Research Article doi.org/10.1002/chem.202401348

Generation and Identification of the Trifluorosilylarsinidene F₃SiAs and Isomeric Perfluorinated Arsasilene FAsSiF₂

Guohai Deng*^[a] and Sebastian Riedel^{*[a]}

The trifluorosilylarsinidene F_3 SiAs in the triplet ground state has been generated through the reaction of laser-ablated silicon atoms with As F_3 in cryogenic Ne- and Ar-matrices. The reactions proceed with the initial formation of perfluorinated arsasilene FAsSiF₂ in the singlet ground state by two As–F bonds insertion reaction on annealing. The trifluorosilylarsinidene F_3 SiAs was

Arsinidenes R-As are highly electron-deficient compounds that feature monovalent arsenic analogues of nitrenes (R-N)^[1] and phosphinidenes (R–P).^[2] Having only a single σ -bond causes the arsenic to have an incomplete valence shell, making arsinidenes highly reactive and fleetingly existent. They can adopt either a singlet or a triplet electronic ground state,^[3] which is determined by the nature of different substituents. In contrast to the chemistry of free carbenes and nitrenes,^[4] which has been well established, the uncomplexed arsinidenes are generally stabilized by Lewis bases, N-heterocyclic-carbenes (NHCs),^[5] Nheterocyclic silylenes (NHSis)^[6] or a transition metal.^[7] To date, only a handful free arsinidenes have been experimentally characterized. The parent arsinidens diradical, H-As (1), has been produced by photolysis of AsH₃, and detected by IR, Raman and microwave spectroscopy (Scheme 1).^[8] Very recently, triplet phenylarsinidene Ph-As (2)^[3] and parent vinylarsinidene C₂H₃-As (3)^[9] have been generated in an argon matrix through the photolysis of corresponding arsenic diazide. In addition, the phenylarsinidene oxidation to dioxophenylarsine and the rich unimolecular photochemistry of vinylarsinidene were observed. The photogeneration of triplet ethynylarsinidene, HCCAs (4), from ethynylarsine has also been reported.^[10]

Unlike aryl-, vinyl-, and alkynyl-arsinidenes, silylarsinidene such as F_3Si —As have been barely studied, and only the parent molecule H_3Si —As has been theoretically investigated.^[11] Computational study on H_3Si —As indicates a triplet electronic ground state, resembling the phosphinidene H_3Si —P, which was achieved through the reaction of atomic silicon with PH₃ in low

 [a] Dr. G. Deng, Prof. Dr. S. Riedel Freie Universität Berlin Institut für Chemie und Biochemie – Anorganische Chemie Fabeckstrasse 34/36, 14195 Berlin (Germany) E-mail: ghdeng@zedat.fu-berlin.de s.riedel@fu-berlin.de

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202401348
- © © 2024 The Authors. Chemistry A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

formed via F-migration reactions of $FAsSiF_2$ under irradiation at UV light ($\lambda=275$ nm). The characterization of $FAsSiF_2$ and F_3SiAs by IR matrix-isolation spectroscopy is supported by computations at CCSD(T)-F12/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels of theory.

Scheme 1. Experimental known free arsinidene 1, 2, 3, 4, as well as trifluorosilylarsinidene and its isomer arsasilene from present work.

temperature matrix.^[12] However, the silylarsinidene H₃Si–As remains experimentally unknown. In addition, silylarsinidene is a key intermediate in the tautomerization of AsH₂-substituted silylenes in the coordination sphere of nickel.^[13] Reactions of laser-ablated metal atoms (Ti, Zr, Hf, and Th) with arsenic trifluoride will form a terminal arsinidene molecule F₃M–As in its triplet ground state, which were identified by matrix-isolation infrared spectroscopy in conjunction with DFT calculations.^[14] Inspired by the reaction of silicon atoms with PF₃ to form SiPF₃, F₂SiPF and F₃Si–P,^[15] our synthetic approach to silylarsinidene F₃Si–As utilizes atomic silicon and AsF₃ as the precursors.

The FAsSiF₂, and F₃SiAs molecules are produced via the reaction of laser-ablated silicon atoms with AsF₃ in solid neon and argon matrices. The infrared spectra in the 1050–450 cm⁻¹ region obtained by using a 0.5% AsF₃/Ar sample are shown in Figure S1. After 60 min sample deposition at 5 K, very strong AsF₃ absorption bands were observed at 731 and 691 cm⁻¹ along with new silicon independent bands at 809, 784 cm⁻¹ for AsF₅ and 699.7, 668.4 cm⁻¹ for the AsF₂ free radical,^[16] which are common reaction products of metal atom reactions with AsF₃ molecules. The absorption bands due to silicon fluorides SiF₂ $(855, 843 \text{ cm}^{-1})$,^[17] SiF₃ (954, 832 cm⁻¹), and SiF₄ (1027 cm⁻¹)^[18] were also generated during sample co-deposition. In addition to these known absorption bands, new product absorption bands were observed as well. These absorption bands can be classified into two groups according to their identical chemical behaviors. Similar experiments are repeated using a 0.1% AsF₃/

Ne sample. The infrared spectra in the selected region are given in Figure S2. The band positions are collected in Table 1. The difference infrared spectra showing the photochemical transformation of two new reaction products in neon and argon are given in Figure 1.

The 968.7 and 919.2 cm⁻¹ absorption bands produced in argon matrices are due to different vibrational modes of the same new species. They are observed right after deposition, and increased by annealing to 20 K, but completely disappear under UV light ($\lambda = 275$ nm) irradiation, whereas only the 921.1 cm⁻¹ absorption band was observed in neon matrices. This new species can be safely assigned to the arsasilene isomer FAsSiF₂, by comparison with the calculated IR spectra (Table 1

Table 1. Experimentally observed and calculated IR frequencies (cm ⁻¹) of FAsSiF ₂ and F ₃ SiAs molecules (absorption bands above 400 cm ⁻¹ are listed).				
Species	Observed Ne-matrix	Ar-matrix	Calculated CCSD(T)-F12 ^[b,c]	Modes ^[d]
FAsSiF ₂	_[a]	968.7	986 (153)	asym. SiF ₂ str.
	921.1	919.2	931 (229)	sym. SiF ₂ str.
	_[a]	_[a]	648 (92)	As—F str.
	_[a]	_[a]	438 (2)	Si—As str.
F₃SiAs	958.8	953.5	973 (164)	asym. SiF₃ str.
	849.2	847.1	858 (227)	sym. SiF ₃ str.
	474.3	471.9	476 (81)	Si—As str.

[a] Absorption bands not observed, or overlapped. [b] Harmonic frequencies calculated at the CCSD(T)-F12/aug-cc-pVTZ level as listed. The complete set of vibrational frequencies are provided in Supporting Information Table S1. For the CCSD(T)-F12 calculations no intensities are available. [c] The calculated IR intensities are listed in parentheses in km mol⁻¹ at the B3LYP/aug-cc-pVTZ level. [d] Tentative assignments based on calculated vibrational displacement vectors.

Figure 1. Difference infrared spectra in the 1050–450 cm⁻¹ region from codeposition of Si atoms with AsF₃ (0.1% in neon and 0.5% in argon) in solid matrices. (a) spectrum recorded after 20 min of UV light ($\lambda = 275$ nm) irradiation minus spectrum recorded after 20 K annealing in argon; and (b) spectrum recorded after 20 min of UV light ($\lambda = 275$ nm) irradiation minus spectrum recorded after 10 K annealing in neon. and Table S1) at the CCSD(T)-F12/aug-cc-pVTZ level. Two absorption bands belong to anti-symmetric and symmetric stretching vibration modes of the SiF₂ moiety. The two frequencies are very close to that of FPSiF₂ (974.2, 933.1 cm⁻¹, Ar-matrix; 978.5, 933.7 cm⁻¹, Ne-matrix),^[15] and lower that in F₂Si=S (996, 969 cm⁻¹, Ar-matrix)^[19] but higher than that in SiF₂ (855, 843 cm⁻¹, Ar-matrix; 864.6, 851.0 cm⁻¹, Ne-matrix).^[17] The As–F stretching vibration was predicted at 648 cm⁻¹ as a medium strong absorption band and could not be clearly identified due to an overlap with the stronger IR bands of the precursor molecule AsF₃ in this region. Other computed bands of the FASSiF₂ molecule are not observed due to the low IR intensity (Table 1 and S1).

The second set of absorption bands at 953.5, 847.1 and 471.9 cm⁻¹ (958.8, 849.2 and 474.3 cm⁻¹, Ne-matrix) in the argon matrix belong to another new product molecule. This new product molecule absorption bands increased under UV light ($\lambda = 275$ nm) irradiation at the expense of the FAsSiF₂ absorption bands (Figure 1), suggesting that new product is a structural isomer with chemical formula of F₃AsSi. Considering the known photoinduced conversion from singlet FPSiF₂ to triplet F₃SiP in low-temperature matrices.^[15] DFT and coupledcluster calculations on the IR spectra of the most likely candidate species F₃SiAs in the singlet and triplet states were performed (Table 1 and S1). In comparison to the experimentally observed spectra for the UV light ($\lambda = 275$ nm) photolysis products of FAsSiF₂, the bands observed in Ar matrices are reasonably assigned to the arsinidene intermediate F₃SiAs in the triplet ground state based on the good agreement with the predicted three strongest IR bands at 973, 858, and 476 cm⁻¹, respectively. The first two absorption bands can be assigned to the anti-symmetric and symmetric stretching vibration of the SiF₃ group, respectively. Both are red-shifted in comparison to those of F_3SiPH_2 (970, 861 $cm^{-1},\ gas\ phase),^{[20]}$ but close to those of SiF₃ radical (954, 832 cm⁻¹, Ar-matrix).^[18] Another weak band at 516.0 cm⁻¹ is attributed to the Si-As stretching vibration mode. The remaining IR fundamentals of the arsinidene could not be identified in the available IR spectral region (4500–450 cm⁻¹). In addition, a weak absorption band at 619.2 cm⁻¹ (616.0 cm⁻¹, Ar-matrix) can be assigned to the AsF₃⁻¹ anion, based on its chemical behavior and theoretical frequency calculations (Table S2). Optimized structural parameters of this anion are shown in Figure S3.

We calculated the structures and vibrational frequencies of the F₃AsSi isomers in the electronic singlet and triplet states at the CCSD(T)-F12/aug-cc-pVTZ level of theory, and the results are shown in Figure 2, Figure S4 and Table 1, Table S1. Further details of the calculations are provided in the Supporting Information. According to our calculations, singlet FAsSiF₂ and triplet F₃SiAs are the two most stable isomers of the F₃AsSi (Figure S5). Product FAsSiF₂ shows a planar arrangement in C_s symmetry with an electronic ¹A' ground state. The predicted Si–As distance of 2.224 Å is rather short and between the values observed for single (2.36 Å) and double bonds (2.16 Å),^[21] and very close to that of the donor-stabilized arsasilene (2.218 Å) obtained by single-crystal X-ray analysis.^[6]

Chem. Eur. J. 2024, 30, e202401348 (2 of 4)

Research Article doi.org/10.1002/chem.202401348

Figure 2. Calculated potential energy profile for the isomerization of FAsSiF₂ in the singlet and triplet states at the CCSD(T)-F12/aug-cc-pVTZ/B3LYP/aug-cc-pVTZ level. Molecules structures (bond lengths in Å, angles in ° in italics) calculated at the CCSD(T)-F12/aug-cc-pVTZ level are shown.

Similar to other reported arsinidenes, such as PhAs,^[3] C₂H₃As,^[9] and HCCAs,^[10] which have been identified to show a triplet ground state, the trifluorosilylarsinidene F₃SiAs is also computed to show a ${}^{3}A_{1}$ ground state with C_{3v} symmetry. The predicted singlet-triplet energy gap ΔE_{sT} of trifluorosilylphosphinidene is 27.0 kcal mol⁻¹ at B3LYP/aug-cc-pVTZ and 24.3 kcalmol⁻¹ at CCSD(T)-F12/aug-cc-pVTZ level. The triplet electronic ground state nature of trifluorosilylarsinidene F₃SiAs is close to its structure analogue trifluorosilylphosphinidene F₃SiP $(\Delta E_{\rm ST} = 28.9 \, \rm kcal \, mol^{-1}$ at B3LYP/aug-cc-pVTZ; 25.8 $kcal\,mol^{-1}$ at CCSD(T)-F12/aug-cc-pVTZ) and trifluorosilyInitrene F_3SiN ($\Delta E_{sT} = 44.0 \text{ kcal mol}^{-1}$ at B3LYP/aug-cc-pVTZ; 38.9 kcal mol⁻¹ at CCSD(T)-F12/aug-cc-pVTZ) (Table S3). The comparison of the key structural parameters of F₃SiAs, F₃SiP, and F₃SiN are shown in Figure S6. Apparently, the Si–As bond distance (2.350 Å) of F₃SiAs is longer than Si-P (2.232 Å) and Si–N (1.777 Å) of F₃SiP and F₃SiN, respectively. This is consistent with the C–Pn bond length of phenyl pnictinidene (Pn = As, P, N).^[3] However, there is only a slight difference observed between the Si-F bonds distance of trifluorosilyl ligand as well as the spin density resides at the pnictinidene atoms (arsenic: 1.94, phosphorus: 1.95, and nitrogen: 1.97). The calculated T_1 diagnostic values for F₃SiAs (0.011), F₃SiP (0.012), and F₃SiN (0.011) all fulfill the quality factor of $T_1 \leq 0.02$ for main-group species, which indicates that single-reference methods provide a reliable description of the systems in question.

The photoisomerization of arsasilene FAsSiF₂ to F₃SiAs is similar to the photochemistry of those phosphasilene, such as HPSiH₂, FPSiF₂, both of them isomerize to phosphinidene H₃SiP and F₃SiP under UV-vis light irradiation, respectively.^[12,15] The calculated potential energy profile for the isomerization of FAsSiF₂ (Figure 2) unravels the underlying reaction mechanism. The spectra shown in Figure S1 and Figure S2 indicate that the arsasilene FAsSiF₂ molecule is produced by the reactions of ground state silicon (³P) atoms with arsenic trifluoride AsF₃ in

solid argon and neon matrices. This insertion reaction is predicted to be exothermic by 96.1 kcal mol⁻¹ (CCSD(T)-F12/aug-cc-pVTZ level, Figure S5), and require negligible activation energy, as the FAsSiF₂ absorption bands increase on annealing. EOM-CCSD/aug-cc-pVTZ calculation find a very strong UV/vis absorption for FAsSiF₂ around 250 nm (Figure S7). The UV/vis spectrum of triplet F₃SiAs is also shown in Figure S8. This explains why the experimentally observed rearrangement from FAsSiF₂ to F₃SiAs only occurs upon irradiation with 275 nm UV light rather than visible light, although the barriers to isomerization, either in the singlet or triplet state, are less than 15 kcal mol⁻¹.

In summary, we report the preparation and spectroscopic identification of the trifluorosilylarsinidene F₃SiAs and perfluorinated arsasilene FAsSiF₂ by the reactions of laser-ablated silicon atoms with AsF₃ in low-temperature neon and argon matrices. Arsasilene FAsSiF₂ has a singlet electronic ground state with planar structure. Upon the 275 nm UV light irradiation, FAsSiF₂ isomerizes to trifluorosilylarsinidene F₃SiAs, which was identified to have a triplet electronic ground state. The results presented here extend our fundamental understanding of arsasilene and silylarsinidene and deepen the fluorine-specific interaction in the chemistry of pnictinidenes.

Acknowledgements

We gratefully acknowledge the Zentraleinrichtung für Datenverarbeitung (ZEDAT) of the Freie Universität Berlin for the allocation of computing resources. We thank the CRC 1349 (SFB 1349) Fluorine Specific Interactions – Project-ID 387284271 – for continuous support. G. Deng thanks the Alexander von Humboldt Foundation (AvH) for a research scholarship. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interests

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: Silylarsinidene · Arsasilene · Matrix isolation Infrared spectroscopy · Quantum chemical calculations

- a) J. Sun, J. Abbenseth, H. Verplancke, M. Diefenbach, B. de Bruin, D. Hunger, C. Würtele, J. van Slageren, M. C. Holthausen, S. Schneider, *Nat. Chem.* 2020, *12*, 1054–1059; b) F. Dielmann, O. Back, M. Henry-Ellinger, P. Jerabek, G. Frenking, G. Bertrand, *Science* 2012, *337*, 1526–1528.
- [2] a) L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, Chem. 2016, 1, 147–153; b) H. Aktaş, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2010, 49, 2102–2113; Angew. Chem. 2010, 122, 2148–2159.
- [3] W. Qian, P. R. Schreiner, A. Mardyukov, J. Am. Chem. Soc. 2023, 145, 12755–12759.

© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

- [4] C. Wentrup, Angew. Chem. Int. Ed. 2018, 57, 1508–11521; Angew. Chem. 2018, 130, 11680–11693.
- [5] A. Doddi, M. Weinhart, A. Hinz, D. Bockfeld, J. M. Goicoechea, M. Scheer, M. Tamm, Chem. Commun. 2017, 53, 6069–6072.
- [6] C. Präsang, M. Stoelzel, S. Inoue, A. Meltzer, M. Driess, Angew. Chem. Int. Ed. 2010, 49, 10002–10005; Angew. Chem. 2010, 122, 10199–10202.
- [7] a) E. P. Wildman, G. Balázs, A. J. Wooles, M. Scheer, S. T. Liddle, Nat. Commun. 2017, 8, 14769; b) T. Pugh, A. Kerridge, R. A. Layfield, Angew. Chem. Int. Ed. 2015, 54, 4255–4258; Angew. Chem. 2015, 127, 4329– 4332.
- [8] a) R. N. Dixon, H. M. Lamberton, *J. Mol. Spectrosc.* **1968**, *25*, 12–33; b) M. Arens, W. Richter, *J. Chem. Phys.* **1990**, *93*, 7094–7096; c) Y. Monteil, R. Favre, P. Raffin, J. Bouix, M. Vaille, P. Gibart, *J. Cryst. Growth* **1988**, *93*, 159–164; d) K. D. Hensel, R. A. Hughes, J. M. Brown, *J. Chem. Soc. Faraday Trans.* **1995**, *91*, 2999–3004.
- [9] W. Qian, P. R. Schreiner, A. Mardyukov, J. Am. Chem. Soc. 2024, 146, 930–935.
- [10] A.-L. Lawzer, E. Ganesan, M. Gronowski, T. Custer, J.-C. Guillemin, R. Kołos, Chem. Eur. J. 2023, 29, e202300887.
- [11] Z. Havlas, M. Kývala, J. Michl, Coll. Czech. Chem. Comm. 2003, 68, 2335– 2343.
- [12] J. Glatthaar, G. Maier, Angew. Chem. Int. Ed. 2004, 43, 1294–1296; Angew. Chem. 2004, 116, 1314–1317.
- [13] T. J. Hadlington, T. Szilvási, M. Driess, J. Am. Chem. Soc. 2019, 141, 3304– 3314.

- [14] a) X. Wang, L. Andrews, *Dalton Trans.* 2009, 9260–9265; b) X. Wang, J. T. Lyon, L. Andrews, *Inorg. Chem.* 2009, 48, 6297–6302.
- [15] G. Deng, M. Reimann, C. Müller, Y. Lu, M. Kaupp, S. Riedel, *Inorg. Chem.* 2024, 63, 7286–7292.
- [16] a) J. L. Brum, J. W. Hudgens, J. Chem. Phys. 1997, 106, 485–488;
 b) A. L. K. Aljibury, R. L. Redington, J. Chem. Phys. 1970, 52, 453–459.
- [17] J. W. Hastie, R. H. Hauge, J. L. Margrave, J. Am. Chem. Soc. 1969, 91, 2536–2538.
- [18] M. E. Jacox, K. K. Irikura, W. E. Thompson, J. Chem. Phys. **1995**, 103, 5308–5314.
- [19] H. Beckers, J. Breidung, H. Bürger, R. Köppe, C. Kötting, W. Sander, H. Schnöckel, W. Thiel, Eur. J. Inorg. Chem. 1999, 2013–2019.
- [20] G. Fritz, H. Schfer, R. Demuth, J. Grobe, Z. Anorg. Allg. Chem. 1974, 407, 287–294.
- [21] a) M. Driess, S. Rell, H. Pritzkow, J. Chem. Soc. Chem. Commun. 1995, 253–254; b) M. Driess, Coord. Chem. Rev. 1995, 145, 1–25; c) M. Driess, H. Pritzkow, Angew. Chem. Int. Ed. Engl. 1992, 31, 316–319; Angew. Chem. 1992, 104, 350–353.

Manuscript received: April 4, 2024 Accepted manuscript online: April 15, 2024 Version of record online: May 17, 2024