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a b s t r a c t

We study optimal minimum degree conditions when an n-vertex
graph G contains an r-regular r-connected spanning subgraph.
We prove for r fixed and n large the condition to be δ(G) ⩾ n+r−2

2
when nr ≡ 0 (mod 2). This answers a question of M. Kriesell.

© 2024 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A typical question in extremal graph theory is to determine (asymptotically) optimal minimum
egree conditions for a graph G on n vertices to contain a given copy of some spanning graph.

The classical theorem of Dirac [5] asserts the optimal minimum degree condition to contain a
Hamilton cycle to be n

2 . There are numerous generalisations of this result to higher connected cycles
(powers of Hamilton cycles) [9], which in turn generalise the theorems of Corrádi and Hajnal [4]
and Hajnal and Szemerédi [6] about clique factors in graphs. The most comprehensive result which
asymptotically subsumes all of the mentioned results is the bandwidth theorem of Böttcher, Schacht
and Taraz [3]. This theorem states that for γ > 0 a large enough n-vertex graph G with minimum
egree δ(G) ⩾ ( r−1

r + γ )n contains any n-vertex graph H that has chromatic number at most r ,
aximum degree bounded by a constant and bandwidth4 o(n). We also refer to the excellent survey
y Kühn and Osthus [12] for more results.
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4 The bandwidth of an n-vertex graph H is the minimum b such that there exists a labelling of the vertices with [n]

or which |i − j| ⩽ b for all edges ij of H .
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The present work is motivated by a question of Matthias Kriesell [11] about the optimal
inimum degree condition sufficient to assert the existence of a 4-regular 4-connected spanning
ubgraph.

What is the minimum δ4(n) > 0 such that every graph G on n vertices with δ(G) ⩾ δ4(n) does
contain a 4-regular 4-connected spanning subgraph?

This question in turn was motivated by the work of Bang-Jensen and Kriesell on good acyclic
orientations of 4-regular 4-connected graphs [1]. We answer Kriesell’s question by providing
an exact answer to the more general question about the minimum degree condition δr (n) that
uarantees an r-connected r-regular spanning subgraph provided that n is sufficiently large. Note
hat nr ≡ 0 (mod 2) is a necessary condition for such a subgraph to exist. The aforementioned
andwidth theorem [3] asymptotically answers the question, assuming there exists a bipartite r-
onnected r-regular subgraph of sublinear bandwidth, and in that case implies δr (n) ⩽ (1/2 + γ )n
or sufficiently large n. We determine δr (n) precisely provided that n is sufficiently large.

heorem 1. For any r ⩾ 2 there exists an n0 such that any n-vertex graph G with minimum degree
(G) ⩾ n+r−2

2 , n ⩾ n0, and nr ≡ 0 (mod 2) contains a spanning r-regular r-connected subgraph.

Note that when r is odd nr ≡ 0 (mod 2) implies that n is even and actually δ(G) ⩾ n+r−1
2 as δ(G)

s an integer. This theorem asserts that there are r-connected spanning subgraphs of G which are
inimal in terms of the number of edges and, in fact, r-regular. Observe that for r = 2 this follows

mmediately from Dirac’s theorem [5] with n0 = 3, as a Hamilton cycle is 2-regular and 2-connected.
wing to the use of the regularity lemma, the n0 given by Theorem 1 will be very large, more
recisely a tower function with height being some polynomial in r . Note that for r ⩾ 2 an n-vertex
raph G with minimum degree δ(G) ⩾ n+r−2

2 is always r-connected, whereas the union of a copy of
⌊(n+r−1)/2⌋ and K⌈(n+r−1)/2⌉ sharing r −1 vertices has minimum degree

⌊ n+r−1
2

⌋
−1 =

⌈ n+r−2
2

⌉
−1.

his certifies that Theorem 1 is optimal and gives δr (n). We remark that to find an r-regular spanning
ubgraph already δ(G) ⩾ n/2 is sufficient and this is best possible. We will briefly discuss this in
ection 3.6 after we have sketched the proof of Theorem 1.
In fact we will prove something stronger than just the containment of some spanning r-

onnected r-regular subgraph. In the following we briefly introduce some notation and the type
f r-connected r-regular subgraphs that will be found in G by Theorem 1. For an integer t the t-
low-up of a graph F is obtained by replacing every vertex by t vertices and every edge by a complete
ipartite graph Kt,t . Let Cn be the cycle on n vertices and Pn the n-vertex path. We denote by Cn(t)
nd Pn(t) the t-blow-up of Cn and Pn, respectively. Note that Cn(t) has nt vertices and is (2t)-regular.
We also need a similar construction that is (2t−1)-regular for an integer t . We denote by Cn(t− 1

2 )
he t-blow-up of Cn for n even, where every other edge only gets a Kt,t minus a perfect matching.
imilarly, for any n, Pn(t −

1
2 ) is the t-blow-up of the n-vertex path, where every other edge only

ets a Kt,t minus a perfect matching. We refer to the collection of these constructions (for cycles
and paths) as the (t −

1
2 )-blow-ups. Note that Cn(t −

1
2 ) has nt vertices and is (2t − 1)-regular. The

urpose of this unusual notation is that now for any integer r ⩾ 2 we have that Cn( r2 ) is r-regular,
ll internal vertices of Pn( r2 ) have degree r and we do not need to distinguish between the odd and
ven case each time.
Often in our proof of Theorem 1 we will be able to find a spanning copy of an r

2 -blow-up of a
ycle, but this is not always possible, for example, when n is not divisible by

⌈ r
2

⌉
. Moreover, when

is even and not divisible by r = 4, the graph G obtained by taking the disjoint union of two
liques Kn/2−2 and adding four additional vertices that are connected to all previous n − 4 vertices
annot contain a copy of Cn/2(4). Therefore, we also need to find other structures with all but a
mall proportion of vertices contained in r

2 -blow-ups of paths (see Section 3.5 for more details).
At least for even n and r , the graphs Cn( r2 ) can also be interpreted as n copies of the same small

raph glued together on a specific set of vertices in a cyclic order. It would be interesting to study
he minimum degree threshold for other spanning structures that can be obtained by a similar
peration from other graphs that are not K (or K minus a perfect matching).
t,t t,t

2
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In particular, when the graph is not bipartite there is still a lot to explore, for example, one
ould glue copies of C5 on independent sets of size two in a cyclic way.5 This might be interesting,
s for a C5-factor (n/5 pairwise disjoint copies of C5) the minimum degree threshold δ(G) ⩾ 3

5n
s determined by the critical chromatic number6 rather then the chromatic number, which would
give δ(G) ⩾ 2

3n. Which of the two is guiding the threshold is known in general (see [12]), but it is
not clear how this might translate to connected structures. This can be seen as a generalisation of
factors to a connected cyclic structure in the same way as perfect matchings (respectively clique
factors) generalise to Hamilton cycles (respectively powers of Hamilton cycles).

1.1. Organisation of the paper

The paper is structured as follows. In Section 2 we collect the essential tools we will use
(regularity and blow-up lemmas), while Section 3 provides a proof overview, which consists of
three cases (Extremal Case I, Extremal Case II and the Non-Extremal Case). These cases are dealt
with subsequently in Sections 4, 5 and 6.

2. Tools and notation

For standard graph theoretic definitions we refer to Bollobás [2]. The main tools we will use are
Szemerédi’s regularity lemma [13] and the blow-up lemma by Komlós, Sárközy, and Szemerédi [8].
Let G = (V , E) be a graph. For any two sets A, B ⊆ V , we denote by eG(A, B) the number of edges
f G with one endpoint in A and one in B (edges contained in the intersection A ∪ B are counted

twice) and define the density d(A, B) between these sets to be eG(A,B)
|A| |B| .

efinition 2. The pair (A, B) is ε-regular if for all X ⊆ A, Y ⊆ B with |X | ⩾ ε|A|, |Y | ⩾ ε|B| we have
|d(X, Y ) − d(A, B)| ⩽ ε.

The following two lemmas are standard and easily follow from the definition (c.f. Fact 1.3 and 1.5
in [10]). The first states that in ε-regular pairs most vertices have large degree into any (not too
small) set on the other side.

Lemma 3. Let (A, B) be an ε-regular pair with d(A, B) ⩾ d and let B′
⊆ B with |B′

| > ε|B|. Then

|{a ∈ A : deg(a, B′) ⩽ (d − ε)|B′
|}| ⩽ ε|A| .

The second lemma guarantees that (not too small) induced subgraphs of ε-regular pairs are still
regular (although with a slightly worse parameter).

Lemma 4 (Slicing Lemma). Let (A, B) be an ε-regular pair with d(A, B) = d, let 1
2 ⩾ γ > ε, and A′

⊆ A
nd B′

⊆ B be of size |A′
| ⩾ γ |A| and |B′

| ⩾ γ |B|. Then (A′, B′) is an ε/γ -regular pair with d(A, B) ⩾ d′,
where |d − d′

| ⩽ ε.

We will use the following degree form of Szemerédi’s regularity lemma by Komlós and Si-
monovits [10].

Lemma 5 (Regularity Lemma, Degree Version). For every ε > 0 and integer ℓ0 there exists an integer
such that for any graph G on at least L vertices and any d ∈ [0, 1] there is a partition of V (G) into

ℓ0 < ℓ + 1 ⩽ L clusters V0, . . . , Vℓ and a subgraph G′ of G such that

(P1) |V0| ⩽ ε|V (G)| and |Vi| = T ⩽ ε|V (G)| for all 1 ⩽ i ⩽ ℓ.
(P2) degG′ (v) ⩾ degG(v) − (d + ε)|V | for all v ∈ V .

5 More precisely, take n/3 copies of C5 with vertices vi,1, . . . , vi,5 in circular order for i = 1, . . . , n/3 and identify vi,1
ith vi+1,2 and vi,3 with vi+1,4 for i = 1, . . . , n/3.
6 The critical chromatic number of a graph H is (χ (H) − 1)v(H)/(v(H) − σ (H)), where χ (H) is the chromatic number

and σ (H) denotes the minimum possible size of a colour class amongst all colourings of H with χ (H) colours.
3
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(P3) For 1 ⩽ i ⩽ ℓ the set Vi is independent in G′.
(P4) For 1 ⩽ i < j ⩽ ℓ the pair (Vi, Vj) is ε-regular in G′ and has density 0 or at least d.

Szemerédi’s regularity lemma goes in tandem with the so-called cluster graph. After an applica-
tion of Lemma 5 to a graph G this is a graph R on vertex set [ℓ], and ij is an edge if and only if
Vi, Vj) is ε-regular in G′ with density at least d. It is a well known fact that the linear minimum
egree is inherited by the cluster graph.

act 6. If δ(G) ⩾ γ n and ε ⩽ d, then the cluster graph R has minimum degree δ(R) ⩾ (γ − 2d)ℓ.

roof. Indeed, otherwise with (P3) in G′ there would be vertices with degree less than (γ − 2d)ℓ ·
n
ℓ

+ εn ⩽ γ n − (d + ε)n contradicting (P2). □

When working with the regular pairs, one often needs a somewhat stronger concept of super-
egularity.

efinition 7. The pair (A, B) is an (ε, δ)-super-regular pair if d(A′, B′) ⩾ δ for all A′
⊆ A, B′

⊆ B with
A′

| ⩾ ε|A|, |B′
| ⩾ ε|B|, and deg(a, B) ⩾ δ|B|, deg(b, A) ⩾ δ|A| for all a ∈ A, b ∈ B.

The next lemma asserts that every ε-regular pair contains an almost spanning super-regular pair
and directly follows from the definition and the two previous lemmas.

Lemma 8. Let (A, B) be an ε-regular pair with d(A, B) = d. Then there exists A′
⊆ A and B′

⊆ B with
|A′

| ⩾ (1 − ε)|A| and |B′
| ⩾ (1 − ε)|B| such that (A′, B′) is a (2ε, d − 3ε)-super-regular pair.

The blow-up lemma of Komlós, Sárközy and Szemerédi [8] allows us to embed spanning
subgraphs with bounded degree. We will use the following special case deduced from Komlos,
Sárközy and Szemerédi [8, Remark 13].

Lemma 9 (Bipartite Blow-Up Lemma). For each d, c > 0 and integer ∆ ⩾ 0 there exist ε > 0, α > 0
nd an integer n0 such that the following holds for any n ⩾ n0. Let H be a bipartite graph on classes
and B with |A| = |B| = n such that (A, B) is an (ε, d)-super-regular pair and let G be a bipartite

raph on classes X and Y with |X | = |Y | = n that has maximum degree bounded by ∆. Moreover, for
ny X ′

⊆ X and Y ′
⊆ Y with |X ′

|, |Y ′
| ⩽ αn, let Ax ⊆ A and By ⊆ B for each x ∈ X ′ and y ∈ Y ′

ith |Ax|, |By| ⩾ cn. Then there exists an embedding of G into H such that all x ∈ X ′ and y ∈ Y ′ are
mbedded into Ax and By, respectively.

We remark that in our application X ′ and Y ′ will be of constant size, hence we can ignore the
.

. Proof overview

The proof of Theorem 1 will be split into three cases. We now explain this case distinction and
hen give an overview of the proof for each of these cases. Let G be a graph with minimum degree
n+r−2

2 and V = V (G) throughout the rest of the paper. For α > 0 we call G α-extremal if there are
wo sets A, B ⊆ V (G) of size ( 12 − α)n ⩽ |A|, |B| ⩽ n

2 such that d(A, B) < α. With the help of the
egularity lemma we will cover the case that G is not α-extremal for any 1

32 > α > 0 in Section 6.

.1. Pinning down the extremal cases

So we can assume that G is α-extremal for some α > 0. Using the minimum degree condition
n G we can show that in this case either G contains a large set that is ‘almost’ independent –
xtremal Case I – or G is ‘close’ to the disjoint union of two cliques Kn/2 – Extremal Case II.
or this we first argue that A and B have to be almost disjoint or almost the same. Indeed, if
√

αn ⩽ |A ∩ B| ⩽ ( 1 − 2
√

α)n, then |A ∖ B| ⩾
√

αn and using that G is α-extremal we arrive
2

4
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at a contradiction by double counting the edges between A and V

|A| ·
1
2n ⩽ e(A, V ) = e(A, B) + e(A ∩ B, V ∖ (A ∪ B)) + e(A ∖ B, V ∖ B)

⩽ α|A| · |B| + |A ∩ B| · |V ∖ (A ∪ B)| + |A ∖ B| · |V ∖ B|
= α|A| · |B| + |A| · |V ∖ B| − |A ∩ B| · |A ∖ B|

⩽ α|A| ·
1
2n + |A| · ( 12 + α)n − 2

√
αn ·

√
αn

⩽ |A|( 12 +
1
2α + α − 2α)n ⩽ |A|( 12 −

1
2α)n .

In the case when |A ∩ B| ⩽ 2
√

αn we want to remove vertices that have too small degree into
their own part. Using that |V ∖ (A ∪ B)| ⩽ 3

√
αn we get

|A| ·
1
2n ⩽ e(A, V ) ⩽ e(A, B) + e(A, V ∖ (A ∪ B)) + 2e(A)

⩽ α|A| · |B| + |A| · 3
√

αn + |A|
2
− |{v ∈ A : deg(v, A) ⩽ ( 12 − 2 4√α)n}| ·

4√αn

nd rearranging gives that there are at most 6 4
√

αn vertices in A with degree at most ( 12 − 2 4
√

α)n
nto A and analogously for B. We remove all these vertices from A and B, also make them disjoint
y removing at most 2

√
αn vertices from one of them, and then we iteratively add vertices from

V ∖ (A ∪ B) to A (or B) that have degree at least ( 12 − 140r 4
√

α)n into A (or B). With α′
= 14 4

√
α we

btain the following, which will be the first extremal case treated in Section 4.

xtremal Case I. There are two disjoint sets A, B ⊆ V (G) with ( 12 − α′)n ⩽ |A|, |B| ⩽ ( 12 + α′)n such
hat G[A] and G[B] have minimum degree ( 12 − 10rα′)n and any vertex from V ∖ (A∪ B) has degree
at least 9rα′n into A and B.

Otherwise, |A ∩ B| ⩾ ( 12 − 2
√

α)n, then |A ∖ B| ⩽ 2
√

αn and

e(A) ⩽ e(A, B) + |A ∖ B|2 < α|A||B| + 4αn2 ⩽ 5αn2 .

As |{v ∈ A : deg(v, A) ⩾ 5
√

αn}| · 5
√

αn ⩽ 2e(A) this implies that there are at most 2
√

αn vertices
n A that have degree at least 5

√
αn into A. Similarly, rearranging

|V ∖ A| · |A| − 5
√

αn · |{v ∈ V ∖ A : deg(v, A) ⩽ ( 12 − 6
√

α)n}| ⩾ e(A, V ∖ A) ⩾ |A|
1
2n − e(A)

we get that there are at most 2
√

αn vertices in V ∖ A that have degree at most ( 12 − 5
√

α)n into
. We remove the former vertices from A, add the latter to A, and denote by B the complement
f A. With α′

= 3
√

α we obtain the following which will be the second extremal case treated in
ection 5.

xtremal Case II. There is a partition of V into two sets A and B with ( 12 −α′)n ⩽ |A|, |B| ⩽ ( 12 +α′)n
ith minimum degree α′n between these sets and such that all but α′n vertices in A (B respectively)
ave degree at least ( 12 − 3α′)n into B (A respectively).
We will prove the assertion of the theorem in both extremal cases for any sufficiently small

α′ > 0 and in the non-extremal regime for sufficiently small α > 0. Then, Theorem 1 follows, as
for some α > 0 we can find a spanning r-regular r-connected subgraph in G regardless of whether
G is α-extremal or not. In the remainder of this section we sketch the argument for each of the
three cases and afterwards explain why our constructions are indeed r-connected. For simplicity,
we will use α in each of the cases. We remark that the exact minimum degree condition is only
necessary in the extremal cases and that the non-extremal case goes through with δ(G) ⩾ ( 12 − γ )n
or a sufficiently small γ > 0.

.2. Non-extremal case

Let k = v(G)/⌈r/2⌉. We would like to find a spanning copy of Ck( r2 ) in G, but an obvious necessary
condition for this is, for odd r , that v(G) ≡ 0 (mod 2⌈ r

2⌉). If r is even, the slightly weaker condition
(G) ≡ 0 (mod r

2 ) already suffices. If this condition is satisfied, we will succeed; otherwise, we will
find a slightly locally modified version of Ck( r2 ). For the proof we will have constants

0 < ε ≪ ν ≪ d ≪ β ≪ α <
1

32

5
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and s = ⌈
r
2⌉. We follow similar arguments as in [7], which can be summarised by the following

procedure in which the index ℓ′
+ 1 will correspond to 1.

Step 1 Apply the regularity lemma (Lemma 5) with ε and d to obtain a regular partition of G with
leftover set V0 with |V0| ⩽ εn.

Step 2 Find ℓ′ disjoint ε-regular pairs (Xi, Yi) and add the leftover to V0 such that |V0| ⩽ 20dn.
Step 3 For i = 1, . . . , ℓ′ connect Yi to Xi+1 (index ℓ′

+ 1 = 1) with the r
2 -blow-up of a path that

we denote by Pi.
Step 4 For i = 1, . . . , ℓ′ turn (Xi, Yi) into an (ε, d− ε)-super-regular pair (X ′

i , Y
′

i ) with |X ′

i | = |Y ′

i | by
adding leftover vertices to V0 such that |V0| ⩽ 23dn.

Step 5 Repeatedly take νn vertices from V ′

0 and append them to the paths Pi.
Step 6 For i = 1, . . . , ℓ′ use the blow-up lemma (Lemma 9) to find a spanning copy of an r

2 -blow-up
of a path in (X ′

i , Y
′

i ) connecting Pi−1 with Pi.

Step 1 is natural and for Step 2 it is enough to find a large matching in a graph with minimum
egree close to n

2 . During the performance of Step 5 the degree of some vertices might get too small.
n this case we add them to a set Q that we take care of before the next round. However, this will
ot be hard, as there will be at most 3εn ≪ νn vertices added to Q . Apart from this, Step 5 is very
imilar to Step 3, which we now sketch with more details. Let X , Y be the clusters that we want
o connect with the r

2 -blow-up of a path P . If there is a cluster Z such that (X, Z) and (Z, Y ) are
-regular pairs with density at least d then we can easily find this path. Otherwise, let A be the
nion of all clusters Z such that (X, Z) is an ε-regular pair with density at least d and B the union of
ll clusters Z for (Y , Z) analogously. By the minimum degree property in the cluster graph we get
A|, |B| ⩾ ( 12 − α)n. As G is not α-extremal we have d(A, B) ⩾ α. Therefore, there exist two clusters
1 ∈ A and Z2 ∈ B with d(Z1, Z2) ⩾ α and then (X, Z1), (Z1, Z2), and (Z2, Y ) are ε-regular pairs with

density at least d. Then it will be again easy to find the path that we are interested in.
We have to ensure that the end vertices of the paths always have high degree into the other

cluster of the respective super-regular pair, because we want to connect them later and keep
them through Step 4. Furthermore, we have to ensure that in Step 5 the sizes of the (ε, d −

ε)-super-regular pairs remain balanced. We will give the details in Section 6.

3.3. Extremal Case I

In this extremal case we will not use the regularity lemma, but the blow-up lemma will be
helpful. Recall that in this case G is ‘close’ to the union of two disjoint cliques of size roughly n

2 on
ertex sets A and B. The main challenge is to find a bridge that connects both these cliques. It is
hen easy to find the desired structure using the high degrees.

Step 1 In the case when r is even the bridge will be a matching of size r between A and B such
that the end-vertices are well connected on their side. The odd case is a little more delicate
and we will find a matching of size r + 1 or r depending on the size of V (G) ∖ (A ∪ B) and
the parity of A and B. We then build a path-like structure on both sides that contain the
end-vertices of the bridge.

Step 2 Absorb all vertices that do not belong to A or B by extending both ends of the path-like
structures. We can ensure that the left-over on each side has size divisible by 2r .

Step 3 It will be easy to see that the left-over on each side can be split into a super-regular pair
which can be covered with the r

2 -blow-up of a path using Lemma 9.

f we are careful with the end-tuples between each of the steps this gives an r-regular r-connected
ath-like structure covering G. In Section 4 we will give the details of the even and odd case
eparately.

.4. Extremal Case II

Again, we will not use the regularity lemma in this part, but the blow-up lemma will still be
elpful. We can assume that we have a partition of V (G) into A and B of size ( 1 ± α)n such that
2

6
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between these sets we have minimum degree αn, all but at most αn vertices from A (or B) have
egree at least ( 12 − 3α)n into B (or A). W.l.o.g. assume that |A| + m =

1
2n = |B| − m, where

⩽ m ⩽ αn. Note that in G[B] we have minimum degree at least m +
r−2
2 . Let s = ⌈

r
2⌉.

Step 1 If ∆(G[B]) ⩽ 4sαn find m vertex-disjoint copies of K1,s in G[B], such that all vertices are
well connected to A. Otherwise, separate the vertices with higher degrees, then find vertex-
disjoint copies of K1,s as before, and afterwards find additional vertex-disjoint copies of K1,r ,
such that the leaves are well connected to A.

Step 2 Absorb these copies of K1,s and K1,r into an r-regular path-structure and then connect these
together into one longer path-structure. After removing the path that we constructed we
are left with sets A1 ⊆ A and B1 ⊆ B with |A1| = |B1|.

Step 3 Absorb all vertices that do not have large degree to the other side into the path by
alternating between both sides. After removing these vertices we are left with sets A2 ⊆ A1
and B2 ⊆ B1 with |A2| = |B2| and the property that all vertices have large degree to the
other side.

Step 4 It is easy to see that (A2, B2) is a super-regular pair and that we can cover it with the
r
2 -blow-up of a path using Lemma 9.

f we are careful with the end-tuples between each of the steps this gives an r-regular r-connected
ath-structure covering G. For the first step we use the following.

emma 10. For any integer s there exists α > 0 such that the following holds. Let G be an n vertex
raph with maximum degree ∆(G) ⩽ 4sαn and minimum degree δ(G) ⩾ m+ s− 1, where 1 ⩽ m ⩽ αn.
hen there are 2m pairwise vertex-disjoint copies of K1,s in G.

The proof of this lemma and the second extremal case will be given in Section 5.

.5. Constructions

First recall that the r
2 -blow-up of a cycle is r-regular and also r-connected. It will not always be

ossible to construct this, but it will be the basic building block. We might need to absorb some
xceptional vertices, for example, when n is not divisible by r . In the case when r is even we then
emove a perfect matching from one Ks,s and add one vertex that is connected to all 2s = r vertices
hat just lost one neighbour (c.f. Figs. 2, 5, and 10). The resulting graph is still r-connected, because
e cannot disconnect this part of the cycle by removing less than r

2 vertices. A similar construction
ill be used in the case when r is odd (c.f. Figs. 4, 5 and 11) that also preserves r-connectivity. Apart

from this, in the first extremal case, we also have to connect two r
2 -blow-ups of cycles by using at

ost r edges between them (c.f. Step 1 of Section 3.3). In general, we only need to cover a small
inear fraction of the vertices from G in this way and, therefore, almost all vertices are contained in
he r

2 -blow-up of a path.

.6. Regular spanning subgraphs

In this section we would like to briefly discuss how our arguments can be used to find a spanning
-regular subgraph even with a smaller minimum degree condition. First note that K⌈(n+1)/2⌉,⌊(n−1)/2⌋
has minimum degree

⌊ n−1
2

⌋
=

⌈ n
2

⌉
−1 and does not contain a spanning r-regular subgraph for any

⩾ 1. On the other hand, for r ⩾ 1 there exists an n0 such that any graph G on n ⩾ n0 vertices
ith minimum degree δ(G) ⩾ n

2 contains a spanning r-regular subgraph. This can be proved along
the lines of our argument and we will now briefly explain the changes that are necessary to adapt
the overview given above to this easier question. We recommend to revisit this part after reading
the proof.

In the first extremal case it suffices to find a single edge, which serves as a bridge between A
and B to get rid of divisibility issues (c.f. Step 1). This is the only place in which the exact minimum
degree condition is necessary in this extremal case even for r-connected subgraphs. Then, we only

use edges inside of G[A] and G[B] to finish the spanning subgraph (c.f. Step 2 and Step 3). In the

7
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Fig. 1. Bridge between the sets A and B in the special case r = 4.

econd extremal case, when |A| + m =
1
2n = |B| − m for some 0 ⩽ m ⩽ αn, using δ(G[B]) ⩾ m it is

ossible to find mr edges inside of G[B] such that no vertex in B is incident to more than r of them
c.f. Step 1), which is again the only place in which the exact minimum degree condition is necessary
in this extremal case. With these mr edges the larger size of B is compensated and we complete
his to a spanning r-regular subgraph using only edges between A and B (c.f. Step 2–Step 4). As
ointed out above, in the non-extremal case of Theorem 1 we anyway only need δ(G) ⩾ ( 12 − γ )n
or some small γ > 0.

. Extremal Case I

In this section we deal with the first extremal case. We will not use the regularity lemma in this
art, but the blow-up lemma will still be helpful.

roof of Extremal Case I. Let r ⩾ 3 be an integer, let ε > 0 be given by Lemma 9 on input 1
2 ,

1
2 ,

nd r and without loss of generality we may assume 0 < 1000r2α ⩽ ε. Let G be an n-vertex graph
ith δ(G) ⩾ n+r−2

2 and let A, B ⊆ V (G) with ( 12 −α)n ⩽ |A| ⩽ |B| ⩽ ( 12 +α)n such that G[A] and G[B]
have minimum degree ( 12 −10rα)n, every vertex in C = V (G)∖ (A∪B) has degree at least 9rαn into
ach of A and B, and |C | ⩽ 2αn. Our goal is to find an r-regular, r-connected spanning subgraph in
provided that n is large enough.

.1. The even case

Assume that r is even. We begin by constructing r
2 bridges of size 2 between A and B (Step 1 of

Section 3.3). A visualisation can be found in Fig. 1.
The next result will allows us to transition between the sets A and B. The minimum-degree

condition is crucial for the result to be true.

Claim 11. Suppose δ(G) ⩾ n+r−2
2 and |A| ⩽ |B|. There is a matching (xa1xb1 , . . . , xar xbr ) such that

N(x ) ∩ A
⏐⏐ ⩾ n and

⏐⏐N(x ) ∩ B
⏐⏐ ⩾ n for all i, j ⩽ r.
ai 5 bj 5

8
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Fig. 2. Absorbers ξ4(u) (left) and ξ ′

4(u) (right) when r = 4.

roof. In order to construct the matching, it suffices to find r vertex-disjoint edges from A to V ∖A.
Indeed, suppose we have r pairwise disjoint edges a1c1, . . . , arcr . If ci ∈ B, we take this edge. If
ci ∈ V ∖ (A∪B), ci has either n

5 edges into B (in this case, take edge aici), or it has n
5 edges into A. Let

1, . . . , il be the indices such that cij does not have n
5 edges into B. By assumption, each cij has αn

eighbours in B. Select bi1 , . . . , bil s.t. bij ∈ N(cij ) ∩ B and bij ̸= bik for all j ̸= k (and being disjoint
from those ci ∈ B, which is clearly possible since n is sufficiently large). We replace the edges aijcij
in the matching by the edges cijbij and call the substructure bridge (see Fig. 1).

It remains to show that these edges exist. First, suppose that n is even. If |A| ⩽ n−r
2 , the minimum

degree of n+r−2
2 guarantees that each vertex of A has at least n+r−2

2 −( n−r
2 −1) = r neighbours outside

f A, hence the assertion follows. Suppose |A| =
n−r
2 + i with i ∈ [

r
2 ]. In this case |V ∖ A| =

n+r
2 − i

and every vertex from A has at least r − i neighbours in V ∖A. On the other hand every vertex from
V ∖A has at least n+r−2

2 − ( n+r
2 − i− 1) = i neighbours in A. It follows that there cannot be a vertex

cover of G[A, V ∖ A] of size r − 1 and hence there is a matching of size r by Kőnigs Theorem.7

Now, if n is odd, because the minimum degree needs to be an integer, it is at least n+1+r−2
2 , hence

upon removal of one vertex, we are left with a graph on n′
= n − 1 vertices and minimum degree

t least n+1+r−2
2 − 1 =

n′
+r−2
2 (and n′ being even). Hence the assertion follows from the previous

discussion. □

Therefore, Claim 11 gives us the green sub-structure of Fig. 1. Now, we take two of those
matching edges (think of them as being r

2 pairs of 2 edges). Denote the vertices of these edges
hat are connected to at least n

5 vertices in A as xa1 , xa2 . We next prove that the black structure
round xa1 , xa2 shown in Fig. 1 exists.

Claim 12. There is a completely disjoint selection of distinct vertices a1,1, . . . , a1,r/2, a4,1, . . . , a4,r/2 ∈ A
and a2,1, . . . , a2,r/2−1, a3,1, . . . , a3,r/2−1 ∈ A for each i = 1, . . . , r/2 with the following properties:

(1) The edges aj,kaj+1,ℓ for j = 1, 2, 3 and k, ℓ ∈ [
r
2 ] (or [

r
2 − 1], respectively) exist,

(2) the edges xa2i−1a1,j and xa2ia4,j exist for j ∈ [
r
2 ],

(3) the edges xa2i−1a3,j and xa2ia2,j exist for j ∈ [
r
2 − 1].

he same holds in B.

roof. Let i = 1, . . . , r/2 and X be the set of vertices selected so far. We initialise X = {xa1 , . . . , xar }
nd note that throughout we will have |X | ⩽ r2. We now select vertices a1,j, a3,j ∈ N(xa1 ) ∩ (A∖ X)
or j = 1, . . . , r/2 arbitrarily, but no a3,r/2, and add them to X . These exist as xa2i−1 has at least
n
5 − r2 neighbours in A ∖ X . Each of these vertices is adjacent to at least ( 12 − 10rα)n vertices in A,
ence each vertex has at least ( 12 − 10rα)n − r2 ⩾ ( 12 − 11rα)n neighbours in A∖ X . Therefore, the

7 Kőnigs Theorem states that in a bipartite graph the size of a maximum matching equals the size of the smallest
vertex cover.
9
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joint neighbourhood

N :=

⎛⎝A ∩

r/2⋂
j=1

N(a1,j) ∩

r/2−1⋂
j=1

N(a3,j)

⎞⎠ ∖ X

has size at least ( 12 − 11r2α)n. Therefore, we find⏐⏐N(xa2 ) ∩ N
⏐⏐ ⩾ n

100
,

hus the claim follows as the same holds in B as well. □

We denote the subgraphs that we found by A1, . . . , Ar/2, B1, . . . , Br/2 and keep the notion X for
he union of their vertices. Clearly, each vertex in A stays connected to at least ( 12 −11rα)n vertices
n A ∖ X and analogously for B. Next, we introduce a gluing operation GE.

laim 13 (Gluing Operation GE). Given two disjoint sets D1,D2 ⊂ A of size exactly r
2 and a set X ⊆ A

f size at most 6rαn, we find two disjoint sets D,D′
⊂ A ∖ X of size r

2 such that

G[D1,D] ≡ Kr/2,r/2, G[D,D′
] ≡ Kr/2,r/2 and G[D′,D2] ≡ Kr/2,r/2 .

Proof. As the joint A∖X - neighbourhood of D1 and D2 has size at least ( 12 −14r2α)n, the assertion
ollows. □

This gluing operation GE is now used to connect the subgraphs induced by Claims 11–12. More
recisely, for A1, A2 ⊂ A two vertex disjoint such subgraphs, each containing 2r vertices, then GE
an be used to connect the outer left vertices of D1 with the outer right vertices of D2 (the outer left
f D1 correspond to a1,1, a1,2 in Fig. 1 and the outer right of D2 to a4,1, a4,2). To glue all subgraphs in
into a path like subgraph and, independently all subgraphs in B, together, we apply GE repeatedly
ith parts of A1, . . . , Ar/2 and B1, . . . .Br/2, always adding the new vertices D ∪ D′ to X . Note that

X | ⩽ 2r2 throughout. This results in path-like structures PA and PB, we define A′
= A∖X, B′

= B∖X ,
nd note ( 12 − 2α)n ⩽ |A′

| ⩽ |B′
| ⩽ ( 12 + α)n.

In the next step we need to absorb left-over vertices (Step 2 of Section 3.3). To this end define
wo absorber-graphs for a vertex u: ξr (u) and ξ ′

r (u) (see Fig. 2).

efinition 14. Let D ∈
{
A′, B′

}
and X be a set of vertices and u a vertex such that |N(u) ∩ D| ⩾ n

6 .
et

• D1 =
{
d1, . . . , dr/2

}
,D2 =

{
d′

1, . . . , d
′

r/2

}
⊂ N(u) ∩ D ∖ X , hence r pairwise disjoint vertices,

and
• D′

=

{
u′

1, . . . , u
′

r/2−1

}
⊂ N(D1) ∩ N(D2) ∩ D ∖ (X ∪ D1 ∪ D2 ∪ {u}).

he absorber ξr (u) is the graph containing D1,D2,D′ and u as well as all the edges from D1 to D′
∪{u}

nd from D2 to D′
∪ {u}. Now let

•
r
2 vertices E0 =

{
e0, . . . , er/2−1

}
and an additional disjoint vertex er/2 from

D ∖
(
D1 ∪ D2 ∪ D′

∪ E0
)
such that G[E0,D1] contains Kr/2,r/2 minus a perfect matching and

G[E0 ∪ D1, er/2] = Kr,1.

he absorber ξ ′
r (u) is ξr (u) together with the vertices E0 ∪ {er/2} and all the edges in E0 ∪

{
er/2

}
and

etween this and D1.

As long as |X | ⩽ 6rαn the existence of these absorbers follows with δ(G[A′
]), δ(G[B′

]) ⩾ ( 12 −

1rα)n as every vertex has degree at least 8rαn into A′ or B′. Therefore, we are now in position to
bsorb the exceptional set C = V (G) ∖ (A ∪ B) (of course, without the bridging vertices on PA and
B), which has size at most αn (Step 2 of Section 3.3). Of these vertices from C we denote those by
, . . . , u that have n neighbours in A and by u′ , . . . , u′ the others. We create pairwise disjoint
1 t 5 1 t ′

10
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absorbers ξr (u1), . . . , ξr (ut ) and ξr (u′

1), . . . , ξr (u
′

t ′ ), where D is either A′ or B′, respectively. Next, for
= 1, . . . , t − 1 (or i = 1, . . . , t ′ − 1), we use the gluing operation GE to glue D2 of ξr (ui) and
1 of ξr (ui + 1) (ξr (u′

i) and ξr (u′

i + 1)) and denote the resulting path like structures by P ′

A and P ′

B,
respectively. During these at most 2αn gluing operations we always set X to be the vertices used in
all previous gluing steps and the absorbers, which satisfies |X | ⩽ 4rαn. Finally, use GE again to glue
P ′

A and P ′

B to PA and PB, respectively, and denote these by P ′′

A and P ′′

B , respectively. After the repetitive
gluing, we are left with sets A′′

= A′ ∖ V (P ′′

A ) and B′′
= B′ ∖ V (P ′′

B ) and the path-like subgraphs P ′′

A ,
P ′′

B of size at most 5rαn, hence
⏐⏐A′′

⏐⏐ , ⏐⏐B′′
⏐⏐ ⩾ ( 12 − 6rα)n.

Before closing the path in both sets (hence, creating a cycle like structure which contains all
ertices that are not part of P ′′

A or P ′′

B ), which is a standard application of the blow-up lemma,
we need to make sure that certain divisibility conditions hold. As we wish to close the cycle by
concatenating an even number of copies of Kr/2,r/2, we require that

⏐⏐A′′
⏐⏐ ≡

⏐⏐B′′
⏐⏐ ≡ 0 (mod r). We

ow consider |A′′
|, the argument for |B′′

| is analogous. If
⏐⏐A′′

⏐⏐ ≡ 0 (mod r), set A′′′
= A′′ and proceed.

therwise, if there is 0 < i < r such that
⏐⏐A′′

⏐⏐ ≡ i (mod r), arbitrarily pick i vertices a1, . . . , ai ∈ A′′

and obtain disjoint absorbers ξ ′
r (a1), . . . , ξ

′
r (ai) with D = A′ and X all vertices in P ′′

A and all absorbers
constructed so far. Further, each absorber consumes 2r+1 vertices of A′′, hence after removing them
from A′′, the divisibility condition holds.

Now, glue the absorbers sequentially to P ′′

A using GE. This is possible, as the set X of all vertices
used in P ′′

A , in the absorbers, and for the gluing here has size at most 6rαn. As each gluing operation
consumes r vertices, the divisibility does not change hence we are left with a set A′′′

= A′′ ∖ X .
The end-tuples of the structure P ′′

A , thus the outer-left and outer-right vertices of this ‘‘path’’,
have at least 1

2 |A
′′′
| common neighbours in A′′′ by construction. It is left to prove that there is a

/2−blowup of the path inside of A′′′ which starts at the outer-left vertices of P ′′

A and ends at the
outer-right vertices of P ′′

A (Step 3 of Section 3.3). This will be found by means of the Blow-Up-Lemma
(Lemma 9). Recall that

⏐⏐A′′′
⏐⏐ is a multiple of 2r and partition A′′′ into 2 sets M1,M2 each of size⏐⏐A′′′

⏐⏐ /2 (divisible by r). As G[A] has minimum degree (1/2− 10rα)n and, so far, for the bridges and
the connections at most 2r2 many vertices were used and for absorbing of the set C and fixing the
parity at most 6rαn vertices were necessary, we have

⏐⏐A′′′
⏐⏐ ⩾ (1/2−7rα)n and the minimum degree

of G[A′′′
] is at least, (1/2−16rα)n. From this it follows that (M1,M2) is (ε, 1

2 )-super-regular Indeed,
or any X ⊆ M1 and Y ⊆ M2 with |X | ⩾ ε|M1|, |Y | ⩾ ε|M2| we have d(X, Y ) ⩾ (|Y |−17rαn)/|Y | ⩾ 1

2 ,
here the last inequality holds as ε ⩾ 170rα. The bipartite Blow-Up Lemma (Lemma 9) now directly

mplies the existence of the desired structure. We analogously proceed with B′′ to get B′′′ and find
he corresponding structure there.

We are left to argue that the constructed subgraph is r-connected and r-regular.

laim 15. The constructed subgraph is r-connected and r-regular.

roof. The r-regularity essentially follows by construction and we only point out that in the
bsorber ξ ′

r (u) a vertex er/2 is inserted into Kr/2,r/2 while a perfect matching is removed. For the r-
onnectedness we argue as follows. Upon removal of up to r−1 bridge-vertices, the parts do not fall
part. Furthermore, removing up to r−1 vertices in the r

2 -blow-up of the path part of the subgraph
does not disconnect the structure. Moreover, the absorbing structure ξr (u) itself is isomorphic to an
r
2 -blowup of the path on three vertices. Finally, disconnecting the graph by removing up to r − 1
ertices in ξ ′

r (r) is not possible. □

.2. The odd case

Assume that r is odd and recall that n is even and δ(G) ⩾ n+r−1
2 (nr ≡ 0 (mod 2)). The argument

in the odd case is a bit more delicate than in the even case. Indeed, while in the process above
all divisibility conditions could be easily established, in the odd case, we might end up with two
sets of vertices of odd size. If there is a set C , we can easily absorb those vertices in a way that
after absorbing both parts of the graph contain an even number of vertices — which we require
to embed a regular graph. If on the other hand there is no such set C , we need to be much more
11
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Fig. 3. The two types of connections between the sets A and B in the special case r = 5.

Fig. 4. Absorbers ξ5(u) (left) and ξ ′

5(u1, u2) (right) with r = 5.

areful. We will tackle this problem by having two different types of bridge graphs between A and
, one consuming an even number of vertices of each set, one consuming an odd number — thus,
epending on the size of C and the parity of A and B, we need to use two different constructions. The
wo types of bridge graphs are visualised in Fig. 3 for the special case r = 5. Formally, the base for
oth are two copies of P3(r/2). For the first type, the even bridge graph, we then pick four vertices,
a1 , xa2 on each side of the first K(r+1)/2,(r+1)/2 and xb1 , xb2 on each side of the second K(r+1)/2,(r+1)/2,
nd then we remove edges xa1xa2 , xb1xb2 and add edges xa1xb1 , xa2xb2 . For the second type, the odd

bridge graph, we add additional vertices xa, xb, add an edge between them, remove a matching of
size (r − 1)/2 from both K(r+1)/2,(r+1)/2 and connect xa, xb to the vertices that lost an edge in the
first K(r+1)/2,(r+1)/2, respectively second. We call the edges, which have one vertex in A and one in
B bridges. We begin by showing that we can find r + 1 bridges (Step 1 of Section 3.3).
12
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Fig. 5. Including two copies of K1,s into an r-regular path structure in the even (r = 4) and odd case (r = 5) with solid
ertices in A, dashed vertices in B, and thick edges from K1,s .

laim 16. Suppose δ(G) ⩾ n+r−2
2 and |A| ⩽ |B|. Furthermore, let n be large enough. Then there is

matching (xa1xb1 , . . . , xar+1xbr+1 ) such that we have
⏐⏐N(xai ) ∩ A

⏐⏐ ⩾ n
5 and

⏐⏐N(xbj ) ∩ B
⏐⏐ ⩾ n

5 for all
i, j ⩽ r + 1.

Proof. As in the proof of Claim 11, it suffices to find r + 1 vertex disjoint edges from A to V ∖ A.
Recall that n is even.

If |A| ⩽ n−r−1
2 , the minimum degree of n+r−1

2 guarantees that each vertex of A needs to find at
east n+r−1

2 − ( n−r−1
2 − 1) = r + 1 neighbours outside of A, hence the assertion follows.

Suppose |A| =
n−r−1

2 + i with i ∈ [
⌊ r

2

⌋
]. In this case, |V ∖ A| =

n+r+1
2 − i and every vertex from

has at least n+r−1
2 − ( n−r−1

2 + i − 1) = r − i + 1 neighbours in V ∖ A. On the other hand every
ertex from V ∖ A has at least n+r−1

2 − ( n+r+1
2 − i − 1) = i neighbours in A. It follows that there

cannot be a vertex cover of G[A, V ∖ A] of size r and hence there is a matching of size r + 1 by
Kőnigs Theorem. □

Similarly as in the even case, Claim 16 gives us r+1
2 pairs of bridge-edges as in Fig. 3 (the thick

dges). Clearly, the rest of the bridge graph, even or odd, with r+1
2 instead of r

2 can be created
ompletely analogously to Claim 12. Next, we re-define the gluing operation GE to GO as follows
oting that it analogously holds in B.

Claim 17 (Gluing Operation GO). Given two disjoint sets D1,D2 ⊂ A of sizes exactly r+1
2 and a set X ⊆ A

f size at most 5rαn, we find two disjoint sets D,D′
⊂ A ∖ X of size r+1

2 such that

G[D1,D] ≡ G[D,D′
] ≡ G[D′,D2] ≡ K(r+1)/2,(r+1)/2 .

Proof. This follows directly from the fact that each vertex in A is connected to at least ( 12 − 4α)n
vertices in A and GO uses only finitely many vertices of the neighbourhoods. □

We stress at this point that GO can be applied in the case when the vertices in D1 and D2 currently
have degree r−1

2 (then we exclude a matching of size r+1
2 between D and D′) or degree r+1

2 (then we
xclude matching of size r+1

2 between D1, D and D′, D2). Furthermore observe, that gluing consumes
+ 1 vertices from the underlying set.
We then proceed building the bridge graphs as follows to ensure that either we have an even

umber of vertices on both sides left or |C | > 0. If |A| , |B| ≡ 1 (mod 2) we build r−1
2 even bridge

raphs and one odd bridge graph. Otherwise, we have |A| , |B| ≡ 0 (mod 2) or |C | > 0, and we
build r+1

2 even bridge graphs.
With GO we glue the bridge graphs in A (and B respectively) together using mutually disjoint

ertex sets DA
1, . . . ,D

A
(r−1)/2 and DB

1, . . . ,D
B
(r−1)/2 constructing the path structures PA, PB of constant

ize. Then, we set A′
= A ∖ V (PA), B′

= B ∖ V (PB).
Next, we define absorbing structures for the left-over vertices and for absorbing vertices in order

o guarantee divisibility (Step 2 of Section 3.3). They need to be defined slightly differently as in
he even case (Fig. 4).
13
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Definition 18. Let D ∈
{
A′, B′

}
and X be a set of vertices and u a vertex such that |N(u) ∩ D| ⩾ n

6 .
et

• D1 =
{
d1, . . . , d(r+1)/2

}
,D2 =

{
d′

1, . . . , d
′

(r+1)/2

}
⊂ N(u)∩D∖ X , hence r + 1 pairwise disjoint

vertices,
• D′

=

{
u′

1, . . . , u
′

(r−1)/2

}
⊂ N(D1) ∩ N(D2) ∩ D ∖ (X ∪ D1 ∪ D2 ∪ {u}), and

• E0 =
{
e1, . . . , e(r+1)/2

}
⊂ N(D1) ∩ D ∖ (X ∪ D1 ∪ D2 ∪ D′

∪ {u}).

he absorber ξr (u) has vertex set E0 ∪D1 ∪D2 ∪D′
∪ {u} and all the edges from D1 to D′

∪ {u}, from
2 to D′

∪ {u} except a perfect matching, and from E0 to D1 except a perfect matching.
Furthermore, for two adjacent vertices u1, u2 ∈ D let

• F =
{
f1, f2, . . . , f(r+1)/2

}
, F ′

=

{
f ′

1, . . . , f
′

(r+1)/2

}
⊂ N(u1)∩N(u2)∩D∖ X , hence r + 1 different

vertices in the joint neighbourhood of u1 and u2, such that f1f ′

1 and f(r+1)/2f ′

(r+1)/2 are edges and
G[F ∪ F ′

] contains an r − 2 regular subgraph.

he absorber ξ ′
r (u1, u2) has vertex set F ∪ F ′

∪ {u1, u2} and all the edges from the r − 2 regular
ubgraph, the edges f1f ′

1 and f(r+1)/2f ′

(r+1)/2, the edge u1u2, and all edges between {u1, u2} except for
2f1, u2, f ′

1 , u1f(r+1)/2, and u2f ′

(r+1)/2.

As long as |X | ⩽ 5rαn the existence of these absorbers follows with δ(G[A′
]), δ(G[B′

]) ⩾ ( 12 −

1rα)n as every vertex has degree 8rαn into A′ or B′ and both absorbers have size at most 2r + 2.
bserve that absorbing a vertex u ̸∈ D consumes 2r + 1 vertices from D (an odd number) while
bsorbing u1, u2 ∈ D consumes r + 3 vertices (including u1, u2) in D (an even number that is
ongruent to 2 (mod r + 1)).
Subsequently, we absorb C using independent copies of ξr (·) to ensure that the parity of the

emaining vertices in the almost cliques is even, if that does not already hold. Here we need that
very vertex from C has degree at least 8rαn into A′ and B′, so we can choose to build ξr (·) within
ny of the two sets. Then, as above, we glue the absorbers together by GO and extend PA to P ′

A and
onstruct P ′

B, both of size at most (3r + 4)|C | ⩽ 7rαn. We are left with sets A′′
= A ∖ V (P ′

A) and
′′

= B∖V (P ′

B) and
⏐⏐A′′

⏐⏐ ⩾ ( 12 −8rα)n,
⏐⏐B′′

⏐⏐ ⩾ ( 12 −8rα)n. Furthermore, each vertex in A′′ is connected
o at least ( 12 − 16rα)n vertices in A′′ and the same applies to B′′.

Again, as in the even case, we need to make sure that
⏐⏐A′′

⏐⏐ ≡ 0 (mod r + 1), as we want to
lose the cycle structure with r

2 -blow-ups of paths that cover everything. If the divisibility condition
olds, set A′′′

= A′′ and proceed. Otherwise, there is 0 < i < r/2 such that
⏐⏐A′′

⏐⏐ ≡ 2i (mod r +1) as
A′′

| is even. Select 2i different vertices a1,1, a1,2, . . . , ai,1, ai,2 in A′′ and absorb them using disjoint
nstances ξ ′

r (a1,1, a1,2), . . . , ξ
′
r (ai,1, ai,2) with D = A′′. As each absorber consumes r+3 vertices, after

emoving these vertices from A′′, the divisibility condition now holds. Finally, as in the even case,
glue the absorbed parts together with GO which does not change the divisibility by r + 1. Thus, we
re left with a set A′′′ which consists of the vertices of A′′ without the absorbed vertices and the
luing structures. Analogously, the same applies for B′′′. Now, as in the even case, the result directly
ollows from Lemma 9 and the following claim (Step 3 of Section 3.3).

Claim 19. The constructed subgraph is r-connected and r-regular.

Proof. As in the even case, r-regularity as well as r-connectivity on the r+1
2 -blow-up of the path part

is obvious. The first type of bridge (see Fig. 3 on the left) does not harm connectivity as before. In the
second type of bridge (see Fig. 3 on the right) only the special vertices xa and xb need our attention.
But as they are of degree r and connected to r−1

2 vertices on both sides of the K(r+1)/2,(r+1)/2, isolating
part of the graph is not possible either. The absorbing structures clearly sustain the connectivity
roperty. □

This finishes the proof of the first extremal case. □
14
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5. Extremal Case II

In this section we deal with the second extremal case and follow Step 1–Step 4 as outlined in
Section 3.4. We start by proving the auxiliary lemma for finding stars.

Proof of Lemma 10. Let s be an integer and choose 0 < α < 1
32s2(s+1)

. Let G be an n-vertex graph
with maximum degree ∆(G) ⩽ 4sαn and minimum degree δ(G) ⩾ m + s − 1, where 1 ⩽ m ⩽ αn.
Assume we have already found 0 ⩽ t < 2m copies of K1,s and let V ′ be the remaining vertices. Then,
by the maximum degree condition in G,

e(G[V ′
]) ⩾ 1

2n(m + s − 1) − t(s + 1)4sαn.

f m ⩾ s + 1 this is at least 1
4n(m + s − 1) ⩾ 1

2ns and gives a vertex of degree at least s in G[V ′
].

n the other hand, if m ⩽ s the above is at least ( 12 s −
1
4 )n > s−1

2 n and again this gives a vertex of
egree at least s in G[V ′

]. □

Proof of Extremal Case II. Let r ⩾ 2, s = ⌈
r
2⌉ ⩾ 1, and r ′

= 2s. Let ε > 0 be given by Lemma 9 on
nput 1

2 ,
1
2 , and r . We obtain α > 0 from Lemma 10 and additionally assume that 100sα ⩽ ε. Let

be an n-vertex graph with minimum degree δ(G) ⩾ n+r−2
2 and nr ≡ 0 (mod 2). Further, assume

hat there is a partition of V (G) into A and B with |A| +m =
1
2n = |B| −m, where 0 ⩽ m ⩽ αn such

hat between these sets we have minimum degree αn and all but at most αn vertices from A (or B)
ave degree at least ( 12 − 3α)n into B (or A).

tep 1. Note δ(G[B]) ⩾ m + s − 1. Let B′
⊆ B be the vertices of degree at most 2sαn in G[B] and

et m′
= |B ∖ B′

|. If m′ < m, then δ(G[B′
]) ⩾ (m − m′) + s − 1 and we apply Lemma 10 to find

(m − m′) copies of K1,s. By choice of B′ each vertex from these copies of K1,s has degree at least
n
2 − 2sαn ⩾ |A| − 2sαn into A. Let W be the union of the vertices from these copies of K1,s

For i = 1, . . . ,min{m′,m} we can iteratively pick a vertex xi ∈ B ∖ (B′
∪ {x1, . . . , xi−1}) and

eighbours yi,1, . . . , yi,r ′ of xi from B∖ (W ∪
⋃i−1

j=1{yj,1, . . . , yj,r ′ )} such that yi,1, . . . , yi,r ′ have degree
t least |A| − 2sαn into A. This is possible, because any such xi has at least 2sαn neighbours in B
nd all but αn vertices in B have degree ( 12 − 3α)n into A. Add the vertices of these copies of K1,r ′

to W . We have obtained min{m′,m} copies of K1,r ′ and max{2(m − m′), 0} copies of K1,s such that
ll vertices in the copies of K1,s and the leaves in the copies of K1,r ′ have degree at least |A| − 2sαn
nto A.

tep 2. We will now iteratively absorb these copies of K1,s and K1,r ′ into an r-regular path-like
tructure. We start with s vertices v′

= (v′

1, . . . , v
′
s) from A∖W that have degree at least |B| − 4αn

nto B and s vertices u0 = (u0,1, . . . , u0,s) from B ∖ W that have degree at least |A| − 4αn into A
uch that vju0,j′ is an edge for 1 ⩽ j, j′ ⩽ s. This will be the base of our structure and we note that
ll vertices have degree s, so when extending this we need to add s or s − 1 vertices depending on
he parity of r . We add the vertices in v′ and u0 to W . Now we want to extend this by alternating
etween A and B while absorbing the copies of K1,s and K1,r ′ found earlier.
To do this, for k = 0, . . . ,m let Pk be the structures that we build and Wk be the vertices used

n Pk and in the remaining copies of K1,s and K1,r ′ , we will see that

|Wk| ⩽ 2s(k + 1) + 2 m(s + 1) ⩽ 8αn,

nd let ui = (ui,1, . . . , ui,s) be the end of Pk in B (will be defined precisely below) and assume that
i,j has at least |A| − 2sαn neighbours in A for j = 1, . . . , s. We will now repeatedly use the fact
hat, as 40sα < ε, for up to 2s+ 1 vertices b1, . . . , b2s+1 from B that have degree at least |A| − 2sαn
nto A there are at least |A|/2 common neighbours of b1, . . . , b2s+1 in A.

If there are two copies of K1,s left, whose vertices we denote by x0, x1, . . . , xs and y0, y1, . . . , ys
x0, y0 are the centres), then by choosing vertices from B we want to extend our structure from
i to cover both of them. We connect the first K1,s to ui by picking s vertices {c1, . . . , cs} in
he common neighbourhood of all {ui,1, . . . , ui,s, x0, x1, . . . , xs}. Then we connect the second K1,s

o the leaves of the first by picking s vertices {d1, . . . , ds} in the common neighbourhood of

15
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Fig. 6. Including one copy of K1,r ′ into an r-regular path structure in the even (r = 4) and odd case (r = 5) with solid
ertices in A, dashed vertices in B, and thick edges from K1,r ′ .

{x1, . . . , xs, y0, y1, . . . , ys}. We let ui+1 = (ui+1,1, . . . , ui+1,s) = (y1, . . . , ys). If r is even, we ignore
the edges cjxj and djyj for j = 1, . . . , s. This extends our structure in the desired way and all vertices
have degree r , except those in v′ and ui+1, which have degree s (see Fig. 5). If r is odd, we achieve the
same by ignoring the edges ui,jcj, cjxj and djyj for j = 1, . . . , s, x0xs, dsy0 and xjdj for j = 1, . . . , s−1,
which reduces the degree of all vertices

ui,1, . . . , ui,s, c1, . . . , cs, x0, . . . , xs, d1, . . . , ds, y0

from 2s = r + 1 to r . This extends Pk to Pk+1 and ui+1 is the end of Pk+1.
Otherwise, we pick a copy of K1,r ′ , whose vertices we denote by x0, x1, . . . , xr ′ (x0 is the

centre), and extend our structure with the r
2 -blow-up of a path on five vertices by choosing

ome vertices from B as follows. First we connect the vertices from ui with s leaves of the K1,r ′

by choosing s common neighbours c1, . . . , cs of {ui,1, . . . , ui,s, x1, . . . , xs} in A. Then we choose
s − 1 vertices d1, . . . , ds−1 from the common neighbourhood of the x1, . . . , xr ′ . We define ui+1 =

(ui+1,1, . . . , ui+1,s) = (xs+1, . . . , xr ′ ). As before this already is the r
2 -blow-up of a path extending our

tructure in the desired way (see Fig. 6) if r is even. If r is odd, to achieve this, we ignoring two
atchings given by the edges ui,jcj for j = 1, . . . , s, xjdj−1 for j = 2, . . . , s, and x1x0. This extends Pk

to Pk+1 and ui+1 is the end of Pk+1.
We add all new vertices in the structure to W . We can repeat this until all copies of K1,s and K1,r

are covered, because in each step W will increase by at most 6r vertices and all vertices have degree
at least ( 12 −3α)n to the other side. We let u′

= (um,1, . . . , um,s) be the final end of this construction.
ow let A1 = A ∖ W and B1 = B ∖ W and note that |A1| = |B1| because our construction uses 2m
ertices more from B than from A, exactly the centres of the stars K1,s, K1,r ′ , where the latter count
wice as they not just add a vertex, but replace a vertex from A.

Step 3. For the next step, let A′
⊆ A1 be the vertices of degree at most |B1| − 12sαn into B1 and

B′
⊆ B1 be the vertices of degree at most |A1| − 12sαn into A1. Note that |A′

|, |B′
| ⩽ αn, because

e removed at most 8sαn vertices from each of A and B to get A1 and B1. By using an r
2 -blow-up

f a path (exactly as in Fig. 6) we cover the vertices in A′ and B′ with our r-regular path structure
overing in total at most 4sαn additional vertices. To do this, for each a ∈ A′, we pick a copy of K1,r
centred at a with leaves b1, . . . , br ′ in B1 ∖ B′. Then we iteratively extend the path structure from
u′ exactly as in the second part of Step 2, where a corresponds to x0 and the leaves b1, . . . , br ′ to
x1, . . . , xr ′ . Here the parity remains intact as a comes from A, whereas above x0 came from B. We
proceed analogously for b ∈ B′, where the roles are reversed and we extend from v′ instead.

Add the vertices used for covering A′ and B′ to W , let u = (u1, . . . , us) and v = (v1, . . . , vs) be
the last vertices of this construction in B and A, and note that we can assume that they have degree
at least |A| − 20sαn into A. We let A2 = (A1 ∖W ) and B2 = (B1 ∖W ) and note that |A2| = |B2|.

Step 4. We have that every vertex from A2 (or B2) has degree at least |A2| − 16sαn into A2 (or
|B2|−16sαn into B2). Then it is easy to see that (A2, B2) is (ε, 1

2 )-super-regular as 100sα ⩽ ε. Indeed,
or any A′

⊆ A2 and B′
⊆ B2 with |A′

| ⩾ ε|A2|, |B′
| ⩾ ε|B2| we have d(A′, B′) ⩾ (|B′

|−16sαn)/|B′
| ⩾ 1

2 ,
here the last inequality follows from 1ε|B | ⩾ 16sαn.
2 2
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Moreover, the vertices in v have |B2|−26sαn ⩾ 1
2 |B2| common neighbours in B2 and similarly for

with A2. We apply Lemma 9 to cover the remaining vertices of A2 and B2 with the r
2 -blow-up of a

ath such that the ends connect to v and u. This completes the construction of a spanning r-regular
tructure in G. To see that it is also r-connected it suffices to note that we have the r

2 -blow-up of a
ath except for some parts replaced by the graphs from Fig. 5, which do not harm this property. □

. Non-extremal case

In this section we deal with the case that G is not α-extremal. Recall, that the assumption implies
hat for any two sets A, B ⊆ V (G) of size ( 12 − α)n ⩽ |A|, |B| ⩽ n

2 we have d(A, B) ⩾ α. We will
ollow Step 1–Step 6 as outlined in Section 3.2.

roof of Non-Extremal Case. Given r ⩾ 3, let 0 < α < 1
32 and s = ⌈

r
2⌉ and we choose constants

uch that

ε ≪ ν ≪ d ≪ β ≪ α,

here, in particular,

ε ⩽ ν, ν ⩽ d2s2−s−1, d ⩽ β, 500sβ ⩽ α

and 2ε is smaller than the output of Lemma 9 with input d
2 ,

1
4d

s, and r . Let L be given by Lemma 5
n input ε.

tep 1. Let G be an n-vertex graph with minimum degree δ(G) ⩾ ( 12 − β)n. Note that we prove
he stronger variant as remarked earlier. From Lemma 5 we get a partition of the vertex set V (G)
nto ℓ + 1 ⩽ L clusters V0 with |V0| ⩽ εn and V1, . . . , Vℓ of size T and a subgraph G′

⊆ G such
that (P1)–(P4) hold. We denote by R the graph on vertex set [ℓ] with edges ij if and only if the pair
(Vi, Vj) is ε-regular with density at least d. In R we have minimum degree δ(R) ⩾ ( 12 − β − 2d)ℓ
by Fact 6. Similarly, we can deduce that R is not α

2 -extremal. Otherwise, there would be two sets
f vertices A, B in R such that ( 12 −

α
2 )ℓ ⩽ |A|, |B| ⩽ 1

2ℓ and d(A,B) < α
2 . Then A =

⋃
i∈A Vi and

=
⋃

i∈B Vi both have size at most ℓ
2 ·

n
ℓ

=
n
2 and at least ( 12 −

α
2 )ℓ · (1 − ε) n

ℓ
⩾ ( 12 − α)n and we

ave

d(A, B) =
e(A, B)
|A| |B|

⩽

α
2 · ( n

ℓ
)2 · |A| |B| + |A|(d + ε)n

|A||B|
⩽

α
2

(1 − α)2
+

(d + ε)
1
2 − α

< α,

hich contradicts our assumption that G is not α-extremal. We will repeatedly use the following
act that holds as R is not α

2 -extremal.

act 20. For any two sets A,B ⊆ V (R) of size at least ( 12 −
α
2 )ℓ there is an edge AB ∈ E(R) with A ∈ A

nd B ∈ B.

In the following we will treat the clusters as vertices of R.

tep 2. Next let M be a maximum matching in R and D ⊆ [ℓ] be the clusters not covered by M .
aturally, D is an independent set in R and if there are at least two vertices u and v in D then no

neighbour of u is connected to a neighbour of v by an edge of M . Therefore, 2|M| ⩾ degR(u)+degR(v)
nd so |M| ⩾ ( 12 − β − 2d)ℓ by the minimum degree in R. We let ℓ′

= |M| and denote the regular
airs corresponding to edges of M by (Xi, Yi) for i = 1, . . . , ℓ′. In the following, we will sometimes
ind one class of such a regular pair not knowing if it is Xi or Yi and, for simplicity, just assume that
it is one of them.

Step 3. For any clusters Z and W we call an s-tuple z = (z1, . . . , zs) from Z well-connected into W
f the vertices z1, . . . , zs have at least 1

2d
sT common neighbours in W and individually have degree

t least (d − ε)T into W . Now fix any i ∈ [ℓ′
]. We want to connect Yi and Xi+1 by the r

2 -blow-up of
path (index ℓ′

+ 1 = 1). For this we consider the set of neighbours W and Z in R of X and Y ,
i+1 i

17
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respectively. It follows from the minimum degree in R that W and Z have size at least ( 12 −
α
2 )ℓ. By

act 20 there is W ∈ W and Z ∈ Z such that WZ is an edge in R.
By repeatedly applying Lemma 3 and using ε ⩽ d/(2s) we want to argue that all but at most

sεT s s-tuples x = (x1, . . . , xs) from Xi+1 are well connected into W and Yi+1. For this we first use
emma 3 to get that all but 2εT vertices of Xi+1 have degree at least (d − ε)T into W and Yi+1.
Then we assume that, for some j = 1, . . . , s − 1, we have that all but 2jεT j j-tuples from Xi+1 that
have at least (d− ε)jT common neighbours in W and Yi+1. For any such j-tuple (x1, . . . , xj) we then
pply Lemma 3 with the common neighbourhood of x1, . . . , xj in W and Yi+1 to get that all but

2jεT j
· T + (1 − 2jε)T j

· 2εT ⩽ 2(j + 1)εT j+1 (j + 1)-tuples from Xi+1 that have at least (d − ε)j+1T
common neighbours in W and Yi+1. For j + 1 = s with (d − ε)sT ⩾ 1

2d
sT this proves the statement,

here the inequality holds when ε ⩽ d/(2s).
The same holds for tuples from Yi, W , and Z with respect to their neighbouring clusters. We

fix tuples x = (x1, . . . , xs), w = (w1, . . . , ws), z = (z1, . . . , zs), and y = (y1, . . . , ys) from Xi+1,
W , Z , and Yi, respectively, such that xwzy gives the r

2 -blow up of a path on 4 vertices and x and
are well-connected into Yi+1 and Xi, respectively. We obtain this by first picking x that is well
onnected into Yi+1 and W , which is possible as 2sεT s < 1

2

(T
s

)
. Then we observe that in the common

neighbourhood of x in W there is a choice for w that is well connected into Z , because there are
at least

(dsT/2
s

)
> 2sεT s s-tuples in the common neighbourhood of x in W , where the inequality

follows from ε < d2s2−s−1 and n sufficiently large. We denote this path by Pi and remove any
internal vertices (those in w and z) from the clusters. We can repeat this for all i, because we need
only 4sℓ′ ⩽ 2sL vertices in total.

Step 4. To make the matching edges super-regular, we let i ∈ [ℓ′
] and apply Lemma 8 to the pair

(Yi, Xi). We make sure that the end-tuple x of Pi−1 remains in Xi and the end-tuple y of Pi remains
in Yi, which is fine as they have degree at least (d − 3ε)T to the other side. After removing a few
additional vertices we arrive at sets Yi and Xi such that |Yi| = |Xi| = T ′ ⩾ (1 − 2ε)T , where T ′

≡ 0
(mod s), and the pair (Yi, Xi) is (2ε, d − 4ε)-super-regular, where we also appeal to Lemma 4. We
add the vertices removed during this procedure and also the vertices that belong to clusters of D
to V0 and note that |V0| ⩽ εn + ℓ′4εT + βn + 2dn ⩽ 2βn.

Step 5. Setup. We want to absorb V0 by extending the r
2 -blow-up of paths Pi. After each extension

e need to maintain the location of the end-tuples and also ensure that they are well-connected.
uring the procedure we will have to deal with sets of already covered vertices, which we denote
y W0 and W . Here W0 only contains vertices that where used during recent iterations of our
rocedure, which will be moved to W later. We collect some properties and definitions involving
0 and W that we will need later. If |W0| ⩽ 2sνn and |W | ⩽ 20sβn there are at most 2sνn/( 18d

s n
ℓ
) =

16sνd−sℓ ⩽ 16sβℓ clusters that intersect W0 in at least 1
8d

s n
ℓ
vertices and at most 20sβn/( 14 ·

n
ℓ
) =

0sβℓ clusters that intersect W in at least 1
4 ·

n
ℓ
vertices. We denote by H the set of all clusters that

o not have both properties and note |H| ⩾ (1 − 100sβ)ℓ.
Now consider a vertex v ∈ V0. There are at least ( 12 − 150sβ)ℓ clusters in H that intersect

G(v) ∖ (W ∪ W0) in at least d n
ℓ
vertices. We denote this set of clusters by H(v). Similarly, let

M (v) be the clusters from H , which share an edge of M with another cluster from H(v) and note
hat we have the same lower bound as M is a matching. Summing up we have |H| ⩾ (1 − 100sβ)ℓ
nd |H(v)|, |HM (v)| ⩾ ( 12 − 150sβ)ℓ for all v ∈ V0. Note that H(v) and HM (v) are large enough for
act 20.
Covering 2s vertices. We will use the following claim to repeatedly cover 2s vertices. To start our

rocedure we let W = ∅ and W0 be all internal vertices (not in end-tuples) of the paths P1, . . . , Pℓ′ .

Claim 21. Assume that |W0| ⩽ 2sνn, |W | ⩽ 20sβn and that W0 ∪ W contains all internal vertices
not in end-tuples) of the r

2 -blow-up of paths P1, . . . , Pℓ′ . Moreover, for i ∈ [ℓ′
], assume that Xi and Yi

re disjoint from W ∪ W0, that (Xi, Yi) is (4ε, 1
2d)-super-regular, and |Xi| = |Yi| ≡ 0 (mod s).

Then we can cover 2s vertices v1, . . . , v2s from V0 by extending the r
2 -blow-up of paths within clusters

f H using at most 20s2 vertices. Moreover, for i ∈ [ℓ′
], after removing the vertices that are not in

end-tuples of the paths from X , Y we still have |X | = |Y | ≡ 0 (mod s).
i i i i
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Fig. 7. Absorbing vertex v1 in the case r = 2s = 4 if x0 is the current end of path Pi and x1 is the new end.

Fig. 8. Absorbing vertex vt in the case r = 2s = 4. The blue connection between classes indicates that those edges belong
o the fixed matching in the cluster graph while gray connections indicate using additional edges. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)

After applying the claim, we also remove the 2s vertices v1, . . . , v2s from V0. We will apply
he claim at most νn times and, thus, |W0| ⩽ 2sνn throughout. With the bound on ν it follows
rom the fact that they were (2ε, d − 4ε)-super-regular and also ε-regular even earlier that pairs
n M remain (2ε, 1

2d)-super-regular. We will ensure that new end-tuples of paths are always well-
connected. Moreover, the end-tuples of a path that were well-connected into a cluster X at some
oint during these applications of Claim 21 still have at least 1

4d
sT common neighbours in the new

′
⊆ X , because they had 1

2d
sT common neighbours in X and clusters only remain active in H if the

ntersection with W0 is less than 1
8d

sT , i.e. |X ∖ X ′
| ⩽ 1

4d
sT .

roof of Claim 21. Let i1 be such that Xi1 ∈ H(v1) and Yi1 ∈ H and x0 be the end-tuple of Pi1 in
i1 . As x0 is well-connected into Yi1 and (NG(v1) ∩ Xi1 ) ∖ (W ∪ W0) is of size at least d n

ℓ
, we can

greedily pick tuples x1, x2 in Xi1 and y1, y2 in Yi1 with the exception that y1 contains v1 and such
that x1y1x2y2x0 gives the r

2 -blow-up of a path and x1 is well-connected into Yi1 . Now we remove
he internal vertices (x2, y1, y2, x0) from the clusters and add them to W0 (this adds 4s vertices; see
ig. 7). We note that |Yi1 | − 1 = |Xi1 | ≡ 0 (mod s) and let Pi1 be the longer path.
We continue in a similar fashion to cover v2, . . . , vs, see Fig. 8 for an illustration. For this let

t = 2, . . . , s and assume that it−1 is such that |Yit−1 | − t + 1 = |Xit−1 | ≡ 0 (mod s). Let A be the
neighbours of Yit−1 in R and let B be those clusters which share an edge of M with a cluster from
A. By Fact 20 applied to B and H(vt ) there are indices it , j such that Xit ∈ H(vt ), Yit , Xj, Yj ∈ H and
Yit−1Xj and YjXit are edges of R. This gives the path Yit−1 , Xj, Yj, Xit , Yit in R. We let y0 and y′

0 be the
end-tuples of Pj and Pit in Yj and Yit , respectively. Similarly as for Pi1 above we find tuples x1, x2 in
X , y with t−1 vertices in Y and s− t+1 vertices in Y , and y in Y , such that y , x , y , x , y is
j 1 it−1 j 2 j 0 1 1 2 2
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Fig. 9. Balancing Yis and Yis+1 in the case r = 2s = 4. As before, we indicate the fixed matching in the cluster graph by
lue connections and additional edges by gray connections. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

Fig. 10. Absorbing v in the even case, where r = 2s = 4. The blue and gray connections represent the matching edges
nd non-matching edges in the cluster graph again. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

he r
2 -blow-up of a path extending Pj and y2 is well-connected into Xj. We also find tuples x′

1, x
′

2, x
′

3
n Xit , y′

1 with t − 1 vertices in Yj and s − t + 1 vertices in Yit , y′

2 in Yit also containing vt , and y′

3
in Yit , such that y′

0, x
′

1, y
′

1, x
′

2, y
′

2, x
′

3, y
′

3 is the r
2 -blow-up of a path extending Pit and y′

3 is well-
connected into Xit . After removing the internal vertices (y0, x1, y1, x2, y′

0, x
′

1, y
′

1, x
′

2, y
′

2, x
′

3) we have
|Yit−1 | = |Xit−1 | ≡ 0 (mod s), |Yj| = |Xj| ≡ 0 (mod s), and |Yit | − t = |Xit | ≡ 0 (mod s) and we add
the removed vertices to W0 (this adds 10s vertices).

We repeat the same procedure to cover vs+1, . . . , v2s and are left to deal with |Yis |−s = |Xis | ≡ 0
(mod s) and |Y |−s = |X | ≡ 0 (mod s). For this, see Fig. 9 for an illustration, let A be the clusters
i2s i2s
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Fig. 11. Absorbing v and u in the odd case, where r = 3, s = 2. The blue and gray connections represent the matching
dges and non-matching edges in the cluster graph again. The dotted edges indicate an r-regular r-connected path
tructure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)

n R that share an edge in M with a neighbour of the cluster Yis and, similarly, let B be the clusters
in R that share an edge in M with a neighbour of the cluster Yi2s . By Fact 20 applied to A and B we
find indices j1, j2 such that Xj1 , Yj1 , Xj2 , Yj2 ∈ H and YisXj1 , Yj1Yj2 , and Xj2Yis+1 are edges of R. We let
y0 and y′

0 be the end-tuples of Pij1 and Pij2 in Yj1 and Yj2 , respectively. As before we greedily find
tuples x1, x2 in Xj1 , y1 in Yis , and y2 in Yj1 , such that y0, x1, y1, x2, y2 is the r

2 -blow-up of a path
xtending Pij1 and y2 is well-connected into Xj1 . Also we find tuples x′

1, x
′

2 in Xj2 , y
′

1 in Yi2s , y
′

2, y
′

4 in
Yj2 , and y′

3 in Yj1 , such that y′

0, x
′

1, y
′

1, x
′

2, y
′

2, y
′

3, y
′

4 is the r
2 -blow-up of a path extending Pij2 and y′

4 is
ell-connected into Xj2 . After removing the internal vertices (y0, x1, y1, x2, y′

0, x
′

1, y
′

1, x
′

2, y
′

2, x
′

3, y
′

3)
we have |Xj1 | = |Yj1 | ≡ 0 (mod s), |Xj2 | = |Yj2 | ≡ 0 (mod s), |Yis | = |Xis | ≡ 0 (mod s), and
|Yis+1 | = |Xis+1 | ≡ 0 (mod s). We add the internal vertices to W0 (this adds 10s vertices). In total
we add at most 2 · (4s + (s − 1)10s) + 10s ⩽ 20s2 vertices to W0.

Reset after νn iterations. After νn applications of Claim 21 we want to reestablish the original
super-regularity condition for the pairs of clusters in M so that we can continue for another νn
rounds. For i ∈ [ℓ′

], by Lemma 4, the pairs (Xi, Yi) are 2ε-regular with density at least d− ε, as less
than half of the vertices from each part were removed by definition of H . Then, by Lemma 8, for
any i ∈ [ℓ′

] we need to remove at most 2ε n
ℓ
vertices from each of Xi and Yi to get that (Xi, Yi) is

(4ε, d−5ε)-super-regular again and |Yi| = |Xi| ≡ 0 (mod s). We will greedily absorb these vertices
into the path Pi without any degree dropping below 3d

4 ·
n
ℓ
using the following claim.

Claim 22. Let (X, Y ) be a (2ε, 1
2d)-super-regular pair and X ′

⊆ X, Y ′
⊆ Y be sets with |X ′

| ⩽ 2ε|X |,
|Y ′

| ⩽ 2ε|Y | such that (X ∖ X ′, Y ∖ Y ′) is (4ε, d − 5ε)-super-regular. Then we can extend the path P
from the end-tuple in Y such that it contains X ′, Y ′, and has a new well-connected end-tuple in Y using
at most 2ε n

· 4s vertices from X ∪ Y .

ℓ
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Proof. The proof goes exactly as the first case in the proof of Claim 21, illustrated in Fig. 7, except
that v1 now is the vertex from X ′

∪ Y ′. □

We ensure that, for each i ∈ [ℓ′
], both ends of the path Pi are extended at least two steps so that

the ends are well-connected again. We add the vertices used in these paths to W , also move the
ertices from W0 to W , and reset W0 = ∅. If |V0| ⩾ 2s we can now continue by covering another
s vertices from V0 using Claim 21.
We still need to estimate the number of vertices added to W throughout the whole procedure

f covering V0, which were at most 2βn vertices in the beginning. There are at most ⌈
2βn
2sνn⌉ ⩽ β

sν +1
terations of the argument for covering 2sνn vertices and for covering 2s vertices of V0 we need at
ost 20s2 vertices. During these iterations we will always have

|W | ⩽
20s2

2s
2βn +

(
β

sν
+ 1

)
· ℓ′2ε

n
ℓ

· 4s ⩽ 40sβn,

here the second term comes from the vertices we need to absorb after each iteration. Therefore,
e can indeed repeat this until |V0| < 2s.
Covering the last vertices. If |V0| = 0 we are done with this step. Otherwise, we have 0 < |V0| =

t < 2s and n ̸≡ 0 (mod 2s), because the structures we build have size congruent to 0 (mod 2s), and
there cannot be the r

2 -blow-up of a cycle in G. If r is odd nr ≡ 0 (mod 2) implies that n and also t
re even. We need to absorb the last t vertices in a different way. If r is even, let v ∈ V0 and with
act 20 pick j1, j4 such that Xj1 , Xj4 ∈ H(v), Yj1 , Yj4 ∈ H , and Xj1Xj4 is an edge of R. Then we consider

those clusters that share an edge of M with a neighbour of Yj1 and Yj4 respectively, i.e. NM (NR(Yj1 ))
and NM (NR(Yj4 )). We apply Fact 20 to these sets and get indices j2, j3 such that Xj2Xj3 is an edge of
R. By construction we then have Xj2 , Yj2 , Xj3 , Yj3 ∈ H and also that Yj1Yj2 , Yj4Yj3 are edges of R. We
extend the path Pj1 as before by following Yj1 , Xj1 , Xj4 , Yj4 , Yj3 , Xj3 , Xj2 , Yj2 , Yj1 such that the vertex
is in the neighbourhood of the new vertices from Xj1 and Xj4 . This allows us to include v into the
ath. Note that this is no longer the r

2 -blow-up of a path (see Fig. 10), but instead resembles the
bsorbing structure from the second extremal case (see Fig. 5). If r is odd let u, v ∈ V0 (using that t
s even) and we proceed similarly to include both vertices (see Fig. 11). Here we find Xj1 , Xj4 ∈ H(v)
nd Xj2 , Xj3 ∈ H(u) such that Xj1Xj4 and Xj2Xj3 are edges of R and then connect Yj1 to Yj2 and Yj4
o Yj3 as in the even case by using four additional clusters for each connection. Note that here the
ath structure from Xj4 to Xj3 including u and v also is not an r

2 -blow-up (alternating Ks,s and Ks,s
minus a perfect matching), but needs to have one edge shifted (alternating Ks,s minus an edge and
Ks,s minus a matching of size s − 1), because v and u only have s − 1 neighbours in Xj4 and Xj3 ,
respectively. Put differently, the structure that we build is an r

2 -blow-up of a path from Xj4 to Xj3
with end-tuples connected to v and u, respectively, but then we remove an edge vx0 for x0 ∈ Xj4 ,
add an edge x0x1 for x1 ∈ Yj4 , and so on until we reach u.

Step 6. We fully absorbed V0 into the connecting paths such that the end-tuples are well-connected
to the other side of the matching edge. Let i ∈ [ℓ′

] and denote by x = (x1, . . . , xs) and y =

(y1, . . . , ys) the end-tuples of the paths Pi−1 and Pi, respectively. Remove x from Xi and y from
Yi, note that |Xi| = |Yi| ≡ 0 (mod s) and that (Xi, Yi) is (2ε, d

2 )-super-regular. Denote the common
eighbours of x in Yi by Y ′, the common neighbours of y in Xi by X ′, and note that |X ′

|, |Y ′
| ⩾ 1

4d
s
|X |.

Therefore, we can apply Lemma 9 to cover Xi and Yi with the r
2 -blow-up of a path and end-tuples

ithin X ′ and Y ′, which then connects Pi−1 to Pi.
Together this gives an r-regular subgraph in G. In the case when n ≡ 0 (mod 2s) we have

onstructed the r
2 -blow-up of a path, which is r-connected. To see that it is also r-connected in

he other cases it suffices to observe that in the case when r is even removing a perfect matching
rom a Ks,s and adding a vertex v to all these r vertices (see Fig. 10) preserves this property (as in
he second extremal case). Similarly, in the case when r is odd, removing a perfect matching from
wo copies of Ks,s in an r

2 -blow-up of a path, connecting u and v each to r of these vertices, and
shifting the path in between accordingly as described above (also see Fig. 11) still preserves this
property. □
22
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