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Abstract

Electrode implant location in deep brain stimulation (DBS) surgery is defined from multiple
sources of information: brain imaging for planning; electrophysiological recordings for
basal ganglia nuclei characterization; and test stimulations for intra-operative assessment
of physiological and side effects. While each of these steps are established procedures

by their own, methods working towards their integration and aggregation lack.

We addressed this topic in a published proof-of-concept toolbox perusing multimodal data
processing during DBS surgery. Here, we re-iterate on this theme placing it into a broader
context and we introduce novel implementations working towards a robust and reliable

software program.

We developed a platform for multimodal data aggregation during DBS surgery and
validated it with a cohort of 52 Parkinson’s disease DBS patients from our center. We
also exemplified the use of one of the platform’s modules with a cohort of 118 patients

from the Alzheimer’s disease neuroimaging initiative database.

The novel platform extends the previously published toolbox including a state-of-the-art
electrophysiology acquisition and processing software. We show a general
correspondence between imaging and electrophysiological features extracted from DBS
surgery. We furthermore present novel biomarkers resulting from the integration of the

multiple data sources.

The developed platform for real-time DBS surgery navigation integrates different sources
of information into three-dimensional representations of the data—potentially becoming

an important element for decision making assistance during DBS surgery.



Zusammenfassung

Die Position der implantierten Elektrode zur tiefen Hirnstimulation (THS) wird anhand
mehrerer Informationsquellen bestimmt: Bildgebung des Gehirns fir die Planung,
elektrophysiologische Aufzeichnungen flr die Charakterisierung der Basalganglienkerne
und Teststimulationen fir die intraoperative Bewertung der physiologischen
Auswirkungen und Nebenwirkungen. Wahrend jeder dieser Schritte flir sich genommen
ein etabliertes Verfahren darstellt, fehlen Methoden, welche auf die Integration und

Zusammenfihrung der Informationsquellen hinarbeiten.

Wir haben uns mit diesem Thema in einer veroffentlichten Proof-of-Concept-Toolbox
auseinandergesetzt, welche die multimodale Datenverarbeitung wahrend der THS-
Operation untersucht. In der vorliegenden Arbeit greifen wir dieses Thema erneut auf,
indem wir es in einen breiteren Kontext stellen und neue Implementierungen vorstellen,

die auf ein robustes und zuverlassiges Softwareprogramm hinarbeiten.

Wir haben eine Plattform fur die multimodale Datenaggregation wahrend einer THS-
Operation entwickelt und sie mit einer Kohorte von 52 Parkinson-Patienten aus unserem
Zentrum validiert. AuRerdem haben wir die Verwendung eines Moduls der Plattform
anhand einer Kohorte von 118 Patienten aus der Neuroimaging-Initiative fur die

Alzheimer-Krankheit exemplifiziert.

Die neuartige Plattform erweitert die zuvor veroffentlichte Toolbox um eine hochmoderne
Software fur die elektrophysiologische Erfassung und Verarbeitung. Wir zeigen eine
allgemeine Korrelation zwischen bildgebenden und elektrophysiologischen Merkmalen,
welche aus der THS-Operation extrahiert wurden. Dartber hinaus stellen wir neue

Biomarker vor, die sich aus der Integration der verschiedenen Datenquellen ergeben.

Die entwickelte Plattform fur die Echtzeit-Navigation bei THS-Operationen integriert
verschiedene Informationsquellen in 3D-Darstellungen der Daten, die zukinftig ein

wichtiges Element fuir die Entscheidungsfindung bei THS-Operationen sein kénnten.
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1 Introduction

Deep brain stimulation (DBS) surgery is an established procedure to treat Parkinson’s
disease (PD) symptoms and a growing number of other neurological and psychiatric
conditions (A. M. Lozano et al., 2019). The surgery consists of implanting small electrode
leads (~1.3 mm diameter) in specific brain regions through which stimulation is delivered.
The stimulation protocol (contacts configuration, amplitude, and frequency) is set via the
implantable pulse generator—a pacemaker-like device surgically placed in the sub-

clavicular area.

The target structures vary according to the condition being treated: the subthalamic
nucleus (STN) and internal globus pallidus (GPi) are mainly targeted for PD patients; the
ventral intermediate nucleus of the thalamus (VIM) for essential tremor (ET); the anterior
limb of the capsula interna (ALIC), nucleus accumbens (NAcc) and STN for obsessive
compulsive disorder (OCD); subgenual cingulate cortex (SCC) and NAcc for major

depression; and fornix for Alzheimer’s disease (AD) (A. M. Lozano et al., 2019).

While historically some of these targets were based on serendipitous discoveries—
including DBS for AD, inspired by stimulation induced flashbacks during DBS surgery for
obesity (Hamani et al., 2008; for a review see Hariz et al., 2022)—current advances in
DBS are fueled by innovations in image processing, electrode design and biomarker
detection (Krauss et al., 2021; Schulder et al., 2023).

In particular, by employing processing and simulation techniques, DBS started to be
looked at from a computational perspective (Horn, 2019; Mcintyre et al., 2004). DBS leads
can be reconstructed from post-operative computed tomography (CT) scans (Dembek et
al., 2021; Husch et al., 2018) and fused together with anatomically-detailed pre-operative
magnetic resonance imaging (MRI). Additionally, electric fields induced by the stimulation
can be computationally simulated, estimating the tissue being stimulated (Horn et al.,
2017; Kuncel et al., 2008; Madler and Coenen, 2012). Furthermore, patient images can
be fused with average template brains (Ashburner and Friston, 2011; Avants et al., 2008),
allowing to analyze and compare a cohort of patients within the same reference system

and together with normative data.

There are different methodologies and implementations to calculate the aforementioned

features (see for example the citations in the previous paragraph), as well as software
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tools that include all these steps as a pipeline for DBS image analysis (D’Albis et al.,
2015; Horn et al., 2019; Noecker et al., 2021). Such is the case of Lead-DBS, an open-
source Matlab toolbox with advanced image processing capabilities (Horn et al., 2019;
Horn and Kihn, 2015; Neudorfer et al., 2023). Lead-DBS has empowered over 500
research publications (https://www.lead-dbs.org/about/publications/), including group
studies to explain DBS effects in PD (Horn et al., 2017; Sobesky et al., 2022); ET (Al-
Fatly et al., 2019); dystonia (Horn et al., 2022); OCD (Baldermann et al., 2019; Li et al.,
2020); and AD (Rios et al., 2022). These studies build models of DBS, some proposing

refined targets and optimal sweet-spots which could potentially drive new clinical trials in

the future.

In this study we set out to analyze the translation of some of these imaging advances into
the surgical realm; and integrate them together with other resources available during
surgery, such as pre-operative planning and intra-operative electrophysiology. In the next
sections we will introduce the concept of mapping normative data into patient space; the
surgical procedure in more detail; and how this work addresses some of the current

limitations in these areas.

1.1 Group analysis & image normalization

In the previous section we mentioned the process of fusing different images together—
from the same patient across different modalities, or across patients. This is achieved via
a method called image registration, in which a moving image is transformed to a fixed
image, leading to a transformation linking the two (Avants et al., 2014). Depending on the
degrees of freedom it has, the transformation can be linear or non-linear, the latter
allowing to locally deform the image and thus achieving better correspondence between

images from different brains (Avants et al., 2008).

Normalization is a type of non-linear registration where the moving image is a patient
image, and the fixed image is an average reference template brain, such as the Montreal
Neurological Institute (MNI) brain, a commonly used template in neuroimaging. While
there are different versions of this template, in this work we will use MNI to refer to the
ICBM 2009b Nonlinear Asymmetric template (Fonov et al., 2009). By mapping multiple
patients to the same space, then the same reference system is used for all of them,
allowing to compare between cohorts and centers. In MNI space there are also multiple

definition of atlases: structure delineations derived from manual segmentations, or


https://www.lead-dbs.org/about/publications/
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functional studies, for example. These can then be mapped to patient space, deriving
automatic segmentations of structures of interest (i.e., atlas-based, or normalization-

based segmentations).

The functional MRI (fMRI) literature has mainly driven the development of the
normalization techniques over the years (Jenkinson et al., 2012), and this is now an
established process leading to accurate mappings in the cortex (Klein et al., 2009) as well
as subcortex (Ewert et al., 2019). While the DBS field also employs this technique, it
depends on higher precision: images are generally smoothed with an up to 8 mm kernel
after normalization in fMRI whereas a 2 mm difference in DBS electrode placement can

separate a good from a poor responder (Horn et al., 2019).

Since in this study we are interested in having an accurate link to patient space, and use
this information intra-operatively, we set out to refine this step, and provide a method to
manually fix for registrations misalignments. In the methods section we will describe this

more in detail.

1.2 Deep brain stimulation surgery

Imaging also plays a huge role during DBS surgery itself (Schulder et al., 2023). MRI
scans of the patient’s brain are used by surgeons to identify target structures and plan
the trajectories for the DBS electrodes (Starr et al., 2002). CT scans—with the stereotactic
frame attached to patient's head—allow to translate coordinates from the MRI to the
frame’s coordinate system. Furthermore, some centers also use intra-operative imaging

to confirm electrode placement (Martin et al., 2005).

Apart from employing imaging techniques, intra-operative confirmation can also be
achieved via an electrophysiology assessment: previous to the DBS electrode
implantation, exploratory micro-electrodes recordings (MER) of brain signals are carried
out along the planned trajectory and 2 mm parallel to it, in an orthogonal or 45 degree
rotated Ben-gun configuration (Benazzouz et al., 2002). Some nuclei are identifiable by
their firing patterns, such as the increased bursting activity of the parkinsonian STN and
GPi (Bergman et al., 1994; Miller and DeLong, 1988), and are thus recognizable by the
surgical team. Leveraging upon this, commercial acquisition systems started to include
automatic algorithms to detect such features giving an estimate of the nuclei along the

trajectory (Thompson et al., 2018). Additionally, electrophysiology recordings are
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commonly followed by test stimulations to assess physiological and side effects. Usually
done in one or two coordinates along the trajectory, these stimulations help to better

characterize the patient’s condition and response to the treatment.

The electrophysiological assessment is not an established procedure in every DBS center
given that including this step can lead to longer surgeries and hemorrhagic complications,
compared against an imaging alone approach (Zrinzo et al.,, 2012). Still, patient
improvement is comparable between the two (Gadot et al., 2022; Lee et al., 2022; Vinke
et al., 2022), and some centers also report the advantages of MER, as for example

suggesting a beneficial alternate trajectory in 20% of surgeries (C. S. Lozano et al., 2019).

Finally, the original target position defined from imaging is redefined based on the
recordings and intraoperative stimulation assessment, which might suggest a new height

along the trajectory and/or an alternative trajectory.

1.3 Challenges

While current practice has shown to be effective, there are still gaps that could be filled
to improve the procedure: as mentioned in the last section, imaging and
electrophysiology—two processing streams that define the electrode position—are
analyzed separately, across different stages of the surgery, missing out on potential
benefits of their combination. Additionally, while the MER take place, the
electrophysiologist doesn’t have a real-time spatial representation of their location. Such
feature could be helpful to better understand the signals by putting them into anatomical
context, as shown by (Kriger et al., 2020). In this regard, this dissertation focuses on the
integration of imaging and electrophysiology, processing raw data to gather relevant
information creating anatomically-detailed patient-specific representations of the ongoing
state of the surgery. We have started working in this endeavor previously (Oxenford et
al., 2022) and we here re-iterate on this theme and scientific focus, putting the work into

a broader perspective and improving the implementation of our methods.

From the imaging side, as mentioned in 1.1, we are interested in incorporating patient
specific anatomical models as well as high-resolution resources that could put patient
images into more context. Thus, the link between patient and template space is of utmost

importance but challenged by individual brain anatomy and suboptimal normalization
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algorithms. Here we set out to develop methods to refine the normalization output and

manually correct mismatches from the process.

From the electrophysiology side, we aim to derive real-time feature extraction to aid
surgical procedure. While previous work has demonstrated feasibility of the
implementation of real-time algorithms (Khosravi et al., 2020; Valsky et al., 2020), there
is a lack in open-source platforms to test, reproduce and benchmark results from different

studies.

In this work, to provide an implementation of the methods presented, we build on top of
already established platforms and methods, which offer a starting point for our research.
The choice of platforms to build upon depends on their reliability, extensibility and real-
time performance. In the next section we go over three platforms which have become an

essential part of this project.

1.4 Platforms

1.4.1 Lead-DBS (https://www.lead-dbs.orqg/)

Lead-DBS (Horn et al., 2019; Horn and Kuhn, 2015; Neudorfer et al., 2023), already
mentioned in previous sections, is a Matlab toolbox for post-operative DBS electrode
reconstruction and image processing pipeline for group studies (Treu et al., 2020). We
leverage upon the advanced normalization routines developed for basal ganglia (Ewert
et al., 2019), as well as high resolution resources, such as DISTAL atlas (Ewert et al.,
2017) and post-mortem high-resolution 7T template (Edlow et al., 2019).

1.4.2 3D Slicer (https://www.slicer.ora/)

3D Slicer (Slicer; Fedorov et al., 2012; Kikinis et al., 2014) is a general-purpose open-
source medical imaging processing and visualization platform. It is built on top of the
Insight Toolkit (https://itk.org/) and the Visualization Toolkit (https://vtk.org/), which are

industry standard libraries for medical image processing and computer vision. Slicer is
used for real-time applications (Ungi et al., 2016), built using a modular approach, and
maintained and developed by an active community of researches and industry partners
(Kapur et al., 2016).


https://www.lead-dbs.org/
https://www.slicer.org/
https://itk.org/
https://vtk.org/
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1.4.3 Open Ephys (https://open-ephys.orqg/)

Open Ephys (Siegle et al., 2017) is an open-source software for electrophysiology data
acquisition and real-time analysis. It shares some of the same principles as Slicer:
provides a modular architecture, the possibility to extend functionality by means of custom
plug-ins, and an active community. It is used for real-time and closed-loop applications
(Dutta et al., 2018), constituting a suitable candidate for handling the electrophysiology

component of our platform.

1.5 Summary

We described DBS surgery, and how multiple sources of information—particularly
imaging and electrophysiology—are involved in the definition of the electrode implant
location. Here we will study whether the two are congruent with each other, and with
patient outcome. We further investigate methods for combining the two, and what novel
biomarkers can be derived from their integration. To achieve these aims we also develop
custom methods for real-time analysis and visualization, building on top of established

platforms for imaging and electrophysiology processing.


https://open-ephys.org/
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2 Methods

A central part of this work has been to develop methods needed to investigate the topics
of our research. This has been in the form of contribution to the platforms mentioned in
the introduction, but also in extending their functionality to meet the needs of the project.
In this section we will give an overview of the methods implementation, together with a
description of the patient cohorts and analysis done to study DBS from a multi-modal

perspective.

2.1 Refining image normalization: WarpDrive

WarpDrive is a toolbox to correct for mismatches after image normalization. It exposes
different tools for the user to interact with the normalized image, visualizing it with respect
to template data and atlases. This way, the user can visualize specific regions of interest
and assess the quality of the correspondence of the images. When recognizing
mismatches, the user can place source and target points (then fed into an algorithm that
corresponds them) in different ways: it is possible to manually select source and target
fiducials; to draw structure delineations matching them to atlases; or to drag and displace
regions of interest. We refer to the online documentation for more detailed description of

how the tools work (https://github.com/netstim/SlicerNetstim).

WarpDrive is a key component of this project, as it enables an accurate link between
patient space and template space. Still, the tool is not restricted to patient-to-template
mapping, but is rather built to handle any imaging data. Itis included as a module in Slicer,
and is also seemlesly integrated with Lead-DBS as a next optional step after image

normalization.

2.2 Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort

To exemplify the limitations of normalization algorithms and the usage of WarpDrive, we
retrieved a set of patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu) and analyzed them comparing manual versus automatic

segmentations in relation to brain atrophy.

The selected cohort consisted of 118 patients (56 females; mean age: 75 + 7.8 years)

which included both Harmonized Protocol (HarP) manual hippocampus segmentations


https://github.com/netstim/SlicerNetstim
http://adni.loni.usc.edu/
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(Boccardi et al., 2015a) and the Spatial Pattern of Abnormality for Recognition of Early
Alzheimer’s disease (SPARE-AD) index (Davatzikos et al., 2009). HarP provides
consistent patient specific (Boccardi et al., 2015b) and MNI (Wolf et al., 2017)
segmentations of the hippocampus. Thus, transforming the MNI segmentation to patient
space will lead a good estimate of the accuracy of this atlas-based segmentation. Here
we set out to see whether the accuracy of the atlas-based segmentations is associated
with brain atrophy (as measured by the SPARE-AD index, which provides a measure of
brain atrophy patterns common in AD). Next, we take a set of strongly atrophied brains
to showcase how WarpDrive can help improve the accuracy of the registration. Initial
transformations were calculated by importing the cohort in Lead-DBS and running

normalization with default parameters.

2.3 Multimodal deep brain stimulation surgery navigation: Lead-OR

The Lead-OR project is about integrating, visualizing, and analyzing multiple modalities
in real-time during DBS surgery. The spatial correspondence of the data is of utmost
importance in this application to provide a starting point for further analysis. In the
previous section we described WarpDrive, a tool involved with achieving an accurate
mapping from template to native space, allowing to translate high-resolution data (such
as atlases) into patient specific space. We will next describe how other resources are also
put together in the same space; and then the possibilities that this opens up for processing

and analysis.

2.3.1 Import different planning information

DBS surgery implant trajectories can be defined from entry and target points in the
patient’s reference image. This translates to the stereotactic frame’s settings: target X, Y,
Z coordinates, and ring and arc angles. Both the patient’s image and the frame represent
a coordinate system that must be matched to integrate data from them. The
correspondence can be achieved by a linear transform computed via fiducial registration

between same points defined in both coordinate systems.

To correspond a single trajectory, only two points are needed: target and entry. However,
this doesn’t fully represent the correspondence in three-dimensional space, one

parameter is rather missing: the rotation around this target-entry axis. This information is
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important when using multiple micro-electrodes with a Ben-Gun configuration, as their

position in space depends on it.

The mapping of the patient’s image to the frame and its computation is usually hidden in
commercial planning platforms. Sitill, it is possible to recreate this transform from exported
information from the software. Here, we have incorporated two import routines for

different platforms, and a plug-in like architecture to further include more in the future.

In Elements Stereotaxy (Brainlab AG, Munich, Germany) the entry and target coordinates
(as well as the AC, PC and MS points) are specified in both patient and frame’s reference
within the planning export file. This allows to match both spaces via fiducial registration

thus recreating the rotation around the trajectory’s axis.

The ROSA robot (Zimmer Biomet Holdings, Inc., Warsaw, Indiana, U.S.) also exports
entry, target, AC, PC and MS in patient space, but not in frame space. Therefore, the

rotation around the trajectory axis is not defined.

For both planning software we implemented an import routine to represent the trajectory
information in Slicer. This is built as a module which can also visualize and modify
planning information featuring two ways of setting the trajectory: from target, ring angle

and arc angle; and from target, entry and roll angle (rotation around the axis).

2.3.2 Slicer reference

The planning information is imported and the trajectories are defined to match the frame
reference system. To simplify things, the frame’s center is set to match Slicer's World
center, with a linear transformation defining the transform of coordinates between the two.

In the case where the frame information is not known (such as the case for ROSA), the
patient images are AC-PC transformed recreating the same visualization as planning

software.

Up to here we described the handling of the imaging data for DBS surgery. Specifically,
how Lead-OR recreates the planning information as they were defined in (different)
planning software. Additionally, how to accurately represent atlas data, such as structures
delineations, in patient specific space. In the following sections we will describe the

electrophysiology processing and how it is also mapped to the same space in real-time.
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2.3.3 Electrophysiology acquisition and processing

Part of this project, and novel to this dissertation publication, was the development of
different plug-ins for the Open Ephys platform. The first one is the NeuroOmega
acquisition module, which connects to the NeuroOmega device (Alpha Omega
Engineering, Israel) via AlphaOmega’s Software Developments Kit (SDK) and queries
real-time electrophysiology signals together with the micro-electrode distance to the
target value. After the device is connected the user can select from the different available
data sources (raw micro-electrode recordings, local field potentials, and macro-electrode
recordings, among others). Once enabled, this stream will be sent through the Open

Ephys pipeline.

Taking advantage of the modular architecture of Open Ephys, once these signals are
streamed into the platform, it is possible to build a processing pipeline from any of the
modules available. For example, some built-in modules already provide capabilities for

visualization, bandpass filtering, recording, and spike detection.

Further capabilities can also be implemented via custom plugins, as is the case of another
module we developed for root mean square (RMS) calculation. This process executes in

real-time calculating RMS from data taking a specified time window.

2.3.4 OpenEphys — 3D Slicer communication

The communication between Open Ephys and Slicer is done via the OpenlIGTLink library
(Tokuda et al., 2009), which specifies a network protocol capable to send transforms,
images, and strings, among other data types. We built an Open Ephys plugin that sends
the extracted features along each trajectory to Slicer together with the real-time position

of the micro-drive.

With the trajectory definition, Ben-Gun configuration, and distance to the target value, the
electrophysiological recording sites can be mapped to three-dimensional space (Figure
1). Then, the different features can be represented as different properties in space, such
as a tube varying its diameter and color according to the feature’s magnitude. This leads

to having all multimodal data accurately represented in space in real-time during surgery.
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Figure 1. Multiple sources of information to recreate the spatial representation of deep brain stimulation
(DBS) surgery. First, planning defines target coordinates, as well as ring and arc angles, describing the
trajectory of implantation. The microdrive sets the position of the micro-electrodes along this trajectory.
Then, using different Ben-Gun configurations the alternate trajectories are set in space. Nuclei of interest
are put together in patient space by transforming atlases from MNI after image normalization. From
(Oxenford et al., 2022), used under CC BY 4.0.

2.4 Subthalamic nucleus deep brain stimulation (STN-DBS) patient cohort

To validate this method and further analyze the potentials of multi-modal data aggregation
we analyzed a retrospective cohort of patients who underwent DBS surgery at our center
between 2017 and 2021. Patient inclusion criteria was based on having complete set of
data (pre-operative imaging, Brainlab planning and micro electrode recordings). The
cohort was composed of 52 patients, of which 12 females, with a mean age of 61 +/- 9.

Data were visually inspected, discarding trajectories featuring low signal to noise ratio
(SNR) or artifacts in the micro-electrode recordings and low SNR or movement artifacts
in the imaging. Finally, 236 surgical trajectories were analyzed, from 56 hemispheres of
32 patients.
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2.5 Surgical procedure

Patients underwent DBS targeting the STN with an initial imaging-based planning made
in Stereotaxy Elements (Brainlab AG, Much, Germany). Depending on the clinical
decision for each patient, surgery was done awake or under general anesthesia, with
micro-electrode assessment carried out in both cases. Neuroprobe Sonus non-shielded
micro-electrodes (Alpha Omega Engineering, Israel) were descended in parallel
trajectories probing the surroundings of the target, with 2 to 5 trajectories in an orthogonal
or 45-degree rotated Ben-Gun configuration. MER started from 10 mm above the target
and finished 4 mm below, in steps of 0.2 to 0.5 mm. After the recordings, test stimulations
were carried out, at the target site and 3 mm above, in 0.5 mA steps until recognizing
permanent side effects. Finally, based on planning and electrophysiological evaluation,

implant location of DBS electrode was determined.

2.6 Offline analysis

We analyzed this patient cohort offline, processing it as the real-time application would.
From the imaging side, pre-operative images were co-registered and normalized to MNI
space using default settings in Lead-DBS and employing WarpDrive to correct for small
mismatches in the alignment, if needed. Implant trajectories were extracted from Brainlab
planning, obtaining a patient specific coordinate for each of the recording sites. Then,
transforming the DISTAL atlas to patient space, we derived entry and exit points to the

STN for each trajectory.

MER were processed to extract their normalized root mean square (NRMS) values: RMS
was taken for each of the recording sites and normalized by the median of the first five
recordings for each trajectory, as done in previous studies (Zaidel et al., 2009). The
choice of this feature was based on taking a commonly used measure in the field and an
established straightforward proxy of brain activity (Khosravi et al., 2020; Koirala et al.,
2020; Valsky et al., 2020, 2017; Zaidel et al., 2010, 2009). Further features can be
extracted and analyzed, including spike analysis as in (Oxenford et al., 2022), and via

custom processing pipelines in Open Ephys for the real-time application.

The recordings sites’ distance to the target values were normalized across trajectories
taking as target a reference point inside the STN (i.e., Caire et al., 2013), thus deriving a

normalized distance to target axis to compare all trajectories.
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Taking the entry and exit sites from imaging, and the NRMS measure from
electrophysiology, we analyzed whether the trajectories definition of the STN agreed from
both perspectives. For this, we compared the trajectories based on their vicinity to the
STN and analyzed if the difference in NRMS activity matched the STN entry and exit

sites.

2.7 Active contacts location

Based on post-operative scans and clinical stimulation settings we obtained the
coordinates of the active contacts location after reconstructing the DBS electrodes as
implemented in Lead-DBS. We then mapped this location to the nearest coordinate along
the patient’s trajectories as an additional verification step of the agreement of the different

modalities.

2.8 Brain-shift analysis

We carried out an additional analysis estimating brain-shift, using an imaging-approach

and an electrophysiology-approach, and comparing the two.

The brain-shift imaging-estimate was defined using pre- and post-operative imaging, as
implemented in Lead-DBS: post-operative images were co-registered to the pre-operative
imaging, first using the whole brain and then locally, focusing on the basal ganglia. The
resulting transformation was used to transform coordinates along the trajectories. We

defined the brain-shift imaging-estimate as the resulting displacement.

The brain-shift electrophysiology-estimate was defined using MER features and their
correspondence to the atlas-based definition of the STN. The NRMS trace for each
trajectory was cross correlated with its spatial vicinity to the STN. This resulted in a xcorr
value and a lag value; the lag representing the displacement of the NRMS trace to
maximally overlap with the STN. We defined the brain-shift electrophysiology-estimate as

the lag resulting from this computation.

Performing a correlation analysis we calculated the association between the two
measures of brain-shift. This is a preliminary evaluation to assess the potential of this

biomarker as a real-time estimate of brain-shift during surgery.
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3 Results

A central component of the results of this dissertation work come in the form of software
plug-ins for multimodal data analysis and visualization during DBS surgery. These
modules encompass the Lead-OR project (figure 2) and form a platform which can be
customized and further extended to build real-time processing pipelines enabling novel

types of analysis to create informative representations of the ongoing state of the surgery.
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Figure 2. Overview of the Lead-OR project implementation. The Open Ephys platform connects to the
electrophysiology acquisition device (in this project the NeuroOmega from Alpha Omega), visualizes and
processes the incoming signals extracting features of interest. Features are sent to 3D Slicer via
OpenIGTLink (IGT) and are mapped to their spatial location defined by the planning, microelectrode
configuration, and distance to target. Here, the normalized root mean square value of the signals is
informing the diameter and color of a tube along the trajectories. Currently, planning information can be
imported from Brainlab and ROSA stations, with the possibility to extend to more platforms. Patient images
are co-registered and visualized with in-plane slices defined by the planned trajectory. After image
normalization in Lead-DBS, atlases can be transformed into patient space, deriving an atlas-based
segmentation which can be further refined using WarpDrive. This way, the multiple modalities and sources
of information are spatially corresponded and displayed to create a meaningful representation of the
ongoing state of deep brain stimulation surgery. GPe: external globus pallidus; GPi: internal globus pallidus;

STN: subthalamic nucleus; RN: red nucleus.

3.1 Novel tools implementation

The implementations built around this work allow: connecting and streaming data from
the NeuroOmega device to the OpenEphys GUI; extracting electrophysiological features

in real-time; importing of stereotactic surgery planning; refining atlas-based
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segmentations via manual interactions; and visualizing in real-time imaging, together with
high resolution data resources and electrophysiology features in patient specific space,
representing the state of DBS surgery. An overview of the tools and their interplay is

presented in figure 2.

3.2 Increasing brain atrophy challenges automatic registrations

Automatic atlas-based segmentation can be challenging in cases with abnormal brain
anatomy, such as atrophy. The accuracy of HarP hipocampus atlas-based segmentations
and brain atrophy patterns measured by SPARE-AD present a significant relation in a set
of ADNI patients featuring both data (Pearson R = —0.57; p < 1le — 10; Figure 3).
Manually refining the transformations in WarpDrive improves the accuracy of the atlas-

based segmentations, deriving a more precise link to MNI space.

B WarpDrive
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3
AD-like brain atrophy measured by the SPARE-AD score

Figure 3. Accuracy of automatic registrations is challenged by brain atrophy. Panel A shows the association
(Pearson R = —0.57; p < 1e — 10) between the accuracy of atlas-based segmentations (as measured by
the DICE score between manual and MNI-transformed segmentations) and brain atrophy (as measured by
the SPARE-AD score). Cases with strong atrophy are tough for automatic algorithms and candidates to be
improved by manual refinements in WarpDrive (B). One example case is illustrated in C, showing the
manual, automatic, and refined segmentations of the hippocampus (note that the user was blinded to the

manual segmentation while doing the refinements).

3.3 Overall agreement between imaging and electrophysiology

As a validation of the Lead-OR platform, a general correspondence between
electrophysiology derived features and imaging is seen. Normalized root mean square
values along the trajectories depict a region with higher activity that lays within the
imaging-defined STN boundaries (figure 4).
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Figure 4. Agreement between electrophysiology and imaging. In panel A, each vertical line represents a
trajectory from left to right according to their distance to the subthalamic nucleus (STN). The color indicates
the normalized root mean square (NRMS) value derived from the electrophysiology signals and the black
dashed lines represent the entry and exit sites to the STN as defined from the imaging. In Panel B we take
the top 20% trajectories and compare the median NRMS along the trajectories against the bottom 20%. A
significantly different portion of the two electrophysiology derived features (nonparametric Wilcoxon'’s
signed-rank test p < 0.01 with false discovery rate correction) coincides with the entry and exit sites of the
imaging derived STN. From (Oxenford et al., 2022), used under CC BY 4.0, cropped from original.

3.4 Active contact locations match expected imaging and electrophysiology sites

The clinical stimulation settings of the patients mapped to the surgical trajectories present

a correspondence with electrophysiological and imaging features (figure 5).

A NRMS s Active contact location @
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Figure 5. Deep brain stimulation (DBS) electrodes active contact location. The figure visually illustrates the
location of the DBS active contacts with respect to the trajectory normalized root mean square (NRMS)
traces (A) and the subthalamic nucleus (STN) in MNI space (B). This serves as a further confirmation step
of the alignment of the multiple modalities involved in DBS surgery. From (Oxenford et al., 2022), used

under CC BY 4.0, cropped from original.

3.5 Intra-operative electrophysiology-based and post-operative imaging-based

measures of brain-shift are associated

Although a general correspondence is seen, it is the discrepancy between the imaging

and electrophysiology that also inform about new insights. The cross-correlation lag
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describing this disagreement was taken as an estimate of intra-operative brain-shift
measure and compared against an imaging-based post-operative brain-shift estimate.
The data present an association between the two (figure 6) constituting a new biomarker

for brain-shift detection in real-time during surgery.
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Figure 6. Brain-shift analysis. This figure illustrates the analysis and results derived from the brain-shift
processing pipeline. Panel A shows the normalized root mean square (NRMS) traces and subthalamic
nucleus (STN) entry and exit for each trajectory. The NRMS traces and the imaging defined STN were
cross-correlated, deriving a correlation value (xcorr) and a lag value, which defines the lag at which the
maximum xcorr is reached. In panels A and B, the trajectory traces are sorted according to the xcorr and
lag values, respectively. Panel B contains the top half of the trajectories: trajectories that intersect the STN
from the imaging side and that show electrophysiology activity measured by the NRMS. Next, the no-lag
versus high-lag (values above 1 standard deviation) trajectories are compared. In C, the two groups have
different distribution of the imaging-based brain-shift value (Wilcoxon’s signed-rank test p = 0.0076). In D,
the lag of the high-lag trajectories (representing the electrophysiology-derived brain-shift) is significantly
associated with the post-operative imaging-based brain-shift (Spearman R = 0.40, p = 0.016). From
(Oxenford et al., 2022), used under CC BY 4.0, modified from original.
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4 Discussion

4.1 Short summary of results

We developed and validated of a platform combining several methods for the analysis

and real-time visualization of DBS surgery.
These include:

e Providing an accurate link between patient and template space, via manual

refinements of image normalization.

e Importing of several commercial planning systems into a common framework for

further analysis and visualization.

e Acquiring NeuroOmega signals through a plugin into a state-of-the-art

electrophysiology processing platform.

e Integrating all the above, with real-time processing and visualization of micro-
electrode recordings together patient specific imaging and high-resolution

resources.

o Exploring new avenues for biomarker detection relevant for DBS surgery from a
multi-modal perspective, including estimating brain-shift based on intra-operative

micro-electrode recordings and pre-operative imaging.

Our results suggest that the integration of multiple data sources is not only possible, but
that it can be leveraged upon to provide novel insights from DBS surgery. A significant
development work was needed to carry out the aims of this study, from achieving real-
time signal acquisition and processing, to precisely correspond high resolution imaging
resources together. While highly methodological, in this work we also present how novel
scientific questions can arise from the methods and, following this direction, we set out to

study the integration of multiple data as a biomarker for brain-shift during surgery.

4.2 Embedding the results into the current state of research

This work intends to fill a gap in the current methodology practice and bridge different
areas of research within the DBS field, including electrophysiology and imaging. From the
electrophysiology side, for example, there has been advances in feature extraction from
MER recordings (Koirala et al., 2020; Valsky et al., 2017; Zaidel et al., 2010, 2009),
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including real-time machine learning approaches (Valsky et al., 2020), and even
nowadays incorporated into commercially available systems (Thompson et al., 2018).
The imaging field, on the other hand, has also seen advanced with respect with high(-er)
resolution imaging for clinical use (Forstmann et al.,, 2017; Tao et al., 2023) and for
template creation (Amunts et al., 2013; Edlow et al., 2019). While DBS image-guided
surgery navigation started to be studied (Kruger et al.,, 2020), its integration with

electrophysiology and additional resources available during surgery is still underexplored.

Here, we bring these different components together into one common platform for real-
time electrophysiology and imaging processing and visualization. This way we intend to
leverage upon, and not disregard, the multiple sources of information available during
surgery. We present a platform to integrate imaging and electrophysiology together,
building on top of established software for image navigated surgery and real-time
electrophysiology acquisition and analysis. We take advantage of high-quality building

components and extend them to meet the needs of this application.

The toolbox provides a new way of processing and visualizing data, and our results
present how this novel fusion paradigm can be used to derive biomarkers for DBS
surgery. In particular, we present a real-time brain-shift estimation algorithm that could
potentially be of assistance during surgery. Like this, we envision further developments
in this realm that will open up from multi-modal data aggregation, some of which we

introduce in the next section.

4.3 Implications for practice and future research

This study has several implications regarding current practice and future research
directions. We present a platform that allows for new types of analysis and opens new
avenues for research and clinical applications. The tools developed here could become
part of a decision-making assistance application in the operation room, providing insights
regarding current state of surgery. For surgeons and neurophysiologists in training, this
platform presents educational value, since it brings together all different modalities
involved in the surgery into one visualization. This can be an easy-to-grasp representation
of the planning, micro-electrodes disposition and patient anatomy that current commercial

software do not provide.
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There are several future research possibilities starting from this work that we foresee
taking the imaging and electrophysiology integration and further investigating it with new

research questions in mind.

Such is the case, first, of mapping the intra-operative stimulation testing to anatomical
space. These data, together with patient assessment and/or electromyography from
muscles, could be used to inform what target structures and fiber-tracts are associated
with specific side effects, for example. It could also be used as a dataset to validate novel
stimulation modeling algorithms, which could evolve into predictive methods to integrate
within Lead-OR. While we started to look at these data (figure 7), further work is needed

to formally analyze it and derive conclusions from.

2.0mA
2.5 mA
3.0mA
3.5mA | 20 pv 2 sec

Figure 7. Lead-OR integration with stimulation data. The figure shows an example electromyography trace
recorded from the brachioradialis muscle, as the stimulation assessment during deep brain stimulation
(DBS) surgery was being done (colors in the figure indicate increasing stimulation amplitude). The bottom
panel shows the Lead-OR visualization of the stimulation site with respect with the imaging and together
with internal capsule fiber-tracts from a high resolution atlas (Petersen et al., 2019) transformed into patient
specific space. Only fiber-tracts that intersect a simulated volume of tissue activated (derived similarly to
Dembek et al., 2017) are displayed in each step. This exemplary figure that integrates imaging and
stimulation is a preface to future work that could more extensively analyze these kinds of data. From
(Oxenford et al., 2022), used under CC BY 4.0.

Second, by further developing MER processing algorithms, like extracting specific
frequency-band activity or spikes, an electrophysiological characterization of the basal
ganglia region can be developed. Once a reliable map is generated from multiple surgical
data, then the real-time application could compare against this map to further inform the

intraoperative assessment of the surgery. We also envision the application of Lead-OR
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as a platform to benchmark and test different MER processing algorithms promoting

open-science practices.

Third, with further advances in VR/AR technologies and taking advantage of good quality
open-source solutions (for example 3D Slicer has extensions for VR applications;
Choueib et al., 2019), the 3D visualization could be further explored in a more immersive
way. The potential for this is more evident for the pre-operative stage, where multiple
patient and high-resolution data could be visualized for refining the surgery planning.

Such applications are already being developed (Noecker et al., 2023).

Finally, we also extend on the field of image registration, in particularimage normalization,
where there is a growing interest in fusing multiple-modality and high-resolution data.
With WarpDrive having a general implementation and not being restricted to specific DBS
cases, we envision the tool having growing impact in this area. For example, it could be
used to improve normalization in histology to MRI (Adler et al., 2014; Iglesias et al., 2018),

or in specific regions of interest, like the case of sub-field fMRI (Bandettini et al., 2021).

4.4 Limitations

Although we count with high quality data, there were still some cases where data were
contaminated with artifacts common to clinical practice: patient movements during
imaging, mixt MER step acquisition, and variable depth of anesthesia. Also, given that
the data were acquired retrospectively, not every acquisition parameter of the imaging
and electrophysiology was controlled for. These factors can make the data heterogenous,
and we therefore performed (pre-) processing steps to normalize it and correct for
artifacts. Still some cases had to be discarded before further processing, since they didn’t

provide sufficient signal to noise ratio for the analysis.

Additionally, other limitations come in the form of processing methods themselves. Image
normalization used for aggregating multiple imaging data still has some suboptimal
results for some applications—especially when the aim is to achieve high accuracy in
rather small regions of interest. To address this, we based our analysis on previously
published registration routines (Ewert et al., 2019) and built WarpDrive on top of that.
However, we do not intend for WarpDrive to be the ultimate solution in every scenario.
The tool still relies on the user having neuroanatomical knowledge and sufficiently

detailed images to visualize the areas of interest. Since it depends on the user, the
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process becomes less objective, which might seem counterintuitive. However, the
subjectivity can bring additional refinements adding value to the data that would otherwise

stay unexploited during the analysis.

From the electrophysiology processing side there are different artifacts of the signals
arising from the nature of the recording that are cumbersome to avoid and can thus
contaminate the data. Cardioballistic artifacts enter this categorization, as well as the
signal amplitude attenuation following the tissue displacements caused by the electrode
descend. Still, data were a sufficient resource for the aims of this study, which were not
to dive deep into electrophysiological details, but rather propose first steps towards a new

way of processing and navigating data.

Finally, throughout this study we mentioned the use of normative and atlas data, and we
used these resources for our work. While having a common reference for the analysis
allows for different examinations of the data, this takes it out of its native space, which
still remains the gold standard for patient specific analysis. Additionally, the use of atlases
defined in template space also come with the limitations of how they were conceptualized,
acquired and built. We here took special attention when linking patient and template

spaces (e.g., by including the WarpDrive tool) which helped bringing this work together.
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5 Conclusions

Within this work we provide a new framework for multi-modal data aggregation for DBS
surgery. We build upon a previously published toolbox and further extend the platform for
improved real-time performance and additional electrophysiology processing capabilities.
We validate the platform based on retrospective cohorts and show potential avenues for
future research including a novel biomarker that informs the brain-shift occurring during
surgery. This translational work has direct applications in DBS surgery and could become
a source of valuable insights during decision making—potentially improving patient

outcome after surgery.
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Abstract

Background: Deep brain stimulation (DBS) electrode implant trajectories are stereotactically
defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode record-
ings (MERs) or local field potential recordings can be used to extend neuroanatomical information
(defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelec-
trodes probing the surgical target site. Currently, these two sources of information (imaging vs.
electrophysiology) are analyzed separately, while means to fuse both data streams have not been
introduced.

Methods: Here, we present a tool that integrates resources from stereotactic planning, neuroim-
aging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajec-
tory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and
present single-use cases of the real-time platform.

Results: We establish an open-source software tool for multimodal data visualization and analysis
during DBS surgery. We show a general correspondence between features derived from neuroim-
aging and electrophysiological recordings and present examples that demonstrate the functionality
of the tool.

Conclusions: This novel software platform for multimodal data visualization and analysis bears trans-
lational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is
extendable to integrate with additional software packages.

Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum fiir Luft-
und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD
Research (FFOR).

Editor's evaluation
The authors present a software tool combining and correlating the documentation of intraoperative
neurophysiological findings with atlas and imaging data. They also show an exemplary validation

Oxenford et al. eLife 2022;11:e72929. DOI: https://doi.org/10.7554/eLife.72929 1 of 21



37

@Life 1oois and resources

Medicine | Neuroscience

of their tool in a clinical series of 52 Parkinson's disease patients who underwent DBS surgery. This
article will be of interest to clinicians and researchers who are involved in both the placement and
controlling of the accuracy of the location of deep brain stimulation electrodes.

Introduction

During deep brain stimulation (DBS) surgery, different sources of information are used to ensure
precise placement of the electrodes within the target structure. Functional stereotactic coordinates
(defined relative to anatomical atlas landmarks) are often used as a starting point (indirect targeting).
Then, more importantly, preoperative MRI sequences optimized to visualize target structures are used
to refine the initial plan (direct targeting). Surgical planning is usually carried out after fusing the
MRI sequences with a computed tomography (CT) volume acquired with the stereotactic frame and
fiducial plates already mounted to the patient’s head. The fiducial plates include markers that are
used to convert stereotactic coordinates (established in the planning software) to frame coordinates
(applicable to mechanically adjust the stereotactic frame) in order to place electrodes to the intended
target.

During the surgical procedure, microelectrode recordings (MERs), as well as test stimulations
carried out using macroelectrodes, are often used as an additional confirmation step of placement
in the intended target site. While the necessity of the former step has been debated (Aviles-Olmos
et al., 2014) and the procedure may lead to slightly increased rates of complications (Zrinzo et al.,
2012), the experience of our own high-volume center is that roughly every fifth patient’s surgical
plan will be slightly altered based on electrophysiological signals, with similar experiences reported
by others (Lozano et al., 2018). Of specific relevance is the role of brain shift occurring due to air
entering the skull during surgery: even with optimal imaging and meticulous surgical planning before-
hand, brain shift may lead to nonlinear displacement of the brain relative to the skull and stereotactic
frame (Halpern et al., 2008), which can only be monitored intraoperatively (e.g., using the electro-
physiological data recorded with microelectrode probes). While most centers analyze MERs by visual
and auditory inspection from expert neurosurgeons or neurologists, the first FDA and CE-approved
machine-learning algorithms that facilitate this monitoring step have recently been introduced, for
instance, in the form of the HaGuide system created by the company Alpha Omega Engineering
(Nazareth, Israel; Thompson et al., 2018).

Still, understanding and communicating the complex neuroanatomical and neurophysiological
relationships within the clinical team during the procedure may remain a challenge even for experts.
To account for this, Kriiger, 2020 introduced the concept of navigated DBS surgery, showing that a
visual feedback of the microelectrode position can be helpful to mentally envision the ongoing 3D
scene.

In parallel, reconstructions of DBS target regions based on elaborate MRI sequences have become
increasingly precise (Horn, 2019; Krauss et al., 2021). Specialized MRI sequences have been intro-
duced to maximize visibility and boundary definitions of pallidal, thalamic (Tourdias et al., 2014;
Sudhyadhom et al., 2009; Vassal et al., 2012), and subthalamic (Santin et al., 2017; Wang and
Liu, 2015) targets. But even when relying on a set of standard sequences (e.g., T1 and T2), modern
reconstruction pipelines have the capability to reconstruct the subthalamic nucleus (STN) and internal
segment of the globus pallidus (GPi) with a precision that rivals manual expert segmentations (Ewert
et al., 2019). Over recent years, these methods have made it possible to transform the 2D representa-
tions of stereotactic imaging slices into 3D models that are not only graphically appealing but indeed
realistic and meaningful (Horn and Kiihn, 2015). As a by-product, these tools have made it possible
to accurately register atlas data into the patient-specific model. With atlas data, here, we generally
refer to an array of ultra-high-resolution imaging resources that could be based on histology (llinsky
et al., 2018; Ewert et al., 2018; Amunts et al., 2013), postmortem MRI (Edlow et al., 2019), or
even expert anatomical knowledge aggregated in three-dimensional fashion (Petersen et al., 2019).
Similarly, atlas data could represent optimal stimulation sites defined on a group level, for instance, in
the form of probabilistic sweet spot targets (Dembek et al., 2019; Boutet et al., 2021; Elias et al.,
2021; Horn et al., 2017) or tractography-defined DBS target atlases (Li et al., 2020; Treu et al.,
2020; Al-Fatly et al., 2019).
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elLife digest Deep brain stimulation is an established therapy for patients with Parkinson’s disease
and an emerging option for other neurological conditions. Electrodes are implanted deep in the
brain to stimulate precise brain regions and control abnormal brain activity in those areas. The most
common target for Parkinson's disease, for instance, is a structure called the subthalamic nucleus,
which sits at the base of the brain, just above the brain stem.

To ensure electrodes are placed correctly, surgeons use various sources of information to charac-
terize the patient’s brain anatomy and decide on an implant site. These data include brain scans taken
before surgery and recordings of brain activity taken during surgery to confirm the intended implant
site. Sometimes, the brain activity signals from this last confirmation step may slightly alter surgical
plans. It represents one of many challenges for clinical teams: to analyse, assimilate, and communicate
data as it is collected during the procedure.

Oxenford et al. developed a software pipeline to aggregate the data surgeons use to implant
electrodes. The open-source platform, dubbed Lead-OR, visualises imaging data and brain activity
recordings (termed electrophysiology data) in real time. The current set-up integrates with commer-
cial tools and existing software for surgical planning.

Oxenford et al. tested Lead-OR on data gathered retrospectively from 32 patients with Parkinson’s
who had electrodes implanted in their subthalamic nucleus. The platform showed good agreement
between imaging and electrophysiology data, although there were some unavoidable discrepancies,
arising from limitations in the imaging pipeline and from the surgical procedure. Lead-OR was also
able to correct for brain shift, which is where the brain moves ever so slightly in the skull.

With further validation, this proof-of-concept software could serve as a useful decision-making
tool for surgical teams implanting electrodes for deep brain stimulation. In time, if implemented, its
use could improve the accuracy of electrode placement, translating into better surgical outcomes
for patients. It also has the potential to integrate forthcoming ultra-high-resolution data from current
brain mapping projects, and other commercial surgical planning tools.

Here, we present an integrative approach to combine information derived from neuroimaging and
neurophysiology in a joint visualization platform. First, we build on recent validations of subcortical
normalization routines to introduce a method to refine 3D models of subcortical targets on a single
patient level. Second, we port our methodology for postoperative electrode localization established
within Lead-DBS software (https://www.lead-dbs.org; Horn and Kiihn, 2015) to the pre- and intraop-
erative realm, that is, the one of stereotactic planning, MERs, and intraoperative testing. To achieve
this, we present and validate a novel unified software framework termed Lead-OR that incorporates
the following resources into a live visualization scene: (1) patient-specific imaging, (2) stereotactic
planning information, (3) real-time microelectrode localization, (4) MER feature extraction, and (5)
high-resolution atlas imaging data. The capability of the system to integrate electrophysiological
information with imaging data is explored in-depth. Beyond this feature, the tool also includes the
possibility to visualize test stimulations and real-time fiber tractography. The software framework is
made available as an open-source package (https://github.com/netstim/SlicerNetstim) and currently
supports integration with the Brainlab Elements (Brainlab AG, Munich, Germany) planning software
and a direct interface to the NeuroOmega system (Alpha Omega Engineering). Further integrations
with other systems are planned in the future.

Methods
Ethics statement

Lead-OR is intended for purely academic research use and does not have any form of government
body regulatory approval. As such, any use of Lead-OR is strictly limited to Institutional Review Board
(IRB)-approved research studies at individual academic institutions, while legal frameworks and
practices may differ from country to country. The collection and analysis of all patient data used
for this article were approved by the local ethics committee of Charité — Universitatsmedizin Berlin
(master vote EA2/145/21). All data were analyzed retrospectively and obtained in deidentified form
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Figure 1. Patient-specific visualization generated by aggregating different sources of data. The stereotactic
planning procedure defines the surgical target coordinate, as well as ring and arc angles, which together describe
the central trajectory. The Ben-Gun configuration presented in the figure shows additional posterolateral and
anteromedial trajectories, 2 mm apart from the central one. Up to five trajectories are currently supported by

the software. In our current setup, the distance to the target is controlled by the NeuroOmega system, accessed
with its Software Development Kit (SDK) — but can alternatively be set manually within the tool itself. Relevant
subcortical nuclei have been warped to patient space via a manually refined normalization. GPe: external segment
of the globus pallidus; GPi: internal segment of the globus pallidus; STN: subthalamic nucleus; RN: red nucleus.

from Medical Records of Charité. Hence, following local guidelines in Berlin/Brandenburg as well as
NIH guidelines for human subjects research, no explicit patient consent to analyze and publish was
obtained/necessary.

Implementation environment

The tools used in this study are implemented in the form of a 3D Slicer (Slicer) (Fedorov et al., 2012;
Kapur et al., 2016) extension (https://github.com/netstim/SlicerNetstim). The main module of the
SlicerNetstim extension is Lead-OR, which assembles the different sources of information, as outlined
in the following sections.

Coordinate systems
The first step in aggregating data from different sources is to co-register their spatial relationship and
coordinate systems (Figure 1). Lead-OR is based on Slicer’s world-coordinate system (RAS). We use a
linear transform to match the Head-Ring center and positive axes to the origin of this world-coordinate
system. The planned central trajectory is then defined based on target coordinates, mounting type,
and ring and arc angles. The other trajectories are defined relative to the central one, following the
configuration of the Ben-Gun microarray. As mentioned, currently, support for the NeuroOmega
setup has been implemented, which uses a Ben-Gun array first introduced by the team of Alim-Louis
Benabid (Benazzouz et al., 2002).

These trajectories describe a line in space through which the macro, micro, and definitive DBS
electrodes are inserted. The last parameter to fully define their position varies throughout surgery,
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namely, the distance to the planned target. This parameter is set by the Microdrive, which allows to
move the electrodes along the trajectories while recording from the tip of the microelectrodes. In
our current setup, this value is queried via the NeuroOmega Software Development Kit (SDK) and
alternatively can be manually controlled within the software itself. Interfacing to similar systems as
the NeuroOmega device will be possible given the open-source nature of our tool and creating such
interfaces with other systems is in our interest for the future.

To co-register the patient’s images and frame reference, the tool uses a set of fiducial points defined
in both coordinate systems (image and frame) that we extract from the surgical planning coordinates.
Specifically, the anterior commissure (AC) and posterior commissure (PC), as well as a midsagittal
point (MS), are used to create the transform (implemented using the fiducial registration module
available within Slicer). Currently, an interface with the Brainlab Elements (Brainlab AG) stereotactic
planning software is implemented (via PDF export in Elements and automated import in Lead-OR).
Again, support for alternative planning tools is planned for the future.

Finally, we incorporate high-resolution atlas resources into the patient-specific visualization scene.
For the present examples within the article, we used nuclei from the DISTAL (Ewert et al., 2018)
and MNI PD 25 histology atlases (Xiao et al., 2017) that were defined in MNI space (ICBM 2009b
Nonlinear Asymmetric, Fonov et al., 2009). Similarly, we imported histological sections from the
BigBrain atlas (Amunts et al., 2013) and fiber tract definitions provided by the holographic basal
ganglia pathway atlas (Petersen et al., 2019). In the same fashion, virtually any type of atlas data
could be imported to the patient scene, but it is crucial that this registration is of utmost precision.
To account for this, we built on the long-standing methods development within Lead-DBS (Horn and
Kiihn, 2015; Horn et al., 2019; Ewert et al., 2019; Vogel et al., 2020; Edlow et al., 2019) but dras-
tically extended the procedure with a novel manual refinement method, termed WarpDrive. Namely,
an initial deformation field was calculated via a multispectral four-stage normalization step using the
symmetric normalization (SyN) transformation model implemented within Advanced Normalization
Tools (ANTs; http://stnava.github.io/ANTs/; Avants et al., 2008). This was implemented using the
‘effective: low variance + subcortical refinement’ preset defined in Lead-DBS, which has been opti-
mized for normalization of subcortical structures (Horn et al., 2019) and has shown to yield accurate

Figure 2. Output of a Lead-DBS/Advanced Normalization Tools (ANTs)-based automated normalization with and without subsequent manual
refinement. Two MRI modalities are shown anterior commissure-posterior commissure (AC-PC) aligned: T1-MPRAGE (left) and T2-TSE (right). Both
MRI modalities (together with FGATIR, not shown here) were used as an input to the normalization step implemented in Lead-DBS, which allows
multispectral registration using ANTs. The white outline shows atlases: MNI PD 25 histology (Xiao et al., 2017) (left) and DISTAL (Ewert et al., 2018)
(right), both included within Lead-DBS.

The online version of this article includes the following video for figure 2:

Figure 2—video 1. General overview of the visualizations and tools made available through the WarpDrive module implementation in Slicer.

https://elifesciences.org/articles/72929/figures#fig2video1
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segmentations of subcortical nuclei that rival the ones carried out manually by experts (Ewert et al.,
2019; Vogel et al., 2020). The deformation fields derived from this automated step are then further
manually refined using WarpDrive, which is described in the next section.

Normalization refinement
While normalization algorithms have become increasingly accurate (Vogel et al., 2020; Ewert et al.,
2019), their precision is not always perfect in single subjects and shows varying accuracy throughout
the brain. Indeed, accurate automated registration of the basal ganglia nuclei presents a challenge to
intensity-based registration methods given their low contrast between regions (Ewert et al., 2019).
Using WarpDrive, an experienced user can recognize such mismatches included in the automated
normalization and manually refine the displacement field using point-to-point and line-to-line fiducials
as well as a smudge tool. Manually entered fiducials are fed into the Plastimatch software (Sharp
et al., 2010) (accessed as a command line module from within Slicer). Details about the WarpDrive
tool will be reported and evaluated elsewhere. Figure 2 shows an example of a manually refined
normalization, and Figure 2—video 1 shows a demo application of the tool to refine atlas-to-patient
fits in a surgical case.

Real-time implementation

Lead-OR has the potential to be used in real-time during surgery. As mentioned above, one aspect of
this is the continuous/live updating of the microelectrode distance to the surgical target while keeping
the scene (i.e., multiple 2D and 3D views) synchronized. The interface to the NeuroOmega device

# BRAINLAB Elements @_o L?g'a

Planning NeuroOmega System
C++ SDK
Stereotactic Plan Neurophysioll Lead-OR 3
Scripted Loadable Py ogy Scripted 3D Slicer
Module Module Module -
Output Transform Drive Depth Channels

Transform Hierarchy

* » Planned Trajectory * Scanner

» Distance To Target

s

» Ben Gun Translation
—] PACS
\ e
% v 4 NORA
niha
i &% LcadpBs
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Figure 3. Overview of the SlicerNetstim extension. The current setup shows interfaces with specific commercial products. Similar interfaces to
competing tools are planned and will be included in the future. A PDF plan exported from Brainlab Elements is used as an input to the Stereotactic Plan
module to store the planned trajectory as a Slicer Transform. The NeuroOmega system is connected via its Software Development Kit (SDK) through the
Neurophysiology module, providing continuous updates about the drive depth and electrophysiological channel input. Finally, in the Lead-OR module,
the Ben-Gun configuration is defined by selecting the used trajectories and assigning them to input channels from the NeuroOmega device. Using

a transform hierarchy, the spatial position of the microelectrode is defined: the Ben-Gun translation is transformed by the distance to the target, this
one itself being transformed by the planned trajectory. By doing so, the features extracted from the respective microelectrode recordings (MERSs) can
be mapped to their spatial location. At our center, an automatic pipeline for preprocessing data retrieved from a picture archiving and communication
system (PACS) system is setup using the NORA medical imaging platform (https://www.nora-imaging.com/) to automatically run the core Lead-DBS
pipeline once images arrive in the hospital’s PACS system. This part (right-hand side) is not discussed in detail since it is largely specific to our center.
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provides live data about how distant the microelectrodes are to the target and also streams out elec-
trophysiological recordings made in a real-time manner. Finally, test stimulations can be visualized,
including a function for live-tractography visualization estimating ‘activated’ or ‘modulated’ tracts.

To make this possible, we included the NeuroOmega C++ SDK as part of a Slicer loadable module.
This module sets up the connection to the NeuroOmega device and queries the distance to the target
in specified time intervals. It also displays the available channels from which recorded electrophysio-
logical data can be streamed, stored, processed, and visualized.

Through the Lead-OR module, the microelectrode Ben-Gun configuration is defined and the
NeuroOmega channels are linked to the selected trajectories. Together with the aforementioned
image-to-frame transform, as well as the distance to the target, this allows to define the anatomical
location of the electrophysiological signal in real time. The features extracted from recordings are
projected into the patient-specific space and represented in the 2D/3D visualization (Figure 3). The
computation of features is continuously executed for each position of the microdrive, updating the
recording stream at each time point. This process takes a few seconds (depending on available hard-
ware), and the visualization is then updated.

(Re-)developing a signal processing pipeline for electrophysiological data was not the focus of this
study since a multitude of tools exist, which could be integrated into Lead-OR in the future. However,
to demonstrate live processing and visualization of electrophysiological features, for now we included
two minimal processing pipelines for MER. (Currently, no pipeline for local field potential recordings is
included, but this could be similarly extended given the open-source nature of the tool.).

The first is the signal’s normalized root mean square (NRMS) value, which is computed as described
in Zaidel et al., 2009. For each step (Microdrive position), a stable part of the recorded data is
extracted to compute the RMS on (see Zaidel et al., supplementary material). To obtain a normalized
measure, the values along the trajectory are divided by the median of the first five stable steps. To
visualize results in space, Lead-OR projects a tube along the trajectory with varying radius and color
- both redundantly representing NRMS magnitude. Potentially, in the future, radius and color could
be assigned to represent different features that could graphically combine information derived from
MER and local field potential signals.

The second processing pipeline is based on spike analysis. This is implemented by running the
WaveClus (Chaure et al., 2018) automatic pipeline with negative threshold on the recorded files
once the drive moves to the next position. Clusters with less than 100 spikes or in which 10% of the
inter spike intervals (ISls) are below 3 ms or in which signal-to-noise ratio (SNR) is less than 1.5 are
discarded. SNR is computed as described in Joshua et al., 2007 using the residual method. We
assume the recordings capture singe-unit activity (SUA) instead of multiunit activity (MUA), and thus
each recording can represent none or one cluster of spikes. One of the reasons behind this assump-
tion is, for example, that changes in amplitude recording from the same unit might be misclassi-
fied as different clusters. Spike clusters are represented as fiducials placed in the position they were
detected. Figure 3 summarizes the described live-processing setup.

Stimulation module

Intraoperative assessment of stimulation-induced therapeutic as well as side effects can yield
important information about electrode placement. For example, electrode placement close to the
internal capsule may lead to tonic muscle contractions at low stimulation amplitudes. Often, these
thresholds are intraoperatively identified by stimulating at increasing steps until muscle contractions
and/or electromyography (EMG) activity are observed. Since Lead-OR already visualizes the patient-
specific location of the stimulation sites, volumes of tissue activated (VTA) could be used as seeds for
tractography. Fiber analysis was carried out by accessing the logic of the SlicerDMRI module (Norton
etal., 2017).

Obtaining preoperative diffusion MRI data is not part of clinical practice at all DBS centers. In
cases where patient-specific dMRI data is not available, an alternative is to use normative fibers that
are defined in template space and warped into patient space (similar to other types of atlas data).
This process can at times even come with advantages, for example, the absence of false-positive
fibers when using manually curated normative datasets (Petersen et al., 2019; for a more thorough
discussion, see Horn and Fox, 2020). For the purpose of this article, we will refer to the term tractog-
raphy as the process to filter and visualize tracts derived from such normative datasets or whole-brain
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tractography connectomes (Reisert et al., 2011) that intersect with a region of interest (ROI) (in our
case, the VTA). The exact same process is possible using patient-specific streamlines but is not demon-
strated here.

To estimate the VTA, we use the simplified method proposed by Dembek et al., 2017, which
defines the radius of a sphere based on stimulation amplitude and pulse width. Varying values from
0.5 to 1.0 were set for the constant k; in their formula (see Dembek et al., supplementary material, for
the explanation of the parameter). In our present example, a value of ~ 0.8 seemed to yield results
that matched the recorded EMG data. Currently, this part of this article should be seen as exploratory
as an example of feasibility. Data to validate the approach on a larger number of patients beyond
the present case was lacking. Further studies are needed to titrate the k; value on a group level and
validate the stimulation module of Lead-OR in general.

Patient cohort and surgical procedure

Up to this point, we described the live setup of Lead-OR. We aimed to evaluate the accuracy of this
setup by comparing imaging- and electrophysiology-derived markers on a group level. To do so, we
retrospectively gathered data from patients who underwent DBS and processed it in a similar fashion
as the real-time application. 52 patients (12 females; mean age = 61 + 9) were retrieved from cases
undergoing STN-DBS surgery at Charité - Universitatsmedizin Berlin between 07/2017 and 10/2021.
Inclusion was based on having homogeneous data acquisitions consistent with current surgical proce-
dure (i.e., Brainlab planning exports together with corresponding imaging acquisitions and complete
microelectrode recording information). Supplementary file 1 summarizes the inclusion process in the
form of a flow chart.

Patients underwent bilateral DBS surgery targeting the STN. Surgery was either performed awake
or under general anesthesia. In case of the latter, the depth of narcosis was reduced before MERs to
reduce potential effects of anesthetic drugs.

The NeuroOmega System (Alpha Omega Engineering) was used with 2-5 microelectrodes in
orthogonal (0°) or rotated (45°) Ben-Gun configuration to acquire MERs. Recordings were carried
out from 10 mm above to 4 mm below the target with step sizes between 0.2 mm and 0.5 mm (with
some exceptions common to clinical practice). Then, microelectrodes were removed and test stimula-
tions were applied at multiple heights above the target via macroelectrodes on central and alternate
trajectories. Neuroprobe Sonus non-shielded microelectrodes (Alpha Omega Engineering) were used
as micro-/macroelectrodes. Stimulations were done at increasing amplitude steps of 0.5 mA until
identifying permanent side effects. Additionally, therapeutic stimulation effects were evaluated when
the surgery was performed in the awake state. Patients who underwent general anesthesia received
additional EMG using needle electrodes to evaluate motor unit activity of eight muscles as indicator
for the activation of corticobulbar and corticospinal tracts. Finally, based on imaging, electrophysi-
ological, and clinical findings, the surgical team decided upon the optimal depth and trajectory for
permanent electrode implantation.

Of the 52 patients included in this study, 4 were discarded based on poor imaging quality and 16
based on poor electrophysiology signals (both determined by visual inspection). Additionally, taking
the same considerations, four left and four right hemispheres were also discarded based on a low
quality of electrophysiology data. MERs were saved as segments for each distance to the target value.
Segments were discarded if they were contaminated by artifacts or when their recording length was
less than 4 s. With these considerations, we analyzed a final cohort of 32 patients (56 hemispheres)
with a total of 236 trajectories.

Imaging and electrophysiology processing

Pre- and postoperative imaging data were co-registered and normalized using Lead-DBS (Horn et al.,
2019) followed by visual inspection and, if necessary, refinement using WarpDrive. The definitions of
the central trajectories were extracted from stereotactic planning reports and the Ben-Gun configura-
tion from recordings files. We computed the NRMS of all trajectories and resampled them on a linear
space with 0.1 mm distance to target resolution. Spike clusters were computed as described above.
As mentioned earlier, if more than one cluster was detected in a segment and satisfied the stated
conditions, this was still considered an SUA (and represented as one cluster in further analysis).
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Using the Lead-DBS pipeline, we carried out brain shift correction using postoperative CT data
(Horn et al., 2019). This allowed us to quantify the degree of brain shift occurring after surgery based
on imaging-derived metrics. For each trajectory, each recording position was displaced using the
brain shift correction transform. We took the median of displacements as the amount of brain shift for
each trajectory. We will refer to this measure as the imaging-based brain shift estimate in this article
(note that it is derived from pre- and postoperative imaging data).

The most recently available clinical stimulation settings were retrieved from all 32 patients (visits
ranging from 3 to 44 months after surgery). We reconstructed DBS electrodes based on the stan-
dard Lead-DBS pipeline and denoted the coordinate of the active contact (in case of multiple active
contacts, their locations were averaged). For a qualitative analysis, we projected this coordinate to the
nearest point along the closest trajectory for each electrode.

Each recording segment had its own patient-specific distance to target measure. In order to carry
out group analyses, we defined a normalized distance to target. With the nonlinear deformation
displacement fields, a link between the location of the trajectory and the ICBM 2009b NLIN ASYM
(Fonov et al., 2009) ('MNI’) space was established. We then took a reference point in each trajec-
tory computed as the nearest point to the STN target coordinates in MNI space from Caire et al.,
2013. The normalized distance to the target was defined by aligning the references of all trajectories.
The alignment was done by displacing each trajectory by its reference position minus the average
displacement from all trajectories (Figure 5—source code 1). Furthermore, by using the warp to
MNI space we were able to compute the trajectory’s distance to the STN and the STN entry and exit
sites (henceforth referred to as imaging-defined STN boundaries). To do this, we used the STN as
defined by the DISTAL atlas. The main hypothesis from the group analysis was that electrophysiolog-
ical recordings acquired from within the imaging-defined STN would show higher activity than the
ones recorded outside of the STN.

All spike clusters were mapped to the left hemisphere of the MNI space (right hemisphere coor-
dinates were nonlinearly flipped). Then, we created an image of 0.22 mm isotropic resolution where
each voxel represented the number of clusters detected divided by the number of segment record-
ings within 1 mm of the voxel’s center. This resulted in a cluster density volume in MNI space (Figure
5—source code 1; Figure 5—source data 2).

Additionally, NRMS values and STN distances for each trajectory were transformed with the inverse
tangent function resulting in similar distributions of the two. Subsequent cross-correlation of these
two signals along each trajectory resulted in a maximum cross-correlation value and the lag (displace-
ment) at which this maximum occurred (Figure 5—source code 2).

In the next step, we sorted the trajectories according to their maximum cross-correlation and split
the data in half, retaining the trajectories that were in close proximity to the STN and showed electro-
physiological activity. We then sorted the top half according to the lag at which the maximum cross-
correlation occurred (Figure 5—source code 2). We will refer to this lag as the electrophysiology-based
brain shift estimate (note that it is derived from preoperative imaging and intraoperative electrophys-
iology). Hence, in contrast to the imaging-derived brain shift estimate (which required postopera-
tive imaging), this one could be computed during surgery. The electrophysiology-based brain shift
measures were compared to the imaging-based brain shift estimates in two ways: first, we contrasted
imaging-based brain shift estimates between the low versus high-lag groups using Wilcoxon’s signed-
rank test. The high-lag group was defined by taking trajectories with lag values above 1 standard
deviation of the lags. The low-lag group is composed of the same number of trajectories taken from
the data sorted according to the lag. This would analyze whether cases with high electrophysiology-
derived estimates indeed had more brain shift based on the imaging-based estimate. Second, we
correlated values from the high-lag trajectories (where significant brain shift was estimated based on
electrophysiology) with the imaging-derived estimate of brain shift. This would analyze whether the
degree of brain shift would correlate between electrophysiology- and imaging-derived estimates.

Results

The main result of this work consists of an integrated software framework that links electrophys-
iological with imaging-derived data within the same patient-specific coordinate space during
surgery. Figure 4 shows the software output for a single-case example including different forms of
visualization and an exemplary match between DBS imaging and electrophysiology. Furthermore,
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Figure 4. Example case showing trajectories, microelectrode recording (MER) features, and DISTAL atlas volumes mapped to patient space. 10s
recording snippets from one trajectory are displayed. Normalized root mean square (NRMS) activity is represented by a tube with varying diameter and
color matching the value. Spike clusters are represented by red point fiducials. GPe: external segment of the globus pallidus; GPi: internal segment of
the globus pallidus; STN: subthalamic nucleus; RN: red nucleus.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 4:

Figure supplement 1. Additional ventral intermediate nucleus (VIM) and internal segment of the globus pallidus (GPi) cases.

Figure supplement 2. Additional example cases of subthalamic nucleus-deep brain stimulation (STN-DBS) Lead-OR visualizations.

Figure 4—video 1. General overview of the Lead-OR real-time application.

https://elifesciences.org/articles/72929/figures#figdvideo1

Figure 4—video 2. Video showing the program user interface and its use.

https://elifesciences.org/articles/72929/figures#figdvideo2

Source data 1. Slicer scene containing the spatial data shown in the Figure 4.

Figure 4—figure supplement 1 shows the application of the tool in a ventral intermediate nucleus
(VIM) and GPi example. Finally, for illustrative purposes, we included additionally three STN cases with
unusual anatomical configurations in Figure 4—figure supplement 2. Figure 4—video 1 shows the
live application of the tool in action, and Figure 4—video 2 shows the user interface and how the
platform is setup.

Figure 5 shows the 236 trajectories retrospectively gathered from 32 patients, arranged from left
to right based on their distance to the STN and vertically aligned with the normalized distance to
target. Electrophysiology traces were plotted with STN entry and exit markers derived from imaging.
Comparing the NRMS from the bottom 20% (outside of the STN) to the top 20% revealed an anatom-
ical region with significant differences (p<0.01) within the imaging-defined STN boundaries (defined
as the median of the top 20% STN boundaries). In other words, the recorded activity from inside this
part of the STN was significantly higher than the ones recorded outside of it. Data were compared
using nonparametric Wilcoxon's signed-rank test and multiple comparisons were corrected using false
discovery rate (FDR) (Benjamini et al., 2006).

The cluster density volume in MNI space also showed a general agreement with the imaging-
derived STN: when thresholding the volume based on increasing density values, the overlap with the
STN region was higher (95% overlap at a 50% cluster density threshold; Figure 5).

With respect to the brain shift analysis, the low-lag and high-lag groups showed a significantly
different brain shift distribution (Wilcoxon's signed-rank test p=0.0076). Also, correlating the high-lag
values (electrophysiology-derived brain shift estimate) with their imaging-derived brain shift estimates
showed a significant association (R = 0.40, p=0.016; Figure 5—figure supplement 1). Figure 5—
figure supplement 2 shows an example case illustrating how the imaging-based brain shift-corrected
Lead-OR scene presents better correspondence between imaging and MER.
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Figure 5. Retrospective group analysis investigating agreement between imaging- and electrophysiology-defined subthalamic nucleus (STN). In (A) and
(C), each trajectory is presented as a column, showing normalized root mean square activity (NRMS) and spike clusters, respectively, with the normalized
distance to target denoted on vertical axes. Trajectories are sorted from left to right according to their distance to the STN as defined in the DISTAL
atlas (Ewert et al., 2018). Dark green values (indicating NRMS of zero) represent no recordings at these sites. Black dashes represent STN entry and
exit, and the dashed white line the median entry and exit for the top 20%. (B) shows comparisons between bottom and top trajectories, with the gray
area representing a significant band (nonparametric Wilcoxon's signed-rank test p<0.01 with false discovery rate [FDR] correction), which resides within
the STN. The plots show median, 0.25 and 0.75 quantiles. (D) shows the overall distribution of spike clusters. (E) shows isosurfaces of a volume where
each voxel contains the number of clusters detected divided by the number of recordings carried out within 1 mm distance to the location (cluster
density). The legend shows the percentage of the volume overlap with the STN at different thresholds. The 7 T MRI ex vivo human brain template
(Edlow et al., 2019) is shown as the background image with DISTAL STN outline. Decreasing values on the z-axis traverse from superior to inferior.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 5:

Source code 1. Uses Figure 5—source data 1to generate Figure 5—source data 2 and panels A-D.

Source code 2. Uses Figure 5—source data 1to generate Figure 5—figure supplement 1.

Source data 1. Trajectories data including normalized root mean square (NRMS) traces, subthalamic nucleus (STN) entry-exit positions, spike clusters,
brain shift, and distance to STN values.

Source data 2. Cluster density volume shown in Figure 5E.
Figure supplement 1. Brain shift study.
Figure supplement 2. Example case in which the imaging-derived brain shift transform was applied to the Lead-OR scene, post-hoc.

Figure supplement 3. Active contact coordinates overlayed with Figure 5A and E.

In Figure 5—figure supplement 3, we show clinical active contact coordinates with respect to the
results of the group analysis as shown in Figure 5. Most of the coordinates rely inside the STN and
coincide with high-activity regions as depicted by the microelectrode recordings.

Figure 6 shows an example case using the test stimulation setup with live volume activation trac-
tography and corresponding EMG activity invasively recorded during surgical routine using a needle
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Figure 6. Example of test stimulation setup (also see Figure 4—video 1 for the demonstration of a real-time
application). A simplified stimulation volume is modeled based on the applied test stimulation parameters
following the approach of Dembek et al., 2017. From a set of predefined fiber tracts representing the internal
capsule (without hyperdirect components; Petersen et al., 2019) that were registered to patient space, fibers
passing through the volume were visualized in real time. Alternatively, tractograms obtained based on diffusion
MRI of the individual patient data or normative connectomes could be used. The top panel shows needle
electromyography (EMG) activity that was recorded within clinical routine from the brachioradialis muscle during
stimulation in the same patient. Colors represent stimulation amplitude. After a preliminary exploratory analysis of
the k, parameter from Dembek’s formula, a value of 0.8 was used for the shown example.

The online version of this article includes the following source data for figure 6:

Source data 1. Slicer scene containing the spatial data shown in the Figure 6.

electrode inserted into the brachioradialis muscle. We also refer to Figure 4—video 1 for a demon-
stration of the real-time application of this module.

Discussion

Multiple take-home points can be drawn from this study. First, we established a software pipeline
to integrate imaging and electrophysiology results within an interactive real-time application during
DBS surgery. The setup interacts with commercial tools for surgical planning and MERs and has the
capability to visualize and analyze data in various forms. In the presented group study, the data acqui-
sition conditions were not controlled for, given their retrospective nature. However, the platform can
generalize to alternate settings. For example, the number of trajectories used can be set from 1to 5,
without compromising its execution. With respect to hardware settings, while currently a fixed set of
interfaces to commercial tools is available, the open-source nature of the software will allow integra-
tion of links to other devices. Furthermore, although we present the tool and analysis made with STN
cases, it could also be applied to other DBS targets. As illustrative examples, we refer to Figure 4—
figure supplement 1 to see Lead-OR visualizations for a VIM and GPi case. Second, atlas data from
ultra-high-resolution resources may be integrated into the tool. For instance, whole-brain histological
atlases, such as the BigBrain dataset (Amunts et al., 2013) or stereotactic 3D atlases, such as the
DISTAL (Ewert et al., 2018) or Human Thalamus Atlas (llinsky et al., 2018) could be integrated. In
a way, these atlases would fill the gap of commonly used histological reference atlases available in
book format, such as the Schaltenbrandt-Wahren (Schaltenbrand et al., 1977) or Talairach atlases
(Rey et al., 1988). While these book resources have been and still are invaluable to the field, they
lack the possibility to be deformed into native patient space and to be digitally represented in direct
synopsis with patient imaging and electrophysiology. Instead, whole-brain resources will grow in
number, resolution, and quality in the foreseeable future (Horn, 2019; Krauss et al., 2021; Sui et al.,
2020; Vedam-Mai et al., 2021). Similarly to anatomical atlas resources, optimal target definitions
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(‘sweet spots’) or even connectomic/tract-based target definitions could one day be integrated to
guide DBS surgery — after proper and prospective validation of such datasets and applied methods
(Dembek et al., 2019; Boutet et al., 2021; Elias et al., 2021). On the hardware side, other possible
integrations to the platform in the future include the use of intraoperative imaging such as CT or X-ray
acquired for final verification of electrode placement. Data from these acquisitions could potentially
be integrated to further enhance visualizations provided by Lead-OR.

The tools, methods, and software described here are not approved by any regulatory authorities
and are not intended to assist in making clinical decisions. Rather, we present them for use for purely
research-driven purposes under proper IRB approval in study contexts. The tool should be seen as
a data visualization tool that could potentially save researchers time by showing data from multiple
sources in direct synopsis to one another. As such, it may be powerful to further explore the inter-
play between electrophysiology and imaging, validate biophysical models, and better characterize
patient-specific data.

We see special value in integrating MER-derived measures to the anatomical realm and in the inte-
gration with imaging findings. Our aim was to produce a set of use cases each of which could open
larger windows of opportunities for upcoming studies. For instance, we included two MER processing
pipelines in this study, which have previously been studied in different publications (Koirala et al.,
2020; Boéx et al., 2018; Zaidel et al., 2009). The reason for their adoption was mostly demonstra-
tive, and we do not claim for them to be the best/only choices when it comes to studying STN activity.
Future work involves analyzing differences in these and similar processing pipelines to derive a better
understanding of MER physiology. Given the open-source nature of this project, it will be feasible to
extend usability and incorporate complementary approaches. Lead-OR should be seen as a satellite
application to existing intraoperative electrophysiology software tools, not an attempt to replace
them. The aim of our application is to augment these existing tools by a projection of recorded
signals to anatomical space. It is intended to run in parallel to existing software (either on a secondary
machine or on the same computer). Hence, thorough inspection and analysis of electrophysiological
signals will remain unchanged for users of existing software, while our tool could hopefully add addi-
tional insights into the anatomical origins of recorded signals.

In a similar vein, we see larger potential in the field of activation tractography by studying stimu-
lation spread across brain tissue with biophysical models that could range around varying degrees of
complexity (Butenko et al., 2020; Gunalan et al., 2017; Howell et al., 2019; Noecker et al., 2021).
Differences in connectomes (Horn and Blankenburg, 2016) vs. pathway atlases (Petersen et al.,
2019; Alho et al., 2019; Middlebrooks et al., 2020) vs. individual tractography (Akram et al., 2017)
acquired in the specific patient could be investigated directly within the operation theater. We foresee
that such studies could lead to a better understanding of the mechanism of action of DBS. This study
for now showcases this application of visualizing test stimulations in limited and anecdotical form (also
see Figure 4—video 1), warranting further investigation and validation.

Finally, we see large potential in the use and further aggregation of ultra-high-resolution atlas data.
Already, such datasets have been emerging and incorporated into DBS applications (Edlow et al.,
2019; Horn et al., 2017). However, we foresee additional datasets that may revolutionize our defini-
tion of anatomy and brain connectivity in the future. For instance, the Jiilich group has announced an
upcoming version of the BigBrain dataset (Figure 7, Figure 4—video 1) that will be available in 1 ym
resolution (Horn, 2021). A recent normative diffusion-MRI connectome available in 760 pm resolution
was based on a 9-hr-long scan of a living human brain (Wang et al., 2021). Similarly, a structural brain
template of the human brain available in 100 pm resolution was acquired by scanning a postmortem
brain over 100 hr at 77 (Figure 7; Edlow et al., 2019). A recently published pathway atlas of the
basal ganglia used expert knowledge and insights from animal studies to create the most realistic set
of subcortical fibers available to date (Petersen et al., 2019). Similar applications involve histological
mesh tractography — a novel technique to create accurate tract representations based on histological
data (Alho et al., 2021) or expert-curated sets of fiber bundles created by tractography on diffusion
MRI data from 1000 subjects (Middlebrooks et al., 2020). We foresee great use of such resources if
the process of registering them to patient space is truly accurate. The WarpDrive method presented
here could embody a missing link in the evolution of making co-registration methodology as precise
as possible — with specific focus on regions of particular interest (such as the DBS target zone in our
application). For instance, if our aim was to overlay the BigBrain atlas to support our anatomical
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Figure 7. BigBrain (Amunts et al., 2013; Xiao et al., 2019) (left) and 7 T MRI ex vivo human brain template (Edlow et al., 2019) (right) are two high-
resolution (100 pm isotropic) imaging resources that can be used from Lead-DBS and Lead-OR. The middle panel shows a closeup in a plane using
the original transformation to MNI space (Xiao et al. in the case of BigBrain) with white outlines of DISTAL atlas (Ewert et al., 2018) (left) and anterior
commissure from Neudorfer et al., 2020 (right). The bottom panel shows the same slice, but using a refined transformation using Lead-DBS and
WarpDrive. The refined transformation files can be found in the supplementary data repository (Oxenford, 2022a)

knowledge within and around the STN, it is of crucial importance that the registration between atlas
and patient imaging of the STN area is meticulously precise. Instead, registration accuracy of, for
example, the parietal lobe will be of lesser importance in this particular scenario. WarpDrive gives the
user the necessary toolkit to realize highly precise warps, while focusing on specific ROls (Figure 7,
Figure 2—video 1).

Our results demonstrate general agreement between imaging and electrophysiology data on a
group level. The recordings throughout the trajectories present a region with higher activity coin-
ciding with the imaging-based STN. However, as can be seen in Figure 5, the agreement is not 100%.
Namely, we can observe the presence of activity and high neuronal density in some locations outside
of our image-derived model of the STN and vice versa (we observe no activity within voxels that
form part of the STN). This emphasizes the possibility of a lack of congruence between preoperative
imaging and intraoperative electrophysiological delineation of the STN. Some of these discrepancies
could be explained physiologically, for example, seeing activity from regions other than the STN (i.e.,
thalamic recordings that may be encountered dorsal to the STN or recordings from substantia nigra
ventrally). However, true mismatch of the two sources of information (imaging and electrophysiology)
in some cases is indeed something we would expect. Namely, we should not forget that the tool
is entirely designed to facilitate integration and visualization of different sources of information in
parallel. If both would perfectly agree in each single case, there would be no need to acquire MER data
in the first place. In our brain shift analysis, we could demonstrate that some of these discrepancies are
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associated with the occurrence of brain shift. This presented analysis could be considered a first of its
kind attempt to infer brain shift during surgery using a combination of preoperative MRI and intraop-
erative MER. Specifically, the cross-correlation-derived features may be used as indicators (provided
by the program) to quantify discrepancies between MER and imaging data in a real-time setting. This
analysis can be further elaborated upon and integrated into future iterations of the platform.

Limitations

Other explanations for disagreement between imaging and electrophysiological data will directly
inform limitations that apply to this study. The occurrence of brain shift could be seen as a limitation
but also as a feature of our approach (see above). However, true limitations may arise from impreci-
sions of the imaging pipeline itself. Although a dedicated multispectral imaging pipeline was applied
(in the form of Lead-DBS software), which has shown to create meaningful models of DBS in various
studies, there will always be a certain degree of imprecision that is unavoidable when using imaging
to segment subcortical nuclei. Here, we aimed to further minimize this imprecision by introducing the
WarpDrive tool. However, a downside of this tool could be seen in the fact that it involves manual
and observer-dependent steps. Detailed anatomical knowledge and optimal imaging quality are
needed to achieve maximal registration accuracy. Ideally, multispectral sets of preoperative images
that include specialized sequences optimized for the basal ganglia should be used (Krauss et al.,
2021). Use of ultra-high-field (i.e., 7 T) imaging could represent a useful alternative (Forstmann et al.,
2017), but in this case danger could arise from increased distortion artifacts exactly and especially
in the center of the brain (Neumann et al., 2015). Hence, as in the procedure of DBS surgery itself,
optimal imaging data quality and meticulous use of tools, as well as optimal levels of methodological
insights, are needed to assure safe and successful applications.

Finally, the MER analysis also comes with limitations. First, as the data was collected in retrospec-
tive fashion, durations of recordings and distances in recording steps when advancing towards the
target were not exactly consistent throughout the whole dataset. Second, cardioballistic artifacts, as
well as gradual displacement of brain tissue leading to attenuation of spike amplitudes, are recog-
nized problems when applying spike-sorting algorithms in general. Moreover, anesthesia and wakeful-
ness of patients have an impact on the recordable neurophysiological activity patterns and should be
considered when making assumptions about the relationship between neuroanatomy and neurophys-
iology. While here patients were awake in general, this followed periods of anesthesia (following the
clinical protocol established at our center). This leads to a nonuniform quality of the recordings that
may then present challenges in their interpretation and processing via automatic algorithms. However,
we operate in an experienced high-volume DBS center where surgical decisions are made based on
the data used here. In other words, signal quality was sufficient for expert-based decision-making. In
the future, additional automatic EEG and EMG activity analysis could further augment the validity of
the approach. In general, however, the main aim of this article was to demonstrate the use and feasi-
bility of the tool, while dedicated analyses investigating specific neuroscientific questions should take
aforementioned nuances into consideration further.

Conclusion

We presented a method and open-source software tool to visualize results derived from MERs in
anatomical space, together with information derived from patient-specific MRI data, as well as high-
resolution atlas resources during DBS surgery. We demonstrated general agreement between imaging
and electrophysiology-derived measures, as well as examples of unavoidable discrepancy between
the two modalities. The tool has potential to empower scientific studies investigating several topics
outlined in our discussion, as well as high potential for clinical translation and represents a first step
to help integrate information across sources within two- and three-dimensional visualization scenes.
While the software is not certified and intended for scientific use under IRB approval only, subsequent
steps will involve improving and extending the different components of the software to achieve a reli-
able multimodal patient-specific navigator capable of assisting clinical decision-making.

Data availability

All processed data and code needed to reproduce the main findings of the study are made openly
available in deidentified form (see figure legends). This can be found in https://github.com/simonoxen/
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Lead-OR_Supplementary, (copy archived at swh:1:rev:c7b8661f0587db992e7eba978d61da8¢-
d7cdc88b; Oxenford, 2022a) and attached to the publication. Due to data privacy regulations of
patient data, raw data cannot be publicly shared. Upon reasonable request to the corresponding
author, data can be made available after setting up a data-sharing agreement between our host
institution (Charité — Universitatsmedizin Berlin) and the inquiring party. All codes used to analyze the
dataset are available within Lead-DBS/-OR software (https:/github.com/netstim/leaddbs [Network
Stimulation Laboratory, 2022]; https://github.com/netstim/SlicerNetstim [Oxenford, 2022b)).
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