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Abstract 
Motivation: The minimizer concept is a data structure for sequence sketching. The standard canonical minimizer selects a subset of k-mers 
from the given DNA sequence by comparing the forward and reverse k-mers in a window simultaneously according to a predefined selection 
scheme. It is widely employed by sequence analysis such as read mapping and assembly. k-mer density, k-mer repetitiveness (e.g. k-mer bias), 
and computational efficiency are three critical measurements for minimizer selection schemes. However, there exist trade-offs between kinds 
of minimizer variants. Generic, effective, and efficient are always the requirements for high-performance minimizer algorithms.
Results: We propose a simple minimizer operator as a refinement of the standard canonical minimizer. It takes only a few operations to com
pute. However, it can improve the k-mer repetitiveness, especially for the lexicographic order. It applies to other selection schemes of total 
orders (e.g. random orders). Moreover, it is computationally efficient and the density is close to that of the standard minimizer. The refined mini
mizer may benefit high-performance applications like binning and read mapping.
Availability and implementation: The source code of the benchmark in this work is available at the github repository https://github.com/xp3i4/ 
mini_benchmark

1 Introduction
The minimizer concept is a data structure for sequence sketch
ing. It is firstly introduced to the sequence analysis by Roberts 
et al. (2004) to reduce the storage requirements of biological se
quence data. Then it was applied by many other applications in 
the field, such as sequence binning (Deorowicz et al. 2015), se
quence compaction (Chikhi et al. 2016), sequence classification 
(Wood and Salzberg 2014), and read mapping (Li 2016, Jain 
et al. 2020, B€uchler et al. 2023).

Given the sequence, the minimizer is the minimum k-mer 
of a predefined ordering scheme in a window of w consecu
tive k-mers. The minimizer performance relates to several key 
measurements. Schleimer et al.’s (2003) study defined the 
density of a k-mer selection scheme as the fraction of selected 
k-mers. Formally, denote < the ordering scheme and X the 
selected k-mers in the sequence S, whose size jSj � wþk. The 
density of the selection scheme is given by 

qðXÞ ¼
jXj
jSj

(1) 

where jXj, jSj are the size of X and S. Since it was first intro
duced to measure the storage requirements, the selection 
schemes are supposed to select a set of k-mers that is as sparse 
as possible such that the storage requirements can be largely 
reduced. Novel selection schemes, such as Orenstein et al. 

(2016), Marçais et al. (2017), Jain et al. (2020), and  (Zheng 
et al. 2021), are proposed to improve the minimizer density.

The k-mer repetitiveness is another minimizer measure
ment. It is measured by the k-mer frequency in practice. 
Formally, the frequency of a k-mer X ¼ x in S is defined as its 
average occurrences in the sequence, 

vðX ¼ xÞ ¼
nðxÞ
jSj

(2) 

where nðxÞ is the occurrence of k-mer X ¼ x. Let V denote 
the random variable over possible k-mer frequencies. It 
relates to the performance of applications such as

1) Read mapping: Consider the anchoring (seeding) prob
lem, where we need to find all matched pairs of minimiz
ers in the reference and the read. 

2) Binning: Similar to the read mapping, we need to find 
matched minimizers and cluster them into bins. 

For the two problems, we prefer selection schemes that can gen
erate minimizers of lower repetitiveness (Deorowicz et al. 
2015), because highly repetitive minimizers would significantly 
decrease the matching accuracy and computational efficiency.

Like many other fundamental data structures, computational 
efficiency is the third performance measurement. Although the 
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time complexity of computing minimizers is commonly linear, 
optimizations of density or k-mer repetitiveness may signifi
cantly increase the runtime. For high-performance applications, 
such as population-scale read mapping, drops in computational 
efficiency may be non-negligible.

In general, there exist performance trade-offs between min
imizer variants. For instance, the random ordering scheme 
(Chikhi et al. 2014) generates more uniformly and sparsely 
distributed minimizers than the lexicographic ordering 
scheme at the expense of increased runtime. In contrast, lexi
cographical minimizers are less affected by nearby mutations 
or sequencing errors than random minimizers, sometimes 
called “conservation” (Edgar 2021). Thus, they are beneficial 
to some matching applications. But the trade-off is the less 
random sampling.

Here, we propose an operator as a refinement of the stan
dard (canonical) minimizer. It has the following features.

1) It improves k-mer repetitiveness of the standard mini
mizer. It is less biased to small k-mers and distributes 
more uniformly. 

2) It applies to any selection schemes of total orders (Davey 
et al. 2002) (e.g. lexicographic or random order). 

3) Its density converges toward that of the stan
dard minimizers. 

4) It is commonly faster than the standard minimizer to 
compute and can reach two times at most. 

It is worth noting that the operator does not apply to non- 
canonical minimizers of single-strand sequences, such as 
RNA minimizers. However, canonical minimizers are essen
tial to most sequence analysis applications, such as read map
ping and genome assembly.

In the following sections, we will first define the refined min
imizer. Next, we will prove three properties that are essential 
to the refined minimizer performance. In the results, we will 
compare the algorithm complexity of computing the standard 
and refined minimizers. Then, we will evaluate the statistics (e. 
g. repetitiveness, density) of standard and refined minimizers 
in real sequences. Finally, we will analyze the statistics and dis
cuss the potential limitations and improvements.

2 Materials and methods
2.1 Definitions
Operations: For high-performance applications, a preferable 
minimizer function should be simple and effective. 
Specifically,

1) Simple: It uses a few operations to compute, such as 
operations in fþ;−;�;�;&; j;�;CMPg, namely Add, 
Subtract, Bitwise Shift left/right, And, Or, Exclusive Or 
(XOR) and Branch Conditions. 

2) Effective: It generates less biased k-mers with reasonable 
density. And it applies to all selection schemes. 

Table 1 is a reference comparison of CPU cycles for operations 
we used to compute minimizers. It is dominated by branch con
ditions o3, which takes about 10 cycles on average.

Standard minimizer: A minimizer scheme denoted by 
ðw;k; <Þ selects the minimum k-mer in w consecutive k-mers 
2 Rk, where R is the character set and order < is commonly 
induced by a hash function h, which is an injection from Rk 

to a totally ordered set. Namely, if x, y are two k-mers, then 
x < y if and only if hðxÞ < hðyÞ. Denote s the subsequence (or 
window) whose length jsj ¼ wþ k − 1. Denote s0 the reverse 
complement of s. The standard minimizer hs is given by 

hsðsÞ ¼ min<0 6 i<wfsi;iþk; s0i;iþkg

Refined minimizer: The core idea of the refined minimizer is 
to define an appropriate decision function that makes the 
ordering scheme only compute minimizers in the sequence 
of one strand such that the smallest k-mers are less likely 
to be selected, repetitively. Provided jsj � 1ðmod2Þ, we define 
an operator as 

dðsÞ ¼ pTþpG−pC−pA (3) 

where pA;pC;pG;pT are the occurrences of characters A, C, 
G, T in s. jsj � 1 ðmod2Þ is to guarantee dðsÞ 6¼ 0, which 
will be later discussed in the properties. The refined mini
mizer h is then defined as 

hrðsÞ ¼
h−

r ðsÞ ¼ min
<

06i<w
fs0i;iþkg if dðsÞ < 0

hþr ðsÞ ¼ min
<

06i<w
fsi;iþkg if dðsÞ > 0

8
>>><

>>>:

(4) 

Table 2 is an example comparing refined and standard 
minimizers. The lexicographic order of a given k-mer can be 
computed by 

Pk−1
i¼0 4iai, where ai is the order of the ith (right 

toward left) character of the k-mer and ai equals 0, 1, 2, 3 for 
A, C, G, T.

2.2 Properties
Here, we discuss three refined minimizer properties that are 
essential to the applications. They hold for all ordering 
schemes ðw;k; <Þ defined above. The first one guarantees the 
strand symmetry, such that the computation of the refined 
minimizer is independent of the strand. The second one guar
antees that the refined minimizer is always not smaller than 
the standard one. The third one guarantees that the refined 
minimizers have a reasonable density that is close to that of 
the standard one.

1) Provided jsj � 1 ðmod2Þ, then hrðs0Þ ¼ hrðsÞ. 
Proof: Clearly, pAþpCþpGþpT ¼ jsj. 

ds0 ¼ p0Tþp0G−p0C−p0A
¼ pAþpC−pT−pG
¼ −ds ¼ jsj−2ðpGþpTÞ � 1 ðmod2Þ
6¼ 0 

where p0A ¼ pT, p0C ¼ pG, p0G ¼ pC, p0T ¼ pA are the 
occurrences of A, C, G, T in s0. Hence hrðs0Þ ¼ hrðsÞ
according to the definition in expression 4. 

Table 1. CPU cycles for operations used to compute minimizers. 
Operations such as traversing an array will probably trigger L1 cache read.

No. Operations CPU cycles

o1 Add, Subtract, OR, AND, XOR, Shift <1
o2 Level 1 (L1) cache read 3–4
o3 Right “if” branch 1–2

Wrong “if” branch (branch misprediction) 10–20
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2) For any total order < of Rk, hsðsÞ 6 hrðsÞ. Proof: 

hsðsÞ ¼ min
<

06i<w
fsi;iþk; s0i;iþkg

¼ min
<

min<06i<wfsi;iþkg;min<06i<wfsi;iþkg
� �

6 hrðsÞ

It implies that hrðsÞ would be less biased to small k-mers 
than hsðsÞ. 

3) Denote sn ¼ a0a1; ::; ajsj−1 and snþ1 ¼ a1a2; ::; ajsj the nth 
and nþ1th subsequences, where ai is the ith base. 
Denote dn ¼ dðsnÞ the operator of sn defined in expres
sion 3. Provided the sequence is random, then the fol
lowing expression of probabilities holds 

lim
jsj!þ1

PðhrðsnÞ ¼ hrðsnþ1ÞÞ

¼ lim
jsj!þ1

PðhsðsnÞ ¼ hsðsnþ1ÞÞ

¼ 1−
2

wþ 1

(5) 

Proof: For random sequences, Schleimer et al. (2003)
have proved PðhsðsnÞ ¼ hsðsnþ1ÞÞ ¼ 1− 2

wþ1. Because there 
exist two cases that hsðsnÞ 6¼ hsðsnþ1Þ, namely the minimizer 
of sn is its leftmost k-mer or the minimizer of snþ1 is 
its rightmost one, otherwise sn and snþ1 share the same 
minimizer. The probability of each case is 1

wþ1. 
Therefore, PðhsðsnÞ ¼ hsðsnþ1ÞÞ ¼ 1− 2

wþ1. 

We then prove the limit of the refined minimizer in expres
sion 5. Since snþ1 can be iterated from sn by removing the 
first character of sn, namely a0, and append the last character 
of snþ1, namely ajsj, at the end, we have dnþ1 ¼ dnþdn, where 

dn ¼

−2 if a0 2 fG;Tg and ajsj 2 fA;Cg
0 if a0; ajsj 2 fG;Tg or a0; ajsj 2 fA;Cg
2 if a0 2 fA;Cg and ajsj 2 fG;Tg

8
<

:
(6) 

It is worth noting that dndnþ1 6¼ 0, since d 6¼ 0 has been 
proved in the first property. Then we have the following 
two cases:

• If dndnþ1 > 0: Then according to the definition in expres
sion 4 

PðhrðsnÞ ¼ hrðsnþ1Þjdn > 0; dnþ1 > 0Þ

¼ Pðhþr ðsnÞ ¼ hþr ðsnþ1ÞÞ ¼ 1−
2

wþ 1 

The probability above equals 1− 2
1þw because there exist 

two cases that Pðhþr ðsnÞ 6¼ hþr ðsnþ1Þ as well. Analogously, 

PðhrðsnÞ ¼ hrðsnþ1Þjdn < 0; dnþ1 < 0Þ

¼ Pðh−
r ðsnÞ ¼ h−

r ðsnþ1ÞÞ ¼ 1−
2

wþ 1 

Therefore, 

P hr snð Þ ¼ hr snþ1ð Þjdndnþ1 > 0
� �

¼ P hþr snð Þ ¼ hþr snþ1ð Þ
� �P dn > 0; dnþ1 > 0ð Þ

P dndnþ1 > 0ð Þ

þP h−
r snð Þ ¼ h−

r snþ1ð Þ
� �P dn < 0; dnþ1 < 0ð Þ

P dndnþ1 > 0ð Þ

¼ 1−
2

wþ 1 

• If dndnþ1 < 0: dndnþ1 ¼ dnðdnþdnÞ < 0 if and only if (iff) 
dn ¼ 62 and dndnþ1 ¼ −1. According to expressions (3) 
and (6), we know that dn ¼ −1, dnþ1 ¼ 1 iff a0 2 fA;Cg, 
jsj−1

2 characters in a1; a2; . . . ; ajsj−1 are 2 fA;Cg and 
ajsj 2 fG;Tg. Therefore, 

Pðdn ¼ −1; dnþ1 ¼ 1Þ ¼

jsj−1
jsj−1

� �

2
ðpð1−pÞÞ

jsjþ1
2 

where p is the probability of an random character 2 fA;Cg. 
Analogously, 

Pðdn ¼ 1; dnþ1 ¼ −1Þ ¼

jsj−1
jsj−1

� �

2
ðpð1−pÞÞ

jsjþ1
2 

Table 2. Comparison of standard (Std) and refined (Rfd) minimizers in a DNA sequence s and reverse complement s
0

, where jsj ¼ 11, k ¼ 5.

n s0 s dðs0Þ dðsÞ K hðKÞ Q2ðhÞ max h − min h

Std Rfd Std Rfd Std Rfd Std Rfd

1 AGCTTACTTTG CAAAGTAAGCT 3 −3 AAAGT ACTTT 11 127 11 127 0 0
2 GCTTACTTTGG CCAAAGTAAGC 5 −5 AAAGT ACTTT 11 127 11 127 0 0
3 CTTACTTTGGT ACCAAAGTAAG 5 −5 AAAGT ACTTT 11 127 11 127 0 0
4 TTACTTTGGTG CACCAAAGTAA 7 −7 AAAGT ACTTT 11 127 11 127 0 0
5 TACTTTGGTGT ACACCAAAGTA 7 −7 AAAGT ACTTT 11 127 11 127 0 0
6 ACTTTGGTGTT AACACCAAAGT 7 −7 AAAGT ACTTT 11 127 11 127 0 0
7 CTTTGGTGTTT AAACACCAAAG 9 −9 AAACA CTTTG 4 510 11 127 7 383
8 TTTGGTGTTTG CAAACACCAAA 11 −11 AAACA GGTGT 4 699 11 127 7 572
9 TTGGTGTTTGG CCAAACACCAA 11 −11 AAACA GGTGT 4 699 11 127 7 572
10 TGGTGTTTGGT ACCAAACACCA 11 −11 AAACA GGTGT 4 699 11 127 7 572
11 GGTGTTTGGTA TACCAAACACC 9 −9 AAACA GGTGT 4 699 11 127 7 572
12 GTGTTTGGTAA TTACCAAACAC 7 −7 AAACA GGTAA 4 688 11 510 7 572
13 TGTTTGGTAAA TTTACCAAACA 5 −5 AAACA GGTAA 4 688 4 510 7 572
14 GTTTGGTAAAT ATTTACCAAAC 5 −5 ACCAA GGTAA 80 688 11 688 76 572
15 TTTGGTAAATG CATTTACCAAA 5 −5 AAATG AAATG 14 14 11 510 76 685

K is the minimizer. hðKÞ is the lexicographic order of the minimizer. Q2ðhÞ is the median of hðKÞ. Values with bold text imply that h is less biased to 
small ones.
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The limits of the two probabilities above equal 0. 
Therefore, limjsj!þ1 Pðdndnþ1 < 0Þ ¼ 0 

Therefore, the limit in expression 5 is 

lim
jsj!þ1

PðhrðsnÞ ¼ hrðsnþ1ÞÞ

¼ lim
jsj!þ1

Pðdndnþ1 < 0ÞPðhrðsnÞ ¼ hrðsnþ1Þjdndnþ1 < 0Þ

þ lim
jsj!þ1

Pðdndnþ1 > 0ÞPðhrðsnÞ ¼ hrðsnþ1Þjdndnþ1 > 0Þ

¼ 1−
2

wþ 1 

Based on the discussion above, we have the expected k-mer 
density of refined minimizers 

qr ¼ Pðdndnþ1 > 0ÞqsþPðdndnþ1 < 0Þ (7) 

where qs is the expected density of standard minimizers. 
Therefore, limjsj!þ1 qr ¼ qs.

2.3 Heuristics
Expression (7) suggests that we can improve the k-mer density 
without significantly impacting the selected minimizers by simply 
skipping the nþ1th window if dndnþ1 < 0. The core idea of the 
heuristic is to skip the “solo” windows, whose signs of d are dif
ferent from those of predecessor and successor windows. Solo 
windows are minority especially for large jsj, while they signifi
cantly increases Pðdndnþ1 < 0Þ in expression (7). The heuristic 
skips minimizers of solo windows while preserving minimizers of 
“non-solo” ones. For instance, if d1; d2; d3;¼ −1; 1;−1, then 
skipping the solo window 2 will also drop its minimizer. 
However, if d1; d2; d3;¼ −1;1; 1, then skipping window 2, 
which is non-solo, may not affect its minimizer, since window 3 
may preserve it.

3 Results
3.1 Runtime
Arbitrary windows: We compared the CPU cycles of comput
ing the refined and standard minimizer in algorithms 1 and 2. 
The loops in the pseudocodes apply to arbitrary windows 
and ordering schemes induced by the random hash function 
R, such as ntHash (Mohamadi et al. 2016), which directly 
computes random rolling hash values. CPU cycles for each 
step are listed in the comments of algorithms 1 and 2.  
Algorithm 1 takes or ¼ 10o1þ2o2þo3þwð3o1þoRþo3Þ

operations in sum and algorithm 2 takes os ¼ 8o1þo2þ

2wð3o1þoRþo3Þ operations in sum, where o1, … ,o3 are de
fined in Table 1, oR is CPU cycles for function R. Assuming 
o1 ¼ 1, o2 ¼ 3 and o3 takes 10 cycles on average, then 

os ¼ 11þ2wð13þoRÞ

or ¼ 26þwð13þoRÞ

�

The expected speedup of the refined minimizer is 

Tr ¼
os

or
¼ 2−

41
26þwð13þ oRÞ

(8) 

Hence, Tr 2 ½0:949;2Þ, where Tr is minimized when w ¼ 1 
and oR ¼ 0 (lexicographic ordering). Tr is maximized when 
w� 1 or oR � 0. Therefore, the refined minimizer can be 
two times faster at most.

Applications may apply heuristics to further improve the 
minimizer performance. For instance, a more practical way 
to break ties (when the smallest k-mer appears multiple 
times) is to skip ties in adjacent windows. This creates opti
mal spread in poly-X regions (e.g. repetitive AA.). Such heu
ristics will introduce additional CPU cycles. However, 
heuristics for standard minimizers commonly apply to refined 
minimizers and can be integrated into function R. Hence the 
speedup upper bound can be preserved in such cases.
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Consecutive windows: Applications may use buffers to re
duce the times of computing k-mers when computing mini
mizers in consecutive windows. The refined minimizer 
preserves the speedup upper bound in such a case. They are 
discussed in Supplementary Notes. However, the speedup in 
practice can be washed out to some extent by additional 
buffer operations, such as reading, writing, traversing, etc. 
The exact trade-offs depend on w, k, ordering schemes, CPU 
architectures, etc. Optimizations of buffers can substantially 
improve the practical runtime in such cases.

3.2 Distributions
As discussed above, we ideally prefer selection schemes that can 
generate k-mers of lower frequency for the read mapping and 
binning problem. Correspondingly, we prefer more uniformly 
distributed minimizers. We evaluated key statistics shown in  
Table 3 as a sketch of the distribution of selected minimizers X, 
which are computed in consecutive windows by streaming 
GRCH38 (chr 1–22, X, Y). Runtime (i.e. T in the table) is the 
corresponding time of computing minimizers in consecutive 
windows with buffers rather than the runtime of algorithms 1 
and 2. Results for additional groups of jsj 6 45 and k 6 30 
are presented in Supplementary Tables S1 and S2. It is worth 
noting that the tables only show statistics for even ks to simplify 
the results. The refined minimizer concept also applies to odd 
ks, and the corresponding results have no significant difference 
compared to those of even ks. Supplementary Table S3 shows 
statistics of minimizers of minimap2 (Li 2018). We evaluated 
25–95% percentiles of minimizer frequency V, as shown in the 
table. For instance, P0:25 ¼ 9:97 per megabases for standard 
lexicographical minimizer with jsj ¼ 15;k ¼ 4 means 25% min
imizer frequencies are lower than this value.

The column DKLðXjjUÞ is the Kullback–Leibler (KL) diver
gence of the distribution of X and the uniform k-mer distri
bution U. It is given by 

DKLðXjjUÞ ¼
X4

k

i¼1

vðxiÞ log
vðxiÞ

uðxiÞ

For instance, if k ¼ 3 then uðxiÞ ¼ 1=43 ¼ 1=64 constantly, 
since there exist 43 types of 3-mers and each type has the same 
chance of being selected. A lower KL divergence implies that X 
is more uniformly distributed, and thus the scheme is less biased 
to specific minimizers. As expected, the results reveal that re
fined minimizers have lower KL divergence. Therefore, we 
would expect refined minimizers to generate less biased k-mers.

The column E-hits is the expected number of hits intro
duced by research (Sahlin 2022). A lower E-hits may benefit 
applications such as read mapping. It is computed as follows 
in the assessment. 

E − hitsðXÞ ¼
1
jXj

X4
k

i¼1

nðxiÞ
2
¼

1
qjSj

X4
k

i¼1

nðxiÞ
2

¼
jSj
q

X4
k

i¼1

vðxiÞ
2 

Therefore, it is a comprehensive metric of density q and fre
quency vðxiÞ. Since the refined minimizers improve the k- 
mer frequency V at the cost of limited increased density q, 
we expect refined minimizers to improve E-hits, while the 
improvement is relatively lower than those of percentiles 
and DKL. E-hits for minimizers in GRCH38 are in line with 
expectations, as shown in Table 3 and Supplementary 
Tables S1–S3.

Figure 1 illustrates the empirical distribution of minimizer 
frequency V discussed above. It is log-scaled since the distri
bution is right-skewed, namely a long tail on the right side. 
Supplementary Fig. S1 shows the histogram version of the 
same data as a complement. As discussed above, we prefer 
small V for anchoring and binning problems, since large ones 
in the long tails would be the performance bottleneck. The 
figure reveals that for different jsj;k, standard minimizers 
have heavier tails, indicating larger V than refined minimiz
ers. Therefore, refined minimizers generate more uniformly 
distributed k-mers. Figures for additional settings of jsj 6 45 
and k 6 30 are presented in Supplementary Fig. S2.
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Overall, statistics including the percentiles, DKL, E-hits and 
the distribution figures suggest refined lexicographical mini
mizers are less repetitive than standard lexicographical or 
random minimizers. Since the refined minimizer is also com
putationally efficient, it is expected to be more friendly to 
high-performance minimizer applications.

4 Discussion
4.1 Potential limitations
We can observe a drop in benefits for frequency-related sta
tistics of refined minimizers for larger k and jsj (i.e. P0:95, 
DKL, E-hits, and distributions in Supplementary Fig. S2). 
However, it is worth noting that the benefits depend on a 

Table 3. Statistics of standard (Std) and refined (Rfd) minimizer sampled consecutively in GRCH38: P0:25-P0:95 are percentiles of minimizer frequency 
per megabases.

< jsj; k P0:25ðVÞ P0:5ðVÞ P0:75ðVÞ P0:95ðVÞ qðXÞ DKL E-hits T [s]

Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd

Lexico 15,4 9.97 7.55 201.92 69.07 2.64E3 762.28 1.01E4 4.86E3 0.16 0.21 2.28 1.26 2.53E7 1.14E7 27.60 26.12
15,8 2.32 0.06 7.54 0.40 23.66 2.58 61.41 25.48 0.26 0.29 2.25 1.59 1.92E5 1.23E5 28.88 26.62

15,12 0.01 0.00 0.02 0.01 0.09 0.03 0.28 0.16 0.44 0.46 2.43 1.90 1.29E4 9.11E3 31.03 26.22
25,4 0.28 0.71 22.90 4.34 697.16 170.95 8.59E3 3.88E3 0.09 0.13 2.76 1.73 2.43E7 1.19E7 25.04 22.73
25,8 0.04 0.00 1.04 0.02 7.27 0.69 44.77 16.95 0.12 0.16 3.01 2.06 2.26E5 9.93E4 25.03 22.63

25,12 0.00 0.00 0.01 0.00 0.06 0.01 0.24 0.12 0.16 0.19 3.40 2.67 1.34E4 8.32E3 25.85 23.02
Random 15,4 7.82 1.56 163.57 88.59 1.74E3 1.27E3 7.92E3 4.80E3 0.15 0.19 2.14 1.51 2.26E7 1.59E7 48.57 42.94

15,8 0.14 0.04 1.33 0.48 8.75 3.70 41.05 25.83 0.22 0.25 2.17 1.67 1.61E5 1.26E5 47.95 43.21
15,12 0.00 0.00 0.01 0.01 0.06 0.04 0.23 0.17 0.41 0.42 2.31 2.06 1.07E4 1.02E4 52.04 41.94

25,4 0.34 0.07 6.32 6.40 634.58 472.81 5.71E3 3.48E3 0.09 0.12 2.66 2.01 2.25E7 1.71E7 46.20 38.61
25,8 0.01 0.01 0.24 0.19 3.62 2.03 31.74 22.66 0.11 0.14 2.83 2.29 1.61E5 1.34E5 45.89 38.23

25,12 0.00 0.00 0.01 0.00 0.03 0.02 0.17 0.12 0.14 0.17 3.18 2.74 8.97E3 9.64E3 46.79 41.85

DKLðXjjUÞ is the Kullback–Leibler (KL) divergence of the distribution of X and the uniform k-mer distribution U. Large values such as E-hits are expressed 
by scientific notation. T is the runtime. Better values are in bold text.
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Figure 1. Empirical distributions of V for k ¼ 4; 8;12 in rows and jsj ¼ 15;25 in columns. Rfd and Std are refined and standard minimizer. The vertical axis 
equals the frequency of V ¼ v, namely the empirical probability PðV ¼ vÞ. The horizontal and vertical axes are in log 10 scale.
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latent factor, the sequence size. We use a coefficient, the aver
age minimizer occurrences in the sequence denoted by 
EðX; kÞ to describe the latent performance impact. 

EðX;kÞ ¼
jXj

4k
¼

qjSj

4k
�

2jSj

ð1þwÞ4k
¼

2jSj

ðjsj−kþ 2Þ4k 

where q � 2=ð1þwÞ is the expected minimizer density. 
For instance, if we assess 20-mers in GRCH38 references 
of approximately 3Gbps in size, then EðX; kÞ ¼
q � 3Gbps=420 � 0. It means that most types of 20-mers never 
occur in the minimizer set of GRCH38. As a result, the em
pirical distribution of minimizer frequency will not be close 
to the expected one due to insufficient minimizers (i.e. law of 
large numbers). Specifically, EðX;kÞ drops exponentially or 
linearly as k or jsj increases. Therefore, given the sequence of 
fixed size (e.g. GRCH38), we expect to observe significant or 
moderate drops in the statistics for large k or jsj. For valida
tion, we assessed the empirical distributions of minimizer fre
quency V for jsj ¼ 25; k ¼ 10 in 6 sequences, whose sizes jSj
are 1; 4;16; 64; 256;1024Mbps, as shown in Supplementary 
Fig. S3. We can observe that the difference between the stan
dard and refined minimizer distributions is insignificant in 
short sequences (e.g. 1Mbps; 4Mbps). However, distributions 
become significantly different as the sequence size jSj
increases exponentially. Therefore, the empirical distribu
tions depend on the sequence size and the practical benefits 
will increase as the sequence size grows.

4.2 Potential improvements
We have discussed the heuristic to improve the refined mini
mizer density in Section 2.3. There potentially exist other 
heuristics that can improve the refined minimizers in practice. 
For instance, refined minimizers can possibly be improved for 
specific sequences, such as A, T or C, G enriched ones, where 
d signs are likely to be frequently changed. A potential im
provement is to extend d as follows: 

dxðsÞ ¼ x1ðpA−pTÞþx2ðpC−pGÞ

where weights x1;x2 � 1 ðmod2Þ. Additionally, we extend 
d based on the occurrences of 2-mers pAA;pAC; . . . ;pTT or 
q-mers (i.e. q characters). Generally, d based on the occur
rences of q-mers can be defined as 

dx;qðsÞ ¼
X4

q=2

i¼1

xiðpqi −pq0i
Þ

where qi;q0i are the ith q-mer and its reverse complement. 
Weights xi can be optimized, provided distributions of 
q-mers in the sequences are known. In practice, the distribu
tions can be approximated by sampling q-mers in the subse
quences. Such heuristics may further improve the 
performance of refined minimizers.

5 Conclusion
In this work, we proposed a refined DNA minimizer opera
tor. We discussed basic properties that are essential to appli
cations. The refined minimize is generic, computationally 
efficient, and can improve the k-mer repetitiveness, especially 

for the lexicographic order at the cost of limited increased 
density. However, simple heuristics, such as skipping “solo” 
windows, can further improve the performance. Assessments 
based on the GRCH38 are in line with expectations. We ex
pect the performance can be potentially improved with addi
tional heuristics in practice.
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