Aus der Medizinischen Klinik mit dem Schwerpunkt Kardiologie und Angiologie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Schrittmacher-induzierte Kardiomyopathie: Prävalenz, Inzidenz,
Prädiktoren, natürlicher Verlauf und CRT

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Benjamin Dust
aus Potsdam

22.09.2017
Datum der Promotion: ...
Inhaltsverzeichnis

Inhaltsverzeichnis ... 2
Abbildungsverzeichnis .. 4
Tabellenverzeichnis ... 5
Abkürzungs- und Akronymverzeichnis ... 6
Zusammenfassung .. 8
Abstract ... 10
1 Einleitung ... 11
 1.1 Einführung in die Herzschrittmachertherapie ... 11
 1.2 Indikationen zur Herzschrittmachertherapie ... 13
 1.2.1 Empfehlungs- und Evidenzgrade .. 13
 1.2.2 Indikationen ... 13
 1.2.2.1 Atrioventrikulärer Block (AV-Block) ... 14
 1.2.2.2 Sinusknotensyndrom (SSS) ... 15
 1.2.2.3 Andere Indikationen .. 16
 1.3 Herzschrittmachersysteme ... 17
 1.3.1 Schrittmachernomenklatur .. 17
 1.3.2 Einkammerschrittmacher .. 18
 1.3.3 Zweikammerschrittmacher .. 19
 1.3.4 Kardiale Resynchronisationstherapie (CRT) .. 20
 1.3.5 Systemwahl .. 20
 1.4 Komplikationen der Herzschrittmachertherapie .. 21
 1.5 Schrittmacher-induzierte Kardiomyopathie (PMiCMP) .. 22
 1.5.1 Definition der PMiCMP .. 22
 1.5.2 Pathophysiologie der PMiCMP .. 23
 1.5.3 Prävalenz und Inzidenz der PMiCMP ... 23
 1.5.4 Therapie der PMiCMP .. 24
 1.6 Rationale der Studie .. 24
2 Methoden .. 26
 2.1 Patienten .. 26
 2.1.1 Einschlusskriterien ... 26
 2.1.2 Ausschlusskriterien ... 26
 2.2 Nachsorgeuntersuchung .. 27
 2.2.1 Schrittmacherkontrolle .. 27
 2.2.2 QRS-Dauer ... 29
 2.2.3 Transthorakale Echokardiographie ... 29
 2.3 Schrittmacher-induzierte Kardiomyopathie (PMiCMP) .. 31
 2.3.1 Definition der PMiCMP .. 31
 2.3.2 Einteilung der PMiCMP ... 32
Inhaltsverzeichnis

2.3.3 Vorgehen bei PMiCMP ... 33
2.4 Kardiale Resynchronisationstherapie (CRT) 34
 2.4.1 Indikation zum Upgrade auf CRT ... 34
 2.4.2 CRT-Implantation ... 34
 2.4.3 Kriterien für responder ... 35
2.5 Statistische Analyse .. 36
 2.5.1 Studienendpunkte .. 36
 2.5.2 Nullhypothesen ... 37
3 Ergebnisse .. 38
 3.1 Patienten .. 38
 3.2 Prävalenz und Inzidenz der PMiCMP .. 40
 3.2.1 Prävalenz .. 40
 3.2.2 Inzidenz .. 40
 3.2.2.1 Inzidenz der early-onset PMiCMP 40
 3.2.2.2 Inzidenz der late-onset PMiCMP 41
3.3 Risikofaktoren für PMiCMP .. 41
 3.3.1 Dauer des RV-pacings .. 42
 3.3.2 QRS-Breite unter RV-pacing .. 43
 3.3.3 Alter der Patienten ... 43
 3.3.4 Lage der RV-Elektrode .. 43
 3.3.5 kardiale Grunderkrankung ... 43
3.4 Medikamentöse Herzinsuffizienztherapie bei PMiCMP 44
3.5 CRT bei PMiCMP ... 44
 3.5.1 Verlauf der LV-Funktion und der NYHA-Klasse unter CRT 45
 3.5.2 Anzahl der responder .. 46
 3.5.3 Anzahl der non responder und Komplikationen 47
 3.5.4 natürlicher Verlauf der PMiCMP 47
4 Diskussion ... 49
 4.1 Prävalenz/Inzidenz der PMiCMP .. 49
 4.2 Prädiktoren für eine PMiCMP .. 52
 4.3 Erfolg der optimalen Herzinsuffizienzmedikation bei PMiCMP 56
 4.4 Erfolg der CRT-Therapie bei PMiCMP 57
 4.5 Non responder und Komplikationen der CRT 59
 4.6 Natürlicher Verlauf der PMiCMP .. 60
5 Schlussfolgerungen ... 62
6 Literaturverzeichnis ... 63
 Eidesstattliche Versicherung ... 70
 Curriculum vitae .. 72
 Publikationsliste .. 74
 Danksagung .. 75
Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung der modifizierten biplanen Scheibchensummationsmethode (nach Simpson) im Zweikammer- und Vierkammerblick ...30
Abbildung 2: Schematische Darstellung eines Scheibchens gemäß der modifizierten biplanen Scheibchensummationsmethode (nach Simpson)..30
Abbildung 3: Formel zur Errechnung der LVEF ..31
Abbildung 4: Inzidenz der early-onset PMiCMP ..40
Abbildung 5: Inzidenz der late-onset PMiCMP ..41
Abbildung 6: LVEF vor und 6 Monate nach CRT-Implantation ..45
Abbildung 7: LVEDV und LVESV vor und 6 Monate nach CRT-Implantation46
Abbildung 8: NYHA-Klasse vor und 6 Monate nach CRT ..46
Abbildung 9: NYHA-Klasse vor und nach 12 Monaten OMT ...48
Abbildung 10: LVEF vor und nach 12 Monaten OMT ...48
Tabellenverzeichnis

Tabelle 1: Empfehlungs- und Evidenzgrade nach Vardas et al. 2 ... 13

Tabelle 2: Indikationen zur HSM-Therapie bei AV-Block nach Lemke et al. 8 15

Tabelle 3: Indikationen zur HSM-Therapie bei SSS nach Lemke et al. 8 16

Tabelle 4: Indikationen zur HSM-Therapie bei vasovagaler Synkope nach Lemke et al. 8 17

Tabelle 5: Der revidierte NBG-Code nach Bernstein et al. 10 .. 18

Tabelle 6: Schrittmacherkontrolle - Grenzwerte unserer Klinik ... 27

Tabelle 7: NYHA-Klassifikation nach The New York Heart Association 43 28

Tabelle 8: Beeinträchtigungsgrad anhand der LVEF nach Lang et al. 45 31

Tabelle 9: Definition der PMiCMP .. 32

Tabelle 10: Schema zur medikamentösen Herzinsuffizienztherapie nach Hoppe et al. 47 33

Tabelle 11: Patientencharakteristika .. 39

Tabelle 12: Risikofaktoren für PMiCMP .. 42

Tabelle 13: Medikamentöse Herzinsuffizienztherapie bei PMiCMP .. 44
Abkürzungs- und Akronymverzeichnis

Abkürzungen:

ACE-Hemmer......... Angiotensin-Converting-Enzyme-Hemmer
AT1-Blocker.......... Angiotensin 1-Rezeptorblocker
AV-Block atrioventrikulärer Block
BPEG.................. British Pacing and Electrophysiology Group
bzw. beziehungsweise
cia. circa
CRT Cardiac Resynchronization Therapy (kardiale Resynchronisationstherapie)
CRT-D CRT-Defibrillator
CRT-P CRT-Schrittmacher
EKG Elektrokardiogramm
ESC European Society of Cardiology
HOCM hypertroph-obstruktive Kardiomyopathie
HSM Herzschrittmacher
ICD Implantable Cardioverter Defibrillator
KHK koronare Herzkrankheit
LV linker Ventrikel/linksventrikulär
LVEDD linksventrikulärer enddiastolischer Durchmesser
LVEDV linksventrikuläres enddiastolisches Volumen
LVEF linksventrikuläre Ejektionsfraktion
LVESV linksventrikuläres endsystolisches Volumen
LVOT linksventrikulärer Ausflusstrakt
min Minuten
mm Millimeter
ms Millisekunden
mV Millivolt
NASPE North American Society of Pacing and Electrophysiology
NBG-Code NASPE/BPEG Generic Pacemaker Code
NYHA New York Heart Association
OMT optimale medikamentöse Therapie
Abkürzungs- und Akronymverzeichnis

pacing........................ Stimulation
PM............................... Pacemaker
PMiCMP....................... Schrittmacher-induzierte Kardiomyopathie
RCT......................... randomisierte kontrollierte Studie
remodeling.................... Umbauprozess
RV rechter Ventrikel/rechtsventrikulär
RVOT....................... rechtsventrikulärer Ausflusstrakt
s Sekunden
SSS Sinusknotensyndrom
TTE transthorakale Echokardiographie
V Volt
z.B. zum Beispiel

Akronymen:

CARE-HF.................. Cardiac Resynchronization – Heart Failure
COMPANION............ Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure
DANPACE............... Danish Multicenter Randomized Trial on Single Lead Atrial Pacing vs. Dual Chamber Pacing in Sick Sinus Syndrome
MADIT-CRT Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy
MUSTIC................. Multisite Stimulation In Cardiomyopathies
PACE trial Pacing, graded Activity and Cognitive behaviour therapy: a randomised Evaluation
Zusammenfassung

Hintergrund: Mit der steigenden Anzahl an Herzschrittmacherimplantationen steigt auch die Häufigkeit der Komplikationen durch Schrittmachertherapie. Eine spezifische Komplikation der rechtsventrikulären Stimulation ist die Schrittmacher-induzierte Kardiomyopathie (PMiCMP), zu der bis jetzt nur wenige Daten existieren.

Ziele: Ziel der Studie war es, die Prävalenz und Inzidenz der PMiCMP besser bewerten zu können, mögliche Prädiktoren zu detektieren und den natürlichen Verlauf der PMiCMP beziehungsweise ihr Ansprechverhalten auf biventrikuläre Stimulation beurteilen zu können.

Methoden: Um die Prävalenz und Inzidenz der PMiCMP zu untersuchen, schlossen wir alle Patienten in die Studie ein ($n = 615$), welche sich 2012 und 2013 in unserer Schrittmachersprechstunde vorstellten und die Einschlusskriterien erfüllten. Wir unterschieden zwischen Patienten, die sich zur Nachsorge nach Schrittmachererstimplantation vorstellten ($n = 163$) und denen, die zur routinemäßigen jährlichen Kontrolluntersuchung in unsere Ambulanz kamen ($n = 452$). PMiCMP definierte sich durch eine linksventrikuläre Ejektionsfraktion (LVEF) <45% und eine rechtsventrikuläre (RV) pacing Rate von $\geq 90\%$, andere kausale Herzerkrankungen mussten ausgeschlossen sein. Im Falle einer PMiCMP erhielt der Patient orale Herzinsuffizienztherapie für drei Monate. Besserten sich die klinische Symptomatik und die Pumpfunktion des linken Ventrikels nicht, wurde ein Upgrade auf biventrikuläre Stimulation vorgeschlagen. Im Falle eines Upgrades auf CRT (Cardiac Resynchronization Therapy) wurden die NYHA-Klasse und die linksventrikuläre Pumpfunktion nach sechs Monaten neu evaluiert. Erfolgte kein Upgrade, wurden die Parameter nach sechs Monaten ebenfalls erneut erhoben.

Ergebnisse: Die Prävalenz der PMiCMP ($n = 37$) war im gesamten Patientenkollektiv ($n = 615$) mit 6% geringer als in der Hochrisikogruppe (RV-pacing Rate $\geq 90\%$), dort betrug sie 13,3%. Unter den Risikopatienten war die PMiCMP Inzidenz im ersten Jahr des RV-pacings mit 14,3% signifikant ($p = 0,019$) höher als in der Gruppe der Patienten mit Langzeitstimulation (2,3%). Die medikamentöse Therapie verbesserte bei keinem der PMiCMP-Patienten die LVEF oder die klinische Symptomatik. Bei den Patienten, die auf biventrikuläre Stimulation umgerüstet wurden ($n = 20$), verbesserte sich die LVEF binnen sechs Monaten signifikant ($p < 0,001$) von 33,3 ± 5% auf 47,5 ± 9,3%. Zudem reduzierte sich das durchschnittliche linksventrikuläre enddiastolische Volumen (LVEDV) von 139 ± 41 ml auf 116 ± 42 ml und das linksventrikuläre endsystolische Volumen (LVESV) von 98 ± 25 ml auf 64 ± 20 ml. Die Veränderung des LVESV war signifikant ($p = 0,0039$).
Zusammenfassung

Schlussfolgerungen: Die Inzidenz der PMiCMP ist im ersten Jahr des RV-pacings höher und sinkt danach signifikant. Das Ansprechverhalten auf die CRT ist besser als in normalen CRT-Kollektiven. Eine optimale medikamentöse Herzinsuffizienztherapie scheint keine Wirkung zu erzielen.
Abstract

Background: The steady increase in the number of pacemaker (PM) implantations naturally involves a higher prevalence of pacemaker therapy complications. Pacemaker-induced cardiomyopathy (PMiCMP) is one specific complication of right ventricular (RV) pacing. Certainly the availability of PMiCMP data is scarce.

Objectives: The aim of this study was to acquire more reliable information regarding the prevalence, incidence and predictors of PMiCMP and to assess the response characteristic of PMiCMP to biventricular pacing and oral heart failure medication.

Methods: To assess the prevalence and incidence of PMiCMP, we included all patients who underwent routine PM interrogation in our outpatient department between 2012 and 2013 (n = 615), as long as they met all inclusion criteria. We divided patients who underwent first pacemaker implantation (n = 163) from the annual PM check-up patients (n = 452). PMiCMP was defined as deterioration of left ventricular ejection fraction (LVEF) ≤45% that cannot be explained by other cardiac diseases and a RV pacing rate ≥90%. In case of PMiCMP each patient received optimal heart failure medication for three months. If the LVEF remained low and the symptoms persisted PMiCMP patients were offered to receive an upgrade to biventricular stimulation. After six months we examined the LVEF and NYHA class again in those who received an upgrade and those who did not.

Results: The prevalence of PMiCMP (n = 37) in the total cohort was 6%. In the high-risk cohort (RV pacing rate ≥90%) it was 13,3%. Considering all high-risk patients the incidence was significantly (p = 0,019) higher in the first year after PM implantation (14,3%) in comparison to those who received RV pacing for many years (2,3%). In none of the patients neither LVEF nor NYHA class improved by oral heart failure medication. In those patients who received an upgrade to CRT (n = 20) the LVEF improved significantly (p < 0,001) from 33,3 ± 5% to 47,5 ± 9,3% in six months. Furthermore the average left ventricular end-diastolic volume (LVEDV) decreased from 139 ± 41 ml to 116 ± 42 ml and the left ventricular end-systolic volume (LVESV) from 98 ± 25 ml to 64 ± 20 ml. The reduction of LVESV was significant (p = 0,0039).

Conclusions: The incidence of PMiCMP is higher in the first year of RV pacing and decreases significantly in the following years. The response to CRT in PMiCMP patients is higher than in normal CRT cohorts. Optimal oral heart failure medication does not seem to have any impact.
1 Einleitung

1.1 Einführung in die Herzschrittmachertherapie

Unabhängig davon, welches Schrittmachersystem verbaut wird, funktionieren alle Herzschrittmacher in ihren Grundzügen gleich. Ziel ist es, eine bradykarde Herzrhythmusstörung zu therapieren. Der Grundgedanke ist dabei, eine möglichst physiologische Erregungsausbreitung zu imitieren, ohne aber die ursprüngliche Pathologie kurieren zu können. Dazu sendet das Schrittmacheraggregat über Elektroden einen elektrischen Impuls (durchschnittlich 2,5 Volt) für eine Impulsdauer von circa (ca.) 0,5 Millisekunden (ms) an die Kardiomyozyten, wodurch das Ruhepotential an der Zellmembran angehoben und ein Aktionspotential ausgelöst wird. Durch die Ausbreitung dieser Erregung über andere Kardiomyozyten kontrahiert der Herzmuskel schließlich und der Blutstrom kann gewährleistet werden. Es gibt unterschiedliche Wege, die elektrischen Impulse zu applizieren. Für die
Einleitung

Die vorliegende Arbeit sind jedoch nur Systeme zur dauerhaften Stimulation relevant. Ein permanentes Herzschrittmachersystem besteht aus einem subkutan implantierten HSM und einer intrakardial liegenden Schrittmacherelektrode.

Sowohl die Weiterentwicklung der Technik als auch der steigende Bedarf an HSM-Therapie, aufgrund der immer älter und morbider werdenden Bevölkerung, führten in den letzten Jahren dazu, dass die Anzahl der Schrittmacherimplantationen stetig anstieg. So fanden im Jahr 2012 in Deutschland über 100.000 Schrittmacheroperationen statt, wovon ca. 75% Neuimplantationen waren. Im Vergleich dazu waren es 2005 in Deutschland nur ca. 50.000 HSM- beziehungsweise (bzw.) ICD-Implantationen (Implantable Cardioverter Defibrillator). Insgesamt lebten laut Rasche im Jahr 2006 ca. 350.000 Menschen in Deutschland mit einem HSM oder einem ICD. Europaweit werden in Deutschland die meisten HSM-Erstimplantationen durchgeführt, was möglicherweise an der demografischen Entwicklung hierzulande liegen könnte. 2010 wurden in Deutschland 73778 Aggregate neuimplantiert, was einen Implantationsindex von 902 Erstimplantationen auf eine Million Einwohner entspricht.
1.2 Indikationen zur Herzschrätmachertherapie

1.2.1 Empfehlungs- und Evidenzgrade

Vor jeder Schrittmacherimplantation ist eine konsequente Indikationsstellung notwendig. Die verschiedenen Indikationen werden mit Hilfe von Evidenz- und Empfehlungsgraden beurteilt, welche nachfolgend in Tabelle 1 erläutert werden:

Tabelle 1: Empfehlungs- und Evidenzgrade nach Vardas et al.²

<table>
<thead>
<tr>
<th>Empfehlungsgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>IIa</td>
</tr>
<tr>
<td>IIb</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidenzgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

1.2.2 Indikationen

Die Indikationen zur Schrittmachertherapie lassen sich grob in zwei Kategorien einteilen. Man unterscheidet dabei die Indikation bei symptomatischen Patienten von der prognostischen...
Einleitung

1.2.2.1 Atrioventrikulärer Block (AV-Block)

Man unterscheidet symptomatische von asymptomatischen AV-Überleitungsstörungen. Bei symptomatischen Patienten findet die Indikationsstellung ungeachtet der anatomischen Lokalisation der Reizleitungsblockade statt. Liegen keine Symptome vor, ist die Art des AV-Blocks entscheidend für die Indikation. Beispielsweise stellt ein asymptomatischer AV-Block
Einleitung

Tabelle 2: Indikationen zur HSM-Therapie bei AV-Block nach Lemke et al.

<table>
<thead>
<tr>
<th>Indikation bei symptomaticen Patienten</th>
<th>Empfehlungsgrad</th>
<th>Evidenzgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV-Block III°</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>AV-Block II°</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>AV-Block I° (AV-Überleitung >300 ms)</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prognostische Indikation bei asymptomaticen Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV-Block III° (permanent)</td>
</tr>
<tr>
<td>AV-Block III° (häufig intermittierend)</td>
</tr>
<tr>
<td>AV-Block III° (nach AV-Knoten Ablation)</td>
</tr>
<tr>
<td>AV-Block III° (intermittierend und außerhalb von Schlafphasen)</td>
</tr>
<tr>
<td>AV-Block II° (Blockierung im His-Purkinje-System)</td>
</tr>
<tr>
<td>AV-Block II° (scharmer QRS-Komplex; persistierend unter Belastung)</td>
</tr>
<tr>
<td>AV-Block II° (plus neuromuskuläre Erkrankung)</td>
</tr>
<tr>
<td>AV-Block III° (intermittierend)</td>
</tr>
<tr>
<td>AV-Block II° (bei älteren Patienten)</td>
</tr>
<tr>
<td>AV-Block I° (plus neuromuskuläre Erkrankung)</td>
</tr>
</tbody>
</table>

1.2.2.2 Sinusknotensyndrom (SSS)

Anders als beim AV-Block richtet sich die Indikation bei Erkrankungen des Sinusknotens ausschließlich nach der Symptomatik. Eine Verbesserung der Prognose bei asymptomatischen
Einleitung

Patienten konnte bisher nicht nachgewiesen werden. Daher gilt es, bei unklarer Symptomatik, eher abzuwarten und engmaschig zu kontrollieren. Leitsymptom des SSS ist wiederum die Synkope. Gründe dafür sind meist eine Bradykardie mit <40 Schlägen pro Minute (min) und/oder asystolische Pausen von über drei Sekunden (s).

Tabelle 3: Indikationen zur HSM-Therapie bei SSS nach Lemke et al.

<table>
<thead>
<tr>
<th>Indikation</th>
<th>Empfehlungsgrad</th>
<th>Evidenzgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS (spontan oder infolge einer notwendigen Medikation und eindeutiger Zusammenhang zur Symptomatik)</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>SSS (spontan oder infolge einer notwendigen Medikation und vermuteter Zusammenhang zur Symptomatik)</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Chronische Bradykardie (mit <40 Schlägen/min und/oder asystolische Pausen >3s)</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

1.2.2.3 Andere Indikationen

Einleitung

Tabelle 4: Indikationen zur HSM-Therapie bei vasovagaler Synkope nach Lemke et al. ⁸

<table>
<thead>
<tr>
<th>Indikation</th>
<th>Empfehlungs-grad</th>
<th>Evidenz-grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezidivierende vasovagale Synkopen (>5/Jahr) oder schwere</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>synkopenassozierte Verletzungen bei Patienten >40 Jahre</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Rezidivierende vasovagale Synkopen mit dokumentierter Bradykardie</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

1.3 Herzschrittmachersysteme

1.3.1 Schrittmachernomenklatur

Einleitung

Der NBG-Code setzt sich aus bis zu fünf Stellen zusammen, wobei sowohl jede einzelne Stelle als auch der Buchstabe selbst, eine festgelegte Aussage treffen. Welche Stelle dabei wofür steht und welche Aussage die einzelnen Buchstaben haben, ist in Tabelle 5 dargestellt:

Tabelle 5: Der revidierte NBG-Code nach Bernstein et al. \(^\text{10}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = keiner</td>
<td>0 = keiner</td>
<td>0 = keine</td>
<td>0 = keine</td>
<td>0 = keine</td>
</tr>
<tr>
<td>A = Atrium</td>
<td>A = Atrium</td>
<td>T = getriggert</td>
<td>R = adaptiv</td>
<td>A = Atrium</td>
</tr>
<tr>
<td>V = Ventrikel</td>
<td>V = Ventrikel</td>
<td>I = inhibiert</td>
<td></td>
<td>V = Ventrikel</td>
</tr>
<tr>
<td>D = Dual A+V</td>
<td>D = Dual A+V</td>
<td>D = Dual T+I</td>
<td></td>
<td>D = Dual A+V</td>
</tr>
<tr>
<td>S = Single A/V</td>
<td>S = Single A/V</td>
<td></td>
<td></td>
<td>S = Single A/V</td>
</tr>
</tbody>
</table>

1.3.2 Einkammerschrittmacher

Zu unterscheiden ist zunächst, ob die Schrittmacherelektrode im Atrium oder im Ventrikel liegt. Der AAI-HSM ist indiziert, wenn eine isolierte Erkrankung des Sinusknotens vorliegt, die Funktion des AV-Knotens aber intakt ist. Dazu wird die Elektrode im Myokard des rechten Vorhofs verankert. Dort nimmt sie gleichzeitig wahr und stimuliert. Findet eine herzeigene Erregung statt, wird der HSM durch diese inhibiert und er stimuliert nicht. Der AAI ist ein sehr
Einleitung

1.3.3 Zweikammerschrittmacher

1.3.4 Kardiale Resynchronisationstherapie (CRT)

Bei der kardialen Resynchronisationstherapie (CRT) handelt es sich um eine biventrikuläre Form der Stimulation. Sie ist eine Therapieoption für Patienten mit schwerer Herzinsuffizienz, die hinsichtlich ihrer kardialen Grundkrankung weitgehend ausgetherapiert sind, aber immer noch unter den Symptomen der Herzschwäche leiden. Dazu wird zusätzlich zu den Elektroden im rechten Atrium und rechten Ventrikel eine dritte Elektrode in einen Seitenast des Sinus coronarius implantiert. Diese soll den linken Ventrikel stimulieren, um durch die simultane Erregung und anschließende Kontraktion beider Ventrikel, Dyssynchronien innerhalb des Ventrikelns (intraventrikulär) bzw. zwischen linkem und rechten Ventrikel (interventrikulär) zu beseitigen. Dadurch wird die physiologische Kontraktion des Herzens wieder ermöglicht und die linksventrikuläre Ejektionsfraktion (LVEF) steigt wieder an.

Die CRT ist vor allem bei Patienten mit mittleren bis schweren Symptomen der Herzinsuffizienz (NYHA II-IV), einer LVEF <35% und einem verbreiterten QRS-Komplex indiziert (Empfehlungsgrad: I; Evidenzgrad: A) ¹².

1.3.5 Systemwahl

Auf die Stellung der Indikation zur HSM-Therapie folgt die Auswahl des zu implantierenden Schrittmachersystems. Dabei gilt der Grundsatz, möglichst viel des physiologischen Reizleitungssystems zu erhalten oder wiederherzustellen. Außerdem sollten patientenspezifische Faktoren, wie kardiale Grundkrankung, Medikation, Alter und Allgemeinzustand in die Entscheidung mit einbezogen werden ⁸.

Bei permanenten atrioventrikulären Leitungsstörungen empfehlen die aktuellen ESC-Guidelines ¹² die Implantation eines DDD-HSM als Therapie der ersten Wahl. Zwar konnte bisher keine große randomisierte kontrollierte Studie (RCT) einen Mortalitäts- oder Morbiditätsvorteil der Zweikammerstimulation im Vergleich zur Einkammerstimulation zeigen. Allerdings reduziert die Therapie mittels DDD-HSM nachweislich die Inzidenz des Schrittmachersyndroms ¹⁴ und verbessert die Leistungsfähigkeit und Lebensqualität, was den Vorzug im Vergleich zum VVI-HSM rechtfertigt. Bei Patienten mit hoher Stimulationsrate sollte zudem die CRT in Betracht gezogen werden, insbesondere wenn die Symptome der Herzinsuffizienz stark ausgeprägt sind und die LVEF unter 35% liegt ¹².

Bei Erkrankungen des Sinusknotens richtet sich die Wahl des Systems danach, ob die AV-Überleitung vollständig erhalten ist oder nicht. In jedem Fall muss der Vorhof stimuliert werden.
Einleitung

Ob auch eine Kammerstimulation nötig ist, gilt es abzuwägen. Wenn die Überleitung vom Atrium zum Ventrikel ungestört funktioniert, dann stellt der AAI-HSM die optimale Form der Stimulation dar 11. Folgende Voraussetzungen müssen laut Lemke et al. dafür erfüllt sein 8:

- kein AV-Block I° oder höher
- schmaler QRS-Komplex
- Wenkebach-Punkt >120/min
- keine Medikamente mit leitungsverzögernder Wirkung
- kein Karotissinus-Syndrom
- keine Synkope als primäre Schrittmacherindikation

1.4 Komplikationen der Herzschi...
Einleitung

Ventrikelsonde, im Sinne einer postoperativen Komplikation. Laut des Jahresberichts des Deutschen Herzschrittmacher-Registers betrug die Häufigkeit für die Dislokation der Vorhof- bzw. Ventrikelsonde im Jahr 2008 jeweils 1,1% \(^{15}\). Bis 2011 sank die Häufigkeit auf 0,75% (Vorhofsonde) und 0,73% (Ventrikelsonde) \(^{16}\). Implantationsbedingt kann es bei der Punktion der Vena subclavia durch die Verletzung der Pleura parietalis außerdem zum Pneumothorax kommen. 2012 lag die Häufigkeit dafür laut Deutschem Herzschrittmacher-Register bei 0,66% \(^{4}\). Perioperative Perikardergüsse treten mit einer Wahrscheinlichkeit von 0,2% auf. Immer muss in diesen Fällen eine Perforation der Elektrode ausgeschlossen werden \(^{4}\). Eine weitere Komplikation, welche auch erst im späteren postoperativen Verlauf auftreten kann, ist eine Infektion der Schrittmacherelektroden oder der Tasche, in die das Aggregat implantiert wurde. Für das Jahr 2012 berichtete das Deutsche Herzschrittmacher-Register über eine Wundinfektion in <0,1% der Fälle \(^{4}\). Sie kann durch Rötung oder Schwellung im Bereich der Schrittmachertasche und den Anstieg der Entzündungswerte im Blut auffallen und macht eine komplette Entfernung des Systems erforderlich. 2012 fanden 5,2% aller Revisionen in Deutschland aufgrund von Infektionen statt \(^{4}\).

Tritt diese Komplikation später als sechs Monate nach der HSM-Implantation auf, dann wird sie als Spätkomplikation gewertet. Infektionen als Spätkomplikation gehen mit einer höheren Mortalität und Morbidität einher \(^{15,17}\). Auch die Dislokation einer Sonde kann im Rahmen einer Spätkomplikation auftreten.

Eine weitere indirekte Komplikation, welche innerhalb des ersten Jahres nach Schrittmachererstimplantation, aber auch später auftreten kann, ist die Schrittmacher-induzierte Kardiomyopathie, welche zentraler Bestandteil der vorliegenden Arbeit sein soll. Sie wird im folgenden Kapitel näher erläutert.

1.5 Schrittmacher-induzierte Kardiomyopathie (PMiCMP)

1.5.1 Definition der PMiCMP

Die Kardiomyopathie an sich ist eine Erkrankung des Herzmuskels, mit einer daraus resultierenden Funktionsstörung des Herzens \(^{18}\). Sie tritt laut Elliot et al. unter Abwesenheit von Hypertonus, koronarer Herzkrankheit (KHK), Herzelappenfehlern und kongenitalen Herzfehlern auf und bewirkt strukturelle und funktionelle Veränderungen des Myokards \(^{19}\).
Um eine stimulationsassozierte Verschlechterung der systolischen Funktion des linken Ventrikels einheitlich benennen zu können, prägte sich der Begriff Schrittmacher-induzierte Kardiomyopathie oder auch Pacemaker induced Cardiomyopathy (PMiCMP)\(^{20-22}\). Zur genaueren Definition, siehe Tabelle 9 im Kapitel „2.3.1 Definition der PMiCMP“.

1.5.2 Pathophysiologie der PMiCMP

Verschiedene Studien belegen, dass das Entstehen einer PMiCMP und die damit einhergehende Verschlechterung der LVEF, mit rechtsventrikulärer (RV) Stimulation assoziiert ist\(^{23-25}\). Bei der Stimulation durch einen HSM breitet sich die Erregung von der Elektrode über das Myokard aus. Bei einer apikalen Elektrode im rechten Ventrikel geht die elektrische Erregung also von der Herzspitze aus. Dies hat zur Folge, dass früher erregte Areale früher kontrahieren und somit die homogene Erregungsausbildung verloren geht. Konsekutiv entsteht ein dyssynchroner linksventrikulärer (LV) Kontraktionsablauf. Dies führt zu intrakardialen Umbauprozessen (remodeling) mit anschließender Reduktion der LVEF\(^{26}\). Die Asynchronität führt außerdem dazu, dass sich der Metabolismus der Kardiomyozyten an die neuen Anforderungen anpasst. Das erhöht das kardiovaskuläre Risiko\(^{26}\). Diese Auswirkungen sind bei RV-Stimulation und hoher Stimulationsrate am deutlichsten zu beobachten, wohingegen die Ausprägung bei LV-Stimulation weitaus geringer ausfällt, wie Prinzen et al. im Tiermodell zeigten\(^{27}\). Nach entsprechender Zeit kann es durch die andauernde Dyssynchronität schließlich zum remodeling im Myokard kommen, was wiederum zur Hypertrophie und/oder Dilatation des linken Ventrikels führen kann\(^{28}\).

1.5.3 Prävalenz und Inzidenz der PMiCMP

Zur Prävalenz der PMiCMP liegen noch nicht viele Erkenntnisse vor. Zudem variieren die existierenden Daten sehr stark. Die Angaben in der Literatur schwanken zwischen 3,3% und 62,3% aller HSM-Patienten\(^{29,30}\). In einer vorangegangenen Studie unserer Forschungsgruppe untersuchten wir Patienten mit Langzeit-RV-Stimulation (24 Jahre) und beschrieben eine Prävalenz von 15,4%\(^{21}\). Bezuglich der Inzidenz ist die Datenlage noch geringer. Im PACE trial beschrieben Yu et al. eine Inzidenz der PMiCMP innerhalb des ersten Jahres nach Beginn des RV-pacings von 9%\(^{25}\). Es scheint, als müsse man zwischen Früh- und Spätmanifestation
unterscheiden, da die Inzidenz der PMiCMP im ersten Jahr nach Beginn des RV-pacings höher zu sein scheint als in den Folgejahren.

1.5.4 Therapie der PMiCMP
Zum jetzigen Zeitpunkt gibt es keine PMiCMP-spezifischen Therapieempfehlungen oder Guidelines. Therapieoptionen lassen sich lediglich aus den ESC-Guidelines für die CRT ableiten. Ein routinemäßiges Upgrade auf ein CRT-Aggregat oder beispielsweise ein Upgrade bei symptomlosem AV-Block III° mit erhaltener LVEF werden nicht empfohlen. Die Aufrüstung auf ein CRT-System wird nur bei schlechter LVEF (>35%) und NYHA II-IV aneraten (Empfehlungsgrad: I; Evidenzklasse: A) oder wenn sich bei hoher RV-pacing Rate die LVEF verschlechtert und sich die Symptome verschlimmern (Empfehlungsgrad: IIa; Evidenzgrad: B) 12. Jegliche CRT-Indikation steht unter der Voraussetzung, dass zuvor die medikamentöse Herzinsuffizienztherapie optimiert wurde. Allerdings ist nochmals zu betonen, dass alle diese Richtlinien nicht PMiCMP-spezifisch sind. Laut einer RCT von van Geldorp et al. hat die CRT bei einer Aufrüstung von einem herkömmlichen Herzschrittmacher eine responder-Rate von 53% 31, Fröhlich et al. berichten über 56% 32. Diese Daten beziehen sich wiederum nicht speziell auf die PMiCMP, sondern auf das Ansprechverhalten nach einem Upgrade bei Herzinsuffizienz allgemein. Für die responder-Rate auf ein CRT-Upgrade bei PMiCMP existieren weniger Daten. Nazeri et al. berichten über 76% responder 33. Gegen ein routinemäßiges Update auf CRT sprechen vor allem die damit verbundenen höheren Kosten und die höhere Komplikationsrate bei der CRT-Implantation 12, 34.

1.6 Rationale der Studie
Seit über 50 Jahren werden Patienten mit AV-Block beziehungsweise Herzinsuffizienz, nun erfolgreich mit Herzschrittmachern zur rechtsventrikulären Stimulation behandelt. Neben der potentiell lebensrettenden Funktion kann das RV-pacing aber auch negative hämodynamische Effekte zufolge haben und möglicherweise eine Schädigung der kardialen Struktur und Funktion begünstigen 35-38. Nicht selten kommt es infolge einer hohen Rate an RV-Stimulation (RV-
Einleitung

pacing Rate) im Verlauf zu einer Verschlechterung der LVEF. Dieses Phänomen nennt man Schrittmacher-induzierte Kardiomyopathie (PMiCMP).

Aus hämodynamischer Sicht hat die biventrikuläre Stimulation eindeutige Vorteile gegenüber der RV-Stimulation \(^{29, 37, 39, 40}\). Deshalb empfehlen die aktuellen Guidelines bei Patienten mit reduzierter linksventrikulärer Funktion und hochgradigem AV-Block auch schon bei der Erstimplantation, ein biventrikuläres System zu verwenden \(^{12, 41}\). Die Kardiale Resynchronisationstherapie (CRT) gilt laut der vorhandenen Literatur auch als effektive Therapie der PMiCMP \(^{22, 33}\). Verlässliche Prädiktoren der PMiCMP sind bisher jedoch nur sehr schlecht untersucht. Des Weiteren existieren keine PMiCMP-spezifischen Guidelines. Aktuelle Guidelines empfehlen keine prophylaktische Implantation eines CRT-Aggregats bei Patienten mit hochgradigem AV-Block und normaler LVEF \(^{12, 41}\).

Ein Hauptgrund bezüglich der Unsicherheit hinsichtlich der prophylaktischen Implantation eines CRT-Aggregats ist die ungenaue Datenlage zur Prävalenz der PMiCMP. In einer früheren Studie unserer Arbeitsgruppe beschrieben wir eine Prävalenz der PMiCMP nach langjähriger HSM-Therapie von 15,4\% \(^{21}\). Im PACE Trial entwickelten 9\% der Patienten eine PMiCMP innerhalb des ersten Jahres nach Erstimplantation \(^{25}\).

Das Ziel unserer aktuellen Studie bestand deshalb darin, valide Daten zur Prävalenz und Inzidenz der PMiCMP zu erhalten und eventuelle Prädiktoren zu detektieren. Weiterhin sollte der Erfolg einer optimalen medikamentösen Herzinsuffizienztherapie und der CRT bei dieser Erkrankung untersucht werden. Um dem klinischen Alltag entsprechende Ergebnisse zu erhalten, wurden alle Patienten aus unserer ambulanten Schrittmachersprechstunde in die Studie eingeschlossen.
2 Methoden

2.1 Patienten

2.1.1 Einschlusskriterien

Die Rekrutierung von Patienten für diese prospektive Studie erfolgte aus dem Patientenkollektiv der Schrittmacherambulanz der Medizinischen Klinik für Kardiologie und Angiologie der Charité – Universitätsmedizin Berlin. Es wurden alle Patienten in die Studie eingeschlossen, die folgende Kriterien erfüllten:

- Implantation eines Herzschrittmachers, gemäß den aktuellen Guidelines
- rechtsventrikuläre Stimulation
- schriftliche Einverständniserklärung

2.1.2 Ausschlusskriterien

Folgende Kriterien führten zum Ausschluss aus der Studie:

- Therapie mittels AAI-HSM
- CRT-System bereits implantiert
- vorhandenes Schrittmachersystem arbeitet nicht korrekt
- ausdrücklicher Wille des Patienten, nicht in die Studie eingeschlossen zu werden
2.2 Nachsorgeuntersuchung

2.2.1 Schrittmacherkontrolle

Im Rahmen der Schrittmacherkontrolle wurden die HSM-Systeme auf korrekten Sitz und Funktion und die Reizlosigkeit der Tasche, in die das Aggregat implantiert wurde, überprüft. Dabei wurden folgende Parameter kontrolliert:

- Batterieimpedanz
- Potenzial, Reizschwelle und Impedanz an jeder vorhandenen Elektrode
- Anteil der rechtsventrikulären Stimulationsrate in %

Die Grenzwerte der einzelnen Parameter, die in unserer Klinik Verwendung finden, sind in Tabelle 6 dargestellt.

| Tabelle 6: Schrittmacherkontrolle - Grenzwerte unserer Klinik |
|---------------------------------|-----------------|-----------------|
| | Impedanz (in Ohm) | Potential (in mV) | Reizschwelle (in V bei 0,5 ms) |
| Vorhofelektrode | 200 - 1200 | >1 mV | <2 |
| Ventrikel-Elektrode | 200 - 1200 | >4 mV | <2 |

Tabelle 7: NYHA-Klassifikation nach The New York Heart Association 43

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Definition</th>
</tr>
</thead>
</table>
| NYHA I | • Herzkrankheit diagnostiziert
 • Beschwerdefreiheit in Ruhe und bei Belastung |
| NYHA II | • leichte Leistungsminderung
 • Beschwerden bei stärkerer Belastung
 • in Ruhe beschwerdefrei |
| NYHA III| • starke Leistungsminderung
 • Beschwerden bei leichter Belastung
 • in Ruhe beschwerdefrei |
| NYHA IV | • Symptome treten bei Belastung und in Ruhe auf |
2.2.2 QRS-Dauer
Lag die RV-pacing Rate bei ≥90%, wurde zusätzlich die QRS-Dauer anhand eines 12-Kanals-EKGs bestimmt. Für das EKG wurden die drei Standardableitungen nach Einthoven, die drei Extremitätenableitungen nach Goldberger und die sechs Brustwandableitungen nach Wilson abgeleitet. Aufgezeichnet wurde mit einer Papiergeschwindigkeit von 50 mm/s. Als QRS-Dauer gilt die Zeitdauer vom Schrittmacherstimulationsimpuls bis zum Ende des QRS-Komplexes.

2.2.3 Transthorakale Echokardiographie
Methoden

Abbildung 1: Schematische Darstellung der modifizierten biplanen Scheibchensummationsmethode (nach Simpson) im Zweikammer- und Vierkammerblick

LV = linker Ventrikel; \(a \) = LV-Durchmesser im Vierkammerblick; \(b \) = LV-Durchmesser im Zweikammerblick; \(h \) = Scheibchenhöhe

Abbildung 2: Schematische Darstellung eines Scheibchens gemäß der modifizierten biplanen Scheibchensummationsmethode (nach Simpson)

\(a \) = LV-Durchmesser im Vierkammerblick; \(b \) = LV-Durchmesser im Zweikammerblick; \(h \) = Scheibchenhöhe

Auf diese Weise lassen sich das linksventrikuläre enddiastolische Volumen (LVEDV) und das linksventrikuläre endsystolische Volumen (LVESV) errechnen. Aus der Differenz zwischen LVEDV und LVESV ergibt sich das Schlagvolumen. Anhand der Formel in Abbildung 3 wird dann, ebenfalls computergestützt, der relative Anteil des Schlagvolumens am LVEDV errechnet. Dieser Prozentwert entspricht der LVEF.
Methoden

\[
\text{LVEF in } \% = \frac{\text{LVEDV} - \text{LVESV}}{\text{LVEDV}} \times 100
\]

Abbildung 3: Formel zur Errechnung der LVEF

LVEF = linksventrikuläre Ejektionsfraktion; LVEDV = linksventrikuläres enddiastolisches Volumen; LVESV = linksventrikuläres endsystolisches Volumen

Je nach Befund ergibt sich laut *American Society of Echocardiography* eine Einteilung in verschiedene Grade der kardialen Beeinträchtigung (siehe *Tabelle 8*).

Tabelle 8: Beeinträchtigungsgrad anhand der LVEF nach *Lang et al.*

<table>
<thead>
<tr>
<th>Beeinträchtigungsgrad</th>
<th>LVEF in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>≥55%</td>
</tr>
<tr>
<td>leichtgradig eingeschränkt</td>
<td>45-54%</td>
</tr>
<tr>
<td>mittelgradig eingeschränkt</td>
<td>30-44%</td>
</tr>
<tr>
<td>hochgradig eingeschränkt</td>
<td><30%</td>
</tr>
</tbody>
</table>

2.3 Schrittmacher-induzierte Kardiomyopathie (PMiCMP)

2.3.1 Definition der PMiCMP

Von den 615, in die Studie eingeschlossenen, Patienten erfüllten 37 Patienten die Kriterien für eine PMiCMP. Die zuvor durch uns festgelegten Kriterien zur Sicherung der Diagnose einer PMiCMP sind in *Tabelle 9* dargestellt.
Methoden

Tabelle 9: Definition der PMiCMP

Zustand vor Schrittmacherimplantation

- normale systolische LV-Funktion
- suffiziente Therapie der zugrundeliegenden kardialen Erkrankung

Zum Zeitpunkt der PMiCMP-Diagnosestellung

- RV-Stimulationsrate ≥90%
- LVEF ≤45%
- Ausschluss einer Progredienz der zugrundeliegenden kardialen Erkrankung
- Ausschluss einer KHK (durch Computertomographie oder Angiografie)
- Ausschluss einer neu aufgetretenen kardialen Erkrankung

Eine PMiCMP wurde ausgeschlossen, sobald andere mögliche Ursachen für die Verschlechterung der Pumpfunktion vorlagen, wie zum Beispiel ein schlecht oder nicht eingestellter Hypertonus oder eine Progredienz der KHK.

2.3.2 Einteilung der PMiCMP

Die PMiCMP lässt sich grob in zwei Gruppen unterteilen, die early-onset und die late-onset PMiCMP. Von einer early-onset PMiCMP spricht man, wenn sich die Erkrankung innerhalb der ersten 12 Monate nach Beginn der Herzschrittmachertherapie entwickelt. Bei einer late-onset PMiCMP tritt die Erkrankung erst nach mehr als einem Jahr unter RV-pacing auf.

Zur Analyse der Inzidenz von PMiCMP unterteilten wir die Studienteilnehmer in zwei Kohorten. In der early-onset PMiCMP Kohorte wurden alle Patienten in die Studie eingeschlossen, die zwischen 2012 und 2013 (n = 163) erstmals eine Schrittmacherimplantation erhalten hatten. Im Rahmen der Nachsorge stellten sich die Patienten drei und 12 Monate nach der Implantation vor. Dabei wurde untersucht, ob sich innerhalb des ersten Jahres der RV-Stimulation eine PMiCMP manifestiert hatte.

Die Inzidenz der late-onset PMiCMP wurde anhand der jährlichen Kontrolluntersuchungen der chronisch implantierten Herzschrittmacher bestimmt, die sich 2012 und 2013 in unserer
Ambulanz vorstellten (n = 452). Für beide Kohorten wurde zusätzlich definiert, bei welchen Patienten es sich um Risikopatienten handelte. Dies war der Fall, wenn zum Zeitpunkt der Datenerhebung eine RV-pacing Rate von ≥90% vorlag.

2.3.3 Vorgehen bei PMiCMP
Sobald die Diagnose der PMiCMP gestellt war, wurde die medikamentöse Herzinsuffizienztherapie nach folgendem Schema begonnen oder optimiert (im Falle einer bereits bestehenden Therapie). Dabei wurden die aktuellen ESC-Guidelines\(^6\) befolgt.

Tabelle 10: Schema zur medikamentösen Herzinsuffizienztherapie nach Hoppe et al.\(^7\)

<table>
<thead>
<tr>
<th>Medikament</th>
<th>NYHA-Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NYHA I</td>
</tr>
<tr>
<td>ACE-Hemmer</td>
<td>✓</td>
</tr>
<tr>
<td>Beta-Blocker</td>
<td>nach Myokardinfarkt bei Hypertonie</td>
</tr>
<tr>
<td>Schleifen-</td>
<td>bei Flüssigkeitsretention</td>
</tr>
<tr>
<td>diuretika</td>
<td></td>
</tr>
<tr>
<td>Thiazide</td>
<td>Bei Hypertonie bei Flüssigkeitsretention</td>
</tr>
<tr>
<td>Aldosteron-</td>
<td>nach Myokardinfarkt</td>
</tr>
<tr>
<td>Antagonisten</td>
<td></td>
</tr>
<tr>
<td>AT1-Blocker</td>
<td>bei ACE-Hemmer-intoleranz bei ACE-Hemmer-intoleranz bei ACE-Hemmer-intoleranz bei ACE-Hemmer-intoleranz</td>
</tr>
<tr>
<td>Herzglykoside</td>
<td>bei chronischem tachyarrhythmischem Vorhofflimmern</td>
</tr>
<tr>
<td>Antikoagulantien</td>
<td>beispielsweise bei Vorhofflimmern</td>
</tr>
</tbody>
</table>

ACE-Hemmer = Angiotensin-Converting-Enzyme-Hemmer; AT1-Blocker = Angiotensin 1-Rezeptorblocker
Nach drei Monaten optimaler medikamentöser Therapie (OMT) wurden die LVEF mittels TTE und die klinische Symptomatik anhand der NYHA-Klassifikation neu bestimmt.

2.4 Kardiale Resynchronisationstherapie (CRT)

2.4.1 Indikation zum Upgrade auf CRT
Wenn nach drei Monaten maximaler medikamentöser Herzinsuffizienztherapie die LVEF weiterhin bei ≤45% lag und die Leistungsfähigkeit NYHA II oder schlechter betrug, riet man den Patienten zur Umrüstung auf ein CRT-System.

2.4.2 CRT-Implantation
Die Implantation erfolgte gemäß den aktuellen Richtlinien zur kardialen Resynchronisationstherapie und durch insgesamt zwei erfahrene Implantateure, die pro Jahr ca. 60 CRT-Implantationen durchführen. Die Wahl, ob ein CRT-Schrittmacher (CRT-P) oder ein CRT-Defibrillator (CRT-D) implantiert wurde, oblag dem Ermessen des implantiierenden Kardiologen. Zur Aufrüstung auf ein CRT-P wurde auf der Seite des bereits liegenden Schrittmachers zusätzlich eine LV-Elektrode implantiert. Bei einer CRT-D Implantation wurde das Aggregat auf der kontralateralen Seite implantiert. Wenn sich im weiteren Verlauf nach der Implantation zeigte, dass der CRT-D korrekt arbeitet und insbesondere die Elektroden gute Potentiale sowie Reizschwellen aufwiesen, wurde der ursprüngliche Herzschrittmacher explantiert.

andererseits einen Überblick über die vorhandenen Seitenäste des Koronarsinus beim jeweiligen Patienten zu erlangen.

- stabile Lage
- gute Reizschwelle
- Ausschluss der fälschlichen Stimulation des Nervus phrenicus

2.4.3 Kriterien für responder

Wenn die CRT den gewünschten Effekt erzielte, wurden die Patienten als responder bezeichnet. Als Kriterium für die Bezeichnung als responder wurde die Reduktion des LVESV um $\geq 15\%$, in Übereinstimmung mit den CRT-Guidelines, gewählt 12. War dies nicht der Fall, bezeichneten wir die Patienten als non responder.
2.5 Statistische Analyse

Die statistische Signifikanz der erfassten Daten wurde unter Berücksichtigung der anerkannten Methoden der Statistik überprüft\(^4\). Die Analyse der Daten erfolgte mit Hilfe des Programms *Statistical Package for the Social Science (SPSS)* 21.0 (SPSS Inc., Chicago, Illinois, USA) und die graphische Auswertung anhand der Software *Graph Pad Prism 6* (GraphPad Software, San Diego, California, USA). Die Darstellung der Ergebnisse erfolgte in der Form von Mittelwert ± Standardabweichung. Wenn angebracht, wurden die Daten als Kastendiagramm (Boxplot) präsentiert. Die Box entspricht dem Bereich zwischen der 25. und 75. Perzentile, repräsentiert also die mittleren 50% der erfassten Daten. Des Weiteren wird der Median als Strich in der Box dargestellt. Die Extremwerte werden durch Antennen (Whiskers) oberhalb und unterhalb der Box dargestellt und repräsentieren die 10. und 90. Perzentile. Zur Überprüfung der Normalverteilung dienten entsprechend der Mann-Whitney-U-Test, Vorzeichen-Rang-Test nach Wilcoxon und der Chi-Quadrat-Test. Ab einem Signifikanzniveau von 5% wurde die Nullhypothese abgelehnt, was einem p-Wert von <0,05 entspricht. Demnach galt ein Ergebnis mit einem p-Wert von <0,05 als statistisch signifikant und mit einem p-Wert von <0,001 als hochsignifikant. Der p-Wert beschreibt die Wahrscheinlichkeit für das Zutreffen der Nullhypothese (H\(_0\)).

2.5.1 Studienendpunkte

Folgende Studienendpunkte bestanden für unsere Untersuchung:

- Inzidenz und Prävalenz der PMiCMP
- Effektivität der OMT bei PMiCMP
- Effektivität der CRT bei PMiCMP
2.5.2 Nullhypothesen

1. Bezogen auf alle Schrittmacherpatienten mit rechtsventrikulärer Stimulation ist die PMiCMP eine seltene Erkrankung.
2. Die PMiCMP ist klinisch relevant in der Hochrisikogruppe mit einer hohen rechtsventrikulären Stimulationsrate.
3. Bei einer zugrundeliegenden PMiCMP ist die Anzahl der responder höher als in üblichen CRT-Kollektiven.
3 Ergebnisse

3.1 Patienten

615 konsekutive Patienten, die sich in den Jahren 2012 und 2013 in unserer Herzschrittmacherambulanz vorstellten, wurden in die Studie eingeschlossen. 37 dieser Patienten erfüllten die Kriterien einer PMiCMP. Das Alter der Patienten mit PMiCMP unterschied sich signifikant vom Alter der Patienten in der gesamten Kohorte (66,8 ± 14,9 Jahre vs. 73,1 ± 12,4 Jahre). Weiterhin bestand kein signifikanter Unterschied zwischen beiden Gruppen bezüglich der durchschnittlichen Dauer der Herzschrittmachertherapie (12 ± 12 Jahre vs. 11 ± 10 Jahre). Erwartungsgemäß war in der PMiCMP-Gruppe die durchschnittliche Rate des RV-pacings höher (99 ± 1% vs. 61 ± 40%) und die LVEF schlechter (37 ± 6% vs. 52 ± 9%) als in der Kontrollgruppe. Die häufigste zugrunde liegende kardiale Erkrankung war in beiden Gruppen der arterielle Hypertonus (43% vs. 51%). 37% der Patienten in der PMiCMP-Gruppe hatten keine erkennbare kardiale Grunderkrankung. Im Vergleich dazu war es in der Kontrollgruppe nur bei 14% der Patienten nicht möglich, eine kardiale Grunderkrankung zu definieren. Erwartungsgemäß war der Anteil an Patienten mit einem höhergradigen AV-Block in der PMiCMP-Gruppe größer als in der Vergleichsgruppe (76,5% vs. 33%). Im Gegensatz dazu hatten die Patienten in der Gesamtkohorte häufiger ein SSS (47% vs. 14%). Die genauen Daten der Patientencharakteristik sind auf der folgenden Seite in Tabelle 11 dargestellt.
Ergebnisse

Tabelle 11: Patientencharakteristika

<table>
<thead>
<tr>
<th></th>
<th>Patienten mit PMiCMP $(n = 37)$</th>
<th>Risikopatienten $(n = 278)$</th>
<th>Gesamte Kohorte $(n = 615)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter in Jahren</td>
<td>66,8 ± 14,9</td>
<td>72,2 ± 13,4</td>
<td>73,1 ± 12,4</td>
</tr>
<tr>
<td>Männer, n (%)</td>
<td>20 (54)</td>
<td>167 (60)</td>
<td>328 (53)</td>
</tr>
<tr>
<td>RV-pacing Rate in %</td>
<td>99 ± 1</td>
<td>99 ± 0,02</td>
<td>61 ± 40</td>
</tr>
<tr>
<td>LVEF in %</td>
<td>37 ± 6</td>
<td>49 ± 0,1</td>
<td>52 ± 9</td>
</tr>
<tr>
<td>Dauer der HSM-Therapie in Jahren</td>
<td>12 ± 12</td>
<td>13 ± 11</td>
<td>11 ± 10</td>
</tr>
<tr>
<td>kardiale Erkrankungen in %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertonus</td>
<td>43</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>KHK</td>
<td>5</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Myokarditis</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>angeborener Herzfehler</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Herzkloppenerkrankung</td>
<td>5</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>idiopathisch</td>
<td>37</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Andere</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Indikation für HSM-Therapie in %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV-Block II. Grades</td>
<td>5</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>AV-Block III. Grades</td>
<td>76,5</td>
<td>54</td>
<td>33</td>
</tr>
<tr>
<td>SSS</td>
<td>14</td>
<td>26</td>
<td>47</td>
</tr>
<tr>
<td>symptomatische Bradyarrhythmie</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Andere</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Risikopatienten: RV-pacing Rate ≥90%
3.2 Prävalenz und Inzidenz der PMiCMP

3.2.1 Prävalenz

Bezogen auf alle Patienten mit einem Herzschrittmacher und einer RV-Elektrode, betrug die Prävalenz der PMiCMP in unserem gesamten Patientenkollektiv 6% (37 Patienten). Innerhalb der Hochrisikogruppe \((n = 278; \text{RV-pacing} \geq 90\%)\) lag die Prävalenz der PMiCMP mit 13,3% deutlich höher.

3.2.2 Inzidenz

3.2.2.1 Inzidenz der early-onset PMiCMP

107 der 163 Patienten, bei denen die Schrittmacherimplantation weniger als ein Jahr zurücklag, hatten eine RV-pacing Rate von <90%. Von den 56 neu implantierten Patienten (34,4%) mit einer RV-pacing Rate von \(\geq 90\%\) (Hochrisikopatienten) entwickelten acht Patienten innerhalb des ersten Jahres nach der Implantation eine PMiCMP. Damit hatte die PMiCMP im ersten Jahr unter RV-pacing innerhalb der Hochrisikogruppe eine Inzidenz von 14,3% (siehe Abbildung 4).

Abbildung 4: Inzidenz der early-onset PMiCMP
3.2.2.2 Inzidenz der late-onset PMiCMP

Bei 452 Patienten aus unserem Patientenkollektiv, lag die Schrittmacherimplantation länger als ein Jahr zurück. Von den 452 Patienten wurden 222 Patienten als Hochrisikopatienten klassifiziert (RV-pacing Rate ≥90%). Bei 29 dieser Patienten wurde eine PMiCMP diagnostiziert. In 24 der 29 Fälle bestand die Diagnose der PMiCMP bereits vor Beginn der Untersuchungen zur vorliegenden Studie. Die übrigen fünf Patienten mit einer RV-pacing Rate von ≥90% und Schrittmachererstimplantation vor über einem Jahr entwickelten die PMiCMP während des Kontrollintervalls von einem Jahr im Rahmen unserer Studie. Die Inzidenz der PMiCMP lag in der late-onset Kohorte demzufolge bei 2,3% (siehe Abbildung 5) und war damit signifikant niedriger (p = 0,019) als die der early-onset PMiCMP.

Abbildung 5: Inzidenz der late-onset PMiCMP

3.3 Risikofaktoren für PMiCMP

Zur Detektion von Prädiktoren für die Entstehung von PMiCMP verglichen wir alle Risikopatienten ($n = 278$) mit den Patienten unserer Studie, bei denen tatsächlich eine PMiCMP diagnostiziert wurde ($n = 37$).
Ergebnisse

Tabelle 12: Risikofaktoren für PMiCMP

<table>
<thead>
<tr>
<th></th>
<th>PMiCMP</th>
<th>Risikopatienten</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>37</td>
<td>278</td>
<td>NA</td>
</tr>
<tr>
<td>Alter in Jahren</td>
<td>66,8 ± 14,9</td>
<td>72,2 ± 13,4</td>
<td>0,025</td>
</tr>
<tr>
<td>Männer, n (%)</td>
<td>21 (56,8)</td>
<td>167 (60,1)</td>
<td>0,762</td>
</tr>
<tr>
<td>QRS-Dauer unter RV-pacing in ms</td>
<td>152 ± 20</td>
<td>124 ± 23</td>
<td><0,0001</td>
</tr>
<tr>
<td>Position der RV-Elektrode, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- apikal</td>
<td>30 (81)</td>
<td>233 (83)</td>
<td></td>
</tr>
<tr>
<td>- septal</td>
<td>3 (8)</td>
<td>23 (8)</td>
<td>0,942</td>
</tr>
<tr>
<td>- RVOT</td>
<td>4 (11)</td>
<td>20 (7)</td>
<td>0,415</td>
</tr>
<tr>
<td>Dauer des RV-pacings in Jahren</td>
<td>12 ± 12</td>
<td>13 ± 11</td>
<td></td>
</tr>
</tbody>
</table>

Risikopatienten: RV-pacing Rate ≥90%

3.3.1 Dauer des RV-pacings

Eine PMiCMP wurde in unserer Kohorte im Durchschnitt nach 12 ± 12 Jahren RV-pacing diagnostiziert. Da keine lückenlose echokardiographische Überwachung angenommen werden kann, müssen diese Daten kritisch interpretiert werden. Die genauen Angaben sind der Tabelle 12 zu entnehmen. Bei acht Patienten (14,3%) wurde die PMiCMP innerhalb des ersten Jahres nach der HSM-Implantation diagnostiziert. Deshalb scheint im ersten Jahr nach der Implantation eine erhöhte Wahrscheinlichkeit für die Entstehung einer PMiCMP zu bestehen. Zu erwähnen ist allerdings, dass die PMiCMP bei einem unserer Patienten erst nach 24 Jahren RV-pacing diagnostiziert wurde. Zusammengefasst scheint im ersten Jahr nach der Implantation eine erhöhte Wahrscheinlichkeit für die Erstmanifestation einer PMiCMP zu bestehen, obwohl die Entstehung anscheinend zu jedem Zeitpunkt möglich ist. Demnach ist die Dauer des RV-pacings kein valider Prädiktor für die PMiCMP.
3.3.2 QRS-Breite unter RV-pacing

In unserem Patientenkollektiv unterschied sich die QRS-Breite unter RV-pacing signifikant zwischen den Patienten mit PMiCMP und den Patienten aus der Hochrisikogruppe. Die QRS-Breite betrug in der PMiCMP-Gruppe 152 ± 20 ms, die Risikopatienten ohne PMiCMP wiesen hingegen nur eine QRS-Breite von 124 ± 23 ms auf (P < 0,001; siehe Tabelle 12).

3.3.3 Alter der Patienten

In unserem Patientenkollektiv waren die Patienten mit PMiCMP signifikant jünger als die Patienten der gesamten Kohorte (66,8 ± 14,9 Jahre vs. 73,1 ± 12,4 Jahre, p = 0,022; siehe Tabelle 11)

3.3.4 Lage der RV-Elektrode

Als möglicher Prädiktor wurde außerdem die Lage der RV-Elektrode untersucht. Dabei wurde anhand des Röntgen-Thorax Bildes beurteilt, ob die RV-Elektrode apikal, septal oder im rechtsventrikulären Ausflusstrakt (RVOT) positioniert war. Die Lage der RV-Elektrode unterschied sich nicht zwischen den Patienten mit PMiCMP und denen in der Hochrisikogruppe. In beiden Gruppen waren die Elektroden am häufigsten apikal implantiert worden (81% vs. 83%; siehe Tabelle 12).

3.3.5 kardiale Grunderkrankung

Bezüglich des arteriellen Hypertonus bestand kein Unterschied zwischen PMiCMP Patienten und Hochrisikopatienten. In der Kontrollgruppe hatten die Patienten häufiger eine koronare Herzkrankheit (5% vs. 19%). Die anderen untersuchten kardialen Erkrankungen waren ebenfalls kein Prädiktor für eine PMiCMP (siehe Tabelle 11).
3.4 Medikamentöse Herzinsuffizienztherapie bei PMiCMP

Nach Stellung der Diagnose einer PMiCMP wurde bei allen Patienten in Absprache mit dem jeweiligen Hausarzt eine Optimierung der oralen Herzinsuffizienzmedikation vorgenommen. Die Optimierung erfolgte gemäß den gültigen Guidelines zur Herzinsuffizienz der *Europäischen Gesellschaft für Kardiologie* 46. Insbesondere wurde auf eine maximal tolerierbare ACE-Hemmer/AT1-Antagonisten- und Betablocker-Dosis geachtet. Das Medikationsschema ist *Tabelle 10* zu entnehmen. 91% der Patienten erhielten einen Betablocker und 100% einen ACE-Hemmer oder AT1-Antagonisten (siehe *Tabelle 13*). Nach drei Monaten unter OMT wurde eine erneute Evaluation der NYHA-Klasse und der LVEF vorgenommen. Im Vergleich zum Ausgangsbefund veränderte sich bei keinem der Patienten unter OMT die NYHA-Klasse oder die LVEF signifikant (36 ± 4% vs. 34 ± 5%; p = 0,29).

Tabelle 13: Medikamentöse Herzinsuffizienztherapie bei PMiCMP

<table>
<thead>
<tr>
<th>Medikament</th>
<th>Anzahl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betablocker, n (%)</td>
<td>34 (91)</td>
</tr>
<tr>
<td>ACE-Hemmer oder AT1-Antagonisten, n (%)</td>
<td>37 (100)</td>
</tr>
<tr>
<td>Diuretika, n (%)</td>
<td>19 (51)</td>
</tr>
<tr>
<td>Aldosteron-Antagonisten, n (%)</td>
<td>9 (24)</td>
</tr>
</tbody>
</table>

3.5 CRT bei PMiCMP

Bei 20 der 37 Patienten mit diagnostizierter PMiCMP erfolgte eine Aufrüstung auf ein CRT-System. Die übrigen 17 Patienten lehnten die CRT-Implantation nach einem ausführlichen Gespräch entweder ab oder aber die körperliche Leistungsfähigkeit und die LVEF der Patienten waren so gut, dass sie unsere Indikationskriterien für eine CRT-Aufrüstung nicht erfüllten. In der Verantwortung des Implantateurs lag es zu entscheiden, ob ein CRT-D oder CRT-P implantiert werden sollte. 10 Patienten erhielten einen CRT-P und 10 Patienten einen CRT-D.
3.5.1 Verlauf der LV-Funktion und der NYHA-Klasse unter CRT

Die durchschnittliche LVEF vor der CRT-Aufrüstung betrug 33,3 ± 5% und verbesserte sich nach sechs Monaten CRT signifikant auf 47,5 ± 9,3% (p < 0,001; siehe Abbildung 6). Als weitere Parameter der LV-Funktion wurden echokardiographisch nach sechs Monaten CRT das LVEDV und das LVESV bestimmt. Das durchschnittliche LVEDV reduzierte sich von 139 ± 41 ml auf 116 ± 42 ml (siehe Abbildung 7 A) und das LVESV fiel von 98 ± 35 ml auf 64 ± 20 ml (siehe Abbildung 7 B). Die Veränderung des LVESV war signifikant (p = 0,0039).

Sechs Monate nach der CRT-Aufrüstung verbesserte sich die Symptomatik der Patienten im Durchschnitt um eine NYHA-Klasse. Drei Patienten blieben in der gleichen NYHA-Klasse, vier Patienten verbesserten sich um zwei NYHA-Klassen und die restlichen Patienten verbesserten sich um eine NYHA-Klasse (siehe Abbildung 8).

Abbildung 6: LVEF vor und 6 Monate nach CRT-Implantation
3.5.2 Anzahl der responder

17 Patienten die bei bestehender PMiCMP ein Upgrade auf ein CRT-System erhalten hatten, erfüllten das Kriterium zur Klassifizierung als responder. Somit lag die responder-Rate in unserem Patientenkollektiv bei 85%.
3.5.3 Anzahl der non responder und Komplikationen

Bei drei Patienten (15%) verbesserten sich die Parameter der LV-Funktion unter CRT nicht. Bei einem dieser Patienten fiel die LVEF während der CRT von 30% auf 25%. Dieser 89 jährige Patient, bei dem die Aufrüstung von einem DDD-HSM auf einen CRT-P erfolgte, starb neun Monaten nach der CRT-Aufrüstung. Da post mortem weder eine Abfrage des CRT-P noch eine Autopsie erfolgte, konnte über die genaue Todesursache keine Angabe gemacht werden.

Bei dem zweiten Patienten, der nicht von der CRT-Implantation profitierte, erfolgte die CRT-Aufrüstung 18 Jahre nach Stellung der Diagnose PMiCMP. Zum damaligen Zeitpunkt wurde eine koronare Herzkrankheit invasiv ausgeschlossen und sowohl laevokardiographisch als auch echokardiographisch eine LVEF von 35% dokumentiert. Da der Patient körperlich gut belastbar war (Tätigkeit als LKW-Autoschlosser uneingeschränkt möglich) lehnte er die CRT-Aufrüstung mehrfach ab. Erst nachdem die LVEF weiter abfiel (von 35% auf 25%), mit konsekutiver Reduktion seiner Leistungsfähigkeit, entschied er sich zugunsten des Upgrades. Trotz gut positionierter, LV-Elektrode (lateral) verbesserte sich die LVEF nicht.

Bei dem dritten Patienten reduzierte sich das LVESV nur um 12%, die NYHA-Klasse verbesserte sich allerdings von III auf II.

Bei drei Patienten konnte interventionell keine gute posterolaterale bzw. laterale Elektrodenposition erzielt werden. Deshalb wurde die Elektrode bei diesen Patienten durch die herzchirurgische Klinik unseres Hauses epikardial implantiert.

Bei einem Patienten trat eine CRT-assoziierte Komplikation auf. Er erlitt 4 Wochen nach der CRT-Aufrüstung eine Tascheninfektion, die eine komplette Entfernung des Aggregates und der Elektroden notwendig machte. Im Punkat aus der Tasche konnte Klebsiella pneumonia isoliert werden. Im Intervall erfolgte die Implantation eines CRT-D von der kontralateralen Seite.

3.5.4 natürlicher Verlauf der PMiCMP

Bei den 17 Patienten mit PMiCMP, die keine Aufrüstung auf ein CRT-System erhielten, erfolgte über einen Beobachtungszeitraum von einem Jahr unter optimaler medikamentöser Herzinsuffizienztherapie (OMT) die Kontrolle der NYHA-Klasse und der LVEF. Innerhalb eines Jahres veränderte sich weder die NYHA-Klasse (siehe Abbildung 9) noch die LVEF signifikant (40,5 ± 5%) (siehe Abbildung 10).
Ergebnisse

Abbildung 9: NYHA-Klasse vor und nach 12 Monaten OMT

<table>
<thead>
<tr>
<th>NYHA-Klasse vor OMT</th>
<th>NYHA-Klasse nach 12 Monaten OMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>39% NYHA I</td>
<td>39% NYHA I</td>
</tr>
<tr>
<td>50% NYHA II</td>
<td>50% NYHA II</td>
</tr>
<tr>
<td>11% NYHA III</td>
<td>11% NYHA III</td>
</tr>
<tr>
<td>0% NYHA IV</td>
<td>0% NYHA IV</td>
</tr>
</tbody>
</table>

Abbildung 10: LVEF vor und nach 12 Monaten OMT
4 Diskussion

In einem Kollektiv von 615 Herzschrittmacherpatienten haben wir die PMiCMP untersucht. Neben der Inzidenz, Prävalenz und Prädiktoren sollten auch die Erfolge einer CRT bei dieser Erkrankung untersucht werden.

4.1 Prävalenz/Inzidenz der PMiCMP

Die Prävalenz der PMiCMP, bezogen auf alle Patienten aus unserer Kohorte, betrug 6%. Wenn nur die Patienten betrachtet werden, die eine RV-pacing Rate ≥90% hatten, beträgt die Prävalenz 13,3%. Die Inzidenz der PMiCMP während des ersten Jahres nach der Implantation war in unserem Patientenkolettiv 14,3%. Die Inzidenz der PMiCMP für die Patienten, die schon seit mehr als einem Jahr einen HSM hatten, betrug 2,3%. Unsere Ergebnisse zeigen zunächst, dass die PMiCMP bezogen auf alle Patienten aus unserer Schrittmacherambulanz, eine eher seltene Komplikation der Herzschrittmachertherapie ist. Dieses Ergebnis deckt sich mit den Erfahrungen aus dem klinischen Alltag in unserer Klinik. Spätestens im Rahmen eines anstehenden Aggregatwechsels wird eine Echokardiographie durchgeführt, um die LVEF zu bestimmen. Dabei entwickelte sich der Eindruck, dass eine PMiCMP beim Aggregatwechsel eher selten diagnostiziert wird.

In unserer Studie zeigte sich allerdings, dass ein deutlicher Unterschied in der Prävalenz der PMiCMP zwischen den Patienten mit einer RV-pacing Rate ≥90% und <90% besteht. In der Gruppe mit der hohen RV-pacing Rate ist die Prävalenz der PMiCMP mit 13,3% deutlich höher. Dieses Ergebnis steht in Übereinstimmung mit unseren pathophysiologischen Vorstellungen zur PMiCMP. Wir gehen davon aus, dass die PMiCMP im Zusammenhang mit einer hohen Rate an rechtsventrikulärer Stimulation steht. Da die Prävalenz der PMiCMP in der Hochrisikogruppe mit 13,3% aus unserer Sicht klinisch relevant ist, sollte jeder dieser Patienten mindestens ein Mal pro Jahr eine echokardiographische Beurteilung der LVEF erhalten, um eine Verschlechterung der linksventrikulären Pumpleistung frühzeitig diagnostizieren zu können.

Innerhalb des ersten Jahres der Herzschrittmacher Therapie war die Inzidenz der PMiCMP höher als die Inzidenz bei den Patienten, bei denen die HSM-Erstimulation länger als ein Jahr zurücklag (14,3% vs. 2,3%). Da die Gruppe der Patienten in unserer Studie, die innerhalb des ersten Jahres nach der Implantation nachkontrolliert wurde und eine RV-pacing Rate von ≥90%
wurden 177 Patienten eingeschlossen. Bei einer normalen LVEF zum Zeitpunkt der Implantation wurde entweder in eine CRT-Gruppe oder in eine Gruppe mit herkömmlichem DDD-Modus randomisiert. Die primären Endpunkte der Studie waren die LVEF und das LVESV nach 12 Monaten. In der Gruppe mit herkömmlichem RV-pacing reduzierte sich die LVEF bei 9% der Patienten innerhalb eines Jahres auf <45%. Chan et al. 29 publizierten die 2 Jahres Daten der PACE study. Bei einer RV-pacing Rate von 97,9 ± 11,8% hatten nach 2 Jahren 19,3% der Patienten in dem herkömmlichen DDD-Modus eine LVEF von <45%. Somit lag die Inzidenz der PMiCMP in der PACE study im ersten Jahr bei 9% und im zweiten Jahr bei 10%. Bei einer RV-pacing Rate von durchschnittlich 97,9% befanden sich diese Patienten innerhalb des von uns definierten Hochrisikobereichs (RV-pacing ≥90%). Weiterhin sind unsere Daten vergleichbar mit einer vorherigen Publikation aus unserer Arbeitsgruppe. Dreger et al. 21 untersuchten die Prävalenz der PMiCMP nach langjährigem kontinuierlichem RV-pacing von >99%. In die Studie konnten 26 Patienten eingeschlossen werden. Zudem fand dieselbe PMiCMP-Definition Anwendung, wie in der vorliegenden Studie. Nach einer durchschnittlichen RV-pacing Dauer von 24,6 ± 6,6 Jahren hatten 15,4% der Patienten eine PMiCMP entwickelt.

Diskussion

Patienten betrug die Prävalenz 6%. In der Hochrisikogruppe betrug die Prävalenz 13,3% und ist somit nahezu identisch mit den Ergebnissen von Dreger et al. (15,4%) 21. Bezüglich der Prävalenz und Inzidenz der PMiCMP lässt sich zusammenfassend formulieren: Die Prävalenz der PMiCMP beträgt <20%. Alle Studien die einen größeren Prozentsatz publiziert haben, verwendeten nicht die LVEF als Parameter bei der Diagnostik der PMiCMP. Die Prävalenz der PMiCMP ist in der Hochrisikogruppe (RV-pacing ≥90%) zudem ungefähr doppelt so hoch wie in der Gruppe der Patienten mit einer geringeren RV-pacing Rate. Hinsichtlich der jährlichen Inzidenz einer PMiCMP lässt sich weiterhin vorsichtig formulieren, dass diese insbesondere in den ersten Jahren der RV-Stimulation höher zu sein scheint. Ein linearer Zusammenhang zwischen der RV-pacing Dauer und der Prävalenz der PMiCMP besteht nicht.

4.2 Prädiktoren für eine PMiCMP

Hinsichtlich der **Dauer der rechtsventrikulären Stimulation** trat die PMiCMP bei unseren Patienten nach 12 ± 12 Jahren auf. Allerdings entwickelte sich bei 14,3% dieser Patienten die PMiCMP innerhalb des ersten Jahres nach der Implantation. Wie oben bereits postuliert wurde, besteht insbesondere in den ersten 1-2 Jahren unter RV-pacing ein erhöhtes Risiko für die
Entstehung einer PMiCMP. In der Studie von Zhang et al. \(^{20}\) trat die PMiCMP durchschnittlich erst nach 3 Jahren RV-Stimulation auf. Einschränkend muss dabei allerdings erwähnt werden, dass die Patienten keine echokardiographische Untersuchung erhielten. Toff et al. \(^{30}\) beobachteten in ihrem Patientenkollektiv eine jährliche, neu aufgetretene Herzinsuffizienzrate von 3,3\%. Dieses Ergebnis ließ sich bereits innerhalb des ersten Jahres der RV-Stimulation nachweisen, sodass die Entwicklung der PMiCMP offensichtlich auch schon innerhalb des ersten Jahres der Herzschrittmachertherapie möglich ist. In der Studie von Nazeri et al. \(^{33}\) wurde die PMiCMP durchschnittlich 3,8 ± 1,5 Monate nach der Implantation diagnostiziert. Bei der Interpretation dieser Ergebnisse muss allerdings berücksichtigt werden, dass in dieser Studie folgendes Einschlusskriterium implementiert war. In die Studie wurden nur die Patienten eingeschlossen, bei denen es innerhalb der ersten 6 Monate nach der Implantation zu einer Verschlechterung der LVEF gekommen war. In der Arbeit von Dreger et al. \(^{21}\) war die Dauer der Stimulation kein Prädiktor für die Entstehung einer PMiCMP. In der PACE study \(^{25}\) trat die PMiCMP schon innerhalb des ersten Jahres unter RV-pacing auf. Die jährliche Inzidenz der PMiCMP betrug innerhalb der ersten beiden Jahre knapp 10\%. In mehreren Studien berichten die Autoren darüber, dass die Herzinsuffizienz sich unter Schrittmacherstimulation erst nach 3-5 Jahren entwickelt \(^{30, 51, 52}\). Allerdings wurde in diesen drei Arbeiten nicht publiziert, wie die Herzinsuffizienz diagnostiziert wurde. Weiterhin erfolgte keine echokardiographische Untersuchung der Patienten. Zusammenfassend ist zu sagen, dass einige Autoren über ein Auftreten der PMiCMP erst nach jahrelanger RV-Stimulation berichten. Da in keiner dieser Studien eine echokardiographische Untersuchung der Patienten erfolgte, muss diese Aussage differenziert betrachtet werden. Im Vergleich dazu war in allen Studien mit echokardiographischer Beurteilung der linksventrikulären Funktion beobachtet worden, dass sich auch schon im ersten Jahr der Herzschrittmachertherapie eine PMiCMP entwickeln kann. Zusammenfassend ist zu sagen, dass die Dauer der rechtsventrikulären Stimulation kein Prädiktor für die Entstehung einer PMiCMP zu sein scheint. Sie kann sowohl innerhalb der ersten Monate einer Herzschrittmachertherapie auftreten, als auch erst nach 24 Jahren \(^{21}\).

Weiterhin wurde das **Alter der Patienten** zum Zeitpunkt der Diagnosestellung der PMiCMP als möglicher Prädiktor in unserer Studie untersucht. In unserem Patientenkollektiv waren die Patienten mit PMiCMP signifikant jünger im Vergleich zu den Patienten ohne PMiCMP und Hochrisikokonstellation (66,8 ± 14,7 Jahre vs. 73,1 ± 12,4 Jahre). In der Studie von Sweeney et al. trat die PMiCMP nicht auf, bei Patienten die älter als 60 Jahre alt waren \(^{53}\). In der Untersuchung von Nazeri et al. \(^{33}\) waren die Patienten zum Zeitpunkt der Diagnosestellung der PMiCMP 63 ± 9 Jahre alt. Die Patienten mit PMiCMP von Zhang et al. \(^{20}\) waren 71,3 ± 11 Jahre.
Diskussion

Außerdem untersuchten wir die QRS-Breite unter RV-pacing als potentiellen Prädiktor für eine PMiCMP. Die Patienten aus unserer Kohorte die eine PMiCMP entwickelten, hatten einen signifikant breiteren QRS-Komplex, als die Schrittmacherpatienten die keine PMiCMP entwickelten (152 ± 20 ms vs. 124 ± 23 ms). Wir untersuchten bewusst die QRS-Breite unter RV-pacing und nicht die native QRS-Breite vor der Schrittmacherimplantation. Aus unserer Sicht ist die Aussagefähigkeit der präoperativen QRS-Breite deutlich eingeschränkt. Denn sie spiegelt eben nicht die Verhältnisse wider, die während des RV-pacings vorherrschen, also zum Zeitpunkt der Entwicklung der PMiCMP. In der Literatur gibt es sowohl Untersuchungen zur präoperativen QRS-Breite als auch zur QRS-Breite unter RV-pacing. Sweeney et al. konnten zeigen, dass jede Zunahme der QRS-Breite unter rechtsventrikulärer Stimulation um 10% mit einem Anstieg des Risikos für die Entwicklung einer Herzinsuffizienz um 18% verbunden ist. In der PACE study war für die Entwicklung einer PMiCMP nicht relevant, ob die präoperative QRS-Breite größer oder kleiner 110 ms war. Im Patientenkollektiv von Dreger et al. hatten die Patienten mit PMiCMP unter RV-Stimulation einen breiteren QRS-Komplex als die Patienten, die keine PMiCMP entwickelt hatten. Allerdings erreichte die Differenz nicht das Signifikanzniveau (162 ± 15 ms vs. 157,8 ± 13,1 ms). Zhang et al. konnten nachweisen, dass ein postoperativ verbreiterter QRS-Komplex ein Prädiktor für die Entstehung einer
Diskussion

Weiterhin untersuchten wir, ob die kardiale Grunderkrankung ein Prädiktor für die Entstehung einer PMiCMP ist. Bei den Patienten unserer Kohorte hatte die kardiale Grunderkrankung keinen Einfluss auf die Entwicklung einer PMiCMP. Zhang et al. berichten in ihrer Studie darüber, dass sich eine Herzinsuffizienz bei Herzschrittmacher Patienten gehäuft entwickelt, wenn als kardiale Grunderkrankung eine KHK vorliegt. Es wurde schon mehrfach darauf hingewiesen, dass die Ergebnisse von Zhang et al. aufgrund fehlender echokardiographischer Untersuchung der Patienten, vorsichtig interpretiert werden müssen. Dreger et al. stellten in ihrem Patientenkollektiv fest, dass ein arterieller Hypertonus kein Prädiktor für die Entstehung der PMiCMP ist. In der PACE study wurde nachgewiesen, dass ein begleitender arterieller Hypertonus, eine KHK oder ein Diabetes mellitus keine Prädiktoren
Diskussion

für die PMiCMP sind. Zusammenfassend kann festgehalten werden, dass die zugrundeliegende kardiale Erkrankung keinen Einfluss auf die Entstehung einer PMiCMP hat. Das erscheint plausibel wenn man die diagnostischen Kriterien für eine PMiCMP betrachtet. Gefordert wird eine normale linksventrikuläre systolische Funktion zum Zeitpunkt der Implantation. Das heißt, dass die kardiale Grunderkrankung noch nicht zu einer Beeinträchtigung der myokardialen Funktion geführt haben darf. Außerdem muss eine Progression der kardialen Grunderkrankung zum Zeitpunkt der Diagnosestellung einer PMiCMP ausgeschlossen worden sein. Außerdem untersuchten wir die Lage der rechtsventrikulären Elektrode als möglichen Prädiktor für die Entstehung einer PMiCMP. Die Lage der RV-Elektrode war kein Prädiktor für die Entstehung der PMiCMP. In beiden Gruppen war die RV-Elektrode bei ungefähr 80% der Patienten apikal implantiert worden. Das beruht darauf, dass RV-Elektroden in unserer Klinik erst seit 2010 septal implantiert werden. Es gibt Untersuchungen die gezeigt haben, dass eine apikale Stimulation häufiger zu Herzinsuffizienz führt \(54\). In der Literatur wird weiterhin berichtet, dass eine direkte His-Bündel Stimulation die linksventrikuläre Kontraktion im Vergleich zum apikalen pacing verbessern und die linksventrikulären Dimensionen reduzieren kann \(55,56\). Zusammengefasst war die apikale Elektrodenposition in unserer Studie kein Prädiktor für die PMiCMP.

4.3 Erfolg der optimalen Herzinsuffizienzmedikation bei PMiCMP

Diskussion

Herzinsuffizienzmedikation das remodeling offenbar nicht wieder reduzieren kann, im Sinne eines reversed remodeling. Dieses Versagen der oralen Herzinsuffizienzmedikation bei unseren Patienten könnte zu der Schlussfolgerung Anlass geben, dass wir im klinischen Alltag auf eine Optimierung der Herzinsuffizienzmedikation verzichten könnten, um gegebenenfalls gleich ein CRT-Aggregat zu implantieren. Da dieses Vorgehen einem Paradigmenwechsel in der kardialen Resynchronisationstherapie entsprechen würde, sind Untersuchungen mit größeren Fallzahlen unbedingt erforderlich, bis auf die Optimierung der Herzinsuffizienzmedikation vor einer CRT-Implantation verzichtet werden kann.

4.4 Erfolg der CRT-Therapie bei PMiCMP

Von den 20 Patienten, die auf CRT umgerüstet wurden, erfüllten 17 das Kriterium eines responders. Unter der CRT verbesserte sich die LVEF von 33,3 ± 5% auf 47,5 ± 9,3% und das LVEDV (139 ± 41 ml vs. 116 ± 42 ml), sowie das LVESV (98 ± 35 ml vs. 64 ± 30 ml) nahmen ab. Konsekutiv verbesserte sich die NYHA-Klasse im Durchschnitt um eine Klasse. Uns ist bisher nur eine weitere Publikation bekannt, bei der der Erfolg einer CRT explizit nur bei einem Kollektiv von Patienten mit PMiCMP untersucht wurde. Es ist die bereits zitierte Arbeit von Nazeri et al. In dieser Arbeit lag die responder Rate bei 76% und somit ebenfalls höher als in den üblichen CRT-Studien. Wie kann die höhere responder Rate der CRT bei der PMiCMP erklärt werden? In den großen landmark CRT-Studien – COMPANION-Studie, MADIT-CRT-Studie, MUSTIC-Studie, CARE-HF-Studie – wurden primär Patienten mit einer strukturellen Herzkrankung eingeschlossen. In den Studien wurde in ischämische und nicht-ischämische Kardiomyopathien unterteilt. Neben diesen kardialen Grunderkrankungen lagen zudem entweder ein Linksschenkelblock oder Rechtsschenkelblock vor. Die durch die
Leitungsstörung verursachte ventrikuläre Dyssynchronie war die Rationale für die CRT. Eine CRT konnte nur dann Erfolg haben, wenn die kardiale Grundkrankung nicht so weit fortgeschritten war, dass der linke Ventrikel nicht mehr das Potential zum reversed remodeling hatte. Darunter verstehen wir, dass sich der linke Ventrikel durch die synchrone Kontraktion hinsichtlich seiner Funktion wieder erholt. Die pathophysiologischen Voraussetzungen dafür sind, dass das Ausmaß an Narben und Fibrosearealen noch so gering ist, dass ein reversed remodeling stattfinden kann. Ist das Potential für ein reversed remodeling nicht mehr gegeben, kann eine CRT die linksventrikuläre Funktion nicht mehr relevant verbessern. Insbesondere diese Tatsache ist dafür verantwortlich, dass die Anzahl der responder in üblichen CRT-Kollektiven im Laufe der letzten Dekade, trotz fulminanter Verbesserung der Möglichkeiten der eigentlichen CRT-Technik, nicht angestiegen ist\(^{57-60}\).

Die pathophysiologischen Voraussetzungen bei der PMiCMP sind jedoch gänzlich unterschiedlich. Wie oben erwähnt ist das mutmaßliche pathophysiologische Korrelat einer PMiCMP, die elektrische Dyssynchronie, die durch die permanente RV-Stimulation verursacht wird. Im Gegensatz zu den Patienten in den üblichen CRT-Kollektiven spielt die kardiale Grundkrankung nur eine untergeordnete Bedeutung bei der Genese dieser Erkrankung. Damit bestehen zumindest theoretisch exzellente Voraussetzungen für ein reversed remodeling unter CRT. Diese Überlegung erklärt am besten, warum die responder-Rate der CRT bei einer PMiCMP deutlich höher ist. Unsere Ergebnisse werfen die Frage auf, ob nicht schon bei einer LVEF von 40–45% die Aufrüstung auf ein CRT-Aggregat gerechtfertigt sei? In den Guidelines wird klar formuliert, dass die CRT-Implantation erst ab einer LVEF von 35% gerechtfertigt ist\(^12\). Zunächst muss in diesem Zusammenhang festgestellt werden, dass die Diagnose PMiCMP in diesen Guidelines nicht explizit diskutiert wird. Empfehlungen werden nur für zwei Szenarien ausgesprochen. Einerseits eine generelle Verschlechterung der LVEF unter RV-pacing. Die kardiale Grundkrankung hat bei den entsprechenden Empfehlungen eine untergeordnete Bedeutung. Das andere Szenario betrifft Patienten mit einer reduzierten LVEF und der Indikation für ein permanentes RV-pacing, z.B. beim AV-Block III\(^°\). In unserer Studie haben wir als Kriterium für eine CRT bereits die Reduktion der EF auf ≤45% definiert. Die Patienten wurden darüber ausführlich aufgeklärt. Die Rationale für dieses Vorgehen bestand darin, dass wir bei einer gesicherten Diagnose einer PMiCMP nicht auf eine weitere Verschlechterung der LVEF warten wollten. Bevor allerdings generell die Empfehlung ausgesprochen werden kann, bei PMiCMP und reduzierter LVEF (40-45%), ein CRT-System zu implantierten, sind Studien mit größeren Patientkollektiven unbedingt erforderlich. Im Zusammenhang mit dieser
Diskussion darf die höhere Komplikationsrate dieser Prozedur, wie zuvor erwähnt, nicht außer Acht gelassen werden.

4.5 Non responder und Komplikationen der CRT

Drei unserer Patienten (15%) mit PMiCMP, die eine Aufrüstung auf ein CRT-System erhalten hatten, profitierten nicht von dem Eingriff. Bei einem der Patienten reduzierte sich das LVESV nur um 12%, allerdings verbesserte sich dieser Patient in der NYHA-Klasse von III auf II. Ein weiterer Patient verstarb neun Monate nach der Implantation des CRT-P. Wie in dem Abschnitt Ergebnisse schon ausgeführt wurde, kann über die Todesursache nur spekuliert werden. Evident ist nur, dass sich bei dem 89-jährigen Patienten auch unter CRT-Stimulation die LVEF weiter verschlechterte. Zum Zeitpunkt der primären DDD-Schrittmacherimplantation bei AV-Block III° hatte der Patient noch eine normale LVEF von 60%. Unter kontinuierlichem RV-pacing verschlechterte sich die LVEF dann auf 35%, sodass der Patient einen CRT-P erhielt. Unter Berücksichtigung der weiteren Abnahme der LVEF unter effektiver CRT-Stimulation ist am ehesten davon auszugehen, dass die Diagnose PMiCMP bei diesem Patienten kritisch hinterfragt werden sollte. Eine koronare Herzkrankheit war zum Zeitpunkt der primären Schrittmacherimplantation invasiv ausgeschlossen worden. Zu diskutieren wäre, ob eine Myokarditis oder eine nicht-ischämische Kardiomyopathie vorgelegen haben könnte. Dieser Fall zeigt deutlich, welche Schwierigkeiten in der Diagnostik der PMiCMP auftreten können, da die Diagnose letztendlich eine Ausschlussdiagnose ist.

Bei dem dritten non responder, einem 58-jährigen männlichen Patienten, war die Diagnose PMiCMP seit 18 Jahren bekannt. Da die LVEF mit 35% stabil und seine körperliche Leistungsfähigkeit ungewöhnlich gut erhalten war, lehnte er eine CRT-Aufrüstung mehrmals ab. Innerhalb von sechs Monaten verschlechterte sich seine LVEF dann von 35% auf 25%, dementsprechend sank auch die körperliche Leistungsfähigkeit, sodass der Patient einer CRT-Aufrüstung schließlich zustimmte. Die Ursache für die plötzliche Verschlechterung der LVEF blieb bei gleichbleibender oraler Medikation unklar. Trotz gut funktionierender lateral liegender LV-Elektrode profitierte der Patient nicht von der CRT-Aufrüstung. Am plausibelsten erscheint folgende Begründung für das Ausbleiben des gewünschten Effekts durch die CRT. Die langjährig bestehende PMiCMP hat zu derart starken Veränderungen (mutmaßlich große Fibroseareale) im linken Ventrikel geführt, dass ein reveresed remodeling nicht mehr möglich
war. Dafür liegen allerdings keiner Beweise vor. Diese Vermutung ist dementsprechend ebenfalls sehr vorsichtig zu diskutieren. Sollte diese These allerdings zutreffend sein, stellt sich automatisch die Frage, wie lange im Fall der PMiCMP gewartet werden kann, bis das remodeling irreversibel ist und die CRT keine Wirkung mehr erzielen kann. Als Schlussfolgerung aus diesem Fall, haben wir in unserer Klinik folgendes Prozedere festgelegt. Bei PMiCMP und einer LVEF <35% empfehlen wir dem Patient dringend eine Aufrüstung auf ein CRT-Aggregat, auch wenn die körperliche Leistungsfähigkeit noch (relativ) gut erhalten ist. Wissenschaftliche Publikationen über die Ursache von CRT non respondern bei PMiCMP sind uns nicht bekannt, sodass kein Vergleich unserer Daten mit der Literatur möglich ist. Bei drei Patienten war eine interventionelle Anlage der RV-Elektrode nicht möglich, deshalb erfolgte eine epikardiale Implantation. Somit war bei 15% der Patienten eine herzchirurgische Implantation erforderlich. Dieser Anteil ist höher, als die in der Literatur angegebenen Daten. In großen Studien wird berichtet, dass bei ungefähr 10% der CRT-Implantationen eine interventionelle Implantation nicht möglich ist.

Da unsere Kohorte lediglich 20 Patienten umfasste, müssen die Daten vorsichtig interpretiert werden. Von allen CRT-Neuimplantationen des Jahres 2013 (60 Patienten) in unserer Klinik war bei 5% der Patienten eine epikardiale Elektrodenimplantation erforderlich, sodass eine Bias Komponente angenommen werden kann. Ein Patient erlitt 4 Wochen nach der CRT Aufrüstung eine Tascheninfektion mit *Klebsiella pneumonia*. Dieser Erreger ist eher selten für eine Tascheninfektion verantwortlich, üblicherweise sind Staphylokokken für die Infektion ursächlich. In unserer Publikation betrug die Komplikationsrate 5% und lag somit unter den, in der Literatur angegebenen, 19% \(^{12}\). Da die Patientenzahl von 20 für eine Analyse der Komplikationsrate sehr niedrig ist, müssen diese Ergebnisse insgesamt kritisch beurteilt werden.

4.6 Natürlicher Verlauf der PMiCMP

Aus unseren Daten die Schlussfolgerung zu ziehen, dass der natürliche Verlauf einer PMiCMP auf lange Zeit stabil ist, ist einerseits aufgrund der geringen Fallzahl nicht möglich, weiterhin zeigte einer unserer Patienten (unter „3.5.3 Anzahl der non responder und Komplikationen“ beschrieben), dass auch nach einem jahrelang stabilen Verlauf und innerhalb kürzester Zeit, eine deutliche Progredienz der Erkrankung auftreten kann. Deshalb kann nur formuliert werden, dass bei der PMiCMP auch ohne CRT ein stabiler Verlauf über einen Zeitraum von einem Jahr möglich ist.
5 Schlussfolgerungen

An 615 konsekutiven Patienten aus unserer Schrittmacherpoliklinik untersuchten wir die PMiCMP. Die Prävalenz bezogen auf das gesamte Patientenkollektiv betrug 6% und hinsichtlich der Hochrisikogruppe (RV-pacing ≥90%) 13,3%. Die Inzidenz der PMiCMP innerhalb des ersten Jahres nach der Implantation betrug 14,3% und die jährliche Inzidenz für die Patienten bei denen die Schrittmacherimplantation mehr als ein Jahr zurück lag, betrug 2,3%. Ein Prädiktor für die Entstehung der PMiCMP in unserer Kohorte war die QRS-Breite unter rechtsventrikulärer Stimulation (152 ± 20 ms). Bei keinem unserer Patienten mit PMiCMP führte eine Optimierung der Herzensuffizienzmedikation zu einer Verbesserung der LVEF. Von den 37 Patienten mit PMiCMP erhielten 20 Patienten eine Aufrüstung auf ein CRT-System. 85% der Patienten waren responder. Die LVEF verbesserte sich von 33,3 ± 5% auf 47,6 ± 9,3% und das LVESV reduzierte sich signifikant von 97 ± 34 ml auf 64 ± 29 ml. Weiterhin verbesserte sich die klinische Symptomatik im Durchschnitt um eine NYHA-Klasse. Im Rahmen der CRT-Implantation betrug die Komplikationsrate 5%. Folgende Schlussfolgerungen sind aus unserer Studie zu ziehen.

Da die Diagnostik einer PMiCMP dahingehend erschwert ist, dass sie letztendlich eine Ausschlussdiagnose darstellt, empfehlen wir die von uns vorgeschlagenen Schritte der Diagnostik mit Erfüllung der präoperativen und postoperativen Kriterien. Die PMiCMP hat nur in der Hochrisikogruppe (RV-pacing ≥90%) eine klinisch relevante Prävalenz. Insbesondere im ersten Jahr nach der Schrittmacherimplantation scheint eine erhöhte Wahrscheinlichkeit für die Entstehung einer PMiCMP zu bestehen. Es zeigte sich kein linearer Zusammenhang zwischen der Dauer des RV-pacings und der Wahrscheinlichkeit für die Entstehung einer PMiCMP. Bei der PMiCMP ist die CRT responder-Rate höher als bei anderen Formen der Kardiomyopathie. Ob entgegen den aktuellen Guidelines, bei diagnostizierter PMiCMP, schon ab einer LVEF <40-45% auf CRT aufgerüstet werden sollte, kann nur durch Studien mit größeren Patientenzahlen geklärt werden.

Um eine PMiCMP rechtzeitig diagnostizieren zu können, empfehlen wir, zumindest bei den Patienten mit einer RV-pacing Rate von ≥90% und einer QRS-Breite von >150 ms, eine jährliche echokardiographische Kontrolle der linksventrikuläre Funktion durchzuführen.
6 Literaturverzeichnis

Literaturverzeichnis

Eidesstättliche Versicherung

„Ich, Benjamin Dust, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema:

„Schrittmacher-induzierte Kardiomyopathie: Prävalenz, Inzidenz, Prädiktoren, natürlicher Verlauf und CRT“

selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.
Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.
Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem/der Betreuer/in, angegeben sind. Sämtliche Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor bin, entsprechen den URM (s.o) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

Berlin, den 05.10.2015 Unterschrift: ___________________________

Benjamin Dust
Anteilserklärung an etwaigen erfolgten Publikationen

Benjamin Dust hatte folgenden Anteil an den folgenden Publikationen:

Publikation 1: [Marius Schwerg, Henryk Dreger, Wolfram Poller, Benjamin Dust, Christoph Melzer], [Efficacy of optimal medical therapy and cardiac resynchronization therapy upgrade in patients with pacemaker induced cardiomyopathy], [J Interv Card Electrophysiol.], [2015]

Beitrag im Einzelnen: Der Anteil von Benjamin Dust an der Publikation bestand in der selbstständigen Erfassung der Daten sowie in der partiellen Auswertung der Ergebnisse und deren kritischen Analyse innerhalb der Diskussion als Mitglied der wissenschaftlichen Arbeitsgruppe von PD Dr. med. Melzer.

Unterschrift, Datum und Stempel des betreuenden Hochschullehrers

Unterschrift des Doktoranden
Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
Curriculum vitae

Weitere Aktivitäten

09/2015
Publikation (siehe Publikationsliste)

10/2013 – 02/2014
UNIcert III (C1) English for Students of Medicine 1

Sprachkenntnisse

Deutsch Muttersprache

Englisch fälschlich

Spanisch gute Kenntnisse

Latein Latinum

Persönliche Interessen

Sport (Fitness, Rennrad), segeln, reisen

Berlin, den 05.10.2015
Unterschrift: ___________________________

Benjamin Dust
Mein großer Dank gilt Herrn Oberarzt **PD Dr. med. C. Melzer** aus der Medizinischen Klinik mit Schwerpunkt Kardiologie und Angiologie der Medizinischen Fakultät Charité – Universitätsmedizin Berlin für die Überlassung des interessanten Promotionsthemas. Außerdem danke ich ihm für die stetige Unterstützung in sämtlichen Angelegenheiten, die Hilfestellung bei allen, sich ergebenden Problemen und für die permanente Motivation bezüglich der Einhaltung des gesteckten Zeitplans.

Herrn Oberarzt **PD Dr. med. H. Dreger** danke ich für die tatkräftige Unterstützung in der Statistik und für die Beantwortung meiner Fragen.

Ich danke Herrn **Dr. med. M. Schwerg** für das geduldige Beantworten all meiner Fragen und die nützlichen Hinweise auf dem Weg zur fertigen Dissertation.

Ich möchte mich weiterhin bei meinen Großeltern **C. & P. Dust** bedanken, die mich zu ihren Lebzeiten immer dazu ermutigt haben, an meinen Zielen festzuhalten und alles dafür zu tun, diese schlussendlich zu verwirklichen. Es erfüllt mich mit Traurigkeit, dass sie die Fertigstellung meiner Doktorarbeit nicht mehr miterleben können.

Nicht zuletzt danke ich allen meinen guten Freunden für ihre Geduld, ihr Verständnis, die unaufhörliche Motivation und die Bereitschaft, mir in jeder Situation zur Seite zu stehen und mich daran zu erinnern, dass auch die längste Doktorarbeit irgendwann ein Ende hat.