
Sequence analysis

A simple refined DNA minimizer operator enables 2-fold
faster computation
Chenxu Pan 1,� and Knut Reinert 1,2,�

1Department of Mathematics and Computer Science, Freie Universit€at Berlin, Takustraße 9, Berlin, 14195, Germany
2Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, Berlin, 14195, Germany
�Corresponding authors. Department of Mathematics and Computer Science, Freie Universit€at Berlin, Takustraße 9, Berlin, 14195, Germany. E-mails: chenxu.
pan@fu-berlin.de (C.P.) knut.reinert@fu-berlin.de (K.R.)
Associate Editor: Alfonso Valencia

Abstract
Motivation: The minimizer concept is a data structure for sequence sketching. The standard canonical minimizer selects a subset of k-mers
from the given DNA sequence by comparing the forward and reverse k-mers in a window simultaneously according to a predefined selection
scheme. It is widely employed by sequence analysis such as read mapping and assembly. k-mer density, k-mer repetitiveness (e.g. k-mer bias),
and computational efficiency are three critical measurements for minimizer selection schemes. However, there exist trade-offs between kinds
of minimizer variants. Generic, effective, and efficient are always the requirements for high-performance minimizer algorithms.
Results: We propose a simple minimizer operator as a refinement of the standard canonical minimizer. It takes only a few operations to com-
pute. However, it can improve the k-mer repetitiveness, especially for the lexicographic order. It applies to other selection schemes of total
orders (e.g. random orders). Moreover, it is computationally efficient and the density is close to that of the standard minimizer. The refined mini-
mizer may benefit high-performance applications like binning and read mapping.
Availability and implementation: The source code of the benchmark in this work is available at the github repository https://github.com/xp3i4/
mini_benchmark

1 Introduction
The minimizer concept is a data structure for sequence sketch-
ing. It is firstly introduced to the sequence analysis by Roberts
et al. (2004) to reduce the storage requirements of biological se-
quence data. Then it was applied by many other applications in
the field, such as sequence binning (Deorowicz et al. 2015), se-
quence compaction (Chikhi et al. 2016), sequence classification
(Wood and Salzberg 2014), and read mapping (Li 2016, Jain
et al. 2020, B€uchler et al. 2023).

Given the sequence, the minimizer is the minimum k-mer
of a predefined ordering scheme in a window of w consecu-
tive k-mers. The minimizer performance relates to several key
measurements. Schleimer et al.’s (2003) study defined the
density of a k-mer selection scheme as the fraction of selected
k-mers. Formally, denote < the ordering scheme and X the
selected k-mers in the sequence S, whose size jSj � wþk. The
density of the selection scheme is given by

qðXÞ ¼
jXj
jSj

(1)

where jXj, jSj are the size of X and S. Since it was first intro-
duced to measure the storage requirements, the selection
schemes are supposed to select a set of k-mers that is as sparse
as possible such that the storage requirements can be largely
reduced. Novel selection schemes, such as Orenstein et al.

(2016), Marçais et al. (2017), Jain et al. (2020), and (Zheng
et al. 2021), are proposed to improve the minimizer density.

The k-mer repetitiveness is another minimizer measure-
ment. It is measured by the k-mer frequency in practice.
Formally, the frequency of a k-mer X ¼ x in S is defined as its
average occurrences in the sequence,

vðX ¼ xÞ ¼
nðxÞ
jSj

(2)

where nðxÞ is the occurrence of k-mer X ¼ x. Let V denote
the random variable over possible k-mer frequencies. It
relates to the performance of applications such as

1) Read mapping: Consider the anchoring (seeding) prob-
lem, where we need to find all matched pairs of minimiz-
ers in the reference and the read.

2) Binning: Similar to the read mapping, we need to find
matched minimizers and cluster them into bins.

For the two problems, we prefer selection schemes that can gen-
erate minimizers of lower repetitiveness (Deorowicz et al.
2015), because highly repetitive minimizers would significantly
decrease the matching accuracy and computational efficiency.

Like many other fundamental data structures, computational
efficiency is the third performance measurement. Although the

Received: July 17, 2023; Revised: January 11, 2024; Editorial Decision: January 18, 2024; Accepted: January 22, 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(2), btae045
https://doi.org/10.1093/bioinformatics/btae045
Advance Access Publication Date: 25 January 2024
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae045/7588893 by Freie U
niversitaet Berlin user on 14 M

ay 2024

https://orcid.org/0000-0002-3713-0605
https://orcid.org/0000-0003-3078-8129
https://github.com/xp3i4/mini_benchmark
https://github.com/xp3i4/mini_benchmark

time complexity of computing minimizers is commonly linear,
optimizations of density or k-mer repetitiveness may signifi-
cantly increase the runtime. For high-performance applications,
such as population-scale read mapping, drops in computational
efficiency may be non-negligible.

In general, there exist performance trade-offs between min-
imizer variants. For instance, the random ordering scheme
(Chikhi et al. 2014) generates more uniformly and sparsely
distributed minimizers than the lexicographic ordering
scheme at the expense of increased runtime. In contrast, lexi-
cographical minimizers are less affected by nearby mutations
or sequencing errors than random minimizers, sometimes
called “conservation” (Edgar 2021). Thus, they are beneficial
to some matching applications. But the trade-off is the less
random sampling.

Here, we propose an operator as a refinement of the stan-
dard (canonical) minimizer. It has the following features.

1) It improves k-mer repetitiveness of the standard mini-
mizer. It is less biased to small k-mers and distributes
more uniformly.

2) It applies to any selection schemes of total orders (Davey
et al. 2002) (e.g. lexicographic or random order).

3) Its density converges toward that of the stan-
dard minimizers.

4) It is commonly faster than the standard minimizer to
compute and can reach two times at most.

It is worth noting that the operator does not apply to non-
canonical minimizers of single-strand sequences, such as
RNA minimizers. However, canonical minimizers are essen-
tial to most sequence analysis applications, such as read map-
ping and genome assembly.

In the following sections, we will first define the refined min-
imizer. Next, we will prove three properties that are essential
to the refined minimizer performance. In the results, we will
compare the algorithm complexity of computing the standard
and refined minimizers. Then, we will evaluate the statistics (e.
g. repetitiveness, density) of standard and refined minimizers
in real sequences. Finally, we will analyze the statistics and dis-
cuss the potential limitations and improvements.

2 Materials and methods
2.1 Definitions
Operations: For high-performance applications, a preferable
minimizer function should be simple and effective.
Specifically,

1) Simple: It uses a few operations to compute, such as
operations in fþ;−;�;�;&; j;�;CMPg, namely Add,
Subtract, Bitwise Shift left/right, And, Or, Exclusive Or
(XOR) and Branch Conditions.

2) Effective: It generates less biased k-mers with reasonable
density. And it applies to all selection schemes.

Table 1 is a reference comparison of CPU cycles for operations
we used to compute minimizers. It is dominated by branch con-
ditions o3, which takes about 10 cycles on average.

Standard minimizer: A minimizer scheme denoted by
ðw;k; <Þ selects the minimum k-mer in w consecutive k-mers
2 Rk, where R is the character set and order < is commonly
induced by a hash function h, which is an injection from Rk

to a totally ordered set. Namely, if x, y are two k-mers, then
x < y if and only if hðxÞ < hðyÞ. Denote s the subsequence (or
window) whose length jsj ¼ wþ k − 1. Denote s0 the reverse
complement of s. The standard minimizer hs is given by

hsðsÞ ¼ min<0 6 i<wfsi;iþk; s0i;iþkg

Refined minimizer: The core idea of the refined minimizer is
to define an appropriate decision function that makes the
ordering scheme only compute minimizers in the sequence
of one strand such that the smallest k-mers are less likely
to be selected, repetitively. Provided jsj � 1ðmod2Þ, we define
an operator as

dðsÞ ¼ pTþpG−pC−pA (3)

where pA;pC;pG;pT are the occurrences of characters A, C,
G, T in s. jsj � 1 ðmod2Þ is to guarantee dðsÞ 6¼ 0, which
will be later discussed in the properties. The refined mini-
mizer h is then defined as

hrðsÞ ¼
h−

r ðsÞ ¼ min
<

06i<w
fs0i;iþkg if dðsÞ < 0

hþr ðsÞ ¼ min
<

06i<w
fsi;iþkg if dðsÞ > 0

8
>>><

>>>:

(4)

Table 2 is an example comparing refined and standard
minimizers. The lexicographic order of a given k-mer can be
computed by

Pk−1
i¼0 4iai, where ai is the order of the ith (right

toward left) character of the k-mer and ai equals 0, 1, 2, 3 for
A, C, G, T.

2.2 Properties
Here, we discuss three refined minimizer properties that are
essential to the applications. They hold for all ordering
schemes ðw;k; <Þ defined above. The first one guarantees the
strand symmetry, such that the computation of the refined
minimizer is independent of the strand. The second one guar-
antees that the refined minimizer is always not smaller than
the standard one. The third one guarantees that the refined
minimizers have a reasonable density that is close to that of
the standard one.

1) Provided jsj � 1 ðmod2Þ, then hrðs0Þ ¼ hrðsÞ.
Proof: Clearly, pAþpCþpGþpT ¼ jsj.

ds0 ¼ p0Tþp0G−p0C−p0A
¼ pAþpC−pT−pG
¼ −ds ¼ jsj−2ðpGþpTÞ � 1 ðmod2Þ
6¼ 0

where p0A ¼ pT, p0C ¼ pG, p0G ¼ pC, p0T ¼ pA are the
occurrences of A, C, G, T in s0. Hence hrðs0Þ ¼ hrðsÞ
according to the definition in expression 4.

Table 1. CPU cycles for operations used to compute minimizers.
Operations such as traversing an array will probably trigger L1 cache read.

No. Operations CPU cycles

o1 Add, Subtract, OR, AND, XOR, Shift <1
o2 Level 1 (L1) cache read 3–4
o3 Right “if” branch 1–2

Wrong “if” branch (branch misprediction) 10–20

2 Pan and Reinert
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae045/7588893 by Freie U

niversitaet Berlin user on 14 M
ay 2024

2) For any total order < of Rk, hsðsÞ 6 hrðsÞ. Proof:

hsðsÞ ¼ min
<

06i<w
fsi;iþk; s0i;iþkg

¼ min
<

min<06i<wfsi;iþkg;min<06i<wfsi;iþkg
� �

6 hrðsÞ

It implies that hrðsÞ would be less biased to small k-mers
than hsðsÞ.

3) Denote sn ¼ a0a1; ::; ajsj−1 and snþ1 ¼ a1a2; ::; ajsj the nth
and nþ1th subsequences, where ai is the ith base.
Denote dn ¼ dðsnÞ the operator of sn defined in expres-
sion 3. Provided the sequence is random, then the fol-
lowing expression of probabilities holds

lim
jsj!þ1

PðhrðsnÞ ¼ hrðsnþ1ÞÞ

¼ lim
jsj!þ1

PðhsðsnÞ ¼ hsðsnþ1ÞÞ

¼ 1−
2

wþ 1

(5)

Proof: For random sequences, Schleimer et al. (2003)
have proved PðhsðsnÞ ¼ hsðsnþ1ÞÞ ¼ 1− 2

wþ1. Because there
exist two cases that hsðsnÞ 6¼ hsðsnþ1Þ, namely the minimizer
of sn is its leftmost k-mer or the minimizer of snþ1 is
its rightmost one, otherwise sn and snþ1 share the same
minimizer. The probability of each case is 1

wþ1.
Therefore, PðhsðsnÞ ¼ hsðsnþ1ÞÞ ¼ 1− 2

wþ1.

We then prove the limit of the refined minimizer in expres-
sion 5. Since snþ1 can be iterated from sn by removing the
first character of sn, namely a0, and append the last character
of snþ1, namely ajsj, at the end, we have dnþ1 ¼ dnþdn, where

dn ¼

−2 if a0 2 fG;Tg and ajsj 2 fA;Cg
0 if a0; ajsj 2 fG;Tg or a0; ajsj 2 fA;Cg
2 if a0 2 fA;Cg and ajsj 2 fG;Tg

8
<

:
(6)

It is worth noting that dndnþ1 6¼ 0, since d 6¼ 0 has been
proved in the first property. Then we have the following
two cases:

• If dndnþ1 > 0: Then according to the definition in expres-
sion 4

PðhrðsnÞ ¼ hrðsnþ1Þjdn > 0; dnþ1 > 0Þ

¼ Pðhþr ðsnÞ ¼ hþr ðsnþ1ÞÞ ¼ 1−
2

wþ 1

The probability above equals 1− 2
1þw because there exist

two cases that Pðhþr ðsnÞ 6¼ hþr ðsnþ1Þ as well. Analogously,

PðhrðsnÞ ¼ hrðsnþ1Þjdn < 0; dnþ1 < 0Þ

¼ Pðh−
r ðsnÞ ¼ h−

r ðsnþ1ÞÞ ¼ 1−
2

wþ 1

Therefore,

P hr snð Þ ¼ hr snþ1ð Þjdndnþ1 > 0
� �

¼ P hþr snð Þ ¼ hþr snþ1ð Þ
� �P dn > 0; dnþ1 > 0ð Þ

P dndnþ1 > 0ð Þ

þP h−
r snð Þ ¼ h−

r snþ1ð Þ
� �P dn < 0; dnþ1 < 0ð Þ

P dndnþ1 > 0ð Þ

¼ 1−
2

wþ 1

• If dndnþ1 < 0: dndnþ1 ¼ dnðdnþdnÞ < 0 if and only if (iff)
dn ¼ 62 and dndnþ1 ¼ −1. According to expressions (3)
and (6), we know that dn ¼ −1, dnþ1 ¼ 1 iff a0 2 fA;Cg,
jsj−1

2 characters in a1; a2; . . . ; ajsj−1 are 2 fA;Cg and
ajsj 2 fG;Tg. Therefore,

Pðdn ¼ −1; dnþ1 ¼ 1Þ ¼

jsj−1
jsj−1

� �

2
ðpð1−pÞÞ

jsjþ1
2

where p is the probability of an random character 2 fA;Cg.
Analogously,

Pðdn ¼ 1; dnþ1 ¼ −1Þ ¼

jsj−1
jsj−1

� �

2
ðpð1−pÞÞ

jsjþ1
2

Table 2. Comparison of standard (Std) and refined (Rfd) minimizers in a DNA sequence s and reverse complement s
0

, where jsj ¼ 11, k ¼ 5.

n s0 s dðs0Þ dðsÞ K hðKÞ Q2ðhÞ max h − min h

Std Rfd Std Rfd Std Rfd Std Rfd

1 AGCTTACTTTG CAAAGTAAGCT 3 −3 AAAGT ACTTT 11 127 11 127 0 0
2 GCTTACTTTGG CCAAAGTAAGC 5 −5 AAAGT ACTTT 11 127 11 127 0 0
3 CTTACTTTGGT ACCAAAGTAAG 5 −5 AAAGT ACTTT 11 127 11 127 0 0
4 TTACTTTGGTG CACCAAAGTAA 7 −7 AAAGT ACTTT 11 127 11 127 0 0
5 TACTTTGGTGT ACACCAAAGTA 7 −7 AAAGT ACTTT 11 127 11 127 0 0
6 ACTTTGGTGTT AACACCAAAGT 7 −7 AAAGT ACTTT 11 127 11 127 0 0
7 CTTTGGTGTTT AAACACCAAAG 9 −9 AAACA CTTTG 4 510 11 127 7 383
8 TTTGGTGTTTG CAAACACCAAA 11 −11 AAACA GGTGT 4 699 11 127 7 572
9 TTGGTGTTTGG CCAAACACCAA 11 −11 AAACA GGTGT 4 699 11 127 7 572
10 TGGTGTTTGGT ACCAAACACCA 11 −11 AAACA GGTGT 4 699 11 127 7 572
11 GGTGTTTGGTA TACCAAACACC 9 −9 AAACA GGTGT 4 699 11 127 7 572
12 GTGTTTGGTAA TTACCAAACAC 7 −7 AAACA GGTAA 4 688 11 510 7 572
13 TGTTTGGTAAA TTTACCAAACA 5 −5 AAACA GGTAA 4 688 4 510 7 572
14 GTTTGGTAAAT ATTTACCAAAC 5 −5 ACCAA GGTAA 80 688 11 688 76 572
15 TTTGGTAAATG CATTTACCAAA 5 −5 AAATG AAATG 14 14 11 510 76 685

K is the minimizer. hðKÞ is the lexicographic order of the minimizer. Q2ðhÞ is the median of hðKÞ. Values with bold text imply that h is less biased to
small ones.

Refined DNA minimizer operator 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae045/7588893 by Freie U
niversitaet Berlin user on 14 M

ay 2024

The limits of the two probabilities above equal 0.
Therefore, limjsj!þ1 Pðdndnþ1 < 0Þ ¼ 0

Therefore, the limit in expression 5 is

lim
jsj!þ1

PðhrðsnÞ ¼ hrðsnþ1ÞÞ

¼ lim
jsj!þ1

Pðdndnþ1 < 0ÞPðhrðsnÞ ¼ hrðsnþ1Þjdndnþ1 < 0Þ

þ lim
jsj!þ1

Pðdndnþ1 > 0ÞPðhrðsnÞ ¼ hrðsnþ1Þjdndnþ1 > 0Þ

¼ 1−
2

wþ 1

Based on the discussion above, we have the expected k-mer
density of refined minimizers

qr ¼ Pðdndnþ1 > 0ÞqsþPðdndnþ1 < 0Þ (7)

where qs is the expected density of standard minimizers.
Therefore, limjsj!þ1 qr ¼ qs.

2.3 Heuristics
Expression (7) suggests that we can improve the k-mer density
without significantly impacting the selected minimizers by simply
skipping the nþ1th window if dndnþ1 < 0. The core idea of the
heuristic is to skip the “solo” windows, whose signs of d are dif-
ferent from those of predecessor and successor windows. Solo
windows are minority especially for large jsj, while they signifi-
cantly increases Pðdndnþ1 < 0Þ in expression (7). The heuristic
skips minimizers of solo windows while preserving minimizers of
“non-solo” ones. For instance, if d1; d2; d3;¼ −1; 1;−1, then
skipping the solo window 2 will also drop its minimizer.
However, if d1; d2; d3;¼ −1;1; 1, then skipping window 2,
which is non-solo, may not affect its minimizer, since window 3
may preserve it.

3 Results
3.1 Runtime
Arbitrary windows: We compared the CPU cycles of comput-
ing the refined and standard minimizer in algorithms 1 and 2.
The loops in the pseudocodes apply to arbitrary windows
and ordering schemes induced by the random hash function
R, such as ntHash (Mohamadi et al. 2016), which directly
computes random rolling hash values. CPU cycles for each
step are listed in the comments of algorithms 1 and 2.
Algorithm 1 takes or ¼ 10o1þ2o2þo3þwð3o1þoRþo3Þ

operations in sum and algorithm 2 takes os ¼ 8o1þo2þ

2wð3o1þoRþo3Þ operations in sum, where o1, … ,o3 are de-
fined in Table 1, oR is CPU cycles for function R. Assuming
o1 ¼ 1, o2 ¼ 3 and o3 takes 10 cycles on average, then

os ¼ 11þ2wð13þoRÞ

or ¼ 26þwð13þoRÞ

�

The expected speedup of the refined minimizer is

Tr ¼
os

or
¼ 2−

41
26þwð13þ oRÞ

(8)

Hence, Tr 2 ½0:949;2Þ, where Tr is minimized when w ¼ 1
and oR ¼ 0 (lexicographic ordering). Tr is maximized when
w� 1 or oR � 0. Therefore, the refined minimizer can be
two times faster at most.

Applications may apply heuristics to further improve the
minimizer performance. For instance, a more practical way
to break ties (when the smallest k-mer appears multiple
times) is to skip ties in adjacent windows. This creates opti-
mal spread in poly-X regions (e.g. repetitive AA.). Such heu-
ristics will introduce additional CPU cycles. However,
heuristics for standard minimizers commonly apply to refined
minimizers and can be integrated into function R. Hence the
speedup upper bound can be preserved in such cases.

4 Pan and Reinert
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae045/7588893 by Freie U

niversitaet Berlin user on 14 M
ay 2024

Consecutive windows: Applications may use buffers to re-
duce the times of computing k-mers when computing mini-
mizers in consecutive windows. The refined minimizer
preserves the speedup upper bound in such a case. They are
discussed in Supplementary Notes. However, the speedup in
practice can be washed out to some extent by additional
buffer operations, such as reading, writing, traversing, etc.
The exact trade-offs depend on w, k, ordering schemes, CPU
architectures, etc. Optimizations of buffers can substantially
improve the practical runtime in such cases.

3.2 Distributions
As discussed above, we ideally prefer selection schemes that can
generate k-mers of lower frequency for the read mapping and
binning problem. Correspondingly, we prefer more uniformly
distributed minimizers. We evaluated key statistics shown in
Table 3 as a sketch of the distribution of selected minimizers X,
which are computed in consecutive windows by streaming
GRCH38 (chr 1–22, X, Y). Runtime (i.e. T in the table) is the
corresponding time of computing minimizers in consecutive
windows with buffers rather than the runtime of algorithms 1
and 2. Results for additional groups of jsj 6 45 and k 6 30
are presented in Supplementary Tables S1 and S2. It is worth
noting that the tables only show statistics for even ks to simplify
the results. The refined minimizer concept also applies to odd
ks, and the corresponding results have no significant difference
compared to those of even ks. Supplementary Table S3 shows
statistics of minimizers of minimap2 (Li 2018). We evaluated
25–95% percentiles of minimizer frequency V, as shown in the
table. For instance, P0:25 ¼ 9:97 per megabases for standard
lexicographical minimizer with jsj ¼ 15;k ¼ 4 means 25% min-
imizer frequencies are lower than this value.

The column DKLðXjjUÞ is the Kullback–Leibler (KL) diver-
gence of the distribution of X and the uniform k-mer distri-
bution U. It is given by

DKLðXjjUÞ ¼
X4

k

i¼1

vðxiÞ log
vðxiÞ

uðxiÞ

For instance, if k ¼ 3 then uðxiÞ ¼ 1=43 ¼ 1=64 constantly,
since there exist 43 types of 3-mers and each type has the same
chance of being selected. A lower KL divergence implies that X
is more uniformly distributed, and thus the scheme is less biased
to specific minimizers. As expected, the results reveal that re-
fined minimizers have lower KL divergence. Therefore, we
would expect refined minimizers to generate less biased k-mers.

The column E-hits is the expected number of hits intro-
duced by research (Sahlin 2022). A lower E-hits may benefit
applications such as read mapping. It is computed as follows
in the assessment.

E − hitsðXÞ ¼
1
jXj

X4
k

i¼1

nðxiÞ
2
¼

1
qjSj

X4
k

i¼1

nðxiÞ
2

¼
jSj
q

X4
k

i¼1

vðxiÞ
2

Therefore, it is a comprehensive metric of density q and fre-
quency vðxiÞ. Since the refined minimizers improve the k-
mer frequency V at the cost of limited increased density q,
we expect refined minimizers to improve E-hits, while the
improvement is relatively lower than those of percentiles
and DKL. E-hits for minimizers in GRCH38 are in line with
expectations, as shown in Table 3 and Supplementary
Tables S1–S3.

Figure 1 illustrates the empirical distribution of minimizer
frequency V discussed above. It is log-scaled since the distri-
bution is right-skewed, namely a long tail on the right side.
Supplementary Fig. S1 shows the histogram version of the
same data as a complement. As discussed above, we prefer
small V for anchoring and binning problems, since large ones
in the long tails would be the performance bottleneck. The
figure reveals that for different jsj;k, standard minimizers
have heavier tails, indicating larger V than refined minimiz-
ers. Therefore, refined minimizers generate more uniformly
distributed k-mers. Figures for additional settings of jsj 6 45
and k 6 30 are presented in Supplementary Fig. S2.

Refined DNA minimizer operator 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae045/7588893 by Freie U
niversitaet Berlin user on 14 M

ay 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data

Overall, statistics including the percentiles, DKL, E-hits and
the distribution figures suggest refined lexicographical mini-
mizers are less repetitive than standard lexicographical or
random minimizers. Since the refined minimizer is also com-
putationally efficient, it is expected to be more friendly to
high-performance minimizer applications.

4 Discussion
4.1 Potential limitations
We can observe a drop in benefits for frequency-related sta-
tistics of refined minimizers for larger k and jsj (i.e. P0:95,
DKL, E-hits, and distributions in Supplementary Fig. S2).
However, it is worth noting that the benefits depend on a

Table 3. Statistics of standard (Std) and refined (Rfd) minimizer sampled consecutively in GRCH38: P0:25-P0:95 are percentiles of minimizer frequency
per megabases.

< jsj; k P0:25ðVÞ P0:5ðVÞ P0:75ðVÞ P0:95ðVÞ qðXÞ DKL E-hits T [s]

Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd Std Rfd

Lexico 15,4 9.97 7.55 201.92 69.07 2.64E3 762.28 1.01E4 4.86E3 0.16 0.21 2.28 1.26 2.53E7 1.14E7 27.60 26.12
15,8 2.32 0.06 7.54 0.40 23.66 2.58 61.41 25.48 0.26 0.29 2.25 1.59 1.92E5 1.23E5 28.88 26.62

15,12 0.01 0.00 0.02 0.01 0.09 0.03 0.28 0.16 0.44 0.46 2.43 1.90 1.29E4 9.11E3 31.03 26.22
25,4 0.28 0.71 22.90 4.34 697.16 170.95 8.59E3 3.88E3 0.09 0.13 2.76 1.73 2.43E7 1.19E7 25.04 22.73
25,8 0.04 0.00 1.04 0.02 7.27 0.69 44.77 16.95 0.12 0.16 3.01 2.06 2.26E5 9.93E4 25.03 22.63

25,12 0.00 0.00 0.01 0.00 0.06 0.01 0.24 0.12 0.16 0.19 3.40 2.67 1.34E4 8.32E3 25.85 23.02
Random 15,4 7.82 1.56 163.57 88.59 1.74E3 1.27E3 7.92E3 4.80E3 0.15 0.19 2.14 1.51 2.26E7 1.59E7 48.57 42.94

15,8 0.14 0.04 1.33 0.48 8.75 3.70 41.05 25.83 0.22 0.25 2.17 1.67 1.61E5 1.26E5 47.95 43.21
15,12 0.00 0.00 0.01 0.01 0.06 0.04 0.23 0.17 0.41 0.42 2.31 2.06 1.07E4 1.02E4 52.04 41.94

25,4 0.34 0.07 6.32 6.40 634.58 472.81 5.71E3 3.48E3 0.09 0.12 2.66 2.01 2.25E7 1.71E7 46.20 38.61
25,8 0.01 0.01 0.24 0.19 3.62 2.03 31.74 22.66 0.11 0.14 2.83 2.29 1.61E5 1.34E5 45.89 38.23

25,12 0.00 0.00 0.01 0.00 0.03 0.02 0.17 0.12 0.14 0.17 3.18 2.74 8.97E3 9.64E3 46.79 41.85

DKLðXjjUÞ is the Kullback–Leibler (KL) divergence of the distribution of X and the uniform k-mer distribution U. Large values such as E-hits are expressed
by scientific notation. T is the runtime. Better values are in bold text.

15 25

4
8

12

1 10 100 1000 10000 1 10 100 1000 10000

0.01

0.03

0.10

0.30

1e−04

1e−02

1e+00

1e−06

1e−04

1e−02

1e+00

V

P
ro
ba
bi
lit
y
of
 V

Rfd.Lexico

Std.Lexico

Rfd.Random

Std.Random

Figure 1. Empirical distributions of V for k ¼ 4; 8;12 in rows and jsj ¼ 15;25 in columns. Rfd and Std are refined and standard minimizer. The vertical axis
equals the frequency of V ¼ v, namely the empirical probability PðV ¼ vÞ. The horizontal and vertical axes are in log 10 scale.

6 Pan and Reinert
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae045/7588893 by Freie U

niversitaet Berlin user on 14 M
ay 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data

latent factor, the sequence size. We use a coefficient, the aver-
age minimizer occurrences in the sequence denoted by
EðX; kÞ to describe the latent performance impact.

EðX;kÞ ¼
jXj

4k
¼

qjSj

4k
�

2jSj

ð1þwÞ4k
¼

2jSj

ðjsj−kþ 2Þ4k

where q � 2=ð1þwÞ is the expected minimizer density.
For instance, if we assess 20-mers in GRCH38 references
of approximately 3Gbps in size, then EðX; kÞ ¼
q � 3Gbps=420 � 0. It means that most types of 20-mers never
occur in the minimizer set of GRCH38. As a result, the em-
pirical distribution of minimizer frequency will not be close
to the expected one due to insufficient minimizers (i.e. law of
large numbers). Specifically, EðX;kÞ drops exponentially or
linearly as k or jsj increases. Therefore, given the sequence of
fixed size (e.g. GRCH38), we expect to observe significant or
moderate drops in the statistics for large k or jsj. For valida-
tion, we assessed the empirical distributions of minimizer fre-
quency V for jsj ¼ 25; k ¼ 10 in 6 sequences, whose sizes jSj
are 1; 4;16; 64; 256;1024Mbps, as shown in Supplementary
Fig. S3. We can observe that the difference between the stan-
dard and refined minimizer distributions is insignificant in
short sequences (e.g. 1Mbps; 4Mbps). However, distributions
become significantly different as the sequence size jSj
increases exponentially. Therefore, the empirical distribu-
tions depend on the sequence size and the practical benefits
will increase as the sequence size grows.

4.2 Potential improvements
We have discussed the heuristic to improve the refined mini-
mizer density in Section 2.3. There potentially exist other
heuristics that can improve the refined minimizers in practice.
For instance, refined minimizers can possibly be improved for
specific sequences, such as A, T or C, G enriched ones, where
d signs are likely to be frequently changed. A potential im-
provement is to extend d as follows:

dxðsÞ ¼ x1ðpA−pTÞþx2ðpC−pGÞ

where weights x1;x2 � 1 ðmod2Þ. Additionally, we extend
d based on the occurrences of 2-mers pAA;pAC; . . . ;pTT or
q-mers (i.e. q characters). Generally, d based on the occur-
rences of q-mers can be defined as

dx;qðsÞ ¼
X4

q=2

i¼1

xiðpqi −pq0i
Þ

where qi;q0i are the ith q-mer and its reverse complement.
Weights xi can be optimized, provided distributions of
q-mers in the sequences are known. In practice, the distribu-
tions can be approximated by sampling q-mers in the subse-
quences. Such heuristics may further improve the
performance of refined minimizers.

5 Conclusion
In this work, we proposed a refined DNA minimizer opera-
tor. We discussed basic properties that are essential to appli-
cations. The refined minimize is generic, computationally
efficient, and can improve the k-mer repetitiveness, especially

for the lexicographic order at the cost of limited increased
density. However, simple heuristics, such as skipping “solo”
windows, can further improve the performance. Assessments
based on the GRCH38 are in line with expectations. We ex-
pect the performance can be potentially improved with addi-
tional heuristics in practice.

Acknowledgements
We thank the Sequence Analysis library (SeqAn) for provid-
ing algorithms and data structures support.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
This work was supported by the Chinese Scholarship Council
(CSC) and IntelVR Parallel Computing Center (IPCC) program
at FU Berlin.

Data availability
The benchmark used in this work is available at https://
github.com/xp3i4/mini_benchmark.

The data underlying this article are available in the article
and in its online supplementary material.

References
B€uchler T, Olbrich J, Ohlebusch E et al. Efficient short read mapping to

a pangenome that is represented by a graph of ED strings.
Bioinformatics 2023;39:btad320.

Chikhi R, Limasset A, Jackman S et al. On the representation of de
bruijn graphs. In: Sharan R (ed.), Research in Computational
Molecular Biology, Lecture Notes in Computer Science. Basel:
Cham Springer International Publishing, 2014, 35–55.

Chikhi R, Limasset A, Medvedev P et al. Compacting de bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics
2016;32:i201–i208.

Davey BA, Priestley HA. Introduction to Lattices and Order. 2nd edn.
Cambridge: Cambridge University Press, 2002.

Deorowicz S, Kokot M, Grabowski S et al. KMC 2: fast and resource-
frugal k-mer counting. Bioinformatics 2015;31:1569–76.

Edgar R. Syncmers are more sensitive than minimizers for selecting con-
served k-mers in biological sequences. PeerJ 2021;9:e10805.

Jain C, Rhie A, Zhang H et al. Weighted minimizer sampling improves
long read mapping. Bioinformatics 2020;36:i111–i118.

Li H. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 2016;32:2103–10.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094–100.

Marçais G, Pellow D, Bork D et al. Improving the performance of mini-
mizers and winnowing schemes. Bioinformatics 2017;33:i110–i117.

Mohamadi H, Chu J, Vandervalk BP et al. ntHash: recursive nucleotide
hashing. Bioinformatics 2016;32:3492–4.

Orenstein Y, Pellow D, Marçais G et al. Compact universal k-mer hit-
ting sets. In: Frith M and Storm Pedersen CN (eds), Algorithms in
Bioinformatics, Lecture Notes in Computer Science. Cham Springer
International Publishing, 2016, 257–68.

Refined DNA minimizer operator 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/2/btae045/7588893 by Freie U
niversitaet Berlin user on 14 M

ay 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data
https://github.com/xp3i4/mini_benchmark
https://github.com/xp3i4/mini_benchmark
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae045#supplementary-data

Roberts M, Hayes W, Hunt BR et al. Reducing storage requirements for
biological sequence comparison. Bioinformatics 2004;20:3363–9.

Sahlin K. Strobealign: flexible seed size enables ultra-fast and accurate
read alignment. Genome Biol 2022;23:260.

Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM

SIGMOD international conference on Management of data. p.
76–85. San Diego CA: ACM, 2003.

Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classi-
fication using exact alignments. Genome Biol 2014;15:R46.

Zheng H, Kingsford C, Marçais G et al. Sequence-specific minimizers
via polar sets. Bioinformatics 2021;37:i187–i195.

8 Pan and Reinert
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae045/7588893 by Freie U

niversitaet Berlin user on 14 M
ay 2024

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

