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Abstract
The discovery of useful molecules and new molecular phenomena is one of the

cornerstones of human progress. Until the last two centuries, this process was largely
driven by empirical evidence and serendipitous discovery. The understanding of
physical phenomena at the macro level, driven by Newtonian mechanics, electro-
magnetism, and thermodynamics, and at the micro level, driven by quantum me-
chanics, has allowed for a more targeted approach to the discovery of new func-
tional molecules for various applications. Despite these advances, the pace at which
such molecules are discovered lags behind the rate of demand for green catalysts,
sustainable materials, and effective medicines. A significant factor influencing this
is the vastness of the chemical space of molecules. It has been approximated that
within this chemical space, there exist approximately 1060 organic molecules (with
a molecular weight less than 500, containing atoms H, C, N, and S). This count will
be several magnitudes higher if larger molecules and extended structures are taken
into account. Cataloging the properties of these molecules is not currently possible
with our computational existing capabilities, but it is essential to find better mate-
rials and more effective drugs. As a result, the search for methods that can help
speed up the assessment of the properties of molecules and accelerate the discov-
ery of new molecules is an issue of paramount importance in modern chemistry.
Machine Learning (ML) algorithms for predicting chemical properties represent an
important step in this direction. Not only are ML algorithms capable of learning
accurate structure-property relationships, but they are also faster than experiments
or quantum chemical simulations. Furthermore, some ML methods leverage the
structure-property relationships learned from data to generate novel molecules with
desired properties, providing a cost-efficient way to identify useful molecules for
laboratory synthesis.

The spectrum of a molecule is one such important molecular property that helps
scientists identify different molecules without destroying them. Amongst the var-
ious techniques of spectroscopy, X-ray Absorption Spectroscopy (XAS) is a well-
established technique that provides information about the structure and compo-
sition of various materials. The identification of materials using XAS, however,
is not straightforward and requires using a combination of experimental data and
quantum-chemical calculations performed on large computing clusters. These com-
putational evaluations are resource-intensive and one often needs several such cal-
culations to achieve successful molecular identification. Access to methods that can
accelerate the prediction of spectra through structure-property relationships in spec-
troscopy can greatly enhance the ability to identify compounds synthesized in lab-
oratories. Therefore, a major part of this dissertation is dedicated to employing
and understanding ML methods that speed up the prediction of spectra by learn-
ing structure-property relationships from data. This work lays a foundation for fu-
ture applications, where ML models can be used in experimental setups to identify
molecules from spectra without human intervention, thereby helping accelerate the
synthesis and identification of novel compounds. One downside of ML applications
is the lack of model interpretability, which decreases the trust of the end-users. In-
vestigations in this dissertation focus on devising a technique that helps humans
understand why ML models make certain predictions, thereby helping build trust
between the ML model and its end user.

The creation of chemical data for ML applications itself usually requires quan-
tum chemical calculations that involve solving the Schrödinger equation. The time-
dependent Schrödinger equation (TDSE) helps understand the behavior of quantum
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systems and allows for the calculation of time-dependent properties of molecules.
The area of research that concerns itself with techniques for solving the TDSE is
termed quantum dynamics. Using computer simulations of numerical methods for
solving this equation, researchers have modeled several quantum dynamical sys-
tems, which have improved our understanding of photo-catalysis (reactions driven
by light), surface phenomena such as chemisorption, and chemical reaction path-
ways. The second part of this dissertation focuses on using ML methods to solve the
TDSE.

The TDSE, which is a partial differential equation (PDE) in space and time, is
one of the many fundamental equations that help model the behavior of physical
systems. Some other notable PDEs that play an important role in physics and en-
gineering are the Navier-Stokes equation for modeling fluids, the Heat equation in
thermodynamics, and the wave equation in acoustics. Numerical techniques for
solving PDEs are based on the discretization of the coordinate space into finite el-
ements. As the size and dimensions of the grids increase, these methods become
computationally expensive. As a result, solving PDEs such as the TDSE for large
molecular systems is computationally demanding or even impossible. Advances in
ML for solving PDEs aim at accelerating the solution of PDEs through a data-driven
approach. In the second part of this thesis, ML models were trained on simulation
data from quantum dynamical systems. Once trained, these models are capable of
providing accurate descriptions of the behavior of systems that were not seen dur-
ing training. A key advantage of such methods is their ability to generate novel
simulations accurately and at high speed. As a proof of concept, the work in this
dissertation shows how this speed can be exploited for downstream applications in
quantum dynamics.
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Zusammenfassung
Die Entdeckung funktionaler Moleküle und neuer molekularer Phänomene ist ei-
ner der Eckpfeiler des menschlichen Fortschritts. Bis vor zwei Jahrhunderten wurde
dieser Prozess weitgehend durch empirische Beweise und zufällige Entdeckungen
vorangetrieben. Das durch die Newtonsche Mechanik, den Elektromagnetismus
und die Thermodynamik geförderte Verständnis physikalischer Phänomene auf der
Makroebene und das durch die Quantenmechanik ermöglichte Verständnis auf der
Mikroebene haben ein gezielteres Vorgehen bei der Entdeckung neuer funktionel-
ler Moleküle für verschiedene Anwendungen ermöglicht. Trotz dieser Fortschritte
bleibt das Tempo neuer Entdeckungen solcher Moleküle hinter dem Bedarf an um-
weltfreundlichen Katalysatoren, nachhaltigen Materialien und wirksamen Medika-
menten zurück. Ein wichtiger Faktor, der dies beeinflusst, ist die enorme Anzahl der
existierenden Molekülstrukturen. Schätzungen zufolge gibt es etwa 1060 organische
Moleküle (mit einem Molekulargewicht von weniger als 500 und den Atomen H,
C, N und S ). Diese Zahl ist noch deutlich höher, wenn größere Moleküle und wei-
tere mögliche Strukturen berücksichtigt werden. Die vollständige Katalogisierung
der Eigenschaften dieser Moleküle ist mit den derzeit verfügbaren Methoden nicht
möglich, aber für die Suche nach besseren Materialien und wirksameren Arznei-
mitteln ist sie unerlässlich. Daher ist die Suche nach Methoden, die eine schnellere
Einschätzung der Eigenschaften von Molekülen ermöglichen und damit die Entde-
ckung neuer Moleküle beschleunigen können derzeit von größter Bedeutung. Al-
gorithmen des maschinellen Lernens (ML) zur Vorhersage chemischer Eigenschaf-
ten sind ein wichtiger Schritt in diese Richtung. ML-Algorithmen sind nicht nur
in der Lage, genaue Struktur-Eigenschafts-Beziehungen zu lernen, sondern sie sind
auch schneller als Experimente oder quantenchemische Simulationen. Darüber hin-
aus nutzen einige ML-Methoden die aus den Daten erlernten Struktur-Eigenschafts-
Beziehungen, um neuartige Molekülstrukturen mit den gewünschten Eigenschaften
zu erzeugen. Dies stellt eine kosteneffiziente Möglichkeit zur Identifizierung neuer
funktionaler Moleküle dar, die anschließend im Labor synthetisiert werden können.

Das Spektrum eines Moleküls ist eine wichtige molekulare Eigenschaft, die Wis-
senschaftlern hilft, die Eigenschaften von Molekülen zu identifizieren, ohne sie zu
zerstören. Unter den verschiedenen Techniken der Spektroskopie ist die Röntgenab-
sorptionsspektroskopie (X-ray absorption spectroscopy, XAS) eine etablierte Technik,
die Informationen über die Struktur und Zusammensetzung verschiedener Mate-
rialien liefert. Die Identifizierung von Materialien anhand von XAS ist jedoch nicht
einfach und erfordert eine Kombination aus experimentellen Methoden und quan-
tenchemischen Berechnungen, die auf großen Computerclustern durchgeführt wer-
den. Die rechnerischen Auswertungen sind ressourcenintensiv und können mehre-
re Iterationen erfordern, um zu einer erfolgreichen molekularen Identifizierung zu
gelangen. Der Zugang zu Methoden, die die Vorhersage von Struktur-Eigenschafts-
Beziehungen in der Spektroskopie beschleunigen, kann die Fähigkeit zur Identifizie-
rung von in synthetischen Verbindungen erheblich verbessern. Daher ist ein großer
Teil dieser Arbeit der Anwendung von ML-Methoden gewidmet, die die effiziente
Vorhersage von Spektren durch das Lernen von Struktur-Eigenschafts-Beziehungen
aus Daten ermöglichen. Diese Arbeit legt den Grundstein für künftige Anwendun-
gen, bei denen ML-Modelle in Versuchsaufbauten verwendet werden können, um
Moleküle aus Spektren ohne menschliches Eingreifen zu identifizieren und so die
Synthese und Identifizierung neuer Verbindungen zu beschleunigen. Ein Nachteil
von ML-Anwendungen ist die mangelnde Interpretierbarkeit der Modelle, was das
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Vertrauen der Endnutzer und manchmal auch die Genauigkeit der ML-Modelle be-
einträchtigt. Weitere Untersuchungen im Rahmen dieser Arbeit konzentrieren sich
auf die Entwicklung einer Technik, die den Menschen hilft zu verstehen, warum
ML-Modelle bestimmte Vorhersagen treffen, und so dazu beiträgt, das Vertrauen
der Endnutzer in die ML-Modelle zu stärken.

Die Erstellung chemischer Daten selbst für ML erfordert normalerweise quan-
tenchemische Berechnungen, bei denen die Schrödinger-Gleichung gelöst wird. Der
zweite Teil dieser Arbeit konzentriert sich auf die Verwendung von ML zur Lösung
der zeitabhängigen Schrödinger-Gleichung (time-dependent Schrödinger equation, TD-
SE), die nicht nur zum Verständnis des Verhaltens von Quantensystemen beiträgt,
sondern auch die Berechnung zeitabhängiger Eigenschaften von Molekülsystemen
ermöglicht. Das Forschungsgebiet, das sich mit Techniken zur Lösung der TDSE
beschäftigt, wird als Quantendynamik bezeichnet. Durch die Anwendung numeri-
scher Methoden zur Lösung dieser Gleichung haben Forschende verschiedene quan-
tendynamische Systeme modelliert, die unser Verständnis der Photokatalyse (durch
Licht ausgelöste Reaktionen), von Oberflächenphänomenen wie der Chemisorption
und von chemischen Reaktionswegen maßgeblich verbessert haben.

Die TDSE ist eine partielle Differentialgleichung (partial differential equation, PDE)
in Raum und Zeit und ist eine der vielen grundlegenden Gleichungen, die dazu bei-
tragen, das Verhalten von chemischen Systemen zu modellieren. Einige andere nen-
nenswerte PDEs, die in der Physik und im Ingenieurwesen eine wichtige Rolle spie-
len, sind die Navier-Stokes-Gleichung für die Modellierung von Flüssigkeiten, die
Wärmeleitungsgleichung in der Thermodynamik und die Wellengleichung in der
Akustik. Numerische Verfahren zur Lösung von PDEs beruhen auf der Diskretisie-
rung des Koordinatenraums in eine endliche Zahl von Elementen. Mit ansteigender
Größe und Dimension des Gitters werden diese Methoden zunehmend rechenin-
tensiv. Infolgedessen ist die Lösung von PDEs wie der TDSE für große molekulare
Systeme sehr aufwändig oder sogar unmöglich. Die Anwendung von ML für die
Lösung von PDEs zielt darauf ab, sie durch einen datengetriebenen Ansatz zu be-
schleunigen. Im zweiten Teil dieser Arbeit wurden ML-Modelle auf Simulationsda-
ten von quantendynamischen Systemen trainiert. Die so trainierten Modelle sind
anschließend in der Lage, genaue Beschreibungen des Verhaltens von Systemen zu
liefern, die während des Trainings nicht gesehen wurden. Ein entscheidender Vorteil
solcher Methoden ist ihre Fähigkeit, neue Simulationen mit hoher Genauigkeit und
Geschwindigkeit zu berechnen. In dieser Arbeit wird gezeigt, wie diese Methode
für nachgelagerte Anwendungen in der Quantendynamik genutzt werden kann.
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Chapter 1

Introduction

The progression of science is often categorized into four paradigms [1, 2], each reflec-
tive of the dominant techniques that characterized scientific investigations during
that era. While early science was dominated by experimental discovery, a founda-
tional understanding of scientific phenomena developed only after the discovery of
laws that led to the rise of theoretical science. As theoretical models became too
complicated to solve for humans, simulations on computers followed giving rise to
the age of computational modeling. The vast amounts of data that can be gener-
ated from these computer models have enabled the rise of the fourth paradigm of
scientific development, the data-driven exploration of scientific phenomena.
Computational simulations based on quantum chemical methods are an integral
part of modern chemical research. Various disciplines within this field have not
only helped understand the underlying science behind various molecular phenom-
ena but have also aided in the design of structure-property relationships [3] that ul-
timately accelerate the design of novel molecules. The ability to reliably understand
and evaluate the chemical properties of structures without relying on expensive ex-
perimental investigations has made computational chemistry increasingly crucial to
fields such as drug discovery and materials research. While the past century has
been a testament to these advances made in quantum chemistry, driven by meth-
ods and algorithms aimed at solving the Schrödinger equation [4], existing com-
putational capabilities are still deficient for providing quick and accurate solutions
for large molecular systems, or a large number of small systems. With the grow-
ing demand for novel materials to support human technological development and
the search for novel drugs to cure human diseases while maintaining sustainability,
the need to develop fast and accurate methods for predicting chemical properties is
greater than ever.
Data-driven chemistry offers a promising way out of these problems. Machine Learn-
ing (ML) methods have already shown that they can accurately model relationships
from chemical data [5]. In contrast to the conventional methods of quantum chem-
istry, these methods do not suffer from computational issues that lead to high eval-
uation times for large molecular systems. This ability to infer complex relationships
from various types of chemical data without suffering from computational scaling is-
sues has led to the rapid rise of ML applications in the prediction of various chemical
properties [6, 7], predicting chemical reaction outcomes [8, 9], generating potential
energy surfaces [10], and molecular dynamics [11, 12].
This dissertation explores the use of ML for two applications in computational chem-
istry, i.e. spectroscopy and quantum dynamics. The first part is devoted to the gen-
eration of structure-property relationships for the prediction of molecular spectra
using ML. Understanding the decision-making process of ML models is an ardu-
ous task. Therefore, an attempt is made in this thesis to develop a method that can
explain the working of ML models in spectroscopy. The second application of ML
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in this dissertation explores the solution of the time-dependent Schrödinger Equa-
tion (TDSE) using a data-driven approach. The forthcoming sections of this chapter
will be devoted to providing a brief introduction to each of these topics. Chapters
2-6 provide details on the methods of computational chemistry and the ML frame-
works that were employed during this dissertation. The results of the dissertation
are gathered in Chapter 7.

1.1 Machine Learning for the prediction of spectra

Molecules have been identified from their characteristic experimental spectroscopic
fingerprints for more than a century. The basic principle underlying spectroscopy is
the energy transfer between a photon and the material under investigation. The in-
teractions with different energy photons cause bonds in molecules to vibrate or lead
to electronic excitations which lend them different fingerprints allowing for their
identification in different energy ranges. These varied effects arising from interac-
tions with photons of different energies have led to the rise of different spectroscopic
techniques such as X-ray, infrared (IR), Raman, ultraviolet (UV), etc.
The knowledge of spectroscopic fingerprints precedes the development of quantum
mechanics with techniques such as the Rydberg formula [13, 14] being used for un-
derstanding the absorption spectra of alkali metals. However, the rapid develop-
ment of quantum mechanics in the early 1900s helped provide interpretations of
the spectra from a molecular structure perspective, thereby making spectroscopy
a crucial technique for identifying structures of complex materials. Investigation
of molecular spectra today is a combination of experimental and theoretical meth-
ods. Once a spectral fingerprint is obtained from experiments, using a combination
of other ancillary techniques and human expertise several candidate structures to
which the spectrum could belong are identified. Then using accurate computational
simulations, spectra are generated for candidate molecules, and the closest matching
spectrum is used as a confirmation of the candidate structure.
The computational simulation techniques based on quantum chemistry methods for
predicting spectra have been developed and fine-tuned over the past years, and are
central to the process of structural identification. Prominent theoretical methods of
spectroscopy usually employ quantum chemical techniques based on Density Func-
tional Theory (DFT) or Hartree Fock methods, which scale in the order of N3 to
N4 [15, 16] (where N is the number of electrons in the system). This poor scaling
with respect to system size makes the simulation of a spectrum for large molecules
a computationally expensive and time-consuming process. A structure-property re-
lationship that can quickly and accurately provide the spectrum of a molecule given
its structure, therefore, can be especially useful when a molecule contains a large
number of atoms, and the number of possible candidate structures is large. An ML
method that can accurately model the structure-property relationship of molecules
and their spectra is therefore of immense value in various chemical applications to
automatically screen over several candidates quickly and provide the closest match-
ing spectrum to the one obtained from an experiment. This dissertation investigates
structure-property relationships for two types of spectra, an excitation spectrum ob-
tained from the calculation of orbital energies of small molecules and X-ray absorp-
tion spectra (XAS) of molecules. A discussion of the former is provided later in this
dissertation, while the next paragraph focuses on the technique of XAS.
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X-ray spectroscopic techniques such as XAS are one of the most prominent tools for
the identification and characterization of materials. The development of X-ray spec-
troscopy can be traced to the discovery of the photoelectric effect [17], with X-ray
Photoemission Spectroscopy (XPS) [18] being the first technique formally developed
for the investigation of material composition. XPS originates when the bound core
electrons of a molecule are excited to a vacuum, ionizing the system. XPS depends
on the excitation energies of the atoms in different environments. When the core
electrons of a molecule are excited to a higher unoccupied state instead of a vac-
uum, however, the XAS of a molecule is obtained. Unlike XPS, XAS depends on the
unoccupied states of the molecule giving more insights into the chemical structure
surrounding the atom of interest than XPS [19]. The origin of XAS from an excita-
tion caused by an incident photon is schematically depicted in Figure 1.1. The figure
depicts the core and unoccupied orbitals of a molecule interacting with an incident
photon. This photon in the XAS range excites the core electrons of the molecule,
which occupy the low-lying energy levels in the figure. Once excited, the electron
has access to a variety of unoccupied orbitals which it can end up in, depending
on the energy of the impacting photon. These varied electron transitions lead to
the absorption spectrum shown on the top right side of the figure. Computational
methods for evaluating XAS require calculations of transition energies between the
different occupied and unoccupied states. As the number of atoms in a molecule
increases, so does the number of electrons, and the number of orbitals, requiring a
large number of calculations to obtain these energies. As a result, the calculation of
XAS of large structures is computationally expensive. ML methods predicting XAS
can help predict quick and accurate spectra, as well as improve our understanding
of the technique.

FIGURE 1.1: A pictorial description of the emergence of an X-ray absorption spectrum. An electron
excited by an incident photon can be excited to a wide variety of unoccupied orbitals. Different
transitions lead to the formation of various peaks in the final XAS spectrum, as depicted in the top
right part of the figure.
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There are several recent works where ML has been used for the prediction of UV-Vis
[20–22], IR [23–25] and Raman spectra [26–28]. Ghosh et al. [29] presented a compre-
hensive benchmarking of various ML methods for spectroscopic predictions in their
work. ML methods have also been successfully employed for the characterization
of different atomic environments that appear as peaks in the XAS spectrum [30–33].
Other recent investigations have also been made using ML to predict the XAS of
molecules [34–36]. Different types of ML architectures can be used for the prediction
of spectra (or any other chemical property).

1.2 Explaining XAS predictions made by ML models

With the increase in available computing power and datasets larger ML models are
now being trained for several applications every day. Such ML models are often neu-
ral networks with a large number of parameters. The complex scale of operations
between these parameters makes it humanly impossible to decode the decision-
making process of such models. Therefore, while we know that ML models excel
at developing relationships for large datasets understanding the reason for their ef-
fectiveness often is elusive. ML models that provide little to no insight into their
decision-making mechanisms are called black box models.
Using black box ML models without understanding them, can have adverse con-
sequences. An ML model can, for example, give incorrect decisions that have a
significant impact (e.g. in healthcare applications). These errors can arise if the ML
model develops misleading correlations caused by dataset bias or erroneously as-
signs excessive importance to features that, based on human understanding, should
not heavily impact decision-making. Thus quantifying model performance based on
a single accuracy parameter is not often sufficient to justify its usage in applications,
and knowing why the model made that prediction is essential [37]. Such knowledge
also enhances the trust between models, developers, and their users. It is for these
reasons that developing techniques that make ML model predictions interpretable
is crucial. For ML models being used in scientific applications interpretability can
become a source of knowledge by providing insights into relationships between fea-
tures in the input data and output predictions. Explainable Artificial Intelligence
(XAI) techniques are mathematical tools that help impart interpretability to these
otherwise black-box models. Several XAI approaches have already improved our
understanding of models used in natural language processing [38] and computer
vision [39]. These methods have also been successfully employed in various appli-
cations in chemistry to unravel the logic behind different ML models [40–46].
An essential element in developing an XAI approach is having access to a ground
truth logic, which serves as a means to validate the outcomes obtained from the
application of an XAI method. Such ground truths can be in the form of informa-
tion about active regions of a molecule that contribute to a property. As an exam-
ple, in an ML application predicting the solubility of molecules in a polar solvent,
the ground truth highlights groups that positively or negatively impact solubility.
Sometimes, such ground-truth logic can be obtained using empirical evidence or
is often composed of patterns that are easily obtainable using elementary chemical
rules. In contrast to this, developing a ground truth logic for properties such as spec-
tra is complicated. X-ray spectra can be especially difficult to interpret as they arise
from a combination of structural and physical features of a molecule. The second
project in this dissertation uses an XAI method to help understand the XAS predic-
tions made by GNNs. This is a first-of-its-kind approach that provides a recipe for
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using quantum chemical data for developing a ground truth logic and can also be
applied to ML models beyond spectroscopy.

1.3 Machine Learning for quantum dynamics

A large portion of research in quantum mechanics involves investigating phenom-
ena that consider stationary states of electrons in motion under the influence of the
electrostatic field of nuclei of molecules. The methods developed in these fields of
research can be used for the computation of properties such as ground state ener-
gies, dipole moments, orbital densities of systems, and so on. However, several
other properties and phenomena require solving the TDSE. Such situations arise in
the investigation of phenomena such as quantum tunneling [47], chemical reactions
[48], and first principles prediction of vibrational spectra [49].
The solution of the TDSE for systems at molecular, atomic, and subatomic systems
forms the basis of research in quantum dynamics. Many approaches have been de-
signed to efficiently solve the propagation of wavepackets representing quantum
mechanical systems changing in time. While these methods can accurately model
time-dependent phenomena, they scale poorly with the number of variables (de-
grees of freedom) of the system, limiting their usability for large systems. The Multi
Configuration Time Dependent Hartree (MCTDH) [50–52] method for high dimen-
sional quantum dynamics is one such method that uses several efficient procedures
for the successful modeling of quantum dynamical phenomena but suffers from scal-
ing issues that prevent its application to larger systems.
As an alternative, ML methods offer the possibility to learn wavepacket propagation
from datasets containing quantum dynamical simulations. This area of research in
ML, the data-driven solving of Partial Differential Equations (PDEs) has been suc-
cessfully used to model systems from the domains of fluid dynamics [53], geology
[54], and weather modeling [55]. Data-driven solutions of PDEs offer the ability
to predict simulations accurately without suffering from the scaling issues of con-
ventional solvers. The final project of this dissertation involves using a popular
ML framework from this domain, the Fourier Neural Operator (FNO) architecture
[56] to model solutions of the TDSE. The work done in this part of the dissertation
shows that FNO models can not only accurately model the quantum dynamics of
two model systems but also that their high speed of generating propagations for un-
seen data can be used for downstream applications, thus making them ideal low-cost
surrogate models for approximating quantum dynamical phenomena.
Inverse problems that involve exploring a set of initial conditions that lead to a de-
sired final state form an integral part of many research activities related to PDE solv-
ing. An example of such a task in quantum dynamics is laser pulse shaping, where
the goal is to attain a desired final state for a system using a laser pulse. Finding such
a laser pulse requires optimizing over a large number of system variables, which has
been traditionally tackled using methods of optimal control [57–59]. Alternatively,
such an optimization can be carried out using Bayesian methods [60]. These meth-
ods however require sampling through a large number of wavepacket propagations,
which can be time-consuming using conventional solvers. The high speed of ML
methods like FNO however allows for sampling quickly through a large number of
samples thereby making such Bayesian approaches viable. In this dissertation, the
Bayesian technique of Markov Chain Monte Carlo (MCMC) [61] is combined with a
trained FNO model to optimize a laser pulse shape which brings about a rotation in
a molecule.
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Chapter 2

Quantum chemical calculations of
spectra

The creation of the datasets used for ML applications in this dissertation relies on
quantum chemical methods based on Density Functional Theory (DFT) and Time-
Dependent Density Functional Theory (TDDFT). This chapter briefly recaps the con-
cepts and terminologies associated with DFT and TDDFT, their implementations in
modern software packages, and how these methods are used to obtain spectra that
are present in the datasets of this dissertation. For the discussion of DFT methods,
the content from the introductory chapters of textbooks by Koch and Holthausen
[62] and Parr and Yang [63] is referred to, while Gross and Maitra [64] and Fiolhais
et al. [65] were referred to, for the theory of TDDFT.

2.1 Hohenberg Kohn theorems

The Time Independent Schrödinger Equation (TISE) HΨ = EΨ is the foundation
of quantum chemical methods and offers a means to determine a system’s wave-
function Ψ and its corresponding energy E. While the Hamiltonian H theoretically
includes both electronic and nuclear parts, the Born-Oppenheimer approximation
provides a means to calculate the electronic wavefunction by solving the electronic
Hamiltonian. Solving this Hamiltonian provides a wavefunction for the electrons
of the molecular system. For a system with N electrons, the electronic wavefunc-
tion Ψ(r) has 3N positional variables corresponding to the positions of the electrons
in the system. While wavefunction based methods such as the Hartree-Fock (HF)
approach are useful for smaller systems, with an increase in system size the compu-
tational expenses that arise due to the 3N coordinates in the wavefunction, make the
HF and post-HF methods too computationally expensive for large molecules.
Hohenberg and Kohn [66] in 1968, formulated an alternative approach that obvi-
ates the need for entire wavefunctions and replaces it with an electron density ρ(r)
of the system which is a function of three spatial coordinates. The first of the two
Hohenberg-Kohn Theorems establishes a direct mapping between the electronic den-
sity resulting from an external potential, and the total energy E of the system, in the
form of a functional. The first theorem allows for calculating the energy of the sys-
tem as

EHK[ρ(r)] = Vne[ρ(r)] + T[ρ(r)] + Vee[ρ(r)] = FHK[ρ(r)] +
∫

ρ(r)vne(r)dr. (2.1)
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Here, the term Vne[ρ(r)] is a functional that represents the interaction potential be-
tween electrons and nuclei, T[ρ(r)] is the kinetic energy functional, and the electron-
electron repulsion is given by Vee[ρ(r)]. The potential energy due to interaction be-
tween the electrons and nuclei is the only term whose form depends on the sys-
tem (in terms of the number of electrons N, the nuclear charge, or the configura-
tion of electrons in the system.), while the other two terms which only depend on
the density are considered universal and independent of the configuration of the
system. These terms can therefore be collected as one functional termed the Ho-
henberg Kohn functional FHK[ρ(r)]. Theoretically, the Hohenberg-Kohn functional,
when provided with the density of a system gives out the expectation value asso-
ciated with the kinetic energy and electron-electron repulsion of the ground state
of the system. Access to this functional can provide the exact solution of the TISE,
completely independent of the system at hand. Such a functional however remains
elusive, and approximate functional mappings have been developed and fine-tuned
for various systems to accurately calculate chemical properties using DFT.
The electron-electron interaction term of the Hohenberg-Kohn functional can be
written as a sum of two parts, as shown below. The term J[ρ(r)] includes the Coulom-
bic electron-electron repulsion, while non-classical contributions arising out of self-
interaction and correlation factors are given by Encl [ρ(r)] as

Vee[ρ(r)] = J[ρ(r)] + Encl[ρ(r)] (2.2)

Incorporating this split of the electronic energy term into the calculation of the total
energy of the system leads to the equation

E[ρ(r)] = Vne[ρ(r)] + T[ρ(r)] + J[ρ(r)] + Encl[ρ(r)]. (2.3)

The second Hohenberg-Kohn Theorem states that the functional FHK gives the value
of the exact ground state energy of a system, only for the true density of the system,
thereby establishing a minimum bound to the energy of the system calculated using
the equation 2.3. The proof of this theorem follows the variational principle and is
similar to the lower bounds for ground state energy established in the wavefunction
regime of calculating ground state energies for the Schrödinger equation. While DFT
is in principle, an exact theory, the degree to which the functional is approximated
accurately determines how well it works in practice. The next section elaborates on
the practical aspects of DFT.

2.2 Kohn Sham Density Functional Theory

Besides the Encl[ρ(r)] term for incorporating the non-classical effects in electron-
electron interaction, another term that is not directly available for practical com-
putation using DFT is the kinetic energy term T[ρ(r)]. This is because in converting
from wavefunctions to densities, the access to the kinetic energy contribution from
the individual electron as an entity is lost. To account for this, Kohn-Sham DFT (KS-
DFT) [67] introduces a novel formulation of the density to model the kinetic energy
using an auxiliary system of non-interacting particle wavefunctions, similar to that
in Hartree-Fock or other wavefunction-based methods. The density of the system
now is defined as the sum of these densities of non-interacting particles as

ρ(r) =
N

∑
i=1

fi|Ψi(r)|2. (2.4)
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Introducing this form of density introduces an error in the evaluation of kinetic en-
ergy (which arises due to the non-interacting particle assumption) which needs to
be accounted for. This new density formulation leads to the governing equation of
KS-DFT, in terms of the non-interacting Kohn-Sham orbitals as

E[ρ(r)] =
N

∑
i=1

⟨ψi(r)|
(
−1

2
∇2 + vne(r)

)
|ψi(r)⟩+

1
2

∫
ρ(r)ρ(r′)
|r − r′| dr′ + Exc[ρ(r)]. (2.5)

The errors introduced by non-classical interaction and kinetic energy operators are
now collected in a single term, famously called the exchange-correlation functional
Exc. This is the only term in the equation 2.5 without an explicit functional form,
requiring the development of accurate approximations to evaluate the ground state
properties of molecules. The exchange-correlation term includes all the errors and
correlations that are unaccounted for in KS-DFT and therefore typically problem-
atic to evaluate. Several approaches exist to approach the development of accurate
exchange-correlation functionals, including experimental data, corroboration with
wave-function approaches, or physical intuition [68]. The search for novel function-
als has led to the development of the "Jacobs ladder" [69]. The local density approx-
imation (LDA) [67] proposed in the original DFT paper itself forms the lowest step
of this ladder and is often used only for initial qualitative explorations or when us-
ing more expensive functionals is computationally expensive. Several Generalised
Gradient Approximation (GGA) functionals such as the popular PBE functional [70]
introduce variations in density across the surface of molecules through the density
gradient term, thereby improving on the LDA, forming the next rung of this ladder.
Higher in the Jacobs ladder are hybrid functionals such as the B3LYP functional [71–
74], which is one of the most popular functionals used for the evaluation of proper-
ties of organic molecules. The functional is particularly useful for the evaluation of
energies of organic molecules and hence was employed in the calculation of spectra
in both datasets in this thesis.

2.3 Time Dependent Density Functional Theory

KS-DFT formalism considers only time independent Hamiltonians, which while im-
portant for many ground state properties, is not an exact representation of time-
dependent properties of molecules. The treatment of phenomena such as UV spec-
tra, photochemistry, or optics using a density-based approach requires extending
DFT for the time-dependent Schrödinger equation. This extension of the DFT to time
dependent systems requires first establishing the uniqueness of a time-dependent
density for the evaluation of the properties of such a system. For such a density
ρ(r, t) which can be written as a sum over N particles of a system,

ρ(r, t) = N ∑
N

∫
· · ·

∫
|Ψ(r1, r2, . . . , rN , t)|2 dr2 . . . drN (2.6)

the Runge-Gross theorem [64] establishes a unique mapping between a time de-
pendent external potential vext and the time dependent density of a system. This
theorem allows for the formulation of a calculation scheme similar to that in the
time-independent formalism of DFT. The Schrödinger equation for the system then
becomes

∂

∂t
Ψi(r, t) = −∇2

2
+ vKS(r, t)Ψi(r, t), (2.7)
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where the time dependent Kohn-Sham potential, like the Kohn-Sham potential, is
not known. It can be expressed as the sum of

vKS(r, t) = vext(r, t) + vHartree(r, t) + vxc(r, t) (2.8)

The Hartree potential here accounts for the electrostatic interaction between the var-
ious electrons as

vHartree(r, t) =
∫

ρ(r′, t)
|r − r′| dr′ (2.9)

The exchange-correlation potential vxc is composed of various many-body interac-
tion effects and is approximated using methods similar to KS DFT.

Two branches of TDDFT have evolved for the practical calculation of properties
from the time-dependent formulation of the Kohn Sham equation, namely real-time
density functional theory (RT-TDDFT) and linear response time-dependent density
functional theory (LR-TDDFT). For the calculation of spectra, efficient schemes have
been developed using the latter and are implemented in popular quantum chemistry
software packager. A formal treatment of this method will therefore be presented in
the following paragraphs.
LR-TDDFT originates from the treatment of TDDFT using perturbation theory. Within
this theory, time dependent properties are evaluated as a response of the ground
state density to an external stimulus such as the time dependent external potential.
Consider a system of interacting particles which at time t = 0 is in its ground state
when a perturbation is switched on. Expressing this perturbation as a change to the
otherwise time-independent potential of this system, one can write

vext(r, t) = vext,0(r) + δvext(r, t) (2.10)

where δvext(r, t) = 0 for t ≤ 0. The response of observables that react to this per-
turbation of the potential can be expressed in the form of a Taylor series expansion.
Thus for the density of the interacting system, the corresponding response then be-
comes

ρ(r, t) = ρ0(r) + ρ1(r, t) + ρ2(r, t) + . . . (2.11)

where the term ρi(r, t) represents the i-th order perturbation as given by the Taylor
series. As its name suggests LR-TDDFT considers only the first-order response to
perturbations caused by external potential and hence orders greater than 1 in equa-
tion 2.11 are not considered for evaluating properties. The linear response function
χ(r, t, r

′
, t

′
) that is ultimately used to calculate the perturbation in density is given

by

χ(r, t, r
′
, t

′
) =

δρ(r, t)
δvext(r

′ , t′)
(2.12)

with the perturbation in the density calculated as

ρ1(r, t) =
∫ ∞

0
dt

′
∫

drχ(r, t, r
′
, t)δvext(r

′
, t

′
). (2.13)

Fourier transforming the response function in the time domain with respect to t − t
′

to the frequency domain gives the time-independent form of the response function
as

χ(r, r
′
, ω) = ∑

I

⟨Ψ0|n̂(r)|ΨI⟩⟨ΨI |n̂(r′)|Ψ0⟩
ω − ΩI + i0+

− ⟨Ψ0|n̂(r′)|ΨI⟩⟨ΨI |n̂(r)|Ψ0⟩
ω + ΩI + i0+

(2.14)
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which involves a summation over I electronically excited states with energies given
by ωI = EI − E0, where E0 is the energy of the ground state of the system. When
the terms in the denominator become exactly equal to zero, the response function is
undefined which happens when the frequency ω is equal to the energy of an excited
state. This particular feature of the response function in the frequency domain allows
for the calculation of excited state energies while being a time-independent function.
This formulation of the response function forms the basis of various mathematical
schemes used to obtain excitation energies in LR-TDDFT.
The equation for the response function above is for a system of interacting particles,
which is difficult to calculate. A non-interacting Kohn-Sham system is therefore used
to carry out calculations leading to the response function, and thereby the perturbed
densities. The non-interacting Kohn-Sham formalism allows for the conversion of
Equation 2.14 into a matrix formalism known as Casida’s equations [75, 76]. The
proof of how one arrives at these equations is beyond the scope of this dissertation
and we only refer to the main results of this formalism. The secular equation that re-
sults from the Casida formalism for the calculation of orbital energies in LR-TDDFT
is given by [

A B
B∗ A∗

] (
X
Y

)
= ω

[
1 0
0 −1

] (
X
Y

)
(2.15)

where the elements of the matrices A and B are given by

Aia,jb = δijδab(εa − ε i) + Kia,jb (2.16)

and
Bia,jb = Kia,jb (2.17)

where K is the coupling matrix whose elements are given by

Kia,jb = ⟨Ψi(r1)Ψb(r2)|
1

|r − r′| + vxc(r1, r2, ω)|Ψa(r1)Ψj(r2)⟩ (2.18)

The matrix elements of X and Y excitation and de-excitation matrices are given by

Xia,σ(ω) = −∑
σ
′
∑
jk

f jσ − fkσ

ω − (ϵj − ϵk)
⟨Ψiσ(r)Ψkσ

′ (r
′
)| 1
|r − r′| + vxc(r, r

′
, ω)|Ψa(r)Ψj(r

′
)⟩

× 1
ω − (ε i − εa)

(2.19)

and

Yia,σ(ω) = −Xai,σ(ω). (2.20)

Here, the terms incorporate the spins of the electrons in these orbitals through the σ
and σ

′
parameters respectively, while ε i is the energy of the i-th orbital. The compu-

tation of these matrices can be further accelerated by assuming the elements of the
coupling matrix K to be zero, in what is called the Tamm-Dancoff Approximation
[77] which leads to the secular equation

AX = ωX. (2.21)

The matrix ω is the diagonal matrix containing excitation energies. The eigenvector
matrix X can be calculated from the Kohn Sham orbitals obtained from the ground
state density of the system. The TDA approximation along with LR-TDDFT was
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employed in calculations that required computations of excited states in this work.
In addition to the excitation energies, TDDFT also allows for the calculation of oscil-
lator strengths for the transitions between two orbitals. The equation for oscillator
strengths associated with a transition between the ground state and an excited state
whose wavefunctions are denoted by Ψ0 and Ψi is presented below without proof in
Equation 2.22

fi =
2
3
|⟨Ψ0|µ̂|Ψi⟩|2 (2.22)

where µ̂ is the transition dipole moment between the two states. The excitation
energies and oscillator strengths are then used to calculate line spectra for different
excitation ranges. Oscillator strengths provide insights into the relative strengths
of transitions between different states. Since experimental spectra are affected by
effects leading to broadened spectra, techniques such as Gaussian broadening are
used to convert line spectra into broadened spectra mimicking experimental spectra
of molecules.
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Chapter 3

Quantum Dynamics

The final project of this dissertation explored the solution of the Time Dependent
Schrödinger Equation (TDSE) using a data-driven approach. Generating data for
training ML models for this purpose requires knowledge of the numerical methods
used to solve the TDSE. This chapter provides a brief introduction to the concepts
and implementations of the methods in quantum dynamics used during the course
of this dissertation.

3.1 The Time-Dependent Schrödinger Equation

The TISE ĤΨ = EΨ is useful for calculating the wavefunctions and energies for
systems at rest but does not provide information on how a system evolves with
time. For such systems, the propagation of a wavefunction is given by

ih̄
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (3.1)

Given an initial wavepacket Ψ(r, t0) at time t0, modeling the evolution of such a sys-
tem in time amounts to calculating wavepacket propagation using the TDSE. This
involves propagating the wave packet at different time steps until a final desired
time state t = tfin has been reached. The TDSE is, therefore, an initial state prob-
lem with boundary conditions, whose solution depends on the initial state and the
Hamiltonian under which the system evolves in time, in contrast to the TISE.
The Hamiltonian Ĥ of the TDSE is the sum of the kinetic and potential energy oper-
ators T̂ and V̂ respectively, where the potential may or may not be independent of
time. To obtain the solutions of the TDSE at various time steps, it is convenient to
express the evaluation of a wavepacket at time t using a propagator approach. Given
the initial wavepacket at t0, the quantum propagator U is a function that maps the
initial wavepacket to an array of wave packets (r, t0), (r, t1)...(r, tfin) at different time
steps ti. If the wavefunction at time t is expressed using U and Ψ(r, t0) as

Ψ(r, t) = U(t, t0)Ψ(r, t0), (3.2)

then for a time dependent Hamiltonian one arrives at the following equation of the
propagator

Û(t + ∆t, t) = exp
(
− i

h̄

∫ t+∆t

t
Ĥ(t′) dt′

)
. (3.3)

The TDSE is exactly solvable only for a few model systems. Numerical schemes have
therefore been developed to implement wavepacket propagation for quantum dy-
namical systems. Of these, the Chebyshev Scheme [78], the second order difference
Scheme (SOD) [79] and the split operator method [80] focus on efficient schemes that
approximate the propagation operator. Wavepacket-based approaches such as the
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Multi Configuration Time Dependent Hartree (MCTDH) [50–52] or variational Multi
Configuration Gaussian (vMCG) [81], on the other hand, define a specific ansatz for
the form of wavepackets. In these approaches, wavepackets are then propagated
using the Hamiltonian in accordance with the variational principle. Doing so leads
to equations of motion (EOMs) required for obtaining wavepacket coefficients. Spe-
cial numerical integration methods are then used to further help solve these equa-
tions efficiently and compute the observables of the system. In this dissertation, one
method of each type was used to generate wave propagation data.

3.2 The split operator method

The split operator method is a popular numerical technique that has been employed
for solving different PDEs, including the TDSE. It takes advantage of the fact that
the Hamiltonian operator can be decomposed into position and momentum com-
ponents. In executing the split operator method, a wavepacket is advanced in time
through a sequence of operations in its position and momentum spaces. To optimize
the application of these operations, they are carried out in the Fourier spaces of their
respective domains. This approach ensures the efficient and accurate simulation of
the time evolution of quantum systems. By employing Fourier transforms in both
position and momentum spaces, the split operator method provides a simple and
efficient way to compute wavepacket propagation for quantum dynamical systems.
Consider the Hamiltonian Ĥ of Eq. 3.1, which can be separated into momentum (p)
and position (r) components as

Ĥ = Ĥp + Ĥr , (3.4)

where the kinetic energy operator and the potential energy operator are given by
Ĥp = − 1

2 ∑
f
i=1 ∇2

i and Ĥr = V(r) respectively. For an arbitrary time t, with an arbi-
trary time step dt, the propagator U from Equation 3.1 can be written as a product
of the exponential function of the non-commuting operators Ĥp and Ĥr and further
expanded using the Taylor series expansion and the Baker-Campbell-Hausdorff for-
mula [82] as

e−iĤpdte−iĤrdt = e−i(Ĥp+Ĥr)dt+ 1
2 [−iĤpdt,−iĤrdt]+.... (3.5)

Further, with Strang splitting [80] the system’s evolution can be divided into two
distinct steps. The first step consists of a half-step in the position space, followed by
a full step in the momentum space. The wavefunction Ψ(r, t + dt) thus propagated
by the time-step dt in terms of the wavefunction Ψ(r, t) becomes

Ψ(r, t + dt) =
[
e−iĤr

dt
2 e−iĤpdte−iĤr

dt
2

]
Ψ(r, t) +O(dt3) (3.6)

with an error of O(dt3). Higher-order terms are neglected in the split-operator for-
mulation. In practice, the transformation between position and momentum space is
done using the Fourier transform of each space, which allows for efficient handling
of the various kinetic and potential operations. Defining F and F−1 as the Fourier
transform and its inverse, the wavefunction becomes

Ψ(r, t + dt) =
[
e−iĤr

dt
2 F−1[e−iĤpdtF

[
e−iĤr

dt
2 Ψ(r, t)

]]]
+O(dt3). (3.7)

The Fourier transform F and its inverse F−1 allow us to move from position space to
momentum space and vice versa. This transformation simplifies the time evolution
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under the kinetic and potential energy operators. The Fourier transform of Ψ(r, t)
gives F [Ψ(r, t)] in momentum space, and the inverse Fourier transform of this result
brings us back to position space. The global error term O(dt3) is dependent on the
grid size. As a result, for grids with large time steps the split operator method can
be erroneous. Additionally, as simulation becomes lengthier, error accumulation
becomes a significant issue, restricting the usage to simulations of small time lengths.

3.3 Multi Configuration Time Dependent Hartree Method

The split operator method is popular for many applications in PDE solving as it
is easy to implement and gives fast and accurate solutions for small systems. Be-
sides error accumulation for long periods, the implementation of the split operator
method for problems in multiple dimensions is computationally intensive and sen-
sitive to the choice of the time step for the problem under investigation. Such is-
sues with numerical methods that approximate propagator approaches have led to
the development of several algorithms that allow for the computation of quantum
dynamical simulations for larger systems. One such method is MCTDH which al-
lows for efficiently computing the dynamics of large quantum dynamical systems
with multiple degrees of freedom (DOFs). The origin of the MCTDH method can be
traced to the standard wavefunction method in quantum dynamics.
The standard method for solving the TDSE involves the expansion of the wavefunc-
tion Ψ into a product-basis form, and then solving for the individual equations of
motion, thereby obtaining the coefficients for the basis functions. For a system with
f DOFs, a wavefunction is typically written as

Ψ(q1, . . . , q f , t) =
N1

∑
j1=1

· · ·
N f

∑
j f =1

Cj1,...,j f (t)χj1(q1) · · · χj f (q f ). (3.8)

The standard procedure for obtaining the coefficients C involves plugging the wave-
function into the TDSE 3.1 and then applying the Dirac-Frenkel variational principle

⟨δΨ| H − i∂t |Ψ⟩ = 0 (3.9)

which lends to the EOMs

iĊj1,...,j f = ∑
α1,...,α f

χj1 · · · χj f ⟨H⟩χα1 · · · χα f Cα1,...,α f . (3.10)

While the standard method was widely successful and easy to implement, it suffers
from a multifold scaling in memory and computational time costs with an increase
in the number of DOFs f . As an example, a system with six degrees of freedom
and twenty basis functions requires 64 × 106 basis functions. While the calculations
of coefficients for such large systems are doable with modern computing systems,
such methods are not feasible for cases where f > 6 and more approximate methods
are used. The need for computationally efficient algorithms for solving the TDSE led
to the development of the MCTDH method.
The basis of the MCTDH method is a novel ansatz that allows for splitting of the
wavefunction Ψ(q, t) of a system into a product basis of single-particle functions
(SPFs) weighted by a time-dependent coefficient vector A(t) to accommodate sev-
eral possible configurations of a system. The ansatz for such a wavefunction is given



16 Chapter 3. Quantum Dynamics

by

Ψ(q, t) =
n1

∑
j1

...
n f

∑
j f

Aj1...j f (t)
f

∏
κ=1

φ
(κ)
jκ (qκ, t) (3.11)

where q ≡ (q1, q2, . . . , q f ) and nκ represents the index of an SPF. The total number of

possible configurations generated using this ansatz is given as ∏
f
κ n(κ), where f is the

dimensionality of the quantum system. Aj1...j f (t) is the time-dependent coefficient
which describes the time evolution of the quantum system. The jk-th configuration
in κ-th DOF can be expressed in a time-independent basis set, unlike the previous
ansatz of the standard method. Each SPF is thus further split as

φ
(κ)
j (qκ, t) =

Nκ

∑
µ=1

cj,µ(t)χ(κ)(qκ), (3.12)

where cj,µ(t) are the time-dependent coefficients that determine the contribution of
the primitive χiκ (qκ) in the discrete variable representation (DVR) function. Using
the standard procedure for obtaining coefficients as described above, we obtain the
EOMs with respect to time-dependent coefficients AJ and the SPFs φ

(κ)
j . The EOM

with respect to AJ can be written as

i
∂AJ

∂t
= ∑

L
⟨φJ | H |φL⟩ AL. (3.13)

For each φ
(κ)
j , is corresponding EOM can be written as

iφ̇(κ)
j = (1 − P(κ))

nκ

∑
k,l=1

(ρ(κ)−1
)jl⟨H⟩(κ)lk φ

(κ)
k (3.14)

where ρ
(κ)
jl is the density matrix that is equal to

〈
Ψ(κ)

j

∣∣∣Ψ(κ)
l

〉
while P(κ) is referred to

as the MCTDH projector P(κ) = ∑nκ
j=1

∣∣∣φ(κ)
j

〉 〈
φ
(κ)
j

∣∣∣. This set of non-linear coupled
differential equations (3.13, 3.14) in MCTDH is solved using a constant mean-field
(CMF) approach which numerically integrates the coefficients of the basis functions
in time at each step of the wavefunction. In combination with the DVR function for
representation, this mean-field integration approach reduces the computational ef-
fort for evaluating coefficients thereby making the MCTDH a viable option even for
systems with DOFs greater than ten, which is often challenging using other meth-
ods.
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Chapter 4

Graph Neural Networks

Traditionally, the methods of property prediction in chemistry have either been mo-
tivated by physical or mathematical intuition. As an alternative to these techniques,
ML methods aim to unravel patterns within chemical data itself and use this infor-
mation for downstream tasks such as prediction, generation, or classification. Using
the example of predicting spectra, this chapter provides a brief overview of the re-
quirements for setting up an ML framework for chemical property prediction. Since
the Graph Neural Network (GNN) architecture is employed for predicting spectra
in this dissertation an overview of the theory and implementations of various GNN
architectures is provided. An introductory overview of the theory of neural net-
works and an introduction to ML are not provided here, but the interested reader is
referred to texts by Murphy [83] or Goodfellow, Bengio, and Courville [84].

4.1 Implementing a Machine Learning model

ML models can be categorized into three main approaches. Supervised ML is typi-
cally used on labeled data, where the objective is to learn the mapping between data
labeled as input and its corresponding output. Unsupervised learning, on the other
hand, works with unlabeled data, where the aim is to understand patterns between
the data itself. Finally, the third category of ML models is reinforcement learning
which involves training an agent to make decisions by interacting with an environ-
ment and receiving feedback in the form of rewards and penalties. The first step in
an ML application is to have a clearly defined task for which an ML framework is
needed. Having defined such a task, the successful implementation of an ML algo-
rithm depends on four steps: 1. The quality of the dataset, 2. An appropriate input
representation, 3. Choosing the right architecture and finally, 4. The right technique
for optimizing the parameters of the ML framework to get the most accurate result.
Each of these steps is described for a task in supervised ML, which forms the basis
of all ML tasks in this dissertation.

4.1.1 Datasets

The first and most important requirement to execute an ML model to predict any
property is to have a dataset from which it can learn input-output relationships. A
typical dataset is a collection of input-output tuples in the form of pairs of molecules
and their properties. In chemistry, datasets can be generated experimentally or the-
oretically. Theoretically generated data for molecular properties are easier to com-
pute to the desired level of accuracy using methods of quantum chemistry than
gathering vast amounts of experimental data. Complex ML models require large
datasets for training them, which makes simulated datasets even more attractive,
and a large number of ML applications in chemistry use datasets created using
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quantum chemical simulations of properties. One such popular dataset is the Quan-
tum Machine 9 (QM9) dataset [85] which contains 134k molecules for which prop-
erties have been obtained from DFT calculations. While this dataset catalogs several
molecular properties such as the HOMO-LUMO gap, polarizability, various forma-
tion enthalpies, and energies, it does not contain calculations of spectra. However,
given its proven usability for a wide range of ML applications and the large number
of diverse molecules within it, the molecules in this dataset provide a good start-
ing point for generating spectroscopy data. The datasets in this dissertation use
molecules from the QM9 dataset and spectra computed for these molecules using
methods of DFT and TDDFT.

4.1.2 Input representation

Chemists typically identify and distinguish molecules through their IUPAC name,
molecular formula, and relevant physio-chemical properties or a combination of
them. It is also common to depict molecules using their two-dimensional structure
as an image. In quantum chemistry, molecules are often input in a representation
that combines atomic symbols and atom coordinates representing the 3D orientation
of a molecule. Such representations, while useful for human understanding, cannot
be used for ML methods. The way a molecule is represented as an input determines
the ML architecture and the quality of predictions made by the ML model. Convert-
ing molecular information such as atoms, their positions, and their connectivity in
a molecule (or any input for an ML model) into representations for ML models is
termed feature engineering [86] and it is an essential part of problem formulation in
ML for chemical property prediction.
A rather simple representation of molecular data for ML applications is to employ a
vector containing the relevant molecular properties as input for each molecule in the
input data. This type of representation allows for flexibly incorporating and remov-
ing structural and chemical properties depending on the ML application. Another
format used extensively in cheminformatics, and now popular in many ML applica-
tions for chemical property prediction is the text-based SMILES representation [87].
A SMILES representation depicts molecules as a string of alphabets and symbols that
denote atoms and their connectivity in a molecule. Coulomb matrix [88] representa-
tions of molecules, that leverage electronic structural information and convert them
into a matrix form similar to images, have also been successfully used in ML mod-
els for chemical property prediction. Smooth Overlap of Atomic Positions (SOAP)
[89] representations use radial distribution functions to generate unique atomic and
molecular environments for ML applications. Another representation that has re-
cently gained traction in molecular ML is the molecular graph representation where
molecules are represented as mathematical graphs [90, 91]. A general rule of thumb
for designing molecular representations is invariance to translation, rotation, and
permutations of atoms [92].

4.1.3 Architectures

Depending on the input representation and output property, different ML archi-
tectures can be used to learn relationships between molecules and their proper-
ties. Feedforward Neural Networks [93], Convolutional Neural Networks [94], Long
Short Term Memory Networks [95], Graph Neural Networks [90, 91], and Recur-
rent Neural Networks [96] are all different neural network architectures that have
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been used for predicting different chemical properties in ML applications. Addition-
ally, Kernel Ridge regression [97] and Gaussian process regression [98] are Bayesian
ML methods promising in chemical property prediction applications. A major part
of this thesis focuses on GNN architectures for predicting relationships between
molecules and their spectra.

4.1.4 Hyperparameter optimization

Training an ML model involves optimizing the parameters that make up the model
based on the data. Rather than using the entire dataset for training, the dataset is
typically divided into three parts: training, test and validation. The training dataset
is the largest part of the data, and the model parameters are optimized with respect
to the samples within this subset. The test dataset is used to measure the accuracy of
the trained model, while the validation set is used to ensure proper model training.
For neural networks, training using the training dataset to determine weights (learn-
able parameters) of neurons in the neural network such that the output is as close
as possible to the output data. (This is done, of course, with the caveat that the
neural network does not ’memorize’ the output, a phenomenon called overfitting,
which is monitored by the model’s performance on the validation set). Hyperparam-
eter optimization [99] is the process of fine-tuning various parameters that guide a
model’s learning process. This is done by minimizing a loss function that calculates
the difference between the output of the data instance from the training data and
the output of the neural network for the same instance. Another key aspect is defin-
ing the hyperparameters to tune, which may include learning rates, batch sizes, the
number of hidden layers, and more. Upon defining these parameters, this process
also involves the selection of algorithms for choosing different parameters, such as
grid search [100], random search [101] or Bayesian optimization [102]. Additionally,
determining the appropriate evaluation metrics and strategies for cross-validation
is vital to assess the model’s performance accurately. Some parameters are common
to various neural network architectures, but each neural network also has a set of
hyperparameters specific to each architecture. Hyperparameter optimization thus
helps find the best ML model from a plethora of variables given a training dataset.

4.2 Graph Neural Networks

4.2.1 Molecules as graphs

Graph representations of molecules convert molecular structures into mathematical
graphs, where nodes represent atoms in the molecule and edges represent bonds be-
tween atoms. Such a graph can convey information about the connectivity of differ-
ent atoms in molecules, but it is often not enough to distinguish different structures
that have similar skeletal structures or conformers of the same molecule. Throught
the addition of structured labels containing different atom, bond, and molecular
properties in a vector form (feature vectors) to nodes/edges/graphs respectively, the
information contained in graph structures can be enhanced and these graph struc-
tures can then be employed for ML purposes. Formally, a molecular graph is a data
structure G = (V , E) where V is the set of nodes, each representing an atom, and
E ⊂ V × V is the set of edges, each representing a bond between atoms. Edges in
a graph can be defined either through pre-existing knowledge of the bonds or by
connecting atoms that lie within a certain cutoff physical distance from each other.
The properties of individual atoms (nodes) v ∈ V , such as atomic number or number
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of hydrogens attached to an atom in a molecule, are modeled as an f -dimensional
node feature vector xv ∈ R f . The properties of an edge connecting nodes v and w,
v × w ∈ E , are modeled as a d-dimensional edge feature vector evw in Rd. An adja-
cency matrix A is often used to represent the connectivity between different nodes of
a graph, where Avw = 1 if there exists an edge between nodes v and w, and Avw = 0
otherwise.
There are two types of features in any form of data: numerical and categorical. Nu-
merical features can directly be used as elements of a feature vector. Categorical
features such as type of atom, aromaticity, or hybridization are first converted into
a one-hot encoding vector. A one-hot encoding vector represents a data value in
terms of a binary vector, where only one bit is set to a value of one to indicate the
presence of a category, while all the others are set to zero. Feature vectors of nu-
merical and categorical data are then concatenated to form an input vector for each
node in the molecular graph. This can also be extended to edge feature vectors
for bonds and graph feature vectors for representing molecular information. Graph
representations of molecules provide information about the connectivity between
different atoms and bonds while being translationally and rotationally invariant.
Feature vectors allow molecule-specific information to be incorporated into these
graphs through feature engineering.

4.2.2 Graph Neural Network architectures

ML architectures have usually been used with structured input data such as vectors
of fixed lengths, or images represented as matrices (tensors). Unlike these aforemen-
tioned data structures, graphs are unstructured with varying relationships between
nodes and atoms. To properly learn the representations for such data architectures
different from the conventional ML frameworks, are required, which has led to the
development of GNNs for unstructured graph data such as molecules. The underly-
ing principle that forms the basis of most modern GNN architectures is the message-
passing algorithm [91]. A GNN takes a graph along with its node/edge/graph fea-
ture information as inputs and then iteratively transforms it to a novel represen-
tation for each of these features, while preserving the connectivity of the original
graph. This process results in a graph that has updated information stored in its
node (and edge) features through this message-passing process. This leads to the
generation of unique node and edge vectors that incorporate information about the
neighborhood of nodes and edges in the feature vectors of the graph. This newly
transformed graph (or its nodes/edges) is then used for downstream applications,
such as graph property prediction (like predicting the dipole of a molecule), edge
prediction (predicting if a bond exists), or predicting a node type (identifying the
atom of a molecule).
A pre-requisite for the implementation of a message-passing algorithm is the mes-
sage function, which defines how the information of each node, edge, and/or graph
feature vectors in the neighborhood of a node/edge is transformed before aggrega-
tion. It is common practice to transform feature vectors to higher dimensions using
a linear neural network layer, transforming them from vectors xv into embeddings.
This transformation helps increase the expressivity of the neural network architec-
ture, improving its ability to learn patterns from input data. Formally a message is
defined as

ml+1
v = AGGREGATEl+1

({
(xl

w, xl
v, el

v,w)
}

w∈N (v)

)
(4.1)
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where (..) denotes a multiset containing the nodes and edges in the neighborhood
N (v) ⊆ V of a node v in the graph G. Message passing is iteratively performed in
cycles, and l indicates the number of iterations of message passing that have been
completed. The AGGREGATE function depends on the type of GNN architecture.
A key requirement for an AGGREGATE function is that the information aggregation
operation must be invariant with the order(of nodes or edges) in which aggregation
is performed. A simple example of aggregation could be adding all the node feature
vectors surrounding a target node. Once messages are obtained for every node in
the graph, node embeddings can be updated from xl to xl+1 through an UPDATE
function as

xl+1
v = UPDATEl+1(xl

v, ml+1
v ). (4.2)

The aggregate and update operations are applied at each node/edge individually for
each cycle. Once the updated embeddings are completed for a predefined number of
cycles, a final pooling of the information may be performed depending on the final
task requirements. This pooling step is often termed READOUT formally defined as

xg = READOUT(xL
v | v ϵ G). (4.3)

FIGURE 4.1: Graph Neural Networks for the prediction of molecular spectra. Panel (a) depicts the
transformation of a molecular SMILES to a graph with atom/bond features. Message passing to
update graph embeddings (c). The complete GNN architecture that predicts spectra for a graph (b).
Reprinted with permission from Singh et al. [103]. Copyright 2023 American Chemical Society.

Such a final pooling can be a simple order invariant operation such as the sum or
average of node embeddings of the different atoms in a graph. The final representa-
tion xg is then used as an input to a neural network layer (there can be one or more
such layers) that predicts the output property such as a molecular spectrum. Fig-
ure 4.1 illustrates the various steps in using a GNN for spectrum prediction. Panel
(a) of this figure depicts the creation of a mathematical graph with atom and bond
features from a SMILES structure. This step is performed using the RDKit [104]
package. Panel (b) provides an overview of the GNN architecture that predicts a
spectrum given a molecular graph. This includes the message-passing layers that
give updated embeddings of the nodes in the graph, which are then aggregated into



22 Chapter 4. Graph Neural Networks

a graph embedding. The graph embedding is then used with one or more neural
network layers to provide the final spectrum. Panel (c) shows the working of the
message-passing algorithm.GNN architectures can be differentiated by the various
types of functions defined at each step of the message-passing process. There is no
consensus on which message-passing function works best for both node-level and
graph-level tasks and different functions are usually experimented with before de-
termining what works best for the ML task at hand.

4.3 Quantifying spectrum prediction error

FIGURE 4.2: RSE as a measure of quality of spectrum prediction. (a) An accurately predicted spec-
trum depicts a high level of agreement between the target and predicted spectra and has a low RSE
value. (b) A high value of RSE implies the predicted spectrum has peaks that have mismatched in-
tensities and as seen in the figure, some peaks that should not exist. Reprinted with permission from
Singh et al. [103]. Copyright 2023 American Chemical Society.

GNN architectures require defining outputs of fixed sizes, and therefore molecular
spectra need to be standardized into fixed-length vectors for training and inference.
To achieve this the energy range for the spectra is fixed and discretized into a fixed
number of points typically into 0.1 eV between two consecutive points. The spec-
trum is then the value of the intensity at each of these energy values given by a
fixed-length vector.
Since predicting spectra is a regression problem, we use the Mean Squared Error
(MSE) loss function to train our models. In addition to minimizing training loss, the
quality of predictions of spectra is reported using the Relative Spectral Error (RSE)
metric [29], as defined in Equation 4.4. Let ytar and ypred denote the vectors for the
target and the predicted intensities of the spectrum at an energy E. For a discrete
spectrum with N points defined for the energy range Emax − Emin, the distance be-
tween two points is defined as ∆E, the unit distance between two points given by
∆E = Emax−Emin

N thereby obtaining the RSE as
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RSE =

√
∑N

i (ytar
i − ypred

i )2 · ∆E

∑N
i ytar

i · ∆E
. (4.4)

The RSE is thus a normalized form of the MSE, which is useful for interpreting the
quality of spectra predictions. The RSE can provide a uniform metric to account for
the differences in intensities of peaks across different molecules. An RSE value close
to zero indicates a high-quality prediction and is desired for ML models. This is
demonstrated through Figure 4.2 where (a) demonstrates a high-quality prediction
with a low RSE value while in (b) a high RSE value arises out of a predicted spectrum
that does not match effectively with the target spectrum.





25

Chapter 5

Explainable AI methods

Special techniques are required to understand the decision-making process of com-
plex ML models, often termed black box models. Explainable Artificial Intelligence
(XAI) methods focus on the development of such techniques. This chapter provides
a brief description of the XAI method that was employed in Pub2. The content of
this chapter follows some parts of the book on interpretability in ML by Molnar
[105]. The interested reader is also referred to the book by Samek et al. [106] and the
review article by Gunning et al. [107] for an overview of the state of XAI.

5.1 Attribution methods in XAI

A simple model whose predictions can be considered interpretable is a linear re-
gression model. For such a model, it is easy to understand the contribution of each
variable (or feature) of an input sample in the final prediction. The technique of as-
sessing the contribution of different input features in a prediction is called feature
attribution. It is a straightforward XAI technique that can be used to impart explain-
ability to models that are otherwise not interpretable. Since feature attributions are
used only after a model has been trained, they are termed post-hoc explainability
methods. Additionally, feature attributions apply to individual data points, imply-
ing that these are locally interpretable methods. Despite the relatively recent rise
of GNN models, feature attribution methods that explain graph model predictions
have already borrowed from the techniques developed for interpreting ML models
elsewhere. Popular feature attribution methods such as GradInput (GI) [108], class
activation map (CAM) [109] and gradient class activation map (GradCAM) [110]
have been shown to successfully explain predictions made by GNNs for molecular
structure-property prediction models [42–45].
The CAM method is the simplest of these attribution methods in XAI and was em-
ployed in this dissertation to explain the importance of different molecular features
for GNNs predicting spectra. Computing CAM attributions for a molecular graph
involves calculating the node weights vi for highlighting the contribution of vari-
ous graph nodes to a spectrum prediction. As discussed in Chapter 4, GNNs use
a global aggregation layer or a readout layer, before the output layer that predicts
the final output value. The number of neurons in this layer depends on the length
of the output vector. To obtain a CAM for such a GNN model, one assumes that
the activation of each neuron can be treated as an independent class for which the
model must make accurate predictions to get the correct peak value. Using this as-
sumption one can obtain CAM weights for each of the different classes needed in a
spectrum. CAM weights of each node (for each peak/class) can be depicted visually
as a heatmap on the molecular graph. CAM operates on the aggregation layer before
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this final layer and obtains attributions for these different ’classes’, giving an insight
into atomic contributions at each point in the spectrum.
To compute CAM weights of a node for each class, let Fk(i) be the activation of a
neuron k in the GNN layer preceding the output layer. The CAM score vc(i) at node
i of a molecular graph at a node for a class c is then defined [111, 112] as

vc(i) = ∑
k

ωc
kFk(i), (5.1)

where ωc
k denotes the weight of unit k for class c. Using this formulation, one can

obtain CAM scores for each point in the spectrum of a given input molecular graph.
CAM scores can also be aggregated for regions of a spectrum, giving an estimate of
the most important nodes in that region according to the GNN model. The aggre-
gated CAM visualization for a spectrum can then be used to analyze the degree to
which an ML model attributes the correct contributing atoms for each peak in the
predicted XAS spectrum. An example of a CAM obtained at one of the values on a
spectrum predicted by a GNN model is given in Figure 5.1. The CAM plots in this
figure illustrate the different CAM plots at different points and a peak in a spectrum.

5.2 Developing spectroscopic ground truths

CAMs provide both a visual and a quantitative measure of the activation of different
atoms in a spectrum prediction. A heatmap from a CAM evaluation can be useful
however only if one can figure out if an atom/region of the heatmap is correctly or
incorrectly attributed for its contribution to the final prediction. For some property
prediction tasks, this is fairly straightforward, as the ground truth to which the CAM
is compared can be easily obtained using human expertise. Ground truth can be
easy to obtain also when the ML task is elementary, such as identifying whether a
molecule has a benzene ring. However, for many chemical property prediction tasks,
such a ground truth benchmark is not easily obtainable, as in the case of prediction
of XAS spectra.
The XAS of a molecule takes into account the various chemical environments sur-
rounding the atoms that are being investigated. Since TDDFT-based approaches
involve calculating excitations from individual orbitals, these can be used to obtain
ground truth data for X-ray spectra systematically. Each excitation in an XAS orig-
inates from a core orbital and terminates at a final orbital, often delocalized over
several atoms (Introduced in Sec 1.1.). Furthermore, excitations from the same atom
can end up in different final states. Thus, for a particular peak region, there can be
several contributing transitions originating from the same or similar environments.
Figure 5.1 shows a visualization of this phenomenon, where excitations for a peak
around 276 eV for a molecule are depicted. As seen in the figure, two similar line
spectra around 276 eV originate from the same core atom. Since TDDFT spectra
are peak-spectra (vertical lines in the plot, denoting individual excitations) that are
broadened to mimic experimental spectra, to obtain a ground truth at any given
point, one needs to incorporate information from different spectral lines underlying
under a broadened peak.
To obtain a ground truth for an XAS spectrum one must first identify the peaks in the
spectrum. For each peak then, the excitations that fall within the peak are arranged
according to their oscillator strengths, and the five dominating contributing excita-
tions in each region are selected. Each excitation is composed of transitions denoting
the originating molecular orbital and the final orbital. Once contributing peaks are
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FIGURE 5.1: Atom heatmaps depicting the ground truth evaluation and CAM for a GNN model
for the XAS prediction of a molecule. Each vertical peak (central panel) is composed of different
transitions, which all contribute to the common ground truth (top left). CAM plots of each peak,
provide access to the atoms that the ML attributes most importance to (top right). Reprinted with
permission from Kotobi et al. [113].

obtained, these transitions and orbitals provide information on the atoms that con-
tribute to the transition process. A contributing atom is assigned a score of 1, while a
non-contributing atom gets a score of 0 for each transition. Finally using a weighted
sum of the transition strengths of each peak we obtain a ground truth value for each
atom in the molecule. Atoms that are a part of the orbitals where electronic transi-
tions arise are labeled as ’core’ atoms, while those that make up the virtual orbitals
are labeled as ’virtual’ atoms. These different contributions give a ’core’ heatmap
for the origins and ’virtual’ heatmaps for the final states at each peak in the spec-
trum of a molecule. Each vertical line spectrum thus has its ground truth heatmap,
which can be aggregated with other maps under the same broadened peak. Fig 5.1
depicts the ground truth core and virtual orbitals that contribute to transitions for
the line spectra in the 276 eV region. The contributions of each of these line spectra
are then visualized in the final ground truth for the peak, shown in the top left of
the figure. This core ground truth shows the contributions from the carbon atoms
attached to the two nitrogen atoms, while the excitations show the atoms in the vir-
tual states that are composed of orbitals where electrons transition to. The ground
truth creation approach in this work is based on quantum chemical principles and
can be used for any software implementation of spectroscopy that provides access to
the relevant quantities. Further, it can be fully automated and does not require any
human intervention to label ground truth for the theoretical spectra of any kind.

5.3 Understanding spectroscopic predictions

Once a ground truth for the predictions has been calculated, the CAM obtained for
each molecule is compared to this ground truth map, for each peak in the spectrum.
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To do this, the Area Under the Curve (AUC) metric of the Receiver Operating Char-
acteristic (ROC) [114] is employed. The AUC metric, which ranges from 0 to 1, has
been extensively used to quantify the capacity of ML models to distinguish between
different classes in a dataset. An AUC of 1.0 implies a perfect agreement between
the CAM of a prediction and its ground truth, indicating that the model correctly
attributes high activation values to the atoms from which excitation occurs (in the
case of the core ground truth). On the other hand, a value of 0.5 can be achieved
by a random classifier, which randomly assigns labels to the atoms showing acti-
vation values on a molecular graph. An average AUC of 0.7 or higher is generally
considered indicative of a model that can correctly distinguish true and false label
assignments for most of the data in a test set.

FIGURE 5.2: AUC as an indicator of prediction quality. For the peak that is accurately depicted
(around 288 eV) the AUC values are higher than the AUC values for the peak (around 292 eV),
which is not reproduced as accurately. Reprinted with permission from Kotobi et al. [113].

Figure 5.2 depicts how AUC values in the same molecular spectrum indicate differ-
ences in attributions, as well as reflect differences in prediction quality. For the peak
at 288 eV, the core AUC score values are higher, indicating that while some atoms
are not given the same importance in the CAM as in the ground truth, there are no
incorrect attributions. For the peak at 293 eV however, the virtual AUC score is very
low, due to the CAM not accounting for the transitions that end up in orbitals lo-
calized on orbitals which include amongst others, this nitrogen atom. This possibly
is a reason for the relatively poor quality. The different AUC values for peaks in a
spectrum can be averaged for the entire spectrum of a molecule, giving a value for
an entire molecule. Similarly, the average AUC value for all molecules in the test set
serves as an evaluation tool for the overall degree of interpretability of predictions
made by different GNN models.
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Chapter 6

Fourier Neural Operators for
Quantum Dynamics

The final part of this dissertation explores the use of a data-driven approach for
simulating wavepacket propagation in quantum dynamical systems. This requires
the use of an ML framework suitable for solving the TDSE, which is a PDE in space
and time. The Fourier Neural Operator (FNO) framework is one such approach
that learns PDEs from data. This chapter provides an introduction to data-driven
methods for PDE solving before discussing in detail the FNO framework and its
implementation for simulating wavepacket propagation.

6.1 ML methods for solving partial differential equations

PDEs have been used to model physical phenomena in fluid dynamics, quantum
chemistry, and electrodynamics for more than two centuries. The last century has
been a testament to how scientific computing has helped accelerate numerical meth-
ods that are used to solve PDEs. However, several scientific phenomena are modeled
using PDEs that are non-linear and high-dimensional. This makes solving and an-
alyzing them using these computational methods expensive and often impossible.
ML methods provide a novel way to analyze PDEs from data generated using ex-
periments and simulations. While using ML as an approach for solving PDEs has
been an area of research going back three decades [115], recent advances in ML have
led to the development of algorithms that have helped accelerate these approaches.
Data-driven approaches for PDE solving (and analysis) can be categorized into four
approaches. The first approach uses ML techniques to enable the data-driven dis-
covery of PDEs using data obtained from simulations and experiments. Most ML
models, while adept at identifying patterns between input and output data, are not
interpretable (in general) which limits their understanding, especially in modeling
physical phenomena. Symbolic regression techniques, on the other hand, are inter-
pretable ML techniques that can learn phenomena from data. Advanced symbolic
regression applied to the task of PDE learning from data has helped in the discovery
of PDEs for several non-linear phenomena [116, 117]. Coordinate transformations
and dimensionality reduction are two common techniques that have been employed
to reduce complex PDEs into simpler forms that are less complicated due to their
lower dimensionality or analytic simplicity. The second approach of data-driven
methods in PDE aims to bring about these transformations in an intelligent manner,
thereby providing more stable and efficient reductions of PDEs describing physical
phenomena [118, 119].
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The third and fourth data-driven approaches are related to numerical methods of
solving PDEs. Some of these approaches aim to improve the computational effi-
ciency, accuracy, and scaling of the existing numerical methods in PDE solving. A
deep learning approach, has for example, been used to accelerate and improve the
computation of spatial derivatives on grids used to solve PDEs [120, 121]. Alterna-
tively, interpolation methods based on ML have been used to accurately simulate
phenomena on finer grids than is possible by conventional PDE solvers [122]. The
final data-driven approach in PDE solving concerns itself with learning PDE solu-
tions from data using ML methods. Within this category, there are two classes of
methods, one of which uses neural networks to approximate solution functions and
use physical constraints to improve the accuracy of neural network predictions [122,
123]. These methods require prior knowledge of the PDE under investigation but are
also often limited to one set of parameters of the PDE. This means that simulating a
new instance of PDE parameters requires retraining the neural network to model the
new PDE. The operator learning approach [56, 124, 125], which is used in this work
is the second class in this category and aims to learn PDEs purely from data. As a
result, these approaches do not require any prior information on a PDE to model it
from data. Additionally, these approaches are not limited to a single instance of PDE
parameters and can be used to model several such instances in a single model. The
next section describes this operator approach.

6.2 Fourier Neural Operators

Neural operator approaches [56, 124, 125] utilize the neural operator approximation
theorem [126] to model relationships between data that originate from dynamical
simulations or experiments. This theorem, which is a lesser-known counterpart of
the popular universal approximation theorem [127] states that a neural network with
a single layer can be used to approximate an operator that models the relationship
between two function spaces. Mathematically, the neural operator Gθ attempts to
learn the relationship between inputs I and outputs U as

U = Gθ(I), (6.1)

where θ denotes the neural network weights learned by training on PDE data. Each
instance of the input data of a PDE is typically defined by a unique set of initial
conditions and these give rise to different outputs. The operator aims to learn over
several instances of such inputs, parameters of the PDE, and their outputs. This
learning does not require an explicit form of the PDE but happens purely from data.
Some physics-inspired neural operator approaches have been developed [128] that
use governing equations and physical constraints relevant to a PDE for improving
model training. However, the investigation in this project focuses mainly on the
traditional FNO without incorporating any physics-inspired constraints.
Figure 6.1 depicts how the FNO architecture is implemented for the task of learning
wavepacket propagation. Most neural operator approaches (of which FNO is one)
share this same basic architecture. The input I for the FNO architecture is created by
concatenating the wavepacket density, potential, and grid information into a tensor
object (Panel (a)). The FNO model consists of three basic components. The input
I is first transformed (or lifted into) a higher dimension using a linear neural layer.
This layer is denoted as the lifting layer in Figure 6.1 (b). Transformation of inputs
to higher dimensions allows the capturing of patterns and relationships in the input
data. Such transforming layers are commonly used in neural network approaches
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in ML (it was also used in the GNN implementations for spectra, as an embedding
layer). The hidden layers of the neural operator also serve this purpose, enabling the
capture of relationships on a local as well as global level. In the case of wavepacket
propagation, a global change is the movement of an entire wavepacket from one part
of the grid to the other, while local information is the change that the wavepacket
undergoes in between the initial and final states. The different operations in a neural
operator framework are designed to learn these patterns from data using transfor-
mation operations that aggregate local/global information from different regions of
the input tensor. In the case of dynamics induced due to PDEs, such information
is not as easy to aggregate and therefore special layers are introduced for efficient
learning in the hidden layers following the linear layer.

FIGURE 6.1: Learning wavepacket propagation using the FNO ML model. Each input is a con-
catenation of the initial wavepacket density, along with the potential and grid information (a). An
overview of the FNO architecture is depicted in (b). Fourier layers (and in general operator layers)
and their operation as depicted in (c). Given an input (a) the FNO model is trained to predict the
entire simulation in the output. Reprinted from the manuscript submitted at J.Chem.Comput.

This learning of various features in any neural operator framework is enabled by the
use of neural operator layers that follow the lifting layer. These layers are depicted
as the Fourier layers in Panel (b) of Figure 6.1. The proof of how one arrives from a
neural operator layer to a Fourier layer is beyond the scope of this dissertation. In the
following lines, this transformation is presented. Operator approaches use kernel
integration formalism to update the representations that form outputs of a neural
layer. Such an output a(l)(x) of the l-th hidden neural layer is formally defined as
[56]

a(l)(x) = σ(W (l)
θ a(l−1)(x) +K(l)

ϕ a(l−1)(x)). (6.2)

The output from a previous layer a(l−1) undergoes two transformations in such a
layer. The linear layer W is used to keep information of the grid from the input data.
The non-local integral layer K approximates an integral that helps approximate the
input data (The other block of the Fourier layer shown in Panel (b) represents this
operator). Finally, a non-linear activation σ is applied to the output of each layer.
This non-linearity has several uses, as it helps the learning of hierarchical patterns,
improves training, and enables the learning of complicated patterns from data. θ and
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ϕ represent the adjustable parameters in W and K respectively since they are both
neural networks. A non-local operator such as the kernel integrator is an operation
or transformation that considers the local data point and the entire data through
integration. The kernel integration operation for the kernel K over the coordinate
space D can be defined as [56]

K(l)
ϕ a(l−1)(x) =

∫

D
κ
(l)
ϕ (x, z)a(l−1)(z)dz, (6.3)

where κ
(l)
ϕ is a neural network parameterized by ϕ can be performed in the Fourier

space. This integration operation in the Fourier space gives rise to the Fourier layer
and subsequently, the FNO approach. Given that F and F−1 are the Fourier and
inverse Fourier transforms of a function f (x) in the x and k domains, then the kernel
integral operator from Equation 6.3 can then be written as

K(l)
ϕ a(l−1)(x) = F−1

{
F{(κ(l)ϕ ∗ a(l−1))(x)}

}
= F−1

{
(F{κ

(l)
ϕ (x)} · F{a(l−1)(x)})

}
.

(6.4)
While a Fourier series expansion is mathematically infinite, a practical implementa-
tion of the integration requires terminating the Fourier series after a few terms. The
number of terms of the Fourier series is defined as the modes of the Fourier series
expansion. The maximum number of modes of each Fourier layer in the FNO model
is a hyper-parameter defined prior to training the model. Practical implementations
of the integration in the FNO model use the fast Fourier transform which includes
terminating the Fourier series to these modes. The operations of the Fourier layer
then become, the Fourier transform, filtering of relevant Fourier modes, and the in-
verse Fourier transform. These operations are depicted by the F, R, and F−1 blocks
in Panel (c) of Figure 6.1. The Fourier layer integration operation can aggregate in-
formation but its periodic nature renders it insufficient for understanding the linear
grids on which most input data operates. The linear part of this layer W ensures
that the grid conditions of the model are also learned and added before the output is
forwarded to the subsequent layer, which justifies its inclusion in Equation 6.2. Iter-
ating through several FNO layers allows the model to learn local and global features
from different instances of input data. To finally transform the output to the same
dimensions as the desired output, a linear transformation layer, such as the output
layer in Figure 6.1 Panel(c) is employed which gives the entire simulation as present
in the output of the training samples.
The Fourier layers of the FNO allow for learning input-output relationships while
keeping computational costs of integration relatively low [56], which is often an is-
sue in neural operator frameworks. The FNO approach is also capable of transfer-
ring information learned on one grid resolution to another finer resolution without
retraining the model. Another advantage of FNO models is that they provide one-
shot inference, which means that entire output propagations are output in one go,
in contrast to conventional ODE/PDE solvers. The FNO approach takes input in-
stances in the range from t = 0 to t = ttrain timesteps and is capable of learning
propagations from time t = ttrain+1 to time t = tfin. This means that even with
one initial wavepacket density, the FNO model can output the entire propagation
of a system when trained with sufficient data. For this project, the input consisted
of wavepacket density plots concatenated with the information of potentials at all
propagation timesteps. Grid information is also provided in the input in concatena-
tion with the inputs defined previously.
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6.3 Function optimization using Markov Chain Monte Carlo

PDEs have been extensively used to model physical phenomena. Researchers work-
ing in such domains, like quantum dynamics, are often interested in ’inverse prob-
lems’. These problems involve finding the initial state of a system (governed by a
PDE), when the properties of the final state are known. Procedures to attain an ini-
tial state in such problems, often involve the optimization of a target function, that
measures the similarity between the known desired state, and the result of propa-
gating an initial state. Such function optimizations have typically been investigated
using deterministic methods with great success. These methods involve using cal-
culus to minimize (or maximize) the target function thereby searching for optimal
parameters using mathematical principles. These optimization techniques are an ac-
tive area of research in PDE-solving termed optimal control methods. Apart from
optimal control, genetic algorithms can also be used to estimate the nature of op-
timal laser pulse shapes, as demonstrated by Thomas and Henriksen [129]. These
methods, while effective are computationally expensive. As an alternative to both
of these methods, in this project laser pulse optimization in quantum dynamics was
explored using the Bayesian technique of Markov Chain Monte Carlo (MCMC).
Bayesian optimization methods [60] are a set of probabilistic methods that help op-
timize complex optimization functions. The Bayesian optimization approach relies
on sampling methods to update its belief on optimal parameters as new data is sam-
pled. Monte Carlo Sampling methods are an important subset of Bayesian optimiza-
tion methods that can be used to sample optimal parameters from a distribution of
input variables. MCMC sampling [130], a variation of Monte-Carlo sampling intro-
duces dependencies in the sampling procedure using Markov chains, ensuring that
the selection or rejection of a previous sample influences the samples that ultimately
model the posterior distribution of variables. MCMC, when combined with a func-
tion evaluating target values, is a valuable tool for obtaining the desired optimal
input parameters for the function [56, 61, 131]. Let C(x) be the target cost function
that depends on the set of parameters x specific to the problem, which needs to be
optimized. The task of optimization then involves finding a set of optimal param-
eters xopt that maximizes C. The steps required to find optimal parameters using
MCMC are as follows:

1. Random Sample Selection: To initialize the MCMC process a random sample
of the initial variables is chosen from a pre-defined prior distribution of vari-
ables. A Gaussian distribution is a common choice for a prior for each variable
that composes the target vector.

2. Forward Step: For the initial parameters, calculate the function value, C(x),
for the chosen parameters. For the first sample, this value is used to create a
proposed distribution.

3. Metropolis-Hastings (MH) Step [132]: This step sets the criteria for selecting
a new Markov state in the Markov chain. The decision to accept or reject the
new sample, denoted as x′ is based on a selection criterion defined below.

Accept new sample x′ if r ≤ min
(

1,
C(x′)
C(x)

)
else reject

The MH algorithm evaluates the likelihood of the new values of the cost func-
tion to the likelihood of the current Markov state. If the proposed new values
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of x improve this likelihood, then they are accepted as a new Markov state and
added to the Markov chain. If the likelihood doesn’t improve for the new set of
points, there’s still a chance of acceptance, which is determined using a proba-
bilistic condition. If the new sample is rejected, the Markov chain stays at the
current state, otherwise, the new sample is added to the Markov chain. If a new
Markov state is added, the proposed distribution from step 2 is updated using
this new state. The Metropolis-Hastings in this optimization step ensures that
the Markov chain explores the parameter space not randomly, but by intro-
ducing criteria affecting the desired target distribution for the cost function.
Different sampling methods such as Gibbs sampling [133] can be used to de-
fine the selection criterion. (Step 3 is not evaluated for the first sample, since it
is the first point in the Markov chain.)

Optimization using MCMC involves repeating the cycle as described above, for sev-
eral iterations, which leads to a distribution of target parameters for C for the input
variables. Depending on the problem, the number of iterations required to converge
to a narrow range of final overlap values can be different. Non-convergent samples
at the beginning of the MCMC cycle can affect the quality of the target distribution,
and eliminating them leads to better target distributions. Several tricks are used to
eliminate such non-convergent samples. One such trick involves rejecting the initial
non-convergent samples, which as termed as ’burn-in’ samples ( This is typically 10-
20% of the initial points of the MCMC cycle are discarded, but the number is often
problem-specific.). The final distribution after discarding the samples can then be
used to infer knowledge about optimal parameters. A common technique to gain
an idea of the final target distribution is to generate a smooth distribution using a
process known as Kernel Density Estimation (KDE) [134], and then use the mean of
the resulting distribution as the optimal set of parameters.
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Chapter 7

Results

This dissertation explored the applications of ML in spectroscopy and quantum dy-
namics. The main results of this thesis appeared in the form of three peer-reviewed
publications which are discussed in detail in this chapter. Each section of this chap-
ter first provides a short outline of the main findings of each work, before treating
each aspect of the investigations in detail. The final section of this chapter provides
an outlook into the significance of the research activities done in the dissertation and
research that can follow up on the work done in this dissertation.

7.1 GNNs for predicting excitation spectra

In Pub.1 a benchmarking of the performance of different GNN architectures was
performed on a large spectroscopy dataset. Besides comparing GNN performance
based on the quality of spectra, additional investigations were carried out to un-
ravel the relationships between molecular structure and the quality of predictions
made by different GNN architectures. To explore how the abundance of different
functional groups in the training and test datasets affects the quality of their predic-
tions, a statistical analysis was performed to show how easy or difficult it was for
GNNs to predict spectra for molecules carrying certain functional groups. Finally,
it was shown how unsupervised clustering methods can be used to understand the
relationships between molecules with similar prediction accuracy.

7.1.1 Calculating spectra for the QM9* excitation spectra dataset

KS-DFT allows for the calculation of orbital energies of molecules and has been ex-
tensively employed to study ground and with some corrections excited state prop-
erties. Computing spectra with ground state DFT involves using techniques such as
the core-hole approximation [135] to obtain transition states, which can then be em-
ployed to create spectra. Alternatively, TDDFT is employed in several spectroscopic
calculations. The dataset used for calculations in Pub.1 contains excitation spectra
that do not utilize any of these methods and were calculated by Ghosh et al. [29] in
their work on exploring spectra prediction using ML. The spectrum calculations for
the dataset in this work (termed QM9* henceforth) concern themselves only with
the occupied states of molecules in the QM9 dataset [85], and excited states are not
considered. Since the method for the calculation of these spectra is not one that is
commonly encountered, it warrants further elaboration. The first step in the calcu-
lation of these spectra is to calculate the eigen-energies of the highest 16 occupied
molecules using the PBE functional augmented with Tkatchenko–Scheffler van-der-
Waals corrections (PBE+vdW) [136] as implemented in the Fritz Haber Institute ab
initio molecular simulations (FHI-aims) code [137]. As a result of this design choice,
molecules in the QM9 dataset with fewer than 16 occupied states are first discarded
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from the calculation. The spectra are then obtained by Gaussian broadening the
energy values into the occupied density of states of the respective molecules. This
broadening allows for the incorporation of the various vibrational, lifetime, and ex-
perimental effects into theoretical spectra, and is commonly used in computational
simulations of various types of spectra.
This density of states incorporated spectrum, while not often encountered in chem-
istry, is nevertheless a qualitative spectrum that is easier to evaluate and not re-
stricted to the different domains of spectra that depend on the excitation states that
an electron is excited to. The notable difference is that it consists of the occupied
states of a molecule, rather than its excited states (rather than transitions between oc-
cupied and excited states). However, the high quality of calculations in this dataset
for a diverse set of molecules means that it can serve the purpose of testing the ef-
ficacy of various ML methods for the prediction of continuous chemical properties
such as spectra. With this in mind, the dataset was used as the first point of investi-
gation of the application of GNNs in spectroscopy.

7.1.2 Model selection and hyperparameter optimization

Four GNN frameworks, namely, GCN [138], SchNet [139], MPNN [91], and GIN
[140] differ in their message-passing functions, leading them to generate different
graph representations that are used to predict spectra were chosen for benchmark-
ing. The performance of these GNNs was compared to the best results obtained by
Ghosh et al. [29] using the Deep Tensor Neural Network (DTNN) [141] framework.
The models were trained by minimizing the MSE loss on training data. The per-
formance of the different models was compared by calculating their average RSE
values on the test set.
Hyperparameter optimization, as discussed previously, is useful for training any
ML model and the same applies to GNNs. In addition to the different parameters
discussed previously, the number of message-passing cycles also affects the amount
and quality of information encoded into the various feature vectors. Similarly, the
dimension of the embedding into which different feature vectors are transformed
for message-passing affects the quality of node embeddings obtained after message-
passing. These additional hyperparameters were incorporated into the training pro-
cess of the various GNN models. Optimal model hyperparameters for training these
models were obtained through a grid search on a pre-defined space of hyperparam-
eters. As with any model fitting exercise, steps need to be taken to ensure the models
trained are not overfitted on the training data. For this task, the QM9* dataset, which
contains 132k molecules was split into three sets: 80% for training, 10% for testing,
and 10% for validation. The validation dataset (and the validation loss) was used
to monitor the overfitting of the various models during the training process. To en-
sure the reproducibility of results, the data in each subset was kept consistent with
the previous study. The Pytorch Geometric library [142] provides an efficient way
to implement various GNN frameworks. All the GNN models in this work were
implemented using this library.

7.1.3 Benchmarking model performance

The DTNN model trained by Ghosh et al. [29] required 10 days of training to ob-
tain an average RSE value of 0.029 on the test set (as reported in their work). In
contrast, all the GNN models trained in this work required between 3 to 6 hours
of training (on a 32GB Nvidia Tesla GPU). The RSE values for these models on the
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same test data lay in the range of 0.023 to 0.039. The best-performing GNN model
SchNet had an average RSE value of 0.023 which is a significant improvement over
the DTNN value. Furthermore, analyzing the distribution of RSE values showed
that the SchNet model had a high proportion of values lower than the mean value
of 0.023, as shown in the left-skewed distribution in Figure 7.1. In contrast, the
DTNN model can be seen to have higher average values, but fewer structures with
extremely high RSE values (>0.1). Of the 13k molecules in the test dataset, 98% were
found to have RSE values less than 0.05 for the SchNet model as compared to 87%
for the DTNN model, further enforcing the superiority of the SchNet model.

FIGURE 7.1: Histogram demonstrating the RSE distribution for predicted test set spectra of the
SchNet (orange bars) and DTNN (blue bars) models. The red and black lines mark the respective
average RSE values of 0.029 and 0.033 respectively. Reprinted with permission from Singh et al.
[103]. Copyright 2023 American Chemical Society.

Besides benchmarking model performance, additional analysis was also performed
to understand how molecular structure affects the RSE of spectrum prediction. To
do this, the RSE values of the test set molecules were first obtained for models of
each GNN architecture. To find whether the size of the molecules has an effect on
prediction quality, a correlation between the number of atoms and the RSE values, as
well as between the RSE values and the molecular weight, was investigated. No cor-
relation was found between RSE values and molecular weight across all four GNN
variants. While prediction quality improved with the number of heavy atoms (C, N,
O, or F) in a molecule, this could be attributed to the relative abundance of molecules
with 8 or 9 atoms compared to molecules with fewer than 8 atoms, rather than a
correlation between the number of atoms in a molecule and predicted RSE values.
These findings provide support to the claim that GNNs are capable of generating
diverse molecular representations for molecules of different shapes and sizes.

7.1.4 Functional group based analysis of performance

Molecules are typically thought to be composed of various functional groups. Since
the QM9* dataset consists of a selection of randomly generated molecules, the fre-
quency of molecules containing these different functional groups also differs from
one type of functional group to another. Additional analysis was therefore per-
formed to investigate if GNN performance varies between molecules containing
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different functional groups. To accomplish this, the abundance of various func-
tional groups in the dataset was first evaluated, and the average RSE values of the
molecules in which these functional groups were then calculated for all four GNN
models. The abundances of various functional groups were approximately found to
be the same in the training and test sets ensuring that sampling bias did not affect
prediction quality. In total 18 functional groups such as carboxylic acids, amides,
alkenes, etc. were considered for this purpose. Groups such as ethers (44.21%) and
alcohols (31.60%) were very abundant, while carboxylic acids (0.91%) and fluorides
(1.63%) were rarely encountered in molecules of either the training or the test set.
The RSE values of these functional groups also were found to be (mostly) reflec-
tive of their relative abundances. Molecules with alcohols (0.023) and ethers (0.022)
were found to have lower RSE values on average than carboxylic acids (0.067) but
not vastly different from fluorides(0.025). Despite high RSE values for poorly rep-
resented functionals, no clear correlation was found between the abundance of a
functional group and RSE values. Further investigation was conducted, therefore,
to identify structural relationships between poorly RSE values.
Another way of analyzing the relationship between different molecules and RSE val-
ues is by clustering molecular fingerprints. Molecular fingerprints use the SMILES
representation of molecules to gather structural and functional information and en-
code them in the form of one hot encoding vectors. Morgan Fingerprints [143] of the
test molecules along with the RSE values were therefore clustered together using the
TMAP clustering algorithm [144] to unravel structural patterns between molecules
of the test data and their RSE values. TMAP clustering of molecules resulted in the
creation of a tree where different molecules appear as leaves/nodes. Molecules on
the same branch have similar Morgan fingerprints and are similar in structure. The
leaves of the TMAP were then colored with RSE values to provide a relationship
between RSE values and molecular structure. Figure 7.2 depicts the TMAP of RSE
values obtained for the test set (calculated for the SchNet model) with the blue nodes
having low RSE values and red nodes having high RSE values. Most leaves of the
TMAP were blue, due to the high prediction quality for most structures. Molecules
with high RSE values were colored in bright neon green and red colors. Further,
molecules that have high RSE values were found clustered together as highlighted
in the figure.
Once the difference in prediction quality for functional groups for the SchNet model
was established, further investigation was carried out to investigate whether similar
patterns could be found for other GNN models. For each functional group, there-
fore, a relative ease of prediction metric was defined. This metric provides a statisti-
cal window into how the RSE of molecules containing a particular functional group
compares to the average RSE of the rest of the molecules. Performing this for all
functional groups across all models gives an idea of whether the prediction quality
for different functional groups has a pattern across different GNNs. Across the four
models, for example, the ease of prediction metric showed that carboxylic acids are
difficult to predict. Some molecule types, such as those with fluorides are easier for
a model like the GCN but difficult for other models. This metric thus, gives further
insight into how feature design for functional groups could be improved to improve
predictions.
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FIGURE 7.2: TMAP clustering to understand the relationships between different test set molecules.
The highlighted regions (marked on the left and enlarged on the right) depict regions of interest i.e.
where molecules that have high RSE values are clustered together. Reprinted with permission from
Singh et al. [103]. Copyright 2023 American Chemical Society.

7.2 Incorporating explainability into GNNs for the predic-
tion of XAS

Analysing the performance of GNNs, as in Pub.1, sheds light on the differences in
the ability of different GNNs to predict spectra, as well as the differences in pre-
diction quality for different functional groups, but does not provide information on
how these differences arise. Complex ML models such as GNNs, are black-box by
nature, and understanding how they arrive at predictions requires using a set of
mathematical tools collectively known as Explainable Artificial Intelligence (XAI)
methods. To understand how GNNs predict spectra, therefore, an investigation into
the interpretability of different GNN models predict X-ray spectra was performed
in Pub.2. Since X-ray absorption spectra (XAS) are more practical and used widely
in materials research, a dataset containing X-ray spectra of QM9 molecules was cho-
sen over the QM9* dataset of the previous work. Such an investigation requires,
in addition to an XAI method, a ground truth to compare to the results of the XAI
method. The development of such a ground truth for complex chemical properties
such as XAS is a challenging task, and in Pub.2 an approach to automatically gener-
ate ground truths from quantum chemical calculations of XAS was developed. The
XAI technique of Class Activation Map (CAM) was then used to provide an insight
into which atoms of a molecular graph a GNN assigned importance to, across differ-
ent regions of a spectrum. An area under the curve (AUC) metric was then used to
quantify the similarity between the results of the CAM and the ground truth for each
molecule in the test data. Average AUC values were then used to infer the degree
of interpretability of different models and investigate the effect of various feature
changes on the interpretability of a GNN model.

7.2.1 X-ray Absorption Spectra for QM9 molecules

To investigate GNN performance and interpretability a dataset containing XAS spec-
tra of molecules was first created by coworkers of Pub.2. This dataset, termed QM9-
XAS contains the XAS spectra of 56k molecules chosen randomly from the QM9
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dataset. Carbon K-edge XAS of these molecules were calculated by exciting elec-
trons from the C 1s orbitals of different carbon atoms in the molecules. These spectra
typically show interesting features in the range of 276 eV to 300 eV, hence excitations
in this range were considered for creating XAS spectra. Spectra were calculated with
the ORCA quantum chemistry [145] package using TDDFT and the TDA approxima-
tion using the B3LYP functional. A TZVP basis set was chosen to ensure high-quality
calculation of the excitation energies of various molecules. To further ensure the ac-
curate calculation of spectra, a sufficiently large amount of excited states was chosen
for the calculation of transitions.

7.2.2 Model training and performance

Three different GNN architectures were chosen to understand the differences in the
interpretability of various GNNs. The GCN [138] is one of the first GNNs applied
to molecules and uses a simple convolution approach to update node embeddings
in its message-passing process. Graph Attention Networks (GATv2) [146] employ
an attention mechanism [147] to update node embeddings, giving them the ability
to dynamically select important nodes from the neighborhood of a node. The third
GNN chosen for this work was the GraphNets [148] framework which updates node
representations using the total graph representation in addition to updating repre-
sentations using neighborhood nodes and edges during the message-passing pro-
cess. Incorporating this information can arguably improve the understanding of
regions away from the neighborhood of the node, which can have an impact on the
final node representation of a graph. Training and hyperparameter optimization was
performed in an approach similar to the protocol described for Pub.1. The training
data consisted of 40k molecules, the validation set of 10k molecules and the test set
contained 6k molecules. Models were trained to minimize MSE loss, and prediction
quality was reported using average RSE values on the test set.
The three GNNs had variations in their average performance, due to the differences
in their message-passing architecture. The average RSE values on the test set for the
GCN, GATv2, and GraphNet models were reported to be 0.047, 0.031, and 0.042 re-
spectively, showing that the GATv2 model performs better than the other two mod-
els. To understand how these values translate into actual spectra, we refer to Figure
7.3 which shows the best, worst, and average predictions of the different models for
molecules of the test set. Across all three models, the best predictions accurately
replicate the TDDFT spectra in peak shape and intensity. Average predictions are
capable of replicating most features of the spectra but often do not accurately depict
intensities. Poor spectra show a mismatch in both intensities and peak shapes.

7.2.3 Interpretability analysis

The main goal of this work was to investigate the interpretability of these predictions
and for this, the feature attribution technique of CAMs was applied to the trained
GNN models. Along with this, a ground truth benchmark was developed to com-
pare the CAM heatmaps for different molecules using the explainability approach
discussed earlier. An XAS spectrum is composed of various transitions, which orig-
inate in one of the core orbitals of an atom, and end up in an unoccupied orbital
often comprising molecular orbitals delocalized over several atoms. The ground
truth benchmark developed in this work gives two heatmaps for each spectrum: the
core ground truth showing the core atom contributions, and the virtual ground truth
which shows the atoms involved in orbitals where the excited orbitals in an XAS



7.2. Incorporating explainability into GNNs for the prediction of XAS 41

FIGURE 7.3: Best, worst, and average predictions of GCN, GATv2 and Graphnets models. The good
predictions for all models replicate the TDDFT spectra (left column), the middle column shows how
an average prediction covers most features of the spectrum accurately, while the last column shows the
worst predictions with mismatching intensities and shapes. Reprinted with permission from Kotobi
et al. [113].

transition end up. To compare the ground truth to the CAM obtained for various
spectra, the AUC metric was employed (A visual representation of this comparison
is provided in Chapter 4.). This approach lends two AUC values comparing CAMs
and ground truths i.e., the CAM for the core and virtual atoms. Once the average
AUC metric is obtained for all the models, it can be used to compare the degree to
which the predictions of the models are interpretable for XAS prediction.

The average AUC for virtual and core comparisons for the GCN model were
both found to be around 0.5. This value is comparable to a random classifier that
assigns labels of contributing atoms for an XAS prediction randomly in a molecule
implying that the predictions made by a GCN model are not interpretable per the
ground truth logic. In contrast, the GATv2 and GraphNet models were both found
to have superior average attribution scores with median values for core and virtual
orbitals being greater than 0.7, which lends them a higher interpretability than the
GCN model. The higher interpretability of the GNN architectures can be attributed
to their superior message-passing architectures compared to the GCN. While the
attention mechanism of the GATv2 allows for the incorporation of neighborhood in-
formation dynamically, GraphNets have higher interpretability due to the incorpo-
ration of graph-level information. XAS arises out of a complex interplay of different
structural and functional factors in a molecule, which means that the patterns to be
learned by a GNN from XAS data are complex. In such a situation, therefore, enrich-
ing node information via the attention mechanism or by incorporating graph-level
information could be crucial in improving performance and interpretability.
To understand the relationship between the quality of predicted spectra and the in-
terpretability across different models, for each model, the test set was divided into
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deciles according to RSE values, and the variation of AUC values for each decile
was studied. While the AUC did not show any variation across the different deciles
for the GCN model, a pattern was found for the other models. For both the GATv2
and GraphNet models, the interpretability was found to be high for higher-quality
spectra and declined with a fall in prediction quality.

FIGURE 7.4: Depicting the change in AUC values due to the addition of a methyl group. The AUC
values for the core and virtual ground truth are higher for the original molecule (0.96 and 0.63).
Adding a methyl group to random positions in the molecule (top and bottom) causes a decline in both
AUC values for both structures. Reprinted and adapted with permission from Kotobi et al. [113].

Biases in a dataset arise due to differences in the frequency of different types of
molecules, which in turn can bias the model to learn spurious correlations. Inter-
pretability can also help identify dataset biases and be used to test the robustness
of models. To study how robust a model is to such spurious correlations, a few
structures from the QM9 dataset were chosen and perturbed by adding a methyl
group randomly to the molecule. Altogether 40 molecules that do not appear at all
in the QM9 dataset were obtained using this perturbation. Adding such a pertur-
bation alters the TDDFT spectrum, as well as the predicted spectrum of the original
molecule. For all three GNN models, the perturbation unanimously was found to
cause a drop in prediction quality and interpretability. The average RSE value for
the unperturbed structures for the GraphNets model was 0.03. For the perturbed
structures, the average RSE dropped to 0.13 for the same model, representing a sig-
nificant decline in performance for these new structures. A purported reason for this
drop could be the increase in the size of molecules upon the addition of the methyl
group. Most QM9 molecules have a maximum of 9 heavy atoms (C, N, O, F), while
the perturbed molecules, on average, were found to have more than 9 atoms, indi-
cating the difficulty in generalizing to molecules of larger size than the model has
been trained on. The change in RSE values for these structures was found to be even
higher for the GATv2 and GCN models. Figure 7.4 depicts how the addition of a
methyl group causes a fall in the AUC values for a structure from the test set. As
seen from the figure, the AUC values of both core and virtual ground truths drop
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when the functional is added, irrespective of the site at which the addition is per-
formed. The % drop in values for the virtual ground truth in this case was found to
be higher than the corresponding drop for the core ground truth. This behavior was
also representative of the general trend observed across all molecules for all mod-
els, where the drop in AUC core values was much smaller than the corresponding
values for the virtual ground truth.

7.3 Machine Learning wavepacket propagation

Pub.3 explored how ML can be used to predict wavepacket propagation for quan-
tum dynamical systems. To accomplish this, Fourier Neural Operator (FNO) models
were trained on simulation data created by propagating wavepackets for two differ-
ent quantum dynamical systems. FNO models were found to accurately and faith-
fully reproduce the propagation of wavepackets for both systems. The dynamics of
one of these systems involved a wavepacket trapped in a double well, propagating
under the influence of a laser-induced electric field. Having trained an FNO model
to simulate the propagation of a wavepacket under different electric fields, Pub.3
demonstrated how the Bayesian technique of Markov Chain Monte Carlo (MCMC)
could be employed to find optimal laser pulses that can successfully induce the
wavepacket to propagate from one part of the double well potential to another. Such
an MCMC-coupled optimization typically requires several thousand iterations over
different laser parameters, which was made possible by the high inference speed
and single-shot propagation capabilities of the FNO models, thereby demonstrating
the viability of this pulse optimization approach as an alternative to methods such
as optimal control.

7.3.1 Test systems

To demonstrate the ability of ML models to learn the dynamics of wavepacket prop-
agation, two test systems were chosen. One of these systems exists in one spatial
and one temporal dimension, while the other (2D) has two spatial dimensions and
one temporal dimension. The type of potential in each system was also different, as
in the 1D system the potential in the Hamiltonian is time-dependent, while the 2D
system has a static potential. This variability between systems allows for the demon-
stration of the versatility of the ML methods, as well as their applicability to systems
under different conditions.

Two-dimensional anharmonic potential system

It is common practice to use polynomial functions to approximate the potential sur-
face of various quantum systems. Anharmonic potentials are one such form of poly-
nomial potentials that have been extensively used to model systems involving small
molecules, or their vibrational modes [149–151]. The propagation of a wavepacket
under an anharmonic potential in two dimensions was therefore chosen as one of
the systems for investigation in this project. The wave packet in such a system is a
function of two spatial coordinates and time. Given an anharmonic potential of the
form

V(q1, q2) =
1
2
(q2

1 + q2
2) + λq2

1q2
2 (7.1)
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FIGURE 7.5: The density |Ψ|2 of a randomly chosen initial wavepacket in the two-dimensional an-
harmonic potential. Contour lines show the potential value (in a.u.). Reprinted from the manuscript
submitted at J.Chem.Comput.

the Hamiltonian of the system is a function of two spatial dimensions q1 and q2
thereby leading to the TDSE for the system (in a.u.) as

i
∂

∂t
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)
Ψ +

1
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1q2
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The parameter λ can be varied to give access to different Hamiltonians under which
a system can evolve. The initial wavepacket that was used for studying this system
was a product of two Gaussians centered at random points in the spatial grid. Ran-
domly varying the initial position coordinates allows for placing the wavepacket at
different points in the spatial grid, thereby giving access to a variety of initial con-
ditions. A combination of the initial wavepackets and their different potentials thus
allows for creating a dataset to train ML models for this system.

Laser driven tunneling in a 1D double well potential

The second system is a 1D double well potential that has been extensively used to ap-
proximate the rotation of the molecule F2H3C6 − C6H3Br2 along the torsional bond
connecting the two phenyl rings. Figure 7.6 (a) shows the molecule and the torsional
bond whose rotation is measured along the dihedral coordinate (ϕd). This system has
been extensively investigated [129, 152], both theoretically and experimentally. The
rotation of the molecule along the bond can be approximately modeled as the prop-
agation of a 1D wavepacket along the dihedral angle coordinate. The time variation
in the Hamiltonian (through the potential) occurs due to the influence of a laser,
which carries out this rotation. In the 1D system, this amounts to the tunneling of
the wave packet initially localized on the left side through the barrier and into the
right side of the double well, as depicted in Figure 7.6 (b).
The steady-state Hamiltonian of this system, without the influence of an external
field, is given by Equation 7.3 as below:

Ĥ =
1

2Irel

(
−h̄2 ∂2

∂ϕ2
d

)
+ V(ϕd) (7.3)
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The double-well potential V(ϕd) in which the wavepacket is initially confined is
given by Equation 7.4. This potential has been verified experimentally in previous
studies [152, 153] and its functional form was obtained using DFT calculations for
various molecular configurations of the system in the aforementioned studies. Irel
in this equation is the relative moment of inertia of the molecule defined as Irel =
IBr IF/(IBr + IF).

V(ϕd) =
6

∑
n=0

An cos(nϕd) (7.4)

The time-varying laser pulse applied to the system induces an electric field ϵ which
alters the potential of the system. This induced electric field changes the Hamilto-
nian of the system to

Ĥ′ = Ĥ − 1
4

ϵ2(t)α(ϕd), (7.5)

FIGURE 7.6: (a) The molecule F2H3C6 −C6H3Br2 along with its dihedral angle ϕd, along which the
rotation occurs. (b) The double well potential depicting the confined wavepacket on the left side (blue)
and the desired final state of the rotated molecule(pink). Reprinted from the manuscript submitted at
J.Chem.Comput.

where α(ϕd) is the molecular polarizability as calculated in [152]. Since molecules are
not in a steady-state under room temperature, but in vibrational motion, the double
well potential is itself not static, and slightly varies in time, leading to changes in
both V(ϕd) and α. These terms are therefore additionally modified to include per-
turbations calculated using the technique elaborated in [129]. The complete Hamil-
tonian of the system considers effects from the vibration of the molecule and the
electric field that results from applying a laser field. For this system, an initial state
for the propagation can be chosen to be the initial state is an eigenstate of the ground
state Hamiltonian which is localized on the left side of the double well (The vibra-
tions induce asymmetry in the double well, which allows for such a localization).
This initial state can be calculated for the system using a method such as the Fourier
Grid Hamiltonian Method [154]. Different time-varying pulses can then be applied
to the system, leading to different outcomes in the propagation of this wavepacket,
helping the creation of a varied dataset to enable learning of the propagation for
different conditions using ML.
Not all laser pulse-induced electric fields are capable of performing the tunneling
of the wavepacket for this system. Laser pulses that are too low in intensity will
fail to induce any tunneling and only result in oscillations on the left side of the
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wavepacket. Too strong lasers could ionize the molecule by breaking the bond,
which is not desirable. Inducing a change as in the 1D test system using a laser
can therefore be considered an optimization problem. Such optimization involves
finding the initial conditions of the system to attain a final target system and can be
referred to as an inverse problem. To do so, it is first necessary to define a reference
target state that the laser pulse must be able to translate the initial wavepacket into.
The optimization procedure then tries to maximize the degree of overlap between
a final state at the end of the wavepacket propagation with this reference state. Let
C(x) be such a function that depends on the vector of laser pulse parameters de-
noted by x. Then, the task of pulse tuning for the 1D system translates to finding the
optimal set of parameters xopt that maximizes C. The use of MCMC optimization to
maximize this function C using FNO to evaluate final states for different laser pulses
was explored in Pub.3.

7.3.2 Dataset generation and model training

To demonstrate wavepacket propagation using ML datasets for the two test systems
were generated. For the 1D system, the split operator method was employed for
propagating the initial wavepacket density described earlier. Different induced po-
tentials owing to the varied laser pulse parameters, lead to a variety of Hamiltonians
that influence the simulation leading to different final states at the end of the prop-
agation. Thus, using the fixed initial wavepacket and different laser pulses a total
of 4,000 different simulations were generated using the split operator method. For
the 2D system, the parameter λ and the initial wavepacket provide access to the cre-
ation of a dataset for this system. In total using MCTDH to propagate wavepackets
for this system, a dataset of 1,000 propagations was generated. For each wavepacket
(in both systems), the corresponding wavepacket density was used in the input data
for the FNO model.
Data generated from PDEs is different from usual output data in other applications,
as the subsequent instances in a trajectory (propagation) are continuous (and thus,
dependent on one another) since most phenomena modeled by PDEs are continu-
ous. Hence, while MSE loss can be used to train a model like the FNO, it is not an
optimal choice. The models trained in this work utilize therefore a special loss func-
tion, named the Sobolev loss function [155, 156]. The Sobolev loss function considers
the transition between two consecutive time instances in propagation by introducing
gradients in the loss function, thereby penalizing discontinuous outputs. This loss
function hence is used where a smooth approximation of the output is necessary, e.g.
in image denoising and PDE solving [155].
Two different FNO model architectures were used to train the two different systems
since these differ in dimensionality. Hence the FNO 2D model which models sys-
tems varying in two coordinates was used for the 1D test system (which has one
spatial and one temporal coordinate), while the FNO 3D model was used for the 2D
system, which has two spatial coordinates and one temporal coordinate. Hyperpa-
rameter optimization for the FNO model involves using hyperparameters that are
specific to the FNO model are the number of Fourier modes the number of Fourier
layers, and the width of each linear layer in the FNO model, in addition to the gen-
eral hyperparameters previously discussed. The FNO model for the 1D system re-
quired 4h 51 mins to train while the 2D system required 26 mins of training. The
FNO model for the 1D system has 629 million trainable parameters compared to 205
million for the model for the 2D system and requires more epochs to train leading to
a longer training time for the former.
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7.3.3 Learning wavepacket propagation with ML

FIGURE 7.7: Comparison of wavepacket densities generated by the MCTDH and FNO methods at
various timesteps for a randomly chosen test sample. The top panel displays the densities at t=1
t=2, t=5, and t=10 a.u. generated from their corresponding wavepackets with MCTDH. The middle
panel shows corresponding values at these timesteps for the same initial density predicted by the
trained FNO model. The bottom panel illustrates the absolute difference error between the wavepacket
densities generated by the two methods. Reprinted from the manuscript submitted at J.Chem.Comput.

Figure 7.7 provides a comparison between an FNO-predicted propagation and its
MCTDH counterpart for a randomly chosen test sample at four different timesteps
during the propagation. The initial wavepacket density for this sample is the same
as the one depicted in Figure 7.5. Wavepacket densities obtained from wavepackets
at different timesteps used for the MCTDH propagation are shown in the top panel
of the figure. As can be inferred from a visual comparison of the two panels, there
is very little difference in the MCTDH and FNO results, demonstrating the ability of
FNO models to accurately predict trajectories at different timesteps for this system.
The bottom panel shows the absolute difference between the densities obtained from
MCTDH and FNO methods. The absolute difference also shows some ’residual’
density at various points in the grid for the FNO model, which is the source of error
between the two models. The error is itself more concentrated in regions where the
wavepacket propagation takes place, but besides this, there is no discernable pattern
to the error propagation in the sample.

7.3.4 Pulse tuning using Bayesian optimization

A major advantage of ML methods like the FNO model is their speed of inference.
This means that while training an FNO model is expensive, once trained the model
is capable of accurately generating propagation for input data at a very high speed
compared to conventional PDE solvers (for the 2D system the speedup was by a
factor of 103). This speedup can be useful in downstream procedures that require
generating a large number of outputs and iterating over them. To test whether such
gains in speed can be useful in applications a laser pulse optimization using the FNO
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model and the MCMC approach was carried out. To accomplish this, a cost function
was first defined to compare how close the target state (defined for the system) is
with the final state obtained from propagation. The MCMC-FNO optimization then
was used to find the set of laser pulse parameters that maximize this cost function.
For this purpose, a functional form of the laser pulse was first defined. The MCMC
approach then involved using randomly generated laser pulses (using random pa-
rameters in the functional form) to propagate wavepackets in the FNO model. The
laser pulse chosen for the process was a chirped pulse which has a functional form
with 6 variables given by

ϵ(t) = Ae−
1
2 (

t−tc
σ )2

cos(2π( f + β(t − tc))(t − tc) + θ). (7.6)

Of these, three variables tc, β, θ were kept fixed for the MCMC process, while the
other three were varied during the optimization. The MCMC process case was re-
peated for 20 different seed values, to demonstrate the stability of this approach
for designing an optimal laser pulse shape. For each seed, the pulse optimization
(which includes predicting the propagation using FNO) took approximately 5 min-
utes to complete. Given that there were 5,000 different samples in each cycle the
computational cost for each MCMC cycle is quite low. While the optimization was
constrained only to three variables, it is possible to extend the process to optimizing
all variables of the laser pulse. This would require more samples to train the model
and more training time. The number of samples required to estimate a distribution
using MCMC would also in this case be greater than the 5,000 iterations performed
in this work.

FIGURE 7.8: Plots depicting the outcomes of 20 MCMC pulse optimization tasks utilizing the FNO
model. The left figure exhibits 20 pulse shapes, all exhibiting a consistent pattern of peaking at the
simulation’s outset and subsequently decreasing over the next cycles. The right plot portrays the
change in the expected values of the wavepacket density over time. Initially, all wavepackets are
concentrated on the left well, denoted by negative values. Applying the pulse transports them to the
right, reflected in the positive values of the expected density. Reprinted from the manuscript submitted
at J.Chem.Comput.

Figure 7.8 demonstrates the results of the MCMC-FNO pulse optimization process
for these 20 seed values. The left side of the figure shows the pulse shapes obtained
for the different MCMC cycles. As seen in the figure, all the pulses have similar
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profiles, with the first pulse being the highest in amplitude, followed by shorter
subsequent pulses that decrease in time. The right-hand side of figure 7.8 shows the
expected value of the wavepacket density on the coordinate grid. These expected
value plots show, that the laser pulses indeed bring about the tunneling with the
first large pulse, while the subsequent pulses keep the wavepacket confined (and
oscillating) in the right-hand side of the well, as indicated by the change from neg-
ative expected values to positive after the application of the pulse. The physical
reason for the laser pulse profile can be justified by using the following logic: The
first pulse has to be the largest in amplitude as it seeks to immediately drive the
tunneling. The subsequent pulses, on the other hand, act as stabilizers, preventing
the wavepacket momentum from carrying it back to the other side of the well. The
degree of overlap between the desired target state and the states obtained from the
MCMC processes ranged between 0.7 − 0.95 indicating a high degree of similarity
between the final states and the desired target, thereby demonstrating the viability
of this approach for laser pulse optimization at low compute costs.

7.4 Conclusion and research outlook

Graph Neural Networks (GNNs) are the latest in a long line of ML algorithms used
for chemical property prediction that have already demonstrated significant promise
in property prediction and structure generation tasks. The work on GNNs for pre-
dicting spectra in this dissertation has provided a solid platform to explore the appli-
cability of GNNs to larger structures. A novel GNN approach is being investigated
by Prof. Bande and co-workers for the prediction of XAS spectra of functionalized
coronene and circumcoronene molecules. I have contributed to this through the
creation of a dataset of XAS spectra for randomly generated molecules using an
in-house algorithm. A GNN framework capable of predicting site-specific XAS at
different atoms in these molecules is also being investigated for this purpose. Such
an approach will enable the usage of GNNs to predict spectra for macromolecules
such as graphene oxides as an alternative to computing expensive quantum chemi-
cal spectra using DFT or TDDFT based methods.
Chemical property prediction using ML is expected to be a major part of several
research pipelines in materials and drug research. A large number of these chem-
ical properties arise due to complex electronic structure interactions within differ-
ent atoms of a molecule. While ML models can discern various patterns from large
amounts of data, these might not always correlate to scientific logic. Pub.2 was an at-
tempt to understand the decision-making of ML models used for complex chemical
property prediction tasks. It demonstrated how novel ground truth benchmarks can
be generated using quantum chemical properties, thereby reducing the reliance on
expert opinions and empirical evidence for investigating ML model interpretability.
This approach can be extended to various chemical property prediction tasks as an
added tool to measure model and dataset suitability for the task at hand. Once again,
applying such an approach to large molecules in tasks such as prediction of molecu-
lar spectra can provide valuable insights into structure-property relationships, that
are difficult to discern using other methods.
The work on FNOs in this dissertation demonstrates their ability to learn quantum
dynamics propagations in different systems. The speed of inference of these models
gives them the ability to act as low-cost surrogates for exploring parameter spaces
in dynamical systems before a high-accuracy method is used. A natural extension of
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the work done in this dissertation is to use FNOs for systems with three spatial co-
ordinates and one temporal coordinate. Another avenue for exploration is the use of
physically inspired loss functions to train FNOs, which can improve the prediction
quality of these models. Data generation for quantum dynamical systems in large
dimensions can be computationally expensive and even here ML may be useful. For
example, dimensionality reduction using ML can help find efficient approximations
for quantum dynamical models with large dimensions. By reducing the number of
dimensions, large systems can be broken down into smaller ones, making it easier to
generate data. This can extend the applicability of ML methods that predict solution
operators such as the FNO models to systems larger than four dimensions. Further-
more, the discovery of PDEs using symbolic regression (enhanced with ML) might
be useful to improve the ability to model PDEs for quantum dynamical systems.
Applicability to experimental data remains a critical bottleneck in the usage of ML
for chemistry. The work done in this project has largely relied on data from quantum
chemical calculations. As such, the spectrum predictions of these ML models do not
take into account the various experimental effects arising from solvent interaction,
lifetime broadening, molecular vibrations, etc. Where experimental data are avail-
able, the ML architectures used in this work can be trained to predict results, but it
is difficult to determine the accuracy of the predictions without having performed
this exercise. When experimental data is unavailable, however, it is recommended
to perform investigations that allow for incorporating experimental corrections in
these models, either during data creation and collection or in a post-hoc manner by
cascading different ML approaches together. ML applications in chemistry are at a
nascent stage and we have barely scratched the surface in terms of how ML can rev-
olutionize chemistry. The work presented in this dissertation will help to further the
application of ML in different fields of quantum chemical research.
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ABSTRACT: The use of sophisticated machine learning (ML)
models, such as graph neural networks (GNNs), to predict
complex molecular properties or all kinds of spectra has grown
rapidly. However, ensuring the interpretability of these models’
predictions remains a challenge. For example, a rigorous under-
standing of the predicted X-ray absorption spectrum (XAS)
generated by such ML models requires an in-depth investigation of
the respective black-box ML model used. Here, this is done for
different GNNs based on a comprehensive, custom-generated XAS
data set for small organic molecules. We show that a thorough
analysis of the different ML models with respect to the local and
global environments considered in each ML model is essential for
the selection of an appropriate ML model that allows a robust XAS
prediction. Moreover, we employ feature attribution to determine the respective contributions of various atoms in the molecules to
the peaks observed in the XAS spectrum. By comparing this peak assignment to the core and virtual orbitals from the quantum
chemical calculations underlying our data set, we demonstrate that it is possible to relate the atomic contributions via these orbitals
to the XAS spectrum.

■ INTRODUCTION
X-ray absorption spectroscopy (XAS) is an important
characterization technique in chemical analysis to unveil the
atomic structure of matter, having a broad range of
applications in material science,1 biomedical research,2 and
identification of metals and solids.3 XAS is particularly useful in
the investigation of the electronic and geometric structure of
biomolecules, nanoparticles, and metal complexes.4−6 The
interpretation of experimentally obtained XAS spectra is,
however, complicated due to the intricate interplay between
the complex electronic structure of the material and the
adsorption of X-ray photons. Several factors, including the
chemical environment of the atom, the presence of solvents,
and the energy of the incident X-rays, influence this
complexity.7 Therefore, sophisticated�but computationally
also expensive�theoretical methods from ab initio quantum
chemistry can accurately predict XAS and are a necessary
complement to interpret experimental results.8

Machine learning (ML) techniques are being increasingly
applied to various areas of theoretical and computational
chemistry given their ability to infer structure−property
relationships on the basis of large amounts of data.9−11
Among those ML techniques, graph neural networks (GNN)
and deep neural networks (DNN) are promising candidates to
predict the properties of matter, such as the electronic
structure,12 at a higher computational speed, already making

them favorable for high-throughput calculations in materials
design and drug discovery.13,14 Thus, the ability to perform
efficient computations with high accuracy has demonstrated
that ML techniques are advantageous in domains such as
various types of spectroscopy, including vibrational and
optical.12,15−24
Several studies have focused on X-ray spectroscopy using

ML methods with the additional aim to improve the
understanding of the contribution of different atomic environ-
ments to the peaks occurring in the spectra.22−24 Accurate
prediction of XAS spectra has been accomplished by
employing some of the more sophisticated ML models, such
as GNNs and DNNs.17,25,26 However, a large number of layers
in the underlying neural network, as well as a high parameter
count, implies such models are black-box,27 which means
understanding the rationale behind predictions is a challenging
task. On the other hand, ML models designed to predict XAS
spectra must provide clear peak assignments, as this option for

Received: July 17, 2023
Published: October 9, 2023

Articlepubs.acs.org/JACS

© 2023 The Authors. Published by
American Chemical Society

22584
https://doi.org/10.1021/jacs.3c07513

J. Am. Chem. Soc. 2023, 145, 22584−22598

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

89
.2

47
.1

67
.6

 o
n 

D
ec

em
be

r 
5,

 2
02

3 
at

 1
3:

57
:0

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



interpretation is typically required in spectroscopy experiments
and often necessitates theoretical calculations. The compre-
hensibility of why ML models can achieve this peak assignment
capability must be transparent to users to ensure trust in the
predictions, given the diverse range of applications of XAS in
material and biochemical sciences.7,28,29 It is therefore
imperative to develop an understanding of the XAS predictions
made by complex ML models and ascertain whether the
predictions align with human logic and decision-making, as
incorporated in the quantum-mechanical equations. This can
be achieved using explainable artificial intelligence (XAI)
methods, which provide a window into the ML model’s
decision-making process and correlations uncovered by the
model through data analysis.30 Justification and interpretability
offered by XAI methods not only provide evidence defending
why a prediction is trustworthy with quantitative metrics but
also refer to the degree of human understanding intrinsic
within the model.10,31,32

Numerous techniques are available to incorporate explain-
ability in GNN and DNN models.33,34 Our emphasis in this
work lies in using a method known as attribution.35 Attribution
methods have found widespread use in applications where the
input data consists of images or text, composed of features
such as pixels, characters, and words.36,37 In these cases,
attribution scores highlight particular regions via pixels of the
image or certain characters or words in a text that affect, in this
case, the decision-making of the ML model used in the task.
Therefore, it is relatively easy to validate such explanations in
image- or text-based tasks. However, validating explanations
for chemical property prediction is challenging since a property
is often the result of a complex interplay between the
geometric and electronic structure of the atoms in a molecule.
This gives rise to intricate structure−property connections
within molecules, especially complex properties such as X-ray
absorption spectra, which only find interpretation by the
examination of each individual peak detected through a
combination of experiments and simulations.21 Therefore,
the validation of explanations generated using attributions also
requires the creation of a robust “ground-truth” benchmark
using such domain-specific knowledge, which is often a
challenging task in molecular-property prediction. Examining
the robustness of GNN models to predictions on unseen data,
being possibly biased toward specific chemical structures, is yet
another challenge in understanding the overall performance of
different models.38,39

In this study, we introduce a framework that uses a
combination of graph attributions and ground-truth data
generated from linear-response time-dependent density func-
tional theory (TDDFT),40 to provide explainability on GNN
models trained to predict carbon K-edge XAS spectra of
organic molecules. Carbon K-edge spectroscopy was used for
XAS for various reasons. First, carbon atoms play a central role
in the structure and function of a wide range of organic
molecules as well as inorganic materials. Second, carbon K-
edge XAS offers a unique perspective, providing valuable
insights into the structure, function, and reactivity of these
molecules.41,42 Finally, among the XAS calculations, K-edge
spectroscopy on a main group element is less complicated
than, for example, the spectroscopy on the transition metal L
edge, and can be computed via TDDFT on a time scale that
allows the creation of a large data set. To train the different
GNN architectures, an in-house QM9-XAS data set, based on a
subset of the QM9 data set or organic molecules,43 was set up

(see Data Availability Statement). We compare the perform-
ance of the trained models in predicting XAS spectra on the
test data set. In order to evaluate the explainability of GNN
models, we analyze the ability of these models to identify the
contribution of atoms and their surrounding environment
toward the distinct peaks in the XAS spectrum. For creating
the “chemical” ground truth pertaining to XAS, we created a
data pipeline that inputs the output of TDDFT calculations
and renders the labels to atoms, indicating whether or not an
atom contributes to a specific excited state in XAS. These
ground-truth values are then finally quantitatively compared
with the attribution scores obtained from GNNs. Applying this
method to different GNN models, we find that specific GNN
architectures, which incorporate both global and local
information on atoms, offer superior explanations for the
peaks observed in the carbon K-edge XAS spectra. Addition-
ally, we investigate the robustness of the GNN models by
randomly perturbing molecules in the test data set, to
rationalize the difference in the explainability power of various
used GNN architectures.

■ METHODS
The QM9-XAS Data Set. While X-ray absorption spectroscopy is

a popular technique in chemistry, to the best of our knowledge there
is no organic molecule XAS data set that is large enough and available
for training ML models. Therefore, we used the QM9 data set43

containing 132,531 organic molecules composed of the first and
second row of main group elements H, C, N, O, and F. We choose a
random subset of the QM9 data set, containing 56,000 molecules,
which we term QM9-XAS for the purpose of our data set. We use
these structures to calculate carbon K-edge XAS spectra with the
time-dependent density functional theory (TDDFT)44 method, which
is in general a useful complement to experiments and allows for the
interpretation of spectral peaks. More specifically we used the ORCA
electronic structure package45 to calculate TDDFT at the B3LYP/
TZVP46,47 level of theory. All calculated XAS spectra were obtained in
the energy ranges Emin = 270 eV and Emax = 300 eV and peaks
broadened using Gaussians of widths 0.8 eV. The resulting curves
were discretized into Ngrid = 100 points between. This step ensures
that the length of the target output to be learned for ML applications
is consistent across all spectra. Further processing is then performed
to generate tuples of molecular graphs and their spectra to convert
them into a format optimal for training GNN models. Molecular
graphs were generated from the SMILES strings of the molecules,
which were available in the original QM9 data set using the RDKit48

python library. Since our models are implemented using the Pytorch
Geometric49 library, the graph and spectrum tuples were converted
into the native data set class of this library.
Graph Neural Networks. GNNs are neural networks specifically

designed to treat unstructured molecular data.50 A graph is formally
defined as a tuple of G = (V, E) of a set of nodes v ∈ V and a set of
edges ev,w = (v, w) ∈ E, which defines the connection between nodes.
It is intuitive to represent molecules as graphs, in which atoms and the
bonds between them are represented as nodes and edges, respectively.
Further information about each atom and bond in a molecular graph
is incorporated in the form of node and edge feature vectors added to
the tuple G of each graph in the data set. A node (atomic) feature
vector represents information such as the atom type (e.g., C, H, N, O,
or F) or the number of hydrogen atoms attached to it. Similarly, edge
(bond) feature vectors are representatives of properties such as the
bond lengths between two atoms or the bond multiplicity. We employ
one-hot encoding to convert most of the node and edge features,
including categorical attributes, such as atom type, into numeric
vectors. All encodings used in this work are summarized in Table 1.
A GNN layer takes as input a graph with node and edge features

and outputs a graph with the same topology where the node, edge,
and global graph information is updated. To achieve this, the node
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and edge information represented as feature vectors are first converted
into vectors in higher dimensional space (feature space) referred to as
node and edge states, respectively, using a transformation function.
Transformation functions can be fully connected layers, convolutional
layers, or recurrent layers depending on the GNN architecture. A
fundamental part of GNNs is the so-called propagation (or message-
passing) process used to update these node (or edge) states. Message
passing occurs in two steps: The first step involves gathering the
information on the nodes (or edges) surrounding a target node by
collecting their node states. In the second step, these states, along with
the state of the target node, are aggregated using an aggregation
function such as sum or average. If the final task is to predict the
property of a graph, then these updated node states are further
aggregated using a graph-level aggregation function, termed readout.
Different GNN architectures have different message propagation

and readout functions that affect the node, edge, and graph states
obtained at the end of a message-passing process. In this work, we
trained ML models on three GNN algorithms. The first architecture is
the graph convolutional neural network (GCN),51 which employs
only node states to aggregate information in the message-passing
process. The second GNN model is GraphNet,52 in which a global
state vector, including node and edge states, is used in the message
function. The third is the multihead graph attention network
(GATv2)53 in which an attention mechanism54 is used to aggregate
node information. The attention mechanism in GATv2 allows for the
calculation of edge weights to each node in the neighborhood of a
target node, which assigns an importance value to the message passed
from each node to the target node. Training a multihead GATv2
converges faster at a moderately higher computational cost, while also
increasing the robustness of the final model since it is in principle
trained on multiple attention instances in parallel.
Training. In order to assess various trained models, the QM9-XAS

data set was shuffled and divided into a training set of 50k samples
and a test set of 6k samples, with the training data further partitioned
into an 80:20 ratio for training and validation. The GNNs and all fully
connected layers were trained for 1000 epochs, at a learning rate of 1
× 10−3, and a batch size of 100 samples. A learning rate scheduler was
implemented to reduce the learning rate by a factor of 0.8 every 100
epochs. For all the models, three GNN hidden layers with sizes of
128, 256, and 512 were used for node updates, and a fully connected
layer was used as the output layer for predictions. We used the
AdamW optimizer55 and the root mean squared error (RMSE) as the
loss function to train the models. In order to keep track of overfitting,
we monitor the RMSE loss on the validation set after every 50 epochs.
All models were trained on a single NVIDIA Tesla A100 64GB GPU.
We select the model which has the best RMSE loss and relative
spectral error (RSE)19 on the validation data set.
RSE is obtained by dividing the RMSE among the target ytar and

the predicted ypred intensities of the signal at energy E, by the total
spectral energy of the target. In the discretized spectrum in steps of
ΔE = (Emax − Emin)/Ngrid, the RSE is approximated as

y y E

y E
RSE

( )i
N

i i

i
N

i

tar pred 2

tar

grid

grid
=

·

· (1)

A small relative spectral error indicates that the predicted spectrum is
a good prediction of the original spectrum. The quality of XAS spectra
predictions made by different GNN architectures was compared by
calculating the average RSE on the test data set.
Graph Attribution. Attributions or feature attributions are one of

the most popular techniques used to explain the model’s
predictions.56 The attribution method assigns scores to each input
feature that reflects the contribution of that feature to an ML model’s
prediction, thereby explaining the role played by that feature in the
prediction.38,57,58 In the case of GNNs, attribution methods assign
attribution scores to graph nodes and edges based on their
contributions to the final prediction of the model. One way to
visualize the attribution scores obtained is by overlaying a heat map
on top of a graph, highlighting the importance of individual atoms to
the target property in the case of a molecular graph. From these
heatmaps, one can deduce structural correlations between the model’s
rationale for good or bad predictions and compare them to existing
knowledge of why the prediction should be so. GradInput (GI),59

class activation map (CAM),60 and gradient class activation map
(GradCAM)61 have been shown to successfully explain predictions
made by GNNs for molecular structure−property prediction
models;35 that is, they can reveal the contribution of individual
atoms or atom pairs to the model’s decision. Although GNNs and
their interpretation through attribution techniques have proven
successful in decoding binding mechanisms and performing materials
discovery,38,58,62 to the best of our knowledge, these explainability
techniques have not been employed in XAS analysis. The scoring
attribution of atoms arising from CAM is intuitively well-suited to the
phenomenon of XAS, where peaks in the spectrum arise from the
local and global environments of atoms in a molecule.63,64

We, therefore, use CAM to obtain atomic contributions to the XAS
spectra of molecules in the QM9-XAS data set to explain the spectrum
predictions of GNN models. CAM attributions calculate the node
weights vi for highlighting the contribution of various nodes of the
graph to the prediction. As discussed above, GNNs that perform
property prediction on graphs use a global aggregation layer or a
readout layer prior to the output layer. In our case, the model
generates 100 values for the final spectrum by utilizing a layer
consisting of 100 units (neurons). For the purpose of evaluating the
attributions, each of these values can be treated as an independent
class. CAM operates on the aggregation layer prior to this final layer
and obtains attributions for these different “classes”, giving an insight
into atomic contributions at each point in the spectrum. To compute
CAM weights of a node for each class, let Fk(i) be the activation of a
unit k in the last GNN convolutional layer, preceding the output layer,
at node i. The CAM score at a node for a class c then is defined as65,66

v Fc i
k

k
c

k i( ) ( )=
(2)

where ωk
c denotes the weight of unit k for class c. Using this

formulation, one can obtain CAM scores for each point in the
spectrum of a given input molecular graph.
Ground-Truth Evaluation. In addition to the evaluation of

attributions, it is crucial to establish a ground-truth logic that enables
the assessment of attribution quality. Hence, the agreement between
CAM weights of the model’s prediction and ground-truth logic should
be quantified. To this end, a definition for a numerically measurable
ground truth for the excitations underlying the spectra is needed. In
other instances of XAI in chemistry, a suitable ground truth was
developed by directly considering the molecular fragments or
functional moieties that experts knew to be important for decision
making,67 such as binding mechanism learned by DNNs.38 Never-
theless, when it comes to predicting XAS, comparing attribution
scores to ground truth becomes more complex, since it necessitates
careful examination of all atoms in the molecule and a comprehensive
understanding of the quantum mechanics behind X-ray excitations.
Furthermore, delocalized molecular orbitals present yet another
challenge for understanding the precise contribution of atoms to
virtual orbitals in excitation states of XAS.68 Therefore, we have
developed a method that assigns the ground-truth contributions of

Table 1. Features of Nodes and Edges (Atoms and Bonds)
as Represented in the Encoded Vector in Conjunction with
Their Respective Type of Encoding

Node feature Encoding

Atomic number One hot
Hybridization One hot
Aromaticity One hot
Number of H atoms Integer
Edge feature Encoding

Bond distance Real
Bond type One hot
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various atoms in a molecule to a peak in the TDDFT spectrum. It
uses a combination of orbital populations of all of the initial and final
states underlying the respective X-ray excitations and their oscillator
strengths to obtain the contribution of each atom to a specific peak in
the XAS spectrum. To derive atomic contributions in the ground
truth, we first compute the core excitations within this energy range
and then determine the atoms contributing to both the core and
virtual orbitals of a certain excitation state. The atom contributions
were weighted according to the oscillator strength of the
corresponding excited state as well as the atom population per

molecular orbital. In cases where the calculated weights in the ground
truth necessitate the presence of particular atoms in a peak of the XAS
spectrum, we label those atoms as 1 and all other atoms as 0. Figure 1
depicts the process of obtaining ground-truth labels for atoms. Given
the fact that the optical transitions obtained from TDDFT are discrete
lines and that the ML spectra are distributed on a grid and have wide
peaks, for the comparison it is necessary to unify all CAM scores of a
given peak to a given line from TDDFT spectrum. Hence, we
summed up the CAM scores of all atoms in the molecule for all

Figure 1. Ground-truth evaluation is based on TDDFT data. The process of evaluating the TDDFT data starts with selecting a specific peak in the
XAS spectrum. The oscillator strength and orbital contributions for each excitation state in the peak are used to determine the final atomic
contributions to the peak. Atoms in the molecule are then labeled based on the calculated weights, i.e., 1 for atoms contributing to the peak and 0
otherwise.

Figure 2.Workflow of the ML and explainability of the XAS spectrum. This process consists of converting a molecule to a molecular graph, training
a GNN, comparison of the ML predicted and TDDFT spectra for obtaining the RSE, and finally applying the XAI technique to obtain here the
CAM weights (green). In this example, the CAM weights are compared to ground-truth attributions for core (red) and virtual (blue) orbitals at the
highlighted 277 eV peak of the spectrum, using a heatmap70 on the molecular structure. These ground-truth labels are then compared to CAM
weights, giving the AUC values for the core and virtual contributions.
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energy points in a range equivalent to the full width at half-maximum
of a peak.
Model Explainability. Explaining a model’s predictions involves

comparing the ground truth to the attributions obtained from the
model by using an XAI method. To measure to what extent our ML
models learn the correct atomic contributions to the XAS spectra, we
use the area under the curve (AUC) of the receiver operating
characteristic (ROC).38,69 The ROC itself is a curve formed by
plotting the rate of true positive outcomes and that of false positive
ones at various classification thresholds that divide the assignments
between the true and false classes. A true positive outcome occurs
when a model tasked with distinguishing two or more classes correctly
predicts the class to which an instance belongs. In our case, the CAM
weight assigned to an atom at a certain peak matches the ground truth
of the atoms belonging to an orbital. Similarly, a false positive occurs
when the class under investigation is incorrectly predicted by the
model, i.e., when atom contribution in ground truth and CAM
disagree. The AUC thus quantifies the performance of a classification
model into a single value between 0 and 1, where an area of 0.5 means
that a model works only as good as a random classifier. A value of 1.0
means that the model has the ability to perfectly discriminate among
different classes. In this particular case, the AUC is indicative of
whether the model can correctly identify whether an atom contributes
to a peak in the spectrum or not.
Figure 2 illustrates the workflow to make a GNN prediction of a

spectrum, determine the CAM attribution, and compare it in the last
step to the ground truth, i.e. the contribution of atoms to core and
virtual orbitals obtained from TDDFT, here shown for a prediction

made by the multihead GATv2 model. More explicitly, a model with a
large AUC close to 1.0 would perfectly assign labels 0 and 1 to each
atom in the spectrum for all of the molecules in the test set. Moreover,
we identify the baseline of AUC as 0.5, which is basically a model
classifier that randomly assigns these labels to the atoms in a
molecule.
We compute attribution AUC values at each peak in a TDDFT

spectrum and average them over all of the peaks to arrive at a final
score that explains the degree of agreement between ground-truth
logic and CAM attribution scores. The AUC is determined for
different model architectures. To demonstrate that the explainability
method is stable, we perturb a randomly chosen set of molecules from
the test data set and evaluate the change in attribution AUC.

■ RESULTS AND DISCUSSION
Model Performance. To first visualize the predictions

made by these GNN models, the best, average, and worst
predictions of the XAS spectrum are demonstrated for each
model based on RSE values in Figure 3b. While the best
prediction across all models is a near-perfect replica of the
TDDFT spectrum, the average and worse ones predict general
features of the spectrum correctly, but miss out on the finer
peak structure or incorrectly predict peak intensities. In Figure
3a, all RSE values for one model are plotted in a histogram and
the average RSE is determined. The GATv2 model has a
slightly lower average RSE value of 0.031 compared to 0.042

Figure 3. Evaluating the performance of various GNNs on the test data set. RSE histogram for all GNN models (a). While average RSE
performances are close, GATv2 has a more left-skewed histogram distribution, indicating better performance over large portions of the data. Best,
worst, and average predictions of the three GNN models with their respective RSE values (b).
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for GraphNet and 0.047 for GCN. The distributions look
similar. They have their onset with a small slope at RSE = 0.0
and then quickly grow to their maximum around the average
RSE. The decline is slow following the shape of a skewed
distribution with a long tail leading to a low number of
structures with RSE values above 0.1. Such structures are fewer
for models with the GATv2 and the GraphNet GNN
architectures, demonstrating their superiority for XAS
predictions compared to GCN.
The above results are consistent with the findings of earlier

research, which suggest that integrating an attention
mechanism54 and applying combinatorial generalization,52 i.e.
enabling the network to reason about the global structure of a
graph, while learning the graph representation, as done in the
GATv2 and GraphNet models, help enhance the learning of
target properties related to both local and global structures of
the graph.71,72 In the case of the GATv2 model, computing the
importance of the neighboring atoms for a target atom in a
molecule using the weighted attention mechanism assigns
relevance to a local region of the molecule to a specific
excitation energy in the spectrum, which differs from that of
traditional GCN layers with fixed weights for connections
between atoms. On the other hand, by incorporating
relationships and interactions among nodes, edges, and global
graph attributes, GraphNet significantly improves the acquis-
ition of structure-properties relationships in XAS spectra.52

Explainability of XAS Predictions. While comparing the
prediction performance of different ML models is crucial, the
similarity observed in the RSE distributions in the previous
section motivates exploration of the interpretability of these
models. Figure 4 illustrates the peak assignment via core and

virtual orbitals from the TD-DFT calculation as red and blue
spheres on participating atoms and via the CAM scores given
as green spheres. The AUC values for the respective orbitals
quantify this assignment. We compare an accurate GATv2
prediction at about 288 eV, in which the intensities of both
curves lie on top of each other, with one with a larger deviation
from the TD-DFT data at about 292 eV. In both cases, the
core orbitals are accurately matched by the CAM score giving
AUC values of above 0.9, significant quality differences occur
for the virtual orbitals. Those contribute the most to an XAS
spectrum in general. Hence, a good prediction comes with a
good assignment of the peak with a large AUC of 0.88 eV. By
contrast, the poorer XAS prediction with about 10% peak
intensity differences also leads to a much reduced AUC of 0.52
only. In this case, one can already visually see that the CAM is
much more significantly spread over the entire molecule, while
the orbitals contributing are based only on two atoms, of which
one is not a part of the CAM at all. Figure 5 gives a close-up
visualization of the derivation of the CAM and the core and
virtual orbital ground truth, by relating both to local excitations
and the latter also to orbitals relevant to the respective
excitation. This is done for the first three excitation states of
the TDDFT calculation underlying the first signal of the
broadened spectrum. Note that later signals are composed of a
much larger number of transitions, making the visual
comparison very cumbersome. We observe that the first two
peaks originate from a transition of an electron on the cyano
carbon atom to one of the π* orbitals of the CN group. This is
exactly reflected in the CAM weights obtained at exactly the
transition energy. The CAM weights show a low contribution
at other atoms, which is insignificant. The third peak belongs

Figure 4. Attributions (green) are compared with the ground truth of core (red) and virtual (blue) orbitals via AUC values for two peaks of an XAS
spectrum predicted by the GATv2 model. The model has higher AUC values when a peak in the predicted spectrum follows the TDDFT result.
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to the s → π* transition on the amide group at the other end of
the molecules, which is likewise highlighted by the local CAM.
The total CAM overlays both transitions, and likewise does the
ground truth of the contributing core (red) and virtual (blue)
orbitals highlight the two C atoms or multiple bonds,
respectively.
To further analyze the explainability of our best GNN model

(i.e., GATv2), we performed TDDFT calculation of local atom
XAS spectra of individual carbon atoms of a sample molecule
in the test data set with the CAM attribution weights assigned
to these carbon atoms for which the comparison is displayed in
Figure 6. The CAM attribution weights, which are energy-
dependent and hence appear as spectra in themselves, exhibit a
reasonably accurate alignment with the main features of
localized XAS spectra, although they do not entirely replicate
all the peaks. In particular, CAM attribution weights of the
carbon C1 next to the hydroxy group appear to show
discrepancies, which can be due to the attribution technique
or weaknesses in the model’s explainability concerning this
specific atom. Although training a GNN model using localized
XAS spectra to predict the spectra of individual carbon atoms
is achievable and could potentially enhance the alignment
between TDDFT and ML in terms of spectral shape and CAM
attribution, generating a data set with atom-localized spectra
through various methods requires more computational
resources. CAM attributions of atoms from a complete
molecular spectrum can provide an opportunity for creating

a data set of localized spectra based on arbitrary XAS methods.
Moreover, since the ultimate goal is to compare the predicted
XAS to experimental spectra, training a model based on entire
XAS spectra in certain energy ranges is more favorable.
With this rationalization, the next step is to evaluate the

attribution quality overall over the entire data set. Figure 7
shows box plots of the attribution AUC for core and virtual
orbitals of the three GNNs evaluated over the full test data set.
As seen from the figure, the GCN model gives an average
attribution AUC close to 0.5, which means that the model
barely outperforms a random classifier. This combination of
good spectra predictions on the test data, as shown in Figure 3,
and low average attribution AUC value by the GCN model is
in line with a previous study, suggesting that the combination
of near-perfect model performance and low attribution AUC
indicates that the model fails to learn the ground-truth logic.38

In contrast to this, the GNN models with multihead GATv2
and GraphNet layers have a superior agreement with our
developed ground-truth logic, with median values greater than
0.7 for both virtual and core orbitals. As a general trend, we
also observe that the spread of core AUC values is lower across
all models, while the AUC values for virtual orbitals are more
widely spread out, as indicated by the high variances in the
figure. Nevertheless, it should be noted that within the
presented approach we are not able to learn to distinguish
between the more localized core orbitals and the more
delocalized virtual orbitals, which could be useful information

Figure 5. Exploring the correlation between CAM attributions of atoms and transition densities of a peak in the XAS spectrum. CAM attributions
(green) and transition densities of three excitation states are visualized for a sample molecule in the test data set in the bottom part of the figure.
The transition densities highlight the starting C core orbital, which is encircled for better visibility, in the bottom, and above the virtual orbital on
the cyanide group for the two lower-energy peaks and the amide group for the third peak. The overlay of the three transition densities for the core
(red) and the virtual (blue) states are shown on the left side of the close-up spectrum, while on the right side, the CAM of the entire peak is shown.
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for the model to be included. Models that have higher
attribution AUC values for core and virtual orbitals, i.e.,
GraphNet and GATv2, demonstrate a greater ability to
comprehend the contribution of atoms to the excitation
energies of the XAS spectrum. GraphNet models associate and
encode global graph context in addition to the message-passing
on node and edge level, and this perhaps positively influences
CAM attributions, giving them information beyond the local
environment. Given that the peaks in XAS analysis are highly
dependent on the local geometric and electronic structures of
atoms,73,74 incorporating the interdependence of nodes and
the global information on the molecular graph in GNNs, as
done in these models, can facilitate capturing complex
relationships between atomic coordination and specific
excitation states in the XAS spectrum within its ML prediction.
We expect that using multihead GATv2 and GraphNet

architectures as GNNs for learning XAS spectra aligns with
the essential understanding of the delocalized nature of
molecular orbitals, which is crucial for accurate XAS
prediction. Vaswani et al.54 have shown previously that
multihead attention, incorporated in the multihead GATv2
model, can improve the performance of models by enabling
them to attend to different parts of the input molecular graph
simultaneously. Wiegreffe and Pinter75 have additionally
shown that models that use the attention mechanism can
provide better interpretability compared to nonattention
frameworks, since they allow the visualization of which parts
of the input are being attended by each head, making it easier
to understand how the model is making predictions.
Thus, when it comes to XAS analysis, we can infer that the

attention framework, which dynamically assigns importance
weights to nodes surrounding a target node, yields superior

Figure 6. TDDFT (black) and GATv2 (red) predicted C K edge XAS spectra for an entire sample molecule (a). Calculated local XAS spectra
(black) and CAM attribution weights (multiple colors) of individual carbon atoms in the molecule (b).

Figure 7. Attribution AUC score boxplots for the core and virtual orbitals of the three GNN models. The vertical line within the box indicates the
median AUC value on the test data, while the length of the horizontal lines indicates the variance in AUC values for each model. Points beyond this
range are considered outliers.
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attribution values compared to those of the static node-
weighting scheme employed by the GCN framework. More-
over, combinatorial generalization in GraphNets, which
enhances their ability to generalize and perform well on new,
unseen graph structures and tasks, is crucial to their
applicability to XAS predictions in diverse molecular
structures. On the other hand, robustness and generalization
in GraphNet models, which incorporate relational inductive
biases, have achieved improvement compared to traditional

GNNs such as GCNs, over a range of graph classification and
regression tasks.76−78
Robustness of the Explainability Performance of the

GNN Models. Having shown that CAM attributions allow the
explanation of the individual peaks in predicted XAS, the next
task is to determine how robust this explainability is with
respect to the prediction accuracy itself and to the changes in
the data set. To address the influence of prediction quality on
interpretability, we first explored how the attribution AUC

Figure 8. Variation of attribution AUC values for virtual (a) and core (b) orbitals with RSE decile values for three GNN models: GraphNet (green
triangles), GATv2 (red squares), and GCN (blue points).

Figure 9. Impact of a perturbation through the replacement of functional groups. The left side of each row displays alterations in the RSE
distribution for all GNN models when predicting the spectra for unperturbed structures selected from the data set (blue) and the perturbations of
these structures (orange). Additionally, XAS spectra for different exemplary perturbations are shown (right), where a methyl group (highlighted in
the gray circle) is added at different positions. The changed TDDFT spectra are shown in black, and their ML predictions are shown in red.
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scores vary across different RSE values for the three GNN
models. This is performed for each model by first distributing
the molecules of the test data set into ten evenly large groups
based on their RSE values. For these RSE deciles the average
attribution AUC scores are computed and plotted in Figure 8
for both the virtual (a) and the core (b) orbitals. For the
multihead GATv2 (red line) and the GraphNet (green line)
models, the attribution AUC scores decline with increasing
RSE values. The GATv2 sets on at the overall largest AUC of
0.83 (0.70) for the virtual (core) orbitals and then drops
slightly below the GraphNet prediction to a value of about 0.6
(for both models). With the understanding that a larger
counter of the RSE decile means a poorer prediction of the
XAS spectrum, it becomes apparent that large AUC values are
obtained when the overall spectrum prediction itself is reliable
as well. Aligning this observation with the broader knowledge
of quantum chemistry, we can infer that if ML predicts the
spectrum more accurately, its understanding of orbital
contributions improves correspondingly. In contrast, the
GCN model’s average attribution AUC exhibits no variation
across RSE deciles, staying close to the random baseline value
of 0.5. This suggests that the model has a similar level of
understanding of the ground truth for both strong and weak
performances in XAS prediction, which was already explained
by the ML quality of the GCN model in the last section.
The robustness of model predictions (and their interpreta-

tions) usually decreases when there are biases in the training
data set that the model erroneously learns.38 The QM9 data set
is only a small representation of the vast chemical space of
organic molecules and as such is biased toward molecules with
certain functional groups. Furthermore, choosing a random
subset of structures from this data set means that the resulting
structures in the smaller QM9-XAS data set could also be
further biased toward one or several types of functional groups.
To identify whether such biases are learned by the model, one
approach is to analyze the attributions of the model’s
predictions and inspect whether CAM attributions are
allocated to incorrect features of the input.39 In this case, the
robustness of model predictions is tested by looking at how the
model performance varies for predictions across similar

chemical environments. The simplest way of doing so is by
perturbing the chemical space around a molecule, e.g., by
adding one or several functional groups at different places. We
investigate the impact of the addition of one methyl group on
randomly selected molecules from the test data set on both the
attribution AUC and the RSE value obtained with the GNN
models. For these novel 40 perturbed structures, XAS spectra
were calculated as a reference for RSE determination using the
same TDDFT method as above. Adding a methyl group at
different positions in a molecule leads to changes in the
TDDFT spectrum, as well as in the ML predictions as
illustrated in the three right panels of Figure 9. The three GNN
architectures respond differently to this change and give vastly
varying predictions of the new spectrum, as indicated by their
increased RSE values as well. Overall, the ML spectra deviate
significantly from the TDDFT spectra. This difference in
predictions across all molecules is summarized in the left panel
of Figure 9, which illustrates the change in the RSE
performance of the models for the 40 selected structures
before and after perturbation. The RSE distributions of the
unperturbed set of molecules have slightly different shapes for
the different models, but all give mostly the same average RSE
value of approximately 0.03. With the perturbation, the RSE of
the GCN and the GATv2 both shift to an RSE average of 0.18,
while the GraphNet model gives about 0.13. The altered RSE
distributions of the perturbations of these structures clearly
indicate a decrease in model performance for perturbed
molecules, with the GraphNet model demonstrating a superior
performance compared to the others. This difference indicates
that the GraphNet model can generalize better to chemical
environments that are rarely encountered in the data set and
are less susceptible to biases.
The changes in the RSE are significant, even for the

GraphNet model. This change can be attributed to the fact that
when a methyl group is included and replaces a hydrogen
atom, the size of the molecule increases. The largest molecules
within the original QM9-XAS data set consist of a maximum of
nine heavy atoms (C, N, O, F), while the perturbed structures,
on average, contain more than nine heavy atoms. This increase
in molecular size potentially represents outliers to the trained

Figure 10. Attribution accuracy measured after perturbing random structures. (a) One specific molecular example to demonstrate the addition of
−CH3 groups as perturbation along with the change of AUC values according to the GraphNet model. (b) Δ-AUC plots for the perturbed set of
test molecules across the three GNNs.
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model, thereby leading to a decline in performance when
predicting spectra.
Previous studies have demonstrated35,38 that when a model

fails to learn the ground-truth logic, it can result in misplaced
attributions and the misclassification of atoms within the
molecule after perturbations. We therefore now look at how
attribution AUC changes for the spectra of the perturbed
structures when compared with the AUC values of the original
molecules. Figure 10 shows the Δ-attribution AUC across all
the models for the perturbed structures, where the Δ-
attribution AUC is the percentage-difference in the attributions
of the 40 perturbed structures compared to the AUC values of
the unperturbed molecules. While the multihead GATv2
model shows a 30% decline in the attribution AUC of core
orbitals after perturbation, GCN and GraphNet models
experience over 40% change. In the case of virtual orbitals,
GraphNet and multihead GATv2 models decrease by 25% and
30%, respectively, while the GCN model shows a 35% drop.

The drop in relative attributions uniformly across all of the
models aligns with the increase in RSE values for these
molecules, discussed in Figure 9. Such large changes in both
core and virtual orbitals in all GNN models can originate from
the effects of changes in both local and global molecular
features on the spectrum after perturbations which results in
changes in atomic contributions to the peaks in the spectrum.
Hence, while the local environment of an atom, which refers to
the atoms in close proximity to the absorbing atom, strongly
affects the spectral features in the XAS spectrum, the global
environment of that atom and changes caused by perturbations
can also play a significant role in determining the electronic
structure and thus the final XAS spectrum. This is also in line
with previous research which showed that the presence of
long-range interactions between atoms, as well as the
coordination number, chemical nature, and distance of these
neighboring atoms, can have strong influences on the spectral
features, such as the position and width of the XAS peaks.8,79

Figure 11. Evaluating the performance of the GATv2 model with structural distortions for four example molecules of the test set. The panels on the
left give the TDDFT spectra (black) and the predicted spectra (red) for the undistorted case, while distortion is increasing for the three spectra on
the right.
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These findings demonstrate the importance of incorporating
the local and global environment of nodes while learning
structure−property relationships using GNNs.80
In addition, we examine whether the GNN model with best

performance (i.e., GATv2) mimics the changes expected with
structural distortions. To obtain distorted molecules, we
choose a distortion parameter σ ∈ {0.02, 0.05, 0.1} Å to
perturb randomly the atomic coordinates, i.e. in x-, y- and z-
directions, in the respective molecule.81 Figure 11 demon-
strates how the TDDFT calculation and model prediction
changes with respect to different distortion values. Already for
the smallest distortion of only 0.02 Å, the TDDFT spectra
change mostly in peak intensities and slightly in peak positions.
These changes become more pronounced with stronger
distortion. The model’s prediction of small distortions looks
similar to the undistorted one, i.e., predicting the general
features of the spectrum, which, however, results in an
increasing RSE with increasing distortion. For the largest
distortion of 0.1 Å, the model mimics more closely the changes
of the TD-DFT spectra, while the RSE values increase again.
Such changes in XAS spectrum prediction suggest that the
representation of small molecular conformation changes would
require more structural information in node and edge feature
vectors beyond the bond lengths. This could be the atomic
pairwise distances, dihedral angles, etc.

■ CONCLUSION AND DISCUSSION
The aim of this work is to assist in the interpretation of peaks
in X-ray absorption spectra (XAS) using a black-box machine
learning (ML) method, i.e., graph neural networks (GNNs), as
opposed to obtaining such information from purely conven-
tional quantum chemical calculations. Yet, the underlying
ground truth is based on the latter. In order to achieve this, we
implement an explainability technique on various architectures
of GNNs trained on a custom-developed carbon K-edge XAS
data set of 65,000 small organic molecules, denoted as QM9-
XAS, in which the molecules are a subset of the original QM9
data set.
The main difficulty in explaining properties with GNN

models, as complex as the physical origin of peaks in XAS
spectra already is, is the inherent lack of knowledge about the
internal mechanisms of the model and how to correlate the
properties of the model with the knowledge gained from
quantum chemical calculations. We devised an approach that
reflects a chemist’s understanding of the XAS phenomenon as
electronic excitations originating from individual atoms, which
treats the underlying excitations of XAS peaks as a linear
combination of core-to-valence orbital transitions and
calculates the contribution of an individual atom to the
participating core and valence orbitals. This produces atom
labels denoting whether a particular atom contributes to an
XAS peak within a specified energy range, allowing for the
acquisition of the chemical ground truth and assessment of the
extent to which an ML model comprehends the XAS spectra.
The rationale behind peaks observed in ML-predicted XAS

spectra is unraveled via the so-called class activation map
(CAM) attributions, highlighting the importance of individual
nodes (atoms) in a molecular graph to the target peak of the
spectrum. For a quantitative assessment of the graph
attributions, we characterize the true and false positive rates
of CAM attributions by calculating the area under the curve of
the receiver operating characteristic (AUC-ROC), which is
effectively a measure of how well the node attributions match

the atomic contributions from the ground truth. Through this
comparison between the chemical ground truth, i.e., here the
core-to-valence orbital transitions, and CAM attributions, we
demonstrate that while it is important to consider the overall
performance of the GNN model in accurately predicting XAS
features, the degree of explainability of the different
architectures of GNN models differentiates them. We find
that GNN models such as GraphNet and multihead GAT
layers, which are in principle able to capture both the local and
the more global chemical environment of an atom in a
molecule, not only perform well in their spectra predictions but
also the explanations obtained from these models are
consistent with the quantum chemical interpretation of XAS.
To examine model robustness, we add a methyl group as a

perturbation to a random set of molecules of the test data set
of QM9-XAS. A decrease in performance is observed for all
GNN models, with the GraphNet model showing the least
decrease in performance, as assessed by the increase in relative
spectral error (RSE). We suspect that the differences in the
learning mechanisms between the three GNN architectures
used have a significant effect on the changes in the RSE
distribution and AUC attributions. The observed changes in
attribution AUC highlight the limitations of relying only on the
prediction accuracy obtained on a test data set to evaluate the
performance of a model.
In conclusion, the approach presented here provides a recipe

for incorporating explainability into GNN models using
custom-generated data, which provides insight into the
physical origin of spectroscopic predictions. Although the
GNN models in this work are trained to predict the entire XAS
spectrum, the model’s attributions provide an opportunity to
obtain some insights into local XAS spectra, i.e., for individual
carbon atoms, with cost-effective computational resources.
While our framework was demonstrated for carbon K-edge
XAS prediction, the approach can be easily extended to other
energy regimes, such as nitrogen and oxygen edges of
molecules and metal complexes or even other spectroscopic
techniques. Further, since this approach relies on theoretical
data obtained from quantum chemical calculations, it can also
be used to obtain ground-truth data for models trained on
experimental data.
Direct comparison of predictions made in this approach to

experimental spectra is challenging due to several factors
influencing the experimental observations including solvent
effects, experimental conditions like temperature and pressure,
and structure-determining factors such as coexistence of
multiple metastable conformers contributing to the exper-
imental spectra. Incorporating these effects is often not so
trivial using the existing theoretical approaches, and thus,
corrections to theoretical spectra are necessary, often done on
a case-by-case basis, depending on the molecular system and its
environment. Considering the configurational phase space of
the molecule in data set generation for training the model is
one of the ways one can improve the discrepancy between a
model’s prediction and experimental spectra. For large
molecular structures such as proteins and nanoparticles,
computation of spectra at ab initio level of theory is often a
challenge, although their XAS spectra can give insights into
their different local environments.
While traditionally these have been tackled by the use of

fingerprints determined on an ad-hoc basis, we believe that the
development of more sophisticated and efficient machine
learning frameworks, while maintaining explainability, offers a
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promising avenue for predicting spectra at low costs as well as
getting insights into local molecular environments.
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technique known as Fourier neural operators (FNO) as an efficient alternative to the
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Solving the Time-Dependent Schrödinger equation provides insights into several time-
dependent molecular phenomena. Conventional numerical methods can accurately solve
this equation but often have high computational cost. In this work, we show how an ML
model that can generate entire wavepacket simulations in one computation, can be a useful
alternative to these methods, especially in applications that require multiple dynamical cal-
culations.
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1 Introduction

An accurate theoretical description of molecular phenomena requires the solution of the
Schrödinger equation (SE) in any of its variants, time-independent (TISE)1 or time-dependent
(TDSE)2. It should be emphasized the more general character of the latter owing to the
fact that not only time-dependent processes can be visualized but also, at the same time,
time-independent quantities such as eigenstates or spectra can be computed3,4. The efficient
solution of the SE (in terms of CPU time and storage) has constituted and still constitutes
one of the greatest bottlenecks to its widespread use. Two are the main limiting aspects: (i)
the need for storing large amounts of information, as epitomized by the exponential growth
in the number of data points with dimensionality, and (ii) the actual integration of the SE
(i.e. application of a propagator) or, equivalently, the numerical solution of some kind of
equations of motion. The former issue has been successfully overcome through the use of
efficient (large) tensor decomposition schemes (see for instance5–9). Concerning the latter
aspect, clever and sophisticated integration schemes3,10,11, many of them relying on different
data structures (e.g. tensor networks12) have been developed over the past fifty years.
ML approaches are modern numerical computer science techniques that are in terms of effi-
ciency a true alternative to conventional algorithms in many domains. They have recently
shown success in replacing the quantum-mechanical evaluation of the TDSE and obtaining
molecular properties at a faster speed without losing accuracy. Deep-learning approaches in-
volving complex neural networks can be used for the accurate generation of potential energy
surfaces13 and to predict chemical reaction outcomes14,15, or for property prediction16,17.
Another profiting domain is classical molecular dynamics using Newtonian equations of mo-
tion.18,19 Compared to the numerous applications in these two domains, there are only rela-
tively few attempts to use ML to solve quantum-dynamics problems described by the TDSE,
which is structurally a partial differential equation (PDE).20–27

The solution of PDEs, such as the Burgers or Navier-Stokes equation for the simulation of
macroscopic diffusion and flow processes28, the wave equation which is useful in wave prop-
agation in acoustics and physics29, the heat equation, which is used to model heat diffusion
in engineering and materials research30, or even the TDSE rely on the discretization of the
configuration space, in other words, the creation of a grid. An accuracy-grid size tradeoff
arises in such methods, which means that while finer grids can give accurate solutions to a
PDE, the cost of evaluating the PDE is higher here. This bottleneck prevents conventional
numerical methods from being used for large systems or long simulation times.
Complementary data-driven approaches for solving PDEs have recently gained attention as
they hold promise for lower-cost accurate solutions for various differential equations across
a variety of domains31–35. Data-driven methods of PDE solving can be classified into three
main categories. The first category focuses on improving the computational efficiency, scal-
ing, and accuracy of existing numerical PDE solvers36,37. The advantage of such an approach
is that it builds on years of development in numerical approaches and improves their ap-
plicability for larger and complex systems. The second approach uses neural networks to
approximate solution functions of a PDE, often using physical constraints to improve the
accuracy of predictions38,39. These two approaches require prior knowledge of the PDE ei-
ther to improve the computation of various quantities for the numerical solver (in the first
approach) or for incorporating boundary conditions and physically inspired losses for model
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training (in the second approach). Additionally, the second approach is limited by the fact
that one can only train for one instance (set of parameters) of a PDE at one time, and
training for a new instance requires retraining the model from scratch.
Operator learning40–43 is a third and emerging approach of learning PDEs from data using
ML neural operator architectures. An operator, simply put, is a function capable of mapping
one space of functions with another (assuming there exists such a mapping). Several ap-
proaches for solving PDEs in quantum mechanics, electrodynamics, or elasticity have relied
on the development of such operators capable of mapping initial states to outputs. A neural
operator uses an artificial neural network to learn this mapping. As such, these architec-
tures take as inputs data generated using different variables/conditions of the same PDE
and learn to map them to their respective outputs. The advantage of such an approach is
apparent: Instead of learning a single instance of PDE for a set of initial conditions, the
neural operator framework allows learning different instances (set of variables) of a PDE
within a certain range of parameters. Additionally, the method is entirely data-driven and
requires no prior knowledge of the PDE of the physical system. This extends the usability
of the neural-operator approach to experimental data as well, where an explicit PDE for
realizing the dynamics of the system is often not available. The neural-operator approach
can also be used for different grid sizes, owing to its ability to transfer solutions between
different meshes.

A major deficiency of neural operators is their poor training speed when compared to
other methods mentioned above. Hence to remedy this, the Fourier neural operator (FNO)
approach was introduced. FNOs employ Fourier transforms to alleviate this computational
bottleneck (elaborated in Section on Fourier Neural Operators) associated with the neural
operator approach41. With this FNO approach, the learning of a family of PDEs at low
computational costs of training and inference has been possible, leading to its applications in
weather predictions44, geology45, imaging46, fluid dynamics,47 as well as physically-inspired
solutions to model PDE systems in various scientific applications48.
This ability to learn a family of PDEs from data opens up the possibility of using data-driven
approaches for quantum-dynamical problems within the Fourier neural operator approach.
Quantum dynamics involves solving the TDSE for a varied range of potentials and wavepack-
ets representing quantum systems, which leads to a variety of output propagations. Many
quantum-dynamical applications require exploring different combinations of variables in the
same system, thus requiring several simulations for similar quantum systems. To demon-
strate the viability of FNO-trained models for quantum dynamical applications, we show
that FNO-trained models can faithfully and accurately reproduce simulations for two differ-
ent quantum dynamical problems.
In this work the FNO models are trained on two datasets of outputs of different Gaussian
initial wavepackets propagating on different potentials in low-dimensional spatial grids. The
first example studied consists of a two-dimensional anharmonic potential system. Dynam-
ical systems with such anharmonic potentials are used to model the vibrational motion of
small molecules49–51. This work demonstrates that, given a dataset of various wavepack-
ets centered initially at different grid points on a 2D anharmonic potential, an FNO model
can be trained to accurately and swiftly generate an entire propagation for previously un-
seen wavepackets. The second example is a double well potential representing the internal
rotation within a molecule along one of its covalent single bonds, which has been studied
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extensively52–55. In the specific case of this study, the rotation goes back to quantum tunnel-
ing induced (and explicitly controllable) by a pulsed electromagnetic field. For the control
of molecular rotation, the final state (after successful tunneling) is of interest. The ques-
tion lies in finding the optimal electromagnetic field to reach this state completely and fast.
Such problems can be termed inverse problems, wherein a target state is already known,
and the goal is to find the initial conditions leading to this target. In respective state-of-art
quantum-dynamics applications, optimal control56–60 has often been employed to obtain the
field conditions necessary for attaining a target state. While most control problems involve
some iterative/deterministic procedure to solve the Hamiltonians such that an optimal set
of parameters is realized, the speed up from FNOs can be utilized to solve such a problem
using Bayesian optimization61 and here specifically the Bayesian technique of Markov Chain
Monte Carlo (MCMC)62. A parameter space for the laser pulse and an objective function
is defined, which is then procedurally sampled to obtain the optimal pulse leading to the
desired output. Since the FNO can accurately model the Hamiltonians and the wavepacket
propagation for a large number of varied instances of potentials at a low-compute cost, it
can be employed in such an optimization process as a faster alternative to conventional
solvers in these applications. For a model coherent control system already explored with
ML in Thomas and Henriksen 52 , this work shows that MCMC can be efficiently combined
with FNOs to solve such problems. Furthermore, to the best of our knowledge, this consti-
tutes the first application of FNO models to the solution of the time-dependent Schrödinger
equation.
The article is structured as follows: A formulation of how quantum dynamics solves the
TDSE to study wavepacket propagation and how numerical methods are used to implement
this for chemical systems is given first. This is followed by a description of the model chemical
systems for which propagation using ML is demonstrated. The theory section then concludes
by describing the FNO architecture and the MCMC approach for functional optimization.
This is followed by a description of the training procedure and computational features of the
models, before delving into an analysis of the results of training them. Finally, a discussion
on how the MCMC combined with the FNO approach can be used as an alternative to opti-
mal/coherent control is presented, before addressing the limitations and providing directions
for further research in the domain of ML accelerated quantum dynamics.

2 Quantum Dynamics

Quantum dynamics involves propagating a wavepacket Ψ(r, t0) at time t0 = 0 for a finite
time period tsim using the TDSE

iℏ
∂Ψ(r, t)

∂t
= ĤΨ(r, t) . (1)

The Hamiltonian operator Ĥ can be split into kinetic and potential energy operators, T̂ and
V̂ , respectively, that are separable in spatial coordinates and can be applied separately to
the wavepacket of the system. The potential of the operator V̂ can be a function of time,
in the case of the potential of the system being time-dependent. In this work, these two
cases will be considered, one where the potential is time-independent and another where
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the potential varies with time. The TDSE, furthermore, can be converted to a propagation
equation with a propagator U, reading

Ψ(r, t) = UΨ(r, t0) = exp

(
− i

ℏ
Ĥ(t− t0)

)
Ψ(r, t0) , (2)

The propagator then models the quantum dynamics of the wavepacket by mapping the initial
state at t = 0 to a series of wavepackets (r, t0), (r, t1)...(r, tsim) in the future advancing by time
steps dt. Different numerical schemes exist to implement the propagation of wavepackets, of
which we discuss two methods that were employed in this study in the following sections.

2.1 Conventional methods for solving the TDSE

Several numerical techniques based on the propagator method have been developed to solve
the TDSE. The Chebyshev scheme63 approximates the global propagator U using the Cheb-
syhev polynomial. Similarly, the second-order difference (SOD)10 scheme expands the time
evolution (propagation) operator in a Taylor series. The split operator is another numeri-
cal scheme that converts the operators of the Hamiltonian to their diagonal forms (in the
Fourier space) to propagate the time evolution operator efficiently. In contrast, wavepacket-
based approaches like multiconfiguration time-dependent Hartree (MCTDH)3 or variational
multiconfiguration Gaussian (vMCG)64 define a specific ansatz for the functional form of
wavepackets. Once defined, the wavepackets are propagated under the Hamiltonian in ad-
herence with the variational principle, giving the equations of motion (EOM) required for
obtaining wavepacket coefficients. Efficient numerical integration methods are then employed
to solve these EOMs and compute the observables of the system. To demonstrate the via-
bility and versatility of the ML approach for data generated by either method, we employ
the split operator method for one binding potential and the MCTDH method for the other.

2.1.1 Split-Operator Method

The split-operator method first introduced in 198265 is a numerical technique primarily
employed to tackle time-dependent PDEs, including the TDSE. It splits the Hamiltonian
operator into position and momentum components by executing a sequence of operations
using Fourier transforms.
Considering the Hamiltonian Ĥ of Equation 1 and assuming that it can be separated into
momentum (p) and position (r) components, Ĥ can be written as

Ĥ = Ĥp + Ĥr , (3)

where Ĥp = −1
2

∑f
i=1 ∇2

i is the kinetic energy operator (in atomic units) and Ĥr = V (r) is
the potential operator. At an arbitrary point in time, t, and using the time step as dt, the
respective propagator, a product of the exponential function of the non-commuting operators
Ĥp and Ĥr, can be written as

e−iĤpdte−iĤrdt = e−i(Ĥp+Ĥr)dt+
1
2
[−iĤpdt,−iĤrdt]+... (4)

using the Baker-Campbell-Hausdorff formula. For a more accurate approximation, a tech-
nique known as Strang splitting65 is employed, which involves dividing the system’s evolution
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into two distinct steps. Initially, a half-step is performed in position space, followed by a
subsequent full step in momentum space. This approach allows for the approximation of the
propagated wavefunction as

Ψ(r, t+ dt) =
[
e−iĤr

dt
2 e−iĤpdte−iĤr

dt
2

]
Ψ(r, t) +O(dt3) (5)

The transformation between position and momentum space can be reached by using fast
Fourier transforms. Defining F and F−1 as the Fourier transform and its inverse, the prop-
agating wavepacket now can be expressed in

Ψ(r, t+ dt) =
[
e−iĤr

dt
2 F−1

[
e−iĤpdtF

[
e−iĤr

dt
2 Ψ(r, t)

]]]
+O(dt3) (6)

The split-operator method is popular for many applications in PDE solving as it is easy to
implement and gives fast and accurate solutions for few-atom systems. Its notable disad-
vantage is error accumulation over a large number of time steps, which means it cannot be
used for long propagations.

2.1.2 Multiconfiguration Time-Dependent Hartree Method

The MCTDH algorithm was invented by Meyer, Manthe, and Cederbaum in 199066. It is
a sophisticated theoretical framework in quantum mechanics designed to address complex
systems with multiple degrees of freedom (DOFs). MCTDH is numerically exact and pro-
vides a systematic approach to solving the TDSE. In MCTDH, the wavefunction for an
f -dimensional system is expanded in terms of a sum of Hartree products of time-dependent
orbitals ({φ(q, t)}), the so-called single-particle functions (SPFs). Each configuration is
weighted by a time-dependent coefficient A(t). An MCTDH wavefunction then reads

Ψ(q, t) =

n1∑

j1

...

nf∑

jf

Aj1...jf (t)

f∏

κ=1

φ
(κ)
jκ

(qκ, t) , (7)

where q ≡ (q1, q2, . . . , qf ) and nκ represents the number of SPF for the κth DOF. The total

number of configurations is thus given by
∏f

κ n
(κ). Each of the jk SPFs is, in turn, expressed

in a primitive time-independent basis, χ(q). For the κth DOF, the φj is written as

φ
(κ)
j (qκ, t) =

Nκ∑

µ=1

cj,µ(t)χ
(κ)(qκ) , (8)

where Nκ is the number of grid points associated to the κth DOF. In MCTDH, discrete
variable representation (DVR) functions67 are used as a primitive basis. Using the Dirac-
Frankel variational principle ⟨δΨ|H − i∂t |Ψ⟩ = 0 and the above ansatz (Equation 7), the
MCTDH equations of motion (EOM) for the SPFs and the A-coefficients are derived.
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3 The Fourier Neural Operator Method

Neural Operator (NO) approaches40,41,68 aim at learning trajectories from data generated by
solving a PDE for different combinations of initial conditions and parameters. The operator
approach is based on the universal operator approximation theorem69, which states that
neural networks with a single layer can approximate any nonlinear continuous operator.
Thus, for an input function space I and an output function space U the operator theorem
states that there exists a neural operator Gθ such that

U = Gθ(I) , (9)

where θ denotes the neural network weights learned during the training process. Such a
neural operator is then trained using the input and output data that represent I and U,
respectively. In this sense, the neural-operator approach learns the relationships from data
without explicitly involving the equations of the underlying PDE at any point of the training
process and requires only tuples of input and outputs in data.
The FNO architecture is a special case of the NO framework and both of them contain the
same three basic components, as shown in Figure 1. The input I is created by concatenating
the wavepacket density and the potential, along with the grid information into a tensor object
(Panel (a)). First, a linear neural layer transforms the input into a higher dimension, denoted
as the lifting layer in Figure 1 (b). Such a transformation enables the capture of patterns and
relationships in data and is also used in frameworks such as convolutional neural networks
(CNNs)70. The operator layers of the neural operator also serve this purpose, enabling the
capture of relationships on different levels. The different operations in an FNO (or equally,
a NO framework) aim at learning patterns from data using transformation operations that
aggregate local/global information from different regions of the input tensor. In the case of a
PDE such information is not as easy to aggregate, and therefore special layers are introduced
for efficient learning in the hidden layers following the linear input layer.
The hidden layers of the neural operator framework are constructed using representations
that are updated using a kernel-based approach. These layers are depicted as the Fourier
layers in panel (b) of Figure 1. In the lines that follow, it is presented how one arrives at
the Fourier layer from a neural operator layer.
Mathematically, the output a(l)(x) of the l-th hidden neural operator layer is written as68

a(l)(x) = σ(W(l)
θ a(l−1)(x) +K(l)

ϕ a(l−1)(x)), (10)

where σ is a non-linear activation function, while a(l−1) represents the output function from
the previous layer. W is a linear operator represented by a layer similar to the linear layer
that transforms the input value linearly, K is a non-local integral transformation operator
expressed using a neural network, which henceforth is termed as the kernel integral operator
depicted as the yellow block in the Fourier layer in panel (c) of Figure 1. θ and ϕ represent
the adjustable neural network parameters in W and K, respectively. A non-local operator,
K in this case, performs an operation or transformation that considers not only the local
data point during its operation but the entire data set by virtue of integration. Li et al. 68

show that the kernel integration operation for the kernel K over the coordinate space D is

8



Figure 1: Flow chart of the machine learning of wavepacket density propagation using the
FNO model. Each input instance is a concatenation of the wavepacket density at an initial
time t = 0 a.u., along with the static potential and the grid information (a). The entire FNO
framework is depicted in (b). The FNO consists of several Fourier layers, the architecture
of one of them is shown in (c). Given the input (a) the model learns to predict the entire
simulation for the T time steps in the output.

defined as

K(l)
ϕ a(l−1)(x) =

∫

D

κ
(l)
ϕ (x, z)a(l−1)(z)dz , (11)

where κ(l) is the neural network layer with learnable parameters ϕ. A key differentiator for
the FNO compared to other operator-based approaches is the Fourier layer shown in the
upper part of Figure 1 (c).
The integration in Equation 11 can be performed using a Fourier transform giving rise to
the Fourier layers of the FNO.68 Let F be the Fourier transform of a function f(x) from the
x domain to the k domain and F−1 its inverse.

The kernel integral operator can then be written as

K(l)
ϕ a(l−1)(x) = F−1

{
F{(κ(l)

ϕ · a(l−1))(x)}
}
= F−1

{
(F{κ(l)

ϕ (x)} · F{a(l−1)(x)})
}
. (12)

In practice, FNO models use the Fast Fourier transform method to perform this integration.
Mathematically, a Fourier series expansion is infinite, however, practical implementations
require the termination of the series after a few terms, defined as the modes of the Fourier
series expansion. The maximum number of modes is a user-defined hyper-parameter (for each
Fourier layer) defined before training the model. In the implementation of the Fourier layer,
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this pre-defined number of modes helps to truncate the Fourier series. The operations of the
Fourier layer are thus summarised as the Fourier transform, filtering of these Fourier modes,
and the inverse Fourier transform as depicted by the F , R, and F−1 blocks in panel (c) of
the Figure 1, respectively. Since Fourier transforms are more suited to periodic conditions,
the linear layer W ensures that the grid conditions of the model are also learned and added
before the output is forwarded to the subsequent layer. Iterating through several FNO layers
allows the model to learn local and global features. This multi-level learning approach is
also found in frameworks that use CNNs for various ML tasks. To finally transform the
output to the same dimensions as the desired output, a linear transformation layer, such as
the output layer in Figure 1(b), is employed.
The advantage of FNOs is the use of Fourier layers, which enable learning input-output
relationships while keeping the computational cost of integration relatively low68. Another
notable advantage is its independence of the resolution of the grid space, with the models
being capable of giving one-shot predictions (in this case, one-shot prediction means the
model outputs the entire propagation at once) at a higher resolution than the data that they
were trained on. In summary, the FNO approach involves learning the relationship between
input instances in the time step range from t = 0 to t = ttrain and the propagations from
time t = ttrain+1 to time t = tsim output data. Thus the FNO model can also be trained to
predict the entire propagation governed by a PDE, given the initial state at time t = 0.

4 Quantum Dynamics Test Systems

To investigate the ability of FNO models to accurately capture the dynamics of different
quantum systems, FNO models were trained to approximate propagators for two test sys-
tems. The first system involves a wavepacket randomly placed on a spatial grid propagating
in a time-independent two-dimensional potential. The second system involves propagating
a fixed initial wavepacket under the influence of different time-dependent potentials. Both
systems are outlined in detail in this section.

4.1 Propagation on a 2D Anharmonic Potential

The first model system (aka family of PDEs) has a two-dimensional anharmonic potential
surface, on which a wavepacket undergoes propagation. The TDSE for this system (in atomic
units) is given by

i
∂

∂t
Ψ = −1

2

(
∂2

∂q21
+

∂2

∂q22

)
Ψ+

1

2
(q21 + q22)Ψ + λq21q

2
2Ψ , (13)

where the parameter λ is varied in the range (0, 0.15) a.u. to generate a set of anharmonic
potentials, and subsequently a set of Hamiltonians along the two coordinates q1 and q2.
The initial wavepacket, in this case, is chosen to be a normalized product of two Gaussians
centered at random positions on the grid.

10



Figure 2: Contour plot of an anharmonic potential with an initial wavepacket density |Ψ|2
as a function of two spatial coordinates q1 and q2. The contour lines indicate the value of
the potential in a.u. at various positions in space, with the minimum being at the center.

4.2 Laser-Driven Tunneling in a 1D Double Well

The second system models the rotation of the molecule F2H3C6 − C6H3Br2 along the tor-
sional bond connecting the two phenyl rings, as represented in Figure 3(a). In line with the
approximations discussed in previous works52,54, this rotation can be modeled as the prop-
agation of a 1D wavepacket in a double-well potential along the dihedral angle coordinate
(ϕd). Under the influence of a laser, the target is to tunnel the wavepacket initially localized
on the left side (blue) through the barrier and into the right side of the double well (pink),
as indicated in Figure 3(b).
The steady-state Hamiltonian of this system, in the absence of an external field, is

Ĥ =
−ℏ2

2Irel

∂2

∂ϕ2
d

+ V (ϕd) , (14)

where

V (ϕd) =
6∑

n=0

An cos(nϕd) (15)

is the double well potential in which the initial wavepacket is trapped. It has been numeri-
cally fitted in previous studies to a potential curve obtained using density functional theory
calculations52,55. Irel is the relative moment of inertia calculated as Irel = IBrIF/(IBr + IF ).
The rotation of this molecule along the axis can be realized using an external laser field
aligned along the axis, giving an extended Hamiltonian

Ĥ ′ = Ĥ − 1

4
ϵ2(t)α(ϕd), (16)
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Figure 3: (a) Visual representation of F2H3C6−C6H3Br2 with the dihedral angle ϕd indicated.
(b) The 1D potential model of the rotation shows a wavepacket in the lowest state on the
left side (blue) and the target state of the rotated molecule (pink), which is the lowest state
on the right side.

where the induced electric field due to the applied laser is given by ϵ, as demonstrated
by52, which is applied in the time window t = 0 to t = T . The term α(ϕd) is the molecular
polarizability term, the functional form of which is provided in Thomas and Henriksen 54 . The
Hamiltonian additionally contains perturbations calculated using the technique elaborated in
Thomas and Henriksen 52 to realistically represent vibrations in the molecule. A laser pulse-
induced electric field applied to the perturbed wave packet can have several effects on this
system, ranging from oscillations within the left side of the well without crossing, tunneling
across the well, or a complete dissociation due to a large field. As a result, optimization
techniques are necessary to design a pulse shape that ensures the tunneling to the target

12



state.

5 Pulse Optimization

As discussed in the previous section, the 1D system, which involves molecular rotation along
its dihedral angle (ϕd), is an application of laser-driven quantum dynamics. The design of
a laser pulse in this double-well system, such that the wavepacket can optimally tunnel the
rotational barrier, is an active research problem, usually tackled with optimal or coherent
control methods56–60,71–73. As an alternative to these methods, laser pulses can be designed
using a combination of neural networks and genetic algorithms52. While a crucial advantage
of the neural network method is that it does not rely on a pre-defined functional form of the
laser, it requires training several neural networks to get an accurate wavefunction.
In this work, an attempt is made to use Bayesian optimization for shaping a laser pulse74,75.
As a pre-requisite, a functional form for the laser pulse is defined as this allows for control of
the range of parameters of the pulse (and thus the pulse shape). Defining a functional form
can be useful, as it can eventually be used in an experiment. As a design choice, a chirped
pulse with the functional form

ϵ(t) = Ae−
1
2
( t−tc

σ
)2cos(2π(f + β(t− tc))(t− tc) + θ) (17)

is selected, where A is the amplitude of the pulse at time t, tc is its central time, and σ
controls the width of the Gaussian envelope. The chirp rate factor β determines how quickly
the frequency f changes in time. θ is the phase offset, which can be used to control the phase
of the pulse in time. Hence, six variables control the chirped pulse used in the propagation
of the wavepacket that can be optimized to bring it from the left side of the double well to
the right.
However, in light of the computational expense of the optimization process over these pa-
rameters (see next Section), we restrict ourselves to three variables. For instance, the laser
has to be physically meaningful and therefore the amplitude for the pulse is set to be in the
range of 0 to 0.024 a.u (0 to 20 TW/cm2). We similarly fix the range for two other param-
eters, frequency f and pulse width σ, to [0.05, 0.10] a.u. and [1, 3] a.u., respectively, giving
us a search space of three parameters suitable for demonstrating our approach’s viability.
These parameter ranges were chosen after a few test runs to check the propagation’s final
target state. The other parameters are kept fixed: tc to a value of 0 a.u., β to 0.1 a.u., and
the phase shift factor θ is chosen to be π for the sake of these calculations. For the pulse op-
timization process, a final target state is chosen. Since the FNO models in this work employ
densities, we choose a cost function C such that it minimizes the Frobenius norm between
the target density of the final state and the predicted one. The best pulse obtained from
such an optimization gives maximal overlap C(A, σ, f) between the state obtained using a
laser and the target reference state.

5.1 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) technique is employed to estimate the initial input
parameters of the electric field used to drive the rotation of the molecular system described
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in the section above. MCMC is a Bayesian optimization procedure that helps find an op-
timal set of parameters through a sampling process. Traditionally, optimization processes
have involved deterministic techniques such as calculus, which systematically search for op-
timal parameters using mathematical principles. Bayesian optimization, on the other hand,
involves methods that help extract an optimal set of parameters from a large distribution
of input variables. Among those, Monte Carlo sampling methods are a class of Bayesian
methods that can be used to generate meaningful samples for such optimization problems.
Markov chain Monte-Carlo sampling76 introduces dependencies in the sampling procedure
using Markov chains, thus ensuring that the selection (rejection) of a previous sample influ-
ences the sample space that ultimately models the posterior distribution of variables. MCMC
methods can also be used as tools for optimizing functions62,68,77. In the case of laser-pulse
optimization, MCMC methods can be combined with a method to calculate the cost func-
tion, which compares an optimized and a target state for a set of laser input parameters
to give those parameter sets that maximize the said cost function. The main steps in this
process are discussed below:

1. Random Sample Selection: The MCMC process begins by randomly selecting ini-
tial parameters from the prior distribution of variables. For the task of optimizing the
parameters of the laser pulse, the prior distribution for each variable is chosen to be a
Gaussian distribution.

2. Forward Step: After selecting initial parameters, one calculates the cost function for
the chosen parameters. For the first sample, this value is used to evaluate a proposed
distribution. This step involves utilizing the FNO model or the split-operator method.

3. Metropolis-Hastings (MH) step78: In this step, one decides whether to accept the
new sample, denoted as x′, based on the MH selection criterion defined through

Accept new sample x′ if r ≤ min

(
1,

C(x′)

C(x)

)
, else reject.

The MH algorithm compares the likelihood of the new parameter values to the likeli-
hood of the current Markov state. If the proposed values improve the likelihood, they
are accepted and added as the next parameter set for the Markov chain evolution.
However, even if the likelihood does not improve, there is still a chance of acceptance,
which is determined probabilistically. If the decision is made to reject the new sample,
the old sample becomes also the current sample. The Metropolis-Hastings step en-
sures that the Markov chain explores the parameter space while respecting the target
distribution.

Repeating steps 1-3 iteratively results in a distribution of target parameters for C with
respect to the input variables. Depending on the choice of the prior distribution and the
complexity of the cost function, convergence to a stable distribution may take some time.
Initial non-convergent samples, typically constituting around 0−20% of the total samples, are
referred to as ”burn-in” and are often discarded. Once convergence is achieved, the remaining
set of samples can be used to infer various properties of the distribution, such as the mean and
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the mode. To facilitate the analysis of the samples generated using MCMC, kernel density
estimation (KDE)79 is employed. KDE generates a smooth, continuous representation of
the target distribution, making its analysis and interpretation easier, i.e. here it can help
identify the combination of parameters that yields the optimal value of the cost function (or
other key characteristics of interest). A key roadblock that often hinders the use of Bayesian
optimization techniques such as the MCMC described above, is the step of evaluating the
function (calculations that lead to the cost function evaluation) for samples. It is therefore
advantageous to use models that can quickly evaluate this step and perform MCMC for a
large number of samples.

6 Dataset Generation and Model Training

To train the FNO models for the two systems, data is generated using the split operator
(for the 1D system) and the MCTDH (for the 2D system) method. The ML task for the
2D case is to use the dataset of 1000 simulations to train a model that, when given an
initial wavepacket and an anharmonic potential as input, can generate the simulation for a
fixed number of time steps. To generate the dataset for training these simulations, Gaussian
wavepackets are randomly placed on a 2D grid. The potentials of datasets are also different
by varying the parameter λ of Equation 13 in the range (0, 0.15) a.u. The dynamics of the
system are simulated for each combination of potential and initial wavepacket for 51 time
steps within t = [0, 10] a.u.

For the 1D system, the potential is a combination of the double well and the induced
electric field. The initial wavepacket for this system is determined as the lowest eigenstate of
the double well obtained from the Fourier grid Hamiltonian method, which is located within
the left potential well. The final dataset consists of 4,000 different samples of wavepackets
propagating in different laser-dressed potentials obtained by varying the laser parameters in
the constrained manner introduced above.
The two systems of different dimensionality require training two different FNO architectures.
Specifically, the 1D double well system is trained using the FNO-2D (accounting for one
spatial and one temporal coordinate) model, and the FNO-3D (to model two spatial and
one temporal coordinate) model is used for training the two-dimensional case. In both cases,
the input for the FNO model contains a concatenation of the initial wavepacket density,
potential (at all time steps), and grid information. The models are optimized using the
standard ADAM optimizer on a single NVIDIA A100 40GB GPU. Table 1 summarizes the
various hyperparameters used for training the model. The models are trained to minimize
the H1 loss, while the accuracy of the predicted propagations with the reference data is
measured using both the mean square error (MSE) loss and the H1 loss. The H1 loss, also
known as the Sobolev loss80,81, is a specialized loss function tailored for the approximation
of continuous functions. It emphasizes solutions that not only closely match the given data
but also demonstrate a high degree of smoothness. To achieve this, it penalizes abrupt
or discontinuous variations between consecutive instances by considering gradients between
them. This loss function is particularly valuable in applications such as PDE solving and
image denoising, where the promotion of smooth and continuous solutions is essential80.
Hence we train FNO models to minimize the H1 loss, for all time steps of the propagation.
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Table 1: Hypaparameters for the FNO models for the 1D and 2D system
Metric 1D 2D
Size of training set 4,000 1,000
Grid size 128 65 x 65
Number of time steps 150 51
Number of spatial Fourier modes 75 20, 20
Number of temporal Fourier modes 64 20
Learning rate 10−4 10−2

Number of FNO layers 4 4
Width of layers 128 40
Trainable model parameters (million) 629 205
Training epochs 300 50
Time step length (a.u.) 0.048 0.200

For demonstrating laser-pulse control using FNOs, the final state of the wavepacket propa-
gation for different laser pulses is evaluated using the FNO model. The cost function is then
calculated using these wavepackets as the final states. The cost function that maximizes
the overlap between the target and final states is defined as C = 1−MSE(final, target). To
provide a fruitful comparison of the speedup we also carry out a comparative test of the
MCMC process with the split-operator code that was used to generate the data. Moreover,
since Bayesian sampling processes can be affected by the choice of the initial random seed,
to demonstrate the stability of our results, the MCMC process is carried out for 20 different
seed values in the case of the FNO model. For each seed, the MCMC sampling process runs
over 5,000 iterations to converge to a set of parameters that give the largest overlap. 2,000
samples are discarded in the beginning as burn-in samples. Having removed these iterations,
the final set of parameters is obtained as their temporal mean.

7 Results and Discussion

In this section, the ability of a trained FNO model to simulate wavepacket density prop-
agation is first analyzed. It is then shown how an FNO model can be used as a low-cost
surrogate option for finding an optimal electric field to drive a molecular rotation.

7.1 Learning Wavepacket Propagation with FNOs

Our first goal is to demonstrate that the FNO models trained for the test systems can
faithfully produce wavepacket propagation for new instances of data. The dataset for the
1D wavepacket system always involves propagating the same initial wavepacket in different
potentials that arise from the application of different laser pulses in each sample. This
problem is challenging since the changes in the total potential lead to varying behavior in the
simulations. For example, a weak laser pulse might induce oscillations in the wavepacket,
but fail to drive the motion of the wavepacket across the barrier. Or a very strong laser
might drive the wavepacket to the right side of the double-well, but also crossover from the
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Figure 4: Comparison of the wavepacket densities obtained from the split-operator method
(black) and the FNO model (red) for the laser-driven tunneling in a double-well potential
(blue) shown at different time steps of a propagation ending at T = 7.25 ps.

second barrier as well. Furthermore, some laser pulses can induce the desired behavior of a
crossover to the right side of the double well, but not result in a steady state. In such a case
the final wavepacket can attain a more or less oscillatory motion. In Figure 4 the wavepacket
propagation of a randomly chosen test instance is shown at different time steps. The split-
operator-generated propagation (in black) is compared to the FNO-generated propagation
(in red). The laser pulse is applied to the system during the entire propagation, starting
at t=0, when the wavepacket density is localized at the left side. The electric field induced
by the laser imparts momentum to this wavepacket thereby driving its crossing over the
rotational barrier, as demonstrated for the next two time steps t = 0.290 and 0.435 a.u.
After hitting the final boundary on the right side (not shown), the wavepacket scatters back
to and is trapped within the confinement of the right well, existing as a superposition of
the eigenstates of the excited wavepacket. The H1 loss for the propagation of this randomly
chosen sample is 0.0854 a.u.−1. As seen in the figure, the FNO model accurately reproduces
the dynamics of the system under the influence of the time-varying laser field.
The 2D wavepacket system involves fewer variations than the 1D system since the poten-
tial is time-independent, but the dataset has variations in the form of the position of the
wavepackets on the spatial grid, and the differences introduced in the potentials by varying
the parameter λ of Equation 13. For low values of λ, the system acts as a harmonic oscil-
lator, and the wavepacket oscillates back and forth in the potential well. For higher values
concerned with a stronger anharmonicity, while the wavepacket oscillates back and forth, it
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Figure 5: Comparison of the MCTDH and FNO model generated wavepacket densities shown
at different time steps. The top panel shows the subsequent densities at t = 1, t = 2, t = 5,
and t = 10 a.u. generated using MCTDH. The middle panel shows the corresponding
graphs from the FNO model. The bottom panel depicts the absolute difference between the
wavepacket densities obtained from the two calculations.

loses its shape, as it dissipates into unbound states. An ML model that predicts propagation
for these wavepackets, therefore, must account for these variations.
Figure 5 shows a comparison between the MCTDH-generated propagation for a randomly
chosen wavepacket from the test data and the prediction of the FNO-trained model for the
density of the same wavepacket. The initial wavepacket density for this propagation is the
same as depicted in Figure 2. Wavepacket densities arising from the propagation using the
MCTDH method are reported for four different time steps in the top part of the figure.
The Gaussian wavepacket centered initially at positive and identical q1 = q2 = 2.5 a.u. is
following the steepest descent of the potential and reaching the potential minimum at about
t = 1 a.u. (leftmost panel). It continues to the turning point, from which it is scattered back
at t = 2 a.u., experiencing here already a widening and deformation of the Gaussian shape.
While oscillating back and forth during the remaining time, it further broadens and starts
to establish interference patterns with its contributions of different velocities (t = 10 a.u.).

The second row of Figure 2 shows the FNO predicted propagation when provided with
the same initial wavepacket density. The absolute difference in the densities is shown in

18



the bottom part of the figure. As is seen in the figure, the model accurately reproduces all
the major features of the wavepacket at different time steps. While in general, the error is
more concentrated in the areas where the wavepacket motion itself takes place, it is difficult
to ascertain whether errors in the propagation follow any deterministic pattern that varies
in time or position. The average H1 loss of the given example for the duration of the
propagation is 0.2184 a.u.−1.
Table 2 summarises the training results for FNO models for both datasets. The average test
loss for the FNO model for the 2D system is 0.25 a.u.−1, which is close to the value of 0.22
a.u.−1 for the sample above, giving a perspective on the average quality of the propagation
ability of the FNO model. On the other hand, the average test H1 loss of the 1D model is
0.154 a.u.−1 compared to the value of 0.08 a.u.−1 for the sample in Figure 5. The sample
shown, therefore, is one of the better-performing samples of the test set. The larger size of
the training set in the 1D system, the larger model size, and the higher number of epochs
as compared to the model for the 2D system result in a higher training time for this model,
which is a few hours rather than only minutes.

The results demonstrate the ability of the FNO method to generalize over large instances
of simulations in the 1D and 2D systems and learn the physics of both model systems. The
speed of inference for predicting propagations for new instances once the model is trained
is one of the biggest advantages of using the FNO models for PDEs. This is reflected
in the inference time values of 0.011 s and 0.036 s for the two FNO models for the 1D
and 2D systems, respectively. In contrast, evaluating the propagation for a 2D wavepacket
sample using MCTDH requires 19.15 s (calculated on 1 node, 16 cores per node, 4GB per
node). The FNO model therefore can generate samples faster than the MCTDH method
for this particular system. This high speed of inference gives ML models an advantage
over conventional PDE solvers for downstream applications involving iterations over several
samples.

Table 2: Training results for the FNO model for the 1D and 2D system
Metric Value (1D) Value (2D)
Training time 4 h 51 m 26 m 22 s
Inference time 0.0111 s 0.0363 s
Average H1 test loss 0.15 a.u.−1 0.25 a.u.−1

Average MSE test loss 6.50 · 10−3 3.41 · 10−7

7.2 Laser pulse control using FNOs and MCMC

One of the main goals of this work is to show that trained FNO models can be used along
with the Bayesian technique of MCMC as a low-cost surrogate model to fine-tune the laser
pulse shape and with that achieve a desired propagation outcome. In the case of the present
1D system, the optimal electric field drives the tunneling of the wavepacket across the double-
well barrier. MCMC optimizes the set of parameters that maximize the overlap between the
final and target state.
Figure 6(a) shows the results of the MCMC optimization process for 20 representative sim-
ulations, by showing how the resulting pulse intensities vary with time. While the largest
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Figure 6: Time-resolved results of 20 MCMC pulse optimization tasks using the FNO 2D
model. The top panel (a) shows optimized 20 pulse shapes, all with a similar pattern. The
bottom panel (b) shows the expected values of the wavepacket density for the 20 seeds. In
the beginning, all the wavepackets are localized in the left well, indicated by the negative
values, while applying the pulse transports them to the right during the first laser cycle.
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pulse contributes to the actual tunneling, the subsequent pulses stabilize the wavepacket in
the second well, as discussed in Thomas and Henriksen 52 . These results also agree with this
previous work, in which the authors obtained similar pulse shapes, albeit here we also attain
a functional form for the pulse, which might prove to be useful for experimental investiga-
tions. Figure 6(b) shows the expected values of the wavepacket density at each step of the
simulation, with negative values indicating that the wavepacket is localized on the left side
of the double well, and the values turn positive once the wavepacket crosses over to the right.
As seen in the figure, the FNO MCMC approach can successfully generate pulses to induce
the sought behavior for the target state. The low inference times of the FNO model thus
make the FNO MCMC combined approach a useful technique for solving inverse problems
in quantum dynamics.
We find that of the 20 MCMC runs, the final cost function values concerning the target
state lie between 0.63 and 0.95, with the average being 0.85. The variation in these C
can be attributed to two causes: 1. Randomness of the seed and 2. The kernel density
estimation (KDE) technique. The first is a natural byproduct of the Bayesian process which
initializes using a randomly sampled point from the prior but this can be minimized by
increasing the number of MCMC samples from 5,000 to higher values, at the expense of
increased computation times. Regarding the second, the KDE process employed in this
work uses a ’thinned’ posterior, i.e. a uniform selection of values after the burn-in samples
have been discarded. For the sake of speed, the number of samples for KDE is kept to 40,
which ensures that the simulations complete quickly (≤ 10 minutes) per run on the same
computing architecture that is used to train and run the model. When comparing one run
of the MCMC with FNO to the MCMC split operator approach, the FNO method is found
to be twice as fast. This, of course, is not conclusive, as the split operator method we use
could further be optimized for computational efficiency, but the exercise is indicative of the
ease and speed of the usage of the FNO method.

8 Conclusions and Future Perspectives

Machine learning approaches have been used successfully in many problems of theoretical
chemistry, but there are still very few applications to time-dependent phenomena that involve
solving the TDSE. We show here that an ML technique, namely the Fourier neural operator
method, can faithfully and accurately reproduce the time evolution of wavepackets. To
robustly test the framework’s capabilities of learning the physics of the underlying systems,
datasets were generated, in which variations are introduced in the potentials as well as
the initial wavepackets in a way that they cover a large space of simulation possibilities.
The FNO-trained models for wavepacket propagation are capable of single-shot inferences of
entire simulations at a fraction of the time and costs associated with traditional differential
equation solvers. One, of course, has to note, that the FNO requires data from these solvers
and training resources to do so. Furthermore, methods such as MCTDH are optimized for
systems with several degrees of freedom, the performance (training plus inference) of which
has not been compared to FNO models here, yet.
Additionally, it was shown how the quick inference ability of FNOs can be applied to solve
inverse problems using the Bayesian Markov Chain Monte Carlo technique. Since the MCMC
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method requires sampling over a large number of simulations, using a traditional, slower
method is not feasible for such an application. FNOs, however, can be used as low-cost
surrogate models to quickly iterate through large sample spaces and give an estimate of the
optimal parameters. As demonstrated in this work, the FNO MCMC method can give an
estimate of the best laser pulse to maximize the overlap between the final state with a target
state at a lower cost than even the split-operator method combined with MCMC. Given the
low inference times of the FNO method, such optimization will be able to solve problems in
larger dimensions as well, and the computational gains there will possibly be even larger than
the ones demonstrated here. While the MCMC approach is demonstrated for a relatively
conservative search space of three input variables of the laser, using a larger model and
dataset can allow for training FNO models and performing the MCMC on a larger search
space with more variables. Training larger FNO models could necessitate parallelization over
several GPUs, which to the best of our knowledge has not been implemented yet. Subsequent
projects will aim to utilize parallelization to implement larger models with less conservative
search subspaces for creating a dataset.
The models trained in this work employ wavepacket densities to represent the time evolution
of dynamical systems. While models can be trained on the wavepacket values themselves,
it amounts to an increase in the dimensions of both the data and the FNO architecture. In
our explorations for training wavepackets on their complex-valued functions, we found the
results to be poorer for the 1D system, compared to models that employed densities. This
is an aspect that certainly deserves more attention as models trained on wavepacket values
open up new avenues for applications. For example, more accurate physics-inspired neural
operator models cannot be employed for our models using densities, since physics-based loss
terms in these models require wavepacket values rather than densities, thereby making those
models more accurate48.

Lastly, the highest dimensions that have been learned involve three spatial and one
temporal coordinates, and we are not aware of FNO models operating for higher-dimensional
data. Training these models should be possible without major changes in the architecture
of the FNO model. However, computational expenses for generating the data and training
can be prohibitive for larger systems and our subsequent work will aim to explore optimal
ways in which both these issues can be handled. We hope that our work opens up further
investigations into how the FNO framework can be used to push forth investigations in
quantum dynamics and help drive meaningful applications of this field to larger systems.

9 Data availability

The code used to train the model as well as the datasets will be made publicly available post
review.
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