because each time
we perform a set of check measurements, we kick our sys-
tem out of eigenstates of stabilizers that do not commute
with the check operators that are measured.

One might be troubled that our new dynamically driven
code does not maintain a constant stabilizer group. How-
ever, we present numerical results showing that our code
demonstrates a threshold comparable to the honeycomb
code [38]. Our example therefore shows that no terms
in the centralizer of a subsystem code need to remain
sacred in order to encode and protect logical quantum
information. We note that the observation that the Floquet
color code does not have a constant stabilizer group has
been made in independent work [39,40]. Another Floquet
code with this property, the automorphism code, is also
presented in Ref. [74].

Two-dimensional codes can be realized on a pla-
nar qubit array by introducing boundaries. We therefore
require suitable transformations for the boundary stabiliz-
ers of dynamically driven codes as we make deformations
between instantaneous code states. We find that regard-
ing the color code as a parent theory for dynamically
condensed color codes reveals a general rule to find appro-
priate boundary conditions as we perform the code defor-
mations of a dynamically driven code. We complete this
section by explaining boundary transformations from the
perspective of bulk-condensed color codes, before offering
some concluding remarks on dynamically driven codes.

A. Dynamically condensed color codes

In what follows, we will describe the instantaneous
stabilizer group for dynamically condensed color codes.
We will explain how the instantaneous stabilizer group is
transformed as we make different choices of weight-2 edge
measurements on the three-colorable lattice.

Dynamically driven codes are described by a series
of instantaneous stabilizer groups. Each round of check
measurements that are made in the sequence projects the
system onto a new instantaneous stabilizer group. Each
of the instantaneous stabilizer groups of dynamically con-
densed color codes Sa are obtained by condensing boson
a of the color code. The honeycomb code [36], for exam-
ple, moves, up to a local basis change, through a series of
three instantaneous stabilizer groups, Srx, Sgy, and Sbz. In
practice, we find that we can transform between any two
anyon-condensed color codes, Sa and Sb, provided that a
and b correspond to bosons of the color code that share
neither the same color nor Pauli label.

The deconfined charges of the condensed color code
give rise to logical operators of an instantaneous stabilizer
group. Specifically, we regard physical string operators

that transport deconfined charges over large nontrivial
cycles of the lattice as the extensive logical operators. In
the case of Srx, the logical operators are generated by the
string operators for ry, rz, gx, and bx charges.

The edge terms for an instantaneous stabilizer group are
stabilizers for the condensed code. They correspond to the
string operators that transport the condensed charge. For
Srx, this is a weight-2 string operator that transports the
rx charges in the parent color-code model. Indeed, we
can generate longer string operators that transport these
charges by taking the products of red Pauli-X edge terms
that are included in Srx.

We can check that the deconfined charges of the con-
densed code are identified by fusion with a condensed
charge at the microscopic level (see Sec. III A). We find
that logical operators that are identified by condensation
are equivalent up to multiplication by edge operators. We
depict this equivalence for the case of the condensed code
Srx in Figs. 45(a) and 45(b), where we show the equiva-
lence between the ry and rz operators, as well as equiva-
lence between the gx and bx operators, by multiplication
with the edge operators that transport the condensed rx
charges. We can therefore regard string operators ry and
rz equivalently as Pauli-Z logical operators and gx and
bx equivalently define Pauli-X logical operators. Like-
wise, as discussed previously in Sec. III D, we can identify
the deconfined red bosons with, say, an electric charge of
the toric code model, ry � rz ≡ e, and, similarly, the
two deconfined bosons that have a Pauli-X label with a
magnetic flux of the toric code; gx � bx ≡ m.

Let us now look at how we transform between different
instantaneous stabilizer groups in dynamically condensed
color codes. We will concentrate on a single transformation
to explain how the logical operators are modified under a
transformation process but we note that we can compile
a long sequence of transformations of this type. Addition-
ally, we will show how we detect error events from the
weight-2 check measurements.

As we will see, we can transform between any con-
densed color codes Sa and Sb provided that a and b are
bosons that share neither their color label nor their Pauli
label. In other words, we require b to be a confined charge
in Sa. It is this observation that gives us a generalized con-
struction for dynamically driven codes. As such, without
loss of generality, we concentrate on one projection from
the initial instantaneous code Srx onto Sgy. We complete
this transformation by measuring all of the Pauli-Y edge
operators on green edges. It will be helpful to tabulate the
bosonic charges of Srx as follows:

(18)

010342-36



ANYON CONDENSATION AND THE COLOR CODE PRX QUANTUM 5, 010342 (2024)

Measuring the green Pauli-Y edge operators to condense
the confined gy charges then maps us onto a code with the
following bosonic charges:

(19)

In the former, Srx, the rx charges are condensed such that,
up to exchange of e and m labels, we can regard the decon-
fined ry and rz anyons equivalently as electric charges e
of the toric code (ry � rz ≡ e) and, similarly, gx and
bx can both be regarded as deconfined magnetic charges
m of the toric code (gx � bx ≡ m). All other charges are
confined. In the latter, the gy anyons are condensed and
we have gx � gz ≡ m and ry � by ≡ e. In Fig. 45,
we show the microscopic details of the logical operators as
the transformation is made.

Importantly, both Srx and Sgy share a pair of logi-
cal operators. These are string operators for gx and ry
charges. This can be read directly by comparing the two
boson tables in Eqs. (18) and (19), where we use dif-
ferent colors to correspond to different species of toric-
code bosons. One can readily check that both of these
boson tables have a common pair of deconfined bosons,
which correspond to these anticommuting logical opera-
tors and braid nontrivially with one another. Importantly,

(a) (b) (c)

FIG. 45. Logical operators of dynamically condensed color
codes. The logical operators corresponding to string operators
for bx (rz) charges [shown in (a)], are equivalent to the string
operators for gx (ry) charges [shown in (b)]. They differ by red
XX edge terms, the hopping terms of the condensed rx anyon,
which are stabilizer terms. We highlight the red edge checks that
we use to identify this equivalence in (a). The logical operators
obtained in (b) commute with all of the elements of both instan-
taneous stabilizer groups Srx and Sgy. Therefore, these logical
operators are maintained as we transform between Srx and Sgy.
We show the stabilizers of the Sgy instantaneous stabilizer group
together with the same logical operators corresponding to gx and
ry string terms in (c).

this means that logical operators are maintained through-
out the transformation and, as such, logical information is
preserved. It follows that measuring the gy edge operators
does not reveal any logical information from the corre-
sponding stringlike logical operators of the deconfined
charges. For a microscopic illustration, see Fig. 45.

Let us further emphasize at this point that the trans-
formation determines the charge labeling convention for
the new code, as this will be important in Sec. VII C 2,
where we consider the transformation of boundary stabiliz-
ers for dynamically driven codes. Specifically, we find that
the particle identification across the transformation can be
read directly from the boson tables of the condensed color
codes before and after the transformation. By identifying
ry and its corresponding logical operators with, say, the
electric charge e in Srx, it follows that the same logical
operators must also transport e charges in the transformed
code Sgy. As such, the ry charge of the transformed code,
together with charges that are identified with it under the
condensation operation, must also be identified with the
e particle. Likewise, by identifying gx with the magnetic
particle m in the original code Srx, it follows that gx,
and its corresponding string terms that give rise to logi-
cal operators, must also be identified with the m particle in
the transformed code Sgy. We reflect this identification of
charges across the transformation using a consistent col-
oring convention for the two types of deconfined charges
in Eqs. (18) and (19). Specifically, we use different col-
ors to correspond to different species of toric-code bosons.
In both boson tables in Eqs. (18) and (19), ry is colored
orange in both cases, denoting an e charge, and gx is
colored blue, indicating the identification of this particle
with m.

Let us recall that the above argument for a specific
transformation holds, in general, for any transformation in
which a charge that was previously deconfined becomes
condensed. If we were to measure the hopping terms of
a deconfined charge, such as the red Pauli-Y or Pauli-Z
edge terms, or the green or blue edge terms with a Pauli-X
label, we would perform a readout. As we have discussed
in Secs. IV A and IV B, condensing a deconfined charge
results in the readout of logical information. To summa-
rize, it is essential that the ongoing condensation operation
condenses a confined charge of Sa in our construction for
dynamically condensed color codes, in order to maintain
coherent logical information encoded in the dynamically
driven code.

In addition to transforming the logical operators, mea-
suring the green Pauli-Y edge terms also serves to both
infer some stabilizer data and to reinitialize new stabiliz-
ers. Measurement of the green edge terms also means that
certain stabilizers of Srx are removed from the system. We
will discuss this in more detail for some specific examples
in Sec.VII B but let us provide an overview of the mechan-
ics of stabilizer readout with dynamically condensed color

010342-37



MARKUS S. KESSELRING et al. PRX QUANTUM 5, 010342 (2024)

(a) (b) (c)

FIG. 46. An (a) blue, (b) red, and (c) green plaquette of the
Srx and Sgy instantaneous stabilizer groups shown at the bottom
and top, respectively. The Srx instantaneous stabilizer group is
overlaid with the green YY edge checks that are used to make the
transformation. The following takes place during the transforma-
tion. The blue stabilizer (a) begins in an eigenstate of the Pauli-Y
stabilizer. We therefore read its known eigenstate by measuring
the green YY edge checks. The red plaquette (b) is not in an eigen-
state of the Pauli-Y stabilizer; we therefore project the system
onto a random eigenstate of this stabilizer. Both the Pauli-X and
Pauli-Z stabilizers on the green plaquette (c) anticommute with
the green YY edge checks. We therefore kick the system out of
eigenstates of these stabilizers, leaving the green plaquettes in an
eigenstate of the Pauli-Y plaquette stabilizer only.

codes here. In what follows, we explain how the stabilizer
group is transformed under a single condensation process
(see also Fig. 46).

We are considering the transformation in which we
project the stabilizer group Srx onto Sgy. Here, we perform
green edge measurements that commute with stabilizers on
the red and blue plaquettes. As such, the system remains in
an eigenstate of all stabilizer generators on red and blue
plaquettes. We can also use the green edge measurements
to infer the values of the Sryf and Sbyf operators. Given that
we have begun in an eigenstate of Sbyf , we learn its value
for a second time. Comparison of its new value to its orig-
inal value allows us to identify errors that have occurred
during the interim period [see Fig. 46(a)]. This gives rise
to a detection cell, introduced in Sec. II E and discussed
further in Sec. VII B 1. In contrast, the stabilizer group Srx
did not include Sryf terms [see Fig. 46(b)]. Measuring the
green Pauli-Y edge terms therefore initializes the system
in eigenstates of these stabilizers and in turn the Srzf sta-
bilizer, given that we maintain an eigenstate of the Srxf
stabilizer throughout the transformation. However, given
that the outcome of this inferred stabilizer measurement
is random, these measurements provide no new syndrome
data with respect to the red plaquettes.

The transformation also removes stabilizers from the
system. The green Pauli-Y edge measurements anticom-
mute with the Sgxf and Sgzf stabilizers. These stabilizers are
therefore not included in Sgy. Indeed, the new stabilizer

FIG. 47. The boson tables of the different condensed color
codes that are produced at each stage of the Floquet-color-code
measurement sequence.

group only includes Sgyf on the green lattice faces. We
depict this in Fig. 46(c).

B. The Floquet color code

With the discovery that we can transform between any
pair of anyon-condensed color codes from Sa to Sb pro-
vided that bosons a and b share neither color nor Pauli
labels, we find a new degree of freedom that we can use
to design new dynamically driven codes that follow dif-
ferent sequences of check measurements. To this end, we
introduce the Floquet color code, a specific example of a
dynamically condensed color code (see also Refs. [39,40],
where this code has recently been introduced in inde-
pendent work on a lattice with periodic boundary condi-
tions). The Floquet color code follows a sequence of six
instantaneous stabilizer groups,

. . . → Srx → Sgz → Sbx → Srz → Sgx → Sbz
→ . . . (20)

(see Fig. 47), where we use boson tables to show how
the electric and magnetic charges are transformed as the
Floquet color code undergoes code deformations.

Let us now describe quantum error correction using the
Floquet color code before presenting the numerical results
from our threshold simulation. As we have discussed,
dynamically condensed color codes maintain canonical
pairs of anticommuting logical operators provided that
the transformations that we use respect the rules that are
detailed in Sec. VII A) One can check that our sequence
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respects these results, so let us concentrate on stabilizer
measurements.

1. Detection cells

Fault-tolerant error correction requires that we identify
all types of errors over time. In addition to measuring
the occurrence of physical errors that act on the qubits of
the system, we must also identify errors where the mea-
surement apparatus returns the incorrect results. In Sec.
VII A, we have described how we transform between dif-
ferent instantaneous stabilizer groups as we perform check
measurements. However, we use more general objects to
identify the occurrence of errors in practice. We therefore
define detection cells (see also Sec. II E) that we use to
identify measurement errors, as well as physical errors.

Detection cells compare the value of some Pauli check
that we measure to the value of the same check that was
measured at some earlier time. If the final reading deviates
from the initial reading, then we declare that an error event
has been detected. These events can be thought of analo-
gously with pointlike anyonic excitations in the space-time
picture. Error events can be caused by physical errors that
occur between its initial and final reading or by measure-
ment errors that change the value of either reading of the
check measurement.

Let us first consider the example of a detection cell cor-
responding to a Pauli-X stabilizer on a red plaquette [see
Fig. 48(left)], although we remark that no generality is lost
here, as our periodic measurement sequence is invariant
under cyclic permutations of the arbitrary color labels or
exchange of the Pauli-X and Pauli-Z labels. We initialize
the red Pauli-X stabilizer at the earliest time, shown at the
bottom of the figure, at which we measure the green Pauli-
X edge checks. We compare the stabilizer measurement to
the measurement of the same stabilizer, performed at the
final time at the top of the figure, at which we infer its value
from measuring the blue Pauli-X edge checks. Assuming
that no errors occur, we expect the reading of this stabilizer
to be the same at both the first time and the last time.

It is important that all the check measurements that are
made in the interim period between the initial and final
measurements of the detection cell commute with the red
Pauli-X stabilizer. This will mean that both measurements
of the stabilizer will have the same value, provided that no
errors occur. In between the initial and final readout of the
red Pauli-X stabilizer, we measure blue and green Pauli-Z
edge checks and red Pauli-X edge checks. One can readily
verify that all of these check measurements commute with
the red Pauli-X stabilizer. As such, we obtain a detection
cell that identifies errors that occur in between the initial
and final readout of the stabilizer of interest, as well as any
measurement errors that may occur during either reading
of the stabilizer.

Let us now look at how all of the detection cells are
supported. We find that all qubits support four detection

FIG. 48. Detection cells for the Floquet color code (left) and
the honeycomb code (right). For the Floquet color code, we mea-
sure the red Pauli-X stabilizer at the initial and final times in the
figure. At the initial time, we infer its value by measuring the
green Pauli-X edge checks and we compare its value to the read-
ing of the same stabilizer at the final time in the figure, where
we infer its value from measuring the blue Pauli-X edge checks.
One can check that all of the check measurements that are made
in between the two readings of the red Pauli-X stabilizer com-
mute with the stabilizer of interest. As such, we obtain a detection
cell by comparing the first and last readings of the stabilizer. In
the case of the honeycomb code, we infer the value of the red
Pauli-X stabilizer by taking the product of all of the check mea-
surements during the first two time steps, both the green Pauli-Y
checks and the blue Pauli-Z checks, and we compare the value of
this stabilizer to the value inferred from the green and blue check
measurements that are collected at the final two time steps. The
Pauli-X stabilizer commutes with the red Pauli-X edge checks
that are performed in between the two readings of the stabilizer.

cells at any given instant; two Pauli-X –type cells and two
Pauli-Z–type cells. In Fig. 49, we show red, green, and
blue detection cells in space-time, with the Pauli-X –type
cells on the left of the figure and the Pauli-Z–type cells on
the right. Note how the left and right diagrams are equiva-
lent up to conjugation by a Hadamard and a shift by three
time steps. Let us thus, without loss of generality, concen-
trate on the Pauli-X detection cells. As we have already
discussed, the red Pauli-X detection cells are initialized
when we measure the green Pauli-X edge checks and are
read out a second time when we measure the blue Pauli-X
edge checks. Similarly, the detection cells corresponding
to green (blue) stabilizers are initialized when we measure
the blue (red) edge checks and they are read out at the final
instant at which we measure the red (green) edge checks.
By construction, every qubit supports one stabilizer of each
color. We can therefore see in the diagram that at any given
instant, every qubit supports two Pauli-X –type detection
cells.

An unusual feature of the Floquet color code is that we
do not maintain a constant group of stabilizers. Rather,
stabilizers are constantly reinitialized and later checked
to obtain detection cells that identify error events. For
example, the red Pauli-X stabilizers do not commute with
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FIG. 49. The space-time diagram showing detection cells cor-
responding to Pauli-X –type stabilizers and Pauli-Z–type stabiliz-
ers shown, respectively, on the left and right. Time runs upward,
and is marked by the points in time at which the edge measure-
ments are made. We show the edge measurements in the center
of the figure. Red Pauli-X –type (Pauli-Z–type) cells are initial-
ized when the green Pauli-X (Pauli-Z) edge checks are measured
and they are read out a second time when we measure the blue
Pauli-X (Pauli-Z) edge checks, thereby completing the detection
cell. Likewise, green (blue) detection cells are initialized when
we measure the blue (red) edge checks and are read out a sec-
ond time when we measure the red (green) edge checks. As the
stabilizers of the Floquet color code do not commute with all the
edge checks, we observe short intervals in which a qubit does
not support some given cell. For example, the red Pauli-X –type
detection cell is not supported over the interval in which the
Pauli-Z edge checks are measured. As such, we find a temporal
gap between detection cells of the same type.

red Pauli-Z edge-check measurements; we cannot main-
tain a red Pauli-X detection cell as we measure Pauli-Z
edge checks. We must therefore reinitialize the red Pauli-
X stabilizer after we measure the red Pauli-Z edge checks.
Likewise, we do not maintain a green (blue) Pauli-X detec-
tion cell over the interval in which we measure green (blue)
Pauli-Z edge checks. This is represented in the figure by
the temporal gap between two detection cells. Neverthe-
less, we see that every qubit always supports two detection
cells at any given time.

2. The error syndrome of the Floquet color code

Let us now look at how the detection cells respond
to errors. As the Floquet color code is a CSS code, we

FIG. 50. The error syndrome of physical errors (top row) and
measurement errors (bottom row). Let us consider the physical
error shown in the top left: a qubit supports a green and a blue
Pauli-Z–type detection cell after the blue Pauli-Z edge checks
are measured, up until the instant at which the following green
Pauli-Z edge checks are measured. Therefore, a physical error
that occurs on a qubit during the interval 0 < t < 2 will produce
two detection events on the green and the blue detection cell that
it supports. To understand how measurement errors manifest, let
us focus on the case of a measurement error on a red edge (bottom
left): the red edge checks read out the green detection cell and
simultaneously reinitialize the stabilizer used for a blue detection
cell. Therefore, a measurement error on a red edge check will
violate a green and a blue detection cell.

concentrate only on bit-flip errors but remark that an
equivalent discussion will hold for Pauli-Z–type errors act-
ing on Pauli-X –type detection cells. Pauli-Y errors can
be regarded as the product of a Pauli-X –type and Pauli-
Z–type error. In Fig. 50, we show the occurrence of
physical errors at different time intervals over a period,
as well as a measurement error on different types of edge
check. We will concentrate our discussion on errors that
create a pair of detection events on red and blue detec-
tion cells but remark that an equivalent discussion will
hold for any pair of colors, up to a cyclic permutation of
color labels. We show examples of all types of errors in
Fig. 50.

Let us first look at a bit-flip error. A qubit supports a red
and a blue Pauli-Z–type detection cell after the instant at
which the red Pauli-Z–type checks are measured, up to the
instant at which the following blue Pauli-Z–type checks
are measured. A bit-flip error that occurs in this interval
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will therefore violate the two detection cells that the qubit
is supporting at this time, thereby identifying a pair of error
events. We show the two violated detection cells in Fig. 50
(top middle).

Measurement errors also create a pair of detection events
in the error syndrome. Each edge check that is measured
performs two tasks; it contributes to the read out of a stabi-
lizer, thereby completing a detection cell, and it is also used
to reinitialize a stabilizer to produce a new detection cell.
A measurement error on a given edge check will create
detection events on both of its associated detection cells,
as shown in Fig. 50 (bottom middle). The figure shows a
single measurement error on a green edge check that reads
out a blue detection cell and reinitializes a red detection
cell.

Given that all types of errors, both bit flips on physi-
cal qubits and measurement errors, create detection events
in pairs in the space-time bulk, we have a conservation
law among error-detection events [82,92] that enables us
to employ standard decoding methods such as minimum-
weight perfect matching [1,58,82] or union find [48].
In what follows, we describe simulations to evaluate
the threshold using a minimum-weight perfect-matching
decoder implemented using the PyMatching software pro-
gram [93].

3. Numerical simulations for the Floquet color code and
comparison with the honeycomb code

To assess its performance, we simulate fault-tolerant
quantum error correction with the Floquet color code under
circuit-level noise (for details, see the caption of Fig. 51).
For the standard depolarizing circuit-noise model used in
Ref. [38], we obtain a threshold of approximately 0.3%
using a matching decoder. The decoder matches detec-
tion events from the Pauli-Z–type detection cells inde-
pendent of the syndrome information that is measured by
the Pauli-X –type detection cells. To contrast with other
work, Ref. [38] reports a threshold of 0.2–0.3% with the
honeycomb code under the same noise model using a
minimum-weight perfect-matching decoder that accounts
for correlations.

Using a basic decoding algorithm, we have shown that
the Floquet color code has a threshold that is competi-
tive with the honeycomb code. This may be surprising,
given that we are simulating a code that does not have
a constant stabilizer group. Rather, local stabilizers are
constantly being removed from the system and reinitial-
ized with different transformations between instantaneous
stabilizer groups. In spite of this, the Floquet color code
obtains syndrome data at the same rate as the honeycomb
code.

In what follows, we discuss three factors to explain the
similar thresholds obtained for the honeycomb code and
the Floquet color code. These factors are:

0.0026 0.0028 0.0030 0.0032
p

0.001

0.005

0.010

0.050

0.100

P
fa
il

FIG. 51. The threshold plot for the Floquet color code with
periodic boundary conditions using the standard depolarizing
noise model [38]. Data for codes of L × L red hexagons with
L = 4, 8, 12, and 16 are shown in blue, yellow, green, and
red, respectively. We obtain a threshold of approximately 0.3%,
which is approximately the same as that obtained with the honey-
comb code for the equivalent noise model [38]. The simulations
have been conducted using the STIM software program [59] and
decoding has been performed using a minimum-weight perfect-
matching decoder, implemented using PyMatching [93], that
has concentrated only on stabilizer measurements obtained from
Pauli-Z edge checks. Further improvements might be obtained by
exploiting correlations between the detection events that are mea-
sured by the Pauli-X –type and Pauli-Z–type stabilizers under the
circuit-level depolarizing noise model.

(i) the rate at which detection cells are evaluated
(ii) the stabilizer operators of the two Floquet codes

(iii) similar syndrome data structures for decoding

To review, up to a local change of basis, two periods of
the honeycomb code check measurements are as follows:

. . . → Srx → Sgy → Sbz → Srx → Sgy → Sbz
→ . . . . (21)

We also show a corresponding detection cell for the hon-
eycomb code in Fig. 48(right).

Let us summarize the difference in how detection cells
are measured for each of the Floquet codes in regard to
point (i).

The Floquet color code measures two distinct stabilizers
per plaquette, whereas the honeycomb code only measures
one stabilizer per plaquette. On the other hand, the hon-
eycomb code obtains new detection cells for each of its
corresponding stabilizers at double the rate of each of the
stabilizers for the Floquet color code. Overall, detection
events are measured at an equivalent rate for each Floquet
code.

In regard to point (ii), both codes have very similar
structures in the sense that detection cells correspond to
weight-6 stabilizers that are obtained over five rounds of
weight-2 check measurements. Also, given that both codes
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produce syndrome data at the same rate, as discussed in
point (i), it is perhaps unsurprising that the Floquet color
code and the honeycomb code demonstrate comparable
threshold error rates.

Let us finally discuss decoding using the minimum-
weight perfect-matching decoder for the two Floquet codes
[point (iii)]. To summarize the remaining discussion in this
section, we find that both decoders have similar decoding
graphs in the sense that errors give rise to pairs of events
at detection cells in very similar configurations in space-
time. We can exploit this structure for both codes to design
a minimum-weight perfect-matching algorithm.

Let us discuss how we can obtain a matching decoder
for the honeycomb code. We find that the honeycomb code
demonstrates a parity-conservation law among its detec-
tion events [82,92] over two subsets of its detection cells.
We obtain these two conservation laws by dividing the
cells according to the time at which the cell is initialized.
One subset includes all the detection cells that start by
check measurements made at odd time steps, while the
other subset begin their initialization by checks made at
even time steps. We leave it to the reader to verify this
fact. Nevertheless, the detection cells of one of the afore-
mentioned symmetries for the honeycomb code share the
same structure as those of, say, the Pauli-X –type detec-
tion cells of the Floquet color code (see Fig. 49). Given a
detection-event parity symmetry, one can exploit its corre-
sponding conservation law to design a matching decoder
[82,92].

Likewise, we obtain two subsets of detection-event par-
ity conservation laws with the Floquet color code. This has
already been mentioned implicitly in Sec. VII B 2. Using
that the code is a CSS code, we can trivially separate the
decoding problem for the Pauli-X –type detection cells and
the Pauli-Z–type detection cells. Indeed, as we have dis-
cussed in detail, errors give rise to defects in pairs in the
Floquet color code if we subdivide the results from the
detection cells in this way. Given that the Pauli-X –type
detection cells are initialized at odd time steps and Pauli-
Z–type detection cells are initialized at even time steps,
we can readily see an equivalence in the structure of the
decoding graph for the two different Floquet codes.

C. The boundaries of Floquet codes

Dynamically driven codes with a local group of stabi-
lizer generators can be realized on a planar array of qubits
by encoding logical information on a lattice with bound-
aries [36,37]. In order to design a dynamically driven
code with boundaries, we must also find suitable trans-
formations between the boundary-stabilizer operators as
we perform deformations between instantaneous stabilizer
groups. Here, we appeal to the physics of the underly-
ing parent phase to find a systematic way of obtaining

suitable boundary transformations for examples of dynam-
ically driven codes. In what follows, we will show how
the boundaries of dynamically condensed color codes can
be derived using the structure of the parent anyon theory
of the color-code model. We will go on to demonstrate
our general theory by producing microscopic boundary
conditions for the Floquet color code.

1. Boundaries of condensed color codes

The toric-code phase that is realized by dynamically
condensed color codes has a well-understood bound-
ary theory [61]. We encode logical qubits by introduc-
ing “rough” and “smooth” boundaries to the lattice [1,
94], where a rough boundary condenses electric charges,
labeled e, and a smooth boundary condenses magnetic
charges, labeled m. We must therefore look for boundaries
for dynamically driven codes, together with their associ-
ated transformations, that reproduce the behavior of the
rough and smooth boundaries of the toric code. We find
that we can derive the boundaries of dynamically con-
densed color codes from the parent color-code model. Let
us review the boundaries of the color code before dis-
cussing how the boundaries of dynamically driven codes
are obtained from the parent theory. We pay particular
attention to the color-code boson table to help to elucidate
our construction.

We describe six different boundaries for the color code
in Sec. III B 1. Three boundaries are associated with color
labels of the color-code bosons and three boundaries are
associated with Pauli labels. We call these color boundaries
and Pauli boundaries, respectively. The boundary label
denotes the types of boson that the boundary condenses.

We recall that the color boundaries correspond to the
columns of the boson table of the color code and the
Pauli boundaries correspond to the rows of the boson table.
Indeed, the table is defined such that all the bosons in a col-
umn share a common color label and all of the bosons in
a row share a common Pauli label. Specifically, the boson
table is designed such that the rows and columns repre-
sent distinct Lagrangian subgroups of the color-code anyon
model (see Sec. III B 1).

Let us look once again at the charges of the boson table
that remain deconfined as we condense a single charge.
Upon condensing a single color-code boson, up to a sym-
metry in exchange of the e and m labels, we identify the
charges that share a row with the condensed charge with
the electric charges of the toric code and we identify the
charges that share a column with the condensed charge
with the magnetic charges of the toric code. Correspond-
ingly, we require suitable boundaries to condense these
charge types at appropriate locations.

We posit that we obtain appropriate rough and smooth
boundary terms that, respectively, absorb e and m charges
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FIG. 52. The boundaries of the Floquet color code at any point
in time can be related to smooth and rough boundaries of the
corresponding toric code. We demonstrate this here by drawing
the toric code in gray on top of the Floquet color code with rx
being condensed.

for dynamically condensed color codes by choosing appro-
priate boundaries in the corresponding color-code theory.
Without loss of generality, let us take the color code where
the red Pauli-X charge is condensed, Srx as an example.
In this condensed color code, we have that the deconfined
electric charges of the condensed theory correspond to the
ry and rz charges of the parent theory. Both of these
charges have a common red color label and are therefore
both absorbed, uniquely, by a red color boundary. As such,
red color boundaries of a color code become rough bound-
aries that absorb electric charges of the condensed theory
Srx. Similarly, the magnetic fluxes of the condensed theory
correspond to the gx and bx charges of the parent theory.
Both of these charges are uniquely absorbed by a Pauli-
X boundary, as they share an X Pauli label. We therefore
find that the Pauli-X boundaries of a color code become
the smooth boundaries that absorb the magnetic charges of
Srx. Indeed, in Fig. 52, we show a condensed color code
Srx where the parent theory had two distinct red bound-
aries and two distinct Pauli boundaries. The figure shows
the corresponding toric-code lattice overlaid, with qubits
on the edges. We observe that the Pauli-X boundaries pro-
duce smooth boundaries in the condensed theory, whereas
the red boundaries produce rough boundaries.

2. Boundary transformations

We have argued that the lattice geometry at the bound-
ary of the instantaneous stabilizer groups of dynamically
condensed color codes can be determined by the corre-
sponding excitations that are absorbed at the boundary for
the parent color-code anyon theory. We can go on and
follow our rule to its conclusion to learn how the bound-
aries must transform as we perform deformations between
different instantaneous stabilizer groups of dynamically

FIG. 53. The boundaries of the Floquet color code as it
changes in time. The rough boundaries are always located on the
left and right boundaries of the code and the smooth boundaries
on the top and bottom boundaries. The corresponding bound-
ary of the parent color code, however, changes over time, as
indicated by the capital letters, where R, G, and B are the red-,
green-, and blue-colored boundaries, and X and Z denote a par-
ent color-code theory with an X -type and Z-type Pauli boundary,
respectively.

condensed color codes (see also Ref. [37]). As an explicit
example, in Fig. 53, we show the boundary transforma-
tions through a single period of the Floquet color code in
terms of the boundaries of its corresponding parent theory
together with their corresponding boson tables. We explain
this choice of boundary transformations throughout this
section.

Without loss of generality, we will follow the details of
the transformation between the first and second step of the
period of the Floquet color code as an example, where
we transform from Srx onto Sgz—see steps 1 and 2 in
Fig. 53—but we note that the following discussion will
hold between any pair of condensed color codes, Sa and
Sb, with bosons a and b condensed, provided that a and b
share neither a color label nor a Pauli label.

Let us posit again that rough boundaries must remain
rough after a Floquet-code transformation and likewise a
smooth boundary must remain smooth. More specifically,
this means that the rough boundaries must condense the
bosons of the parent theory that are identified with electric
charges both before and after the transformation and, like-
wise, the smooth boundaries must condense the magnetic
charges throughout the transformation. We must therefore
follow how the electric and magnetic charges are main-
tained throughout the transformation at the level of the
parent color-code anyon theory (see Sec. VII A). To restate
our result briefly, if we choose a convention for Srx where
we have identified red parent bosons with electric charges
and Pauli-X parent bosons with magnetic charges, then it
follows that, after the transformation from Srx onto Sgz,
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Pauli-Z parent bosons correspond to electric charges and
green parent bosons correspond to magnetic charges. This
convention is laid out explicitly in the boson tables shown
in Fig. 53.

We find that constraining the electric and magnetic
charge labels as we transform Srx onto Sgz also constrains
the boundary transformation. With the convention used
above, we have that the red (Pauli-Z) parent bosons of Srx
(Sgz) correspond to electric charges and that the Pauli-X
(green) parent bosons of Srx (Sgz) correspond to magnetic
charges. This fixes the boundaries of the code. We specif-
ically have that the red (Pauli-Z) boundaries correspond
to the rough boundaries of Srx (Sgz) and that the Pauli-X
(green) boundaries correspond to the smooth boundaries of
Srx (Sgz). If follows that, at the level of the parent theory,
red boundaries must transform onto Pauli-Z boundaries as
we transform from Srx onto Sgz and, likewise, Pauli-X
boundaries must transform onto green boundaries in the
parent theory under the transformation of interest. This is
the result shown in Fig. 53. In Sec. VII C 3, we give micro-
scopic details demonstrating the boundary transformation
that we have described here at a macroscopic level.

To conclude here, let us summarize the prescription
that we have given to determine boundary transforma-
tions for dynamically condensed color codes. As discussed
in Ref. VII A, the electric and magnetic charge labels
are constrained throughout a transformation. The transfor-
mation can be displayed clearly in boson tables once a
charge-label convention is specified at the initial step. Fur-
thermore, boundary-stabilizer terms can be obtained at the
level of the parent theory by reading the respective rows
and columns of the boson table that support the deconfined
charges of the condensed anyon theory (see Sec. VII C 1).
Finally, we have argued that constraints among the charge
labels under the transformation, together with a rule for
finding check operators from the parent theory at the
boundary of an instantaneous code, can determine how we
transform the boundaries of dynamically condensed color
codes.

3. Microscopic details at the boundary of the Floquet
color code

Having given an overview of how the boundaries of
the dynamically condensed color codes transform, we can
also present the microscopic details for how the bound-
aries transform throughout a period of the Floquet color
code. We show these details in Fig. 54. In the figure, we
concentrate on a smooth boundary that oscillates between
color labels and Pauli-X labels. The case of a rough bound-
ary transformation is obtained by replacing Pauli-X and
Pauli-Z labels. Details are given in the figure caption.

We also show the detection cells at the boundary
of the Floquet color code in Fig. 55. Specifically, we
show a boundary-detection cell corresponding to a Pauli-Z

FIG. 54. Microscopic realizations of the smooth boundaries of
the Floquet color code as the code transforms between different
instantaneous stabilizer groups over a single period of the code.
The letters on the left indicate the boundary of the parent color-
code phase. We measure weight-2 edge checks at each round,
where the measurements are given by the key illustrated to the
right of the figure. We also perform single-qubit measurements at
certain time steps, shown by colored spots. Furthermore, certain
qubits are not measured at a given step. These are marked by gray
circles.

stabilizer (left), a weight-6 boundary Pauli-X stabilizer
(middle), and a weight-3 Pauli-X stabilizer (right). In each
figure, one can check that all of the intermediate measure-
ments in the schedule commute with the initial and final
inferences of the stabilizer at the first and last time steps.
One can also check that the detectors at the boundary are
consistent with the behavior of detectors at their respective
rough and smooth boundaries, as we expect. We can check
this by going through an analysis equivalent to the one we
have used in Sec. VII B 2.

We show a period of the Floquet color code with bound-
aries in Fig. 56. We also show the support of its logical
operators. One may worry that a Floquet code may drift
over an array of qubits as transformations are performed.
Using the lattice geometry and the measurement pattern
that we have specified, we find that the footprint of our
code remains static.

D. Remarks on Floquet codes

We have presented a generalized construction for
dynamically driven codes called dynamically condensed
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FIG. 55. Detection cells at the smooth boundary of the Floquet
color code. These measurements correspond to a single period
with corresponding stabilizers as discussed in Fig. 54. We show
detection cells for a red Pauli-Z stabilizer (left) and a red Pauli-
X stabilizer (middle), as well as the detection cell for a weight-3
Pauli-X stabilizer (right).

color codes. Our construction contains the honeycomb
code. Moreover, it has enabled us to present a new dynam-
ically driven code that we call the Floquet color code. We
have also given a general boundary theory that allows us to
write down a valid stabilizer group at the code boundary.
Let us now discuss various aspects of dynamically driven
codes that may suggest new research directions.

FIG. 56. The Floquet color code as it evolves throughout the
six steps of the measurement scheme. We show the logical X (Z)
operator in cyan (orange).

1. Topological phases for Floquet codes

From the perspective of topological order, the Floquet
color code presented in this work and its close cousins
such as the honeycomb code are in the toric-code phase
at any given time step. However, from one time step to the
next, its local representation, given by the instantaneous
stabilizer group, changes. In a space-time picture, this cor-
responds to an invertible domain wall within the toric-code
phase appearing periodically in time.

The dynamically condensed color code presented here
inherits features from the well-studied parent phase. In
our construction, we benefit from exploiting details of the
color code, such as its symmetries and boundaries [21,23].
For example, we have used the color-code boundaries to
construct boundaries for dynamically driven codes system-
atically. Naturally, we inherit beneficial properties of the
parent stabilizer group, such as the geometric locality and
the bounded weight of the stabilizer checks.

Continuing in this spirit, in future work it will be inter-
esting to show how we can produce other types of topo-
logical defects in dynamically driven codes, such as twist
defects, that can be used to perform fault-tolerant gates.
In addition to finding how they manifest in the micro-
scopic details of an instantaneous stabilizer group, it is also
important to find how they transform as they undergo a
full period of check measurements for a Floquet code. We
may discover an intuitive way of designing these objects
by appealing to the details of the parent color-code theory.

On the other hand, we note that not all sequences of con-
densation lead to a valid code. In certain sequences, the
measured two-body checks do not let us infer enough syn-
drome information to perform error correction. It will be
interesting to understand the conditions on the validity of a
measurement sequence in terms of the macroscopic parent
anyon theory and its microscopic stabilizer realization.

In recent work (see Ref. [74]), a general construction of
automorphism codes based on string-net models has been
presented. The authors use an automorphism of a topolog-
ical order and the associated domain wall in the micro-
scopic description to define a Floquet code that implements
the chosen automorphism in the time direction over a cycle
of measurements. Given a phase and a representation of
an automorphism, their construction gives rise to a unique
Floquet code.

Our construction offers a different perspective on
dynamically driven codes. At any time step, we condense
a different boson in a parent theory to describe the instan-
taneous stabilizer group. This allows us to construct more
measurement sequences to drive codes in the condensed
phase. We leave the connection of dynamically condensed
to automorphism codes from Ref. [74] for future work.
We expect that the automorphism formalism has to be
extended to more general (invertible) bimodule categories
in order to capture dynamically condensed codes.
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The dynamically condensed color codes that we have
studied provide us with an intuitive model that shows
us that we can design dynamically driven codes by con-
densing bosons of a parent color-code theory. Taking the
perspective of a parent anyon theory with a nontrivial con-
densate may illuminate a way for us to design a much
broader landscape of dynamically condensed codes. A first
step would be to find other topological stabilizer codes
corresponding to richer topological phases with nontriv-
ial condensates and to perform a study similar to the one
we have conducted for the color code. Going beyond sta-
bilizer codes, we could consider taking a non-Abelian
parent phase with a nontrivial condensate to construct a
non-Abelian dynamically driven code. One possibility to
enforce nontrivial condensates is by doubling an anyon
theory. One could take some number of copies of an
anyon model with a gappable boundary and dynamically
condense bosons in there.

The concept of condensing topological excitations can
also be applied to higher-dimensional models. In Ref. [95],
a network of (partly) condensing defects within a (3 + 1)-
dimensional topological theory has given rise to various
fracton models. The use of similar defects interleaved
(periodically) in time can define dynamical condensation
in three dimensions. Moreover, it would be interesting
to see how known 3D subsystem codes, such as the
gauge color code [96], relate to the concept of topo-
logical condensation. Gauge fixing could be related to
picking a particular description of a condensate. Chang-
ing the gauge would then correspond to an invertible
domain wall within the condensate. It may be valu-
able to find a unifying theory between gauge fixing and
dynamically driven code-measurement cycles, as such a
theory may provide us with new ways of performing
fault-tolerant logic gates with other types of topological
codes.

2. A unifying framework for quantum error-correcting
codes

Dynamically driven codes have provided us with a new
way to read out syndrome data from topological phases
using a certain sequence of check measurements. The fact
that we can obtain syndrome data using only weight-2
measurements is particularly appealing from a practical
perspective. A generalization of this idea may lead us to
ways of modifying more general quantum codes with a
constant encoding rate in the number of physical qubits
[97]. As such, it is valuable to find a unifying picture to
describe Floquet codes together with other types of codes
evenhandedly. We might expect any such framework to
include different types of circuits that read out stabilizer
operators. Here, let us discuss other syndrome-readout
circuits, and check measurement sequences for other sub-
system codes. We do this with the aim of identifying

some similarities between Floquet codes and subsystem
codes, to attempt to demystify the physics of these new
models.

It is a challenging exercise to point to the differences
between dynamically driven codes and more conventional
codes. It is argued that choice of sequence is essential
for a dynamically driven code to maintain logical infor-
mation. However, in the case of subsystem codes, given
that we have a large set of noncommuting measurements
that must be checked to obtain a complete set of syn-
drome data, a suitable sequence must also be chosen, even
if the sequence is found trivially. For instance, for CSS
subsystem codes, one typically assumes a sequence in
which we measure all of the Pauli-X checks simultane-
ously, followed by the Pauli-Z checks. Other subsystem
codes require a nontrivial sequence of check measure-
ments to read out stabilizers [98]. On the other hand, one
can easily conceive of poor choices of readout sequences
where stabilizers are read out inefficiently. Furthermore,
at each step in the sequence, the subsystem code is pro-
jected onto a new instantaneous stabilizer group, where
certain terms of the gauge group become fixed and join
the stabilizer group of the code, while other terms of the
gauge group are kicked out of the fixed subspace. The
authors of Ref. [99] even consider changing the sequence
of check measurements to improve a subsystem code to
correct biased noise.

The key innovation that the examples of dynamically
driven codes show us, beyond subsystem codes, is that
the logical operators need not remain constant through-
out a sequence of check measurements but, rather, they
can be steadily deformed throughout a sequence of check
measurements. As we have shown here, it is not even nec-
essary to maintain a static stabilizer group as we undergo
code transformations. Hopefully, these innovations will
lead us to discover other new codes that are practical for
experimental realization.

Another way in which we might consider unifying Flo-
quet codes with other codes is at the level of syndrome-
extraction circuits. Fault-tolerant syndrome-readout cir-
cuits have been proposed [100,101], where a code is
teleported onto a second auxiliary system such that the
teleportation operation also reveals syndrome data. One
could view this teleportation operation as a code deforma-
tion, where the stabilizers of a code are teleported onto a
new set of qubits with new support. One could imagine
a strategy for syndrome readout where a code is peri-
odically transferred between two subsystems. We might
regard this strategy for syndrome readout as a dynamically
driven code. A similar approach for syndrome readout has
also been suggested using measurement-based quantum
computation, where a 3D cluster state is prepared over
time using a 2D qubit array [10]. We discuss this point of
view from the perspective of fault-tolerant logic gates in
Sec. VII D 3.
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3. Fault-tolerant logic gates

The realization of scalable quantum computation with
dynamically driven codes will require the development of
fault-tolerant logic gates. Given that the dynamically con-
densed color codes realize the toric-code phase, we might
expect to be able to perform Clifford gates with dynam-
ically driven codes using a generalization of code defor-
mation. These operations might include braiding punctures
[9] or braiding twist defects [15,64]. The ongoing devel-
opment of quantum computation with dynamically driven
codes will require a more general theory to implement
the microscopic details of the measurements to realize
fault-tolerant logic gates. As we have already discussed in
Sec. VII D 1, we may find such constructions by appeal-
ing to the physics of the parent theory of a dynamically
driven code that is created by condensation. The work
of Hastings and Haah [37] has already considered some
lattice-surgery operations [14] with Floquet codes. If we
additionally show how to initialize Floquet codes in a
magic state, we can realize universal quantum computa-
tion using magic state distillation, assuming that we can
perform the Clifford gates.

The development of Floquet codes may also give us new
ways of realizing fault-tolerant non-Clifford gates. If one
subscribes to measurement-based fault-tolerant quantum
computation as an example of a Floquet-code encoding
[10], then we can regard the gate constructions given in
Refs. [16,17] as Floquet codes that realize non-Clifford
operations on their dynamically changing code space.
Indeed, in both of these cases, a 2D qubit array is driven
between different codes using measurements. Additionally,
a just-in-time decoder is used to reproduce the physics of
a 3D code to perform non-Clifford operations in (2 + 1)D
space. It will be interesting to determine to what extent we
need to periodically drive these 2D systems between dif-
ferent stabilizer codes to realize non-Clifford gates. These
examples of 2D non-Clifford gates are well understood
by considering the error-correction system in a static 3D
space-time. It may be an instructive exercise to develop a
space-time theory for dynamically driven codes.

4. General noise models

For more practical implementations of fault-tolerant
quantum computing, we require robust codes that demon-
strate a high threshold against the noise models that real
qubits experience. It has been shown that the threshold is
highly sensitive to local modifications to codes undergoing
noise models with biases toward particular types of error
[102–106]. In addition to changes to the local bases of the
physical qubits of the code, our general construction for
designing dynamically condensed color codes also offers
us other ways of designing dynamically driven codes. We
might, for instance, choose different condensation paths
through the color-code boson table. It may be that certain

paths are better suited to obtain high thresholds for dif-
ferent choices of biased noise models. Topological codes
have also been optimized into rectangular configurations
with different height and width in order to reduce overhead
in the biased noise setting [103,107]. One can observe that
there are no logical Pauli-X operators composed of physi-
cal Pauli-Z terms at any instance of the Floquet color code
(see Fig. 56). This code may therefore serve as a candi-
date for a thin Floquet code under noise biased to introduce
dephasing errors to data qubits.

A key difference between dynamically driven codes
and more conventional static codes is the action of mea-
surement errors. For stabilizer codes, a high-performance
fault-tolerant syndrome-readout circuit can be found by
studying an idealized situation in which measurements
are error free [103,108]. Then, the decoding strategy does
not differ significantly when we extend to the case where
measurements are noisy, up to the dimensionality of the
decoding problem. In contrast, the evaluation of detec-
tion cells for dynamically driven codes depends on a large
number of measurements. Moreover, a single measurement
error may affect a large number of detection cells. For
instance, a measurement error in the honeycomb code will
trigger four detection events. In the physically motivated
limit that readout errors are very common, it may not be
straightforward to determine the performance of a code
tailored to correct for biased noise acting on data qubits
by only considering the logical operators of the instan-
taneous stabilizer groups of a dynamically driven code.
Given the nontrivial role of measurements in dynamically
driven codes, we might expect that a high rate of measure-
ment error may significantly compromise the performance
of a tailored error-correction strategy.

Rather, given that readout is very noisy in many real
architectures, it may be interesting to find dynamically
driven codes that are particularly robust to measurement
errors. In spite of their many similarities with respect
to error correction (see Sec. VII B 3), a key difference
between the honeycomb code and the Floquet color code
is the number of measurements needed to evaluate a detec-
tion cell. A detection cell of the honeycomb code depends
on 12 measurement outcomes, whereas a detection cell of
the Floquet color code only depends on six measurements
(see Fig. 48). This difference may lead to a significant con-
trast in their performance, particularly in the limit where
measurement errors are dominant.

We will also need to consider more general types of
errors in a real quantum system, such as qubit leakage
errors [109] and fabrication defects [60]. Solutions to these
problems typically require the use of additional auxiliary
qubits and modifications to the syndrome-readout circuit.
Simple and elegant modifications have been proposed
[110,111] to deal with leakage for the surface code. It will
be important for their practical development to find cir-
cuits that perform these same tasks for dynamically driven
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codes. For the case of fabrication defects, Ref. [60] has
shown a syndrome-readout protocol that demonstrates a
threshold with topological codes using a defective qubit
array. The protocol adds punctures to the topological code
to isolate the defective components. To obtain syndrome
data needed to demonstrate a threshold, the protocol also
requires code deformations to the boundaries of the punc-
tures to transform the boundaries between different types;
rough and smooth. We expect that we can adapt this proto-
col for dynamically condensed color codes, employing the
boundary theory that we have presented in Sec. VII C to
transform between their rough and smooth boundaries.

VIII. DISCUSSION AND OUTLOOK

Many architectures for practical fault-tolerant quantum
computation are based on the manipulation of topologi-
cal phases of matter. In this work, we have argued that
anyon condensation gives us a framework to describe
ways of encoding logical qubits with topological quantum
error-correcting codes as well as many of the mecha-
nisms for performing robust logical operations. We have
demonstrated the application of this framework explic-
itly, with the color code as our key example, expressing
the many fault-tolerant encodings and implementations of
logic gates in the color code as applications of anyon
condensation. This framework has also shown us how to
generalize many of these color-code encodings and logic
gates using the notion of partial condensation, where a sub-
set of bosons of the color code are condensed on a region
of the lattice to manipulate topological degrees of freedom.
Finally, we have reformulated the notion of a dynamically
driven Floquet code in terms of a condensate of a parent
color-code theory and this new perspective has enabled us
to generalize known Floquet codes as well as providing a
constructive way to design the boundary stabilizers of our
Floquet-code construction.

With our work, the catalogue of topological features
available in the color code [23] has been significantly
extended to now include semipunctures, semitransparent
domain walls, and generalized twist defects that appear
at their end points. Importantly, the language that we use
to describe these features is independent of their orien-
tation in the (2 + 1)D space-time volume describing the
computation. Because of this symmetry, we can make use
of a given topological feature in many different ways to
perform computational tasks. This perspective allows for
these topological objects to be used for fault-tolerant state
initialization and readout, to apply logical gates, and to
transform between inequivalent schemes of topological
encoding. As a practical application of this new frame-
work, we expect that the large zoo of feasible operations
available to us can be used to decrease the physical-
resource overheads of fault-tolerant logical operations that
plague existing constructions. Notions of lattice surgery

as discussed in Ref. [20] can be seen as first steps in
this direction. The framework developed here is expected
to be highly instrumental in developing schemes that are
even more economical, contributing to the quest of iden-
tifying schemes of fault-tolerant quantum computing with
reasonable overheads.

More broadly, we have shown that partial anyon con-
densation can provide us a number of novel operations
within the framework of topological fault-tolerant quan-
tum computing. These operations complement known
logic operations that are completed with constant-depth
unitary circuits, such as transversal gates, as well as more
conventional measurement-based operations that manip-
ulate punctures and braiding operations for non-Abelian
pointlike objects such as twists. We have found the color-
code model to be particularly illustrative of this idea, due
to its rich and numerous symmetries, exhibited at the level
of its low-energy excitations. Moving forward, it will be
exciting to understand how similar mechanisms are man-
ifest in more general topological phases. We may study,
e.g., other (2 + 1)D topological quantum field theories
[112], including non-Abelian theories [113], as well as
higher-dimensional topological phases and fracton phases.
In order to make progress along these lines, one could seek
other examples of condensation processes in other phases
and develop a theory of anyon condensation for general
classes of phases.

Lastly, we have also shown that dynamically prepared
Floquet codes can be rederived, and generalized, within
the framework of anyon condensation of color-code exci-
tations. We have been able to design key features of this
novel type of code, such as the code boundaries, by appeal-
ing to the physics of the parent color-code model. Given
the practicality of their realization, the development of Flo-
quet codes may provide better ways of realizing different
types of nontrivial topological phases. In future work, it
will be interesting to discover to what extent our theory
of Floquet codes from anyon condensation can be general-
ized to other types of topological phases. Further afield, it
may also be that developments of the theory of dynamical
codes may show us more practical ways of implementing
quantum low-density parity-check codes [97].

The source code for the simulations used to produce the
plot in Fig. 51 is made available in an online repository
[114].
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APPENDIX: DOMAIN WALLS AND BOUNDARIES
IN STACKED TORIC CODE PHASES

In this appendix, we elaborate how results on the classi-
fication and construction of boundaries and domain walls
in (Abelian) quantum double models apply to a phase that
is equivalent to n layers of the toric code. We will see
that in this case, many properties of a given (abstractly
defined) boundary are easily computable. In particular, the
color code is equivalent to two layers of the toric code (see
Sec. II D), so n = 2.

First, let us show why it is important to study bound-
aries, even if one is interested in domain walls.

1. Folding trick

Until now, we have seen how to understand domain
walls in terms of condensation and symmetry. However, in
practical scenarios, one might want to have a simpler pic-
ture to understand and/or construct domain walls. To this
end, we can employ the folding trick. It relates a domain
wall to a boundary of a “folded” phase, composed of the
phases on both sides of the domain wall of interest.

The folding trick allows us to think about any C-C ′
domain wall as a boundary of the stacked theory C ⊗ C ′
[115]. The folding trick can be easily understood pic-
torially by folding a plane with a domain wall along it
and identifying the cut with a boundary to a vacuum (see
Fig. 57). Mathematically speaking, the folding trick is used

FIG. 57. A C − C ′ domain wall (top) is equivalent to a bound-
ary of stacked phase C ⊗ C ′∗ (bottom). This equivalence is often
referred to as the folding trick. Note that C ′ is inverted by the fold.
In this work, however, since we consider qubit-stabilizer models,
C ′∗ = C ′.

to classify domain walls in terms of boundaries [34,63,66],
which is a simpler task, since a topological boundary
(of an Abelian phase) is fully described by a Lagrangian
subgroup.

In order to think about domain walls as boundaries of
a stacked phase, we establish what the structure of the
Lagrangian subgroup (folded) tells us about the domain
wall (unfolded). The fold gives a natural decomposition
of the anyon fusion group C ⊗ C ′. A generator of L of
the form a⊗ a′, without a and a′ appearing individually,
means that in the unfolded picture a �→ a′ when passing
through the domain wall. For an invertible domain wall,
every generator is of that form; for an opaque domain
wall, all generators can be brought into the form a ⊗ 1
or 1 ⊗ a′. The semitransparent domain walls are the ones
with generators of both of the above types.

The equivalence of domain walls and certain boundaries
shows that, mainly for computational purposes, it suf-
fices to consider how to construct condensable bosons for
boundaries. In Sec. III C, we will show how the Lagrangian
subgroup of any boundary of layers of toric codes can be
directly calculated based on its classifying data.

2. General structure of boundaries

In Sec. III C, we have shown that domain walls—gapped
interfaces of topological phases—can be understood in
terms of the condensate formed by the mobile anyons. This
classifies all possible domain walls up to automorphisms
on both sides of the interface. In this section, we will
explicitly show how this categorizes domain walls from
n to m layers of the toric code. In particular, we will see
how the condition that the mobile anyons have to form a
condensate constrains the domain wall.

As the general case, we consider a domain wall from
n layers of the toric code, TCn, to m layers TCm. We
show that any such domain wall is equivalent to an opaque
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domain wall on a subset of layers and a fully transparent
domain wall on the remaining layers up to symmetries on
both sides of the interface, Aut(TCn) and Aut(TCm). In the
language of anyon condensation, an equivalent statement
is that any condensate of n layers of toric code is in the
phase of k layers of toric code, where k ≤ n. We will prove
this in the remainder of this section using the tools laid out
in the main text.

Imagine a stabilizer model for n layers of toric code,
the quantum double model [2] for G = Zn

2. By construc-
tion, it is a qubit-Pauli-stabilizer code. Any condensate can
be modeled by adding the corresponding hopping terms to
the stabilizer-group generators (see Sec. III D). In the toric
code, any such string operator is a (multi)qubit Pauli word.
Hence, the stabilizer group in the condensed phase will be
a qubit Pauli group. From Ref. [24], we know that any such
code is in the same phase as k layers of toric code. Count-
ing the cosets making up the condensate given a set of
condensable bosons and the conditions on them shows that
k ≤ n. This completes one proof of the above statement.

Given the simplicity of the stabilizer-based proof, the
microscopic description of the condensate is not necessary.
We have given a simple proof that demonstrates how con-
densates are constrained by appealing to the microscopic
details of the G = Zn

2 toric code at the level of the stabi-
lizer group. We find that it is also instructive to rederive the
result at the level of the low-energy particle theory of the
quantum double model. Specifically, one can also work out
the condensed phase explicitly by looking at the conditions
defining the condensed phase when an arbitrary boson in
the n-layer toric-code phase is condensed. Checking that
the fusion group and the modular data of the resulting
anyons coincide with n − 1 layers of toric code is straight-
forward using Z2 arithmetic. The proof for any number of
condensed bosons then follows by induction.

3. Calculating Lagrangian subgroups

It is a well-established fact in the mathematical
condensed-matter literature that the boundaries of a quan-
tum double model of a finite group G are classified by
a subgroup N ⊂ G and a so-called 2-cocycle class [ψ] ∈
H 2(N , U(1)) [62,63]. Moreover, Ref. [63] has established
a formula to calculate the Lagrangian subgroup of a bound-
ary (N ,ψ) of a generic quantum double model, Abelian or
non-Abelian. In this section, we explicitly show the for-
mula in the case of n layers of the toric code and give
some intuition for the quantities appearing in the expres-
sions. We end the section with some simple examples to
see how familiar boundaries of the toric and color code
come out of this description.

The topological phase of n layers of the toric code is
modeled by a quantum double model with gauge group
G = Zn

2. For the remainder of this section, we represent
its elements by binary vectors of length n and the group

multiplication by entry-wise addition modulo 2,

a ⊕ b :=

⎛

⎜⎜⎝

a1 + b1 mod 2
a2 + b2 mod 2

...
an + bn mod 2

⎞

⎟⎟⎠ . (A1)

Any subgroup is of the form Zk
2 for k ≤ n and is generated

by k independent generators. Any such subgroup, together
with a 2-cocycle on it, defines a boundary of the quantum
double model. A 2-cocycle on the subgroup is a function
ψ : N × N → U(1) with the property

ψ(b, c)ψ(a, b ⊕ c) = ψ(a ⊕ b, c)ψ(a, b) (A2)

for all a, b, c ∈ N . 2-cocycles are sorted into equivalence
classes, where two 2-cocycles ψ and ψ̃ are equivalent if
there exists a function β : N → U(1) such that

ψ̃(a, b) = ψ(a, b)
β(a)β(b)
β(a ⊕ b)

. (A3)

The set of these equivalence classes is called the second
cohomology group and denoted by H 2(N , U(1)). For more
details on the origin of the this equivalence relation and
group cohomology, we refer to the appendix of Ref. [116].
In fact, the type of boundary defined by a subgroup and
2-cocycle pair only depends on the equivalence class that
contains the 2-cocycle. In every 2-cocycle class, there is a
special representative that satisfies

ψ(0, a) = ψ(a, 0) = 1, ∀a, (A4)

where 0 denotes the identity element in N . We call such
a 2-cocycle normalized. Let us elaborate on the form
of inequivalent normalized 2-cocycles for N = Zk

2. In
fact, for k = 1, there is only a single equivalence class,
represented by the trivial 2-cocycle

ψ0(a, b) = 1 ∀a, b. (A5)

For k = 2, however, there exists one nontrivial 2-
coycleclass, which is represented by

ψ1(a, b) = (−1)a1b2 . (A6)

Since it is of order two, i.e., (ψ1)
2 = ψ0 ≡ 1, we write

H 2(Z2 × Z2, U(1)) = Z2. Luckily, we can construct a rep-
resentative of any nontrivial 2-cocycle class on Zk

2 for any
k from the nontrivial 2-cocycle ψ1. Using the Künneth for-
mula for group cohomology [116] and the fact that Z2 only
has trivial 2-cocycles, one can show that for k > 1, the 2-
cocycles over Zk

2 decompose into 2-cocycles defined on
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pairs of tensor factors. Abstractly,

H 2(Zk
2, U(1)) =

⊗

(i,j ) pairs

H 2((Z2)i × (Z2)j , U(1))

=
⊗

(i,j ) pairs

Z2 = Z
(k

2)
2 , (A7)

where (Z2)i refers to the ith tensor factor of Zk
2 and

(k
2

) =
k(k − 1)/2 is the number of pairs in the k factors. For
the 2-cocycles themselves, this means that we can write
the (normalized) representative of any 2-cocycle class as
a product of (normalized) 2-cocycles each of which only
acts nontrivially on a pair of factors (Z2)i × (Z2)j in Zk

2,

ψ{ni,j }(a, b) =
∏

(i,j ) pairs

ψ1(ai,j , bi,j )
ni,j

= (−1)
∑

i<j ni,j aibj , (A8)

where ai,j denotes the restriction of a on (Z2)i × (Z2)j ⊂
Zk

2 and the set of ni,j = 0, 1 labels the 2-cocycle classes
and indicates if the 2-cocycle is nontrivial on pair (i, j ).
Taken together, inequivalent boundaries of n layers of the
toric code are classified by a subgroup Zk

2 ⊂ Zn
2 and a set

of Z2 numbers {ni,j | (i, j ) pairs of factors in Zk
2}.

Now that we have introduced the quantities that define
the bulk model (finite group, G = Zn

2) and a boundary
(subgroup N � Zk

2 and a 2-cocycle class in H 2(Zk
2, U(1))),

we can turn our attention to how to describe the bulk
anyons and their condensation at the boundary in terms
of this defining data. The bulk anyons are labeled by
a pair of group elements, in our case Zn

2 × Zn
2, where

the first factor represents the electric part and the other
one the magnetic part. For example, e1 = (0, . . . |1, . . .),
m1 = (1, . . . |0 . . .) are, respectively, the electric and mag-
netic anyon on the first layer. Their composite particle,
the fermion on the first layer, is represented by their sum
f1 = e1 ⊕ m1 = (1, 0, . . . |1, 0, . . .). The modular data (the
monodromy and topological spin) can all be computed by
the so-called character function χ•(•) : Zn

2 × Zn
2 → {±1},

χa(b) = (−1)
∑n

i=1 aibi . (A9)

Note that this function couples the first and the second
argument on every “layer” individually. This is related to
the fact that in layers of toric code an anyon has nontriv-
ial topological spin (of −1) if it has both an electric and
a magnetic component on the same layer. For the exact
formulas, we refer to Ref. [117].

The way in which we calculate the Lagrangian sub-
group corresponding to a boundary labeled by a subgroup
N and a 2-cocycle ψni,j is to construct an indicator func-
tion mN ,{ni,j } : Zn

2 × Zn
2 → {0, 1}, which evaluates to 1 if

anyon (g|h) can condense, i.e., is part of the Lagrangian

subgroup, and 0 if not. Applying the construction outlined
in Ref. [63] to our case (where G = Zn

2 and N � Zk
2 with

the 2-cocycles described above), this function reads

mN ,{ni,j }(g|h) = δg∈N
1

|N |
∑

l∈N

χh(l)ψ{ni,j }(l, g)ψ{ni,j }(g, l)

(A10a)

= δg∈N
1
2k

∑

l∈N

(−1)
∑n

i=1 lihi

× (−1)
∑k

m=0
∑k

j>m=0 l|mnmj g|m+l|j nmj g|m),
(A10b)

where |i denotes the projection onto the ith tensor factor
of N . We see that the g part (the magnetic component) is
purely determined by the subgroup N . For the origin of
this function, we refer to Refs. [63,88]. By which h part
(electric component) it is accompanied is determined by
the 2-cocycle characterizing the boundary. To understand
the formula better, let us look at some examples.

a. Example 1: Surface-code boundaries, n = 1

The simplest examples are the toric code boundaries,
where G1 = Z2. The four bulk anyons are labeled by
{(0|0), (0|1), (1|0), (1|1)}, corresponding to the trivial,
electric, magnetic, and fermionic charge. The group Z2 has
two trivial subgroups, N1 = {0} and N2 = G. Both have
only trivial 2-cocycles, so the indicator function reduces
to

mNi(g|h) = δg∈Ni

1
|Ni|

∑

l∈Ni

(−1)hl

= δg∈Ni

∏

l∈Ni

δhl=0, (A11)

where we have identified that the second part of the right-
hand side is only nonzero if hl = 0 for all l ∈ Ni. This
yields the Lagrangian subgroups

LN1 = {(0|0), (0|1)} and (A12a)

LN2 = {(0|0), (1|0)}, (A12b)

which are exactly the pure electric anyons for N1 and the
pure magnetic anyons for N2 as expected for a single layer
of toric code.

b. Example 2: Color-code boundaries, n = 2

The color code can be unfolded to two layers of toric
code (see Sec. II D), i.e., a quantum double model with
G2 = Z2 × Z2. Besides the two trivial subgroups, N1 =
{(0, 0)} and N2 = G2, we find that G2 has three other
subgroups, N3 = 〈(0, 1)〉, N4 = 〈(1, 0)〉, and N5 = 〈(1, 1)〉,
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each of which is isomorphic to Z2. As discussed above,
N2 has two 2-cocycle classes, whereas the other subgroups
only host a trivial one. In total, this gives six bound-
aries corresponding to the six Lagrangian subgroups in
Eqs. (16). In the following, we will see how they can be
recovered with formula in Eq. (A10).

Let us first consider the trivial 2-cocycle on any of the
subgroups. This gives a similar formula to the one in the
previous example,

mNi(g1g2|h1h2) = δ(g1g2)∈Ni

1
|Ni|

∑

l∈Ni

(−1)h1l1+h2l2

= δ(g1g2)∈Ni

∏

l∈Ni

δl·h=0 mod 2, (A13)

which yields the Lagrangian subgroups

LN1 = {(00|ab) | a, b = 0, 1}, (A14a)

LN2 = {(ab|00) | a, b = 0, 1}, (A14b)

LN3 = {(0a|b0) | a, b = 0, 1}, (A14c)

LN4 = {(a0|0b) | a, b = 0, 1}, (A14d)

LN5 = {(aa|bb) | a, b = 0, 1}. (A14e)

Again, we recover the pure e (respectively, m) condens-
ing boundaries with the two trivial subgroups N1 and N2
(with trivial 2-cocycle). There is an additional Lagrangian
subgroup for the nontrivial 2-cocycle ψ1 on N2 = G [see
Eq. (A6)]. Plugging this into the indicator function gives

mN2,ψ1(g1g2|h1h2)

= δ(g1g2)∈G
1
4

∑

a1,a2=0,1

(−1)a1(h1+g2)+a2(h2+g1)

= δh1+g2=0 mod 2δh2+g1=0 mod 2, (A15a)

Evaluating the function for every anyon label, we obtain
the sixth Lagrangian subgroup

LN2,ψ1 = {(ab|ba) | a, b = 0, 1}. (A16)

Depending on the unfolding one chooses to map the color
code to two toric code layers, the above Lagrangian sub-
groups correspond to different boundaries. For example,
choosing the standard mapping Eq. (9), LN1 corresponds
to the x boundary, LN4 to the red boundary, LN2,ψ1 to the z
boundary, etc.

c. Example 3: Color-code domain walls, n = 4

Via the folding trick, domain walls in the color code are
in one-to-one correspondence to boundaries of two layers
of color code. Each color-code anyon is labeled by a Z×4

2
element, so in the folded picture (see Sec. A 1), they are

labeled by Z×4
2 × Z×4

2 elements, each factor correspond-
ing to the anyons on either side of the domain wall (before
folding). We label the magnetic fluxes on the left (right)
side of the domain wall by ml(r)

i and the electric charges
by el(r)

i , respectively. For our purposes in mN ,nij (•), we
represent them by binary strings

(g|h) = (g1g2g3g4|h1h2h3h4) (A17a)

� (ml
1)

g1(ml
2)

g2(mr
1)g3(m

r
2)

g4(el
1)

h1(el
2)

h2(er
1)

h3(er
2)

h4.
(A17b)

Note that we have associated the left side with the first two
bits in g (respectively, h) and the last two with the right
side of the domain wall.

There are 270 different domain walls in the color
code corresponding to the different subgroups of Z4

2 and
potential nontrivial 2-cocycles on them. We will con-
sider an exemplary subset thereof in this section, the three
subgroups N1 = 〈(1000)〉 � Z2, N2 = 〈(1010)〉 � Z2, and
N3 = 〈(1000), (0010)〉 � Z2 × Z2, where the latter can
have a nontrivial 2-cocycle.

Plugging in N1 with a trivial 2-cocycle into Eq. (A10)
gives the indicator function for the corresponding
Lagrangian subgroup,

mN1(g|h) = δg∈{(0000),(1000)}
1
2

1∑

l=0

(−1)h1l1

= δg∈{(0000),(1000)}δh1,0. (A18)

The associated Lagrangian subgroup is given by

LN1 = {(a1000|0a2a3a4) | ai = 0, 1}
� 〈ml

1, el
2, er

1, er
2〉.

We see that the Lagrangian subgroup is generated by
anyons supported only on the left or the right side of the
domain wall, so it corresponds to a fully opaque wall when
unfolded (see Sec. A 1). This can be traced back to the fact
that N1 is only supported on a single tensor fact of the input
group Z×4

2 . This generalizes to all boundaries correspond-
ing to any subgroup that factorizes over the input tensor
factors and a trivial 2-cocycle.

N2 also has a single generator, (1010). This generator,
however, is supported on two tensor factors, each of which
was associated with a different side of the domain wall. For
this subgroup, the indicator function reads

mN2(g|h) = δg∈{(0000),(1010)}
1
2

1∑

l=0

(−1)l(h1+h3)

= δg∈{(0000),(1010)}δh1+h3=0 mod 2, (A19)
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giving rise to the Lagrangian subgroup

LN2 = {(a10a10|a2a3a2a4 | ai = 0, 1)}
� 〈ml

1mr
1, el

1er
1, el

2, er
2〉. (A20)

When unfolded to a domain wall, this boundary corre-
sponds to a semitransparent domain wall where the anyons
m1 and e1 can freely pass through and the e2 particles
condense individually from both sides.

For N3, there are two associated boundaries, one for each
2-cocycle class. For the trivial 2-cocycle, the calculation
goes through similarly to before. The indicator function
reads

mN3(g|h) = δg∈〈(1000),(0010)〉
1
4

1∑

l1,l2=0

(−1)l1h1+l2h3

= δg∈〈(1000),(0010)〉δh1=0δh3=0 (A21)

and the associated Lagrangian subgroup is

LN3 = {(a10a20|0a30a4) | ai = 0, 1}
� 〈ml

1, mr
1, el

2, er
2〉. (A22)

Again, since the Lagrangian subgroup is generated by
anyons supported on a single side of the domain wall, it
corresponds to an opaque one. On each side, m1 and e2 can
condense individually. The fact that it is fully opaque can
again be traced back to the fact that the chosen subgroup
factorizes over the fold, i.e., is generated by generators
solely supported on the first two or last two factors of Z×4

2 .
This argument no longer holds for the boundary associated
with the same subgroup but a nontrivial 2-cocycle of the
form

ψN3(a, b) = (−1)a1b3 . (A23)

Plugging this into the indicator function gives

mN3,ψ(g|h) = δg∈N3

1
4

1∑

l1,l2=0

(−1)l1(h1+g3)+l2(h3+g1)

= δg∈N3δh1+g3=0 mod 2δh3+g1=0 mod 2. (A24)

Note that the nontrivial 2-coycle couples the constraints on
h and g. The associated Lagrangian subgroup reads

LN3,ψ = {(a10a20|a2a3a1a4) | ai = 0, 1}
� 〈ml

1er
1, mr

1el
1, el

2, er
2〉. (A25)

Even though the defining group factorizes over the indi-
vidual tensor factors of the input group, the domain wall
associated with the Lagrangian subgroup above is semi-
transparent. The 2-cocycle couples the constraints on g and

h in the indicator function in a way that ml
1 only condenses

when accompanied by er
1 and vice versa. As a domain wall,

this means that m1 can pass through from either side but
gets transformed into e1, i.e., the nontrivial automorphism
of the upper layer toric code gets applied. On the lower
layer el

2 and er
2 condense individually, making the domain

wall semitransparent. When comparing LN3 with LN3,ψ we
see that the nontrivial 2-cocycle effectively “twists” the
magnetic part in LN3 by appending electric charges on a
different layer. This generalizes to any nontrivial 2-cocycle
on any subgroup isomorphic to Z2 × Z2. It appends the m-
anyons on either of the two factors (of the subgroup) with
electric charges on the other one.

d. Example 4: Trivial 2-coycle

As seen in the first three examples, Eq. (A10) takes a
particularly simple form for a boundary associated with a
trivial 2-cocycle on the chosen subgroup N ,

mN (g|h) = δg∈N
1
2k

∑

l∈N

(−1)
∑

i lihi (A26a)

= δg∈N

∏

l∈N

δh·l=0 mod 2. (A26b)

We see that the constraints on g and h decouple. The
Lagrangian subgroup consists of anyons with g ∈ N
accompanied with a charge that has even overlap with any
element in N , i.e., for which

∑
i lihi = 0 mod 2 ∀l ∈ N .

This agrees with our understanding that in order for two
anyons to braid trivially in layers of toric code, the e and
the m parts have to overlap on an even number of layers.
As a consistency check, we can count all g, h for which
mN (g|k) = 1. In any Abelian-anyon model, the order of a
Lagrangian subgroup is the square root of the total number
of anyons in the bulk. In our case, where the bulk has 22n

anyons, we hence expect 2n different (g|k) that condense.
The g label has to be in N , giving rise to 2k different val-
ues. Additionally, h ∈ Zn

2 is constrained by k independent
constraints (one for each independent generator of N ) of
the form h · l = 0 mod 2, each of which reduces the num-
ber of valid values by a factor of 2. Put together, h can
take 2n−k different values, independent of g, and we get
2k2n−k = 2n anyons for which mN (g|k) = 1.
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