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IV Deutsche Zusammenfassung 

Die Elektrokonvulsionstherapie (EKT) gilt als eines der wirksamsten Verfahren zur Be-

handlung therapieresistenter Depressionen. Trotz einer zunehmenden Zahl von Behand-

lungsstudien sind die zugrunde liegenden Wirkmechanismen jedoch noch nicht ausrei-

chend geklärt. Durch funktionelle Magnetresonanztomographie (fMRT) besteht die Mög-

lichkeit, spezifische Marker für die Wirkmechanismen der EKT sowie für die Prädiktion 

des Behandlungserfolges zu identifizieren. Die Untersuchung depressionsspezifischer 

Netzwerke mit fMRT im Ruhezustand insbesondere in Verbindung mit der differentiellen 

Symptomverbesserung liefert einen innovativen Ansatz, der neue Erkenntnisse über die 

der EKT zugrunde liegenden Prozesse liefern kann. 

In dieser Arbeit wurde der Zusammenhang zwischen Veränderungen der funktionellen 

Konnektivität (rsFC) sowie der spontanen Hirnaktivität (fractional amplitude of low fre-

quency fluctuation - fALFF) im Ruhezustand und der Symptomverbesserung nach EKT 

bei 21 Patienten mit behandlungsresistenter Depression untersucht. 

Prä-post EKT Veränderungen von rsFC und fALFF in Relation zur Symptomreduktion-

wurden untersucht. Weiterhin wurde der Zusammenhang von rsFC und fALFF vor Be-

handlungsbeginn mit der Symptomverbesserung nach Behandlung untersucht, um neu-

ronale Faktoren zu identifizieren, die ein individuelles klinisches Ansprechen auf EKT 

vorhersagen könnten. Zusätzliche Korrelationsanalysen wurden durchgeführt, um die di-

rekte Beziehung zwischen rsFC-Veränderungen und Symptomdimensionen wie Traurig-

keit, negative Gedanken, Abgeschlagenheit und neurovegetativen Symptomen zu unter-

suchen. 

Ein Anstieg der rsFC zwischen der linken Amygdala und dem linken dorsolateralen präf-

rontalen Kortex nach EKT war mit einer allgemeinen Symptomreduktion assoziiert sowie 

mit einer Verringerung spezifischer Symptome wie Traurigkeit, negative Gedanken und 

Abgeschlagenheit, nicht aber mit neurovegetativen Symptomen. Darüber hinaus gab es 

einen Zusammenhang zwischen einer hohen rsFC zwischen der linken Amygdala und 

dem rechten frontalen Pol (FP) vor Behandlungsbeginn und einer stärkeren Symptom-

verbesserung. Die Untersuchung des Zusammenhangs zwischen Aktivität vor Behand-

lungsbeginn und Symptomreduktion ergab, dass eine geringere Aktivität im rechten FP, 

supramarginalen Gyrus und okzipitalen Pol eine höhere Symptomreduktion vorhersagte. 
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Es wurde kein signifikanter Zusammenhang zwischen Aktivitätsveränderung vor und 

nach EKT mit der Symptomverbesserung gefunden.  

Die Ergebnisse deuten darauf hin, dass Veränderungen der rsFC in Regionen des lim-

bisch-präfrontalen Netzwerks mit Symptomverbesserung, insbesondere in affektiven und 

kognitiven Dimensionen, verbunden sind. Zudem hat die frontal-limbische Konnektivität 

das Potenzial, die Verbesserung von Symptomen nach EKT vorherzusagen. Auf der 

Grundlage der Ergebnisse dieser Dissertation ist zu erwarten, dass weitere Forschung, 

die funktionelle bildgebende Biomarker mit einem symptombasierten Ansatz kombiniert, 

vielversprechend sein könnte. 
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V English Abstract 

Electroconvulsive therapy (ECT) is considered one of the most effective interventions for 

treatment-resistant depression. Despite an increasing number of treatment studies, the 

underlying mechanisms of action are not yet sufficiently explained. Through functional 

magnetic resonance imaging (fMRI), there is the potential to evaluate specific treatment 

markers or predictive markers. The examination of depression-specific networks by 

means of fMRI in the resting state and the association with differential symptom improve-

ment could be an innovative approach that may provide new insights into the underlying 

processes. In this dissertation, we investigated the relationship between changes in rest-

ing-state functional connectivity (rsFC) as well as spontaneous brain activity (fALFF) and 

symptom improvement after ECT in 21 patients with treatment-resistant Major depressive 

disorder (MDD). 

The change in rsFC and fALFF before and after ECT was examined, with all analyses 

directly relating to symptom reduction after the end of treatment. Furthermore, effects of 

pretreatment rsFC and fALFF on posttreatment symptom improvement were assessed to 

identify neural targets that might predict individual clinical responses to ECT. Additional 

correlational analyses were conducted to examine the direct relationship between rsFC 

changes and symptom dimensions such as sadness, negative thoughts, detachment, and 

neurovegetative symptoms. 

An increase in rsFC between the left amygdala and the left dorsolateral prefrontal cortex 

after ECT was associated with an overall symptom reduction as well as with a reduction 

in specific symptoms such as sadness, negative thoughts, and detachment, but not neu-

rovegetative symptoms. In addition, high baseline rsFC between the left amygdala and 

the right frontal pole (FP) predicted treatment outcome. The investigation of the relation-

ship between baseline activity and symptom reduction revealed that lower activity in the 

right FP, supramarginal gyrus, and occipital pole predicted higher symptom reduction. No 

significant association was found between activity change pre- and post-ECT with symp-

tom improvement. 

These results suggest that changes in FC in regions of the limbic-prefrontal network are 

associated with symptom improvement, particularly in affective and cognitive dimensions. 

Frontal-limbic connectivity has the potential to predict symptom improvement after ECT. 
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Based on the findings in this dissertation, it can be expected that further research com-

bining functional imaging biomarkers with a symptom-based approach will be promising. 
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VI Framework for the dissertation thesis1 

 

1The following parts of the framework are adapted with permission from my previously published article, in which I am 

the sole first author  
 
Domke, A. K., Hempel, M., Hartling, C., Stippl, A., Carstens, L., Gruzman, R., Herrera Melendez, A.L., Bajbouj, M., 
Gärtner, M. & Grimm, S. (2023). Functional connectivity changes between amygdala and prefrontal cortex after ECT 
are associated with improvement in distinct depressivesymptoms. European Archives of Psychiatry and Clinical Neu-
roscience, 1-11. https://doi.org/10.1007/s00406-023-01552-7 
 
1.1 Depressive disorders 1.2 Electroconvulsive therapy for the treatment of depression 1.4 Resting-state functional 
alterations in MDD and changes through ECT, 2. Methods, 3. Results 4.1 Summary, 4.2 Comparison with the litera-
ture, 4.4 Limitations, 4.5 Conclusion 
 
As this article is published under a CC-BY 4.0 license an author can include the article in full or in part in a thesis or 
dissertation. See also https://creativecommons.org/licenses/by/4.0/   

https://doi.org/10.1007/s00406-023-01552-7
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1 Introduction 

1.1 Depressive disorders 

Major depressive disorder (MDD) is one of the most diagnosed mental disorders and 

affects an estimated 5% of the adult population worldwide (WHO, 2020). MDD is among 

the leading causes of the global burden of disease, ranking third in the world and first 

place in middle- and high-income countries according to the World Health Organisation. 

The 12-month-prevalence of unipolar depression accounts for 8% in the German general 

population (age between 18 and 65). That corresponds to a total number of 5.3 million 

people who suffer from a depressive episode or a recurrent depressive disorder (Jacobi 

et al., 2016; Jacobi et al., 2004). Lifetime prevalence for a diagnosed MDD accounts for 

12%. Women are affected almost twice as often as men (15% vs. 8%) (Busch et al., 

2013). The median age of onset of MDD is approximately 25 years with a range from mid-

to-late adolescence to middle adulthood (the early 40s) (Otte et al., 2016). 

Even from the economic perspective, MDD bears a considerable risk. The World 

Health Organization’s (WHO) Global Burden of Disease (GBD) Study quantified and com-

pared the burdens imposed by diseases in terms of disability adjusted life years (DALYs) 

(Murray et al., 1996). They found that MDD is the illness with the greatest individual bur-

den and that it is clearly associated with an enormous economic burden (Wang et al., 

2003) due to reduction in work productivity, direct treatment costs, and economic costs 

from increased mortality (Greenberg et al., 1996).  

MDD is very heterogeneous with varying symptom presentations. According to the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5), a depressive episode can 

be characterized by the following symptoms: depressed mood, loss of interest or pleas-

ure, significant unintentional weight loss or weight gain, decrease or increase of appetite, 

sleep disturbances, psychomotor changes, tiredness, fatigue, or low energy, a sense of 

worthlessness or excessive inappropriate guilt, impaired ability to think, concentrate, or 

make decisions and recurrent thoughts of death, suicidal ideation, or suicide attempts. To 

diagnose a patient with a depressive episode, at least five of these symptoms have to 

persist over a period of at least two weeks, while one symptom has to be depressed mood 

or loss of interest. Also, symptoms have to cause clinically significant distress or impair-
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ment in social, occupational, or other important areas of psychosocial functioning. De-

pending on the number of present symptoms and their severity, depressive episodes can 

be classified as mild, moderate, or severe.  

 MDD usually takes an episodic course. It has been estimated that 75% to 90% of 

patients with depression will have multiple episodes (Angst, 1992; Greden, 2001). In 15 

to 25% of the cases MDD becomes a chronic phenomenon (Bschor, 2008). Resistance 

to treatment is another difficulty in the therapy of MDD. It must be noted that chronic MDD 

and treatment resistant MDD are not necessarily equivalent. A depression is defined as 

chronic if the symptomatology lasts longer than two years, independent from any treat-

ment trials (Bschor, 2008). Furthermore, Bschor et al. (2014) declare that it should be 

distinguished whether the chronification is based on a true treatment-resistance or if it 

refers to a ‘pseudoresistance’ because of insufficient treatment or diagnostic errors. The 

European Agency for the Evaluation of Medical Products (2002) defined treatment-re-

sistance as a failure to respond to two antidepressant trials of adequate dosage and suf-

ficient length of time. 

In various approval and efficacy trials of different antidepressants, one third to half 

of the patients did not respond properly to several weeks of treatment ((Bauer et al., 2007; 

Bauer et al., 2013; Trivedi et al., 2006). In an effectiveness study within the largest study 

of the treatment of MDD so far, the STAR*D trial (Sequenced Treatment Alternatives to 

Relieve Depression), researchers found that less than 20% of patients who failed to re-

spond to two antidepressant treatment trials profited from a further switch to another an-

tidepressant (Fava et al., 2006), indicating a resistance to pharmacotherapy.  

 However, treatment resistant MDD is not untreatable. The majority of patients can 

be substantially helped by rigorous treatment approaches, including somatic interventions 

such as Electroconvulsive therapy (ECT) and psychotherapeutic methods (Bschor, 

2008). 

1.2 Electroconvulsive therapy for the treatment of MDD 

ECT is the most effective treatment for refractory MDD with a response rate of 50% to 

85% in general and 50% to 75% in patients who did not respond to antidepressant med-

ication (UK-ECT-Review-Group, 2003). ECT is a safe induction of a series of generalized 
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epileptic seizures for therapeutic purposes, using brief-pulse stimulation techniques un-

der anaesthesia and muscle paralysis (Baghai & Möller, 2008; Seshadri & Mazi-Kotwal, 

2011).  

 Accounting for 80%, affective disorders, especially depressive episodes, are by far 

the most common indication for ECT in the clinical practice, followed by psychotic disor-

ders with 19% (Grager & Di Pauli, 2013). ECT as first-line treatment is indicated for de-

pressive stupor and inanition as well as for catatonic or psychotic depression (Baghai & 

Möller, 2008), as it is associated with a fast relief of symptoms (Gangadhar et al., 1982) 

which is essential in cases of severe psychomotor retardation or refusal of food and drink 

(Weiner, 2001). Another indication is a patient’s response to ECT in the past (Bauer et 

al., 2013). These patients are eligible for immediate ECT if a new-onset depressive epi-

sode requires treatment. 

Repeated inadequate medication trials may result in a negative outcome of the MDD 

and may even be harmful for the patient (Bauer et al., 2013). On this account refractory 

MDD and other treatment resistant psychiatric disorders are an indication for ECT as 

second-line treatment (Baghai et al., 2005; Sackeim, 2001).  

Worldwide, the average number of ECT sessions administered per patient is 8 

(Leiknes et al., 2012). Despite widespread application for almost a century, the underlying 

antidepressant mechanisms of action are still not fully understood, which may be a con-

tributing factor to the stigma which is still present.  Different mechanisms of action have 

been discussed, such as changes in neurotransmission or effects on inflammatory pro-

cesses, but also volumetric and functional changes in the brain. However, further longi-

tudinal studies combining modalities such as peripheral physiological measurements, 

magnetic resonance imaging, and spectroscopy are needed to gain deeper insights 

(Stippl et al., 2020). Although overall response rates for ECT in depressed patients are 

relatively high (60-80%) (Baldinger et al., 2014), there are still many patients who remain 

symptomatic or do not respond to ECT in any way (Cinar et al., 2010). It is therefore of 

utmost clinical importance to better understand how ECT affects specific symptoms of 

MDD. In addition, a better understanding of symptom- and treatment-specific biomarkers 

is no less important, because with each failed treatment attempt, the burden of disease 

and the risk of suicide increases (Hawton et al., 2013; Phillips et al., 2015; Reutfors et al., 

2021). 
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Recent investigations have shown that different antidepressant treatments have dif-

ferential effects on specific symptom dimensions, with cognitive symptoms improving af-

ter a single subanaesthetic dose of ketamine (Stippl et al., 2021), whereas ECT specifi-

cally reduced affective symptoms (Carstens et al., 2021). In another study that examined 

the relationship between differentiated symptom clusters and general response to ECT, 

it was found that in particular the symptoms of depressed mood and anhedonia, which 

are considered core symptoms of MDD, improved more with ECT (Wade et al., 2020). 

Somatic or vegetative symptoms, on the other hand, did not change significantly. Further-

more, factors that included these symptoms (Okazaki et al., 2010; Spashett et al., 2014) 

had a high predictive value for ECT outcome. A recent imaging study examined the as-

sociation between three dimensions of depressive symptoms (somatic disturbance, base-

line mood and anhedonia, and insomnia, measured with the 17-item Hamilton Depression 

Rating Scale (HDRS) and volumetric changes in brain regions linked to depressive symp-

toms, and identified distinct structural imaging predictors (Wade et al., 2021). Another 

method of studying neural changes in MDD and the mechanisms of action of ECT is 

functional magnetic resonance imaging, which measures functional processes in the 

brain either while processing specific stimuli or solving tasks but also during resting-state. 

 

1.3 Resting-state functional MRI 

Since Biswal and colleagues initially discovered spatially coherent activity in the blood 

oxygen level dependent (BOLD) signal, resting-state functional magnetic resonance im-

aging (rs-fMRI) received growing interest (Biswal et al., 1995). It is feasible to evaluate 

the performance of regional and neural circuits at rest and in the absence of external 

tasks using rs-fMRI. The use of this strategy in clinical trials additionally appears rather 

simple (Fox & Greicius, 2010; Lui et al., 2010). In rs-fMRI research, two parameters that 

are calculated from the BOLD signal are typically employed. Functional connectivity (FC) 

and the amplitude of low frequency fluctuations (ALFF) (,0.08 Hz) are two different con-

cepts. The resting-state ALFF reflect spontaneous neural activity (Gonçalves et al., 2006; 

Shmuel & Leopold, 2008; Yu-Feng et al., 2007). These spontaneous low-frequency fluc-

tuations show  numerous similarities with fluctuations of neural metabolic, hemodynamic, 

and neurophysiological parameters (De Luca et al., 2006; Fox & Raichle, 2007). To coun-
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teract possible physiological noise, the fractional ALFF (fALFF) approach was further de-

veloped to selectively suppress artifacts from non-specific brain areas and thereby signif-

icantly improve the sensitivity and specificity of detecting spontaneous brain activity (Zou 

et al., 2008).  

 Functional connectivity has been defined as "the temporal correlation of a neuro-

physiological index measured in different brain areas" (Friston et al., 1993). It can meas-

ure the signal synchrony of low-frequency fluctuations of activity between different brain 

areas (Biswal et al., 1995), which provides information about the intrinsic network organ-

ization of the brain as well as possible dysfunctions of the network. 

 

1.4 Resting-state functional alterations in MDD and changes through ECT 

Spontaneous brain activity has been found to be altered in MDD at rest (Liu et al., 2013) 

as well as in response to negative stimuli (Redlich et al., 2017). Considerably reduced 

activity in prefrontal areas has been observed in patients which may contribute to emo-

tional dysregulation (Liu et al., 2013; Zhang et al., 2014). Furthermore, structural and 

functional brain imaging studies have shown that volumetric amygdala properties might 

be important for the prediction (Ten Doesschate et al., 2014) and the mechanism of action 

(Gryglewski et al., 2021) of ECT response in addition to general MDD related amygdala 

activity alterations during emotion processing tasks (Drevets et al., 2002; Groenewold et 

al., 2013; Peluso et al., 2009). Furthermore, decreased activity in DLPFC during emotion 

processing tasks (Groenewold et al., 2013) or active emotion regulation (Erk et al., 2010) 

was found, which is in line with theoretical frameworks proposing dysfunctional modula-

tory effects of prefrontal regions on limbic emotion processing mechanisms (Drevets, 

2000, 2001; Kaiser et al., 2015; Mayberg, 2003).  

 Task-based FC studies have shown reduced connectivity of the amygdala with 

regions of the cognitive control network, involving the DLPFC, dorsomedial PFC 

(DMPFC), dorsal anterior cingulate cortex (dACC), and hippocampus, while processing 

induced negative emotions (Chen et al., 2008; Dannlowski et al., 2009; Lu et al., 2012). 

It is hypothesized that bidirectional connections between the DLPFC, ACC and amygdala 

might be crucial for downregulation of increased amygdala activation in MDD (Erk et al., 

2010; Pizzagalli, 2011) and therefore represent a possible target identifying predictors of 

ECT response or neural changes underlying therapeutic effects. 
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 Previous treatment studies demonstrated that pharmacotherapy (Arce et al., 2008; 

Chen et al., 2008; Arnone et al., 2012, Godlweska et al., 2012; Redlich et al., 2017;), 

Ketamine (Loureiro, 2020), cognitive behavioral therapy (Fu et al. 2008), repetitive Tran-

scranial magnetic stimulation (rTMS; Liston et al., 2014),  and ECT (Abbott et al., 2013, 

Cano et al., 2016; Loureiro, 2020; Redlich et al., 2017) normalize amygdala activity and 

FC alterations, which could be related to emotion-processing-specific antidepressant ef-

fects. Gudayol-Ferré et al. (2015) reviewed studies that investigated changes in connec-

tivity after different antidepressant treatments (pharmacotherapy, ECT, rTMS) and con-

cluded that FC changes between cortical-limbic structures during rest and task perfor-

mance correlate with an improvement of the core depressive symptoms. In a recent sys-

tematic review the authors state that ECT-induced resting-state FC increases seem to be 

the most consistent finding among fMRI measures that are used to examine depressive 

patients, with prefrontal regions showing the highest interaction scores with other brain 

regions (Porta-Casteràs et al., 2021). This finding underlines the utility of resting-state FC 

for detecting neural markers for treatment induced changes and points out that specifi-

cally prefrontal regions offer additional value as a biomarker for therapy success. 

 The results of different fMRI studies that investigated functional connectivity in the 

resting state came to divergent results. At one end, Perrin et al. (2012) reported a signif-

icant reduction in average global functional connectivity in and around the left dorsolateral 

prefrontal cortex (DLPFC) after ECT, which was associated with a significant decrease in 

depressive symptoms. At the other end, (Abbott et al., 2013) found a significantly in-

creased pattern of functional network connectivity between the posterior default mode 

network and the left DLPFC in remitted patients compared to non-remitted patients after 

ECT. However, the results of these studies can only be considered preliminary, as the 

small sample sizes of n= 9 and n = 12, respectively, do not allow for generalization. 

In another longitudinal rsFC study, (Cano et al., 2016) reported that a FC decrease be-

tween amygdala and subgenual anterior cingulate cortex (sgACC) in early ECT treatment 

phases (after the first ECT session) could potentially regulate a subsequent increase be-

tween right amygdala and DLPFC (after the 9th ECT session), which in turn could be 

associated with clinical response after the completion of ECT. With their study they em-

phasize the relevance of the fronto-limbic circuit for the identification of ECT specific pre-

diction and response biomarkers. They used predefined target regions so that connec-

tions from seed regions were restricted to these targets. Whole brain analysis as a com-

plementary approach could provide further information on how rsFC of the amygdala or 
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DLPFC changes after ECT. In addition, none of the studies to date has examined the 

relationship between rsFC changes and improvement in specific symptom dimensions, 

although it could provide further insight into direct treatment effects of ECT. 

 

1.5 Research question 

In summary, dysfunction in key components of the prefrontal-limbic circuitry has been 

associated with cognitive and emotional deficits in MDD. Restoration of dysfunctional ac-

tivity and connectivity within and between these key regions might not only reflect an 

antidepressant response, but specific alterations prior to ECT might even serve as treat-

ment predictors. Thus, resting-state fMRI could be a useful measure to enhance the un-

derstanding of the mechanisms underlying response to treatment. However, the clinical 

utility of FC of the frontal-limbic network has remained limited, and to date it has not been 

investigated whether there is a relationship between FC changes in that circuit and the 

improvement of distinct symptom dimensions. 

 The primary aim of this dissertation was to investigate the relationship between 

changes in rsFC and depression severity after ECT. For this purpose, resting-state fMRI 

data were collected before ECT and after completion of the intervention. A data-driven 

seed-based connectivity approach was used at the whole-brain level, and analyses fo-

cused on the bilateral DLPFC and bilateral amygdala, as these are important areas for 

emotion regulation, which may be significantly impaired in MDD.  The rsFC changes after 

ECT, in particular, were expected to be directly associated with improvement in symptom 

severity. In order to identify possible predictive markers at the neural level, it was also 

investigated whether rsFC from bilateral amygdala and bilateral DLPFC at baseline could 

potentially anticipate response to ECT. Regarding spontaneous brain activity and possi-

ble treatment-related changes, change in fALFF and baseline fALFF in relation to symp-

tom improvement after ECT were also examined at the whole brain level. The MADRS 

total score was used as the primary outcome measure. In addition, with regard to the 

heterogeneity of depressive symptoms, a four-factor structure of the MADRS proposed 

by Williamson et al. (2006) including sadness, negative thoughts, detachment, and neu-

rovegetative symptoms was considered to shed further light on the relationship between 

neural changes and specific symptom dimensions. 
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2 Methods 

2.1 Participants  

Twenty-one patients (10 female, age M = 44.05 years, SD = ± 11.03, range = 22 - 60 

years) with a current treatment-resistant depressive episode were examined for the study. 

They were diagnosed according to the criteria of the DSM-5. Moreover, the participating 

patients were treated with right-unilateral ultra-short ECT. The treatment and the exami-

nations within the framework of the study took place at the Department of Psychiatry of 

the Charité - Universitätsmedizin Berlin. There was no restriction regarding the parallel 

use of antidepressant medication, however, it was documented which psychotropic drugs 

the patients received in addition to ECT. The study was conducted in accordance with the 

latest version of the Declaration of Helsinki and approved by the Institutional Review 

Board of Charité - Universitätsmedizin Berlin. Before participation, all participants gave 

their written informed consent. 

2.2 Study design 

Prior to the first ECT session, all patients underwent an initial resting-state fMRI and clin-

ical assessment (T0). The treatment consisted of right-sided ECT with an ultrashort pulse 

device with a pulse length of 0.25 milliseconds (Thymatron IV System, Somatics Inc.) 

according to the standard protocol of the Department of Psychiatry, Charité-Universi-

tätsmedizin Berlin, which involves three ECT sessions per week over a period of four 

weeks. Anesthesia comprised propofol (approximately 1.50 mg/kg) or etomidate (approx-

imately 0.75 mg/kg). Succinylcholine (approximately 0.75 mg/kg) was used for muscle 

relaxation. Motor and electroencephalographic seizure duration were monitored to control 

for appropriate duration. During the first ECT treatment, the seizure threshold was titrated, 

and the voltage was adjusted only if patients did not respond clinically or showed inade-

quate seizures during the course of ECT (i.e., motor response < 20 s or electroencepha-

lographic seizure activity < 30 s). See Brakemeier et al. (2014) for a more detailed de-

scription of the procedure. Resting-state fMRI examination and clinical assessment were 

repeated after the last ECT session (T1). 

 



 21 

2.3 Clinical assessment 

To assess the severity of depression, a standardized clinical interview was conducted by 

a trained professional. The interview was the German version of the MADRS 

(Montgomery & Åsberg, 1979). The MADRS consists of 10 items assessing the following 

depressive symptoms on a 7-point scale (with 0 = no abnormality and 6 = severe): ap-

parent sadness, reported sad-ness, inner tension, decreased sleep, decreased appetite, 

difficulty concentrating, lassi-tude, inability to feel, pessimistic thoughts, and suicidal 

thoughts. In the later analyses, a four-factor model of MADRS (Quilty et al., 2013; Wil-

liamson et al., 2006) was applied to further examine the relationship between various 

MDD symptoms and resting-state neural correlates. The model includes the factors of 

sadness, negative thoughts, detachment, and neurovegetative symptoms. Table 1 shows 

detailed information about the factor structure. A reduction in MADRS total score of 50% 

or more after ECT was defined as a response, and a MADRS total score ≤10 was defined 

as remission (Bauer et al., 2013). Statistical procedures for demographic and clinical data 

were performed in IBM SPSS Statistics 28 for Windows. Statistical tests were based on 

a significance level of α = .05. 

 

Table 1 MADRS factor structure 

Factor MADRS Items 

1 Sadness Apparent sadness (1), reported sadness (2) 

2 Negative thoughts Pessimistic thoughts (9), suicidal thoughts (10) 

3 Detachment Concentration difficulties (6), Lassitude (7), Inability to feel (8) 

4 Neurovegetative symptoms Tension (3), reduced sleep (4), reduced appetite (5) 

Notes: MADRS Montgomery-Åsberg Depression Rating Scale (reprinted from Domke et al., 2023 with per-

mission). 

 

2.4 FMRI acquisition and analyses 

Functional imaging data were collected with a 3T Tim Trio MR scanner (Siemens, Erlan-

gen, Germany), a standard 12-channel head coil at the Center for Cognitive Neurosci-

ence Berlin (Freie Universität Berlin, Germany) using standard echo-planar imaging se-

quences. Data were collected in 8-minute runs (210 vol.) with 37 oblique axial slices of 3 
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mm (TE = 30 ms; field of view = 192 mm, 3×3 mm in-plane resolution, TR 2300 s, flip 

angle 70 °). A 3-dimensional T1-weighted anatomic scan was obtained as a structural 

reference. All resting-state fMRI data were analyzed in Matlab (version R2015b) using 

SPM12 and the CONN toolbox (version 20.b; https://www.nitrc.org/projects/conn) 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Preprocessing of the functional and struc-

tural data was performed using CONN's standard preprocessing pipeline for MNI space. 

The pipeline encompasses motion correction (realignment and unwarping), slice timing 

correction, structural segmentation and normalization, functional normalization, outlier 

detection (ART-based scrubbing), and spatial smoothing (8 mm). During the denoising 

step in CONN, linear regression analyses were performed for individual subjects to re-

move the effects of head motion (total of 12 motion covariates: 6 motion parameters plus 

6 temporal derivatives), physiological artifacts (total of 10 CompCor eigenvariates: 5 each 

from eroded WM and CSF masks), and artifact-affected scans. The resulting residual 

blood oxygen level-dependent (BOLD) time series were band-pass filtered (0.01–0.1 Hz). 

A seed-based approach was used to assess the effects of ECT on regions of the emo-

tional and cognitive control network. Seeds were chosen on the basis of recent published 

literature (Cano et al., 2016; Gärtner et al., 2019; Moreno-Ortega et al., 2019; 

Scheidegger et al., 2012). Seed regions of interest (ROI: x, y, z, in Montreal Neurological 

Institute [MNI] space) included bilateral DLPFC (±40 36 32) and bilateral amygdala (±24 

-2 -20). Spherical ROI templates with a diameter of 10 mm were created using automated 

term-based meta-analyses on neurosynth.org. Single subject seed-to-voxel correlation 

maps were computed by extracting the residual blood oxygen level-dependent (BOLD) 

time course from the seed and calculating Pearson’s correlation coefficients between this 

time course and the time course of all other voxels. 

 Group statistical analyses were performed in two steps. First, the association of 

rsFC changes with symptom improvement at the end of the acute ECT phase was exam-

ined. Furthermore, the method of fractional amplitude of low frequency fluctuation (fALFF, 

(Zou et al., 2008)) was used to examine functional activity change across the whole brain 

related to the change of depressive symptoms post ECT. Linear regression analyses 

were conducted in CONN by defining a simple main effect of MADRS percent symptom 

reduction (defined as psr = (T0-T1)/T0*100) as between-subjects contrast, and time point 

(pre vs. post) as between-conditions contrast. These regression analyses were per-

formed for the rsFC change in the previously defined seed regions as well as for the 

fALFF change at the whole-brain level. The same analyses were performed using the 
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baseline scans only, to investigate the predictive power of baseline rsFC and baseline 

fALFF. Statistical thresholds were set to p < 0.001 (uncorrected) at the single voxel level, 

and to p < 0.05 (FDR corrected) at the cluster level. For the connectivity results the mean 

FC levels of each ROI were extracted with the REX Toolbox (https://www.nitrc.org/pro-

jects/rex/) . To further explore the association between the improvement of specific symp-

toms and changes in rsFC post-hoc correlational analyses (Spearman’s correlation coef-

ficient, two-sided) with the four MADRS factors were performed. Bonferroni-correction 

was applied to all results, yet uncorrected results are exploratively reported.  

https://www.nitrc.org/projects/rex/
https://www.nitrc.org/projects/rex/
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3. Results 

3.1 Clinical and demographic data 

The data of n= 21 patients with a diagnosed depressive episode was analysed. An over-

view of the demographic and clinical characteristics are provided, along with additional 

information on treatment, response, and remission, in Table 2. In total 85.71% of patients 

(18/21) showed a significant reduction in depressive symptoms after completion of their 

individual acute ECT phase, as visualised in Figure 1. Overall, 52.38% (11/21) of patients 

were classified as responders. The remission rate in this sample was 19.05% (4/21). For 

a visual overview of the distribution of the different primary diagnoses, see Figure 2.  Fig-

ure 3 and Figure 4 illustrate the frequencies of psychiatric and somatic comorbidities . For 

an overview of the concomitant antidepressant medication see Table 4. 

 

Table 2 Participants demographic and clinical characteristics 

       

Variable M SD   n    

Age 44.05 11.03   21    

Number of depressive 

episodes ª  

3.76 3.36   17    

No. of ECTs 12.62 3.22   21    

 Pre ECT Post ECT     

 M SD M SD n T df p 

MADRS total score  31.38 5.98 19.05 10.34 21 6.76 20 <.001 

MADRS symptom  

reduction (%) 

40.89 28.63   21    

MADRS Factors  

     Sadness 

        

7.29 1.85 4.76 2.98 21 4.29 20 <.001 

     Neg. thoughts 5.00 2.26 3.10 2.43 21 3.99 20 <.001 

     Detachment 10.38 2.36 6.33 3.53 21 5.74 20 <.001 

     Neurovegetative 

     Symptoms 

8.57 2.96 4.81 3.30 21 4.54 20 <.001 

Gender (F:M) 10:11        

Response (Y:N) 11:10        

Notes: ECT Electroconvulsive therapy, MADRS Montgomery-Åsberg Depression Rating Scale, M Mean, 
SD Standard Deviation, ª n <21 due to missing data (reprinted from Domke et al., 2023 with permission). 
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Figure 1 Symptom reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) dimensions. The 
different lines represent the absolute change in the MADRS dimensions between baseline (T0) and post 
treatment with ECT (T1). Error bars represent standard deviations (reprinted from Domke et al., 2023 with 
permission). 
 

 
 

 
Figure 2 Frequencies of primary diagnoses. Diagnoses are classified according to ICD-10 codes.  F31.3: 
Bipolar affective disorder, current episode mild or moderate depression, F31.4: Bipolar affective disorder, 
current episode severe depression with-out psychotic symptoms, F32.1: Moderate depressive episode, 
F32.2 Severe depressive episode without psychotic symptoms, F33.1: Recurrent depressive disorder, cur-
rent episode moderate, F33.2: Recurrent depressive disorder, current episode severe without psychotic 
symptoms, F33.3: Recurrent depressive disorder, current episode severe with psychotic symptoms, F34.1: 
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Dysthymia. The y-axis shows absolute frequencies. (This figure appears only in the context of this disser-
tation, the copyright belongs to the author. It has not been published before). 

 
 

 
Figure 3 Frequencies of psychiatric comorbidities. Categories refer to ICD-10 codes. F10-F19: past psy-
choactive substance use or dependence syndrome, F40-F48: anxiety, stress-related, or somatoform disor-
ders, F50.-: eating disorders, F60-F69: personality disorders. Not listed categories did not appear in this 
sample. The y-axis shows absolute frequencies. (This figure appears only in the context of this dissertation, 
the copyright belongs to the author. It has not been published before). 

 

 

Figure 4 Frequencies of somatic comorbidities. Categories refer to ICD-10 codes. E00-E89: endocrine, 
nutritional or metabolic, G00-G99: of the nervous system, H00-H95: of the eye or ear or nose, I00-I99: of 
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the circulatory system and heart, N00-N99: of the genitourinary system, Z00-Z99: presence of factors in-
fluencing health status, G47.-: sleep disorder. Not listed categories did not appear in this sample. The y-
axis shows absolute frequencies. (This figure appears only in the context of this dissertation, the copyright 
belongs to the author. It has not been published before). 

Table 3 Antidepressant medication use 

Variable Frequencies 

Concomitant Medication 

90.5% Yes (19) 

9.5% No (2) 

Antidepressants  38.1% none (8) 

61.9% ADs (13): 

14.3% SSRIs (3) 

  9.5% SNRI (2) 

14.3% NDRIs (3) 

19.0% SARIs (4) 

  9.5% TCAs (2) 

  4.8% TeCAs (1) 

  4.8% MAOI (1) 

  4.8% NaSSA (1) 

Other psychiatric medication 66.7% none (14) 

33.3% others (7): 

28.6% antipsychotics (6) 

19.0% mood stabilizer (4) 

  4.8% benzodiazepines (1) 

Notes. Census data in parentheses. ADs= Antidepressants. SSRIs= selective Serotonin-Reuptake-Inhibi-
tors. SNRIs= Selective norepinephrine reuptake inhibitor. NDRIs= Norepinephrine-dopamine reuptake in-
hibitors. SARIs= Serotonin antagonist and reuptake inhibitors. TCAs= Tricyclic antidepressants. TeCAs= 
Tetracyclic antidepressants. MAOIs= Monoamine oxidase inhibitors. NaSSA= Noradrenergic and Specific 
Serotonergic Antidepressant. Due to participants receiving several psychiatric medications, percentage 
scores may not add up to exactly 100% (reprinted from Domke et al., 2023 with permission). 

 

3.2  fMRI results 

Between the left amygdala seed and a cluster in the left DLPFC (coordinates: -38, 14, 46; 

cluster size: 93; p = .008275, p-FDR-corrected), a regression analysis revealed a signifi-

cant association between an increase in rsFC and overall symptom reduction. To counter 

the multiple comparisons problem, a Bonferroni-corrected alpha level of .0125 was ap-

plied. The result remained significant (p = .0331) after the correction. Figure 5 shows a 
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visualization of the cluster on the cortical surface as well as the location of the left amyg-

dala seed. Gender and age were posteriorly controlled by a hierarchical multiple regres-

sion analysis. Both variables were added blockwise to the regression model, but neither 

showed a significant effect on the outcome variable MADRS symptom reduction.  (age: β 

= .214, p =. 261; gender: β = -.260, p =. 155). The bilateral DLPFC seeds and the right 

amygdala seed revealed no significant rsFC changes related to symptom reduction. The 

analysis of baseline rsFC showed that the baseline rsFC of the left amygdala to the right 

FP (coordinates: 16 64 20; cluster size: 74; p = .038816) was positively related to symp-

tom reduction. Thus, higher connectivity before ECT treatment predicted stronger symp-

tom improvement after treatment was completed. No significant effects were found for 

the two DLPFC seeds. 

 The analysis of whole-brain activity changes (fALFF) did not reveal any relation to 

symptom improvement, but examining the relation between baseline activity and symp-

tom reduction showed that lower baseline activity in the right frontal pole (coordinates: 18 

68 20; cluster size: 154; p = .000023), right supramarginal gyrus (coordinates: 68 -32 18; 

cluster size: 80; p = .002230), and right occipital pole (coordinates: 28 -94 04; cluster size: 

71; p = .003102) predicted a higher symptom reduction.  

 For the significant rsFC change between amygdala and DLPFC, additional corre-

lation analyses were performed with the four MADRS factors. A strong positive correlation 

was found between the rsFC change (mean rsFC between left amygdala and left DLPFC 

cluster) and the change in the factors sadness, negative thoughts, and detachment, but 

not for the factor neurovegetative symptoms. Figure 6 shows the correlations between 

the amygdala-DLPFC rsFC and the four different MADRS factors. Excluding one outlier 

that showed a reduction in rsFC, the positive association between FC change and symp-

tom reduction remained for the three symptom dimensions mentioned [sadness: r = .524, 

p = .014 (uncorrected); negative thoughts: r = .700, p = .002 (Bonferroni-corrected); de-

tachment: r = .663, p = .004 (Bonferroni-corrected)].  
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Figure 5 Resting state functional connectivity (FC) related to the reduction of depressive symptoms after 
completion of electroconvulsive therapy (ECT). (A) Yellow color marks the seed region in the left amygdala 
that was used for the seed-to-voxel analysis. (B) Red color marks the region in the left dorsolateral prefron-
tal cortex (DLPFC) whose FC change to the amygdala after ECT is positively related to symptom reduction 
(higher connectivity after ECT = higher symptom reduction). (C) Green color marks the region in the right 
frontal pole (FP) whose baseline FC to the left amygdala is positively related to symptom reduction (high 
baseline connectivity = high symptom reduction). Statistical thresholds for (B) and (C) were p < 0.001 at 
the voxel level, and p < 0.05 (FDR corrected) at the cluster level (reprinted from Domke et al., 2023 with 
permission). 
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Figure 6 Post-hoc correlation analyses of resting-state functional connectivity (FC) change between left 
amygdala and left dorsolateral prefrontal cortex (DLPFC) related to the reduction in the different symptom 
dimensions. Symptoms were measured with the Montgomery-Asberg Depression Rating Scale (MADRS). 
The R -value depicts Spearman’s Correlation Coefficient (* the corresponding P -value is < 0.05 Bonferroni-
corrected)  (reprinted from Domke et al., 2023 with permission). 
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4. Discussion 

4.1 Summary 

In this dissertation, the modulatory effect of ECT on resting-state functional connectivity 

of the amygdala and DLPFC as well as spontaneous brain activity during rest on the 

whole-brain level in depressed patients was investigated. In addition to the changes, it 

was also examined whether baseline rsFC and activity could predict clinical outcome. To 

gain a more detailed comprehension of clinical responses after ECT, the relationship be-

tween rsFC and the specific symptom dimensions of sadness, negative thoughts, detach-

ment and neurovegetative symptoms was also investigated. Because significant changes 

in amygdala-prefrontal connectivity have been reported in MDD (Dannlowski et al., 2009) 

and improvement in rsFC between prefrontal-limbic regions is associated with successful 

treatment (Brakowski et al., 2017), changes in rsFC in these regions were expected.  

4.2 Comparison with the literature 

The rsFC between the left amygdala and the left DLPFC increased after ECT and these 

neural changes were related to overall symptom improvement (see also Domke et al., 

2023). This confirms earlier findings from many treatment trials (Eshel et al., 2020; 

Gudayol-Ferré et al., 2015; Liu et al., 2016), which reported improved connectivity be-

tween prefrontal and limbic areas after successful therapy. The DLPFC is a component 

of the cognitive control network, and it modulates limbic regions like the amygdala, a 

crucial region involved in emotion formation, according to the theoretical framework 

(Berboth & Morawetz, 2021; Erk et al., 2010). Lack of DLPFC regulation has been linked 

to cognitive impairments and negative emotional biases in MDD (Erk et al., 2010; 

Groenewold et al., 2013; Kaiser et al., 2015; Siegle et al., 2007). The results of resting-

state fMRI studies of amygdala changes in patients with MDD appear somewhat discrep-

ant, but reduced rsFC of the amygdala with the prefrontal cortex and other regions in-

volved in emotion processing and regulation have been reported (Ramasubbu et al., 

2014). 

 Recent research has shown that the therapeutic effects of ECT depend on the 

regulation of FC patterns involving the DLPFC (Abbott et al., 2013; Beall et al., 2012; 

Perrin et al., 2012). The central finding here is consistent with the findings of Cano et al. 

(2016), who found that symptom improvement was also correlated with an increase in FC 
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between the right amygdala and the right DLPFC after the ninth ECT session as com-

pared to baseline. Considering the conceptual context, these findings imply that ECT im-

proves emotion regulation by restoring the DLPFC's top-down control over the limbic sys-

tem. Given the conceptual background, these results suggest that ECT leads to a resto-

ration of top-down control of the DLPFC over the limbic system, resulting in improved 

emotion regulation. It is notable that the finding of decreased rsFC between amygdala 

and sgACC could not be replicated (Cano et al., 2016). Cano and colleagues (2016) used 

path analysis and the DLPFC and sgACC as predefined target regions to assess the 

association between rsFC changes and symptom improvement, whereas in the present 

investigation a linear regression model at the whole brain level was used to prevent infor-

mation loss due to predefined targets. So the above mentioned discrepancy, as well as 

the difference in lateralization, may be the result of different methodologies. Hence, it can 

be suggested that ECT therapy may directly impact emotion regulation via influencing 

prefrontal-limbic FC, resulting in a general improvement in symptoms when ECT is com-

pleted. This finding emphasizes the value of prefrontal-limbic rsFC as a biomarker of ECT 

response. One explanation for the improvement in rsFC might suggest an increase in 

synaptic plasticity through increased production of brain-derived neurotrophic factor 

(BDNF). In a study examining the effects of ketamine, an increase in BDNF levels after 

treatment was found to be related to changes in rsFC in the prefrontal cortex, possibly 

due to effects of synaptic plasticity (Woelfer et al., 2020). The increase in BDNF following 

ECT has already been shown in numerous studies and meta-analyses (Brunoni et al., 

2014; Pelosof et al., 2022; Rocha et al., 2016) , therefore the possible mechanisms for 

the increase in rsFC may be equivalent to that of ketamine therapy. 

Moreover, it has been observed that higher baseline rsFC between left amygdala and 

right frontal pole predicts greater symptom reduction. Recent studies have revealed dif-

ferent connectivity patterns and different regions involved in predicting response to ECT 

treatment, including the DLPFC (Moreno-Ortega et al., 2019; Van Waarde et al., 2015), 

the fronto-temporal (Leaver et al., 2018), and the DMN rsFC (Moreno-Ortega et al., 2019; 

Pang et al., 2022), but no study has yet identified rsFC between frontal pole and amygdala 

as a significant predictor of ECT-induced symptom reduction. The underlying neurophys-

iological processes of FC patterns as enhancing or attenuating factors of ECT efficacy 

remain unclear. It has been suggested that the placement of the electrodes may have an 

impact on the initial regional synchronization that is established and causes the general-

ized seizure (Leaver et al., 2018; Van Waarde et al., 2015). As the connection of the 
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regions under the electrodes predicts the response to ECT, it has been claimed that this 

initiation could have a significant impact on the effectiveness of ECT (Leaver et al., 2018; 

Van Waarde et al., 2015). The findings provided here challenge this theory because elec-

trodes were placed in the temporo-parietal region, far from the frontal pole or amygdala. 

The potential arises that the effectiveness of ECT may depend on factors other than elec-

trode location, including frontal and prefrontal circuits and, in particular, their connectivity 

to regions linked to MDD. Interestingly, structural and functional changes have been ob-

served after ECT in the amygdala (Gryglewski et al., 2021; Loureiro et al., 2020) and 

frontal pole (Xu et al., 2018). Higher pretreatment rsFC could affect structural and func-

tional changes in these regions and therefore be related to symptom reduction. Future  

studies should focus on the underlying consequences of the initially provoked seizure 

quality, electrode positioning, and induced neuroplastic processes in order to identify ECT 

responders or create specific ECT procedures.  

 In addition to rsFC the relationship of neural change in spontaneous brain activity 

(fALFF) and the predictive value of baseline fALFF for the outcome of ECT intervention 

were analysed. In the literature, studies have shown that ECT significantly decreases 

resting-state activity in patients in the subcallosal cingulate cortex (SCC) (Argyelan et al., 

2016) and significantly increases it in the dorsomedial prefrontal cortex (Bai et al., 2019). 

These results could not be replicated in the present work. No correlation was found be-

tween neural activity change and symptom improvement. Regarding the predictive value 

of spontaneous brain activity, Argyelan et al. (2016) also found that a higher baseline 

fALFF of SCC predicted response to ECT, which contrasts with the results obtained here. 

In the current investigation lower baseline activity in the right frontal pole, right supra-

marginal gyrus, and right occipital pole was directly associated with symptom improve-

ment at the end of the intervention. At the functional level, the frontal pole might play an 

integrative role in higher-order social, emotional, and cognitive processes (Burgess et al., 

2007; Gilbert et al., 2010) and contribute to the development of typical symptoms associ-

ated with MDD, such as rumination (Ray et al., 2005). The supramarginal gyrus is a key 

region of the cognitive control network, which is also thought to be critical for higher-level 

cognitive performance (Beevers et al., 2010; Clasen et al., 2014). Especially the right 

supramarginal gyrus appears to play a central role in controlling empathy toward others 

(Silani et al., 2013), which may be impaired in depressed patients (Schreiter et al., 2013). 

Li et al. (2022) found that patients had higher spontaneous brain activity in the right su-

pramarginal gyrus after ECT treatment than before ECT. Together with the finding from 
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the current investigation here, it could be suggested that lower resting-state activation 

prior to the intervention offers more potential for increased functional change, which could 

therefore also be related to stronger symptom improvement. Rather unexpected is the 

finding of lower baseline activity in the occipital pole. However, it is conceivable that the 

occipital cortex contributes to the clinical phenomena of impaired cognition in MDD (Li et 

al., 2013). Sensory areas may modulate attention, memory, execution, and other cogni-

tive functions through various projections. Nevertheless, the relationship between abnor-

mal neural activity in these areas and depressive symptomatology needs to be further 

elucidated.  

 This appears to be the first investigation of ECT treatment combined with resting-

state fMRI to examine changes in various dimensions of depressive symptoms. MDD 

symptoms are quite heterogeneous, which may not only explain why approximately 30% 

of patients do not respond adequately to treatment (Bauer et al., 2013; Fried & Nesse, 

2015), but also underscore the need for a better understanding of the specific effects of 

a given treatment on symptomatology. Affective symptoms, such as apparent sadness 

and reported sadness and the inability to feel, were found to improve the strongest during 

the course of ECT in a prior study that used a single-item approach rather than a factor-

based approach (Carstens et al., 2021). All four of the MADRS symptom dimensions 

showed significant improvements in the current sample, and changes in the symptom 

dimensions of sadness, negative thoughts, and detachment were also linked to altera-

tions in the rsFC between the amygdala and the DLPFC. There was no correlation be-

tween the change in rsFC and the change in neurovegetative symptoms found. This find-

ing underscores that increased connectivity in the prefrontal-limbic circuit may lead to 

improved emotion regulation and consequently to a reduction in affective and cognitive 

symptoms. 

4.3 Implications 

The results here show that ECT effects the functional connectivity of the prefrontal-limbic 

system during rest and that this effect is significantly related to overall symptom improve-

ment. However, when individual symptom dimensions are considered, it becomes appar-

ent that these connectivity changes are particularly related to the improvement of cogni-

tive and affective symptoms. In general, these results support the thesis that homoge-

nised latent symptom dimensions from multi-item scales such as the HDRS or the 
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MADRS can improve the identification of imaging biomarkers associated with the course 

of specific symptom constellations (see also Wade et al., 2021). A symptom-based ap-

proach in the investigation of treatment effects in neuromodulation treatments is therefore 

promising and could help to make better decisions regarding complementary treatment 

options. One possibility, for example, would be to apply additional psychotropic medica-

tion that improves neurovegetative symptoms, as these do not seem to be affected by 

ECT as much as cognitive and affective symptoms. 

 Moreover, resting-state fMRI appears to be a method that has the potential to be 

used in daily clinical practice, for example to determine predictive markers prior to treat-

ment. It is a rapid, easily applicable way of visualising functional activity and connections 

that does not require patients, who are usually severely distressed, to spend more than 

ten minutes in the scanner and possibly have to complete complex tasks. When applied 

prior to the intervention, it can provide valuable information about the potential success 

of the considered treatment. For example, as found here, higher baseline rsFC between 

the amygdala and frontal pole or lower baseline activity in the right frontal pole, right su-

pramarginal gyrus and right occipital pole predict higher symptom improvement after 

ECT. Furthermore, there is a potential to identify neural biomarkers for treatment success. 

Applied during the course of the intervention, resting-state fMRI could provide guidance 

for the further outcome of the treatment. A study towards this end has already been con-

ducted by Cano et al. (2016). Future studies should also consider additional time points 

to further explore longitudinal effects on the neural level.  

4.4 Limitations 

Some limitations must be acknowledged. The findings of the study should be regarded 

as preliminary due to the small size and the heterogeneity of the sample. Additional clin-

ical trials with larger sample sizes and, for example, subgroup divisions (e.g., treatment-

resistant depression (TRD) vs. non-TRD, with vs. without psychotic characteristics, 

younger vs. older age) are needed to clarify direct connections between brain features 

and responsiveness to ECT. Nonetheless, it could be shown using this naturalistic study 

design that resting-state fMRI scans can offer crucial details about ECT-induced brain 

alterations linked to symptom improvement in a sample that closely resembles clinical 

psychiatric reality. Direct evaluation of the effects of ECT was further challenging because 

the participants also obtained pharmacological therapy. However, medication was not 
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altered at any point during the ECT treatment to reduce confounding effects. It is reason-

able to assume that the ECT treatment and not the pharmacological treatment seems to 

be accountable for the differences from baseline to the end of treatment. Moreover, con-

current use of antipsychotics and antidepressants may complement ECT in some individ-

uals and have a comparable but less effective impact on the nervous system (Austin et 

al., 2001). The present study design did not include an active control group receiving 

alternative treatment (e.g., antidepressants only, ketamine, transcranial magnetic stimu-

lation). Therefore, it is not possible to compare the likelihood of response to ECT versus 

alternatives, which would be relevant for treatment decisions in routine clinical practice. 

For this reason, all analyses have consequently focused on the direct association with 

symptom reduction. The investigation delivers limited understanding of complex network 

interactions because ROIs containing just bilateral amygdala and DLPFC were stringently 

chosen. The objective was to look for rsFC alterations following ECT in areas that are 

known to be altered in MDD and appear to be crucial in the emergence of cognitive and 

affective symptoms  (Heinzel et al., 2009; Lévesque et al., 2003). 

4.5 Conclusion  

The results of this dissertation point to an ECT mechanism of action that may involve 

increased connectivity between the amygdala and prefrontal cortex, which is linked to a 

reduction in cognitive and affective symptoms in depressed patients. The idea that frontal-

limbic rsFC may also be an important predictor of response is based on the discovery of 

a correlation between baseline amygdala and frontal pole rsFC and symptom improve-

ment following completion of ECT. Overall, it can be concluded that resting-state fMRI 

may be a useful tool in routine clinical practice to find neural biomarkers like functional 

connectivity or spontaneous activity in particular core areas known to be linked to specific 

MDD symptoms like sadness, negative thoughts, or detachment. It has been demon-

strated that imaging biomarkers for MDD can be identified in a naturalistic sample of de-

pressed people with various primary diagnoses, comorbidities, disease durations, and 

age ranges who are normally encountered in psychiatric facilities. Furthermore, it might 

be argued that a symptom-based approach, in addition to categorically defined diagnoses 

and multi-item scale total scores, has significance for the investigation of an illness as 

diverse as MDD. Additional investigation into the underlying mechanisms of action of the 
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ECT response using fMRI and the use of defined symptom dimensions is promising. Ad-

ditionally, it would certainly be interesting to have more scanning repetitions. Both at an 

earlier time point during the acute ECT phase to look for neuronal markers for an early 

response and as follow-up measurements to look for long-term effects of ECT-induced 

changes in functional connectivity. 
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