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Definitions

AS Alternative splicing – the alternative combination of exons during
the processing of the nascent RNA molecule

BSJ Back-splice junction – the point of aberrant splicing leading to
a circular RNA molecule

circRNA circular RNA

circRNA enriched library – RNA-seq library that has undergone
an enrichment procedure for cirRNAs

DEA Differential expression analysis

dNTP deoxyribonucleoside triphosphate

dsRNA Double stranded RNA – an RNA duplex formed within a
single RNA molecule or 2 separate RNA molecules

EM Expectation-Maximisation – in the case of transcriptomics an
iterative procedure to optimise abundance estimation

FDR False discovery rate

FSJ Forward-splice junction – a canonical splice junction

GO Gene ontology

HERVHhigh cells – cell line selected from hESC based on high
levels HERVH promoter activity

KD – knockdown of a gene product; targeted decrease of transcript
levels with the intention of identifying the function of the
gene/transcript

MSigDB Molecular Signatures Database

NSG Next-generation sequencing
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RRI RNA-RNA interaction – trans forming RNA duplex between two
separate RNA molecules
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Chapter 1

Summary

1.1 English

The purpose of my project is to identify novel functions of circRNAs
with a particular focus on the effects of RNA–RNA interactions
(RRI) on RNA processing. Computational prediction of RRI has
revealed the biological function and mechanism of action of multiple
genes. However, computational RRI prediction is limited by 2 major
challenges: knowing the full sequence of the transcript and a high
false positive rate. Discovering the full sequence identity of circRNA
has been a challenging task for bioinformaticians in the last decade.
In addition, the lack of knowledge of the full sequence of the
transcripts in a sample leads to skewed quantification based on
RNA-seq data, as well as incorrect results from analyses of
NGS-derived techniques (e.g. CLIP-seq, SPLASH etc.). The
problem of false discovery of new RRIs can be mitigated by
dedicated experimental datasets.
To overcome the first hurdle of my project, I developed CYCLeR, a
computational tool that compares ribo-depleted and circRNA
enriched RNA-seq libraries and outputs a high-confidence set of
circRNA transcripts. The true strength of CYCLeR is the
quantification module that can robustly estimate the abundances of
both circular and linear transcripts. I have shown the advantage of
CYCLeR over alternative tools in terms of transcript assembly and
quantification. I have also shown that CYCLeR has is the only tool
suitable to search for the functional association of circRNA
transcripts.
The second second part of my work focuses on predicting functional
RRIs that influence pluripotency. A co-expression network based on

12



1.1. ENGLISH CHAPTER 1. SUMMARY

the output of CYCLeR can show the association of circRNA with
known biological pathways and significantly facilitate the discovery
of the function of circRNA. In vivo RNA proximity ligation
experiments provide information on the dynamics of RNA-RNA
interaction inside the cell. The combination of RNA-seq and RNA
interactome data allows me to significantly enhance the strength of
computational predictions.
I build a co-expression network based on time series experiment of
H1ESC treated with retinoic acid. I combine the co-expression
information with results from analysis of RNA-RNA proximity
ligation data (SPLASH). The analysis is supplemented with
localisation information based on RNA-seq libraries specific for
nuclear localisation. The results two circRNAs that participate in
functional RRIs.
circFIRRE is significantly enriched in SPLASH data, indicating a
high probability of interaction with other RNAs. Interestingly,
circFIRRE is one of the few circRNAs specifically enriched in the
nucleus. The enrichment can be explained by the binding site for the
hnRNPU protein, which keeps the circRNA in the nucleus.
Knockout of the circFIRRE locus in human leads to a viral response.
Multiple interaction sites of circFIRRE with ALU-specific sequences
indicate that the viral response is triggered by disruption of A-to-I
editing in cells.
circLARP7 is another nuclear-specific circRNA. circLARP7 is
co-expressed with all major markers for pluripotency. It is also
expressed in high proximity to MIR302CHG – a microRNA host
gene related to maintaining the pluripotent state. High
complementarity and conservation of a duplex between the
circLARP7 and the nascent MIR302CHG indicate that circLARP7
might be related to the processing of the microRNAs from the
miR-302/367 cluster.

13



1.2. DEUTSCH CHAPTER 1. SUMMARY

1.2 Deutsch

Das Ziel meines Projekts ist es, neue Funktionen von circRNAs zu
identifizieren, mit besonderem Fokus auf die Auswirkungen von
RNA–RNA-Interaktionen (RRI) auf die RNA-Verarbeitung. Die
computergestützte Vorhersage von RRI hat die biologische Funktion
und den Wirkungsmechanismus mehrerer Gene offenbart. Jedoch
wird die Vorhersage von RRI durch zwei wesentliche
Herausforderungen beschränkt: die Kenntnis der vollständigen
Sequenz des Transkripts und eine hohe falsch-positive Rate. Die
Aufschlüsselung der vollständen Sequenz von circRNA stellte in den
letzten zehn Jahren eine große Herausforderung für Bioinformatiker
dar. Darüber hinaus führt die mangelnde Kenntnis der vollständigen
Sequenz der Transkripte in einer Probe zu einer verzerrten
Quantifizierung auf der Grundlage von RNA-seq-Daten sowie zu
falschen Ergebnissen aus Analysen von NGS-abgeleiteten Techniken
(z. B. CLIP-seq, SPLASH usw.). Das Problem einer hohen
Falscherkennungsrate neuer RRIs kann durch Nutzung geeigneter
experimenteller Datensätze begrenzt werden.
Um die erste Hürde meines Projekts zu überwinden, habe ich
CYCLeR entwickelt, ein Computertool, das Ribo-abgereicherte und
circRNA-angereicherte RNA-seq-Bibliotheken vergleicht und einen
Reihe von circRNA-Transkripten mit hoher Zuverlässigkeit ausgibt.
Die wahre Stärke von CYCLeR ist das Quantifizierungsmodul, das
die Häufigkeit von sowohl kreisförmigen als auch linearen
Transkripten zuverlässig berechnen kann. Ich habe den Vorteil von
CYCLeR gegenüber alternativen Tools in Bezug auf
Transkript-Zusammenstellung und Quantifizierung aufgezeigt. Ich
habe auch gezeigt, dass CYCLeR das einzige geeignete Werkzeug ist,
um nach der funktionellen Verbindung von circRNA-Transkripten zu
suchen.
Der zweite Teil meiner Arbeit konzentriert sich auf die Vorhersage
funktioneller RRIs, die die Pluripotenz beeinflussen. Ein auf der
Ausgabe von CYCLeR basierendes Koexpressionsnetzwerk kann die
Verbindung von circRNA mit bekannten biologischen Signalwegen
aufzeigen und die Entdeckung der Funktion von circRNA erheblich
erleichtern. In-vivo-RNA-Proximity-Ligation-Experimente liefern
Informationen über die Dynamik der RNA-RNA-Interaktion
innerhalb der Zelle. Die Kombination von RNA-Seq- und

14
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RNA-Interaktom-Daten ermöglicht es mir, die Aussagekraft von
Computervorhersagen erheblich zu verbessern.
Ich baue ein Koexpressionsnetzwerk basierend auf einem
longitudinalen Experiment mit H1ESC Zellen, welche mit Retinsäure
behandelt wurden und kombiniere die Koexpressionsinformationen
mit Ergebnissen aus der Analyse von
RNA-RNA-Proximity-Ligation-Daten (SPLASH). Die Analyse wird
durch Lokalisierungsinformationen basierend auf
RNA-seq-Bibliotheken ergänzt, die für die Kernlokalisierung
spezifisch sind. Die Ergebnisse weisen auf zwei circRNAs hin, die an
funktionellen RRIs beteiligt sind.
circFIRRE ist in SPLASH-Daten signifikant angereichert, was auf
eine hohe Wahrscheinlichkeit einer Wechselwirkung mit anderen
RNAs hinweist. Interessanterweise ist circFIRRE eine der wenigen
circRNAs, die spezifisch im Zellkern angereichert sind, was sich mit
der Bindungsstelle für das hnRNPU-Protein erklären lässt, das die
circRNA im Zellkern hält. Der Knockout des circFIRRE-Locus im
Menschen führt zu einer viralen Reaktion. Mehrere
Interaktionsstellen von circFIRRE mit ALU-spezifischen Sequenzen
weisen darauf hin, dass die virale Reaktion durch Unterbrechung der
A-zu-I-Editierung in Zellen ausgelöst wird.
circLARP7 ist eine weitere kernspezifische circRNA und wird mit
allen wichtigen Markern für Pluripotenz koexprimiert. Es wird auch
in großer Nähe zu MIR302CHG exprimiert – einem
Mikro-RNA-Wirtsgen, das mit der Aufrechterhaltung des
pluripotenten Zustands in Zusammenhang steht. Hohe
Komplementarität und Konservierung eines Duplex zwischen dem
circLARP7 und dem entstehenden MIR302CHG deuten darauf hin,
dass circLARP7 mit der Prozessierung der microRNAs aus dem
miR-302/367-Cluster zusammenhängen könnte.

15



Chapter 2

Introduction

The purpose of this chapter is to introduce the reader to the nature and
aims of the project and provide the background knowledge necessary
for the comprehension of the work described in the following chapters.

2.1 Aims of the project

The goal of my project is to identify circRNAs that participate in
functional RRIs that manage pluripotency. The functional search for
RRIs requires knowledge of the sequence of the transcript and
experimental data that would narrow the search space. My work can
be separated into two distinct aims:

2.1.1 Develop a novel tool for circular transcript assembly
and quantification

The objective of a transcriptomic analysis is to identify the full
sequence of every (linear or circular) transcript in a sample and its
relative abundance. CircRNAs pose a particular challenge due to
their low abundance and incompatibility with methods designed for
the assembly of linear RNA. I aim to fill this gap in the field by
presenting my conceptually novel tool CYCLeR (Co-estimate Your
Circular and Linear RNAs).

2.1.2 Study the circRNAs effect on pluripotency based on
a dedicated dataset

Computational prediction of functional RNA structures and
interactions has revealed the functions of many non-coding genes.
But the challenges of computational RRI prediction require limiting

16
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the number of potential candidates. I can determine the likely
circRNA candidates affecting pluripotency by building a
co-expression network based on time series data of human ESC
differentiation. By combining the co-expression information with
transcript localisation, interactome, and editome data, I can narrow
down the set of potential functional circRNAs significantly. With the
subsequent computational RRI prediction, I can add nucleotide level
precision of the interaction. I aim to use the combination of
experimental and computational methods to precisely predict the
biological function of a circRNA-RNA interaction.

2.2 Splicing

Expression of the eukariotic gene happens when an RNA molecule is
transcribed from the DNA template. Splicing is the process of
transforming the newly synthesised RNA into a mature RNA.
Splicing satisfies the need for alternative products with small
differences between them, depending on the need of the cell [1]. The
unspliced molecule is referred to as nascent transcript and pre-RNA,
and the finished product is termed mature RNA. Splicing occurs by
removing the so-called introns from the nascent RNA molecule [2].
The selection of introns to be removed provides diversity in the
splicing of an RNA molecule. Different combinations of excluded
intron sequences lead to alternative splicing and alternative products
of the transcribed gene(s)–isoforms. The regions of the nascent RNA
that remain are called exons. The set of exons in the final RNA
molecule can differ due to splicing that removes a portion or even a
full exon.
Since most RNAs are transcribed in the nucleus, splicing is
considered a process that is primarily localised in the nucleus. There
are different mechanisms of splicing. The most common form of
splicing in eukaryotes is mediated by the spliceosome [3] – a complex
of RNA (snRNAs) and proteins. The spliceosome complex is divided
into two types: the major spliceosome and the minor [4]. The major
one targets intronic sequences, including GU at the 5’ splice site and
AG at the 3’ splice site. The minor spliceosome targets a variety of
intron motifs that are less common. Some introns have the ability to
self-splice; however, that is a rare event compared to
spliceosome-mediated splicing [5]. tRNAs also undergo splicing, but

17



2.2. SPLICING CHAPTER 2. INTRODUCTION

their biochemical mechanism differs significantly [6].
Spliceosome-mediated splicing and self-splicing occur in a similar
manner. Biochemically, the process is based on two-step
transesterification reactions. In the first step, the 2’ hydroxyl group
(2’-OH) of the branch point nucleotide adenosine attacks the
phosphate at the 5’ exon–intron junction (5’ splice site), resulting in
the cleavage of the phosphodiester bond between the 5’ exon and
intron and the concurrent formation of a new 5’–2’ phosphodiester
bond between the 5’end of the intron and the branch point
adenosine. Thus, a lariat-structured intermediate (lariat intron-3’
exon) and a cut-off 5’ exon intermediate are produced. In the second
step, the 3’-OH group of the cut-off 5’ exon attacks the phosphate at
the intron - 3’ exon junction (3’ splice site), releasing the lariat
intron product and generating the spliced mature mRNA product [7].
Splicing is mediated by a combination of elements within the
molecule undergoing splicing (cis-acting element) and different
molecules (trans-acting elements). The trans-acting element is
usually a protein, but can also be a trans-acting RNA. The
trans-acting element can bind to a specific sequence (cis-regulatory
element) in the nascent RNA molecule that is either a splicing
enhancer or a repressor. The regulation target site can be either
exon or intron. Trans-acting elements can also bind directly to a
splice site, making it inaccessible. RNA structure can also influence
splicing by making the splice site or regulatory sites inaccessible or,
the opposite, ensuring splicing by bringing the splice sites in
proximity [3]. The speed of RNA transcription influences the splicing
process by allowing a limited time for the splicing factors to bind to
their targets.
Splicing can occur both co-transcriptionally and
post-transcriptionally [8, 9]. The sole limitation is the accessibility of
the splice sites and the splice control sites in the sequence. Splicing
can take place in forward fashion - an upstream 5’ site interacting
with a downstream 3’ site, or alternatively, a downstream 5’ site
interacting with an upstream 3’ site (see Figure 2.1). The latter
leads to a circular RNA molecule. Splicing does not occur exclusively
within one gene. Sometimes, nascent RNA from one gene can splice
with nascent RNA from another gene, forming a trans-splicing
product.

18



2.2. SPLICING CHAPTER 2. INTRODUCTION

Linear RNA Circular RNA

Back-splice  junctionForward-splice  junction

E5

E5

E5

E5

Figure 2.1: Splicing Diversity of splicing isoforms

2.2.1 Forward-splicing

To reiterate, forward-splicing occurs when an upstream 5’ splice site
interacts with a downstream 3’ splice site. The generally accepted
forward alternative splicing event terms can be summarised as follows
[3]:

• Exon skipping – exon being completely spliced out of the final
transcript

• Mutually exclusive exons – just one of a pair of exons can remain
in the final molecule

• Alternative 5’ splicing – an alternative donor site of an exon is
used

• Alternative 3’ splicing – an alternative acceptor site of an exon is
used

• Intron retention – a sequence can be spliced out as an intron is
retained instead

Alternative splicing (AS) events differ in rates between organisms. For
example, in mammals, the most common type of AS is exon skipping,
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2.2. SPLICING CHAPTER 2. INTRODUCTION

and the least common is intron retention. In contrast, in plants, intron
retention is the most common event [10].

2.2.2 Back-splicing

While forward splicing is the predominant mode of splicing, in
certain cases, a downstream 5‘ donor site connects with an exon with
an upstream 3’ acceptor site, producing a circular RNA molecule
(circRNA) [11, 12]. Such splicing is called head-to-tail splicing or
back-splicing. The irregular junction site is called a back-splice
junction (BSJ). For a long period of time, scientists have focused
only on linear RNA transcripts, but in recent years research of
circular RNAs (circRNAs) has emerged as a new field [11, 12, 13].
Circular RNAs were initially dismissed as naturally occurring errors
and simply side effects of forward-splicing. Even after the presence of
circular RNA was proven via electron microscopy [14], their
importance was diminished due to the fact that no apparent function
was identified. With the discovery of circRNA, flanking introns are
shown to be imperative for circularisation [14]. The presence of ALU
elements and protein binding has been shown to facilitate
circularisation [9]. Circular molecules are also produced as part of
the lariat intermediate during splicing. If the debranching enzyme
does not process the lariat structure, it is assumed that exonucleases
degrade the 3’ tail of the lariat and it remains in the cell as a circular
molecule [15, 16]. Quantitatively, circular transcripts amount to
1-3% of linear poly-A transcripts. There is no evidence to suggest
that circular splicing is a by-product of linear splicing [13].

2.2.3 Functional roles of circular splicing isoforms

Enrichment of circular RNAs in specific tissues indicates that there
is, in fact, a controlled mechanism of their production. Circular
RNAs, such as those from the Sry gene, accumulate in mouse testes
with relatively high abundance. Circular RNAs are relatively more
abundant in brain tissue, a trait is consistent across species. Some
circular RNAs (e.g. circSry , circCDR1-AS) have been proposed to
act as microRNA sponges [12, 13]. Others are suggested to control
the expression of the genes from which they are derived- circMbl in
Drosophila [9]; circEIF3J and circPAIP2 in human [17]. There is
even proof that circular RNAs can be translated to produce a
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protein product driven by N6-methyladenosine [18]. Although the
proposed method for circRNAs synthesis would suggest their
presence predominantly in the nucleus, circular RNAs tend to be
enriched in the cytoplasm [11, 13].

2.3 Transcriptome Sequencing

2.3.1 Background

The majority of research regarding the transcriptome of the cell views
RNA as a simple intermediary for protein synthesis. Scientists often
study the variety and levels of the transcript as an indirect indicator of
the state of the proteome. High-throughput sequencing technology has
provided great insight into the transcriptome activity of the cell and
has triggered the discovery of novel isoforms and functions of RNA.

2.3.2 Next-generation sequencing

A turning point in transcriptome study was the development of
Next-generation sequencing (NGS), also known as Massive parallel
sequencing. After the development of alternative approaches for
high-throughput sequencing, the term NGS is often substituted with
Second-generation sequencing.
Although NGS strategies across different platforms involve different
chemistry and require distinct technical configurations, the common
objective of all NGS approaches is the identification of the sequence
of a short DNA fragment. NGS is an alternative to Sanger
(First-generation) sequencing that is based on of
”chain-termination”. In this method, the polymerisation of a DNA
polymerisation chain reaction is blocked chemically with
di-deoxynucleotide triphosphates, and the alternative products are
separated by size and analysed [19, 20]. The capability to process a
massive number of DNA fragments in parallel has allowed the
expansion of NGS into RNA-specific studies.
The RNA sequencing (RNA-seq) uses NGS technology to provide
qualitative and quantitative information on the transcriptome of the
cell [21, 22]. RNA is used to produce an ensemble of cDNA
fragments, making a ”library”. These fragments are sequenced, and
through multiple computational procedures, the sequencing
information can recreate the sequence and relative abundance of the
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RNA transcripts. There is a limitation of the NGS technology
fragment size. When sequencing fragments are longer than 700
nucleotides (nts), the error rate of base calling substantially
increases. The implications of this limit force the need to study RNA
not as a whole molecule, but instead as a set of cDNA fragments.

Before the widespread adoption of RNA-seq, the predominant
technology used to study transcript levels of expression was
microarray. In microarray technology, fluorescently-labeled targets
are introduced to a chip with multiple spots where specific
hybridisation can occur to probes. The level of probe-to-target
hybridisation is measured as fluorescence intensity [23, 24]. The
major difference between microarray and RNA-seq technology is the
variance in resulting measurement. While microarray results are
generally measured as a single target leading to a single signal, the
RNA-seq results trace multiple fragments to a single molecule.
Therefore, microarray data benefit from stable variance-to-mean
ratio between measurements for different probes, while RNA-seq
results vary based on the mean abundance of an RNA and lead to
the so called overdispersion [25]. This means that the computational
procedures that were designed for microarray data cannot be readily
applied to RNA-seq data. The major advantage of RNA-seq results
is the option to focus on unannotated isoforms, as opposed to
limiting the study to a set of pre-selected probes. In fact, with the
addition of novel isoform information, old RNA-seq data can be
re-analysed, leading to an improvement in the results.

2.3.2.1 RNA enrichment

The RNA content in a prokaryotic or eukaryotic cell consists of
80–90% ribosomal RNA (rRNA), 10–15% tRNA and 3–7%
messenger RNA and regulatory ncRNA [26]. Most studies focus
primarily on mRNA and ncRNA. The high levels of rRNA and
tRNA from the bulk RNA extract produce a correspondingly high
level of library fragments, which sparks very little scientific interest.
It is cost- and effort-efficient to enrich the RNA extract for RNAs of
interest. Ironically, most of the so-called enrichment procedures are,
in fact, depletion procedures against a specific type of RNA. The
common enrichment procedures can be summarised as:
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size selection tRNAs are usually filtered out during a standard size
selection of 200 nt.

poly(A) enrichment It is very common to use trascriptomic data
as a proxy for protein level analysis. In such cases, mRNA
transcripts a selected with oligo(dT) beads based on the
presence of poly(A) tail. This procedure would also enrich for
the transcript lacking a poly(A) tail but having a high adenine
content [13, 27].

ribo-depletion Very common for general total RNA-seq analysis is
the ribo-depletion. In this procedure, specific ribosomal
sequences are used to target the most abundant rRNAs and
deplete them from the sample [13, 27].

poly(A) depletion There are studies with focus on ncRNAs. Most
ncRNAs lack a poly(A) tail; therefore, oligo(dT) beads can be
used to deplete poly(A) transcripts [13, 15].

circRNA enrichment Due to the lack of free 5’ or 3’ ends
circRNA molecules are theoretically resistant to exonucleases.
RNase R is the most commonly used for such a procedure.
RNase R degrades transcripts with free nucleotides at the 3’
end. It has also been reported that RNase R treatment
inexplicably depletes some circRNAs [13, 28].

Additonally, if the RNA biotype of interest is a small RNA, the
aforementioned size selection procedure can separate RNA for a
dedicated small RNA-seq.
It is important to note that, due to experimental limitations, neither
procedure leads to perfect purification. All strategies merely enrich
for an RNA biotype of interest.

2.3.2.2 RNA-seq library preparation

Due to the limitations of NGS technology, long RNA molecules need
to be processed into shorter library fragments. Fragmentation is
usually performed on the level of an RNA molecule and involves
thermal treatment in the presence of metal ions. Alternatively,
fragmentation can be performed on the cDNA level via a sonication
procedure. For the latter, the RNA molecule needs to be
reverse-transcribed into cDNA. Less common approaches are
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Figure 2.2: RNA enrichment strategies On the figure we see the common RNA
enrichment procedures with their specific marks: poly(A)+ – poly(A) enrichment; rRNA-
– ribo-depletion; poly(A)- – poly(A) depleition; RNaseR+ – linear RNA depletion with
RNase R treatment

enzymatic or thermal treatments for fragmentation [29].
The reverse transcription requires a primer to start the process.
There are three ways to provide a primers for reverse transcription
[29]:

oligo(dT) primer If the library is poly(A)-enriched, a fairly
straightforward approach is to use oligo(dT) primers that bind
to the poly(A) tail

random primers A mix of random hexamers is added to the pool of
RNA. They initiate transcription at random locations. In some
protocols, random hexamers are combined with oligo(dT) primers
to decrease biases in fragment generation.

pre-ligated oligo A pre-ligated oligo is added in some cases (e.g.
small RNA-seq library preparation). This oligo provides a site
for primer binding.

The nucleic acid fragmentation method incorporated in library
preparation greatly influences the representation of circRNAs in the
library. The size of the library fragment heavily influences the
representation of circRNA in the RNA-seq library. Due to the fact
that most circRNA size ranges within 200–400 nucleotides, libraries
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with the median fragment length size over that range are biased
against shorter circles [13]. Furthermore, mild fragmentation
conditions can cause failure to break the circRNA transcript and
cause the rolling circle amplification product [30]. There is no clear
record of how library preparation strategy involving cDNA
fragmentation influences downstream analyses, but discussion and
preliminary data suggest an unpredictable negative influence. The

Fragmentation first Reverse transcription first

Reverse transcription

Second strand synthesis

Second strand synthesis

Fragmentation

Adapter ligation

Figure 2.3: Library preparation steps The two possible approaches divided by choice
of RNA or cDNA fragmentation. While the effects are disregardable for linear RNA study,
circRNA study is majorly affected. Rolling circle amplification has the potential to skew
the number of generated fragments per molecule.
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final steps of library preparation are adapter ligation and PCR
amplification. The purpose of adapter ligation is to provide the
library fragment with the target sequences required by the
sequencing platform. Adapter ligation is an inefficient process,
therefore, PCR reactions that amplify only fragments with adapters
on both ends are performed. The number of PCR cycles should be
limited to a minimum because over-amplifying lowers the complexity
of the library.

2.3.2.3 Sequencing procedure

The most commonly used sequencing platform is Illumina, which
implements bridge amplification sequencing [31]. In this procedure,
fragments are processed in a flowcell where they bind in nanowells to
the sequence of the adapters. Once a fragment is attached to the
flowcell it folds into a bridge-like shape by hybridisation of the
second adapter. Multiple amplification reactions ensure a large
number of clones corresponding to the forward and reverse sequence
of the original fragment. The reverse strand segments are washed
away from the flowcell in preparation for the next step.
The identification of the sequence of the fragment is performed as
another polymerisation reaction in which the addition of a new
fluorescently-tagged nucleotide is followed by the release of a
fluorophore. The previous steps ensure a single unified signal for
each base per spot in the flowcell [31]. Sequencing can be performed
on one side of the fragment (single-end), or on both sides
(paired-ed). It is rare that the entire fragment is sequenced. The
part of the fragment that is sequenced is called a read.

2.3.3 Read mapping

There are two approaches to identifying the origin of each library
fragment– de novo assembly and reference-based assembly. In de
novo assembly, the reads are grouped based on their overlapping
sequences into contigs [32]. These contigs serve as reference for
mapping of the reads and later isoform assembly and quantification.
The second option is to map the reads to a known reference
sequence. This option allows for standardised analysis and limits
error rates induced by wrong assembly. It is more common to use the
genome as a reference sequence, but there are cases when users map
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to transcriptome sequences or even specifically selected sequences of
interest. Although most reads map fully to a specific location of the
reference genome, some reads can map partially to two or more
separate locations. Such reads are called split reads. Based on
computational restrictions of mapping to the genome, these reads are
separated into two categories: splice junction reads and chimeric
reads.

2.3.3.1 Splice junction reads

A processed RNA generally has all intronic sequences spliced out.
Reads that span the splice sites are handled separately [33, 34]. For
computational convenience, reads are marked as spliced only in the
case of forward-splicing. In practise, this is done by staring the
mapping of the read, introducing a skipped region in the mapping,
and then mapping the rest of the sequence of the read. The process
is guided by multiple hard thresholds that affect the length of the
mapped parts of the read and the potential length of an intron.

2.3.3.2 Chimeric reads

When splicing occurs in back-splicing or trans-splicing fashion, reads
are not reported as splice junction reads, but as chimeric reads
[35, 36, 34]. Chimeric reads can also arise from fusion genes or be the
result of a dedicated experimental procedure. It is a matter of
post-processing to identify to which category the chimeric reads fall.
In the case of circRNA, BSJs are identified by selecting chimeric
reads with partial mappings in non-linear order according to the
genome. The reads are then filtered based on the distance between
the mappings [12, 37, 38] and sometimes on the basis of splice motifs
[37].

2.3.4 Third-generation sequencing

2.3.4.1 Background

Naturally, the next level of technological advancement in sequencing
is called third-generation sequencing. The term covers multiple
platforms aiming to overcome the short fragment size that limits the
NSG technology. Therefore, these approaches are often called
long-read sequencing. The long-read technology solves major
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challenges in transcript reconstruction, particularly the identification
of alternative isoforms and transcripts with integrated repetitive
elements.
There are major platforms for long-read sequencing–PacBio and
Oxford Nanopore. PacBio is the older technology, and in its most
commonly used version, a single fragment is processed with
polymerase that adds four distinguishable fluorescently labelled
deoxyribonucleoside triphosphates (dNTPs) [39]. The growing DNA
strand in a zero-mode waveguide nanostructure arrays provides
optical observation volume confinement and enable parallel,
simultaneous detection of thousands of single-molecule sequencing
reactions [40]. The conjugation of fluorophores to the terminal
phosphate moiety of the dNTPs allows the continuous observation of
DNA synthesis over thousands of bases without steric hindrance [39].
Specialised adapters create a circular library fragment that allows up
to 15 times the coverage of a molecule [39]. PacBio reports a median
accuracy of 99.3%, without systematic error beyond
fluorophore-dependent error rates [39].
Oxford Nanopore (often referred to as Nanopore) introduces a
completely novel approach. The sequencing is performed by
monitoring changes to an electrical current as nucleic acids pass
through a protein nanopore [41]. Although 10-15 nucleotides pass
through the channel at a time, only stretches of 9 nucleotides are the
primary contributors to the current measurement in the pore. As the
measurement is done on the basis of multiple nucleotides, the
technology works optimally in sequences in which the nucleotide
patterns have low similarity. Nanopore sequencing analysis leads to
stretches of erroneously predicted nucleotides when a sequence with
a simple repeat is encountered. Nanopore has two major advantages:
RNA can be sequenced without time consuming multi-step
processing; Nanopore sequencers are small, cheap and portable.

2.3.4.2 Long-read sequencing of circRNAs

Long-read sequencing of circRNA has to overcome multiple hurdles.
The lack of distinguishing marker sequence ( e.g. poly(A) tail),
makes the specific enrichment of circRNAs problematic. Another
problem is the lack of free 3’-end that is commonly used for ligation
of target sequences for reverse transcription synthesis. The first
long-read sequencing of circRNA was done with specific pre-selected
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primers diverging from the BSJs [42]. The products of the RT-PCR
were sequenced with PacBio.
High-throughput sequencing of circRNAs was achieved in different
independent projects, but all protocols have similar key steps
[43, 44, 45]. RNase R is commonly used to deplete linear RNAs,
however, its effect is limited by the presence of RNA structure at the
3’-end of the RNA molecule. To ensure a structure-free 3’-end, RNA
extract is treated with poly(A)-tailing enzyme. This procedure
greatly improves the efficiency of RNase R treatment. The reverse
transcription is a step which all alternative protocols perform by
rolling-circle replication of the circRNA molecules with random
primers. The product of this reaction is DNA that contains the
sequence of the template circRNA multiple times. The second strand
synthesis requires a primer target. There are two approaches that
solve this issue: poly(A) tailing and oligo(dT) primers or using
adapters that facilitate the second strand synthesis. The cDNA
fragments are then sequenced through Nanopore.

2.4 Common strategies in RNA-seq data analysis

2.4.1 Transcript assembly

Using NGS reads to assemble a reference of the source molecules is a
challenging task. The problem is enhanced for RNA-seq assembly
because the different isoforms of the same genes have overlapping
regions. The key step towards the identification of the different
isoforms is the detection of the splice junctions. Information from
the reads that span the splice junction can sometimes be combined
with the coverage of the exons is used to identify the differential
features of the alternative isoforms [46]. Sequencing biases differ
along the sequence of the gene, making the quantification of reads
assigned to transcript features (exons, splice junctions, retained
introns) difficult to normalise.
To avoid the issues with normalising exons, the assembly tools
primarily focus on reads that span splice junctions [47, 48]. This
includes split reads that are direct evidence of a splice junction
occurring, as well as pair-end reads, in which pairs map to different
exons. For the latter, it is important to know the fragment size of
the library to predict whether the fragment can span multiple exons.

29



2.4. RNA-SEQ ANALYSIS CHAPTER 2. INTRODUCTION

Such a strategy is enhanced when using a reference for the mapping
and assembly of the reads [47, 48]. The sequence of the reference
genome allows the tool to infer the sequence between the pair-ends of
a fragment. Such use of pair-end reads shows the advantage of long
library fragments and reads, as they are more likely to span a splice
junction. However, longer fragments are produced with milder
fragmentation procedures, which is problematic for the study of
circRNA, since they fail to fragment under mild fragmentation
conditions [30].
The first step of the reconstruction is shared by all tools – a splice
graph is created based on the reads mapping to splice junctions. At
the time of writing, there is no tool for performing assembly of linear
and circular transcripts. By design, splice graphs are directed acyclic
graphs and therefore are unable to hold information on BSJs. This
forces the assembly of circular and linear RNAs to be performed
separately.
There are two commonly used approaches to parse a splice graph for
linear transcript assembly. One is that the approach used in
Cufflinks [47] is maximum parsimony. Cufflinks uses an overlap
graph, in which the sequenced fragments are nodes, and two nodes
are connected if they overlap and have compatible splice patterns.
The next step is to find the minimum set of transcripts that explains
all reads in the graph. An alternative approach is used in StringTie
[48]. StringTie iteratively extracts the heaviest path from a splice
graph, constructs a flow network, computes the maximum flow to
estimate abundance, and then updates the splice graph by removing
reads that were assigned by the flow algorithm. This process repeats
until all reads have been assigned.
Transcript assembly of circRNA transcripts is affected by an added
challenge – the low abundance of circRNAs. Therefore, the assembly
of circRNAs requires circRNA-enriched RNA-seq libraries. In some
cases, assembly is performed only on the basis of reads that span the
BSJ, which puts a threshold limit on the size of circRNAs that can
be assembled [49]. Alternatively, tools for linear transcript assembly
can be supplemented with additional scripts that ”guide” the output
of linear assembly specifically to circRNA loci and subsequently
reconstruct circRNA by ”lightweight” strategies [50, 51]. Both
approaches struggle to robustly identify circRNA-specific transcript
features and are very dependent on the available annotation [52].
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2.4.2 Transcript abundance estimation

Downstream analyses require the estimation of the relative
abundance of transcripts. The process can be separated into two
parts– assigning reads to a reference and subsequent transcript
quantification. Read alignment can be performed by dedicated
mapping tool discussed in Section 2.3.3. However, such alignment is
time-consuming and/or virtual memory-consuming. The availability
of reference trascriptomes provides an lightweight solution to this
problem. Sailfish processes the input transcriptome into k-mers
(strings of particular size) organised into a hash table and suffix
array. Those data structures allows for fast access to k-mers in a
preprocessed (indexed) reference. When a read contains a particular
k-mer, the location in the suffix array allows for a fast extension of
the matching [53]. Kallisto also uses k-mer matching strategy, but in
in this case the k-mers are organised in a directed graph of
overlapping k-mers – De Bruijn graph. In this structure, k-mers are
binned together based on k-mer compatibility and alternative
splicing corresponds to different paths within the graph. A hash
table keeps the information of the position of a k-mer within the
graph and correspondingly to which isofroms it is assigned. The read
is assigned to the minimal number of paths (isoforms) in the graph
[54]. In Salmon, instead of a suffix array a Burrows–Wheeler
transformed index is used – FM-index [55]. However, in practical
terms, the algorithm still needs a fixed size of minimum acceptable
length for a valid match equivalent to a k-mer size.
The quantification of transcripts is done predominantly by using an
Expectation-Maximisation (EM) algorithm [56]. This approach uses
iterative assigning of the reads per isoforms (E) and subsequent
re-calculation of the assigned values (M). The re-calculated values
are used as an input for the next (E) step and the procedure repeats
until a threshold difference is reached. Alternatively, transcript
quantification can be achieved as a by-product of the transcript
assembly. StringTie calculates iteratively the abundance of each
transcript as a maximum flow within a pre-selected section of the
comprehensive splice graph. The calculated isoform abundance is
then subtracted from the corresponding nodes of the graph, and the
procedure is repeated until no more transcripts can be reconstructed.
Transcript quantities are most commonly represented as Transcripts
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Per Million (TPM) or Fragments Per Kilobase per Million reads
mapped (FPKM) [57]. The key to those calculations is the transcript
length, which allows for within-sample normalisation.

2.4.3 Differential expression analysis

The goal of differential expression analyses (DEA) is to identify
genes, transcripts, or other features with significant differences
between conditions. Most algorithms were designed for gene-level
analysis, but can be used in a transcript-level study with slight
modifications. There are also some strategies specifically dedicated
to transcript-level studies [58]. The key problem in DEA is
differentiating between a significant change in the expression levels of
a feature and naturally occurring variance typical for biological
systems. There are parametric [59, 60] and non-parametric [61]
approaches toward DEA. Parametric approaches have become the
general trend, as they can produce reliable results with a lower
number of replicates.
The input for DEA is usually two pairwise sets of biological
replicates. The replicates are needed to model the natural dispersion
of the features. The variance is fitted into a Negative Binomial
distribution to account for the fact that the gene dispersion can be
much higher than the mean. With higher the number of replicates
input into the analysis, it is more likely to correctly capture the
natural variance of the genes. To this end, biological replicates are
more valuable than technical replicates, as they account for more
sources of variance. To make better use of a low number of
replicates, the dispersion of all genes is fitted as a function between
mean and standard deviation. This fit is used to adjust the
dispersion [60].
For a proper calculation, it is important to normalise the counts
between samples. The issue with using a simple normalisation by
library size is that a few highly expressed genes will influence the
calculations. Therefore, the common approach for between-sample
normalisation is the use of quantiles as a reference point [62, 60].
The use of quantile normalisation works under the following
assumptions: the number of up- and down-regulated genes is similar;
most of the genes remain with unchanged expression levels between
samples; differential and non-differential genes are equally subjected
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to technical effects. As the most robust method is regarded the
median ratios normalisation. A pseudo-reference sample is created
based on the average of all samples. For each sample a size factor is
calculated as the median of the ratios between gene counts in the
sample and the pseudo-reference sample [60].
Transcipt-level studies require modified distributions to fit the
alternative isoform levels. Cuffdiff2 [59] fits the counts in Beta
Negative Binomial distribution while DRIMSeq [63] uses Dirichlet
Multinomial mode. In both cases the read counts for a gene are
fixed, and and those counts are distributed among the transcript
within a gene for each sample.

2.4.4 Co-expression network analysis

Network analysis is a powerful tool to identify a group of transcripts
or genes with similar functions or even the driving force behind their
expression. The co-expresssion network analysis algorithms are
clustering algorithms that make use of some properties of biological
networks to improve clustering. The boom of development of
co-expression network algorithms came with the popularisation of
microarray data. Thus, the algorithms were developed for
homoscadastistic data, assuming constant variance in measurement;
see Section 2.3.2. The algorithms worked under a hierarchical model
of gene networks, where nodes (representing genes) are connected to
others in a hierarchical fashion, and those connection reflect
functional association and control mechanism. Under this
assumption, many control genes were identified as the hub (the most
connected node) of a co-expression cluster. The most commonly used
algorithm is Weighted Gene Co-expression Network Analysis
(WGCNA) [64]. In this pipeline, first, a subset of the most varying
genes is selected. The next step is to calculate the pairwise
correlation of gene levels between samples using the Pearson
correlation coefficient. Since genes are viewed as nodes in a network,
the correlations is often referred to as similarity or adjacency. The
correlation is transformed by a beta adjacency function (power). The
parameter for this function is selected based on a so-called scale-free
topology criterion, that is, the adjacency function parameter is
optimised to maximise the number of hub nodes in the network. A
topological overlap between genes is calculated, which ultimately
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recalculates the similarity between two genes based on their
adjacency in the context of the other adjacency values of the
network. A hierarchical tree is built based on the topological overlap
values, and a tree-cut algorithm is used to separate the branches of
this tree into clusters.
The assumptions valid for genes-level networks are not necessarily
valid for transcript-level networks. For example, there is often one
predominant isoform of a gene that corresponds to the majority of
the gene expression level. Therefore, one cannot assume that a
transcript-level network would have a scale-free topology. The core
calculations in the algorithms are based on variance, and they
cannot be directly applied to RNA-seq counts data that is
heteroscedastic. Instead of fundamentally changing the algorithms, it
is easier to transform the RNA-seq data with a variance stabilising
function. A fast and straightforward method for this is the VST
function of the DESeq2 package.

2.4.5 Gene set analysis

As a result of DEA or clustering, a set of genes or transcripts of
interest is created. We need to identify patterns in their function or
regulation mechanisms. For convenience, there are precompiled gene
sets that allow fast hypothesis testing. The most commonly used
gene sets are the Gene Ontology (GO) which contains information on
the function of the genes, and KEGG which contains pathway
information. Another useful source of gene sets is the Molecular
Signatures Database (MSigDB), which contains curated sets for
position, pathway, regulatory mechanism along with some set specific
for particular biological problem. Any database that contains subsets
of genes separated into categories can be transformed into gene sets
suitable for testing. For the sake of testing, it is important to keep
track of the overall set of genes at the start of the analysis called the
gene universe. There are multiple techniques that can be used to find
an association between genes of interest and a gene set. The
combination of approaches used to be referred to as enrichment tests,
but because of the prevalence of the Gene Set Enrichment Analysis
(GSEA) package monopolised the name, simpler approaches adopted
the names association or over-representation tests. However, to this
day, the term ”enrichment” is used to indicate significant overlap
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with a gene set. Because the result of the analysis is usually
functional association with a pathway, gene sets analysis is often
referred to as pathway analysis.

2.4.5.1 Over-representation tests

The over-representation tests are a simple procedure that determines
if a set of genes of interest gave a significant association with a
known gene set. The analysis is divided into two parts. First, finding
the overlap between the genes of interest and a gene set. Second,
applying a statistical test to determine the significance of that
overlap. The most commonly used tests are based on the
hypergeometric, chi-square, or binomial distribution [65].

2.4.5.2 Enrichment tests

The hypothesis of enrichment test is that although large changes in
individual genes can have significant effects on pathways, weaker but
coordinated changes in sets of functionally related genes can also
have significant effects [65]. The most used example of such testing is
provided by the GSEA package. Genes are ranked based on the
correlation between their expression and the class distinction by
using any suitable metric. The goal of GSEA is to determine
whether the members of the gene set are randomly distributed
throughout the ranked list or primarily found at the top or bottom.
The enrichment score is the maximum deviation from zero
encountered in the random walk; it corresponds to a weighted
Kolmogorov–Smirnov-like statistic [66].

2.4.5.3 Pathway Topology based tests

The previous methods consider only the number of genes in a
pathway or gene co-expression to identify significant pathways, and
ignore the additional information that genes are shared between
biological pathways. Pathway topology (PT)-based methods have
been developed to account about gene products that interact with
each other in a given pathway, how they interact (e.g., activation,
inhibition, etc.), and where they interact (e.g., cytoplasm, nucleus,
etc.) [65].
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2.5 RNA-RNA interaction detection

2.5.1 Background

2.5.1.1 Basics

RNA-RNA interactions (RRIs) play a key role in major functions
from processing of nascent RNA transcript to regulation of their
expression and localisation [5, 67, 68, 69, 70]. RRIs can influence
nascent transcripts. Arguably, the most important RRIs is the
splicing of nascent RNA molecules into a final transcript, guided by
the snRNAs [5]. Other interesting examples of functional RRIs are
snoRNAs. They edit nucleotides of RNA transcripts forcing
restructuring of the molecule and allowing them to obtain their final
functional conformation [71, 72]. Even tRNA codon recognition falls
into the RNA-RNA interaction category [73]. RRI-based regulation
of mature transcripts is not to be overlooked. By sheer abundance of
examples, the most well-studied class of RRIs are miRNAs [67].
They can facilitate blocking RNA translation or decrease the
abundance of target transcripts [67]. Functionally similar to
eukaryotic miRNAs, bacteria sRNAs are responsible for the
translation regulation of mRNA transcripts [68, 69]. Additionally,
non-coding RNAs have been proposed to act as a transporter,
allowing mRNAs lacking localisation signals to ”hitch-hike” to the
correct cellular destination [70].
As opposed to protein-protein interactions that have been
thoroughly studied, RRIs represent an untapped potential for new
discoveries. One of the reasons for our surface knowledge of the
functions of RNA is the challenges that studying RNA structure and
RRI pose. Detection of RNA binding protein in vivo is in a stage
where it can give reliable results [74]. As opposed to protein-RNA
binding is guided by structural or sequence motifs [75] (binding
methods that allows for sequence variations), RRI follow nucleotide
level specificity, allowing for more precise regulation of biological
processes. Due to the dynamic nature of the RNA structure
experimental assays for specific RRI detection in vitro do not
produce the same output usefulness as they do for proteins [76, 77].
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2.5.1.2 RNA structure features

Similar to DNA, RNA has the potential to form helices (duplexes),
based on complementary regions. Formation of RNA helices is based
on base pairing nucleotides following standard Watson-Crick pairings
(G-C, A-U) or participating in wobble pair interactions(G-U).
Non-standard base pairings are possible, but they are facilitated by
topological proximity due to a specific 3D structure. The formation
of RNA helices is possible within the same RNA molecule (cis) or
between 2 molecules (trans) . The combination of all cis-helices is
commonly referred to as ”RNA structure”. Meanwhile, the term
”RNA-RNA interactions” is commonly used to indicate trans-helices.
Stretches of the transcript sequence that are unpaired are called
loops (long) or bulges(short). The approaches that lead towards RRI
prediction are an extension of the principles that guide structure
prediction. RNA structures often guide the formation of RRIs.
Thus, to fully grasp the concept of RRI prediction, one first needs to
understand RNA structure.

2.5.1.3 2D vs 3D

Naturally RNA structures are 3-dimensional. The more common
approach towards RNA structure prediction is focussing on the 2D
structure (secondary structure). Unlike proteins, where the 3D
structure is essential for the prediction of binding sites, the
secondary structure of RNA is often sufficient to predict functional
interactions between RNA transcripts, due to the fact that it is
defined by base pairing nucleotides.

2.5.1.4 RNA structure dynamics

As opposed to proteins, where one molecule often has one ’correct’
structure, RNA transcripts can have multiple alternative functional
structures. The difference comes from the fact that while proteins
have mechanisms that ensure the folding of the correct final
structure, RNAs begin their folding as soon as the RNA molecule
starts being transcribed. By the time the molecule is fully
transcribed, the RNA transcript has undergone multiple changes in
structure.
RNA structure can be key in the response of outside stimuli. The
structure elements called riboswitches can change their structure
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based on temperature [78], ligand binding [79] or pH change [80].
RNA structure can be view in two levels of abstraction: global and
local. The global RNA structure focuses on the set of helices along
the entire transcript sequence, while the local RNA structure focuses
on a specific part of the sequence. Focus on the local structure
allows us to gain a more adequate model of the functional
significance of a particular region [81, 82].
The final RNA structures are the results of multiple events:

• RNA splicing – the splicing of nascent RNA happens
co-transcriptionally, meaning that significant stretches of the
RNA molecule are removed - leading to a change in structure
[83]

• Protein binding – proteins can bind to RNA (e.g. QKI, Hfq) and
force a change in the structure [69, 84, 85]

• RNA editing - the process of chemically changing a base forces
an alteration in the RNA structure [86]

• Speed of transcription - the speed of transcription is decisive as to
whether or not any of the aforementioned mechanisms of action
are given time to implement [87]

• trans RNA interactions - RRIs can cause a functional change in
RNA structureby blocking a site of helix formation [88]

2.5.1.5 Challenges of RRI detection

Computation prediction of RRIs in the transcriptome is achieved by
pair-wise testing of all RNA transcripts. Putative RRIs are prone to
a high false discovery rate (FDR). Even if the interaction pair is
predicted correctly, the exact base pairs could be wrong. There are
in vitro experimental methods for RRI detection [77, 76, 89]
However, the nature of those methods does not provide
nucleotide-level information. Therefore, the identified pairs from the
experimental assays need to be processed by computational tools to
identify the precise base pairs in interactions. The combination of
experimental data complementing computation tools allows for a
significant decrease of the search space of potential RNA transcript
pairs, leading to a significant decrease of the FDR. Nonetheless, even
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a combination of in vitro experiments and computational predictions
fails to predict in vivo RRIs, due to the disregard of the structural
dynamics of RNA.
Potential trans RNA interaction loci can be blocked by RNA
structure. This type of blocking is represented by the concept of
accessibility. The structure of both participating RNAs should allow
the trans interaction to occur. Computationally accessibility can be
used to narrow down the search space of potential trans RRI by
applying an RNA accessibility factor (see section Computational
approaches). However, prediction of RNA accessibility as a purely
computational task is flawed due to the fact that RNA structure can
be reshaped via all the events mentioned before.
To reiterate, the interaction of RNA with other proteins and RNA,
as well as the possible alternative splicing events, makes a purely
computational prediction of RRIs unreliable. The theoretical
complementarity between the two RNA molecules is not sufficient for
a functional RRI prediction. However, a plethora of in vivo
experimental methods have been developed to improve our chances
of understanding the RNA interactome, by significantly limiting the
search space for potential helices to 20-80 nucleotides away from the
interaction spot (see section Experimentally driven strategies).

2.5.2 Computational strategies for RRI prediction

2.5.2.1 Minimum free energy approach

The intuitive approach to computational prediction RNA
structureand RRI is to try to maximise the number of base pairs
within a molecule pair complex. It is important to understand that
the biochemical purpose of base pairing is to minimise the free
energy of the complex. We can optimise the base pairing algorithm
by enhancing it with experimental information on the energy gain of
a particular base pairing, giving a thermodynamic aspect to the
folding strategy. Systematic experiments were conducted using a
series of oligonucleotides to calculate the energy gain at different
temperatures, and the parameters for a nearest neighbour
thermodynamic model were developed based on those calculations
[90]. There are other aspects that influence the RNA structure: the
stacking interaction of paired nucleotides (stabilising), and the
dangling energies of free nucleotides (disruptive). Over time, the
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thermodynamic models have been enhanced by recalculations based
on available structural information, but given the small number of
known RNA structures, the adjustments have limited scope [91].

2.5.2.2 Approaches that utilise evolutionary information

Thermodynamic folding decreases in reliability with an increase in
the length of the input sequence. As we have already established,
knowledge of the RNA structure is needed to correctly predict RRIs.
There is, however, an alternative approach to limit the helix search
space. Functionally relevant RNA helices are conserved through
evolution. Evolutionary information can be viewed in two aspects:
positive and negative [92, 93]. Positive examples are mutations
occurring in a functionally relevant RNA helix that are compensated
(often by another mutation) in order to salvage the structure.
Retention of a potential helix sites through evolution provides
positive information that a helix is functionally relevant. Unpaired
regions often allow mutations without functional loss [94, 93], thus
providing negative information for the location of loops and bulges.
Positive information can be separated into two types of
compensatory events: covarying bases at the same location in the
sequence [93]; addition of bases at the edges of the helix [94]. Note
that base pair change can occur as one-sided variance (often creating
a wobble pair) or full covariance (both bases are changed).
For the occurrence of two covarying bases, two sections of the
genome need to mutate in compensatory fashion at the same time.
When searching for compensatory events indicating RRI, we need to
keep in mind that one RNA often interacts with multiple partners.
The simultaneous equivalent mutation of all interaction partners is
very unlikely. In conclusion, covarying bases are a strong indicator
for RRI when only two genomic loci are involved. While, for trans
interactions that need to be consistent between multiple loci, it is
more common for the region to be simply conserved or with rare
instances of one-sided variation [95].
An example of positive evolutionary information is the change in
nucleotide usage that preserves the ability of the two bases to form
the RNA helix. If the structural or interacting RNA element has an
important function, then observable mutations need to compensate
for each other to salvage the structure. Thus, the retention of
potential helix sites through evolution provides positive information
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that a helix is functionally relevant. Opposite to the base-paired
regions, the unpaired regions often allow for mutations without
functional loss [94, 93], thus providing negative information for the
location of loops and bulges.
The positive information can be separated into two types of
compensatory mutation events: covarying bases on the same location
in the sequence [93]; addition of bases at the edges of the helix [94].
The base pair change can occur as either one-sided variance (often
creating a wobble pair) or full covariance (both bases are changed).
For the occurrence of two covarying bases, two sections of the
genome need to mutate in compensatory fashion at the same time.
When looking for compensatory events that indicate RRI, it should
be noted that the RNA molecule often interacts with multiple
partners. Simultaneous compensatory mutations of all interaction
partners are very unlikely. While, for trans interactions that need to
be consistent between multiple loci, it is more common for the region
to be simply conserved or to have rare instances of one-sided
variation [95]. In conclusion, co-varying bases are a strong indicator
for RRI when only two genomic loci are involved.

2.5.3 Experimental strategies for RRI detection

2.5.3.1 Transcript-specific pull-down approaches

The most straightforward approach to the experimental search of
interacting pairs is the pull-down assay. The need for in vivo
detection of interactions requires focus on a specific transcript of
interest. In MAPS [96, 97] the RNA transcript of interest is tagged
with an aptamer and introduced into the cell with an inducible
plasmid. The cell extract, which contains the tagged transcript and
its targets, is filtered through a column with the MS2 protein that
recognises the tag. The filtered extract sequenced as RNA-seq and
compared to control library produced without the selection tag.
Comparison can be performed using any differential expression
pipeline (e.g. DESeq2 [60]). The downside of this method is the
identification of not only direct targets but also secondary targets
(see Figure 2.4).
A similar approach is provided by RAP and RIA-seq [98, 99], where
the RNA of interest is pulled down by specific biotinilated probes.
RAP is enhanced by AMT cross-link - a psoralen derivative (see
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Aptamer Tag

Crosslinked Psoralen/AMT

Crosslinked Proteins

MS2-facilitated Pull-down

Require transfected cell lines Do not require transfected cell lines

Fragmentation

2D gel 
enrichment

Reverse crosslinking

Streptavidin beads
enrichment

RNase R 
treatment

Sequencing & Analysis

Protein digestion

Proximity ligation
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Specific protein
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Unspecific protein
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MAPS RIL-seq/CLASH MARIO PARIS SPLASH LIGR-seq

Figure 2.4: Overview of several experimental methods that assess the presence of RRIs
in vivo. MAPS stands out from rest of the methods as a straightforward pull-down
experiment. The rest of the methods follow five common keys steps: 1) cross-linking;
2) enrichment; 3) fragmentation; 4) proximity ligation; and 5) removal of the cross-link.
All resulting RNA fragments are processed as transcriptome libraries.
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Section 2.5.3.3). All of the pull-down approaches need to be
supplemented by computational RRI identification to reach
nucleotide resolution and filter false positives.

2.5.3.2 Protein-mediated approaches

CLIP-seq is a unified name of a set of techniques for detection of
RRI via RNA proximity ligation. The key feature of CLIP-seq
protocols is the enrichment of specific duplexes by protein pull-down.
Again, as a specific case, the miRNAs allow for in vivo interaction
prediction with minimal data. Due to the fact that the function of
miRNAs depends on the AGO complex, CLIP-seq data (and its
derivatives) can be used to identify miRNA-mRNA interaction pairs
[74, 100]. CLIP data is based on cross-link of RNA-protein
complexes, subsequent protein purification and degradation, and
sequencing of the selected RNA stretches. The resolution of CLIP
data allows narrowing down the search space of potential miRNA
target regions, while simultaneously providing in vivo specific
interactions information.
There are other RRIs that are facilitated by protein binding, but the
participating transcripts are longer than miRNAs. There are
techniques that focus on using those proteins as anchors that keep
the RNA molecules in close proximity to ensure ligation between the
two RNA molecules (Figure 2.4). Firstly, cross-linking RNA and
tagged proteins, subsequently selective immunoprecipitation of those
proteins is performed to enrich the interaction complex. RNA is
fragmented, and proximal RNA fragments are ligated. Finally, the
protein is degraded to leave a chimeric RNA fragment, which, after
sequencing, provides information of the two interacting RNAs. This
strategy is applied in RIL-seq [101] and CLASH [102]. However,
limiting the study of RRI to a single protein is rarely the aim of
interactome studies. Recently, MARIO [103] was introduced that
applies the same protein anchor strategy, but on a full proteome
scale. In MARIO, protein selection is done by tagging the protein
with biotin. Another advantage of MARIO is the presence of a
biotinated linker region added to the chimeric fragments, allowing
selective enrichment of the chimeras. Very recently, an alternative to
MARIO strategy has been presented. In RIC-seq [104], the
enrichment method is MNase treatment, which fragments RNA not
bound to proteins. During the proximity ligation, a single tagged
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nucleotide is used as a tagged linker.

2.5.3.3 Psoralen facilitated approaches

The dependence on protein binding for the identification of RRI is
undesirable. To circumvent this, a series of techniques reliant on the
compound psoralen were developed. Psoralen and its derivatives can
intercalate within an RNA duplex and upon irradiation with 365 nm
UV be cross-linked to adjacent pyrimidines on opposite strands of
the duplexes [105]. The importance of psoralen is the ability to
reverse the cross-link at 254 nm UV. Pairing RNA transcripts are
processed in different ways, depending on the protocol. The end goal
of all strategies is a chimeric fragment, produced by proximity
ligation of the RNA transcripts that forms a duplex.
In Figure 2.4 you can see the similarities of the experimental
methods. The primary differences between psoralen-based protocols
stem from the duplex enrichment strategies. In PARIS [106], the
duplexes are manually cut from 2D gel electrophoresis. In SPLASH
[107], the psoralen derivative is tagged with biotin for streptavidin
pull-down. More special is the case of LIGR-seq [108], where
enrichment is done by exonuclease (RNase R) treatment. Due to the
nature of the treatment, the LIGR-seq protocol produces a lot of
misleading ligations. Thus, the protocol requires control libraries,
and the corresponding bioinformatics pipeline, is based around a
series of statistical tests to determine enrichment of chimeric
fragments between control and treatment libraries.
The selection of chimeric fragments can be enhanced by pull-down of
sequences of interest, an idea applied in COMRADES [109]. They
also use azide-modified psoralen for pull-down to avoid the limited
permeability of the cell to biotinated psoralen [107].

2.5.3.4 Computational processing of duplexes

The goal of the detection of duplexes based on chimeric fragments is
to decrease the search space of RRI to sequence stretches of rarely
more than 100 nucleotides. There is quite some variance between the
bioinformatics pipelines proposed together with the original
experimental protocols. However, every pipeline can be summarised
into a few key steps. We also propose common tools that can be
applied in the following steps:
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1. Chimeric fragment detection Mapping the data with a tool
that can handle split read mapping. Good choices are BWA-
MEM [35] or STAR [34].

2. Filter non-chimeric fragments The results should be filtered
for known splice junctions. Requires simple script for STAR
output, one can use the pipeline from PARIS, while for BWA-
MEM - SPLASH.

3. Binning the reads The overlapping reads from chimeric
fragments corresponding to the same RRI need to be collapsed
into a single region. Common tools for such a task are
BEDtools [110] and the GenomicAlignments R package
[111]. Those tools can also be used to annotate the binned
regions.

4. RRI detection This step is sometimes skipped, but it is
important to provide nucleotide resolution to the RRI. Any RRI
detection tool should be able to handle such short sequence
stretches. In [108] the authors use RactIP [112]. For the
psoralen-driven strategies quick false discovery filter can be
applied, to check for adjacent pyrimidines on the opposite
strands.

Split mapping requires both parts of the reads to have matching
sequence to the reference (usually at least 15-20 nt). Usually, reads
are mapped to the full genome reference. In that case, if the read
spans simultaneously splice junction and a chimeric junction, then it
is required to have multiple sufficiently long matching regions. With
fragments of about 60-70 nt length that is very unlikely. A solution
to this problem is using the transcriptome as a reference to remove
the need for splice junction mapping seeds. To avoid multi-mapping
to different isoforms of the same gene, usually the longest isoform of
the gene is selected. The inherit downside of the transcriptome
mapping is the loss of information of RRIs in the intronic regions of
the genes.
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Chapter 3

A new computational method for
circRNA assembly – CYCLeR

The work presented in the scope of this chapter was
performed by the doctoral candidate, under the oversight of
prof. Irmtraud Meyer (MDC-Berlin). I researched the field
and identified the need for a novel tool. I selected the
strategy and algorithm that the new tool would employ.
Subsequently, I developed the tool along with another novel
tool designed for circRNA RNA-seq simulation. I
determined the nature of the benchmarks and conducted all
analyses. The work described in this chapter is published in
the journal Nucleic Acids Research under the title
CYCLER–a novel tool for the full isoform assembly and
quantification of circRNAs [52]. All materials used in the
publication are available under CC BY-NC. Most figures,
tables and captions presented in this chapter are
reproduced from the publication. The final text of the
publication is the result of multiple rounds of comments
and guidance from Prof. Irmtraud Meyer. The GitHub
page of the tool was improved thanks to the feedback of Dr.
Altuna Akalin (MDC-Berlin).
Note: The use of ”we” throughout the text refers to the
author-reader collective.

There is a plethora of tools used for circRNA research with
distinct aims and approaches [113, 114, 115, 116, 30, 117, 118, 49].
None of those methods, however, cater for the need to identify the
full sequence of all circRNAs, as well as the simultaneous estimation
of the expression level of linear and circular RNAs. This is why I
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developed the novel tool CYCLeR (Co-estimate Your Circular and
Linear RNAs). For the assembly of full-length circRNA isoforms,
CYCLeR employs a comparison of two types of RNA-seq data: total
ribo-depleted (control) and circle-enriched. The initial step of the
algorithm involves identifying circle-specific features. Subsequently,
it utilizes a flow-based algorithm to predict the most likely set of
circular RNA(circRNA) alternative isoforms. These circRNA
transcripts are then transformed into a pseudo-linear isoform profile,
enabling the estimation of the abundance of both linear and circular
transcripts through an expectation-maximisation (EM) approach.
[52]. In this chapter, I describe the main features of the CYCLeR
algorithm and prove its advantage over alternative strategies by
means of an extensive benchmark.

3.1 Introduction and motivation

3.1.1 Assembly challenge

Both linear RNA and circular RNA are a product of the splicing of a
nascent RNA transcript [9]. The mainstream use of Illumina
sequencing has led to great strides in the identification of novel RNA
isoforms. However, RNA-seq reads originating from linear and
circular splicing isoforms cannot be easily assigned to their transcript
of origin. This makes transcript assembly challenging, see Fig. 3.1.
An additional issue is estimating the relative abundance of circular
and linear RNA. Direct evidence of circRNAs from RNA-seq data
can be derived solely by the detection of reads that map to the
location of the circular splicing – the so called back-splice junction
(BSJ), see Section 2.2.2. However, BSJ-spanning reads provide only
limited information on the complete sequence of circRNAs, which
hinders the assembly and qualification of circRNA isoforms.

Common transcriptomic analysis, such as differential expression
and co-expression correlation analyses, as well as RNA structure and
interaction identification, all rely on prior knowledge of the
transcript sequence and relative abundance. The widely utilized
transcriptome assembly tools [47, 48] operate by constructing a
directed acyclic splice graph. In this graph, nodes and edges are
established based on the mapping of forward junction-spanning reads
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BSJ

I

Figure 3.1: Challenge of identifying circRNAs from RNA-seq data. Typical,
raw transcriptome data from linear and circular splicing isoforms (top left and right)
comprises a multitude of pair-end reads covering the exons of these isoforms (E1 etc,
colouring of pair-end reads according to the exon from which they derive). In order to infer
the original splicing products from these raw transcriptome reads, they are typically first
mapped to the genome (bottom). Most of the mapped reads will not cover splice sites (exon-
intron boundaries) and could either derive from a linear and circular splicing isoform.
One challenge is that only reads spanning a back-splice junction provide direct evidence
for circRNAs (marked in light green). As is also clear from this picture, the correct
identification and quantification of circRNAs cannot be achieved without the simultaneous
identification and quantification of the linear splicing isoforms. Thus, if the linear splicing
isoforms of a gene are known up-front, their correct quantification needs to be estimated
in conjunction with the identification and correct quantification of unknown circRNAs.
Reproduced from Stefanov et al. (2022)

in the transcriptome data. The assembly algorithms subsequently
utilize these splice graphs as a base for the reconstruction
procedures; details in section 2.4.1. Although the general idea is
valuable, significant adjustments are necessary to accommodate the
cyclic splice graphs essential for the assembly of circRNAs [52].

3.1.2 circRNA enrichment

Robust transcript assembly requires adequate read coverage across
all exons and splice junctions. The presence of linear splicing isoforms
originating from the same host gene can considerably bias the assembly
of circular transcripts. The low relative abundance of circular RNA
compared to linear [13] poses a challenge that can only be resolved by
additional experimental procedures; see Section 2.3.2.1. To facilitate
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the study of circRNA, it is common to use transcriptome libraries,
specifically enriched for circRNA [13]. Throughout the text, RNA-seq
library generated by any method for circular enrichment are referred
to as circRNA enriched library.

3.1.3 circRNA tools classification

To conduct a fair benchmark of CYCLeR in comparison to existing
tools for the identification and quantification of circular RNAs
(circRNA), I begin by categorizing the existing methods based on
their objectives [52].

The tools most commonly used in circRNA studies, and naturally
the representatives of class I, are known as CircRNA identification
tools. Class I tools identify BSJ-spanning reads in RNA-seq data.
The quantity of the reads mapped to the same BSJ is the measure
that class I tools provide for the quantity of circRNAs. A limitation
of these tools is their inability to ascertain the complete sequence of
circRNAs.Furthermore, they lack the ability to detect AS of
transcripts sharing the same BSJ site. However, these tools provide
an important first step in any circRNA study. The lists of BSJs
provided by tools from class I serve as an input of the tools of the
other classes.
The objective of the tools from class II is to detect circRNA AS
events and match them to a BSJ site. Class II tools sue the
predictions of class I tools as input. The AS of linear RNAs is an
obstacle to the detection of AS events of circRNA molecules.
Consequently, class II tools require circRNA enriched libraries for
optimal performance. The strategies employed in class II tools can
be divided into two subgroups. The first approach relies on utilizing
mate-pair information from paired-end reads spanning a BSJ for AS
detection [30, 115]. However, a drawback of this method is its
restricted sensitivity to AS events, limited by the insert size of the
RNA-seq library. The second approach is utilized in the
CIRCexplorer2 [50] pipeline and shares a strategy similar to
CYCLeR. It involves the use of circle-enriched and total
ribo-depleted libraries to identify forward splice junctions of
circRNAs. An advantage of this strategy is its ability to overcome
the limitations associated with the library insert size.
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Reads spanning a BSJ typically constitute only a small fraction,
approximately 0.1%, of the entire library. Depending exclusively on
BSJ-spanning reads for quantification is unreliable due to their
limited representation [52]. As mentioned earlier, the quantification
provided by tools from Class I and II is lackluster and requires
improvement. Two distinct strategies have been developed to tackle
this problem. Due to their shared goal, I categorize them as class
IIIa and IIIb.
Sub-class IIIa includes tools that estimate circRNA abundance as a
ratio between back-splice junction (BSJ) and forward-splice junction
(FSJ) counts [118, 119]. Both representatives of this subclass employ
heuristics to estimate circRNA levels based on linear RNA
abundance [118, 119]. Although the reported results align with
qPCR benchmarks [118, 119], these tools do not enable the
deduction of relative expression levels for all alternative linear and
circular isoforms.
A completely different approach is employed by the single member of
the sub-class IIIb – sailfish-cir [116]. In the subsequent step,
sailfish-cir utilizes the created circRNA models and the provided
linear annotation to perform simultaneous quantification of both
linear and putative circular transcripts.
Recently, the first tools aiming to recover the full sequence of a
circular transcript have been published. Due to their similar strategy
and limitations, they are assigned to class IV [49, 51]. The initial
stage in the full sequence assembly of circRNAs invariably involves
BSJ detection. Even with libraries that have undergone circRNA
enrichment, the BSJ output from tools belonging to class I or class II
is indispensable. This is because linear RNA transcripts may still be
present in the samples, potentially disrupting circRNA assembly.
Additionally, the detection of the BSJ site resolves a common
challenge in linear transcript assembly - identification of start and
end exons of the transcript [52]. The assembly strategy applied in
CIRI-full employs a similar approach to class II tools, where
mate-pair information is used to predict the full length of the
circRNAisoforms. This method is effective only in cases where the
full length of the circle is covered by the paired-end BSJ-spanning
reads. Naturally, this approach has the same limitation as the ones
discussed in class II. This insert size bottleneck allows only for the
identification of circular isoforms of up to 600 nt length, even when
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using the recommended input of 2x250 nt paired-end RNA-seq
libraries [49]. The algorithm of CircAST works by finding the
minimal set of predicted isoforms that accounts for all FSJs [51]. In
the output of class IV tools, the alternative circRNA splicing
isoforms sharing a BSJ site are quantified as fractions of the total
reads mapping to a BSJ site [52].
All tools across different classes that aim to identify novel circular
RNA splicing events benefit from a circRNA-enriched library as
input [52]. Class V is dedicated solely to the tool presented
here–CYCLeR, as it provides functionalities that other tools lack.
Particularly, a thorough transcript assembly algorithm and
simultaneous quantification of novel circRNA and linear transcripts.
A crucial distinction in data requirements compared to other tools is
that CYCLeR mandates the inclusion of replicates. The summary of
the differences can be easily tracked in table 3.1.

As an alternative to all strategies that rely on RNA-seq data, the
members of class VI use Nanopore sequencing. The product of a
rolling circle amplification of the reverse transcription of circRNA is
sequenced by the Nanopore, see Section 2.3.4.2. The data from the
long-reads is then processed and collapsed into a set of circRNA
isoforms [44, 43]. A unifying trait of the experimental procedures
required by the tools of class VI is high workload requirements. Both
linear depletion and high replicate number are required for a reliable
analysis [44, 43].

3.2 Simulation of RNA-seq data

3.2.1 Simulated transcript generation

At the time of writing, there is no comprehensive gold standard
dataset available for benchmarking AS of circRNAs. The only option
for a reliable benchmark in this study is to simulate a circRNA set to
serve as a reference for RNA-seq simulation. My primary goal when
designing the reference set is to mimic the key features of real data.
To achieve this, I utilize publicly available D. melanogaster head
data with available RNase R treatment to identify authentic BSJ
sites and genomic characteristics specific to circular RNA (circRNA).
This approach enables the detection of novel genomic features such
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Class Common reference name Practical purpose CE* Representatives

Class I CircRNA identification tools BSJ Identification and quantification no CIRI2, CIRCexplorer
KNIFE, etc.

Class II CircRNA characterisation tools circRNA AS event identification yes CIRCexplorer2, CIRI-
AS, FUCHS

Class
IIIa

CircRNA quantification tools Improved circRNA quantification,
based on BSJ to FSJ ratios

yes CLEAR, CIRIquant

Class
IIIb

CircRNA quantification tools Improved circRNA quantification by
using model-based framework

no sailfish-cir

Class IV Tools for full-length assembly
of circRNAs

Full-length assembly of CircRNAs
and relative CircRNA isoform
abundances

yes CIRI-full, CircAST

Class V - Full-length assembly of circRNAs
and simultaneous linear and circular
RNA abundance estimation

yes CYCLeR

Class VI - Full-length assembly of circRNAs
based on specifically generated
Nanopore library

yes CIRI-long, isoCirc

Table 3.1: Classification of existing methods for circRNA identification and
quantification. according to their goals and the input they require. Tools in column
CE (Circle Enriched) denoted by a ’yes’ require circRNA enriched libraries as input for
optimal performance. Reproduced from Stefanov et al. (2022)

as exons, junctions, and retained introns, which are then
incorporated into the simulated dataset. Figure 3.2 illustrates the
necessary features that a simulated dataset should possess. A
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Figure 3.2: Simulation of the location of the RNA sequence data for the 5-
HT2A gene. Sashimi plot comparing simulated (red) versus real (green) RNA-seq data.
BSJs are marked with dotted line. The necessary behaviour to consider a simulated sample
”realistic”: (1) Decrease in coverage around the start/end of linear transcripts, (2) relative
decrease in coverage around back-splicing sites, (3) CG-bias in coverage and (4) intronic
”noise” caused by unspliced transcripts. Reproduced from Stefanov et al. (2022)

secondary goal when designing the data set is to ensure the high
complexity of the transcript assembly task to test the potential of
the tools to discover novel isoforms in challenging conditions. To this
end, my simulated set needs to include cases of overlapping circular
as well as linear transcripts. Table 3.2 contains a summary of key
design characteristics of our set of simulated transcripts.

It is essential for the data set to contain junctions that are not
present in available annotations. Therefore, I map D. melanogaster
adult head RNA-seq data [9] with STAR [34] and retrieve the full set
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of junctions in the real data. Subsequently, the alignment files are
processed with the SGSeq R package [120] to create a comprehensive
list of exons and junctions. I selected exons within BSJ loci, based
on the unified results from CIRCexplorer2 [50] and CIRI2 [117]. I
filtered the exons and junctions based on enrichment after RNase R
treatment. I removed monoexonic and diexonic circRNAs from the
final reference as they do not pose an algorithmic challenge.
To generate the set of alternative isoforms, I employed a selection
process for internal exons associated with each set of edge exons.
This selection involved a Bernoulli trial with a success rate of 0.75. I
repeated this selection process a total of (number of internal
exons)/3 times. Naturally, only the unique transcripts were chosen
for the following simulation steps. Additionally, I included all
annotated linear transcripts expressed from the same genes as the
circRNAs to the dataset.
An important part of the RNA-seq processing is normalisation of
feature abundances. To test normalisation procedures I needed to
provide simulated libraries with a realistic set and abundance of
transcripts. The initial selection of transcripts, selected for
simulations, was supplemented with an additional 10 000 randomly
chosen protein-coding transcripts, which serve as placeholders for
transcripts depleted during circRNA enrichment procedures. In
addition, I incorporated 5,000 randomly selected non-coding
transcripts into the dataset. These non-coding transcripts symbolize
the linear transcripts that experience an increase as an outcome of
circRNA enrichment procedures. The final library size was
determined to align with a common sequencing library depth, which
typically consists of around 25-40 million reads. [52].

Reconstruction problem Dataset design

Identifying circRNA exons Selected exons after circRNA enrichment
Identifying un-annotated exons Integrated novel SJ from STAR output

Overlapping linear AS Included overlapping linear transcripts
Overlapping circRNA AS Included overlapping circular transcripts

Nascent RNA noise Included full gene sequence

Table 3.2: Benchmarking set design goals. The benchmarking dataset is designed
to test the capability of different circRNA transcript reconstruction tools to deal with
common problems for circRNA reconstruction-summarized in the table. Reproduced
from Stefanov et al. (2022)
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To designate transcript quantities, I used random sampling, with
specific ranges selected empirically. I selected the following ranges for
linear and circular transcripts respectively - from 10 to 40 and from 8
to 20. In the case of nascent RNA simulations, I used a factor within
the range of 1-1.5. I assigned quantities on the lower side of the ranges
to transcripts that contain unannotated exons and retained introns.
In accordance with empirical observation of RNA-seq data, I adjusted
the quantities of the reads from the simulated circular transcripts to
amount to approximately 0.1% of the simulated linear reads. The
calculation of the number of simulated reads per transcript involves
the length of the transcript multiplied by a factor of 50, which has been
determined empirically. The selection of this factor aims to replicate
the typical coverage of a gene within a library. [52]

# of simulated reads per transcript =
Length of transcript · Factor

50

Reads corresponding to linear RNA simulation are produced with
polyester [121], while reads derived from circRNAs are simulated with
polyestercirc; see section 3.2.3.

3.2.2 Reference sets

Based on the results from dedicated circRNA long-read studies [44,
43], we can make assumptions of the frequency of circRNA AS. In
accordance to those studies, I simulate as most frequent AS event
alternative circularisation (alternative BSJ occurring from the same
gene), at lower rate exon skipping and alternative 5’/3’-splicing, and
sporadic occurrence of intron retention.

The goal of the benchmark is to showcase the performance of the
tools in common cases of circRNA assembly, as well as how they handle
harder cases that rarely occur. Thus, I have separated the simulated
transcripts into two reference data sets, Figure 3.3. Common cases of
AS in circRNA involve a singular AS per locus. The data set focusing
on these common cases is referred to as a reference set. The more
complex set that involves extreme cases that challenge the assembly
is referred to as high complexity reference set. A summary of the
characteristics of the reference sets is available in Table 3.3.
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CIRI BSJs CE BSJs

BSJs Set

Head RNA-seq

Head RNA-seq
RNase R treated

Exons

CircRNA
Exons

CircRNA
Transcripts

Linear
Annotation

U

U

Low complexity
loci

High complexity
loci

Reference dataset

dataset
High complexity

Figure 3.3: Selection of reference sets. The simulated dataset contains cases that
present common challenges for circRNA assembly that we know to be present in real data
(see section ”Reference sets”) as well as even more challenging cases. Iselect a set of
lower complexity cases to better highlight the differences in performance of the tools and
employ the higher complexity set to investigate the limits of transcriptome assembly based
on RNA-seq data. Our reference set contains loci with a low number of overlapping AS
events. Our high complexity set expands the reference set by combining it with circRNA
transcripts with multiple overlapping AS events. The symbol ”U” indicates merger of sets.

Dataset Reference set High complexity set

Unannotated exons Yes Yes
Retained introns Yes Yes

Overlapping linear RNA AS events Yes Yes
# of overlapping circRNA AS events ≤ 1 All

Table 3.3: Reference vs High complexity sets This table specifies the differences
between the High complexity set and the Reference set. Both datasets allow us to assess
the evaluation of the effect of linear splicing on the circRNA assembly. The high complexity
set also enables us to evaluate the effect of multiple overlapping circRNA s on circRNA
assembly. Reproduced from Stefanov et al. (2022)
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3.2.3 Polyestercirc

In order to provide an unbiased test, RNA-seq libraries containing
linear and circular transcripts with multiple isoform overlap
sequences must be simulated. The commonly used RNA-seq
simulation tools are not designed with the intention of handling
circRNA transcripts [121, 56, 122]. The simulation strategies
previously used for the circRNA RNA-seq reads [115, 116] do not
adequately represent real data. Some RNA-seq simulation tools were
designed with the purpose of simulating circRNA reads [115], but the
functionality is lacking in terms of realistic edge effect, sequencing
errors, and GC bias. In this tool, ”sequence bias” is based on
random selection of read start sites, which does not mimic real data.
The simulation performed in [116] uses polyester by providing
linearised circRNA transcripts extended by the length of a read(L)
minus one nucleotide (L-1). However, this strategy does not consider
circRNA-derived fragments that map to the BSJ and have a length
longer than a read on either side of the junction.

Polyester is a tool that simulates RNA-seq reads following a
negative binomial model of count distribution to produce replicates
with a realistic differences [121]. I have made modifications to the
original code of Polyester to create a new tool, named polyestercirc,
which focuses solely on the simulation of circular RNA circRNA.
This novel tool is designed to be used in conjunction with the
original Polyester to generate a simulated library with reads
corresponding to both linear and circular transcripts. The simulation
parameters are optimised to generate the libraries described in
Section 3.2.1.
The adjustments to the Polyester code are implemented with the
assumption that circular RNAs (circRNAs) will experience at least
one hydrolysis event during RNA fragmentation. The initial break
point of the fragmentation is chosen at random along the sequence of
the circle. To better align with the circular nature of circRNAs, I’ve
disabled the edge effect model for simulating circular reads.
The recommended approach for using Polyester entails incorporating
GC-bias by adapting the number of simulated transcripts based on
their GC-content. To improve the realism of GC-bias modeling, I
have modified the process to sampling transcripts from an initial set
as Bernoulli trials with probability based on GC-content [52].
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I simulate circular and linear transcripts separately and then merge
them into one library. Linear transcript sequences are selected as
described in Section 3.2.1. To mimic the noise caused by the
presence of nascent RNA, I added the full sequence of the gene to
the set of linear transcript reference. To simulate circRNA
enrichment, I decrease the expression values of the linear transcripts
by a factor of five and increase circular transcript levels by a factor
of 4.5. The final library parameters that are selected to fit the
requirements of all tools participating in the performance benchmark
(see Section 3.5.1) are shown in Table 3.4.

Rep1 control Rep2 control Rep1 treated Rep2 treated

2x75 26,964,485 26,937,052 25,760,332 25,752,251
2x250 27,011,990 27,005,653 25,863,703 25,855,256

Table 3.4: Information on simulated libraries type and depth. To accommodate
the requirements of all tools, libraries were simulated in: 1) replicates; 2) pair-end;
3) two types of read length 4) 5 time decrease in the linear transcript abundance and
4.5 times increase in circular transcript abundance (based on empirical observations).
Reproduced from Stefanov et al. (2022)

3.3 CYCLeR pipeline

3.3.1 Selection of a reliable BSJ set

The identification of novel BSJs hinges on the capability of an
alignment tool to map chimeric reads. Different mapping strategies
and heuristics can detect distinct sets of chimeric reads per sample.
To ensure a reliable staring set of BSJ sites, I employ a combination
of CIRI2 and CIRCexplorer2 as input. Their capability for detecting
BSJ depends on the mapping tools incorporated into their pipeline,
namely BWA-MEM and STAR for chimeric detection, respectively.
CYCLeR also allows for any other BSJ set to serve as input via a
TSV file. A key input for the functionality of CYCLeR is a matching
set of BSJs from control ribo-depleted and circRNA-enriched
libraries. This combination allows for an easy filtering of false
positive BSJ predictions. The option of merging different sources of
BSJs input gives an added advantage to CYCLeR, as it has been
shown that using a combination of BSJ identifications tools improves
the quality of the prediction [13, 123] (see Table 3.5).
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3.3.2 Creation of circular splice graphs

A necessary first step for the assembly of transcripts is to create a
comprehensive splice graph. The process of constructing a splice
graph is best explained with an example taken from preliminary
simulated data. The steps of constructing a splice graph for the
5-HT2A D. melanogaster gene are clearly illustrated in the figure
3.4. The mapping of the reads is performed with STAR [34]. Then
the reads assigned to the circRNAs loci are extracted with SAMtools
[124] to eliminate unnecessary reads that slow the computation.
Reads originating from linear and circular transcripts pass this filter.
The exons and splice junctions are arranged in a splice graph using
the SGSeq R package [120]. Processing of chimeric reads causes
mapping artefacts and erroneous counting of the RNA-seq
fragments. I resolve the mapping artifacts by correction using the
BSJ information as well as known linear annotation. Next, I perform
an exon read recount with the RSubread package [125]. DEXSeq R
package [46] is used to eliminate the features depleted after
circRNA-enrichment. I modified the standard workflow of DEXSeq
to bypass the normalisation step. I opted for RPKM normalisation
because it enables corrections to the effective length sequence,
accounting for the drop in read coverage around BSJ sites.
CYCLeR provides optional GC correction based on the GC content
models used in the polyester package [121]. If replicates are
unavailable for any of the two conditions, CYCLeR uses a direct
comparison of the average values to eliminate linear-specific features.
For more information on the type of the graph used, see Figure 3.5.

3.3.3 Reconstruction of circRNA transcripts

The next step in the CYCLeR workflow is a stepwise reconstruction
of possible transcripts using a tailor-made graph algorithm. Graph
algorithms are a common approach to processing of a splice
graph [48]. In CYCLeR, I utilise a greedy algorithm for the iterative
reconstruction of transcripts, aimed at minimizing the occurrence of
false-positive assembled sequences. The starting point of the
algorithm is the comprehensive splice graph, created in the preceding
steps. The process begins by selecting the exon with the lowest
abundance. Subsequently, CYCLeR proceeds to identify the
maximum flow through this exon within the splice graph and
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Figure 3.4: Construction of the circle-specific splice graph of the 5-HT2A
gene. (1) Reference linear and circular transcripts are used for sample simulation, (2)
comprehensive splice graph is created using SGSeq, the features for 4 samples are quantified
and can be represented in a heatmap( N (non-treated), T (treated); the features that have
no previous annotation are marked red), (3) a subgraph with only features located between
the BSJ start/end boundaries is extracted, (4) filtering based on depletion of features
in circRNA enriched samples (T) (5) Final splice graph creation. Reproduced from
Stefanov et al. (2022)

outputs the corresponding sequence. After reconstructing the
circular transcript, CYCLeR subtracts the abundances of the
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Figure 3.5: Algorithmic representation of the splice graph In graph theory terms,
the graph itself is a monopartite graph, in which for every exon or retained intron, there
are two nodes corresponding to the 5’and 3’ sites of the feature. Exon 3’-nodes can be
connected to 5’- nodes via edges that represent splice junctions. The edges of the graph
hold the information of the coverage of the features. This method of representation of
splice graphs is somewhat similar to the approach used in StringTie. Information of the
BSJ sites and coverage is handled separately.

corresponding exons from their respective features in the original
graph. Any features that become fully depleted as a result of this
subtraction are eliminated. This operation is repeated until no
further transcripts can be reconstructed. For an illustrative example,
see Figure 3.6. [52].

3.3.4 CircRNA transcript quantification

For drawing conclusions based on transcript abundance, downstream
analyses typically involve a single value for read counts per
transcript. The preferred approach for transcript quantification in
recent years have been EM-based tools [56, 54]; for more information,
see Section 2.4.2. CYCLeR leverages the strategy used in sailfish-cir
and enhances it by incorporating a functional circular RNA
(circRNA) assembly step. For every assembled circular transcript,
CYCLeR produces a pseudo-linear reference by adding a string
matching the sequence at the end of an edge exon. For simultaneous
quantification, the newly created pseudo-linear reference needs to be
combined with the linear transcript reference. The final step of
abundance estimation is performed with kallisto [54], using the newly
generated comprehensive reference. The pseudo-linear adjustment
consists of the addition of the size of a k-mer to be used in the
quantification step, as illustrated in Figure 3.7. This makes kallisto
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Figure 3.6: Circle transcript reconstruction within CYCLeR for the example
of the 5-HT2A gene. Starting with the full splice graph for the entire gene locus and
its respective exon abundances (see top line, left, in grey for the graph and the FPKM-plot
at the top right), CYCLeR extracts the circle-specific sub-graph corresponding to splice-
site junction J4 which falls between a BSJ-start and a corresponding BSJ-end coordinate
(see second line from top left, in blue for the graph). This blue sub-graph corresponds
to a single circular splicing isoform. This blue sub-graph and the corresponding exon
abundances are subsequently subtracted from the original, full splice graph (see graph at
the top left and middle FPKM-plot) to yield the remaining splice graph (third line from
top, in grey). Similarly to before, CYCLeR then extracts the next circle-specific sub-graph,
this time corresponding to a back-splice junction-spanning splice-site junction between
exon E6 and E4 (fourth line from top, in red). This sub-graph provides evidence for a
circular splicing isoform comprising three exons E4, E5 and E6 (note the different exon
abundances). The quantities corresponding to this circular isoform are subsequently deleted
from the remaining grey splice graph, resulting in a subgraph (second line from bottom, left,
grey) that corresponds to another circle-specific graph, this time comprising only exons E4
and E6, but not E5 (bottom line, in green). This sub-graph and its abundances provide
evidence for a single circular isoform (bottom FPKM-plot). Reproduced from Stefanov
et al. (2022)

aware of the additional mapping possibilities around the back-splice
junction (BSJ). kallisto also requires an adjustment to increase the
effective length of the sequence, achieved by the addition of
pseudo-random nucleotides (not similar to the reference sequences).

3.4 Code and Documentation

CYCLeR is available at https://github.com/stiv1n/CYCLeR. The
repository contains information about a trial run of the core script,
as well as all needed command line tools, both provided via Docker.
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Figure 3.7: Creation of a pseudo-linear reference sequence. Comparison between
an example circular and a linear transcript of the same length ( l)=500 bp. Considering
a k-mer size of 31 bases, the circRNA produces 30 more unique k-mers compared with
the linear transcript of the same size. Therefore, an extra of 30 bases need to be added
to the pseudo-linear transcript when an isoform quantification is used that is based on
pseudo-alignments. Additional padding sequence of pseudo-random nucleotides is added
for adjustment of effective length(leff) equal to one insert( aka fragment) length(lfragment).
Reproduced from Stefanov et al. (2022)

This section is a copy of the GitHub page of CYCLeR.

3.4.1 Working with CYCLeR

CYCLeR is a pipeline for reconstruction of circRNA transcripts
from RNA-seq data and their subsequent quantification. The
algorithm relies on comparison between control total RNA-seq
samples and circRNA enriched samples to identify circRNA specific
features. Then the selected circRNA features are used to infer the
transcripts through a graph-based algorithm. Once the predicted
transcript set is assembled, the transcript abundances are estimated
through an EM algorithm with kallisto. CYCLeR takes as an
input BAM files and back-splice junction (BSJ) files and outputs
transcript infomation in different formats, including a FASTA output
for abundance estimation.
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3.4.1.1 Installation of CYCLeR

3.4.1.1.1 Command line tools needed

The computation steps prior and post CYCLeR run are most
efficiently run on HPC. It is very likely that any HPC in biological
institute already has most of those tools installed. Just in case, a
Docker image containing all the tools is provided. NOTE: prior to
running Docker image, make sure that *Docker is indeed installed
and working: https://docs.docker.com/get-started/

• STAR - https://github.com/alexdobin/STAR
• samtools -
https://sourceforge.net/projects/samtools/files/samtools/

• kallisto - http://pachterlab.github.io/kallisto/download
• bwa (needed for CIRI2) -
http://bio-bwa.sourceforge.net/bwa.shtml

• CIRI2 - https://sourceforge.net/projects/ciri/files/CIRI2/
• CIRCexplorer2 -
https://circexplorer2.readthedocs.io/en/latest/

3.4.1.1.2 Docker image with all command line tools

sudo docker pull stiv1n/cycler.prerequisites

3.4.1.1.3 R test run installation

For a test run, I suggest using a Docker container. There, all test
input and all dependencies are provided. TheDocker use requires you
to mount a volume - a working directory (local dir) where the output
and input would be stored. This container uses RStudio server and
required login. In this case, the username is rstudio the password is
guest. Open a browser and type localhost:8787.

sudo docker pull stiv1n/cycler

sudo docker run --rm -ti -e PASSWORD=guest \

-v <local_dir>:/usr/workdir -p 8787:8787 stiv1n/cycler

3.4.1.2 Full documentation

For more information on installation, pre-processing and core tool run
please see the vignette1 and the manual2.

1https://raw.githubusercontent.com/stiv1n/CYCLeR/main/CYCLeR workflow.pdf
2https://raw.githubusercontent.com/stiv1n/CYCLeR/main/CYCLeR.pdf
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3.4.1.3 CYCLeR

To test the tool, use the R script3 provided and just run it in the
RStudio server.

3.4.1.4 Quantification

The final step of the CYCLeR pipeline is running kallisto with the
newly assembled transcriptome.

sudo docker run \

-v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

kallisto index -i kall_index -k 31 for_kallisto.fa

sudo docker run \

-v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

kallisto quant -i kall_index \

-o ./ <sample_name>_1.fq <sample_name>_2.fq

3.5 Benchmark design

At the time of writing the thesis, there is no tool that has the exact
same functionality as CYCLeR. The differences between the main
competitor tools are described in detail in Table 3.5. Therefore, I
needed to benchmark the assembly and quantification of CYCLeR
separately. The first step of the CYCLeR pipeline is the assembly of
the full-length circular isoforms. The tools that perform such task
are grouped into class IV. In principle, CIRCexplorer 2 from class II
can also be included in this benchmark, since it produces potential
transcripts derived from all possible combinations of predicted AS
events [52].
The second part of the benchmark that focuses on circRNA
abundance estimation is more challenging. The CYCLeR pipeline
performs the simultaneous quantification of linear and circular
transcripts. In contrast, there are multiple alternative approaches
taken when designing the tools described in Table 3.5. Almost all of
the tools in the benchmark focus only on the quantification of
circRNAs. Among the tools in the benchmark, the only tool except
CYCLeR, that performs simultaneous quantification of linear and
circular transcripts is sailfish-cir. sailfish-cir, however, does not

3https://raw.githubusercontent.com/stiv1n/CYCLeR/main/docker test.R
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perform novel isoform assembly. The rest of the quantification
strategies, described in Table 3.5, calculate the abundance based on
the reads mapped to the BSJs. From those tools, only CIRI-full
provides complete isoform abundance information. This forced me to
perform multiple separate quantification benchmarks, where the
primary focus is the advantage of the general strategy that CYCLeR
uses, as opposed to highlighting performance statistics with a single
unified benchmark. The parameters used to run the tools are
summarised in Figure 7.6 and correspond to the suggested
parameters from the corresponding manuals. Information on
reference genomes and annotations can be found in Table 7.1.

3.5.1 Benchmark with simulated data

It is common practice to benchmark tools for transcriptome
assembly and quantification via a set of dedicated simulated data.
The optimal input for CYCLeR is an RNA-seq dataset that
combines ribo-depleted RNA and circRNA-enriched libraries. The
circRNA feature detection module performs optimally with
replicates. Such dataset also fits the requirements of
CIRCexplorer 2. Class IV methods benefit from long library inserts
with 250 bases sequenced on both ends. As discussed in Section
2.3.2.2, rolling-circle amplification is an issue for RNA-seq libraries.
It should be noted that the CIRI-full algorithm is designed to
handle rolling circle cDNA product, but the tool can also perform
well with a library generated through RNA fragmentation. To avoid
unpredictable issues related to rolling-circle amplification, I decided
to focus the benchmark solely on library preparation involving RNA
fragmentation. To best fit all requirements of the tool, I simulated
two types of RNA-seq library: one library with a median fragment
length of a 280 bp and 75 bp sequencing and one library with a
median fragment length of 500 bp and 250 bp sequencing. From
both library fragment setups, I have simulated the full set of required
libraries; details in Section 3.2.1, as well as Tables 3.2, 3.3 and 3.4
and Figures 3.2 and 3.3. I employed CYCLeR, CIRCexplorer2 and
CIRI-full on both types of simulated data sets with parameters set
suggested in their respective user manuals. Note that I do not
include sailfish-cir in this benchmarking due to its inability to
identify new transcripts. Downstream steps of an analysis, such as
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Software CircRNA feature
selection

De novo feature
identification

Transcript
reconstruction

Transcript
quantification

Flexibility*

sailfish-cir exons within circRNA
boundaries selected
based on known linear
annotation

— available linear
annotation is
used to infer AS

EM
quantification
based created
pseudo-linear
reference

yes

CIRIquant — FSJ within circRNA
boundaries selected
based on HISAT [126]
mapping and
StringTie [48]
assembly of circRNA
enriched libraries

— fitting circRNA
levels to
a gaussian
mixture model,
combining
circRNA
enriched and
total RNA-seq
data

yes

CircAST — exon boundaries
detected based on
splice junctions derived
from Tophat2 [33]
mapping

minimum set of
paths between
BSJs that
include all
splice junctions

EM algorithm
based on
adjusted
fragment length
distribution

yes

CIRC-
explorer
suite

comparison between
total and circle
enriched RNA-seq
libraries

RABT assembly
with Cufflinks [47]
( StringTie [48]
in latter versions),
based on TopHat2 (
HISAT [126]) mapping

statistical test
to determine
AS events and
reconstruct
all potential
isoforms

CLEAR
[118] add-on
quantification
of circRNA as
a ratio based
on the levels
of the most
predominant
equivalent linear
transcript

no

CIRI suite exon selection based of
pair-end reads

internal Perl script
detecting junctions
and retained introns
from BWA [35]
mapping

AS events
are detected
with statistical
test based on
difference of
coverage between
exons

transcript
quantification
though iterative
optimisation of
exon abundances
within a pre-
constructed
splice graph

no

CYCLeR comparison between
total and circle
enriched RNA-
seq libraries with
DEXSeq [46] package

feature detection
through SGSeq [120]
package based on
STAR [34] mapping

transcript
reconstruction
using a greedy
algorithm on
splice graph

EM
quantification
based created
pseudo-linear
reference

yes

Table 3.5: Overview of relevant circRNA transcript reconstruction and
quantification tools. Abbreviations used: AS - alternative splicing, BSJ -back-splice
junction, EM - expectation maximisation; * indicates that the tool is fully compatible with
various BSJ identification tools. Reproduced from Stefanov et al. (2022)

quantification, rely on prior knowledge of the isoform sequences.
Consequently, both sensitivity and precision of the assembly are
equally important for a robust analytical scheme. To emphasise that
CYCLeR provides a good balance between those two measures, I also
calculate the F-score - the harmonic mean of the sensitivity and
precision. Sensitivity, precision, and F score are calculated in the
usual manner [52]:

Sensitivity =
# of correctly predicted transcripts

# of all simulated transcripts
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Precision =
# of correctly predicted transcripts

# of all predicted transcripts

F -score = 2 · Sensitivity · Precision

Sensitivity + Precision

Among the tools involved in the benchmark, only CIRI-full has
an algorithm for quantification of different circRNA isoforms. The
benchmark criterion is calculated as Pearson correlation product based
on the estimated values of correctly assembled transcripts. Note that
the calculations differ with regard to the difference in the nature of
the output.
For CYCLeR calculation is done as follows:

corr(Assigned reads per transcript,

Simulated reads per transcript)

and CIRI-full as:

corr(Assigned BSJ reads per transcript,

Simulated number of transcript copies)

3.5.2 Benchmark with real data

3.5.2.1 Benchmark with Nanopore data

As stated in Section 2.3.4.2, full-length circRNA isoforms can be
detected by using long-read sequencing. However, such approaches
come with known and unknown biases. Furthermore, circRNAs
enrichment for such protocols is far superior to what is common for
RNA-seq libraries. Therefore, results from such protocols cannot
serve as a golden standard for a benchmark of tools working with
RNA-seq. Nonetheless, isoforms recovered from long-read studies can
serve as a partial verification of the assembly of short-read data.
Considering this, the set of experiments used in the CIRI-long [43]
publication provides suitable data for a benchmark supplying
matching RNA-seq and Nanopore experiments, fitting the
requirements of all tools. I compared the outputs of CYCLeR
CIRI-full and CIRCexplorer2 in the context of the results from
CIRI-long.
Various tools come with distinct default thresholds and parameters
for assembly, and these may not be well-suited for the high
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sequencing depth of this study. In order to standardize the assembly
parameters across the tools, I applied a threshold that considers only
circRNAs with a minimum of five back-splice junction
(BSJ)-spanning reads. [52].

3.5.2.2 Benchmark with D. melanogaster data

I wanted to showcase the advantage of transcript assembly and EM
abundance estimation for exploratory analysis of real data. However,
CYCLeR, among other tools, requires circRNA-enriched library to
function well. Yet, there has been no directed effort to create a large
database of circRNA-enriched libraries. Nevertheless, this gave me
an opportunity to test the limits of CYCLeR in a study where
circRNA-enriched libraries are available for only a few key time
points. I selected D. melanogaster as a model organism for this
benchmark due to the availability of RNase R treated samples from
S2 cell line (derived from late stage embryo), early embryo and
mature fly head (GSE69212, GSE55872) [9, 127]. I used CYCLeR to
assemble circRNA transcripts from those data points and merged all,
together with linear annotation, into a unified reference. Previously,
the Lai lab performed an exploratory study on 103 D. melanogaster
samples using a tool from class I [37]. I performed an analogous
study comparing the results of CYCLeR to the results of
representative methods of class I and class III.
The BSJ identification module of CIRCexplorer 2 has been shown to
outperform the majority of the tools in class I [119], hence, I selected
it as a representative. The only representative of class III that can
perform well without a dedicated circRNA enriched library is
sailfish-cir, leaving it the only choice for this comparative study. As
class IV methods require circRNA-enriched libraries for optimal
performance, they are not part of this study.
I normalise BSJ counts from CIRCexplorer 2 as
counts-per-billion (CPB) and convert abundance of CYCLeR and
sailfish-cir to RPKM. I perform variance-stabilisation with the
DESeq2 package, and use the resulting values to calculate
Spearman’s rank correlation calculation to produce an adjacency
(similarity) matrix. I used the adjacency matrix as an input for
topological overlap matrix calculation based on the WGCNA
package [64], without transforming it with an adjacency function.
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3.5.2.3 Benchmark with qPCR

qPCR with primers converging on the BSJ is a useful tool for a
rough estimate of the amount of certain circRNA species; specifically
for mono- and diexonic circRNAs. The downside of such
measurement is that it does not give any information about the
alternative splicing of the transcripts sharing a BSJ. Furthermore,
qPCR is arguably more accurate quantity measurement than
abundance estimation based on levels of the transcript in an
RNA-seq library, due to the fact that the full-length transcript is
heavily influenced by sequencing biases; mainly GC-bias. As a
consequence, benchmark with qPCR theoretically benefits tools of
class I and class IIIa which focus on the BSJ read coverage and lack
the ability to detect alternative splicing isoform mapping to the same
BSJ. The tools from class IIIa perform adjustments based on the
levels of linear transcripts, using the FSJs that circular and linear
transcripts share as a reference point. This strategy is the most
robust when a circRNA has just one FSJ. Thus, the values from
publicly available benchmarks focus only on circRNAs with two
exons.
I performed a comparative study using the data from [118]. That
includes PA1 cell line libraries from the datasets GSE75733 and
GSE73325 [50, 128, 118] and use the qPCR values reported in [118].
I omitted the circRNA cases with reported AS, because there is no
practical way to match the values of CYCLeR to the qPCR values.
The values are calculated as Pearson correlation product based on
qPCR and CYCLeR abundance estimate averaged between two
PA1 replicates. For comparison, the values reported in [118] are
used. CIRIquant is not included in this comparison, due to its
inability to analyse single-end RNA-seq data.
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3.6 Results

3.6.1 CircRNA transcript assembly from simulated data

The tool CircAST consistently failed to conclude computations due
to virtual memory issues, despite being provided with up to 400 GB
RAM. This persistent issue compelled me to exclude CircAST from
the benchmark.As mentioned earlier, CIRI-full requires a circRNA-
enriched library for optimal use; therefore, only the results from such
a library are shown in the benchmark. I merged the data from two
replicates into a single output for each tool. As explained in Section
3.2.2, the results are compared to two reference sets with different
complexity, referred to as reference set and high-complexity reference
set. We can see the sensitivity and precision and F-score plot based
on the reference set in Figure 3.8 and the corresponding results of
the high complexity set in Figure 3.9. For both reference sets and
for both RNA-seq read lengths, CYCLeR clearly outperforms over the
competition and provides good balance across a variety of accuracy
evaluations.

3.6.1.1 CIRI-full results

The most straightforward results to interpret are those from
CIRI-full. In Figure 3.8, we can observe that CIRI-full achieves
relatively high precision, but its sensitivity is limited. Such an
outcome is entirely predictable, considering that by design, the
algorithm outputs the full sequence of circRNAs only in cases when
putative exons are covered by reads spanning the BSJ. This strategy
imposes a limitation on the algorithm based on the insert size of the
library.
For the 2x75 bp dataset, CIRI-full recovers mainly the sequences of
loci with a single circRNA isoform. Given that such loci have very
low complexity, CIRI-full has deceptively high precision for the 2x75
bp dataset. This deceptiveness translates to the high complexity
benchmark, see Figure 3.9, where CIRI-full manages to maintain an
acceptable precision value for the 2x75 bp dataset.
The 2x250 bp datasets show the actual capabilities of CIRI-full. The
sensitivity increases as the library read length and insert size are
optimized for the algorithm. However, the precision drops due to the
increased complexity of the alternative splicing landscape typical for
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longer circRNAs. As a conclusion from the results described above,
CIRI-full is incapable of handling long circRNAs.

3.6.1.2 CIRCexplorer2 results

The primary purpose of CIRCexplorer2 is the detection AS of
circRNAs and providing potential transcript sequences as an
additional output as a combination of the detected AS events per
BSJ. While this approach leads to high sensitivity, the precision is
low, as a result of unrestricted AS event combinations. Since the
feature selection of CIRCexplorer2 is quite straightforward, it also
benefits from an increase in read length similar to CIRI-full. The
permissive filtering of transcriptomic features allows CIRCexplorer2
to outperform the competing tools in sensitivity in the high
complexity benchmark. Nevertheless, the precision and
correspondingly the F-score in both high and low complexity
benchmarks indicate that CIRCexplorer2 is an unreliable tool to use
for circRNA assembly.

3.6.1.3 CYCLeR results

The F-score in Figure 3.8 shows an overwhelming advantage of
CYCLeR to CIRI-full and CIRCexplorer2. The sensitivity
measures for CYCLeR between the 2x250bp and the 2x75bp datasets
can be considered unusual. Tools developed for transcriptome
analysis typically exhibit improved performance with longer read
lengths. However, the normalisation and the specific the effective
length adjustment of the feature quantification in CYCLeR is made
in a way that benefits reads that span a single FSJ. Since 250 bp
reads often map to multiple FSJ, the effective length adjustment is
needlessly overcompensating.
CYCLeR excels in the sensitivity measure for the 2x75 libraries,
while CIRCexplorer2 holds a slight advantage for the 2x250
libraries. However, the substantial superiority of CYCLeR based on
precision unquestionably establishes it as the overall superior tool.

3.6.1.4 Comments

These results shown in Figures 3.8 and 3.9 can be explained by two
key features that give CYCLeR an advantage—transcript feature
selection and the graph algorithm. The biggest advantage of
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Figure 3.8: Comparative benchmarking of CYCLeR and comparable tools.
Bar plot of sensitivity precision and F-score of CYCLeR and different existing tools
based on the simulated reference dataset. The superior F-score for CYCLeR shows a
good balance between sensitivity and precision. CYCLeR outperforms CIRI-full on all
metrics. CIRCexplorer2 matches the sensitivity of CYCLeR, but the number of false
positive assemblies shown by the precision measure makes CIRCexplorer2 an unreliable
choice. It is important to note that CYCLeR output is only marginally affected by the
library read length. Reproduced from Stefanov et al. (2022)

CYCLeR can be attributed to the robust selection of transcript
features. The key feature of this is the use of replicate data and the
statistical model of DEXSeq to filter out exons and junctions that do
not participate in circRNAs. That way, CYCLeR avoids the
obstruction caused by residual linear RNAs. As a consequence,
CYCLeR can consistently outperform the competition in cases of low
coverage loci and loci with unannotated circRNA transcript features.
CIRCexplorer2 (using Cufflinks/ StringTie) and CIRI-full (using
customized scripts) do not have as secure a way to filter features
belonging to linear RNA, forcing them to either rely heavily on
annotation or focus only on features with high read coverage. An
example of this can be seen in Figure 3.10. The advantage of
CYCLeR in feature selection can also be attributed to the increased
starting set of BSJs, since CYCLeR uses a combination of class I
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Figure 3.9: Benchmark with the High complexity dataset. This barplot depicts the
sensitivity, precision and F-score of the assembled transcripts by CYCLeR and comparable
tools in the benchmark for reference set of simulated data. The advantages of CYCLeR
compared to other tools are apparent. The superior F-score of CYCLeR shows a good
balance between sensitivity and precision. CYCLeR outperforms CIRI-full on all metrics.
CIRCexplorer2 has an output with higher sensitivity than CYCLeR, but the number of false
positive assemblies shown by the precision measure makes CIRCexplorer2 an unreliable
choice. Note that CYCLeR is only minimally affected by the library difference in library
read length. Reproduced from Stefanov et al. (2022)

tools as input. Another source of high precision for CYCLeR is the
graph algorithm that is custom-made for the assembly of the
circRNA transcript. The parameters hard-coded in the algorithm
ensure a secure step-wise reconstruction of the transcripts, benefiting
precision over sensitivity. This explains the overall high F-score
across all measurements.

3.6.2 CircRNA transcript quantification from simulated
data

Quantification of circRNA isoforms is a problem mainly in the cases
of multiple overlapping isoforms. Therefore, the quantification
benchmark focuses only on the high-complexity data set. As
explained earlier, only class IV tools can participate in this
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Figure 3.10: Comparison of the assembly of BSJ locus chr2L:14,983,950-
14,992,506 in D. melanogaster. The Sashimi plots show the STAR mapping of
simualted data for the exons and FSJ encompassed by the BSJ sites of the circle in
chr2L:14,983,950-14,992,506. The plot shows comparison between total ribo-depleted
RNA-seq simulation and circRNA enriched RNA-seq. The sequence mode used is 2 x 250
(leading to less observable biases that in Figure S1). This example was selected to show
the advantage of CYCLeR in handling unannotated exons. While all tools can handle
identification of one of the unannotated exons, the second exon is accounted for properly
only by CYCLeR. We observe that the CIRCexplorer2 assembly is biased by the provided
linear annotation. The CIRI-full assembly disregards one of the FSJs and assembles an
erroneous full exon. CYCLeR not only correctly identifies all exons and splice junctions,
bus also manages to properly manage the AS event and reconstructs the correct isoforms.
Reproduced from Stefanov et al. (2022)

benchmark, as all other tools quantify circRNA with a disregard for
alternative isoforms.

In Table 3.6 we can see the correlation of estimated values for
circRNA transcripts levels versus simulated quantities in both
ribo-depleted and circRNA-enriched data.

It is important to reiterate that CYCLeR is the only existing tool
that simultaneously quantifies both known linear and newly
assembled circular transcripts. Note that CIRI-vis [129] (the
quantification module of the CIRI-suite) is not affected by the
presence of linear transcripts in the same way as CYCLeR. CIRI-vis
provides levels of the alternatively spliced circRNAs as a ratio of the
BSJ-spanning reads assigned to each isoform. Therefore, linear RNA
affects the results from CIRI-vis only at the assembly level.

74



3.6. RESULTS CHAPTER 3. CYCLER

For the 2X75 data the correlation statistics of CIRI-vis and
CYCLeR are equivalent. However, we need to account for the low
sensitivity of CIRI-full and elaborate that complex cases are
therefore never considered by this tool. Therefore, CYCLeR can be
regarded as an outperformer. The advantage of CYCLeR is more
noticeable for the 2X250 data. While both tools show improved
performance, CYCLeR is significantly superior. The difference
should not be attributed solely to the quantification strategy, but
also to the differences in reference provided by the assembly step.
Specifically, correct quantification is hindered by false positive
transcripts.

Ribo-depleted CircRNA enriched
Tool Replicate1 Replicate2 Replicate1 Replicate2 Type

CYCLeR 0.57 0.64 0.66 0.66 2 x 75
CIRI-vis 0.54 0.64 0.66 0.67 2 x 75

CYCLeR 0.84 0.85 0.87 0.88 2 x 250
CIRI-vis 0.67 0.66 0.76 0.74 2 x 250

Table 3.6: Correlation of predicted versus simulated circRNA transcript
counts. Correlation of predicted transcript abundances versus simulated. Correlations
are based only on the values of correctly identified transcripts by both tools. The values are
based on correlations for the transcripts of the high complexity set. Reproduced from
Stefanov et al. (2022)

3.6.3 Comparative study with Long-read data

The CIRI-long protocol is capable of detecting circRNA transcripts
beyond the capabilities of standard circRNA enrichment strategies
used in the preparation of RNA-seq [43]. This makes CIRI-long a
poor benchmark for false negative transcript reconstructions, due to
its high sensitivity for low-abundance circRNAs. Thus, CIRI-long data
cannot be used as a reference for a benchmark in the same capacity as
a simulated data set. There are also some known biases of the CIRI-
long strategy. It is important to note that ∼50% of the BSJs detected
in the Illumina data are not detected in the CIRI-long data [43]. My
assumption is that the 1000 nt fragment size selection limit of the
CIRI-long protocol leads to a loss of long-length circRNAs. This also
makes CIRI-long results a bad estimate for true positive transcript
reconstructions.
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The most meaningful statistical analysis that can be conducted is
the assessment of prediction overlaps between the Illumina-based
tools (CYCLeR, CIRI-full, CIRCexplorer2) and CIRI-long. To
enhance the presentability of the statistics, the following terms are
introduced:[52]:

1. Verified Isoforms: Isoforms confirmed by any Illumina-based
tool and CIRI-long data.

2. Shared Isoforms Verified isoforms predicted by multiple
Illumina-based tools.

3. Unique Isoforms: Verified isoforms predicted by a single
Illumina-based tool.

4. Unverified Isoforms: Isoforms predicted by Illumina-based
tools but lacking support from CIRI-long data.

CIRI-full is constrained by the maximum recoverable transcript
length, a limitation coincidentally similar to CIRI-long. To ensure a
fair and unified benchmark, I adjust all results to consider CIRI-full
length limitation. The modified results are presented in Figure 3.11,
with complete results available in Figure 3.13.

In Figures 3.11 A and B, we can see the comparison of the
adjusted results. It is important to note that all three
RNA-seq-based tools identify a set of unique transcripts, verified by
CIRI-long. A key observation is that the output of CIRCexplorer2
contains an inordinate number of isoforms compared to CYCLeRor
CIRI-full. While CIRCexplorer2 provides the highest number of
verified isoforms, the number of unverified isoforms from
CIRCexplorer2 is disproportionately high. CYCLeR has both higher
number of verified and unverified transcripts than CIRI-full.
To fully understand the results, we must take into account the
number of BSJs that a tool uses for the assembly shown in Figure
3.12. The exceptionally high number of transcripts reconstructed by
CIRCexplorer2 cannot be explained by the input of BSJ alone. In
fact, CIRCexplorer2 has the lowest number of unique BSJs. Even
when we take into account the expected biases of the Nanopore
approach, the number of transcripts in the output of CIRCexplorer2
is exorbitant. These results are in perfect agreement with the
benchmark on simulated data and support the notion that
CIRCexplorer2 produces a high number of false positive transcripts.
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Figure 3.11: Comparative study with CIRI-long data. (A) and (B) show the
results of the comparison between Illumina-based methods and a Nanopore-based method.
(A) shows a Venn diagram of the length adjusted (<2000) set of assembled transcripts
for each tool. (B) is a bar graph representation of the same data, but with emphasis on
overlapping regions from the Venn diagram. In figure B the assembled transcripts for each
Illumina-based tool are divided into verified (by CIRI-long) or unverified. The latter are
further subdivided into unique - the transcripts that are shared only by one Illumina-based
tool and CIRI-long, and shared - the transcripts that are shared by two or more Illumina-
based tools and CIRI-long. CIRI-full has the lowest transcript count in every category.
This is due to the length limit of its underlying assembly based on the library insert
size. When comparing CIRCexplorer2 and CYCLeR, we notice that CIRCexplorer2 has
only ∼100 more verified transcripts, while simultaneously having ∼3000 more unverified
transcripts. Based on the information provided by the simulated benchmark, it is a safe
assumption that the extra isoforms produces by CIRCexplorer2 are mainly erroneous
assemblies. Reproduced from Stefanov et al. (2022)

Figure 3.11 also shows that CYCLeR has more verified transcript
predictions than CIRI-full. Additionally, both tools have a ratio of
∼60% unverified isoforms, indicating comparable precision of
CYCLeR and CIRI-full . It is also important to note that the
number of unique BSJs for CIRI-full and CYCLeR is similar,
indicating that the differences in the assembly are attributed to the
algorithm and not the starting BSJ set. The combination of these
results points to an advantage of CYCLeRover CIRI-full, most likely
a consequence of the ability of CYCLeRto handle longer transcripts.

The superiority of CYCLeR over CIRCexplorer2 and CIRI-full is
shown in the full results (without length adjustment), shown in Figure
3.13. An example of the advantage of CYCLeR can be seen in Figure
3.14, from which it follows that CIRI-full cannot match the recall of
CYCLeR and CIRCexplorer2, due to the limitation of the length of
the transcript. Furthermore, CIRCexplorer2 has a problem with false
positive assembly of transcripts, leading to low precision. This makes
CYCLeR the only remaining good choice when looking for a tool with
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Figure 3.12: Venn diagram of unique BSJ per tool in the benchmark versus
CIRI-long Nanopore data. The assembly of each tool is dependent of the set of input
BSJs. This plot complements the assembly of the transcript (shown in Figure S17 and
Figure 6 in the manuscript)and sheds light on the differences in prediction. The CIRI-full
and CIRCexplorer2 BSJ that are not part of the CYCLeR output derive from loci that
failed the BSJ enrichment requirement. The BSJs that are unique for CYCLeR are BSJs
identified by CIRI2, which belong to circRNAs longer than the CIRI-full detection limit.
CIRCexplorer2 has unique set of BSJs disproportional to the number of unique transcripts
assembled. Reproduced from Stefanov et al. (2022)
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Figure 3.13: CIRI-long Nanopore benchmark. These figures show the results of the
comparison between Illumina-based methods and an Oxford Nanopore-based method. (A)
shows a Venn diagram of the full set of assembled transcripts for each tool. (B) is a bar
graph representation of the same data, but with emphasis on overlapping regions from the
Venn diagram. On (B), the assembled transcripts for each Illumina-based tool are divided
into verified by CIRI-long or unverified. The latter are further subdivided into unique - the
transcripts that are shared only by one Illumina-based tool and CIRI-long, and shared - the
transcripts that are shared by two or more Illumina-based tools and CIRI-long. CIRI-full
has the lowest transcript count in every category. This is due to the length limit of assembly
based on the library insert size. When comparing CIRCexplorer2 and CYCLeR , we notice
that CIRCexplorer2 has only ∼100 more verified transcripts, while simultaneously having
∼1400 more unverified transcripts. Based on the information provided by the simulated
benchmark, it is safe to conclude that the additional isoforms produced by CIRCexplorer2
are primarily erroneous assemblies. Reproduced from Stefanov et al. (2022)

good balance between precision and recall.
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Figure 3.14: Comparison of the assembly of BSJ locus chr7:7,298,969-
7,299,877 in M. musculus. The Sashimi plots show STAR mapping of the exons
and FSJ encompassed by the BSJ sites of the chr7:7,298,969-7,299,877 circles. The FSJs
further away not participating in circRNAs have been removed for visibility. The plot shows
a comparison between total ribo-depleted RNA-seq and circRNA enriched RNA-seq. The
CIRI-long output serves as a true positive reference. This example was selected to show the
advantage of CYCLeR to handle retained introns. As shown, CIRI-full does not account
for an alternative 5’-splicing as well as the retained intron. CIRCexplorer2 makes an
assembly error as the tool attempts to match the assembly to the given linear annotaion.
The superior feature selection of CYCLeR compared to CIRCexplorer2 is the reason
for avoiding an exclusively linear transcript FSJ, thereby preventing an incorrect isoform
assembly. CYCLeR is the only tool that manages to assemble the isoform containing the
retained intron. Reproduced from Stefanov et al. (2022)

3.6.4 Analysis of D. melanogaster data

The common approach applied in most circRNA studies is to make
inferences based solely on information on the number of reads
spanning the BSJs. An alternative approach is presented by
sailfish-cir, by means of quantification based on a model of putative
circRNA transcript. This comparative study is meant as a

79



3.6. RESULTS CHAPTER 3. CYCLER

proof-of-concept of the workflow of CYCLeR. It tests the idea that
assembly based on only a few key time points is sufficient to provide
better transcript quantification and, therefore, better functional
inference. The difference in quantitative output requires different
normalisation strategies. In the case of CIRCexplorer 2, I applied
CPM, while for sailfish-cir and CYCLeR I used RPKM.
Subsequently, all counts are subjected to variance stabilisation
through the use of the VST method from the DESeq2 package [60].
It is essential to acknowledge the number of overall BSJs per tool
included in this analysis, as detailed in Table 3.7. The results shown
for CIRCexplorer 2 include statistics from all detected BSJ sites. In
the case of sailfish-cir BSJ sites are excluded based on the linear
annotation. CYCLeR processes only the BSJ sites that can be
identified in the matching RNase R data.

BSJs Transcripts
CIRCexplorer2 12554 -
sailfish-cir 11117 11515
CYCLeR 4371 5659

Table 3.7: D. melanogaster data set: total number of identified transcripts.
Summary of the full number of BSJs and transcripts that have been identified by the
corresponding tools. Reproduced from Stefanov et al. (2022)

The primary focus of this study is to emphasise the need for
quantification of the full transcript, as opposed to focusing solely on
reads mapping to BSJs. As we can see in Figure 3.15 (A), the reads
spanning the BSJ are sufficient to distinguish between the general
cell type and stages of development. When comparing Figures 3.15
(A) and (B), we see that the output of CYCLeR does not result in
the loss of functional information, even with a lower number of
annotated BSJs. Thus, a finer comparison between the qualification
of CIRCexplorer2 and CYCLeR is required. Figures 3.15 (C) and
(D) focus only on samples coming from D. melanogaster embryo.
The results are presented as a dendrogram, where we can see a clear
difference in the pattern of sample similarity. The similarity of the
samples in the CYCLeR dendrogram matches the expected similarity
between the developmental stages. The results of CYCLeR are more
biologically relevant, as there we can see a clear separation of the
circRNA expression pattern between samples of pre-14th hour and
past-14th hour of development. This change is related to the
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Figure 3.15: Comparison of CIRCexplorer2 and CYCLeR for the D.
melanogaster transcriptome sets. The comparison is made based exclusively on
circRNA abundance estimations. (A) and (B) show the UMAP dimensional scaling of
the abundances inferred by CIRCexplorer2’s BSJ detection module and CYCLeR for
all 103 samples of the Lai dataset. (C) ( CIRCexplorer2) and (D) (CYCLeR) show
a dendrogram of the subset of data corresponding to embryo stages which are based on
between sample distance calculations. The scale of the dendrograms represents the samples’
distances. Reproduced from Stefanov et al. (2022)

expression of the mbl gene, which is a splicing factor with major
effect on the expression pattern of circRNAs in D. melanogaster [9].
Equivalent graphs for the results of sailfish-cir can be found in
Figure 7.1.

The samples of embryo stages are collected in different batches,
which shows an advantage of CYCLeR. In Figure 3.16, we can see
the UMAP scaling only of the results of the embryo samples, as well
as annotation of the batches based on SRA accession numbers. We
can observe notable differences between results from CYCLeR and
the competitive tools. When using CYCLeR for quantification, it is
possible to identify a gradient in the data that reproduces the known
developmental stages. As a result, the outliers in the data become
easily distinguishable. The results from CYCLeR are undeniably
more biologically relevant than results based on reads spanning
BSJs. This difference most likely stems from the fact that replicates
have more stable variance when quantified with CYCLeR, shown in
Figure 3.17. Comparison with sailfish-cir in Figure 3.16 allows us to
highlight the advantage of the de novo assembly of the circRNA
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Figure 3.16: Batch effect in Lai 2014 dataset. (A) shows the BSJ-spanning
reads count per samples in counts per billion (CPB). (B), (C) and (D) show the UMAP
dimensional scaling of the abundances estimated by CIRCexplorer2 BSJ detection module,
sailfish-cir and CYCLeR respectively. I have annotated the experimental batches based on
SRA accession numbers and colour-coded them. Only the CYCLeR results reflect the
underlying biological trend in the distribution of the sample points indicated by the dotted
curve. The trend is not perfect, due to the influence of strong experimental biases, but
sufficient to reliably identify outliers (marked with straight arrow) and improve downstream
analyses. Reproduced from Stefanov et al. (2022)

transcriptome and its influence on the quantification of the full
isoform. In summary, the similarity measurements between the
sample transcript abundances that are estimated with CYCLeR are
significantly more biologically meaningful, emphasising that the
correct assembly of isoforms and quantification based on the full
transcript sequence is key to correct clustering of samples.

3.6.5 Benchmark with respect to qPCR values

As mentioned in 3.5.2.3, using qPCR values for full isoform assembly
evaluation is challenging. The issue is exacerbated by the fact that
publicly available results focus solely on two-exon circRNAs. The
only dataset that fits the requirements of our study is the data used
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(A)

(B)

Figure 3.17: Variance stability in third instar larvae, wandering stage, CNS
samples. The median of the box plots of the normalised CYCLeR (B) counts is more
stable than the normalised CIRCexplorer2 BSJ counts(A). This shows the higher variance
stability between replicates, when quantifying with CYCLeR. The outputs are filtered to
contain results from BSJ sites shared between the tools. Reproduced from Stefanov et
al. (2022)

in [118]. The study focuses on 13 BSJs, however, the BSJ locus of
CAMSAP1 (Chr9:135881632-135883078) is known to have AS [50].
Additionally, CYCLeR identified alternative isoforms for the BSJ
locus CORO1C (Chr12:108652271-108654410). This immediately
highlights an issue with the currently available circRNA
quantification tools – their inability to output results from circRNAs
with alternative isoform. I am forced to eliminate results from those
two BSJs from the study
When comparing the results from CYCLeR and the results of the
quantification module of the CIRCexplorer pipeline ( CLEAR), we
can see only a minor discrepancy, leading to a correlation of 0.95. I
evaluated two potential sources of the discrepancy – transcript
length and GC-content difference between the full transcript
sequence and the BSJ region. In Figure 3.18 (A) and (B), we see
that the outliers of data match the divergence in GC-content, while
transcript length seems to have no contribution to the difference.
The focus on the BSJ region, gives CLEAR an advantage over
CYCLeR when comparing with qPCR values as seen in Figure 3.18
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(C) and (D) – 0.75 vs 0.67. Given that the region assessed by
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Figure 3.18: Evaluation of the difference between CLEAR and CYCLeR. The
output of CYCLeR and CLEAR are in very good agreement as shown in (A) and (B).
The most likely sources of difference is the length of transcript (A) and GC-content (B).
The comparison between the off-diagonal points in (A) and (B) indicates that the source
of the difference is most likely the difference in GC content. The fact that CLEAR focuses
only on the region around the BSJ makes the GC-content affecting CLEAR output closer
to the GC-content affecting qPCR results. This is supported by (C) and (D) showing a
comparison between the GC-content between the evaluated locus of the qPCR product to
the GC-content of the CYCLeR transcript and 200 nt region around the BSJ respectively.
The difference in GC-content is higher for the locus evaluated by CYCLeR and the off-
diagonal points account for the difference between CYCLeR abundance estimation and
qPCR results. Naturally, the differences between qPCR results and abundance estimation
cannot be explained by those plots, as the difference between experimental procedures is
influenced by a numerous biases, yet these plots at least manage to explain the better
agreement between CLEAR and qPCR data.

CLEAR significantly overlaps with the region targeted by the qPCR
primers, the GC-content difference is mitigated. It is important to
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note that several experimental biases can lead to disparities between
estimated qPCR and RNA-seq abundances, making it challenging for
either tool to precisely align with qPCR results. However, the
reduced performance of CYCLeR can be attributed to the fact that
CYCLeR quantification is particularly sensitive to the differences in
GC-content between PCR target region and full transcript.
The values used for the correlation calculation are summarised in
Figure 7.5.

3.6.6 Consistency of assembly

To claim that CYCLeR provides robust output, it is necessary to
showcase the consistent assembly between different samples of the
same type. There are two important statistics that need to be
evaluated: the consistency of assembly between replicates; and the
consistency of assembly between samples that have undergone
different enrichment procedures.
The previously analyzed D. melanogaster dataset has multiple
libraries with replicates, as well as data from different generations.
The publicly available data sets that provide libraries from the same
source and with different types of circRNA enrichment are very
limited. Specifically, just a single pair of libraries suits my needs.
The PA1 cell line dataset, used in the quantification benchmark, has
libraries with polyA-depletion treatment and a combination of
polyA-depletion and RNase R treatments.
In Table 3.8, we can see a summary of the overlaps of assembled
transcripts per sample. Biological replicates differ only by ∼10%. As
expected, when comparing the transcripts between different
generations, the difference increases. It is more challenging to
compare the reconstruction based on libraries that have undergone
different treatments for circRNA enrichment. Naturally, two types of
depletion steps increase the number of detected BSJs compared to a
single type of depletion – ∼8000 versus ∼34 500. To avoid any
conflict arising from the difference in the starting BSJs set, I limited
the starting set of BSJs to the BSJs derived from the total RNA-seq
of the PA1 cell line without circRNA enrichment (∼2 500). This is a
logical filter, because qualification is performed only on the
untreated samples. The difference between samples with different
treatments is close to the difference between biological replicates (see
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Table 3.8). Naturally, this is insufficient information to draw general
conclusions, but the results indicate that a single type of circRNA
enrichment treatment is sufficient for practical purposes.
A summary of the transcript length and exon number of the
predicted transcripts can be seen in Figure 7.4.

Sample A & Sample B A\B A∩B B\A

D. melanogaster(Head) RNase R WT19: Rep1 & Rep2 311 3017 298
D. melanogaster(Head) RNase R WT28: Rep1 & Rep2 199 2343 196
D. melanogaster(Head) RNase R: WT19 & WT28 1889 1737 1001
PA1 cell line: PolyA(-) & PolyA(-)/RNase R 1003 6075 761

Table 3.8: Summary of transcript assembly between different transcriptome
samples. Pair-wise set difference and set overlaps between samples. Column 1 provides
information on the 2 samples in the pair-wise comparison of reconstructed transcripts,
columns 2 and 4 specify information about the number of different transcripts between
samples and column 3 contains the number of overlapping transcripts. Reproduced from
Stefanov et al. (2022)

3.7 Discussion

In this chapter, I have demonstrated the design, workflow, and
advantages of the novel tool CYCLeR. After a thorough benchmark
composed of multiple steps, it is very clear that CYCLeR
outperforms the competition with regard to both transcript assembly
and transcript quantification. This conclusion is supported by both
simulated and real data. I separate the simulated in two datasets,
mimicking respectively the standard type of reconstructions
problems as well as more convoluted, rarely occurring cases.
CYCLeR outperforms in assembly and quantification metrics for
both dataset categories. The results from the simulated data are
supplemented by verification based on long-read experiment. The
results of the two studies are in very good agreement and highlight
the major advantages of CYCLeR over the competitive tools.
One key advantage of the CYCLeR assembly module is the robust
feature selection, based on a statistical test for replicates. Although
there is a great overlap between the results of the competitive tools,
the true positive results that are unique to CYCLeR are those that
involve novel transcript features. Although it is commonly disputed
whether most circRNA even have functions, circRNAs that contain
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transcript features that are not present in linear transcripts are
considered prime candidates for further studies. Even if CYCLeR
was not outperforming in all metrics, this feature of the tool alone
would be sufficient to justify its use. Another key advantage of
CYCLeR is the stepwise transcript reconstruction. This algorithm
allows for the high precision of CYCLeR without sacrifice of
sensitivity.
Neither of the two strategies in CYCLeR lead to immaculate results.
Nevertheless, the pipeline design partially compensates for the
reconstruction of false positive transcripts. Unlike competitive tools
that perform quantification and assembly in parallel, CYCLeR
separates the quantification step from the assembly. In fact, the
strategy for quantification in CYCLeR does not rely on mapping of
split reads, making it impervious to common mapping artefacts.
False positives reconstructions, caused by mapping artefacts, will
correspond to negligible relative abundances. Thus, the abundance
estimation can serve as a filter for false positive transcripts. A
comprehensive threshold for such filter is impossible to assign,
because the transcriptomes of different organisms vary greatly
between species in terms of AS occurrence, as well as exon size and
number. Varying library depths also affect the value of a potential
abundance threshold.
CYCLeR does not have explicit limitation on the library depth or
insert size like the tools from class IV. All circRNA-specific analyses
require a matching set of ribo-depleted and circRNA-enriched
libraries. Often the ribo-depleted library is used just for the study of
linear RNA while the circRNA-enriched is used exclusively for
circRNA study. Subsequent merging of the data from experiments
with different biases leads to inconsistencies in the study. CYCLeR
is the only tool that makes full use of the data to perform assembly
and quantification. One could argue that the tools from class IIIa
use the entire data of ribo-depleted and circRNA-enriched libraries
for an adjustment of the circRNA levels. However, the results
produced by CYCLeR have better efficiency in using all data, as
CYCLeR provides a unified output with circular and linear RNA
quantities, without the need for additional adjustments.
A unique requirement for CYCLeR is the need for replicate libraries.
However, I have shown with study of D. melanogaster dataset that
circRNA enrichment of a few time points is sufficient to produce
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valuable results. Using the same dataset, I proved that using
CYCLeR is essential for the correct clustering based on the
quantities of the circRNA transcripts. In fact, the output of
CYCLeR is more convenient to use as it provides combined
abundance estimation of linear and circular transcripts in a format
commonly used for downstream pipelines. This is an important
design feature of CYCLeR that facilitates an inevitable future
transition to single-cell non-coding RNA studies.
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Chapter 4

Identification of functional
circRNA-RNA interactions

This chapter covers the work that the doctoral candidate did, under
the oversight of prof. Irmtraud Meyer (MDC-Berlin), to identify
candidate circRNAs that participate in functional RNA-RNA
interactions related to pluripotency maintenance. This work was
done in collaboration with the experimental lab of Dr. Zsuzsanna
Izsvak (MDC). I conceptualised the study’s experimental design,
aiming to integrate newly generated data with publicly available
datasets. I have determined the protocols and navigated the
parameters to be used to the generation of the RNA-seq libraries. I
had minimal influence over the protocols related to transfection, cell
selection, retinoic acid treatment and nuclear extraction. The novel
RNA-seq data was generated by Dr. Aleksandra Kondrashkina and
Dr. Cristine Römer. Subsequently, I devised and performed all
computational analyses and data visualisation described in the
chapter. At the time of the submission of the thesis, no data has yet
been made publicly available and no results have been published.
Note: The use of ”we” throughout the text refers to the
author-reader collective.

4.1 Insight into the experimental design

4.1.1 RNA-RNA interaction detection issues

RNA-RNA interactions (RRI) are a common away of the organism
to regulate RNA processing. As explained in Section 2.5, the
computational search for RRIs based on transcript sequence can lead
to many false positive results. However, the addition of information
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on evolutionary conservation of the RNA duplex increases the
likelihood of a putative duplex being a true positive [92, 94, 93].
Evolutionary conservation is also a sign that a duplex is functionally
significant. Nevertheless, even with the addition of evolutionary
information, the pure computational search of RRI is unreliable and
needs to be supplemented by experimental data.

4.1.2 Co-expression network

Co-expression networks has been used to identify molecule
interactions for decades [64, 130]. Although the approach usually
focuses on gene co-expression networks and the discovery of novel
protein-protein interactions, the strategy is readily applicable to
transcript co-expression and interactions, see Section 2.4.4.
The underlying assumption when studying co-expression networks is
that genes (or trascripts) that participate in the same functional
pathway are co-regulated. Therefore, transcripts that participate in
functional interaction as a part of a particular biochemical pathway
are likely to be co-expressed. Co-expression network analysis is
based on a calculation of the correlation between relative abundances
of the transcript. As a result, to achieve optimal calculations, an
appropriate number of samples is needed. As a general rule, 12
samples are considered necessary to produce reliable correlation
results. Naturally, samples should have a high variance in transcript
levels to facilitate optimal information gain by correlation.
As I am interested in transcripts that have an effect on pluripotency,
I chose to focus on the differentiation of hESCs. I design my study
with a focus on pluripotency because there is an overabundance of
publicly available datasets that focus on studying different
biochemical mechanism (e.g. transcription factor (TF) binding,
protein-RNA interactions etc.)
My experimental design is based on the time series experiment of
differentiation of the H1ESC cell line induced by treatment with
retinoic acid. Treatment with retinoic acid (RA) forces pluripotent
cells to exit the pluripotent state. When stem cells are derived from
mice, RA treatment leads to a neuronal phenotype of cells [131], in
human ESC the situation is more convoluted [132, 133, 134, 135].
RA treatment forces the hESCs to exit pluripotent state, but does
not commit them to any specific type of differentiation. The addition
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of specific differentiation factors can commit cells to a specific fate
[136, 137]. However, my primary focus are transcripts related to
pluripotency and I do not need the cells to commit to a specific cell
type. In fact, the undefined state is likely to cause more variance of
transcript levels after RA treatment, which is beneficial for
correlation calculations. After the fifth day of treatment, cells start
to show signs of necrosis, and by the seventh day the cell population
decreases significantly. This means that a reasonable time to end the
time-series experiment is on the fifth day. To ensure sufficient
variance between samples, batches of cells are harvested daily.
Replicates of each stage are needed to ensure that the study is not
influenced by outliers. Also, the presence of a replicate for each stage
gives the option to perform a ”rudimentary” differential expression
analysis between stages.
To expand the number of time points, I added another stage to the
experimental design, which I will term HERVH-high cells. HERVH is
a retroviral transposon, and transcripts that result from the
integration of these repetitive elements are known to be specifically
expressed in pluripotent cells [138]. HERVH-high cells are a selected
population of hESC, in which the levels of TF binding to
HERVH/LRT7-derived sequence is higher. Based on a GFP reporter
construct with a LRT7 and HERVH-int sequence, single clones of
hESC cells can be selected and used for growth of a new line.
HERVH-high cells have been shown to exhibit expression patters
with very high similarity to näıve ESC, making them perfect for
studying pluripotency mechanisms [139].
The replicates of the time series experiment are intended to come
from separate batches. By implementing such an approach, despite
samples being replicates, they can have variances that would help
follow-up clustering based on co-expression of transcripts. There is
an additional purely practical advantage – ensuring that the
RNA-seq libraries from the first batch have the parameters that I
require to avoid wasting resources on sub-optimally generated data.

4.1.3 RNA proximity ligation data

4.1.3.1 SPLASH

While co-expression networks indicate potential functional
association between transcripts, they are not a direct proof of

91



4.1. EXPERIMENTAL DESIGN CHAPTER 4. CIRCRNA INTERACTIONS

interaction. For a direct proof of an interaction, a high-throughput
protocol is needed for the examination of in vivo RNA duplexes, see
Section 2.5.3. There is publicly available data that supplement the
design of the time-series experiment. SPLASH is an RNA
cross-linking and proximity ligation protocol capable of the detection
of RNA duplexes in vivo [107]. The details of the experimental
procedure are shown in Figure 4.1. An important feature of the
experimental protocol is the polyA-enrichment procedure that limits
the circRNA RRI search to circRNAs that interact with transcripts
that have a polyA-tail. Furthermore, circRNAs are known to be
more resistant to fragmentation, see Section 2.3.2.2. This means that
we can expect direct duplex detection only from circRNAs with
considerable length.
The proximity ligated fragments are detected as chimeric fragments
in the final SPLASH library. Importantly, non-chimeric reads are not
useless, as they also provide information about occurring RNA
duplexes. The corresponding RNA fragments are enriched by the
RNA duplex selection, therefore, they can be used in enrichment
analyses, see Section 4.4.2.1. In the SPLASH protocol, the
transcripts are fragmented for the sake of precise proximity ligation,
indicating the loci involved in a duplex. However, the small size of
the SPLASH fragment becomes a disadvanatage when attempting to
assign the duplex to a specific isoform, see Figure 4.2. Unless the
chimeric read also spans a splice junction or an exon specific to a
single isoform, it is a near impossible task to definitively assign a
duplex to an isoform. An advantage of the SPLASH data as opposed
to other RNA proximity ligation approaches is the fact that
fragment sizes produced by the experiment are relatively long
(80-120 nt) and have a decent chance of mapping both as a duplex
chimera and a splice junction site.

4.1.3.2 CLIP-seq

The first circRNAs with identified function is circCDR1as. This
circRNA has functions as a potent microRNA sponge. As a turning
point in the study of circRNA, this discovery influences the study of
circRNA to this day. It has become a common practice to test the
potential of any circRNA of interest to be a miRNA sponge. As
explained in Section 2.5.3.2, AGO-CLIP is the optimal
high-throughput approach to detect miRNA-RNA interactions. With
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Figure 4.1: Detailed workflow of the SPLASH protocol The first step of
the standard SPLASH protocol is the intercalation of biotinated psoralen (biopsoralen)
compound in an RNA duplex. The biopsoralen is then crosslinked with 365 nm UV light.
The RNA is fragmented by thermal fragmentation in the presence of Mg ions. The duplexes
with biopsoralen integration are then pulled-down with streptavidin beads. The RNA
strands of the duplexes are treated with T4 PNK to prep the RNA ends for ligation. The 2
strands of the duplex are then ligated. The biopsoralen crosslinking is reversed with 254 nm
UV light treatment. The resulting RNA fragments undergo adapter ligation, circularisation
and reverse transcription. The following fragment undergoes standard RNA-seq library
preparation. Only chimeric reads hold direct information for RNA duplexes. However,
the resulting library has only 1% chimeric reads due to inefficiency of the protocol. An
additional polyA-enrichment step can be added prior to the fragmentation procedure.
Figure adapted from [140], available under CC BY 4.0.

Figure 4.2: Challenges with the use of SPLASH data for a study with a focus
on a specific isoform The mapping of the chimeric read reveals only a small portion
of the sequence of interacting isoforms. Purely from the chimeric read, it is impossible to
know which isoform of gene A interacts with a transcript of gene B.
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my focus on pluripotency, I benefit from publicly available data for
H1ESC AGO2 CLIP-seq [141].

4.1.4 CircRNA enrichemnt

For circRNA assembly, CYCLeR requires pairs of ribo-depleted and
circRNA-enriched RNA-seq libraries. I have shown in Section 3.6.4
that the information from a few key time points is completely
sufficient for the functional analysis of circRNAs. I have selected
H1ESC, H1ESC on day 5 after RA treatment, and HERVH-high cell
as the most relevant time points. Naturally, circRNAs that are
specific for a very particular time point of differentiation will be lost
in my analysis, but as previously mentioned, they are not the
primary focus of my study.

4.1.5 Nuclear enrichment

RNA processing is specific for the nucleus and often occurs
co-transcriptionally. This means that for a circRNA to be involved in
RNA processing, it needs to be at least partially present in the
nucleus. To identify circRNAs enriched in the nucleus, my
experimental design involves nuclear-fraction-specific RNA
sequencing from the steps of untreated H1ESC samples, day5 of RA
treated samples and HERVH-high samples, based on the same logic
used in Section 4.1.4. We conducted a trial experiment to determine
whether there is a necessity to reconstruct circRNAs from a nuclear
fraction and create corresponding circRNA-enriched RNA-seq
libraries. The results showed that the assembly of circRNAs from the
nuclear fraction is not only redundant, but misleading. This is due
to the high level of nascent RNA that mimics intron retention.

4.2 Data collection

4.2.1 RNA-seq library preparation

The key step in this study is transcriptome assembly and
quantification. It is generally advised to prepare RNA-seq libraries
with longer insert size to facilitate transcript reconstruction.
However, due to the increased stability and smaller sizes of the
circRNAs (see Section 2.3.2.2), the RNA-seq libraries for my study
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require more stringent fragmentation conditions. I have determined
the optimal median fragment size of the libraries to be 190
nucleotides, achieved through RNA Mg2+ ion fragmentation.
CYCLeR requires circRNA-enriched libraries as input. In my
experimental design, RNase R enrichment is used as a circRNA
enrichment strategy.
The data was generated by Aleksandra Kondrashkina and Christine
Römer from the lab of Zsuzsanna Izsvák. A summary of the set of
RNA-seq libraries can be seen in Table 4.1.

Sample type Fraction RNase R Treatment
HERVH-high nuclear fraction no
HERVH-high whole cell yes
HERVH-high whole cell no
HERVH-high nuclear fraction no
HERVH-high whole cell yes
HERVH-high whole cell no

ESC whole cell no
ESC whole cell yes
ESC nuclear fraction no
ESC nuclear fraction yes
ESC whole cell no
ESC whole cell yes
ESC nuclear fraction no
ESC nuclear fraction yes

RA day1 whole cell no
RA day3 whole cell no
RA day4 whole cell no
RA day5 nuclear fraction no
RA day5 whole cell yes
RA day5 whole cell no
RA day1 whole cell no
RA day3 whole cell no
RA day4 whole cell no
RA day5 nuclear fraction no
RA day5 whole cell yes
RA day5 whole cell no

Table 4.1: Summary of the generated RNA-seq libraries The tag RA day indicates
the day after the start of RA treatment.

4.2.1.1 HERVH-high sample preparation

Transfection and sorting of H1ESC was done according to the
procedure in [139]. Two separate single-clone lines were used for our
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study.

4.2.1.2 Time series sample preparation

In preparation for the experiment 90% confluent H1ESC (WA01
alias, 18-W0260, WiCell), cultured in full mTeSR 1 media (85870,
StemCell Technologies) with added antibiotic primocin (ant-pm-05,
Invivogen), on vitronectin (A14700, Life Technologies) coating. Cells
were split in clumps with versene (15040066, Thermo Fisher
Scientific), 1:10 ratio, to have 15 plates (90 wells) (11337694, Thermo
Fisher Scientific). Rock inhibitor (Y-27632, StemCell Technologies)
was added to inhibit apoptosis of cells after splitting. Treatment was
done with 10µM retinoic acid (R2625 Sigma) in mTESR media. The
media was changed daily. Cell were collected daily for the following
five days.

4.2.1.3 RNA-seq library preparation

Fractionation was done while collecting cells with Nuclei EZ lysis
buffer (N3408, Sigma). Nuclear or whole cell pellets were frozen in
Trizol (15596026, Thermo Fisher Scientific). After collecting all
samples, total RNA was isolated simultaneously with Quick-RNA
Miniprep Kit (R1055, Zymo Research) kit. CircRNA enrichment was
performed with Ribonuclease R (RNase R) (RNR07250, Lucigen
epicentre): 1.5ug RNA were digested with 10U of RNAse R for
30min at 37°C. Then RNA was purified in the equal volume of
phenol chloroform isoamyl alcohol, the upper aquatic phase was the
purified with 4M LiCl.
For library preparation, Roche KAPA RNA Hyper+RiboErase HMR
was used according to instructions. Libraries were prepared from
500ng RNA, except for nuclear fraction day 5 RA – 230ng. RNAse R
treated sample was used the maximum possible – 10uL. Temperature
fragmentation was performed for 7 min; except for RNase R treated
samples – 6 min, and the nuclear fraction sample of day 5 of RA
treatment. The HERVH-high libraries have undergone 5 cycles of
PCR amplification, while the time series libraries–8.

4.2.2 SPLASH data

The sequencing data is already publicly available under the SRA
accession ID SRP073550. The H1ESC replicates are stored as
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SRR3404926 and SRR3404943, while the H1ESC treated with RA
are stored as SRR3404927 and SRR3404928 [107]. The archived data
is processed with fastq-dump from the SRA Toolkit.

4.2.3 CLIP-seq data

AGO2 PAR-CLIP-seq data for H1ESC are available under SRA
accession ID SRR359787 [141]. The archived data is processed with
fastq-dump from the SRA Toolkit.

4.3 Quality control of the novel data

We have performed a trial run of library preparation and sequencing
(data not shown). After the trial run, all library parameters were
adjusted to fit my desired specifications. There was a single
troubling statistic after quality control check on the FASTQ files
with FastQC [142] – high duplicate rate.
The initial quality control of the libraries indicates alarming rates of
duplicated reads – reaching up to 50-60 % duplicates. Naturally,
mapping of the pair-end reads decreases the number of duplicated
read statistics, but further study of the cause the high number of
reported duplicates is required to exercise caution.
Usually, high percentage of duplicates is an indicator of a high
number of PCR cycles during the library preparation protocol.
However, reads that map to multiple loci are indistinguishable from
duplicates. Thus, we could not determine how much of the detected
duplicates are due to technical reasons (PCR duplicates/Optical
duplicates) and how much due to natural repetition of library
fragment sequences. It is important to note that the smaller insert
size of the library increases the chance of multi-mappped fragments,
specifically for fragments originating from transcripts with repetitive
element integration. Furthermore, the transcriptome mapping tools
[54, 55] (kallisto, salmon) do not deal with duplicated reads, which
means that RNA-seq data would need to be preprocessed to remove
duplicates.

4.3.1 Common solutions and tools

• samtools [124] - collapses the reads/fragments with identical
sequence to a single read
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• picard [143]– marks the reads with identical sequences without
removing the repetitions; the user can subsequently select
whether to count the marked reads

• STAR [34] - marks the reads with identical sequences without
removing the repetitions, but also has the option to not mark the
multi-mapping reads

4.3.2 Analytical strategy

Given the high likelihood of reads coming from repetitive regions, it is
very likely that a portion of the reads that were marked as duplicates
by the initial quality control are actually multi-mapping reads. To
resolve that, I used the STAR option to mark duplicates, but ignore
regions of multi-mappings.
featureCounts [125] counting of the BAM files with genes as features
and different parameters regarding the counting of duplicate reads or
multi-mapping reads. Note that chimeric reads (circRNA) are also
considered multi-mapping. The counting statistics allow us to see
how much of the reads are technical duplicates, what the influence
of multi-mapping reads on the data is, and how much of the reads
are coming from unannotated transcripts. Important to note is that
multi-mapping reads are not fractionally counted. I have performed
four separate counting procedures: all reads counted, counting without
marked duplicates, counting without multi-maps, counting without
both multi-maps and marked duplicates.

4.3.3 Results and Conclusions

Table 4.2 shows the percentage of reads/fragments counted based on
the hg38 Ensembl annotation, see Table 7.2. Some trends are
noticeable. When counting the only without marked duplicates,
there is only a sight drop in the percentage mapped reads. It is
important to note that this percentage is not fully representative due
to the fact that there are naturally some PCR duplicates among the
multi-mapped reads. But most importantly, the change that not
counting multi-mapped reads far exceeds the number when
duplicated reads are not counted, explaining the high number of
fragments with the same sequence, and thus explaining the alarming
number of PCR duplicates in the FastQC results. Note that reads
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Sample type F RR % all % no dup % no multi % no multi/dup
HERVHhigh nf no 73.7 71.9 52.7 50.3
HERVHhigh wc yes 59.8 56.7 19.8 16
HERVHhigh wc no 55.2 54.2 19.1 17.2
HERVHhigh nf no 60.9 60 31.9 29.8
HERVHhigh wc yes 46.5 44.4 1.2 1.1
HERVHhigh wc no 81.8 72.1 61.6 51.5
RA day1 wc no 72.9 56.5 45.2 28.2
RA day3 wc no 83.5 59 58.9 34
RA day4 wc no 55.3 50.7 14 8.3
RA day5 nf no 79.8 59.2 62.9 42.1
RA day5 wc yes 43.3 43.3 2.7 1.6
RA day5 wc no 85 59.1 66 39.9
ESC wc no 82.1 71.8 61.5 50.9
ESC wc yes 60.2 55.3 25.6 20
ESC nf no 72.7 66.7 48.7 42.3
ESC nf yes 57.1 54.7 15.1 11.8
ESC wc no 80 70.4 57.8 47.7
ESC wc yes 58.9 54.4 21.4 16
ESC nf no 68.6 63.7 42.9 37.5
ESC nf yes 49.2 48.5 10.5 8.7
RA day5 nf no 80.5 62.6 60.8 42.6
RA day5 wc yes 63.9 57.4 18 10.6
RA day1 wc no 57.3 49.6 25.9 17.3
RA day3 wc no 66.9 56 33.3 21.7
RA day4 wc no 73.5 57.3 45.2 28.4
RA day5 wc no 76.9 59.6 52.7 34.9

Table 4.2: Summary of multi-mapping reads vs duplicates The table shows
the percentage of counted reads per sample based on STAR duplicate and/or multi-map
marking. RR stands for RNase R treatment. Nuclear fraction (nf) and whole cell (wc)
are in the fraction column (F). The results are separated in counting all reads (% all),
counting all read except those marked as duplicates (% no dup), counting all read except
those marked as multi-mapped (% no multi), and counting all read except those marked as
duplicates or multi-mapped (% no multi/dup). The difference between number of mapped
read when comparing counting of all possible reads and when counting with skipping marked
reads, explains the high number identical reads. When eliminating multi-mapped reads from
the counting the difference is substantially higher than when eliminating reads marked only
as duplicates. Also, samples with highly active endogenous retroviral elements are more
affected by the multi-map filter. Therefore, the identical sequences are mostly caused by
fragments originating from repetitive element loci or circRNAs.
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mapping to circRNAs will also be considered multi-mapping.
Therefore, the percentage of mapped reads, when multi-maps are
ignored, decreases in the RNase R treated samples. Libraries
generated from a higher amount of starting RNA have a lower
(disregardable) percentage of true duplicate reads from PCR.
Duplicate rates less than 20% are generally ignored because the
computational removal of duplicates between samples can cause
skews in the data. Therefore, even for samples that could
theoretically benefit from duplicate removal, it is not advisable to
remove them, as they will cause discrepancies compared to other
samples. The percentage of reads mapping to annotation decreases
for libraries generated from nuclear fraction or RNase R treated
samples. Some of those reads belong to circRNAs, but it is likely
that there are a high number of unannotated linear transcripts. The
number of reads mapping to unannotated regions increases with
pluripotency decrease. This means that there are many yet
unannotated transcripts related to pluripotency, partially originating
from active endogenous retroviral elements [144].

4.4 Computational workflow

4.4.1 BSJ detection

The BSJ detection for all RNA-seq samples was carried out in a way
that satisfies the requirements of CYCLeR, see Section 3.3.1. For the
downstream analysis, BSJ detection was performed for all samples of
the SPLASH data. However, tools for BSJ detection cannot
distinguish between chimeric reads that are produced by RNA
proximity ligation corresponding to the RNA structure and chimeric
reads that correspond to a BSJ. I used the results from BSJ
detection from RNA-seq samples to filter the results coming from
SPLASH samples, keeping only the BSJ sites from SPLASH that
match the BSJ sites in RNA-seq.

4.4.2 BSJ enrichment analysis

4.4.2.1 Prerequisite

The problem of assigning a specific isoform to an RNA duplex
(shown in Figure 4.2) can be overcome to some extent. The SPLASH
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data for which I am interested have undergone a polyA-enrichment
procedure. Theoretically, that means non-polyA transcript will be
abundant in the data only if they interact with polyA transcripts.
To verify this hypothesis, I performed gene-wide read counting on
polyA-enriched SPLASH data for the cell line GM12892
(SAMN04870489, SAMN04870490, SAMN04870491,
SAMN04870492) and matching polyA RNA-seq (SRR1803204,
SRR521534, SRR521535 [145, 146]) with featureCounts. I used the
resulting count matrix to perform a differential gene expression
analysis with DESeq2 [60]. The results show a high enrichment of
non-polyA genes in the SPLASH data compared to RNA-seq data.
Specifically, the genes from the snRNA, snoRNA and rRNA biotypes
are enriched in the SPLASH data. These are RNAs with a generally
known function that requires base pairing. Therefore, if there are
circRNAs that are enriched in SPLASH data, it is logical to assume
that they are involved in RRI.
The proof of concept test is based on data that have multiple
replicates with a library depth similar between replicates. In such a
case, DESeq2 can be used safely to check for enrichment. However,
the SPLASH data on ESCs have only two replicates with 10-fold
difference in library depth. Therefore, an enrichment test in the ESC
data requires an alternative strategy.

4.4.2.2 BSJ enrichment test

To perform an enrichment analysis for circRNAs, I devised an
over-representation test to check the enrichment of BSJs. It is less
sensitive than the DESeq2 alternative, but much more robust, in the
sense that the resulting small number of enriched circRNAs is more
reliable. BSJs can be used as a rough estimate of circRNA transcript
levels. BSJ levels can also be compared. BSJ counts from a control
library can be compared with BSJ counts from a treated library, and
a hypergeometric test can be performed to calculate the probability
of significant enrichment, see Section 2.4.5.1. I applied such an
enrichment test to evaluate the enrichment of circRNAs in SPLASH
data and later the enrichment of circRNAs in nuclear fraction.
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4.4.3 CircRNA assembly and quantification

CircRNA assembly and quantification is performed with CYCLeR,
following the procedure explained in Section 3.3.

4.4.4 BSJ enrichment

The enrichment analyses are based on the H1ESC dataset
comprising control, nuclear extract library, and libraries treated with
RNase R. The BSJ enrichment analysis manages to provide
information of the most enriched BSJ after RNase R treatment; this
is just a safety net that ensures that any BSJ result we have from
the other test indeed corresponds to real circRNAs. The BSJ counts
in the table are also thresholded by abundance (more than 5 reads
supporting the junction). The selected BSJ sites are then used to
test enrichment of BSJ for nuclear localisation and BSJ enrichment
in the SPLASH data.

4.4.5 Co-expression analysis

4.4.5.1 Transcript selection

The count matrix with quantification based on CYCLeR is
transformed with the variance stabilisation function of the DESeq2
package. To perform optimal clustering, only meaningful transcripts
have to be selected; that is, transcripts with enough abundance and
variance to provide a reliable correlation calculation, see Section
2.4.4. The selection of transcripts is done by exploratory data
analysis. My workflow consists of iterative creation of tree diagrams
and UMAP plots and visual observation of the distance between
samples. Linear transcripts are selected on the basis of a variance
cut-off. I used a generalised additive model fit of the ratio between
the mean and variance of the transcripts across samples. The model
is used as a reference point to select transcripts in which the
variance-to-mean ratio deviates the most from the fit. I also ensured
that the set of transcripts covers known markers for pluripotency.
The same procedure could not be applied to circRNAs, as their
expression levels are generally lower, making the fitting procedure
unreliable. Thus, for circRNAs, I use a hard threshold on the overall
abundance of circular transcripts across all samples.
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The final set of transcripts selected for clustering consists of 10000
linear and 2600 circular transcripts.

4.4.5.2 Clustering

As a first step, I calculated an adjacency matrix for all transcripts
based on a Pearson product correlation. I use the adjacency matrix as
input for the calculation of the topological overlap matrix [64] and use
the Dynamic Hybrid tree-cut algorithm [64] to separate the transcripts
into clusters (for more information, see Section 2.4.4).

4.4.5.3 Gene set enrichment

The gene set analysis is based on genes and not transcripts. Therefore,
every transcript is matched to a gene, and a set of unique genes is
selected per cluster. For each cluster, I performed a gene ontology
analysis using the topGO [147] package. For the clusters of interest, I
performed an over-representation test using hypergeometric test based
on the MsigDB sets for positional (C1), curated (C2), and regulatory
target (C3) human gene sets, see Section 2.4.5.1.

4.4.6 SPLASH data analysis

Analysis of RNA proximity ligation data is limited by the steps of
the computational pipeline, see Section 2.5.3.4. However, my goal
does not require processing of the entire dataset. First, I am
primarily interested in RRIs. Therefore, it would be redundant for
me to process all the reads that correspond to RNA structures.
Second, I limited the search space to the loci of a few very specific
circRNAs selected based on result from the previous analytical steps.
These 2 conditions allow me to design a very simplistic and robust
analytical procedure to analyse the SPLASH data.

1. I mapped the reads from the SPLASH data with both STAR and
BWA. The use of 2 mappers ensures that I am not unintentionally
omitting chimeric read mappings, see Section 2.5.3.4.

2. I selected all IDs of reads that map to my loci of interest with
samtools [124]. Afterwards, I extracted all reads that match those
IDs. This step produces one SAM file per sample per locus.
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3. I used all SAM files to generate a count matrix with featureCounts
[125].

4. I observed which chimeras map outside the locus and were
observed in multiple samples.

5. I used RIsearch [148] to identify the regions of the RRI with
nucleotide resolution.

4.4.7 CLIP-seq analysis

The AGO2 PAR-CLIP-seq data is mapped with BWA [149]. The
regions of interest are selected manually.

4.5 Follow-up computational procedures

4.5.1 Differential expression analysis

A common to approach to identifying the function of a transcript is the
targeted decrease of its levels–Knockdown (KD). To evaluate the effect
of FIRRE KD in mouse and human cells, I performed a differential
expression analysis of the transcripts using data from the study with
gaprmer KD of FIRRE transcripts in human and mouse cell lines
with GEO-ID:GSE45157 [150]. RNA-seq libraries were quantified with
kallisto using the standard Ensembl linear annotation for mm10 and
hg38 as reference, see Table 7.2. The differential expression itself
was performed using sleuth [58]. The resulting differentially expressed
genes were used for topGO [147] gene ontology enrichment analysis.

4.5.2 Editome-based RNA folding

ADAR1 deaminates adenosine (A) to inosine (I) in cellular
double-stranded RNA (dsRNA) substrates , thereby catalyzing the
most common type of RNA editing found in humans. RNA A-to-I
editing is performed to disrupt long RNA duplexes and leads to a
change in the overall structure of the RNA. ADAR1 is known
primarily edits Alu elements in RNA polymerase II (pol II)
transcribed mRNAs [151]. In this study editome information for
integrated Alu elements is available on the basis of multiple sequence
alignment (MSA) of all Alu integrations. I used this information to
perform a computational prediction of human SRP RNA structures
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Predicted BSJs 4551
RNase R enriched BSJs 933
Nuclear enriched BSJs 66
RNA interaction related BSJs 16

Table 4.3: Summary of the BSJ enrichment analysis from the comparison between
RNAse R treated and untreated libraries from the H1ESC dataset. Supplemented by data
from nuclear fractionation.

with RNAfold [152]. However, this MSA has multiple gaps in its
sequence, making RNA structure folding problematic. I manually
copied all the editing sites onto the sequence of the SRP RNA. I
used the editome information to compile a set of hard constrains for
MFE structure prediction of the SRP RNA. I used the constrain
options of RNAfold to predict two potential alternative structures
with different constraints: 1) editing sites are ensured to participate
in base pairing; 2) editing sites are restricted from pairing.

4.6 Results

4.6.1 BSJ enrichment analysis results

The summary of the results of the BSJ enrichment tests can be seen
in Table 4.3 and Figure 4.3. There are two BSJs that are enriched in
both the SPLASH data and the nuclear fraction. One of the BSJs
corresponds to the FIRRE gene and is among the most abundant
BSJs in our RNA-seq data sets. Based on the assembly with
CYCLeR, there are multiple circRNA isoforms that match this BSJ
and even more that originate from the same host gene. On the basis
of the abundance estimation with CYCLeR, we can say that the
levels of circular and linear FIRRE isoforms have comparable
quantities. All other circRNAs enriched in the nucleus have a
substantially lower ratio of the quantity of circRNA versus linear
RNA and a generally lower abundance. From the circRNAs enriched
in the SPLASH data, the only other example of highly abundant
RNA is CDR1as–a circRNA with a known function as a miRNA
sponge in neural cells [12]. The CDR1as gene is known to produce
exclusively a circular isoform. CircCDR1as is the top-ranked
circRNA in the SPLASH enrichment.
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Figure 4.3: BSJ enrichment analysis scheme for H1ESC data Comparison between
the BSJ-spanning reads from full SPLASH library and the total ribo-depleted RNA-seq
allows us to identify a set of circRNA that very likely participate in interactions with
polyA-transcripts. The over-representation test gives us a list of 16 significant circRNA.
A similar procedure is repeated for comparison between total ribo-depleted RNA-seq and the
nuclear fraction RNA-seq. The intersection of the sets of enriched BSJ gives us circRNAs
with potential functions involving RRIs in the nucleus.

4.6.2 Clustering results

Most of the transcripts in the clusters follow two trends. They either
increase in transcript levels over time after RA treatment or
decrease. It is a rare occurrence for a transcript to be specific to a
particular time point (only 12% of transcripts). Based on gene
ontology enrichment analysis, the transcripts that correspond to an
increase over time can be separated into two categories: clusters
specific to a differentiation process (e.g. neural differentiation, heart
muscle differentiation, keratinocyte differentiation) or immune
response to outside stimuli. For most of the clusters where transcript
levels drop over time, topGO cannot assign a reliable functional
enrichment. However, the gene ontology analysis of two of the
clusters reliably relates them to pluripotency. There are clusters
specific to day 1, day 3 and HERVH-high cells. Separation of the
replicates in two batches proves fruitful by facilitating the
segregation of transcripts that are unique to day 1 (or days 1 and 3)
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of the second round of replicates in their own clusters. There are
many transcripts that do not cluster due to low variance. This
includes the circles of CDR1as and FIRRE, that are constitutively
expressed across all samples.

The combination of co-expression clustering and RNA-RNA
search provides an overabundance of results. To make the workload
manageable, I focused solely on the transcripts that are co-expressed
with the more abundant isoforms of the pluripotency TFs. Focusing
on these specific clusters allows us to use previously available data
and information focused on ESCs. As mentioned previously, we have
two clusters enriched for genes related to pluripotency. One of the
clusters contains all the primary (most abundant isoforms) of the
typical pluripotency markers NANOG, SOX2 and POU5F1. The
second one contains the less abundant isoforms of those genes. The
two clusters could be merged and considered one due to their
proximity in the original dissimilarity tree prior to cutting.
Nevertheless, I decided to keep them separate and focus on the more
potent cluster.
The TFs in the cluster of interest are NANOG, SOX2, POU5F1,
ZIC3, ZSCAN10, FOXH1, ETV4. The products of the ESRG gene,
a very specific marker of pluripotency, are also part of the cluster.
The cluster also provides enrichment for endoderm differentiation.
This is due to the fact that some of the endoderm markers overlap
with the pluripotency markers: DNMT3B, NANOG, SOX2,
POU5F1, ZIC3, JARID2, FOXH1, CDYL.
Interestingly, the circRNA with the highest variance in our dataset
(referred to as circLARP7) also belongs to that cluster. This fact is
increasingly more intriguing when we take into account that most of
the transcripts produced by the LARP7 locus, both sense and
antisense, are assigned to a single cluster. This implies that
circLARP7 has an additional form of control, separating its
expression from the rest of the locus.

4.6.3 CircRNA Interactome analysis results

From the examined circRNAs only three cases merit further
elaboration. The most abundant circRNA isoforms from the genes
CDR1as, FIRRE and LARP7.
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The three circRNAs of interest were examined for miRNA
interactions by checking the H1ESC AGO2 PAR-CLIP-seq data.
None of the circRNAs have reads mapping to their sequence,
including circCDR1as. Although this circRNA is a potent miRNA
sponge in neural cells and has high levels in ESC, it appears that
circCDR1as has a different function in ESC. A further study of the
chimeric reads of SPLASH showed that circCDR1as participates in
multiple RRIs. Knowing that the CDR1as gene exclusively produces
a circular isoform, we can safely assume that all chimeric reads
originate from the circRNA commonly referred to as circCDR1as
[12]. However, the number of reads supporting particular RRIs is
small and inconsistent between replicates. Interestingly, while the
levels of circCDR1as are quite consistent across our time series
experiment, the number of reads supporting RRIs decreases over
time, see Figure 4.4.

Figure 4.4: Bar plot of the normalised number of interaction-supporting reads for
circCDR1as in H1ESC SPLASH data. The number of chimeric reads supporting RRIs
per library is divided by the size of the library and multiplied by a factor for convenient
visualisation.

On the basis of the BSJ enrichment analysis, only one candidate,
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in addition to circCDR1as, proves interesting, the most abundant
circRNA isoforms of the FIRRE gene (referred to as circFIRRE).
CircFIRRE has multiple sequences that are shown to interact with
SRP RNAs (particularly RN7SL1 and RN7SL2 ). It is important to
note SRP RNAs often act as placeholders for reads that map to
unannotated Alu element integrations. CircFIRRE is also enriched
in the nucleus, which can be explained by the binding sequence of
hnRNPU, a protein that is known to contain RNAs within the
nucleus. It should be noted that these interactions would have been
overlooked by a standard pipeline for chimeric read processing. The
RRI sites of FIRRE to the specific RN7SL1 site are multiple and
vary in sequence. However, I computationally identified the
consensus sequence of the RRI, see Figure 4.7.

CircLARP7 has no reads supporting RRI in the SPLASH data. A
pure computational search for RRI for circLARP7 is unnecessary, as
the transcript has a very long complementary sequence with the
MIR302CHG transcripts–800 nucleotides, if the interaction occurs
with the nascent MIR302CHG transcript. In fact, the retained
introns in the circRNA sequence and the proximity of the
transcription almost guarantee an interaction with the nascent
MIR302CHG transcript.

4.6.4 Potential functional circRNAs

4.6.4.1 CircFIRRE

The FIRRE gene is known to have multiple integrated repetitive
elements [150]. Of these repeats, there is one that contains a binding
sequence for hnRNPU. This repeat is present in all FIRRE isoforms,
often in multiple occurrences, and is logically used as a target for
FIRRE KD. Thus, it is straightforward to assume that the FIRRE
KD targets both linear and circular isoforms with equal success. The
consistent result of FIRRE KD in human cells is the increase in
genes related to the cellular viral response. Interestingly, KD of the
FIRRE gene in mouse cells does not cause the same effect. If we
assume that the interactions between FIRRE transcripts and
transcripts with Alu integrations are functionally relevant, then we
can explain the difference between species with the following. While
in human the majority of the repetitive element integrations are
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attributed to the Alu family, in mouse the repetitive element
integration is more diversified, even if mice do have an equivalent of
the Alu family – the B1 family. Thus, any mechanism related to the
processing of Alu elements would be human-specific.
The cellular virus response operates through the detection of long
RNA duplexes. The distinction between foreign RNAs is facilitated
by the MDA5 protein, a cytoplasmic virus response element that
targets dsRNA structures [151, 153]. Human Alu-containing RNAs
often form dsRNA helices. The way human RNA structures avoid
the MDA5 response is by ADAR modifications of Alu-derived
sequences. KD of ADAR leads to a type I interferon response similar
to that of FIRRE KD. This leads to the hypothesis that the
interaction of circFIRRE with Alu-specific sequences is related to the
ADAR editing process.
According to [153], Alu-containing transcript undergo RNA editing
to mimic the final structure of the SRP RNA. I used the sequence of
the human SRP RNA and its known structure as part of the SRP
complex as a placeholder for further analysis. According to the
known SRP RNA structure, the predicted RRI sites with FIRRE are
in fact part of a structure duplex. The only explanation is that the
FIRRE transcripts bind to an alternative structure of the SRP
RNA. Combining the fact that RNA editing changes the structure of
the RNA and that the binding sites of circFIRRE overlap with
duplexes of the final SRP RNA structure leads me to believe that
circFIRRE serves as a chaperon, ensuring the correct folding of
ALU-containing transcripts, see Figure 4.7.
As a proof of concept, I performed an editome-driven alternative
folding of the SRP sequence, where the editing sites are used to
restrict folding. The two alternative structures differ in the locations
of stems and loops. The structure corresponding to the unedited
version of the SRP RNA has open loops at the FIRRE RRI sites.
The structure corresponding to the edited version of the SRP RNA
matches the known SRP structure very well, which is a welcome
surprise, given that SRP is an RNA notoriously hard to fold, due to
the presence of multiple base pairs that are possible only in 3D.
What is left to determine is whether a functional RRI should be
attributed to the circular or linear isoform of FIRRE. Both isoforms
are exclusive to the nucleus as a consequence of the binding sites for
hnRNPU. This protein has binding sites for the simultaneous
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binding to DNA and RNA, keeping RNAs anchored to the nucleus.
On closer inspection, we can see that there is an exon that is present
only in circular isoforms and not in any linear isoforms, see Figure
4.6. Given the low coverage of that exon, this cannot be part of the
primary functional isoform, but it does hint that circular FIRRE
isoforms have a higher RRI potential.

I also performed an equivalent analysis of Firre in PARIS data for
mouse ESC. PARIS is an alternative RNA proximity ligation
technique with a duplex selection procedure different from that of
SPLASH. The difference in the experimental protocol leads to
shorter chimeric fragments produced by PARIS, see Section 2.5. This
meant that I cannot unambiguously map the chimeric reads
originating from repetitive element integrations. Therefore, I have no
way of confirming whether mouse Firre transcripts interact with B1
elements or not.

4.6.4.2 CircLARP7

The LARP7 gene gives rise to multiple circRNA isoforms. Some of
these isoforms have an obvious potential as microRNA sponges, due
to the fact that the LARP7 circRNA locus is on the opposite strand
of the miR-302/367 cluster. This miRNA cluster is of extreme
importance for pluripotency [154]. However, the regions with perfect
complementarity to the microRNA sequences are not present in the
most abundant LARP7 isoform (referred to as circLARP7), see fig.
4.9. There are no detected RNA-RNA interactions in the SPLASH
data for circLARP7.
An interesting feature of this isoform is high intron retention. This
ensures complementarity to the nascent MIR302CHG transcript.
The microRNAs from the miR-302/367 cluster are most likely
processed as an intron of the MIR302CHG transcript. Furthermore,
circLARP7 is enriched in the nucleus, which is a logical location of a
splicing control element. circLARP7 is by a significant margin the
most abundant circRNA in the pluripotency co-expression cluster.
While linear LARP7 isoforms maintain a moderate level of
expression after RA treatment, circLARP7 is almost completely
depleted. There are only two AGO2 CLIP-seq reads mapping to
LARP7 locus, an indication that circLARP7 is not operating as
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microRNA sponge.
The aforementioned results make circLARP7 a prime candidate for
further experimental verification as a key element driving
pluripotency.

4.7 Discussion

I employed two alternative approaches to identify functional
circRNA RRIs. One is based on the co-expression and co-localisation
analysis of the expression levels across transcripts in RNA-seq data.
The second is multilevel examination of RNA proximity ligation data
– SPLASH. Sadly, the results of functional circRNA RRIs with
different methods do not have a perfect overlap. Nevertheless, both
approaches identify promising candidates for further study.
The co-expression analysis supplemented by co-localisation
information points to circLARP7 as the most likely participant in
functional RRI. Circularisation of circLARP7 is likely partially
triggered by low complexity repeats (TTATAA)n and (TTAA)n
repeats in the flaking introns. However, as the circular isoform does
not correlate highly with the expression of linear LARP7, there must
be an additional control mechanism. This mechanism is most likely a
splicing factor, whose expression is influenced by the core
transcription factors driving pluripotency. The gene locus of
circLARP7 has high conservation, and circRNA databases verify the
presence of circLARP7 isoforms across multiple species and tissues.
The location of the miR-302/367 cluster, anti-sense of LARP7
intron, is also conserved across species. An RRI between a LARP7
transcript and the miR-302/367 cluster would justify the genes
evolving with anti-sense localisation in the genome. Additionally,
both genes promoter regions are binding sites for Nanog, Oct4 and
Sox2, making both genes expresses under the same conditions.
The alternative approach of finding functional circRNAs based on
enrichment in SPLASH data also achieved results. FIRRE is a
conserved gene, whose unique feature is the presence of multiple
integrations of repetitive elements. FIRRE transcripts have been
proposed to act as RNA scaffolds that facilitate a higher-order DNA
structure. However, KD of FIRRE in cell lines of different species
(mouse and human) leads to different effect on the cells, puzzling
researchers. My work manages to explain the difference by linking
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the human circFIRRE transcript to interaction with repetitive
element integrations of the Alu family, which is abundant in humans
as opposed to its equivalent in mice. According to the mechanism
proposed, circFIRRE acts as an anchor for RNA with Alu elements
and ensures that only edited RNAs can leave the nucleus, thereby
preventing the trigger of the cell viral response mechanism.
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Figure 4.5: Coverage plot of the FIRRE circRNA locus. The tracks show in order
hESC, hESC nuclear fraction, hESC+RNaseR treatment, hESC on day5 of RA treatment,
hESC on day5 of RA treatment+RNaseR treatment. The plot shows only the locus of the
circRNA. Both linear and circular FIRRE isoforms are exclusive to the nucleus. The
interaction regions of the ALU-specific sequences are marked with light blue. The regions
are based on the chimeric read sequence. One of the interaction regions matches an exon
with a lower abundance. What is interesting about this exon is the fact that it appears to
be present only in circRNAs as can be seen in Figure 4.6.
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Figure 4.6: A coverage plot showing a detailed zoom of a specific FIRRE circRNA exon.
The tracks show in order hESC, hESC nuclear fraction, hESC+RNaseR treatment, hESC
on day5 of RA treatment, hESC on day5 of RA treatment+RNaseR treatment. We can
see the ALU interaction sequence (indicated by light blue) belonging to an exon specifically
seen only in the RNase R treated library.
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Figure 4.7: CircFIRRE and SRP RNA binding. On (A) we see the interaction
sites between the SRP RNA and circFIRRE. On (B) we see the sequence logo showing
the consensus sequence of the multiple interaction sites in circFIRRE marked with blue.
On (C) and (D) I show potential SRP alternative structures post- and pre- RNA editing.
In (C) we can see the both RRI regions are inaccessible due to full participation of the
sequence in duplexes. The open loops in the pre-editing folding (D) can accommodate
circFIRRE binding.
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Figure 4.8: Heatmap transcript abundance (in TPM) of the top 5 most expressed
circRNA transcripts that co-express with pluripotency markers. HERVHhigh refers to
HERVH-high cells. The circRNAs are represented by their unique ID, coordinates of the
BSJ and host gene.
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Figure 4.9: Coverage plot of the LARP7 circRNA locus. For convenience, only single
isoforms for LARP7 and MIR302CHG are shown. The tracks show in order hESC, hESC
nuclear fraction, hESC+RNaseR treatment, hESC on day5 of RA treatment, hESC on
day5 of RA treatment+RNaseR treatment. The primary circRNA locus is marked with
gray. Note: the noticeably high peaks in the hESC tracks correspond to circLARP7 and
MIR302CHG. Interestingly, linear LARP7 transcripts have no noticeable presence in the
nuclear fraction. Additionally, on day 5 after RA treatment, there are neither circLARP7
nor MIR302CHG transcripts present. There are mutiple BSJ attributed to the LARP7
gene. On the figure, we mostly see 2 circRNA contributing to the coverage: our circRNA
of interest marked with gray band and one monoexonic circRNA.
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Chapter 5

Results and Discussion overview

5.1 Results summary

The first step towards achieving my goal of identifying functional
circRNA-RNA interactions was to design a tool for identification of
the full sequence of a circRNA. CYCLeR succeeds in reconstruction
of circRNA transcript, in cases where alternative tools fail. CYCLeR
manages to identify circular isoforms with very low false-positive
rate, without a limit on the transcript length. CYCLeR also
succeeds in the assembly of circRNAs with unannotated transcript
features. An additional advantage of the pipeline I developed is the
simultaneous quantification of linear and circular RNAs. I have
shown that the improved quantification strategy of CYCLeR leads to
a higher chance of identifying the functional association of a
circRNA.
Enrichment of circRNA participating in interactions supported by
SPLASH data pointed to circFIRRE as an interesting candidate.
circFIRRE is a constitutively expressed circRNA that is considered
the predominant isoform of the FIRRE gene. All isoforms of the
FIRRE gene are exclusively localised in the nucleus, due to repeat
sequence that binds to the hnRPU protein. The duplexes identified
from the SPLASH data show multiple interactions between the
FIRRE transcripts and Alu-containing transcripts. KD of the
transcripts of the gene pushes the human cells to go into a viral
response state. However, the effect of KD of Firre in mouse is
completely different, indicating that FIRRE has a human specific
function. The fact that Alu elements are occurring in human more
often than their equivalent in mouse can explain the difference in
response to KD between the two organisms. Alu elements are known
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to trigger viral response, when the editing mechanism of the cell is
perturbed. Furthermore, structural analysis using the SRP RNA as
a placeholder for integrated Alu sequences shows that the interaction
between circFIRRE and Alu element can occur only in unedited
sequence. Therefore, the viral response in humans upon FIRRE KD
can be attributed to FIRRE being an integral element of RNA
editing process, ensuring that Alu-containing transcripts do not leave
the nucleus without being edited. We generate a time-series data set
to identify circRNAs, which co-express with known markers of
pluripotency. Based on the membership in the cluster with
transcripts known to affect pluripotency, I managed to determine the
most likely candidate for circRNA that has effect on pluripotency.
The nuclear fraction RNA-seq results allow us to pinpoint the
localisation of this circRNA and suggest its potential function. The
high level of intron retention in circRNA gives it a unique RRI
potential that cannot be replicated by the linear isoforms of LARP7.
The anti-sense localisation of the LARP7 and MIR302CHG genes
and their simultaneous expression ensures at least temporary
co-localisation of the transcripts originating from the two genes.
Additionally, the fact that linear LARP7 is exported from the
nucleus, while MIR302CHG transcripts and circLARP7 remain in
the nucleus is an additional hint for a functional interaction. The
sequences of the retained introns of circLARP7 overlap the intronic
regions of the MIR302CHG gene; therefore, an interaction would
occur between circLARP7 and the nascent MIR302CHG transcript.
My hypothesis is that circLARP7 mediates the processing of the
nascent MIR302CHG transcript and facilitates the production of
miRNAs from the miR-302/367 cluster.

5.2 Discussion

To identify circRNA-specific RRIs, it is essential to know the full
sequence of all isoforms that correspond to a BSJ. The accent of the
isoform identification should be on the identification of exons or
retained introns that are present in circRNAs while absent linear
RNAs. The full sequence of the circRNA transcripts is also necessary
for transcript quantification and downstream processing via
differential expression or co-expression analysis. CYCLeR provides
an efficient and robust solution to both of those objectives. However,
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the tool has downsides. The need for circRNA-enriched RNA-seq
libraries increases the work load and cost of an experiment.
Nevertheless, I have shown that those the sample number can be
minimised to only a few key time points of the study, and the results
will still be informative.
The fact that circRNAs are assembled separately from linear leaves
room for errors in the linear transcript assembly. While CYCLeR
performs a step for selection of features that are specific for
circRNAs, linear RNA assembly tools do not have such a step.
Therefore, reads corresponding to circRNA can influence the
assembly of linear RNA. To avoid such issues, I have used only
known linear annotation. As my studies have focus only on
commonly used cell lines, the likelihood of the presence of highly
relevant unknown linear isoforms is very low. Furthermore, there is
an added advantage to keeping the assembly of linear and circular
transcript separate. Due to the higher relative expression levels of
linear RNA, many circRNA would fall under the standard detection
limits that navigate robust linear transcript assembly. A hybrid
method that uses both short-read and long-read data cannot yet be
developed for circRNA, because the output of protocols for long-read
circRNA data is not reliable. Thus, CYCLeR is the best possible
option for circRNA transcript assembly.
The abundance estimation by EM that CYCLeR employs is most
likely the optimal approach toward simultaneous quantification of
linear and circular RNA. The tools that utilise EM abundance
estimation have the same core algorithm. The difference in output
can be attributed to different approaches towards RNA-seq bias
correction. Even if a novel improved tool for transcript
quantification is developed, CYCLeR can easily be adjusted to work
with any novel tool, because the final step of the quantification is not
carried out by the core CYCLeR package, but performed separately.
The purpose of the development of CYCLeR was to facilitate my
research on the RRI interaction that involves circRNA. Extensive
benchmarks have proven that CYCLeR is the optimal tool for
circRNA assembly. Furthermore, the quantification provided by
CYCLeR in combination with steps from the WGCNA pipeline
allowed identification of circRNA-specific patterns in a fruit fly
dataset. When the same strategy was applied to the data generated
specifically for this study, the results exceeded expectations. All
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major markers of pluripotency were assigned to a single
co-expression cluster, making the search for circRNA with effect on
pluripotency a straightforward task. This result is in part due to the
data generation and, particularly, the consistent and low fragment
size of the RNA-seq libraries. The only downside in the experimental
design is the localisation data. To minimise spending, the
experimental design contains only RNA-seq data for the nuclear
fraction and no matching library from the cytosolic fraction.
Although comparison with the whole cell library allows identification
of circRNAs enriched in the nucleus, we do not know if their
localisation is exclusive to the nucleus. However, exclusive nuclear
localisation is not necessary for participation in RRIs, therefore, this
oversight is not detrimental to the study.
As a candidate circRNA with a major effect on pluripotency, I have
selected circLARP7. My primary hypothesis is that circLARP7
affects the processing of MIR302CHG miRNA cluster. The
combination of these anti-sense genes is very well conserved, leading
to similar AS patterns across species. Future experiments are needed
to verify the hypothesis. We are already aware that the transcripts
are co-localised at least transiently; therefore, fluorescent in situ
hybridisation will give very little new information. KD of the
circRNA is the only option to test the hypothesis. Usually, the
target for circRNA KD is mainly the BSJ. However, circLARP7 has
circRNA-specific intron retention that provides more target sites for
KD. Alternatively, the interaction partners of circLARP7 can
identified with a dedicated pull-down experiment.
CircFIRRE is a constitutively expressed circRNA, which indicates
that its potential function is a common necessity in all cells. The
fact that the RRI of interest is between two transcripts related to
repetitive elements makes any experimental verification difficult.
Attempting to visualise transcripts with relation to the Alu family
would net an over-saturated signal. In previous studies of the
FIRRE gene, a repeat that is present multiple times at the FIRRE
locus is used as a target. However, this repeat is present in both the
linear and circular isoforms. The publicly available data are
poly(A)-enriched, hence lacking information about the state of the
circRNA levels. The sequence around the BSJ is not unique enough
to serve as a target site for a KD experiment. A possible strategy
could be to target the sequences present in both linear and circular
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isoforms and select a probe that preferentially affects the circRNA.
The editome-based folding described in Section 4.5.2, is a
proof-of-concept test to test the use of editing sites to predict
alternative structure of the SRP molecule. While the test manages
to provide insight into the mechanism of action of circFIRRE the
analysis needs to be adapted to dedicated data. The future analysis
needs to be performed on samples with KD of circFIRRE versus
control samples. All integrated Alu sequences should be juxtaposed
into a MSA with additional information on RNA editing sites. Then
editome-based folding needs to be performed with algorithm
designed for MFE folding based on evolutionary information.
Follow-up experiments and analytical procedures have the potential
to reveal a novel function of circRNA and more importantly a novel
type of cellular mechanism.
The main results of my doctoral work are the development of
CYCLeR and using it for identification of novel circRNA-RNA
interactions. Both CYCLeR and the co-expression analysis of
time-series data of RA treatment of ESCs worked exactly as
predicted. CYCLeR is made available as a publicly accessible Docker
image that is well documented and easy to use. The results of the
co-expression clustering are not limited to information about
pluripotency. The efficient clustering has the unexplored potential to
provide insight into pathways related to differentiation. Thus, both
the method development part of the project and the data analysis
results of the project can be used in future scientific studies.

123



Chapter 6

Publications accepted during
doctoral work

Stefan R. Stefanov, Irmtraud M. Meyer (2018) Deciphering the
Universe of RNA Structures and trans RNA–RNA Interactions of
Transcriptomes In Vivo: From Experimental Protocols to
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(eds) Systems Biology. RNA Technologies. Springer, Cham DOI:
10.1007/978-3-319-92967-5 9

Peter Menzel, Alexandra L. McCorkindale, Stefan R. Stefanov,
Robert P. Zinzen , Irmtraud M. Meyer (2019): Transcriptional
dynamics of microRNAs and their targets during Drosophila
neurogenesis, RNA Biology, DOI: 10.1080/15476286.2018.155890

Masin Abo-Rady, Norman Kalmbach, Arun Pal, Carina Schludi,...,
Stefan R. Stefanov,..., Jared L.Sterneckert (2020): Knocking out
C9ORF72 Exacerbates Axonal Trafficking Defects Associated with
Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock
Proteins, Stem Cell Reports, DOI: 10.1016/j.stemcr.2020.01.010

Stefan R. Stefanov, Irmtraud M. Meyer CYCLER–a novel tool for
the full isoform assembly and quantification of circRNAs Nucleic
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CYCLeR is a pipeline for reconstruction of circRNA transcripts from RNA-seq data and their subsequent
quantification. The algorithm relies on comparison between control total RNA-seq samples and circRNA
enriched samples to identify circRNA specific features. Then the selected circRNA features are used to
infer the transcripts through a graph-based algorithm. Once the predicted transcript set is assembled, the
transcript abundances are estimated through an EM algorithm with kallisto [1]. CYCLeR takes as an
input BAM files and back-splice junction (BSJ) files and outputs transcript infomation in different formats
and a transcript abundance file.

Installation of CYCLeR
Command line tools needed

The computation steps prior and post CYCLeR run are most efficiently run on HPC. It is very likely that
any HPC in biological institute already has most of those tools installed. Just in case, a Docker image
containing all the tools is provided.
NOTE: prior to running Docker image make sure that *Docker is indeed installed and working: https:
//docs.docker.com/get-started/

• STAR - https://github.com/alexdobin/STAR
• samtools - https://sourceforge.net/projects/samtools/files/samtools/
• kallisto - http://pachterlab.github.io/kallisto/download
• bwa (needed for CIRI2) - http://bio-bwa.sourceforge.net/bwa.shtml
• CIRI2 - https://sourceforge.net/projects/ciri/files/CIRI2/
• CIRCexplorer2 - https://circexplorer2.readthedocs.io/en/latest/
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#Docker image with all command line tools
sudo docker pull stiv1n/cycler.prerequisites

R packages installation

Option 1: Local installation from GitHub Standard GitHub installation. The dependencies might
have compilation issues. For Ubuntu, the issues should be resolved with installation of a few libraries. NOTE:
you need a local samtools binary for an optional step.
#sudo apt update && apt install -y libcurl4-openssl-dev libxml2 libssl-dev \
#libbz2-dev liblzma-dev pkg-config build-essential libglpk40
library(devtools)
install_github("stiv1n/CYCLeR")

Option 2: Docker installation The Docker use requires you to mount a volume - a working directory ()
where the output and input would be stored. This container uses RStudio server and required login. In
this case, the username is rstudio the password is guest.
sudo docker pull stiv1n/cycler
sudo docker run --rm -ti -e PASSWORD=guest -v <local_dir>:/usr/workdir -p 8787:8787 stiv1n/cycler

Pre-processing the data
Mapping with STAR

The STAR [2] mapping parameters are up to a personal preference. It is imperative to include the intronMotif
tag. Sorting of the file can be performed via STAR or samtools. NOTE: STAR requires an index and
works better with provided GTF. The parameters of STAR index are dependent on the sequencing, so better
to read the manual.
An example run for the Docker container is shown for samtools. My preferred parameters for STAR:
#STAR parameters
STAR --alignSJoverhangMin 8 --outSAMstrandField intronMotif
--outFilterMismatchNmax 2 --outFilterMismatchNoverLmax 0.1 --chimSegmentMin 15
--chimScoreMin 1 --chimJunctionOverhangMin 15 --chimOutType WithinBAM
--outSAMtype BAM SortedByCoordinate --limitBAMsortRAM 9664623958
--outFilterMultimapNmax 50 --alignIntronMax 100000 --alignIntronMin 15
--seedSearchStartLmax 5 --winAnchorMultimapNmax 200
#Docker run
sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites STAR

Again, the Docker use requires you to mount a volume - a working directory () where the output and input
would be stored.
#converting the default Aligned.out.sam to a sorted BAM
sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

samtools view -u -h /usr/local/Aligned.out.sam | samtools sort \
-o /usr/local/<name>_sorted.bam

BSJ identification

It is advantageous to have input from BSJ identification tools that use different aligners. I suggest CIRI2
with bwa and CIRCexplorer2 with STAR. We have already discussed STAR mapping. CIRI2 requires
bwa mapping. NOTE: For safety always use full path.
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sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \
bwa index -a bwtsw reference.fa

sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \
bwa mem -T 19 reference.fa read_1.fq read_2.fq > <sample_name>.sam

sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \
perl /usr/src/myapp/CIRI_v2.0.6/CIRI2.pl -I <sample_name>.sam \
-O CIRI_<sample_name> -F reference.fa -A annotation.gtf

CYCLeR needs just 2 steps of the CIRCexplorer2 pipeline. NOTE: CIRCexplore2 uses a flat annotation
file
sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

CIRCexplorer2 parse -t STAR /usr/local/Chimeric.out.junction \
-b /usr/local/back_spliced_junction.bed

sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \
CIRCexplorer2 annotate -r annotation.txt -g reference.fa \
-b /usr/local/back_spliced_junction.bed -o /usr/local/CE_<sample_name>

CYCLeR
After all the pre-processing, all the files should preferably be in one folder.

Processing the BAM info in R

We need the information for read length, fragment length and library sizes from the BAM files.
#load BAM files
bam_file_prefix<-system.file("extdata", package = "CYCLeR")
filenames<-c("sample1_75","sample2_75","sample3_75","sample4_75")
BSJ_files_ciri<-paste0(bam_file_prefix,"/",filenames)
bam_files<-paste0(bam_file_prefix,"/",filenames,".bam")
#mark the samples control and enriched or bare the consequences
sample_table<-data.frame(filenames,c("control","control","enriched","enriched")

,bam_files,stringsAsFactors = F)
colnames(sample_table)<-c("sample_name","treatment","file_bam")
si<- DataFrame(sample_table[,c("sample_name","file_bam")])
si$file_bam <-BamFileList(si$file_bam, asMates = F)
#this holds all the needed info of the bam files for downstream processing
sc <- getBamInfo(si)
sample_table$lib_size<-sc@listData$lib_size
sample_table$read_len<-sc@listData$read_length

Use the provided sample table template.

## sample_name treatment
## 1 sample1_75 control
## 2 sample2_75 control
## 3 sample3_75 enriched
## 4 sample4_75 enriched
## file_bam
## 1 /home/stefan/miniconda3/envs/cycler/lib/R/library/CYCLeR/extdata/sample1_75.bam
## 2 /home/stefan/miniconda3/envs/cycler/lib/R/library/CYCLeR/extdata/sample2_75.bam
## 3 /home/stefan/miniconda3/envs/cycler/lib/R/library/CYCLeR/extdata/sample3_75.bam
## 4 /home/stefan/miniconda3/envs/cycler/lib/R/library/CYCLeR/extdata/sample4_75.bam
## lib_size read_len
## 1 13884 75
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## 2 13959 75
## 3 8494 75
## 4 8637 75

Selecting a BSJ set

Selecting a BSJ set is very important, because the algorithm assumes that the provided set of BSJ is correct.
I suggest BSJ identification with CIRI2 [3] and CIRCexplorer2 [4], but the choice is up to a personal
preference. I have provided some useful functions for parsing the output from BSJ identification software.
#load the BSJ files
BSJ_files_prefix<-paste0(system.file("extdata", package = "CYCLeR"),"/ciri_")
ciri_table<-parse_files(sample_table$sample_name,BSJ_files_prefix,"CIRI")
colnames(ciri_table)<-c("circ_id", "sample1_75","sample2_75","sample3_75","sample4_75")
ciri_bsjs<-process_BSJs(ciri_table,sample_table)
# i would suggest combine the output of pipelines using different mapping tools
BSJ_files_prefix_CE<-paste0(system.file("extdata", package = "CYCLeR"),"/CE_")
ce_table<-parse_files(sample_table$sample_name,BSJ_files_prefix_CE,"CE")
colnames(ce_table)<-c("circ_id", "sample1_75","sample2_75","sample3_75","sample4_75")
ce_bsjs<-process_BSJs(ce_table,sample_table)
#we need to unify the results from the BSJ identification and counting
table_circ<-combine_two_BSJ_tables(ce_bsjs,ciri_bsjs)
#further downstream we need just the mean values for enriched samples
table_circ<-table_circ[,c("chr","start","end","meanRR")]
colnames(table_circ)<-c("chr","start","end","count")
#combine
BSJ_set<-union(ciri_bsjs$circ_id,ce_bsjs$circ_id)
BSJ_set<-BSJ_set[!grepl("caffold",BSJ_set)]
#just in case
BSJ_set<-BSJ_set[!grepl("mitochondrion",BSJ_set)]
###############################################################
#converting the BSJ set into a GRanges object
BSJ_gr<-make_BSJ_gr(BSJ_set)

The parse.files can work with CIRI2, CIRCexplorer2 or TSV file. Naturally a person may have different
criterion for correct BSJs based on different criteria. It is not an issue as long as the data is presented in the
following template:
head(table_circ)

## # A tibble: 6 x 4
## chr start end count
## <chr> <chr> <chr> <dbl>
## 1 3L 24725824 24726292 435115.
## 2 3L 24725824 24728508 9150.
## 3 3L 24728297 24734187 171930.
## 4 3L 24728297 24741000 7992.
## 5 3R 4622509 4628349 64579.
## 6 3R 4626973 4628349 160551.

If you use parse_files with input_type=="tsv", you can just edit the table with:
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table_circ<-table_circ%>%separate(circ_id, into=c("chr","start","end","strand"),sep = "_")

Transcript assembly

BSJ loci extraction (optional) Prior to the feature detection the files need to be trimmed to speed up
the process. Afterwards the transcript features (e.g. exons, junctions) are identified with SGSeq [5]. The
files are processed with samtools [6]. The trimmed files are also useful for long term local storage.
###################################################
samtools_prefix<-""
trimmed_bams<-filter_bam(BSJ_gr,sample_table,samtools_prefix)
sc@listData[["file_bam"]]<-trimmed_bams

Annotation info (optional) The use of the TxDb package is to annotate the identified features. The
annotation step is not mandatory, but it does provide useful information. I can also be used to avoid de novo
feature detection. In the Docker container the annotation library is provided.
####################################################
#get the gene/transcript info
library("TxDb.Dmelanogaster.UCSC.dm6.ensGene")
#restoreSeqlevels(txdb)
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
txdb <- keepSeqlevels(txdb, c("chr2L","chr2R","chr3R","chr3L","chr4","chrX","chrY"))
seqlevelsStyle(txdb) <- "Ensembl"
gene_ranges <- genes(txdb)
txf <- convertToTxFeatures(txdb)
#asnnotation as sg-object
sgf <- convertToSGFeatures(txf)

Feature identification with SGSeq The feature detection is based on the SGSeq package. There are 3
options to approach the problem. The default function parameters requires a lot of RAM and processing time.
The second option allows using Rsamtools which=BSJ_gr function, which focuses the reconstruction solely
on the pre-selected regions. This significantly speeds up the feature detection and lowers RAM requirements.
It is less reliable than the default parameters, however, it is very convenient for a quick test. Additionally,
features=txf can be provided to indicate that no de novo assembly should be done. Naturally, that is the
fastest approach, but obviously lacking.
#option 1: for fast computer, no RAM limitations, time is not a factor
sgfc_pred <- analyzeFeatures(sc, min_junction_count=2, beta =0.1 ,

min_n_sample=1,cores=1,verbose=F)

#option 2: for moderate computer, limited RAM, speed is of the essence
sgfc_pred <- analyzeFeatures(sc, which=BSJ_gr, min_junction_count=2, beta =0.1 ,

min_n_sample=1,cores=1,verbose=F)

#option 3: for a toaster with attached monitor
sgfc_pred <- analyzeFeatures(sc, which=BSJ_gr, features=txf, min_junction_count=2,

beta =0.1 , min_n_sample=1,cores=1,verbose=F)
#annotation (optional)
sgfc_pred <- SGSeq::annotate(sgfc_pred, txf)

SGSeq feature plotting function can be used for visual representation of the control VS enriched difference
plotFeatures(sgfc_pred, geneID = "1",assay = "counts",color_novel = "red",

include = "both",tx_view=F,Rowv=NA, square=T)
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Re-couting and Processing the features

I prefer the RSubread [7] counting method, thus I re-count the identified exon features. Later the SGseq
counted junctions are used. The features that are depleted in circRNA enriched samples need to be removed.
CYCLeR provides 2 approaches for identifying depleted features: DEU strategy and simple comparison of
normalized coverage values. The simple comparison turns on automatically only due to the lack of replicates.
#extract BSJ-corrected splice graphs (sg)
full_sg<-overlap_SG_BSJ(sgfc_pred,BSJ_gr,sgf) #includes linear and circular features
# we have made new feature set so we need to recount the exons
full_fc<-recount_features(full_sg,sample_table)#fc==feature counts
# time to prepare the circular splice graph

The sequences of the exons are needed for the subsequent steps. The genome sequence is provided with a
BSgenome package. For the tutorial the Docker image has the needed library provided.
#get the correct genome for sequence info
#requires the appropriate BSgenome library
library(BSgenome.Dmelanogaster.UCSC.dm6)
bs_genome=Dmelanogaster
circ_sgfc<-prep_circular_sg(full_sg, full_fc,sgfc_pred, bs_genome, BSJ_gr, th=15)

The circRNA exon features are stored in SummarizedExperiment format

Transcript prediction

Transcript prediction is processed one samples at a time. The transcript sets from different samples are then
merged.
qics_out1<-transcripts_per_sample(sgfc=circ_sgfc,BSJ_gr = BSJ_gr,"sample3_75")
qics_out2<-transcripts_per_sample(sgfc=circ_sgfc,BSJ_gr = BSJ_gr,"sample4_75")
qics_out_final<-merge_qics(qics_out1,qics_out2,sgfc_pred)

Output and Quantification
CYCLeR transcript output

CYCLeR provides 3 forms of output of the annotated transcript: a comprehensive flat file, a GTF-like file,
and FASTA file.
gtf.table<-prep_output_gtf(qics_out_final,circ_sgfc)
write.table(qics_out_final[,-9],file = "dm_circles.txt", sep = "\t",

row.names = F, col.names = T,quote=F)
qics_out_fa<-DNAStringSet(qics_out_final$seq)
names(qics_out_fa)<-qics_out_final$circID

#prepping the circRNA sequences for quantification
extended_seq<-paste0(qics_out_final$seq,substr(qics_out_final$seq,1,30),

strrep("N",mean(sc@listData$frag_length[sample_table$treatment=="enriched"])))
qics_out_fa_extended<-DNAStringSet(extended_seq)
names(qics_out_fa_extended)<-qics_out_final$circID
writeXStringSet(qics_out_fa_extended,'circles_seq_extended_padded.fa')

If you have a known set of circRNA in FASTA format the CYCLeR output can be combined with it.
fasta_circ<-readDNAStringSet("...")
final_ref_fa<-merge_fasta(qics_out_fa,fasta_circ)
writeXStringSet(final_ref_fa,'...')
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The same function can be used for merging with known linear transcript sequences for the quantification step.
fasta_lin<-readDNAStringSet("...")
final_ref_fa<-merge_fasta(qics_out_fa_extended,fasta_lin)
writeXStringSet(final_ref_fa,'for_kallisto.fa')

CYCLeR quantification

The final transcript abundance estimation is performed with kallisto. An extended and padded circRNA
reference sequences are build and combined with linear RNA sequences kallisto index is created to be used
for any desired sample quantification.
#alternative way of merging linear and circular sequences
cat linear_transcripts.fa circles_seq_extended_padded.fa > for_kallisto.fa
#Kallisto comands
sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

kallisto index -i kallisto_index -k 31 for_kallisto.fa
sudo docker run -v <local_dir>:/usr/local stiv1n/cycler.prerequisites \

kallisto quant -i kallisto_index -o ./ <sample_name>_1.fastq <sample_name>_2.fastq

1. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature
Biotechnology. 2016;34:525–7.
2. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq
aligner. Bioinformatics. 2013;29:15–21.
3. Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Briefings in
bioinformatics. 2018;19:803–10.
4. Zhang X, Dong R, Zhang Y, Zhang J, Luo Z, Zhang J, et al. Diverse alternative back-splicing and
alternative splicing landscape of circular RNAs. Genome Research. 2016;1277–87.
5. Goldstein LD, Cao Y, Pau G, Lawrence M, Wu TD, Seshagiri S, et al. Prediction and quantification of
splice events from RNA-seq data. PLoS ONE. 2016;11:1–8.
6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
and SAMtools. Bioinformatics. 2009;25:2078–9.
7. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment
and quantification of RNA sequencing reads. Nucleic Acids Research. 2019;47.
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7.2 Supplementary tables and figures

Organism Reference genome Annotation Source

Fruit fly BDGP6 (dm6) BDGP6.87 Ensembl Top level Assembly
Mouse GRCm39 (mm39) GRCm39.104 Ensembl Primary Assembly
Human GRCh38 (hs38) GRCh38.101 Ensembl Top level Assembly

Table 7.1: Summary of reference genome and annotation versions used in the
work for Chapter3. The source of all files is the Ensembl FTP server. Note: for
CYCLeR feature annotation, the corresponding R TxDb package was used.

Organism Reference genome Annotation Source

Mouse GRCm38 (mm10) GRCm38.101 Ensembl Top level Assembly
Human GRCh38 (hs38) GRCh38.101 Ensembl Top level Assembly

Table 7.2: Summary of reference genome and annotation versions used in the
work for Chapter4. The source of all files is the Ensembl FTP server. Note: for
CYCLeR feature annotation, the corresponding R TxDb package was used.

149



7.2. SUPPLEMENT CHAPTER 7. APPENDICES

−4

−2

0

2

4

6

−2 0 2 4
D1

D
2

2 
h

2 
h

4 
h 6 

h

8 
h 10
 h

4 
h 12

 h

14
 h

14
 h

16
 h

18
 h

20
 h

20
 h

22
 h

24
 h

24
 h

0.
45

0.
50

0.
55

0.
60

0.
65

adult
cell line
embryo
larva
pupa
WPP

carcass
CNS
digestive system
embryo
gut
head
imaginal discs
midgut
ovaries
salivary glands
testes
wing disk

Stage

Cell type

(B)(B)(A)

Figure 7.1: Sailfish-cir applied to Lai lab 2014 dataset. Extension from the
corresponding figure in the manuscript. In part (A), is shown the UMAP-dimensional
scaling of the abundances generated by sailfish-cir of all 103 samples from the dataset. In
part (B), we use the abundances computed by sailfish-cir to plot a dendrogram of the embryo
stages subset based on between-sample distance calculations. sailfish-cir has the same
quantification strategy as CYCLeR, but lacks a proper assembly algorithm. The results
indicate that the quantification strategy itself is not sufficient for improved clustering and
the correct sequences of the isoforms are imperative for correct quantification. Reproduced
from Stefanov et al. (2022)
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Figure 7.2: Heatmap of most variable circRNAs for the D. Lai dataset. CYCLeR
can identify circRNAs that are specific for a particular stage of development or a particular
cell type. Furthermore, it can differentiate circRNAs specific for the CNS or circRNAs
specific for adult flies. We can also conclude that embryo derived cell lines show a similar
pattern as early stage embryo samples.Reproduced from Stefanov et al. (2022)
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Figure 7.3: Fly transcripts overlap Overlap between the sets of transcripts that are
assembled by CYCLeR. The data from replicates is merged into one set.Reproduced from
Stefanov et al. (2022)

152



7.2. SUPPLEMENT CHAPTER 7. APPENDICES

1

10

100

1000

0 10 20 30

co
un

t

1

3

10

30

300 1000 3000 10000

co
un

t

1

10

100

1000

0 10 20 30 40

co
un

t

1

3

10

30

300 1000 3000 10000

co
un

t

Number of exons

Number of exons

Length of transcripts

Length of transcripts

(A) (B)

(D)(C)

Figure 7.4: Statistics of real data assembly. The results show the reconstruction of
the PA1 dataset (A) and (B) and the accumulated data of the fruit fly dataset (C) and
(D). (A) and (C) show the number of exons per transcript and (B) and (D) show the
length of transcript on a logarithmic scale. Reproduced from Stefanov et al. (2022)
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Gene Locus of circRNA 2 CYCLeR

CORO1C Chr12:108652271-108654410 0.0008 1.28

FKBP8 Chr19:18539370-18539720 0.0015 1.79 1.37
KIAA0368 Chr9:111386376-111391824 0.0015 1.36 2.325

SMO Chr7:129205202-129206587 0.0015 3.07 3.772
ARHGAP12 Chr10:31908171-31910563 0.0030 4.01 5.422

HIPK3 Chr11:33286412-33287511 0.0058 7.25 9.149

CAMSAP1 Chr9:135881632-135883078 0.0057 10.83

ZBTB46 Chr20:63775677-63790790 0.0030 3.5 4.404
CAPRIN1 Chr11:34071725-34076642 0.0008 0.6 1.564

CDK8 Chr13:26400452-26401624 0.0005 0.26 0.083
MGA Chr15:41668827-41669958 0.0065 4.43 3.983

FAM13B Chr5:137985256-137988315 0.0055 2.22 3.409
PLEKHM3 Chr2:207976650-207977586 0.0029 2.05 1.186

Correlation 0.75 0.67

qPCR 
(circRNA) 

Iso1 - 1.048
Iso2 - 0.047

Iso1 - 3.456
Iso2 – 0

CLEAR

Figure 7.5: Results for PA1 RNA-seq data. All values in the table correspond to
averages between replicates. The yellow rows indicate the filtered items from the benchmark
due to known multiple isoforms. The correlation cells show the Pearson product correlation
of the filtered values of qPCR results and estimated abundances. Note that the CAMSAP1
Iso2 has zero value due to the fact that with default parameters, CYCLeR fails to recover
the more abundant isoform. This is due to multiple overlapping circRNA isoforms, whose
reconstruction leads to premature depletion of the reconstruction algorithm. Reproduced
from Stefanov et al. (2022)
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Command logs:

Mapping:
STAR --runThreadN 8 --chimSegmentMin 15 --chimScoreMin 1 --alignIntronMax 100000 --outFilterMismatchNmax 4
--alignTranscriptsPerReadNmax 10000 --outFilterMultimapNmax 500 --limitOutSAMoneReadBytes 300000

bwa mem -T 19

tophat -o <.> -p 4 -G <gtf> <fasta>

BSJ identification:
CIRI_v2.0.3.pl -I <sam> -O ./ciri_$i -T 4 -F <fasta> -A <gtf>

CIRCExplorer2 parse -t STAR Chimeric.out.junction
CIRCExplorer2 annotate -r <annot_flat> -g <fasta> ./circ_out

CircRNA characterization/assembly:

CIRI_AS_v1.2.pl -S ./$i.sam -C ./ciri_$i -O ./ciri_as_$i -F <fasta> -A <gtf> -D yes
java -jar ./CIRI-full_v2.0/CIRI-full.jar RO1 -1 ./${i}_1.fasta -2 ./${i}_2.fasta -o ./ciri_ro_$i
bwa mem -T 19 /scratch/AG_Meyer/fly_data/dm6/genome_ensembl/bwa_index/bwa_index ./ciri_ro_${i}_ro1.fq> ./${i}_ro1.sam
java -jar ./CIRI-full_v2.0/CIRI-full.jar RO2 -r /<fasta> -s ./${i}_ro1.sam -l 250 -o ./${i}_
java -jar ./CIRI-full_v2.0/CIRI-full.jar Merge -c ./ciri_$i -as ciri_as_${i}_jav.list -ro ./${i}__ro2_info.list -a <gtf> -r <fasta> -o ./${i}_
java -jar ./CIRI-full_v2.0/CIRI-vis.jar -i ./${i}__merge_circRNA_detail.anno -l ciri_as_${i}_library_length.list -r <fasta> -min 2 -o
vis_out_${i} -d stdir_${i}

CIRCexplorer2 assemble -r <annot_flat> -m <path> -o assemble
CIRCExplorer2 denovo --as --rpkm --tophat-dir ./sample1 -a ./sample2 -r <annot_flat> -g <fasta> ./circ_out

CircRNA quantification:
CIRCExplorer2 results across all samples are accumulated into a single bed file - for_sailfish.bed
python ./sailfish-cir/sailfish_cir.py -g <fasta> -a <gtf> -1 ${i}_1.fastq -2 ${i}_2.fastq --bed for_sailfish.bed -o ./${i}

CYCLeR:
CYCLeR runs are performed as described in the manual: http://www.e-rna.org/cycler/

CIRI-long:

CIRI-long is run as shown in Methods Zhang et al .2021 (16).

Figure 7.6: Overview of commands used Information about the annotation and
parameters used for the tools [49, 50]. In this log, ”i” stands for file prefix.
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