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Extracting GHZ states from linear cluster states
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Quantum information processing architectures typically only allow for nearest-neighbor entanglement cre-
ation. In many cases, this prevents the direct generation of GHZ states, which are commonly used for many
communication and computation tasks. Here, we show how to obtain GHZ states between nodes in a network
that are connected in a straight line, naturally allowing them to initially share linear cluster states. We prove
a strict upper bound of �(n + 3)/2� on the size of the set of nodes sharing a GHZ state that can be obtained
from a linear cluster state of n qubits, using local Clifford unitaries, local Pauli measurements, and classical
communication. Furthermore, we completely characterize all selections of nodes below this threshold that can
share a GHZ state obtained within this setting. Finally, we demonstrate these transformations on the IBMQ
Montreal quantum device for linear cluster states of up to n = 19 qubits.
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I. INTRODUCTION

Recent years have seen exciting developments in quan-
tum computation and communication, both in theory and
experiment. Building upon the year-long research on bipar-
tite settings, focus has now also turned towards multipartite
settings, where multiple vertices in a network share quan-
tum resources between them. While the correlations of
Greenberger-Horne-Zeilinger (GHZ) states [1] have naturally
been the first to explore, other types of graph states [2]
have also been extensively examined [3–6]. The possible
transformations between quantum states is a topic that is
heavily studied [7–11] and, while several hardness results
have emerged [12,13], a lot of practical questions remain
unanswered.

But why should we be interested in transforming one quan-
tum state to another in the first place? One good reason is
that it is not always possible to create the exact state that is
necessary to perform a specific task and we need to “retrieve”
it from some other state that is more practical to build. For
example, while the underlying network architecture might
allow for nearest-neighbor interactions, it might not allow for
the direct distribution of large GHZ states between distant
parties. Here we show that there is an indirect remedy for this
deficiency using suitable transformations of the distributed
quantum states. We focus on the transformation of linear
cluster states [7] that arise naturally in linear networks. In
particular we investigate the transformation to GHZ states,
which are widely used in many quantum communication tasks
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including anonymous transmission [14], secret sharing
[15,16], and (anonymous) conference key agreement [17–19].

Such transformations require the removal of some of the
qubits from the state by measuring them, such that only a
selected subset of the qubits of the resource linear cluster state
can in the end belong to the target GHZ state. We refer to
these transformations as GHZ extractions. A previous study
[20] showed how to extract three- and four-partite GHZ states
from linear cluster states. Moreover, other works [21,22] study
a specific selection of the qubits of an odd-partite resource
state. Here, we complete this line of research by providing a
complete characterization of the set of GHZ states that can be
extracted from linear cluster states.

We first provide a restriction on the sets of qubits that
can be part of the resulting GHZ state (Theorem 1), thereby
showing which extractions are not possible. Additionally, we
give constructive proof that all other extractions are indeed
possible. This leads to our second result (Theorem 2), which is
a tight upper bound to the size of the largest GHZ state that can
be extracted, equal to �(n + 3)/2�; interestingly this is slightly
higher than both the bound of n/2 conjectured in Ref. [7] and
the size of the states extracted in the aforementioned studies
[21,22]. In addition to our theoretical analysis, we perform
demonstrations of implementations of the GHZ extractions
from linear cluster states with n ∈ {5, 7, . . . , 19} qubits on the
IBMQ Mumbai [23] and Cairo [24] devices.

Our manuscript is organized as follows. The notation,
technical terminology, and main definitions are introduced in
Sec. II. Section III contains the main theoretical results. In
Sec. IV, the demonstrations are introduced, discussed, and
their results presented. Finally, Sec. V discusses the obtained
results and the opportunities for future research. The technical
details are diverted to topical appendices: Appendix A con-
tains the proof of one of the theorems stated in the theoretical
section, Appendix B contains technical details regarding the
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postprocessing steps during the extractions, and Appendix C
contains technical details regarding the data analysis of the
demonstrations section.

II. NOTATION AND TERMINOLOGY

In this work, two quantum graph states play a central role:
we define linear cluster states |L〉 and GHZ states |GHZ〉 as

|L〉{1,...,n} := 1

2n

n⊗
i=1

(|0〉 + |1〉σ i+1
z

)
,

|GHZ〉{1,...,m} := 1√
2

(
m⊗

i=1

|0〉 +
m⊗

i=1

|1〉
)

, (1)

and |L〉V , |GHZ〉V as the states corresponding to the vertex set
V . When context permits, with, e.g., |L〉n, we denote the linear
cluster state of size n.

Our resource state is the n-partite linear cluster state |L〉VL .
As a graph state it corresponds to a line graph on the ver-
tices VL := {1, 2, . . . , n}. Here, each vertex i corresponds to
the ith qubit of |L〉VL and the edges of the graph correspond
to nearest-neighbor entangling controlled phase gates. This
structure allows us to use the terms left and right neighbors of
i to indicate any vertices h, j with h < i, i < j, respectively;
e.g., the direct left and right neighbors of i are i ± 1.

Let VG ⊂ VL be a set of vertices for which we can extract
a GHZ state from the linear cluster resource state. Performing
Pauli measurements on the qubits corresponding to VM :=
VL \ VG, we obtain a postmeasurement state which is local-
Clifford equivalent to the |GHZ〉VG state. By performing local
operations based on the measurement outcomes, the state can
then be locally transformed into this GHZ state.

This construction allows for VG to inherit the neighbor
structure from the linear network VL: for a vertex j ∈ VG, we
use j− and j+ to indicate the left and right neighbor of j in
VG, respectively. We refer to the smallest and largest element
of VG as the boundaries of the GHZ state. We finally define
any selection of consecutive vertices i, i + 1, . . . , i + k ∈ VG

as a k-island.

III. MAIN RESULTS

We now examine what are the different types of GHZ
states one can obtain from a given linear cluster state. We first
provide an upper bound for the size |VG| of the extracted GHZ
state and we then show how to saturate it. In order to achieve
this, we use Theorem 1, which provides an impossibility result
for 2-islands (the proof can be found in Appendix A).

Theorem 1. No 2-island can have both a left and a right
neighbor in VG. If two vertices i, i + 1 are in VG, then there is
either no vertex to the left of i or no vertex to the right of i+1.

Theorem 1 implies that all vertices i in the target GHZ
state must be “isolated” in the linear cluster state; i − 1 and
i + 1 cannot be in VG (with the exception of the boundaries).
A corollary for 3-islands follows directly.

Corollary 1. If VG contains a 3-island, then |VG| = 3.
Proof. Let i, i + 1, i + 2 be a 3-island in VG and assume

that |VG| � 4, i.e., that we have h < i or j > i + 2 in VG.
This implies that either i, i + 1 form a 2-island with both

left-neighbor h and right-neighbor i+2 or i + 1, i + 2 form a
2-island with both left-neighbor i and right-neighbor j. Both
are in direct contradiction to Theorem 1. �

By the same argument, k-islands with k � 4 are impos-
sible. Ultimately, such k-islands would contain 3-islands in
contradiction to Corollary 1. Figure 1 illustrates examples.

This allows us to calculate the upper bound to |VG|.
Theorem 2. The size of a GHZ state extractable from an

n-partite linear cluster state via local Clifford operations, local
Pauli measurements, and local unitary corrections is upper
bounded as |VG| � � n+3

2 �.
Proof. As there are at most two 2-islands, for every other

i in VG both i ± 1 were measured. Thus, to maximize |VG|,
we may have 1, 2, n − 1, n in VG, and VM containing every
other vertex in between: for n odd, VM = {3, 5, . . . , n − 2};
for n even VM = {3, 5, . . . , n − 5, n − 3, n − 2} [25]. In the
even case, n − 2 must be measured due to Corollary 1. In both
cases |VG| = n − |VM | is upper bounded by � n+3

2 �.
For example, the largest GHZ state that can be extracted

from the 7-qubit linear cluster state shown in Fig. 1 is the
|GHZ〉5 state where VG = {1, 2, 4, 6, 7} and VM = {3, 5}. Fig-
ure 1 further shows all possible and impossible selections of
VG to extract the |GHZ〉4 state.

We now show that there is a set of measurements that
saturates the bound of Theorem 2 by explicitly giving such
a measurement pattern. For n � 5 this pattern was shown in
Ref. [20]. For the general case, let us consider a case distinc-
tion with respect to the parity of n as follows.

First, for odd n we can choose VM = {2i + 1}
n−3

2
i=1 and every

corresponding qubit to be measured in the σx basis; we refer to
this measurement pattern as the maximal pattern. Below, we
show that this pattern actually gets the desired GHZ state.

The linear cluster state is a stabilizer state, i.e., it is an
element of the shared +1 eigenspace of the operators {li =
σ i−1

z σ i
xσ

i+1
z }i∈VL , where σ 0

z and σ n+1
z are set equal to the iden-

tity. This set of operators forms the set of canonical generators
of an Abelian subgroup of the n-qubit Pauli group known as
the stabilizer of the linear cluster states. For an overview of the
stabilizer formalism and stabilizer measurements in particular
see [26,27].

Consider the generator transformation

l2 → l ′
2 = l2l4 . . . ln−4ln−2 := σ 1

z σ n
z

∏
2i∈VL

σ 2i
x , (2)

which ensures that l ′
2 and all odd-indexed generators commute

with all measurement operators {σ j0
x } j0∈VM . The postmea-

surement state is determined by replacing the other |VM |
generators {l2i}

n−1
2

i=2 with the measurement operators—together
with a multiplicative phase depending on the respective mea-
surement outcome. Then (after removing the support on the
measured qubits and applying a Hadamard transformation
to 1 and n) the postmeasurement state on VG is character-
ized by the generators σVG

x and {mj0σ
j0

z σ
j0+

z } j0∈VG\{n}, where
the mj0 = ±1 are phases due to the measurement outcomes.
These phases can be accounted for by applying σx operations
to a selection of the nodes, recovering the generators of the
|GHZ〉VG state. The number of measurements implies |VG| =
n − |{3, 5, . . . , n − 2}| = n+3

2 , which saturates the bound for
odd n.
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FIG. 1. Example of extracting GHZ states from a linear cluster state with seven qubits: the only 5-partite GHZ state that can be extracted
from this resource is on the qubits corresponding to 1,2,4,6,7 and is highlighted in green. For 4-partite GHZ states, we also highlight all
15 possible extraction patterns in green, while the patterns in brown are impossible due to Theorem 1 and the patterns shown in violet are
impossible due to both Corollary 1 and Theorem 1. Note that due to Theorem 2 it is impossible to extract GHZ states with six or more qubits
from this resource—it is however trivially possible to extract all combinations of three-partite GHZ states.

Second, for even n it suffices to observe that a σz measure-
ment on the qubit corresponding to n yields a linear cluster
state |L〉{1,2,...,n−1} up to a randomized σ n−1

z correction de-
pending on the measurement outcome. In analogy to the odd
parity case we then obtain VM = {3, 5, . . . , n − 3, n} such that
|VG| = n − |VM | = n+2

2 = � n+3
2 � for even n.

Note that the even-case analysis above also applies for
measuring an “internal” node in the σy basis, rather than the
first or last; this does introduce a Clifford rotation on the
two neighbors of the node, which needs to be accounted for
[28]. The resulting state is then also LOCC equivalent to an
(n − 1)-partite linear cluster state on the remaining nodes,
from which in turn a |GHZ〉 n+2

2
state can be extracted through

the maximal pattern. This approach can be extended to more
measurements, where additional “inside” nodes are measured
in the σy basis and “outside” nodes are measured in the σz

basis. It is straightforward to see that any choice VG allowed
by Theorem 1 can be seen as arising from such a setting.

Finally, note that, while Theorem 1 does allow 2-islands
on the boundaries of the extracted GHZ states, they do
not necessarily have to be contained in them. For example,
|GHZ〉{1,3,5,7} can be extracted from |L〉{1,...,7} as shown in
Fig. 1. Rigorously stated, this pattern does not arise from
one of the maximal patterns defined above, but can instead
be considered as a maximal pattern |GHZ〉{0,1,3,5,7,8} extracted
from |L〉{0,...,8}. Here, the additional qubits corresponding to 0
and 8 are just “virtual” and not really there; they simply help
visualize all possible patterns: |GHZ〉{1,3,5,7} can be extracted

from the virtual state |GHZ〉0,1,3,5,7,8 by measuring qubits 0
and 8 in the σx basis. The measurements on the other qubits
are unaffected by this; the physical measurements of 2,4,6 to
obtain |GHZ〉{1,3,5,7} from |L〉{1,...,7} are exactly the same as the
ones that would be required to obtain |GHZ〉{0,1,3,5,7,8} from
the virtual |L〉{0,...,8}. In this sense, all possible selections of VG

can be seen as subsets of the maximal measurement patterns
defined above.

These measurement patterns result in states LOCC equiv-
alent to GHZ states; for explicit calculations of the necessary
corrections to obtain the GHZ states themselves we refer to
the Supplemental Material in [28].

IV. DEMONSTRATIONS

We used the IBMQ platform to demonstrate our protocol
for the maximal extraction of GHZ states from resource linear
cluster states. For odd n ∈ {5, 7, . . . , 19} we prepared the state

|ψ〉n =
⊗
i odd

Hi|L〉{1,...,n}, (3)

i.e., the linear cluster state with every odd qubit rotated to
the σx basis. We then extract GHZ states for m ∈ { n+3

2 }n =
{4, 5, . . . , 11} using the maximal pattern described in the pre-
vious section.

Implementing |ψ〉n instead of |L〉{1,...,n} allows us to re-
duce the circuit depth of the preparation circuit by one,
when compiling for the gateset of the IBMQ Montreal device
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FIG. 2. Circuits on the left and on the right are equal; the circuit
on the left is the standard preparation of the |L〉3 state. The gener-
alization to |L〉n for higher (odd) n follows naturally. The circuit on
the right is the compiled version for the IBMQ Montreal chip. By
not implementing the single-qubit gates in the gray box, the circuit
depth is reduced by 25%. This results in a rotated linear cluster state
|ψ〉n as defined in Eq. (3). This state carries the same entanglement
properties as the |L〉n state and most notably can still be used to
extract |GHZ〉 states by adapting the measurement bases.

(Pauli-basis rotations, CNOT; see Fig. 2). When consider-
ing the GHZ extraction, this approach has further benefits;
the necessary Hadamard transformations on the first and
last qubit have, in essence, been applied “in advance” and
the σx measurements prescribed by the maximal pattern be-
come σz measurements, which are native to the device. The
Pauli-based flips due to the measurement outcomes that are
necessary to obtain the GHZ state can be performed in post-
processing, as all the subsequent measurements on the GHZ
state itself are in the Pauli basis.

To benchmark the results, we compute an estimate for the
lower bound of the fidelity for both the linear cluster states
and the GHZ states extracted from them. For the linear clus-
ter states we use methods adapted from [29] using insights
originally presented in [30]; two measurement settings suffice
to estimate the lower bound—one in which all qubits are
measured in the σz basis and one in which all qubits are
measured in the σx basis. For the GHZ states we derive a sim-
ilar technique. Again, two measurement settings suffice—one
where all the qubits of the GHZ state are measured in the σz

basis and one where all the qubits of the GHZ are measured in
the σx basis. Both these measurement settings are performed
in parallel to the σz measurements of the qubits not included
in the GHZ state that are required for the extraction. All
measurements are repeated 64 000 times to calculate estimates
for the expectation values, aggregated from runs on the IBMQ
Mumbai and Cairo devices; for more details and calibration
data see Appendix D.

Figure 3 shows the lower bounds on the fidelity for all lin-
ear cluster states that we generated with the IBMQ Montreal
device—as well as for the GHZ states we extracted from them.
Note that our estimation method imposes a relative penalty
for linear cluster state fidelity estimations compared to GHZ
state fidelity estimations. However, this does not mean that the
fidelity of the GHZ states is truly higher than that of the linear
cluster states from which they were extracted: it simply means
that we have used a method of bounding the fidelity from
below, which works comparatively better for GHZ states than
it does for linear cluster states. For the details of the estimation
method we refer to Appendix C.

FIG. 3. Lower bound of the fidelity of the rotated linear cluster
and GHZ states prepared on the IBMQ Mumbai and Cairo device.
We prepared rotated [see Eq. (3)] linear cluster states |ψ〉n for n ∈
{5, 7, . . . , 19} and extracted |GHZ〉m states for m ∈ {4, 5, . . . , 11}
using the maximal pattern introduced in Sec. III. For states with a
higher number of qubits, the lower bound on the linear cluster state is
increasingly worse due to a technical aspect of the estimation method
(see Appendix C for details). The results are ordered such that each
linear cluster state |L〉n is paired with the |GHZ〉m state extracted
from it.

V. DISCUSSION

In this work, we considered how to establish GHZ states
between nodes that are share entanglement only with only a
small number of nearest neighbors. In particular, given a linear
cluster state shared between the nodes, we showed what are
the possible GHZ states that can be obtained, the latter being
an indispensable resource in many quantum communication
protocols including secret sharing [16], electronic voting [31],
and anonymous conference key agreement [18]. This provides
linear networks with a useful tool for determining whether
GHZ states can be created for use in these various protocols.
Our results demonstrate that this process is possible but costly,
since almost half of the linear cluster state qubits must be
measured to obtain a GHZ state on the remaining qubits. Very
importantly, we showed that there is in fact a tight upper
bound to the size of the GHZ state we can obtain, which is
higher than the one previously conjectured [7], thus solving
a long-lasting open problem. We finally gave an exhaus-
tive characterization of all possible GHZ states that can be
extracted and provided a constructive method to obtain them,
including the calculations for the necessary local rotations on
the remaining qubits.

Our theoretical results are complemented by an implemen-
tation on IBM’s superconducting quantum hardware, where
this near-neighbor architecture is inherent. With fidelities of
80% and higher for up to nine qubits, the results show that
the generation of multipartite entangled states is possible. It
is also evident from the shown results that our method of
extracting GHZ states does not compromise the fidelity of the
target states compared to the resource states, since only local
operations are required. Since the generation of linear cluster
states can be, depending on the specific setting, experimen-
tally more feasible, our approach shows a potentially more
robust method of generating GHZ states.

Finally, extending our methods to other simple graph state
resources does not seem trivial and requires further research.
We note, however, that deriving an analogous characterization
for ring graph states, i.e., graph states in which the leftmost
and rightmost qubits of an otherwise linear cluster state are
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also connected, is straightforward using our methods. In this
case, only a single 2-island is possible, so the upper bound for
|VG| becomes � n+1

2 �.
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APPENDIX A: PROOF OF THEOREM 1

In this section we prove Theorem 1. We prove the theorem
by contradiction. Fix a set VG such that {i, i + 1} ⊂ VG and
let the postmeasurement state |ψ〉VG be locally equivalent to
|GHZ〉VG . Assume now that there are both j < i and k > i + 1
for which both j, k ∈ VG. W.l.o.g. assume that j and k are the
direct left and right neighbor of i and i + 1, respectively.

Recall that a set of generators for the linear cluster state is
{li0 = σ

i−
z σ i0

x σ
i+
z }i0∈VL . If the postmeasurement state is locally

equivalent to the GHZ state then there must exist a (reversible)
generator transformation such that their support on i and i+1
coincides exactly with (the generators of) the GHZ state—
up to local Clifford rotations. We will now show that, from a
reversible transformation of the {li0}, it is impossible to obtain
such a set of generators when j, i, i + 1, k ∈ VG. This directly
implies that a measurement pattern such that the GHZ state
can be obtained is not possible.

(A set of) generators for the GHZ state are {σVG
x } ∪

{σ i0
z σ

i+
z }i0∈VG , where it is implied that σ

i+
z = 1 when i+ �∈ VG.

Focusing on i and i+1, the only generators with nontrivial
support are {α, β, γ , δ} = {σ i

ai
, σ i

ai
σ i+1

ai+1
, σ i+1

ai+1
, σ i

bi
σ i+1

bi+1
}, where

ai, ai+1, bi, bi+1 ∈ {x, y, z} reflect the fact that the state is lo-
cally equivalent to the GHZ state. This implies that ai �= bi

and ai+1 �= bi+1.
Similarly, only the generators li−1, li, li+1, and li+2 of the

linear cluster state (i.e., those with support on i or i+1) can
have a nontrivial contribution to the generator transformation
on the vertices in question. Therefore, w.l.o.g., we can focus
on just these four generators and restrict our attention to
vertices i and i+1. If we show that there is no reversible trans-
formation of {lk}k={i−1,i,i+1,i+2} to obtain {α, β, γ , δ} when
only considering these nodes, the theorem follows. We show
there is no such transformation by exhaustive contradiction.

There are three different ways of creating generator α: (i)
α ∝ li−1 = σ i

z , (ii) α ∝ li ◦ li+2 = σ i
x, and (iii) α ∝ li−1 ◦ li ◦

li+2 = σ i
y , where “α ∝ li−1” should be read as “li−1 takes the

role of α,” and ◦ denotes the (qubitwise) product (e.g., li ◦
li+1 = σ i

xσ
i+1
z ◦ σ i

zσ
i+1
x =̂σ i

yσ
i+1
y , where the last equality is up

to an irrelevant global phase). Similarly, there are three differ-
ent ways of creating generator γ : (j) γ ∝ li+2 = σ + zi+2, (jj)
γ ∝ li−1 ◦ li+1 = σ i+2

x , and (jjj) γ ∝ li−1 ◦ li+1 ◦ li+2 = σ i+2
y .

Picking, e.g., (i) and (j) one sees that β is fixed at ∝σ i
zσ

i+1
z .

But this is li−1 ◦ li+2 ∝ α ◦ γ , which would not be a reversible
transformation of the generators li−1, li, li+1, and li+2. Any
other pair from {(i), (ii), (iii)} and {(j), (jj), (jjj)} would also
necessitate such a nonreversible transformation.

In essence, when viewing the generators as vectors over
F2n

2 through the binary representation [32], the argument

follows from the observation that (the vector associated with)
β lies in the subspace spanned by (the vectors associated
with) α and γ . As such there can never be a reversible (i.e.,
basis-preserving) operation on (the vectors associated with)
li−1, li, li+1, and li+2 that obtains α, β, and γ .

APPENDIX B: LOCAL-CLIFFORD CORRECTIONS TO
OBTAIN GHZ STATES

We provide a jupyter notebook for determining the re-
quired correction operations under [28].

APPENDIX C: ESTIMATION OF LOWER BOUND
FOR FIDELITY IN THE DEMONSTRATIONS

We provide here details for the method of estimation of
the lower bound of the fidelity of both the linear cluster state
and GHZ state that has been used in the demonstrational
implementation. The method is presented in and adapted from
[29] using insights originally presented in [30]. The state that
is prepared is

|ψ〉n =
⊗
i odd

Hi|L〉n, (C1)

which is a linear cluster state rotated by Clifford opera-
tions and thus a stabilizer state. Note that the generators GL

for the stabilizer of |ψ〉n can be grouped into “odd” gen-
erators GL

o = {σ i−1
z σ i

zσ
i+1
z }i odd and “even” generators GL

e =
{σ i−1

x σ i
xσ

i+1
x }i even, where again σ 0

z = σ n+1
z = 1. The fidelity

of the prepared state ρ with the rotated linear cluster state is
F (ρ, |ψ〉n) = tr[ρ|ψ〉〈ψ |n]. Writing Go(e) = ∏

g∈GL
o(e)

I+g
2 , and

using |ψ〉〈ψ |n = ∏
g∈G

I+g
2 = GoGe, we can write

F (ρ, |ψ〉n) = tr[GoGeρ] (C2)

= tr[Goρ] + tr[Geρ] − tr[Iρ] + tr[Kρ],(C3)

where K = (I − Go)(I − Ge). K is positive semidefinite and
thus we can discard the last term to obtain a lower bound for
the fidelity:

F (ρ, |ψn〉) � E[Go] + E[Ge] − 1, (C4)

where E[Go(e)] = 1
2|So(e) |

∑
σ∈So(e)

tr[ρσ ] with So(e) =
〈GL

o(e)〉 ⊂ S the subgroup generated by the odd (even)
generators of |ψ〉n. Notably, all terms tr[ρσ ] are comprised
of only σz-basis (σ ∈ So) or σx-basis (σ ∈ Se) measurements.
This means that just two measurement settings suffice to
estimate the lower bound: measuring all vertices in the σz

basis and measuring all vertices in the σx basis. By repeating
these measurements 32 000 times and obtaining the outcome
statistics, we estimate all terms tr[ρσ ] by selecting the
outcomes associated with the +1 and −1 eigenspaces of all
different observables.

For the GHZ state we use a similar method, where we now
group the generators GG of the GHZ state into GG

o = {σVG
x }

and GG
e = {σ j

z σ
j+

z } j∈VG , which again allows for an estimate of
the lower bound with just two measurement settings. A caveat
is that now there is only one odd generator and thus E[GG

o ] =
1
2 tr[ρI] + 1

2 tr[ρσVG
x ]. By definition tr[ρI] = 1 and therefore

the expectation value is more skewed towards 1 than for the
linear cluster state estimation. In other words it gives a higher
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FIG. 4. Lower bound on the fidelity using an adapted estimate
method. In comparison with Fig. 3, positive terms that favor the GHZ
states are dropped, which renders a lower but more equal estimate on
the fidelities for all states.

bound on the fidelity when compared to the linear cluster state,
since GL

o = O(2n) and as such the identity does not have such
a strong impact on the estimate, especially for larger linear
cluster states. To give another comparison between the two
states, Fig. 4 contains the same results as Fig. 3 from the main
text, but with the identity term omitted. This gives a lower but
more equal estimate for both classes of states.

APPENDIX D: CALIBRATION DATA
OF THE IBMQ DEVICES

We present the calibration data for the IBMQ devices
used in our demonstrations. All the devices used consist
of a total of 27 superconducting qubits, of which 19 were
specifically selected. These qubits were selected based on

FIG. 5. Qubit layout for the IBMQ Montreal, Cairo, and Mumbai
devices.

their order in the linear cluster state: 1, 4, 7, 10, 12, 15,

18, 21, 23, 24, 25, 22, 19, 16, 14, 11, 8, 5, 3; see Fig. 5 for
the layout. The qubits operate at frequencies in the range
from 4.666 GHz to 5.020 GHz (Montreal device) and from
4.954 GHz to 5.284 GHz (Cairo device). For the Mum-
bai device, they have an average single-qubit gate fidelity
of 99.977 %, average T 1 and T 2 decoherence times of
140.706 µs and 120.897 µs, respectively, and an average read-
out error of 0.025. For the Cairo device, they have an average
single-qubit gate fidelity of 99.974 %, average T 1 and T 2
decoherence times of 121.458 µs and 134.524 µs, respectively,
and an average readout error of 0.019. For the two qubit gates
used, the Mumbai and Cairo devices have an average gate
fidelity of 99.117 % and 99.001 %, respectively. The complete
calibration data is available at [28].
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