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A B S T R A C T

Epidemiological modeling has a long history and is often used to forecast the course of infectious diseases or
pandemics. These models come in different complexities, ranging from systems of simple ordinary differential
equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward
optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading
processes in detail, but are extremely expensive to optimize. Epidemiological modeling can also be used to
propose and design non-pharmaceutical interventions such as lockdowns. In general, their optimal design often
leads to nonlinear optimization problems. We consider policy optimization in a prototypical situation modeled
as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel
approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in
particular with respect to convergence speed, are given for illustrative examples.
1. Introduction

The global COVID-19 pandemic has highlighted as never before the
need for mathematical modeling to forecast infection spreading and
assess consequences of various non-pharmaceutical interventions taken
to counter it, such as closing of schools, social distancing rules, or travel
restrictions. Such intervention policies have different direct costs as
well as social or economic impacts, and differ in their effectiveness with
respect to various objectives (e.g., minimizing the expected number of
deaths or the number of new infections in a given time window), and in
their negative side effects. While policy making must take into account
many quantitatively poorly understood aspects, and therefore cannot
rely solely on mathematical models of infection spreading, model-based
policy optimization can be an important decision support tool.

Models used to study epidemics range from deterministic compart-
mental models based on ordinary differential equations (ODEs) such as
variants of the well-known SIR model (considering population fractions
of susceptible, infected, and recovered individuals), see, e.g., [1–4], to
spatially resolved stochastic agent-based models (ABMs) [5–9], which
describe the dynamics of infection as arising from a large number of
discrete interactions between agents in complex interaction networks
embedded in a common environment.

∗ Corresponding author at: Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
E-mail address: niemann@zib.de (J.-H. Niemann).

Each modeling approach has its own trade-offs. On the one hand,
ODE models are computationally inexpensive and easy analyze. A
variety of mathematical methods and tools are readily available. On
the other hand, as aggregate models, ODE models provide coarse rather
than detailed forecasts of infection dynamics that do not allow for
uncertainty estimates of the forecasts, and policy measures are difficult
to translate into changes in model parameterization. Models based on
stochastic differential equations (SDEs) can serve as a means to quantify
uncertainty. However, these are often still compartmental models with
the same drawbacks.

In contrast, complex ABMs allow for the representation of locally
adapted policies and the analysis of their consequences in terms of
spatial (e.g., neighborhood, city, region), compartmental (e.g., children,
students, workers, retirees), or sectoral (e.g., medical, educational,
retail) dimensions, and thus provide much more detailed forecasts,
including uncertainty quantification. This makes ABMs attractive for
policy design, especially for locally adapted policy design in complex
environments. The main drawback is that it is computationally ex-
pensive to simulate realistic ABMs. Also, the models are inherently
stochastic, requiring the simulation of several to many samples to
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obtain a reliable answer. Perhaps most importantly, mathematical for-
mulation (and hence analysis) is still the exception (for some examples
see [10–15]) rather than the rule. While ABMs are widely used in var-
ious scientific disciplines such as sociology, economics, or geography,
the focus is mostly on computer simulations.

Optimal control is about finding a control for a dynamic system
and a given time window in such a way that an objective function
is optimized, often under given constraints. Numerical methods for
solving complex and nonlinear optimization problems are well estab-
lished. Optimal control and stability analysis of ODE epidemic models
to support policy design has a long tradition [16], but is still an active
area of research, e.g., for tuberculosis [17] or HIV [18]. Most recently,
optimal control has been used to study COVID-19, e.g., [19–22].

In contrast, mathematical optimization of ABMs faces significant
challenges. Basic concepts necessary for optimization, such as deriva-
tives, are not well-defined due to the discrete nature of the steps and
decisions made by agents in most ABMs. A recent idea to circumvent
this is internal smoothing [23]. Adjoint concepts for discontinuous
option pricing [24] may also provide a direction for future research.
However, most of the approaches used so far avoid the consideration
of derivatives in the ABM altogether, for example, by applying genetic
algorithms directly to an ABM [25,26], or by relegating the optimiza-
tion problem to another model that approximates the ABM. This may
be a reduced ABM, derived for example by coarsening the spatial
resolution of the underlying one [27], so that again heuristic algorithms
are applied for optimization. In most cases, an ‘‘equation-based’’ or
‘‘system-level’’ model is used, for which optimization methods exist.
The choice of such a coarser model is based on what is already avail-
able for similar phenomena. Alternatively, a simple functional form is
chosen and parameters are fitted to the ABM output (see [28,29] and
references therein). The optimal controls for the reduced model are
then lifted back to the ABM.

In this paper, we apply a multilevel approach that approximates
the original ABM at the fine level with a ODE at the coarse level.
Multilevel methods exploit the computationally cheaper optimization
of coarser models to reduce the optimization effort in a more detailed
‘‘fine’’ model. However, the perspective taken is not that of finding
optimal interventions for infectious diseases such as COVID-19, but that
of numerical optimization, since finding optimal interventions is the
subject of a political and societal debate that we do not intend to enter
in this article. To minimize a given (prototypical and exemplary) objec-
tive, we consider derivatives and descent along them. In the (stochastic)
ABM we work with the numerical approximation of derivatives by finite
differences. In the multilevel approach presented here, the combination
of coarse and fine levels is iterative: a coarse-level ODE model is used
to generate trial steps for descent directions in the fine-level ABM. This
step must then pass an acceptance test to ensure descent of the objective
with high confidence. The main contributions of this paper are:

• We present gradient-based optimization approaches of complex
ABMs to solve policy optimization problems. To this end, we first
review numerical optimization approaches applicable to ABMs.

• Then, we present a novel hybrid multilevel optimization method
that combines a fine-level ABM with a coarse-level ODE to solve
the policy optimization problem more efficiently.

• We compare and illustrate the presented methods along epidemi-
ological ABMs for the transmission dynamics of SARS-CoV-2.

The remainder is organized as follows. In Section 2, we intro-
uce three epidemiological models and investigate their quantitative
elation. Policy optimization is considered in Section 3. We briefly
eview state-of-the-art optimization algorithms suitable for ODEs and
BMs and discuss their computational complexity. We then introduce a
eterogeneous multilevel optimization approach that combines an ABM
ith an ODE approximation to speed up convergence. Their relative

omputational efficiency is investigated in Section 4 using numerical
xamples of the transmission dynamics of SARS-CoV-2. Open questions
2

nd future work are discussed in Section 5.
2. Epidemiological models

In this section, we introduce the terminology and notation essential
for the epidemiological models used in this study. Specifically, we
discuss models based on ODEs, which are introduced in Section 2.1,
and stochastic ABMs presented in Section 2.2. Furthermore, we analyze
the relation and agreement between both modeling approaches in
Section 2.3.

2.1. Deterministic ODE models

Mathematical models based on ODEs are commonly used to sim-
ulate epidemic spread on a macro-scale of a fully mixed population,
e.g., a city or a country. These models separate the population into
different compartments and count only the proportions of individuals
belonging to each compartment. Compartments can, for example, be
based on the infection status or demographics or both. In this paper, we
consider so-called SIR models [6] and divide the population into two
age groups: adults and children (compartments denoted by subscript a
or c, respectively). Separation into age groups has proven beneficial due
to different infection rates, see, e.g., [30] for the case of SARS-CoV-2.
Individuals who have not yet been infected belong to the susceptible
compartment 𝑆◦, for ◦ ∈ {a, c}. With a certain infection rate 𝑟∗→◦, for
∗, ◦ ∈ {a, c}, individuals from 𝑆◦ can get infected by an individual
from 𝐼∗ and move to the compartment 𝐼◦. An infection is caused by
interactions of the type 𝑆◦+𝐼∗ → 𝐼◦+𝐼∗, which are referred to as second-
rder interactions since two individuals are involved. Individuals in the
roup 𝐼◦ recover with rate 𝑟◦ and move to the compartment 𝑅◦ due to

the first-order reaction 𝐼◦ → 𝑅◦. The system of ODEs describing this
model is given by

�̇�a = −𝑆a (𝑟a→a𝐼a + 𝑟c→a𝐼c)

�̇�c = −𝑆c (𝑟c→c𝐼c + 𝑟a→c𝐼a)

�̇�a = 𝑆a (𝑟a→a𝐼a + 𝑟c→a𝐼c) − 𝑟a𝐼a
�̇�c = 𝑆c (𝑟c→c𝐼c + 𝑟a→c𝐼a) − 𝑟c𝐼c
�̇�a = 𝑟a𝐼a
�̇�c = 𝑟c𝐼c

(1)

Obviously, the sum of the groups 𝑆◦ + 𝐼◦ + 𝑅◦ is conserved over time,
such that 𝑅◦ is often omitted because of redundancy. If it is needed,
it can be computed from 𝑆◦ and 𝐼◦ as 𝑅◦ = 𝑁◦ − 𝑆◦ − 𝐼◦, where 𝑁◦

denotes the fraction of individuals of the respective age group. In the
following, when we do not distinguish between age groups, we will
refer to the fraction of susceptible 𝑆 = 𝑆a+𝑆c, infected 𝐼 = 𝐼a+𝐼c, and
recovered individuals 𝑅 = 𝑅a+𝑅c, such that 𝑆+𝐼 +𝑅 = 1. A numerical
solution of ODE (1) with parameter choices given in Table A.2 is shown
in Fig. 1(a). For an introduction to mathematical methods for this kind
of models we refer the reader to [31].

2.2. Stochastic agent-based models

As an alternative to ODE-based epidemic models, ABMs can be used
to model infection dynamics, which we will introduce in this section.
In addition to infection status, individuals are often explicitly repre-
sented and characterized by, for example, their activities in specific
locations, as well as other relevant characteristics such as age or sex. In
simulations, infection events occur with given probabilities whenever
an infected and a susceptible agent meet. Due to the probabilistic
nature of infection events (and possibly the inherent randomness of
the ABM itself), the numbers 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are random variables.
Thus, many simulations are typically performed to compute statistical
moments. We will now present our two guiding examples.
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Fig. 1. (a) Numerical solution of the ODE (1) and (b) aggregated trajectory of a single simulation of GERDA given identical initial conditions divided into adults (solid lines) and
children (dashed lines) for parameters given in Table A.2.
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2.2.1. Example 1 – the georeferenced demographic agent-based model
As first example, we consider the individualized GEoReferenced De-

ographic Agent-based model (GERDA) for the transmission of SARS-
oV-2 and the disease dynamics of COVID-19 [32]. This model uses
etailed location data and a demographically matched population of
gents with realistic daily schedules to simulate contacts between
eople in the given locations and the resulting infection events. The
isease progression of infected agents is modeled in detail with rates
nd times, e.g., for transition to diagnosed, hospitalized, ICU, and
ecovered or deceased states, depending on the agents’ age group.
he model has been used with data for several towns (e.g., Tepoztlán
Mexico), Zikhron Ya’akov (Israel), Gangelt (Germany)). In this work
e use the data calibrated for the German municipality of Gangelt. For
ore details, see [32].

To simplify the disease dynamics computed by GERDA, we sum-
arize the different subclasses of infected agents and assume that

ll infected agents recover. Additionally, agents are grouped by age,
.e., children (age 0 to 18 years) and adults (19+). Fig. 1(b) shows such
n aggregated trajectory in terms of numbers of susceptible, infected
nd recovered adults and children for a single simulation of GERDA.

.2.2. Example 2 – a homogeneous ABM
In addition to GERDA, we present another but coarser ABM for mod-

ling the spread of an infectious disease. We assume two homogeneous
roups of agents, i.e., adults and children, and that any agent can be
nfected by any other agent at any time. Thus, we call it a homogeneous
BM and use the shorthand notation H/ABM to refer to it. Homogeneity
llows tracking only the number of agents per compartment, making
he evaluation several orders of magnitude faster than for GERDA. We
epresent the H/ABM as a Markov jump process that builds on the
dentical first- and second-order reactions as the ODE model (1). We
ish to make explicit the character of an ABM and therefore write the

nfection rates 𝑟∗→◦, for ∗, ◦ ∈ {a, c} for a population of size 𝑁 instead
f using fractions. Additionally, since in GERDA agents can lose their
mmunity, we introduce a third transition 𝑅◦ → 𝑆◦, i.e., recovered
ndividuals from group 𝑅◦ move to the compartment 𝑆◦ and become
usceptible again. We assume that this happens independently of the
ge group with rate 𝜇𝑟◦, for 𝜇 ∈]0, 1[. Note that in this work the ODE
odel and the H/ABM share the same parameters. The H/ABM can be

imulated using Gillespie’s stochastic simulation algorithm [33], which
onstructs exact realizations of the H/ABM in continuous time. For
urther details, especially with respect to convergence to ordinary or
3

tochastic differential equations, we refer the reader to [34]. t
.3. Model agreement

To be used in the multilevel optimization algorithm in Section 3.5,
he ODE model and the ABM must describe the same phenomenon,
ut at different levels of detail. We will now discuss how to achieve
greement between the two models.

While many parameters in an ABM can, at least in principle, be
easured or observed, e.g., frequencies of people meeting, the six ODE
arameters 𝑟∗→◦ and 𝑟∗ are not directly related to measurable physical
uantities. A reasonable parameterization is necessarily based on the
greement of ODE predictions with reality, where ‘‘reality’’ can refer
o real-world data or to predictions of a different model taken as a
eference (in this work GERDA). We are interested in the latter case
nd therefore fit the parameters 𝑟∗→◦ and 𝑟∗ in the sense of 𝐿2 similarity

between the ODE and GERDA results for a fixed number of agents 𝑁0.
A least-squares approach leads to the optimization problem

min
𝑟∗→◦ ,𝑟∗ ∫

𝑇

0

(

𝑉 −1
𝐼,a (𝐼

ODE
a − 𝐼ABMa )2 + 𝑉 −1

𝐼,c (𝐼
ODE
c − 𝐼ABMc )2

)

d𝑡, (2)

here 𝐼ABM∗ is computed as a mean of a set of 1 000 independent
ERDA simulations given the parameters in Table A.2. The sample
ariances 𝑉𝐼,∗ of the respective infected age groups serve as weighting
actors for the fit. Fig. A.8 shows the result, obtained by using a nonlin-
ar least-squares solver (an in-built MATLAB solver) for problem (2).
or comparability of GERDA and the H/ABM, we parameterize the
/ABM identically.

. Policy optimization

In the following section, we will discuss the elements needed in
ddition to the epidemiological model to design favorable policies.
ollowing our guiding examples, in Section 3.1 we discuss a poten-
ial design space of policies that affect the model dynamics, e.g., by
hanging parameters. Then, in Section 3.2, we introduce a prototyp-
cal objective to be minimized. In Sections 3.3 and 3.4 we present
ptimization algorithms that can be applied to the problems. Finally,
n Section 3.5 we present a hybrid multilevel optimization method
pplied to epidemiological ABMs. We close Section 3 by a qualitative
omparison with other methods.

.1. Policies

It is well known that the spread of infectious diseases can be
nfluenced not only by pharmaceutical interventions, such as medical
reatment or vaccination, but also by non-pharmaceutical interventions,
uch as social distancing or lockdowns to reduce physical contact be-

ween individuals. For our discussion, we consider two time-dependent
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controls 𝑢s, 𝑢w ∶ [0, 𝑇 ] → [0, 1] as examples representing policies for
closing schools and workplaces, or homeworking for those jobs where
work can be done at home, respectively. More precisely, the value of
𝑢s(𝑡) refers to the fraction of children not going to school at time 𝑡,
i.e., 𝑢s(𝑡) = 0 stands for the policy that no schools are closed and
𝑢s(𝑡) = 1 indicates that all schools are closed. Analogously, the control
𝑢w(𝑡) is the fraction of workplaces closed. We denote 𝑢 = [𝑢s, 𝑢w]⊤ to
refer to the combination of controls. The controls are assumed to be
piece-wise constant on a time grid 0 = 𝑡0 < ⋯ < 𝑡𝑚 = 𝑇 to reflect the
fact that policy changes take some time to be implemented and that
continuously changing policies would be complicated to communicate
and follow. Consequently, the admissible set of policies

𝑈 = {𝑢 ∶ [0, 𝑇 ] → [0, 1]2 ∣ ∀𝑖 ∈ {1,… , 𝑚} ∶ 𝑢|]𝑡𝑖−1 ,𝑡𝑖[ = const},

f dimension 𝑛u = 2𝑚 is isomorphic to [0, 1]2𝑚 ⊂ R𝑛u such that any
control can be represented by 𝑛u scalar control values. Policies affect
the simulated spread of infection by changing the ODE (resp. H/ABM)
parameters or, in case of GERDA, by changing the agents’ schedules
(e.g., staying home instead of going to school). Thus, identical policies
must be implemented in different ways depending on the model used.
Note that the polices discussed here are for illustrative purposes only.
Further policies could be taken, for example, a ban on visiting public
places, wearing a mask, contact tracing and isolation, or vaccination.

Remark 3.1. School closure and work from home are well-established
interventions, both in the original publication [32] and in practice.
They have proven to be important and easily enforceable. Further
and more distinct closures such as elementary schools, high schools,
and universities, or businesses of everyday use, shopping malls, and
leisure places are possible, but increase the parameter space of the
optimization problem, resulting in higher computational costs.

3.1.1. Implementing policies in the ODE
In the ODE model, infection rates are determined by the properties

of the virus and the population. Additionally, we assume that they
depend on the controls 𝑢s and 𝑢w. For the infection rates within one
age group 𝑟∗→∗ we assume quadratic dependence on the fraction of in-
dividuals since an infection event can only occur when two individuals
meet, i.e.,

𝑟a→a = 𝑟aa(1 − 𝑢w)2, 𝑟c→c = 𝑟cc(1 − 𝑢s)2.

Here, the parameters 𝑟aa and 𝑟cc are independent of the policies.
Quadratic dependency is widely used for general second-order inter-
actions [35], but is obviously highly simplistic for epidemiological
modeling as, for example, it neglects possible infections outside schools
and workplaces. Similarly, we assume the infection rates between age
groups 𝑟∗→◦ to depend on the controls as well, though with impact
reduced by a factor of one half since many such infections will only
happen within families, i.e.,

𝑟c→a = 𝑟a→c = 𝑟ac(1 − 𝑢w∕2)(1 − 𝑢s∕2).

The recovery rates 𝑟∗ are assumed to be independent of the controls.

Remark 3.2. Due to its strong similarity in terms of modeling, the
policies for the H/ABM are implemented analogously to the ODE
model. For example, using 𝑟∗◦ ∶= 𝑟∗◦𝑁0, the propensity function that
characterizes the infection of an adult by an adult including the policy
is given by 𝑟a→a = 𝑟aa(1 − 𝑢w)2∕𝑁 , where 𝑁 is the population size used
for the H/ABM. The propensity functions 𝑟c→c and 𝑟c→a = 𝑟a→c follow
equivalently.
4

3.1.2. Implementing policies in GERDA
In contrast to the ODE model, in GERDA, where contacts between

agents are explicitly modeled, policies do not affect the probability of
infection, but the frequency of those contacts. Temporary closure of the
workplace or order to work from home is done by randomly selecting
adults in a ratio equal to the control value 𝑢w(𝑡) and changing their
schedules so that they stay home. Analogously, at the rate 𝑢s(𝑡), children
stay at home instead of going to school. We assume that an adult from
the same household must also be home to supervise children under the
age of 13. With a high share of school closures but open workplaces,
this leads to an implicit homeworking obligation for the supervisors
involved. However, this effect is not reflected by the controls, since
they represent only government-mandated interventions. Both policies
result in a significant reduction in interactions between agents, which
in turn leads to fewer infections and a slower spread of the disease.

3.2. Objective

In this section, we define a simple example of an objective that
nevertheless raises interesting optimization questions. We assume that
the general aim of pandemic policy management is to reduce the
number 𝐼 of infected people while minimizing the economic and social
costs of the interventions.

The first aim is reflected in the health objective

𝑐h(𝑢) = ∫

𝑇

𝑡=0
(𝐼(𝑡)∕𝑁 + exp(10(𝐼(𝑡) − 𝐼max)∕𝑁)) d𝑡,

where the number of infected agents 𝐼(𝑡) depends implicitly on the
control 𝑢 via the ABM or ODE model, respectively. The first term
represents the negative impact of infections, which grows approxi-
mately linearly with the number of infected people, assuming that
the number of people requiring medical treatment is a fixed fraction
of the infected. The second term represents the social impact, which
increases dramatically once the capacity of the health system for proper
treatment of the severely ill infected is exhausted. This is formulated in
terms of the health care system’s carrying capacity 𝐼max.

Both controls incur direct costs, interpreted as economic impact 𝑐w
for homeworking and social impact 𝑐s for school closure. The economic
impact becomes +∞ when the homeworking rate approaches an upper
bound 𝑢max

w < 1, reflecting the fact that not all workplaces can be closed
or done from home. Thus, we define the second aim 𝑐w by

𝑐w(𝑢) = ∫

𝑇

0
− log(𝑢max

w − 𝑢w(𝑡)) d𝑡.

We further assume that the social impact of school closures depends
quadratically on the fraction of schools closed, i.e.,

𝑐s(𝑢) = ∫

𝑇

0
𝑢s(𝑡)2 d𝑡.

Combining these three aims with weights 𝑎s, 𝑎w > 0, we define our
objective

𝐽 (𝑢) ∶= 𝑐h(𝑢) + 𝑎s𝑐s(𝑢) + 𝑎w𝑐w(𝑢). (3)

Note that a common factor for all three terms does not affect the
minimizer, so that we can normalize the weight for 𝑐ℎ to one.

Remark 3.3. The functions 𝑐h, 𝑐w and 𝑐s are chosen based on quali-
tative arguments, such that they have a singularity at total lockdown.
The constant 𝐼max is selected as a threshold. Alternatively, one could
model 𝐼max as a state constraint. However, state constraints model
abrupt changes in the objective function. Instead, our choice reflects
the increasing difficulty of allocating patients to beds as bed availability
diminishes. It represents the fact that in one region individuals may die
due to inadequate care, even if there are unoccupied beds in another
region. Although the transition is notably sharp, it does not result in
an abrupt discontinuity or jump to infinity. However, any monotone
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function with a small slope around 0 and a steep slope away from 0
(i.e., close to total lockdown) could be chosen. Similarly to the way 𝑐h
s modeled, also 𝑐s and 𝑐w are based on qualitative reasoning. Various
odeling approaches for the economic, social and health impacts have

een used in the literature, e.g., [4,36–38].

If the number of infected is computed using any time stepping
ethod for solving the SIR initial value problem (1), see, e.g., [31], the

bjective (3) can be evaluated directly using numerical integration. We
efer to this as 𝐽ODE. For an ABM involving randomness, the number
f infected is a stochastic process. Each simulation yields a different
rajectory for the number of infected. In this case, we refer to (3) as
ABM, and define the actual objective as the expectation E[𝐽ABM(𝑢)],

which can be evaluated using a simple Monte Carlo integration

E[𝐽ABM(𝑢)] ≈ 1
𝑛

𝑛
∑

𝑖=1
𝐽ABM(𝑢)𝑖 =∶ E𝑛[𝐽ABM(𝑢)] (4)

based on samples 𝐽ABM(𝑢)𝑖. The accuracy of this unbiased estimate is
given in terms of its standard deviation as

𝜎(E𝑛[𝐽ABM(𝑢)]) ≈ 𝜎𝑛(𝐽ABM(𝑢))∕
√

𝑛 (5)

ith the sample variance

2
𝑛 (𝐽

ABM(𝑢)) ≈ 1
𝑛 − 1

𝑛
∑

𝑖=1
(𝐽ABM(𝑢)𝑖 − E𝑛[𝐽ABM(𝑢)])2.

The well-known slow convergence of Monte Carlo methods of order
(𝑛−1∕2) requires a large number of expensive ABM simulations for a
faithful evaluation of the objective. Variance reduction methods such
as control variates, quasi-Monte Carlo sequences, or hierarchical Monte
Carlo methods are popular approaches to reduce the numerator in (5)
and thus the sampling error [39]. Unfortunately, they are intrusive
by requiring a joint probability space underlying the different random
variables used, and thus a carefully designed use of random number
generators for sampling. This is difficult to achieve for complex ABMs
designed from scratch, and virtually impossible for existing ABMs.
Thus, in general, one has to rely on the simple Monte carlo evalua-
tion (4). We will now discuss how the two models, i.e., the ODE model
and the ABM model, can be optimized, as this is key to the optimization
algorithm in Section 3.5.

3.3. ODE optimization

For an ODE model, the policy optimization problem

min
𝑢∈𝑈

𝐽ODE(𝑢)

is a classical optimal control problem, for which several well-studied
numerical solution approaches exist, see, e.g., [40,41]. We briefly out-
line the exact gradient descent algorithm, since subsequent algorithms
build on it.

The idea is to go downhill for some step size 𝛼 in direction of the
steepest descent 𝑠𝑘 = −∇𝐽ODE(𝑢). Outward pointing components are
projected to the set of admissible controls 𝑈 (here the unit cube in R𝑛u ),
i.e.,

𝑃𝑈 (𝑥, 𝑦)𝑖 =

{

0, (𝑦𝑖 = 0 ∧ 𝑥𝑖 < 0) ∨ (𝑦𝑖 = 1 ∧ 𝑥𝑖 > 0)
𝑥𝑖, otherwise

for 𝑖 ∈ {1,… , 𝑛u}. The step size 𝛼 is conceptually the largest step size
that (1) satisfies a constant bound 𝛼 ≤ 𝛼0 and admissibility 𝛼 ≤ �̄�(𝑢𝑘) ∶=
max{𝑎 ∣ 𝑢𝑘 + 𝑎𝑠𝑘 ∈ 𝑈}, and (2) satisfies the Armijo rule of sufficient
decrease,

𝐽ODE(𝑢𝑘 + 𝛼𝑠𝑘) ≤ 𝐽ODE(𝑢𝑘) + 𝛼𝑐1∇𝐽ODE(𝑢𝑘)𝑠𝑘. (6)

The latter ensures that at least a certain fraction 𝑐1 ∈]0, 1[ of the descent
promised by the first-order Taylor approximation of the objective is

ODE
5

realized. The most efficient way to compute the gradient ∇𝐽 (𝑢) is
Algorithm 1: Basic gradient descent algorithm
1 Input 𝑢0 ∈ 𝑈 , 𝛼0 > 0, 𝑐1 ∈ ]0, 1[
2 for 𝑘 = 0,… , 𝐾 do
3 compute 𝑠𝑘 = 𝑃𝑈 (−∇𝐽ODE(𝑢𝑘), 𝑢𝑘)
4 𝛼 = min{𝛼0, �̄�(𝑢𝑘)}
5 while Armijo condition (6) violated do
6 𝛼 = 𝛼∕2

7 𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑠𝑘
8 Output 𝑢⋆ = 𝑢𝐾

to solve the adjoint equations associated with the ODE system (1) and
𝐽ODE; for details see Appendix B.

Algorithm 1 converges, usually at a linear rate, to a stationary point,
usually a local minimizer, under rather mild regularity assumptions of
𝐽ODE. Its asymptotic convergence rate deteriorates with growing condi-
tion number of the Hessian of 𝐽ODE, i.e., the ratio of largest and smallest
eigenvalue. Preconditioning, i.e., replacing ∇𝐽ODE by 𝐵−1∇𝐽ODE with
some approximation 𝐵 ≈ (𝐽ODE)′′ of the Hessian, can improve the
convergence speed significantly, but constructing effective and com-
putationally cheap preconditioners 𝐵−1 is not trivial. For details and
more sophisticated algorithms we refer to the nonlinear optimization
literature [42].

3.4. ABM optimization

Solving the policy optimization problem for realistic ABMs, i.e.,

min
𝑢∈𝑈

E[𝐽ABM(𝑢)], (7)

is much more difficult than solving it for the ODE model due to three
major challenges:

(i) ABMs are much more complex, involving thousands of agents,
and they often simulate the agents’ activities with a higher
time resolution, whereas ODE models often only represent the
average population and thus omit the vast majority of details
that ABMs provide. Thus, computing a single ABM trajectory is
orders of magnitude more expensive.

(ii) ABMs are inherently stochastic, such that many independent
simulations are required to approximate the objective with suf-
ficient accuracy.

(iii) ABMs are inherently discontinuous due to the discrete decisions
of the agents. Thus, single ABM trajectories are not differentiable
with respect to the control 𝑢, so that efficient adjoint gradi-
ent computation, as possible for ODE models, is not directly
available.

Therefore, for the time being, ABM optimization must rely on objec-
tive samples alone, inferring descent directions from noisy objective
evaluations.

3.4.1. Gradient approximation
For approximating directional derivatives of the objective

E[𝐽ABM(𝑢)] in direction 𝑣 ∈ R𝑛u , we use finite differences

∇E[𝐽ABM(𝑢)]⊤ 𝑣 ≈ (2ℎ)−1
(

E𝑛[𝐽ABM(𝑢 + ℎ𝑣)] − E𝑛[𝐽ABM(𝑢 − ℎ𝑣)]
)

= 1
2ℎ𝑛

𝑛
∑

𝑖=1

(

𝐽ABM(𝑢 + ℎ𝑣)𝑖 − 𝐽ABM(𝑢 − ℎ𝑣)𝑖
)

=∶ ∇ℎE𝑛[𝐽ABM(𝑢)]⊤ 𝑣 (8)

or small ℎ > 0. Using the unit vectors 𝑣 = 𝑒𝑘 for 𝑘 = 1,… , 𝑛u, the
omplete gradient vector can be obtained. The approximation error is
f order

∇E[𝐽ABM(𝑢)] − ∇ℎE𝑛[𝐽ABM(𝑢)]‖ = 

(

ℎ2 + 𝜎
√

)

,

ℎ 𝑛



Journal of Computational Science 77 (2024) 102242J.-H. Niemann et al.

g

‖

c
o

c
s
p

3

t
f
c
t

a
p

which requires a careful choice of sample size 𝑛 of order 𝑛 = (ℎ−6) to
balance discretization and sampling error. Using

∇ℎ,𝑘𝐽
ABM(𝑢)𝑖 ∶= (2ℎ)−1(𝐽ABM(𝑢 + ℎ𝑒𝑘)𝑖 − 𝐽ABM(𝑢 − ℎ𝑒𝑘)𝑖),

where 𝑒𝑘 is the 𝑘th unit vector, in the estimator

(𝑉𝑛)𝑘𝑙 =
1

𝑛 − 1

𝑛
∑

𝑖=1

(

∇ℎ,𝑘𝐽
ABM(𝑢)𝑖 − ∇ℎE[𝐽ABM(𝑢)]𝑘

)

⋅
(

∇ℎ,𝑙𝐽
ABM(𝑢)𝑖 − ∇ℎE[𝐽ABM(𝑢)]𝑙

)

for the sample covariance 𝑉𝑛 ∈ R𝑛u×𝑛u , the sample mean standard
deviation

𝜎(∇ℎ𝐽
ABM(𝑢)) =

√

‖𝑉𝑛‖∕𝑛,

provides an a posteriori error estimate for the gradient evaluation.
Here, ‖ ⋅ ‖ refers to the 2-norm. If 𝑛 is chosen such that 2𝜎 ≤
𝜖‖∇ℎE𝑛[𝐽ABM(𝑢)]‖, a relative accuracy 𝜖 > 0 of the approximate
radient can be ensured with high probability, i.e.,

∇E[𝐽ABM(𝑢)] − ∇ℎE𝑛[𝐽ABM(𝑢)]‖ < 𝜖‖∇ℎE𝑛[𝐽ABM(𝑢)]‖. (9)

If applicable, variance reduction methods can be used to reduce the
sample mean standard deviation 𝜎 and thus the sampling error. For
example, correlated sampling uses the same random number generator
seeds for evaluating 𝐽ABM(𝑢 − ℎ𝑣)𝑖 and 𝐽ABM(𝑢 + ℎ𝑣)𝑖 in (8), which
leads to the two values being increasingly correlated for ℎ → 0 and
therefore to an expected error order of 

(

ℎ2 + 1∕
√

𝑛
)

. If this increased
orrelation actually is realized by the ABM, the required number 𝑛
f samples is reduced significantly to (ℎ−4). Moreover, if the policy

change 𝑣 affects only policies after some time 𝑡𝑣 > 0, the trajectories
orresponding to 𝑢 − ℎ𝑣 and 𝑢 + ℎ𝑣 coincide on [0, 𝑡𝑣] and can be
imulated just once using a checkpoint-restart ability of the ABM, if
resent.

.4.2. Inexact gradient descent
Unlike for the ODE optimization, the exact steepest descent direc-

ion is not available when solving the policy optimization problem (7)
or the ABM objective E[𝐽ABM(𝑢)]. Nevertheless, descent methods still
onverge as before if sufficient local decrease can be achieved, i.e., if
he descent condition 𝑔⊤𝑠 ≤ −𝑐0‖𝑔‖‖𝑠‖ holds for some 𝑐0 > 0,

where we write 𝑔 ∶= ∇E[𝐽ABM(𝑢)] for the exact gradient and 𝑠 ∶=
−∇ℎE𝑛[𝐽ABM(𝑢)] ≈ −𝑔 for the search direction. We will now discuss
n inexact gradient descent method to solve the policy optimization
roblem (7).

A sufficiently small relative error 𝜖 < 1∕2 of the computed steepest
descent direction, i.e., ‖𝑠 + 𝑔‖ ≤ 𝜖‖𝑠‖, guarantees that 𝑠 is a descent
direction, since by ‖𝑔‖ = ‖𝑔 + 𝑠 − 𝑠‖ ≥ (1 − 𝜖)‖𝑠‖ it holds that

𝑔⊤𝑠 = 𝑔⊤(−𝑔 + 𝑠 + 𝑔) ≤ −‖𝑔‖(1 − 𝜖)‖𝑠‖ + 𝜖‖𝑔‖‖𝑠‖ ≤ −(1 − 2𝜖)‖𝑔‖‖𝑠‖.

In particular, choosing 𝜖 = 1∕4 in (9) yields 𝑐0 = 1∕2 and thus
guarantees at least half of the local progress compared to exact gradient
descent. Since −𝑠⊤𝑔 ≤ (1 + 𝜖)‖𝑠‖2 (using Cauchy–Schwarz) yields

−(1 + 𝜖)𝑐1𝛼‖𝑠‖2 ≤ 𝑐1𝛼𝑠
⊤𝑔,

the Armijo condition (6) is implied by

E[𝐽ABM(𝑢 + 𝛼𝑠)] − E[𝐽ABM(𝑢)] ≤ −(1 + 𝜖)𝑐1𝛼‖𝑠‖2.

When evaluating the objective with absolute sampling errors 𝑒 ≤ 2𝜎 as
in (5), we obtain

E[𝐽ABM(𝑢 + 𝛼𝑠)] − E[𝐽ABM(𝑢)] ≤ E𝑛[𝐽ABM(𝑢 + 𝛼𝑠)] − E𝑛[𝐽ABM(𝑢)] + 2𝑒.

Choosing 𝑒 ≤ 𝜖𝑐1𝛼‖𝑠‖2, the Armijo condition is satisfied with high
confidence if the acceptance test

E𝑛[𝐽ABM(𝑢 + 𝛼𝑠)] − E𝑛[𝐽ABM(𝑢)] ≤ −(1 + 3𝜖)𝑐1𝛼‖𝑠‖2 (10)

is passed for the trial step 𝑠.
Algorithm 2 converges similarly to the exact gradient descent to a

stationary point, usually a local minimizer. However, it is computation-
ally expensive due to the large number of samples required to compute
approximate gradients (line 3) and for the line search (line 5).
6

Algorithm 2: Basic inexact gradient descent algorithm
1 Input 𝑢0 ∈ 𝑈 , 𝛼0 > 0, 𝑐1 ∈ ]0, 1[
2 for 𝑘 = 0,… , 𝐾 do
3 compute 𝑠𝑘 = 𝑃𝑈 (−∇ℎE𝑛[𝐽ABM(𝑢𝑘)], 𝑢𝑘) with accuracy

𝜖 < 1∕2
4 𝛼 = min{𝛼0, �̄�(𝑢𝑘)}
5 while acceptance test (10) fails do
6 𝛼 = 𝛼∕2

7 𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑠𝑘
8 Output 𝑢⋆ = 𝑢𝑘

3.5. Multilevel optimization

In this section, we present a hybrid multilevel optimization ap-
proach to solve the policy optimization problem (7). Nonlinear mul-
tilevel optimization approaches, such as MG/OPT [43] or recursive
multilevel trust region (RMTR) [44], exploit the computationally cheap
optimization of coarser models to generate trial steps that can make
much more progress than possible with Taylor approximations of the
fine model by respecting the underlying nonlinear structures. In the
case of an ABM as fine model, a well-matched ODE model can serve
as a coarse model, with the advantage of being computationally ex-
tremely cheap. Algorithm 3 implements a basic multilevel optimization
algorithm. Here, it is restricted to only two levels 𝐽ABM and 𝐽ODE.

The two main differences to the inexact gradient descent algorithm
are the use of a coarse model for computing the trial step instead of
taking the negative gradient direction, and by restricting the trial step
to an 𝑙∞ trust region within the 𝑛u-dimensional box 𝑈 of admissible
policies instead of performing a line search. For minimizing the coarse
ODE model in line 6, Algorithm 1 is a viable option. The computational
cost of solving an ODE optimization problem is negligible compared to
evaluating ABM gradients.

In order to guarantee convergence, the step suggested by optimizing
the coarse model must lead to a sufficient decrease of the fine objective
as required by an Armijo type condition for some trust region radius
𝜌 > 0, i.e,

E𝑛[𝐽ABM(𝑢 + 𝛿𝑢𝑘)] − E𝑛[𝐽ABM(𝑢)] ≤ −(1 + 3𝜖)𝑐1𝛿𝑢⊤𝑘 𝑠 (11)

with 𝑒 ≤ 𝜖𝑐1𝛿𝑢⊤𝑘 𝑠, needs to be fulfilled. This can be ensured if the
coarse model is first-order consistent, i.e., its gradient coincides with
the fine model gradient at the current iterate 𝑢𝑘, which is achieved
by adding the linear correction −(𝑠𝑘 + ∇𝐽ODE(𝑢𝑘))⊤𝛿𝑢 in line 6. Even
then, the computed step does not have to lead to a decrease of the
fine objective 𝐽ABM since the coarse and fine model are different. A
backtracking line search is not guaranteed to solve this issue since in
highly nonlinear problems the step 𝛿𝑢𝑘 does not necessarily have to
be a descent direction. Instead, the minimization of the coarse model
is restricted to a neighborhood of the current iterate 𝑢𝑘. Using the 𝑙∞

neighborhood 𝑢𝑘+]−𝜌, 𝜌[𝑛u and intersecting it with the admissible set 𝑈
leads to the same type of box-constrained optimization subproblem as
before. For sufficiently small 𝜌 > 0, a reduction of 𝐽ABM is ensured by
first-order consistency. Note that the selection of the trust region radius
𝜌 is deliberately simple. For more efficient update strategies, see [45].

Algorithm 3 can be extended from two-levels to a true recursive
multilevel scheme by solving the coarse model subproblem in line 6
not by a simple gradient method, but by minimizing some even coarser
model. However, due to the extreme difference in computational effort
between ABM and ODE model, the use of coarser ODE models does not
promise any benefit. In contrast, the use of a hierarchy of fine ABM,
coarse ABM, SDE models, and ODE models is an interesting perspective,

which, however, we will not explore in this work.



Journal of Computational Science 77 (2024) 102242J.-H. Niemann et al.
Algorithm 3: Basic multilevel optimization
1 Input 𝑢0 ∈ 𝑈 , 𝜌0 > 0
2 for 𝑘 = 0,… , 𝐾 do
3 compute 𝑠𝑘 = 𝑃𝑈 (−∇ℎE𝑛[𝐽ABM(𝑢𝑘)], 𝑢𝑘) with accuracy

𝜖 < 1∕2
4 𝜌 = 𝜌0
5 repeat
6 𝛿𝑢𝑘 = argmin

𝛿𝑢∈(𝑈−𝑢𝑘)∩]−𝜌,𝜌[𝑛u
𝐽ODE(𝑢𝑘 + 𝛿𝑢) − (𝑠𝑘 +∇𝐽ODE(𝑢𝑘))⊤𝛿𝑢

7 𝜌 = 𝜌∕2
8 until acceptance test (11);
9 𝑢𝑘+1 = 𝑢𝑘 + 𝛿𝑢𝑘
10 Output 𝑢⋆ = 𝑢𝑘

3.6. Advantages and limitations of multilevel optimization

Next, we discuss the advantages and limitations of multilevel opti-
mization over other well-established gradient-free and gradient-based
methods that are applicable to optimal policy design with ABMs. The
main dimensions of comparison are monotonicity, gradient evaluation,
and convergence speed. Both ensuring monotone decrease of the objec-
tive and making use of gradient information usually improve reliability
and iteration count, but increase the computational cost.

Gradient-free optimization methods [46] like particle swarm or
evolutionary algorithms are applicable but require too many ABM
evaluations as they have no inherent concept of descent directions. In
some approaches, approximate descent directions are obtained from
averaging over populations, which incurs a large number of model
evaluations. Nelder–Mead and coordinate search perform a systematic
search for descent, but have a very coarse direction resolution, leading
to quite inexact and suboptimal directions of the steps taken.

Gradient-based methods usually take far fewer steps, but require
the evaluation of gradients, which can be costly [42]. Steepest descent
takes locally optimal descent directions, but suffers from ‘‘zig-zagging’’
in the case of ill-conditioned objective Hessians. Newton’s method
converges locally very quickly, but is not applicable since second
derivatives are only available as very rough estimates at exceedingly
high cost. Quasi-Newton methods approximate the Hessians from im-
plicit finite differencing of gradients, and suffer from amplification of
stochastic noise.

Multilevel optimization exploits an available numerically cheap
coarse model. Although every iteration of the multilevel algorithm
is approximately as expensive as one of the inexact gradient descent
algorithm, in the initial phase, the proposed steps can be expected to
be better than steepest descent because the coarse model can capture
nonlinearities of the fine model. Asymptotically, the coarse model’s
Hessian acts as a preconditioner for the gradient descent method on the
fine model. A good agreement of both models’ Hessians improves the
asymptotic convergence rate on ill-conditioned problems and avoids
the zig-zagging that slows down gradient methods applied to general
ill-conditioned problems. The proposed steps are then closer to Newton
steps and improve the asymptotic convergence rate on ill-conditioned
problems.

Non-monotone stochastic methods such as stochastic gradient de-
scent, ADAM, AdaGrad etc. aim to provide cheap, inexact gradient
approximations and omit acceptance tests [47]. While this is numeri-
cally cheap, it sacrifices monotonicity and explicit convergence control,
and requires a decreasing step size, which leads to slow convergence.

In general, the stochastic nature of ABMs makes monotonicity tests
and gradient evaluation by finite differencing computationally expen-
7

sive, which opens up room for further research.
4. Numerical examples

In this Section, we will present numerical examples using the op-
timization techniques for ABMs given in the previous section for the
example objective. We start with a brief parameterization of the models
in Section 4.1. A comparison of the multilevel algorithm with the
inexact gradient descent algorithm follows in Sections 4.2 and 4.3 along
our guiding examples, i.e., the H/ABM and GERDA.

4.1. Parameterization

In order to anchor the examples in some empirical orders of magni-
tude, we considered figures relating to the beginning of the pandemic
in Germany. For the model we choose the German municipality of
Gangelt. In each experiment we consider a time frame of seven weeks,
i.e., 𝑇 = 1 176. We set the constant 𝐼max to the value 0.5%, so that it
refers to the carrying capacity of the health care system in terms of
total available intensive care beds. For the upper bound on the fraction
of work that can be done at home, we choose an educated guess of
𝑢max
w = 0.81, based on the fact that not all jobs can be moved home or

closed (e.g., sales employees or health care workers). The weights given
to the costs of homeworking and homeschooling versus the weight
given to the number of infected are subject of a societal or political
debate that we do not intend to enter here. Therefore, an example is
defined rather than opting for a multicriteria analysis that would leave
the choice of weights up to a potential user of the results obtained.
Thus, we set 𝑎s = 𝑎w = 1.

Every algorithm is started from 𝑢0 = 0𝑛u , where 0𝑛u denotes a
vector of length 𝑛u with zeros only. All parameters relevant to the
models are summarized in Table A.2, while the parameters relevant to
the optimization algorithms are summarized in Table A.3. A detailed
derivation of all parameters can be found in Appendix A.

4.2. Optimal policies for the H/ABM

Due to the very long runtime of GERDA, a detailed numerical analy-
sis of the algorithms would not be justifiable for this model. Therefore,
in this section, we use the H/ABM introduced in Section 2.2.2 that
has a strongly reduced computational cost to compare the multilevel
algorithm with the inexact gradient descent algorithm. As a termination
criterion, we choose either 15 iterations or when the sample size 𝑛 of
the objective estimate (4) or gradient estimate (8) is more than one
million samples, whichever comes first.

First, we present the policies computed by the multilevel and inex-
act gradient descent algorithm for two different cases: constant policies
that do not change for the entire time horizon of seven weeks, and
piece-wise constant policies that change every 168 h (i.e., weekly
changing). Fig. 2 shows the computed policies as well as the expected
time course of the H/ABM for a time frame of 7 weeks. The solid
line represents the solution of the multilevel algorithm and the dashed
line represents the solution of the inexact gradient descent algorithm.
Since all solutions are qualitatively similar (i.e., 𝐽MLO(𝑢const) ≈ 115,
𝐽 IGD(𝑢const) ≈ 116, 𝐽MLO(𝑢weekly) ≈ 111, 𝐽 IGD(𝑢weekly) ≈ 111), we expect
qualitatively similar results in the expected time courses due to condi-
tioning, i.e., the trajectories in Fig. 2(a) for the fractions of agents are
visually indistinguishable for all computed solutions. Both for constant
and piece-wise constant policies, the share of homeschooling is fairly
high, while the share of homeworking is quite low. For the piece-wise
constant policy, the share of homeworking is close to zero after the
first week, but at the expense of homeschooling. Any non-zero control
causes the number of infections – and thus the trajectories in Fig. 2(a)
– to be lower than in the uncontrolled case; compare with Fig. 1(b).

Next, we take a look at the path that both algorithms are taking.
Fig. 3 shows the Monte Carlo evaluation of E𝑛[𝐽ABM(𝑢)] for 𝑛 = 100 and
constant policies. Note that an explicit approximation as done here is
only possible for 𝑛 = 2. For 𝑛 > 2 it becomes computationally (and
u u
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Fig. 2. (a) Expected time courses of the H/ABM and corresponding optimal policies computed using the multilevel algorithm (solid) compared to the policies computed using the
inexact gradient descent algorithm (dashed) for (b) constant and (c) weekly changing policies. Due to conditioning, the trajectories in (a) are visually indistinguishable for the
policies shown in (b) and (c). Any non-zero policy will result in a lower number of infections in (a) compared to the uncontrolled case.
Fig. 3. Monte Carlo evaluations E𝑛[𝐽ABM(𝑢)] for 𝑛 = 100 and 𝑢 = [𝑢s , 𝑢w]⊤ ∈ R2, i.e., the policies are constant for the entire simulation time 𝑇 , and optimization path given by
iterates 𝑢𝑘 computed using the multilevel and inexact gradient descent algorithms. The objective 𝐽ABM in Figure (a) is evaluated for the H/ABM and in Figure (b) for the GERDA
model. It can be clearly seen that both objectives have different minimizers.
visually) infeasible. We see that, as expected, the multilevel algorithm
is initially superior to the inexact gradient descent and takes more
advantageous steps towards the minimizer 𝑢⋆ of 𝐽ABM as it respects the
underlying nonlinear structures of H/ABM. The first step of the inexact
gradient descent algorithm is just barely still admissible. As it contin-
ues, the objectives 𝐽ABM computed by the algorithms descend, however,
at different rates. When approaching the optimum, the changes with
respect to 𝑢⋆ get less pronounced (cf. Fig. 4). Especially the inexact
gradient descent algorithm slows down significantly and barely makes
progress. This can also be seen in Fig. 5, which shows the convergence.
The error is defined as err ∶= |E[𝐽ABM(𝑢𝑘)] − E[𝐽ABM(𝑢⋆)]|, where
𝑢⋆ denotes the true minimizer of 𝐽ABM and 𝑢𝑘 the current iterate.
The true minimizer 𝑢⋆ is unknown and can only be approximated.
Thus, we set 𝑢⋆ = 𝑢MLO

𝑘max
, where 𝑢MLO

𝑘max
denotes the final iterate using

the multilevel algorithm since it can be shown that 𝐽ABM is locally
convex (cf. Fig. 3(a)) and that 𝑢𝑘max ≤ 𝑢IGD

𝑘max
holds. The figures confirm

that in both cases the multilevel algorithm outperforms the inexact
gradient descent algorithm in the early phase. In the later phase the
increasing number of ABM simulations is driven by the choice of 𝑒,
which controls the number 𝑛 required for the estimates of E[𝐽ABM(𝑢)]
to pass the acceptance test with high confidence. Fig. 6, which shows
the cumulative sum of ABM simulations, illustrates this very well. It
also shows that both algorithms become expensive at about the same
rate.
8

4.3. Optimal policies for GERDA

We now consider the GERDA model. To handle the massive compu-
tational effort, we use a reduced version of the municipality of Gangelt
with about 1 000 agents. In this way, one agent in GERDA is roughly
equivalent to 10 people in the real world (as of December 2021). This
allows computing objectives and gradient estimates as in Section 3.4
for large 𝑛 in reasonable time on a high performance computer.

Fig. 7 shows the optimal policies for both scenarios, i.e., constant
and weekly changing policies. As for the H/ABM, the difference in
the effects of constant and piece-wise constant policies on the trajec-
tories are rather negligible for GERDA. However, despite appropriately
adjusted parameterization of the two models, we notice that the mini-
mizers 𝑢⋆H/ABM and 𝑢⋆GERDA are different; compare the solutions shown in
Figs. 3 or 7. More precisely, in both scenarios the policies 𝑢 = [𝑢s, 𝑢w]⊤

are higher, especially the share of homeworking 𝑢w. Remarkably, for
the weekly changing scenario, there is an extreme jump in both policies
in the second week of approximately 80 percentage points. The ‘‘delay’’
of one week and the subsequent jump are due to the incubation period
modeled in GERDA. In the model this results in low values for the
policies; in the real world, with infection rates in the low double digits,
a hard lockdown in the first seven days as shown in Fig. 2 for the
H/ABM could lead to resentment or even noncompliance from the
public. In the further course, both policies are steadily scaled back.
The policies calculated for GERDA are more in line with what was
implemented by many governments in early 2020. This shows the
need to optimize detailed ABMs directly, since coarser models – even
well-fitted ABMs – seem to exhibit a crucial loss of information.
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Fig. 4. Expected number (red/solid) and standard deviation (red/shaded area) of infected agents 𝐼(𝑡) for the corresponding policies at iteration 𝑘. Expected relative change
(black/solid) and standard deviation (gray/shaded area) to the iteration 𝑘 − 2 (i.e., the previous figure). Data estimated from 10 000 H/ABM simulations.
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The GERDA model computations emphasize the need for an effi-
cient algorithm that quickly gets close to a solution: While for the
H/ABM the inexact gradient descent algorithm is a viable option, it
is not for GERDA. Here, the multilevel optimization approach is more
efficient, although it also requires approximately 1.2 million GERDA
simulations after the third iteration step. However, it comes with a
significant reduction from 𝐽ABM(𝑢0) ≈ 1 189 to 𝐽ABM(𝑢3) ≈ 157 after
hree iterations.

In the later phase, the agreement of the Hessian matrices of the
ine and coarse models dominates the asymptotic convergence. Ta-
le 1 summarizes theoretical and experimental convergence rates for
ifferent coarse models acting as preconditioner. For the case 𝑛u =
, the theoretical convergence rates were obtained by computing the
ondition numbers 𝜅 of the Hessian matrices 𝐻 of a two-dimensional

ABM
9

olynomial fit of degree five of the objective 𝐽 over the entire
easible optimization domain 𝑈 for the respective models. For the case
u = 4, we used a local four-dimensional quadratic polynomial fit of
𝐽ABM in an 𝜀-environment around 𝑢⋆. In all cases the preconditioned
problem leads to a faster convergence. The results are confirmed by the
convergence plots (cf. also Figs. 5 for the H/ABM).

5. Conclusion

We presented a heterogeneous multilevel optimization approach
combining a fine-level ABM with a coarse-level ODE to find exem-
plary non-pharmaceutical interventions in epidemic policy design. We
compared this method with state-of-the-art algorithms applicable to
our optimization problem. The multilevel algorithm is expected to
be faster with respect to the number of iterations as it (i) captures

the nonlinear structures better than a first- order second-order Taylor
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Fig. 5. Convergence of the multilevel and inexact gradient descent algorithms with respect to the number of ABM simulations for (a) constant and (b) piece-wise constant policies,
i.e., weekly changing.
Fig. 6. Number of ABM evaluations for the H/ABM with (a) constant controls and (b) piece-wise constant controls, precisely weekly changing controls. The multilevel algorithm
performs better than the inexact gradient descent algorithm at the beginning in terms of the number of iterations. In the further course, both algorithms become expensive at
about the same rate.
Fig. 7. (a) Expected time courses of GERDA and corresponding optimal policies computed using the Multilevel Optimization Algorithm 3 for (b) constant and (c) weekly changing
policies.
model in the early iteration, and (ii) a well-matched coarse model
serves as preconditioner and thus reduces ‘‘zig-zagging’’ slowing down
gradient methods.

However, the theoretical speedup of the multilevel algorithm com-
pared to the inexact gradient descent algorithm is mostly compensated
by the exploding number of samples needed for a high confidence in
the descent direction the closer the current iterate gets to the true
minimizer. This is also the main bottleneck for the inexact gradient
descent algorithm. In the initial phase, though, the superiority of the
multilevel algorithm is apparent, as it leads to solutions that may
10
already be sufficient in a real-world scenario, where the mathematical
optimum need not or cannot be reached.

Additionally, we showed that the optimal policies obtained using
directly the ABM differ drastically from one using the ODE model or
H/ABM, which suggests that using detailed ABMs directly for the design
of optimal policies is beneficial for good results. The above optimization
framework can be applied not only to epidemiological models, but to
any ABM where appropriate and meaningful controls can be found and
applied, and suitable reduced models are available. Future research will
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Table 1
Theoretical and experimental convergence rates for the multilevel algorithm for
constant policies, i.e., 𝑛u = 2 and 𝑇 = 1 176, and 25 days constant policies, i.e., 𝑛u = 4
and 𝑇 = 1 200. The empirical convergence rate 𝜌ODE, fine is obtained using the ODE
model as coarse-level and the H/ABM respectively GERDA as fine-level models.

Fine model

H/ABM GERDA H/ABM

Dimension 𝑛u 2 2 4

Condition 𝜅(𝐻−1
ODE𝐻fine) 3.0300 116.8909 21.9801

𝜅(𝐻−1
H/ABM𝐻fine) – 7.0511 –

𝜅(𝐻fine) 35.1841 235.8803 131.8860

Convergence
rate

𝜌ODE 0.5037 0.9830 0.9130

𝜌H/ABM – 0.7516 –
𝜌fine 0.9447 0.9916 0.9850

Experimental

convergence
rate

𝜌ODE, fine 0.7433 0.1934 0.6854

address the efficient gradient approximation of stochastic dynamical
systems such as ABMs.
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Appendix A. Detailed parameterization

According to [48], who analyze intensive care unit loads for Berlin,
Madrid and Lombardy, the fraction of infected in Berlin that needed
intensive care in the first wave of the pandemic was 6 %. We use this
number as an approximation for Germany and hence Gangelt. From
mid April 2020, intensive care beds had to be registered with a central
agency. In the second half of April, the numbers of beds registered
ranged around 32 000 in Germany, see the daily reports for this time
span under [49]. With this value of intensive care beds in Germany,
if 6 % of the infected should not exceed this number, the maximum
11
Table A.2
Parameters used for the model simulations. Here, the infection rates 𝑟∗◦ denote the
control independent parameters 𝑟∗◦ for the ODE and 𝑟∗◦ for the H/ABM, respectively.
Note that the number of agents for the GERDA model is subject to random changes
with each newly generated world.

Parameter Model

GERDA ODE H/ABM

Time 𝑇 [hours] 1 176 1 176 1 176
Number of agents 𝑁 1 091 – 1 091
Initially infected 𝐼a(0) 5 5/1 091 5
Initially infected 𝐼c(0) 0 0 0
World Gangelt

(reduced)
– –

General infectivity 0.175 – –
Gen. interaction frequency 1 – –
Infection rate 𝑟aa – 1.0252 × 10−12 1.1185 × 10−9

Infection rate 𝑟ac – 4.8804 × 10−4 5.3246 × 10−1

Infection rate 𝑟cc – 6.1482 × 10−13 6.7077 × 10−10

Recovery rate 𝑟a – 4.2148 × 10−2 4.2148 × 10−2

Recovery rate 𝑟c – 4.3427 × 10−2 4.3427 × 10−2

Immunity loss 𝜇 – – 0.2

Table A.3
Parameters used for the optimization algorithms.

Parameter

Fraction of descent 𝑐1 0.1
Maximum trust region radius 𝜌0 0.5
Maximum finite differencing step size ℎmax 0.1
Accuracy 𝜖 0.25
Health care system’s capacity threshold 𝐼max 0.005𝑁
Threshold economic impact 𝑢max

w 0.81
Initial 𝑢0 0𝑛u
Weights 𝑎s = 𝑎w 1

of infected that could be allowed would be around 530 000 persons,
which corresponds to about 0.6% of the population of about 83 million.
As not all intensive care beds can be allocated to COVID-19 patients
since there are other reasons for needing such a bed, we reduce this
number to 0.5%. Thus, we set the health care system’s carrying capacity
to 𝐼max = 0.005 N. For the upper bound on the fraction of work that
can be done at home, we choose an educated guess of 𝑢max

w = 0.81,
based on the following considerations. According to [50], the share of
office jobs is below 36.7%, but a lockdown can also affect non-office
jobs, e.g., sales or industrial employees, or employees in the service
sector. On the other hand, there are jobs that even in a lockdown
cannot be closed down or done from home. We consider the examples
of workers in the health care system (5.7 million employed), food sales
(552 200 employed), as well as police and fire departments (1.7 million,
all numbers from [51]). These sum to about 8.5 million, representing
about 17.5% of the approximately 45 million people employed in
Germany. To account for further cases not included here, we increase
this number to 19 %, meaning that the economic costs explode when
approaching 81 % of work not done at the workplaces.

Appendix B. Adjoint gradient computation

The most efficient way to compute the gradient ∇𝐽ODE(𝑢) in line 3
n Algorithm 1 is to solve the adjoint equations associated with the ODE
ystem (1) and 𝐽ODE. Writing (1) compactly as

�̇� = 𝑓 (𝑦, 𝑢), 𝑦 = [𝑆a, 𝑆c, 𝐼a, 𝐼c]⊤,

where we may safely neglect the recovered compartments, the adjoint
equation is the terminal value problem

−�̇� = 𝑓𝑦(𝑦, 𝑢)⊤𝜆 + 𝐽ODE
𝑦 (𝑦)⊤, 𝜆(𝑇 ) = 0,

here the simulated trajectory 𝑦, i.e., the numerically approximated
DE solution, enters as data. Then, the gradient is given by

𝐽ODE(𝑢) =
𝑇
𝑓𝑢(𝑦, 𝑢)⊤𝜆 d𝑡.
∫0

https://github.com/Jan-HendrikNiemann/MLoptABM
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Fig. A.8. Solution of the fitted ODE system (1) (black, solid lines) compared to
expected aggregated trajectory of GERDA (mean over 1 000 independent simulations,
sample standard deviation indicated as shaded areas) for parameters given in Table A.2.

The adjoint equation can be derived from the chain rule using a trivial
but clever rearrangement of terms. For more details we refer to [52].
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