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Abstract Bianchi models are an essential building block, in the BKL picture, towards
understanding generic cosmological singularities (due to Belinskii, Khalatnikov, and Lif-
shitz, [BKL70, BKL82]). We study the behaviour of spatially homogeneous anisotropic
vacuum spacetimes of Bianchi type VIII and IX, as they approach the big bang singu-
larity.

It is known since 2001 that typical Bianchi IX spacetimes converge towards the so-
called Mixmaster attractor as time goes towards the singularity. We extend this result
to the case of Bianchi VIII vacuum.

The BKL picture suggests that particle horizons should form, i.e. spatially separ-
ate regions should causally decouple. We prove that this decoupling indeed occurs, for
Lebesgue almost every Bianchi VIII and IX vacuum spacetime.
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Zusammenfassung Bianchi Modelle sind, im BKL Bild, ein essentieller Bestandteil für
das Verständnis generischer kosmologischer Singularitäten (nach Belinskii, Khalatnikov
und Lifshitz, [BKL70, BKL82]).

Wir studieren das Verhalten räumlich homogener anisotroper Vakuum Raumzeiten
der Bianchi-Typen VIII und IX nahe der Urknall Singularität.

Seit 2001 ist bekannt, dass generische Bianchi IX Raumzeiten gegen den sogenannten
Mixmaster-Attraktor konvergieren, in Zeitrichtung zum Urknall. Wir erweitern dieses
Resultat auf den Fall von Bianchi VIII Vakuum.

Das BKL-Bild legt nahe, dass Partikel-Horizonte entstehen sollten, d.h. räumlich
getrennte Raumzeit-Regionen kausal entkoppeln. Wir zeigen dass diese Entkopplung tat-
sächlich stattfindet, für Lebesgue fast alle Bianchi VIII und IX Vakuum Raumzeiten.
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1 Introduction

Spatially homogeneous cosmological models. The behaviour of cosmological mod-
els is governed by the Einstein field equations, coupled with equations describing the pres-
ence of matter. Simpler models are obtained under symmetry assumptions. The class
of models studied in this work, Bianchi models, assume spatial homogeneity, i.e. “every
point looks the same”. Then, one only needs to describe the behaviour over time of
any single point, and the partial differential Einstein field equations become a system of
ordinary differential equations.

Directional isotropy assumes that “every spatial direction looks the same”. This leads
to the well-known FLRW (Friedmann-Lemaitre-Robertson-Walker) models. These mod-
els describe an initial (“big bang”) singularity, followed by an expansion of the universe,
slowed down by ordinary and dark matter and accelerated by a competing positive cos-
mological constant (“dark energy”).

Bianchi models assume spatial homogeneity, but relax the assumption of directional
isotropy. Spatial homogeneity assumes that there is a Lie-group G of spacetime iso-
metries, which foliates the spacetime into three-dimensional space-like hypersurfaces on
which G acts transitively: For every two points x,y in the same hypersurface there is a
group element g ∈ G such that g · x = y. The resulting ordinary differential equations
depend on the Lie-algebra of G, the so-called Killing fields. The three-dimensional Lie-
algebras have been classified by Luigi Bianchi in 1898, hence the name “Bianchi-models”;
for a commented translation see [Bia01, Jan01], and for a modern treatment see [WE05,
Section 1].

The two most studied classes of spatially homogeneous anisotropic cosmological mod-
els are the Bianchi-types IX and VIII, which are the focus of this work. Both of these
models exhibit a big bang like singularity in at least one time-direction, and a universe
that initially expands from this singularity, until, in the case of Bianchi IX, it recollapses
into a time-reversed big bang (“big crunch”). The big bang singularity is present even in
the vacuum case, where matter is absent and only gravity self-interacts. According to
conventional wisdom, “matter does not matter” near the singularity. For this reason, we
simplify our analysis by considering only the vacuum case.

Note that the symmetry assumptions already restrict the global topology of the space-
like hypersurfaces, and that the isotropic FLRW-models are not contained as a special
case: The only homogeneous isotropic vacuum model is flat Minkowski space.

For a detailed introduction to Bianchi models, we refer to [WE05]. A short deriva-
tion of the governing ordinary differential Wainwright-Hsu equations (2.3.2) is given in
Appendix A.5, and physical interpretations of some of our results are given in Section
2.2. For an excellent survey on Bianchi cosmologies, we refer to [HU09a], and for further
physical questions we refer to [UVEWE03, HUR+09].

The Wainwright-Hsu equations The dynamical behaviour of Bianchi VIII and IX
spacetimes is governed by the Wainwright-Hsu equations. This system of four ordinary
differential equations, which we will just call Bianchi system, describes the dynamics of
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anisotropic homogeneous vacuum spacetimes of several Bianchi types, where each Bianchi
type corresponds to an invariant subset; see Table 1.

The Wainwright-Hsu equations employ a time-dependent rescaling, called Hubble-
normalization, that eliminates one degree of freedom. For this reason, equilibria of the
Bianchi system do not correspond to static (time-independent) spacetimes, but instead to
spacetimes that are self-similar expanding towards the singularity, i.e. relative equilibria
under spatial rescaling.

The Bianchi system is equivariant under a group action by Z2×S3; this corresponds
to a simultaneous sign-reversal and permutations of the three Killing fields. The Lie-
algebra, i.e. the commutators of the three Killing fields are given by [ei, ej ] = n̂kεijkek,
where n̂i ∈ {+1,−1, 0}; its Bianchi type does not change if we simultaneously reverse
the signs of all three n̂i, or permute them. The decomposition of the phase-space of the
Bianchi system according to Bianchi type (and connected components) can be viewed
as a cell-decomposition. This viewpoint is used extensively in [HU09b], under the name
“Lie contraction hierarchy”.

The equivariance gives us an invariant set T = T1 ∪ T2 ∪ T3, where Ti corresponds to
the fixed points under the index permutation that exchanges the other two indices. This
invariant set is called Taub-space, and has dimension and codimension two. Solutions
in this set are also called Taub spacetimes, or LRS (locally rotationally symmetric)
spacetimes. The latter name is descriptive, in the sense that these spacetimes have
additional (partial, local) isotropy. Taub spacetimes behave, in several ways, different
from general (i.e. non-Taub) Bianchi spacetimes. For a detailed description, we refer to
[Rin01, HU09b, HU09a].

It is well-known and relatively easy to prove that solution of Bianchi type V III and
IX converge to the sets describing lower Bianchi-types. It is noteworthy that MIX ∩
MVI0 = ∅, i.e. the boundary of the region of phase-space describing Bianchi IX does not
intersect the region of phase-space describing Bianchi VI0. For this reason, Bianchi IX
is considered simpler than Bianchi VIII.

The Mixmaster attractor. The invariant set A, consisting of Bianchi types I and II,
is called the Mixmaster attractor. There are good heuristic arguments that A really is
an attractor for time approaching the singularity, and that the dynamics on and near A
can be considered chaotic (sometimes also called “oscillatory”).

Let us give a short description of the Mixmaster attractor. The Mixmaster attractor
consists of three two-dimensional spheres that intersect in a circle of equilibria, called the
Kasner-circle K. The Kasner-circle is the set of Bianchi I solutions; the corresponding
spacetimes are called Kasner-solutions, and describe a universe that evolves via time-
dependent rescaling. In one time-direction, a singularity is reached in finite eigen-time;
towards the singularity, spatial volumes and two spatial directions shrink, while the third
spatial direction expands.

The remaining part of the Mixmaster attractor, i.e. the remaining six hemispheres,
consist of heteroclinic orbits, i.e. of solutions that converge to one point on the Kasner-
circle in one time-direction, and a different point on the Kasner-circle in the other time-
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Bianchi Type n̂1 n̂2 n̂3 dimM #M dimM ∩ T #M ∩ T Group
I 0 0 0 1 1 0 6 R3

II + 0 0 2 3 1 3 H3(R)
VI0 0 + − 3 6 ∅ 0 E(1, 1)
VII0 0 + + 3 6 1 6 E(2)
VIII − + + 4 6 2 1 SL(2,R)
IX + + + 4 2 2 3 SO(3,R).

Table 1: Bianchi types described by the Wainwright-Hsu equations. Column 2 gives a
representative of the structure constants, modulo permutations and simultaneous sign-
reversal. Column 3 gives the dimension of the set in phase-space corresponding to the
Bianchi type, and column 4 counts its number of connected components. Column 5
gives the dimension of the intersection of this set with the Taub-spaces, and column 6
counts the number of connected components of this intersection. The last column gives
a Lie-group corresponding to the Lie-algebra of this Bianchi type. Here, H3(R) is the
three-dimensional Heisenberg group, E(1, 1) is the group of affine isometries of 1 + 1
dimensional Minkowski-space, and E(2) is the group of affine isometries of the Euclidean
plane.

direction.
Except for three special points, called Taub-points Ti, out of the six points in K∩T ,

all other equilibria in K are normally hyperbolic, i.e. the linearization of the Bianchi
system has one kernel direction, corresponding to the Kasner-circle, and one unstable
and two stable eigenvalues (with respect to time going towards the singularity). All
four eigenvectors are tangential to A (this is possible because A is not an embedded
manifold; it can be viewed as a smooth compact immersed two-dimensional manifold,
with self-intersections).

This gives rise to the following heuristic description of solutions near A: Solutions
will stay near one equilibrium pn for a long time; then, they follow the unstable direction,
i.e. the heteroclinic orbit in A emanating from pn, until they are near an equilibrium
pn+1; then, this process continues. It is possible to describe this behaviour by a map,
pn+1 = K(pn), called the Kasner-map K : K → K. It is an orientation reversing double
cover of S1, and it is C0-conjugate to [z]Z → [−2z]Z. This is the source of the heuristic
chaoticity (since double covers of S1 are chaotic, when viewed as time-discrete dynamical
systems). For a graphical description, see Figure 1.

From the Wainwright-Hsu equations, one can see by direct calculation that A is
linearly attracting, away from the three Taub-points Ti (we verify this in Section 3).
This is the heuristic reason for expecting A to be an attractor.

The only difficulty are the Taub-points, where two eigenvalues pass through zero,
giving a three-dimensional center-manifold. This prevents one from directly turning this
heuristic into a proof. This heuristic description is known since at least [Mis69, BKL70].
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For a modern description, we refer to Section 3, or [HU09a, HU09b].

T1

T2

T3

−T1

−T2

−T3

Figure 1: The Kasner-circle, and a short heteroclinic chain on A, in a suitable projection.
The dashed and dotted lines are not part of the attractor, but hint at the geometric
construction underlying the Kasner-map. The six points in K∩T are marked, such that
Ti ∩ K = {+Ti,−Ti}; hyperbolicity fails at the three Taub-points Ti. The arrows are
oriented for time going towards the singularity.

Attractor Theorems: Previous and novel results Even though these heuristics
have been known for a long time, a rigorous proof that A is actually attracting is com-
paratively recent. In the case of Bianchi IX, this was originally proven by Ringström in
[Rin01]; a shorter proof is by [HU09b], and another new proof is provided in this work:

Theorem (Bianchi IX attractor theorem). In Bianchi IX vacuum, all non-Taub solu-
tions converge to A, as time goes towards the singularity.

These solutions have at least one non-Taub ω-limit point on the Kasner-circle, as
time goes towards the singularity. The set of Taub-solutions is an embedded submanifold
of codimension two; hence, this theorem applies for generic solutions, both in the sense
of Lebesgue and Baire.

The first main result of our work shows that A is also an attractor for Bianchi VIII
solutions. A comparable result was previously unknown.

Theorem (Bianchi VIII attractor theorem; summarized from Theorems 2, 4 and 5).
In Bianchi VIII vacuum, all solutions fall into one of the following three classes:

Attract. The solution converges to A, and has at least one non-Taub ω-limit point
on the Kasner-circle, as time goes towards the singularity.
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Taub. The solution is contained in a Taub-space.

Except. The solution has exactly two ω-limit points on the Kasner-circle, both of which
lie in the same Taub-space. All other ω-limit points lie on heteroclinic orbits con-
necting these two points, and are of Bianchi type II or VI0.

The set where Attract applies is generic, both in the sense of Baire (it is open and
dense) and Lebesgue (it has full Lebesgue measure). It is an open neighbourhood of A\T .

The above formulation is a synthesis of Theorems 2, 4, and 5, which are proven in
Sections 6 and 7.

We make no claim on whether the case Except is possible at all; we believe it is
possible, but are unable to prove this. This question is further discussed in Section 6.

This result is made possible by new estimates near the Taub-spaces, that are derived
in Section 5. These estimates allow us to describe Bianchi VIII and IX solutions in a
unified framework; hence, we also give a new proof of the Bianchi IX attractor theorem.
Along the way, we show some useful estimates about the convergence, that are collected
in Theorem 2. These are of independent interest, even if one is only interested in Bianchi
IX solutions.

Stable Foliations. One may ask for a more precise description of how solutions get
attracted to A. That is, one may ask for the relation between solutions to the Bianchi
system that converge to A, and heteroclinic chains in A, i.e. orbits of the Kasner map.
Naively, one might hope for a foliation over K into invariant hypersurfaces of codimension
one, that each contain the solutions following a specific heteroclinic chain.

Results in this area are [Bég10, LHWG11, RT10, LRT12, Buc13]; for an excellent,
though outdated on this question, survey we recommend [HU09a]. Let us grossly para-
phrase some of these results:

Theorem [Bég10, LHWG11, LRT12, Buc13] (grossly paraphrased). Heteroclinic
chains in A that stay bounded away from the Taub-points attract stable manifolds of
codimension one.

[LHWG11, LRT12] use estimates “by hand”, and really apply to all heteroclinic chains
that stay bounded away from the Taub-points, and the resulting stable manifolds are of
Lipschitz regularity. [Bég10, Buc13] use Takens-linearization and abstract theory of hy-
perbolic systems; they provide more regularity of the stable manifolds, but are only
applicable to a subset of heteroclinic orbits, that fulfill certain non-resonance condition
in addition to staying bounded away from the Taub-points. Regardless, the set of het-
eroclinic chains that stay bounded away from the Taub-points is dense but non-generic,
in the sense that it is both meagre4 and has Lebesgue-measure zero.

4A set is called generic in the sense of Baire, if it is co-meagre, i.e. it contains a countable intersection
of open and dense sets. Then its complement is called meagre. By construction, countable intersections
of co-meagre sets are co-meagre and countable unions of meagre sets are meagre. Baire’s Theorem states
that co-meagre subsets of complete metric spaces (or locally compact Hausforff spaces) are always dense
and especially nonempty.
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Reiterer and Trubowitz [RT10] claim related results, for a much wider class of het-
eroclinic chains that have full (one-dimensional) Lebesgue measure, but with less focus
on the regularity or codimension of the attracted sets.

This general class of constructions and questions, i.e. partial stable foliations over
specific hetroclinic chains in A, is not the focus of this work. Instead, we describe and
estimate solutions and the flow directly, without explicitly focussing on the Kasner-map
and heteroclinic chains in A.

The question of particle horizons. One of the most salient features of relativity is
causality : The state of the world at some point in spacetime is only affected by states in
its past light-cone and can only affect states in its future light-cone.

The past light-cone J−(p) of a spacetime point p ∈ M , sometimes also called the
causal past of p, is the set of points q that are reachable from p by a time-like past-
directed curve γ, with g(γ̇, γ̇) ≤ 0. The future light-cone J+(p) is defined analogously.
Two points p, q ∈M are said to causally decouple towards the past if their past light-cones
are disjoint, J−(p)∩J−(q) = ∅, i.e. if there is no past event which causally influences both
p and q. Consider the communicating region of p ∈ M , i.e. the set J+(J−(p)), i.e. the
set of points q that do not decouple from p. The boundary of this set, ∂J+(J−(p)), is
the cosmic horizon of p, sometimes also called particle horizon; hence, everything beyond
the horizon is causally decoupled.

In Figure 2, we illustrate the formation of horizons. An example where no hori-
zons form is given by the (flat, connected) Minkowski-space M = R × R3: There is no
singularity, and J+(J−(p)) = M for all p, and hence ∂J+(J−(p)) = ∅. An example
where, at least formally, past horizons form, is given by the (flat, connected) Minkowski-
space M = (0,∞)×R3 (where we simply removed half of the spacetime). This example
demonstrates that we should only ask about horizons for inextendible spacetimes.

Apart from the question of convergence to A, the next important physical question
in the context of Bianchi cosmologies is that of locality of light-cones:

1. Do nonempty horizons ∂J+(J−(p)) 6= ∅ form towards the (past) singularity? Does
this happen, at least, if p is sufficiently near to the singularity?

2. Are the spatial hypersurfaces {t = t0 = const} ∩ (J+(J−(p)), ∂J+(J−(p)), con-
sidered as three-dimensional manifolds with boundary, diffeomorphic to the three
dimensional unit ball [B3, ∂B3]?

3. Are the past light-cones J−(p), and the communicating regions J+(J−(p)) spatially
bounded? Do they shrink down to a point, as p and t0 approach the singularity?

The first question is formulated completely independently of the foliation of the spacetime
into space-like hypersurfaces. The second question depends on the foliation, but is at
least easy to clearly state. The third question is not clearly stated here, because it
compares the spatial extents of the light-cones and communicating regions for different
times. This subtlety is discussed in Section 2.2.
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We say that a solution forms a particle horizon if all these questions are answered
with “yes”; we say that particle horizons definitively fail to form if J+(J−(p)) = M for
all p ∈M ; and otherwise, we say that particle horizons partially fail to form. The latter
should be viewed as an umbrella term for “it’s complicated”. All sensible definitions
agree on the definite cases; for the complicated case, the answer depends on the precise
definition that the author in question decides to use.

This work is only concerned with showing that (some, almost all) solutions definitely
form particle horizons; for this reason, it is unnecessary for us to discuss the subtleties
of the complicated case.

p

J−(p)

q

J−(q)

t0

tsing

time

(a) Two points p, q that decouple towards the singularity. Their past light-cones are disjoint.
p

J+(J−(p))∂J+(J−(p))

q

J−(q)

t0

tsing

time

(b) Two points p, q that decouple. The point q lies outside the communicating region of p.
p

J+(J−(p))∂J+(J−(p))

q

J−(q)

t0

tsing

time

(c) Two points p, q that do not decouple towards the singularity. Their past light-cones have
nonempty intersection (the darkest shaded region). The point q lies inside the communicating
region of p.

Figure 2: Examples of decoupling and non-decoupling towards the singularity at t = tsing,
and of horizons.

Originally, Misner [Mis69] suggested that typically no horizons should form in Bianchi
IX. This was proposed as a possible explanation of the observed approximate homogen-
eity of the universe: If the homogeneity is due to past mixing, then different observed
points in our current past light-cone must themselves have a shared causal past.

The basis for this belief is the following: It is known that Taub-solutions fail to form
particle horizons (at least partially); and due to the chaoticity of the Kasner-map, it is
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expected that typical solutions will come arbitrarily close to Taub-solutions, as time goes
towards the singularity.

Misner later changed his mind to the current consensus intuition that typical Bianchi
VIII and IX solutions should form particle horizons. Some more details on this are given
in Section 2.2. Further discussion of these questions can be found in e.g. [Wal84, Chapter
5], [HE73, Chapter 5].

The BKL picture. Spatially homogeneous spacetimes, and especially the question
of particle horizons, play an essential role in the so-called BKL picture (often also
called BKL-conjecture). The BKL picture is due to Belinskii, Khalatnikov and Lifshitz
([BKL70]), and describes generic cosmological singularities in terms of homogeneous
spacetimes. This picture roughly claims the following:

1. Generic cosmological singularities “are curvature-dominated”, i.e. behave like the
vacuum case. More succinctly, “matter does not matter”.

2. Generic cosmological singularities are chaotic and “oscillatory”, which means that
the directions that get stretched or compressed switch over time.

3. Generic cosmological singularities “locally behave like” spatially homogeneous ones5.
By this, one means that:

(a) Different regions causally decouple towards the singularity, i.e. particle hori-
zons form.

(b) If one restricts attention to a single communicating region, then, as time
goes towards the singularity, the spacetime can be well approximated by a
homogeneous one.

(c) Different spatial regions may have different geometry towards the singularity
(since they decouple). This kind of behaviour has been described as “foam-
like”.

Boundedness of the communicating regions, i.e. formation of particle horizons, in spatially
homogeneous models is a necessary condition for the consistency of the BKL-picture:
(3.a) claims that different spatial regions of an inhomogeneous spacetime M causally
decouple towards the big bang, and (3.b) claims that such decoupled regions behave “like
they were homogeneous”, i.e. like a homogeneous spacetime M̃ . Then, M̃ must itself
form horizons, in order to not contradict (3.a) and (3.b).

Previous results on particle horizons. One way of viewing the formation of particle
horizons is as a race between the collapse of space and the end of time, towards the singu-
larity. If the curvature blow-up is sufficiently faster than the spatial collapse (expansion

5Even more; they are supposed to behave like solutions of Bianchi type VIII, IX or VI∗− 1
9
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in physical time, where the singularity is in the past), then particle horizons form, be-
cause there is not enough time for communication between far points. Otherwise, no
horizons form.

In the context of the Wainwright-Hsu equations, the question boils down to: Do
solutions converge to A sufficiently fast? If yes, then particle horizons form. If no, then
the questions of particle horizons may have subtle answers.

The aforementioned solutions constructed in [LHWG11, Bég10], with initial condi-
tions on certain hypersurfaces of codimension one, all converge essentially uniformly
exponentially to A. This is definitely fast enough for particle horizons to form.

Reiterer and Trubowitz claim in [RT10] that the solutions constructed therein also
converge toA fast enough for this to happen. The claimed results in [RT10] are somewhat
nontrivial to parse. In short, [RT10] construct solutions which converge rapidly to certain
parts of the Mixmaster attractor A. These parts of the Mixmaster attractor have full
(one-dimensional) volume, and all these constructed solutions form particle horizons.
Claims about the extent, in phase-space, of these constructed solutions like e.g. Hausdorff-
dimension or Baire-category, are not made in [RT10].

The solutions constructed in [LHWG11, Bég10] were the first known nontrivial solu-
tions that could be proven to form particle horizons. It is still unknown whether there
exist nontrivial counterexamples, i.e. non-Taub solutions that fail to form particle hori-
zons.

Novel results on particle horizons. The most important result of our work is the
following:

Theorem 6 (Almost sure formation of particle horizons). Lebesgue almost every solution
in Bianchi VIII and IX vacuum forms particle horizons towards the big bang singularity.
These shrink to a point.

In fact, we show even stronger bounds than diamJ+(J−(p)) < ∞ in Theorem 7;
however, these lack a direct physical interpretation.

The restriction to Lebesgue almost every solution in genuine, i.e. the methods of
this work cannot point out any specific solution that forms a particle horizon. The
corresponding question for Baire-generic solutions remains open (see Question 7.1).

We believe that Baire-generic solutions should fail to form particle horizons, in the
strongest possible sense J+(J−(p)) = M . Our reasons for making this conjecture will be
explained in future work.

On the other hand, from a purely physical standpoint, measure theoretic genericity
tends to trump topological genericity; this is because we want statistical physics, and
especially the second law of thermodynamics to be applicable.

These measure-theoretic estimates are based on an unbounded volume-form ω4 on
Bianchi phase-space; this volume-form expands towards the singularity, with the re-
markably short equation6 Dtω4 = 2N2ω4. This formula might be considered as the third

6The term N2 can be physically interpreted as the Hubble-normalized scalar curvature of the space-
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main result of this work, and is derived and used in Section 7. To the best of our know-
ledge, and to our surprise, this equation Dtω4 = 2N2ω4 appears to be a novel discovery,
even though it can be verified by direct calculation.

Now, for a volume-expanding flow, every forward invariant set must either have in-
finite or vanishing volume; this allows us to show various inequalities for a.e. solution
and sufficiently late times towards the singularity. Combined with the estimates near the
Taub-spaces (shown in Section 5), that lead to Theorem 2, these can be used to prove
Theorem 6.

Structure of this work and strategy. Let us summarize the structure and contents
of the various sections of this work, as well as the strategy leading to the main results.
This summary omits some minor subtleties that are addressed in the main text; as such,
some of the statements are not necessarily literally true, without the qualifications in the
main text.

Section 2. We present the Wainwright-Hsu equations, i.e. the Bianchi system, as well
as some transformations that will be needed later on. The most important equations are
also summarized in Appendix A.1, for easier reference. The relation between solutions to
the Wainwright-Hsu equations and actual homogeneous spacetimes is explained in Section
2.1, and physical properties of these spacetimes are related to dynamical properties of
solutions in Section 2.2. A derivation of the Wainwright-Hsu equations from the Einstein
field equations of general relativity, for vacuum solutions, is given in Appendix A.5.

The version of the Wainwright-Hsu equations for vacuum used in this work differs
slightly from the versions used in [Rin01, HU09a, HU09b, LHWG11, Bég10]. Firstly,
we rescaled, in order to set various numerical constants to one; this change is purely
cosmetic. Secondly, and most substantially, we reverted the direction of time, such that
the singularity lies in the future, at t → +∞; this change is purely cosmetic, but very
convenient for dynamical systems language.

The third change is most important, but entirely insubstantial: The Bianchi-system
lives on a four-manifold; it is possible, customary and convenient to smoothly embed this
four-manifold as a hypersurfaceM⊂ R5, and extend the vectorfield to all of R5. Then,
M is of course invariant under the extended vectorfield, and only the behaviour on M
matters for the study of homogeneous vacuum spacetimes.

We use the same embeddingM⊂ R5, but choose a different extension of the vector-
field to R5. The most customary extension, used in [Rin01, HU09a, HU09b, LHWG11,
Bég10], has the physical interpretation of describing homogeneous spacetimes with per-
fect fluid matter; thus, one can discuss, essentially for free, certain classes of non-vacuum
spacetimes within the same phase-space and using the same equations (the equations of
state of the perfect fluid are a parameter of the extension of the vectorfield). This work
only considers vacuum spacetimes, and extends the vectorfield in a way that is more
convenient for measure-theoretic considerations, especially for proving Dtω4 = 2N2ω4.

like hypersurfaces of homogeneity. The volume-form ω4 on phase-space should have a physical interpret-
ation in terms of symplectic volume; unfortunately, we are unable to give such an interpretation.
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Even though this extension was chosen for computational convenience only, it was poin-
ted out that this extension has a physical interpretation in the context of Horava-Lifshitz
modified gravity [HU].

Let us point out that particle horizons form for a solution x(t) if
∫∞

0 δ(t)dt < ∞,
where the quantity δ(x) ∼ d(x,A) roughly corresponds to the distance to the Mixmaster
attractor, and the singularity is placed at t → ∞. This fact has been known virtually
forever, c.f. e.g. [Mis69, HR09] and the references therein.

Section 3. Now armed with actual equations to discuss, we give another overview of
the dynamical behaviour. This will discuss the Mixmaster attractor A, the Kasner map,
the dynamics far from A, and give an overview of the proof of the Bianchi IX attractor
theorem in [Rin01]. The proofs and structure of this section are quite similar to [Rin01];
the main difference that we extensively use the more quantitative Lemma 3.6 instead of
[Rin01, Lemma 5.2], which simplifies many arguments.

Section 4. We give a rigorous version of the heuristic arguments that solutions near A
converge exponentially to A, as long as they stay bounded away from the Taub-points.
We could not find any previous work giving such a rigorous treatment of these arguments;
nevertheless, the contents of this section should be considered as known for more than
30 years.

Section 5. We discuss the behaviour near the Taub-spaces T . Our discussion centers
around the quotient δr , and its differential equations, (2.4.2d) for Bianchi IX, and (2.4.7d)
for Bianchi VIII, where r(x) ∼ d(x, T ) roughly corresponds to the distance to the Taub-
spaces. Similar quotients in Bianchi IX also play a prominent role, as Z−1 in [Rin01],
and as ζ in [HU09b].

The main novel insight in this section is that we can show a-priori estimates on δ
r for

solutions that approach T from other parts of phase-space. Using these a-priori bounds,
we can show much stronger and easier averaging estimates, that hold in both Bianchi
VIII and IX. Previously, [Rin01] managed, in a heroic effort, to show averaging estimates
in Bianchi IX, independently of such a-priori bounds; in Bianchi VIII, such estimates
are impossible without a-priori bounds on δ

r . For the sake of completeness, we repeat
this effort in Lemma 5.6, but note that this lemma is never used in this work, outside of
the literature review.

These averaging estimates, Proposition 5.3, prove an average exponential convergence
to A, with non-uniform rate Dt log δ(t) ∼ −r2(t).

Section 6. We synthesize the results of the previous sections to prove that A is an
attractor. Combining the estimates from Section 4 and 5, we prove a local attractor
theorem 2, that is entirely novel in the case of Bianchi VIII, and in the case of Bianchi
IX adds the more detailed estimates δ

r → 0 and
∫∞

0 δ2(t)dt < ∞. Unfortunately, this
integral estimate is insufficient to show that particle horizons form.
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Combining this with the results from Section 3, we obtain a new proof of the global
Bianchi IX attractor theorem 1 and 3, as well as the entirely novel global Bianchi VIII
attractor theorem 4, minus the genericity claims. The hypothetical exceptions in the
Bianchi VIII attractor theorem must have δ

r (t) > ε > 0 for all sufficiently large times,
and some fixed ε.

Section 7. We introduce the unbounded volume-form ω4, which roughly corresponds
to the Lebesgue-measure in logarithmic coordinates, and show the remarkably simple
equation Dtω4 = 2N2ω4. This equation shows that the flow of the Bianchi system is
volume-expanding with respect to ω4.

Forward invariant sets under volume expanding dynamical systems must either have
vanishing or infinite volume. One can show, by direct calculation, that the set Bad =
{δ > r4} has finite ω4-volume; using the volume expansion, we then show that ω4-almost
every solution x(t) must have δ(t) < r4(t) for all sufficiently late times. Since ω4 and
the usual Lebesgue measure have the same zero-sets, this estimate holds for Lebesgue
a.e. solution.

This immediately implies the genericity claims, Theorem 5, of the global Bianchi
VIII attractor theorem. Upon integrating the averaging estimates from Section 5, the
inequality δ < r4 yields

∫∞
0 δ(t)dt <∞ for almost every solution, i.e. the a.e. formation

of particle horizons, which is the main result of this work, Theorem 6.
A more detailed look allows us to also estimate certain phase-space averages of the

diameter of communicating regions; these estimates are given in Theorem 7.

2 Setting, Notation and the Wainwright-Hsu equations

The subject of this work, i.e. the behaviour of homogeneous anisotropic vacuum space-
times with Bianchi Class A homogeneity under the Einstein field equations of general
relativity, can be described by a system of ordinary differential equations, called the
Wainwright-Hsu equations (2.3.4).

In Section 2.1, we will introduce the Wainwright-Hsu ordinary differential equations
and various auxiliary quantities and definitions, and provide a rough summary of their
dynamics. Then we transform the Wainwright-Hsu equations into polar coordinates in
Section 2.4, which are essential for the analysis in Section 5.

There are multiple equivalent formulations of the Wainwright-Hsu equations in use
by different authors, which differ in sign and scaling conventions, most importantly the
direction of time. This work uses reversed time, such that the big bang singularity is
at t = +∞. The relation of the Wainwright-Hsu equations to the Einstein equations of
general relativity will be relegated to Section A.5. The relation between properties of
solutions to the Wainwright-Hsu equations and physical properties of the corresponding
spacetimes is discussed in Section A.5.

General Notations. In this work, we will often use the notation x = (x1, . . . , xn) in
order to emphasize that a variable x refers to a point and not to a scalar quantity. If we
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consider a curve x(t) into a space where different coordinates have names, e.g. x : R→
R5 = {(Σ+,Σ−, N1, N2, N3)}, then we will in an abuse of notation writeN1(t) = N1(x(t))
in order to refer to the N1-coordinate of x(t).

We use ± to refer to either +1 or −1, and different occurrences of ± are always
unrelated, such that e.g. (±,±,±) ∈ {(+,+,+), (−,+,+), (+,−,+), (−,−,+), . . .}. We
will use ∗ to refer to either +1,−1 or 0, also such that different occurrences of ∗ are
unrelated.

We use C > 0 to refer to large unspecified constants and 0 < c to refer to small
unspecified constants. These are “PDE-style” constants, that should be interpreted as
O(1); so statements like C + 1 ≤ C are true.

If the constants are later recalled, or we want to specify their dependencies, then
we number them within the section of their definition, like e.g. C2.1, or c2.2. Numbered
constants are real numbers; so statements like C2.1 + 1 ≤ C2.1 are false.

We will often encounter differential equations and inequalities like e.g. Dtx(t) =
f(t)x(t) with f(t) ≤ h(t). In an abuse of notation, we will often write this as x′

x =
Dt log |x|(t) < h(t), regardless of whether we might have x(t) = 0 for some times t. Most
of the time, we will integrate this anyways to |x|(t2) ≤ exp(

∫ t2
t1
h(s)ds) |x|(t1) for t2 ≥ t1,

which is unquestionably well-defined and true.
This prompts the following general convention: Equalities and inequalities involving

time-derivatives of logarithms, like x′
x = Dt log |x| ≤ h should be interpreted as Dtx = f x

and f ≤ h. Other equalities and inequalities involving formally meaningless expressions
are to be ignored, if safely possible.

As we will see in Section , backwards existence of solutions might fail in the Bianchi
system. Following the general convention of ignoring formally meaningless expressions if
safely possible, we define φ(M,−t) = φ(·, t)−1[M ] = {x : φ(x, t) ∈M}, where φ denotes
the flow to the Bianchi system and M is a subset of phase-space. This is explained in
more verbosity in Appendix A.3.

Integrals with boundary are oriented, such that
∫ b
a f(t)dt = −

∫ a
b f(t)dt; integrals

over sets and integrals of forms over manifolds are unoriented. For sets and manifolds,
we only need to integrate non-negative quantities; hence, we consider infinite integrals as
well-formed expressions, and

∫
M f(x)dx is well-defined if f : M → [0,∞] is measurable

and a.e. defined. We adopt the convention that 0 · ∞ = 0 (in order to restrict domains
of integration by multiplication with indicator functions), and consider 1

∞ as undefined.
The end of nested proofs, or especially relevant sub-proofs, is signified by the symbol

� instead of �, in order to avoid confusion about whether the proof is concluded or not.

2.1 Spatially Homogeneous Spacetimes

We study the behaviour of homogeneous spacetimes, also called Bianchi-models. These
are Lorentz four-manifolds, foliated by space-like hypersurfaces on which a group of
isometries acts transitively, subject to the vacuum Einstein Field equations. That is, we
assume that we have a frame of four linearly independent vectorfields e0 = ∂t, e1, e2, e3,
where e1, e2, e3 are Killing fields, with dual co-frame dt, ω1, ω2, ω3, such that the metric
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has the form

g = g00(t)dt⊗ dt+ g11(t)ω1 ⊗ ω1 + g22(t)ω2 ⊗ ω2 + g33(t)ω3 ⊗ ω3,

and the commutators (i.e. the Lie-algebra of the spatial homogeneity) has the form

[ei, ej ] =
∑

k

γkijek γkij = n̂kεijk,

where εijk is the usual Levi-Civita symbol (εijk = +1 if (ijk) ∈ {(123), (231), (312)},
εijk = −1 if (ijk) ∈ {(132), (321), (213)} and εijk = 0 otherwise). The signs n̂i ∈
{+1,−1, 0} determine the Bianchi Type of the cosmological model, according to Table
1, page 8.

The metric is described by the seven Hubble-normalized variables H, Ñi,Σi, with
i ∈ {1, 2, 3}, according to

g00 = −1

4
H−2 gii =

1

48

H−2

ÑjÑk

, (2.1.1)

where (i, j, k) is always assumed to be a permutation of {1, 2, 3}, and subject to the linear
and sign constraints

Σ1 + Σ2 + Σ3 = 0, H < 0, Ñi > 0 for all i ∈ {1, 2, 3}. (2.1.2)

The variable H corresponds to the Hubble scalar, i.e. the expansion speed of the cosmo-
logical model, i.e. the mean curvature of the surfaces {t = const} of spatial homogen-
eity. The “shears” Σi correspond to the trace-free Hubble-normalized principal curvatures
(hence, the linear “trace-free” constraint). The conditionH < 0 corresponds to our choice
of the direction of time: We choose to orient time such that the universe is shrinking,
i.e. the singularity (big bang) lies in the future; this unphysical choice of time-direction
is just for convenience of notation.

The vacuum Einstein Field equations state that the spacetime is Ricci-flat. If we
express the normalized trace-free principal curvatures Σi as time-derivatives of the metric
variables Ñi, then the the Einstein Field equations become the Wainwright-Hsu equations
(2.1.3), which are a system of seven ordinary differential equations, subject to one linear
constraint equation (Σ1 + Σ2 + Σ3 = 0) and one algebraic equation, called the Gauss-
constraint G = 1 (2.1.2)). The calculations leading to (2.1.3) are given in Section A.5;
alternatively, we recommend [WE05].

H ′ =
1

2
(1 + 2Σ2)H

Σ′i = (1− Σ2)Σi +
1

2
Si

Ñ ′i = −(Σ2 + Σi)Ñi

1
!

= Σ2 +N2 := G,

(2.1.3)
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where we used the shorthands

Ni := n̂iÑi

Σ2 :=
1

6
(Σ2

1 + Σ2
2 + Σ2

3)

N2 := N2
1 +N2

2 +N2
3 − 2(N1N2 +N2N3 +N3N1)

Si := 4
(
Ni(2Ni −Nj −Nk)− (Nj −Nk)

2
)
.

2.2 Physical Properties of Solutions for Bianchi VIII and IX

We will now use the results of this work in order to describe some physical properties of
Bianchi spacetimes. We restrict our attention to the case of Bianchi IX and VIII, where
all n̂i 6= 0.

Bounded life-time. Since the mean curvature H corresponds to the time-derivative of
the spatial volume form√g11g22g33, the universe described by such a metric is contracting
for H < 0. Physically, we are interested in the behaviour towards the initial (big bang)
singularity; this setting is time-reversed to physical time-variables, and we should look
at the behaviour of solutions for t→ +∞. Since |H| is at least uniformly exponentially
growing, we can immediately see EigenFuture =

∫∞
0

√−g00dt < ∞, that is, the
universe has only a finite (eigen-) lifetime until H blows up and a singularity occurs. In
our coordinates, this singularity is placed at t = +∞.

A priori, we do not know whether this singularity is a physical singularity (with
curvature blow-up), or whether instead it is just our coordinate system that blows up.
It has been proven in [Rin00] that, in Bianchi VIII and IX, the singularity is physical
and curvature blows up. This is done by considering the so-called Kretschmann scalar
κ =

∑
α,β,γ,δ R

δ,γ
α,β Rα,βδ,γ and showing that limt→∞ κ(t) =∞. We refer to [Rin00] for the

details.

Bounded spatial metric coefficients. The coefficients gii = 1
48

|Ni|
H2|N1N2N3| stay bounded:

The global attractor Theorems 3 and 4, pages 60 and 61, imply that the |Ni| stay bounded
for t→ +∞. For the denominator, we can compute, using (2.3.10), page 27,

Dt log |H2N1N2N3| = −3Σ2 + 1 + 2Σ2 = N2 ≥ −4|N1N2N3|
2
3 .

Lemma 3.6, page 36, shows that |H2N1N2N3| stays bounded away from zero. Hence all
three gii stay bounded for t → +∞. Indeed, outside of the Taub-spaces Ti = {Nj =
Nk,Σj = Σk}, we have N2 > ε > 0 for large amounts of time, as follows trivially from
the proof of Theorems 3 and 4, and we can conclude limt→+∞ gii(t) = 0.

Particle Horizons. Recall question of particle horizons from the introduction, and
the definition of communicating regions, which we here adjust to match our convention
that the big bang singularity is situated in the future:
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Definition 2.1. Let γ : [0, 1] → M be a differentiable curve. We say that the curve is
time-like, if g(γ̇, γ̇) ≤ 0 and γ̇0 6= 0 for all t ∈ [0, 1]. We say that it is future-directed, if
γ̇0 > 0, and past-directed if γ̇0 < 0.

Let p ∈M a spacetime point. Then we define its past light-cone J−(p) and its future
light-cone J+(p) by

J−(p) = {q : there is γ : [0, 1]→M with γ(0) = p, γ(1) = q, time-like past directed}
J+(p) = {q : there is γ : [0, 1]→M with γ(0) = p, γ(1) = q, time-like future directed}.

We define its past communicating region as J+(J−(p)) =
⋃

q∈J−(p) J
+(q), and its fu-

ture communicating region as J−(J+(p)) =
⋃

q∈J+(p) J
−(q). We define its past cosmic

horizon, also called particle horizon, as ∂J+(J−(p)), i.e. as the boundary of its past
communicating region. We define its future cosmic horizon, also called particle horizon,
as ∂J−(J+(p)), i.e. as the boundary of its future communicating region.

Since we inverted physical time such that the big bang singularity lies in the future,
we are concerned with proving that the following horizon ∂J−(J+(p)) 6= ∅ is nonempty.

Particle horizons are determined by estimates on
∫ √
|NiNj |(t)dt. This gives the

physical interpretation of Theorem 6, page 65, that states that almost every solution has∫∞
t0

√
|NiNj |(t)dt <∞:

Lemma 2.2. There is a constant C > 0, such that, for Bianchi IX and VIII vacuum
spacetimes M , we can estimate for p ∈M and t0 ≥ t(p)

diamh

[
J+(p)) ∩ {q ∈M : t(q) = t0}

]
≤ C

∫ t0

t(p)
max
j 6=k

√
|NjNk|(t)dt

diamh

[
J−(J+(p)) ∩ {q ∈M : t(q) = t(p)}

]
≤ C

∫ ∞

t(p)
max
j 6=k

√
|NjNk|(t)dt,

(2.2.1)

where the diameter is measured with the symmetry metric h given on the surfaces of
homogeneity {t = const} by h = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3.

Proof. Any time-like singularity-directed curve γ starting in p must fulfil g(γ̇, γ̇) ≤ 0.
Parametrize γ over the time t; then, |γ̇i| ≤

√
−g00gii =

√
12
√
|NjNk|. It is clear that the

h-length of such a curve must be bounded by C maxj 6=k
∫∞
t(p)

√
|NjNk|(t)dt, if the curve

only accesses times later than t0. This proves the estimate on J+(p). The estimate on
J−(J+(p)) follows.

Lemma 2.3. Suppose that M is a spacetime corresponding to a Bianchi VIII or IX
solution with

∫∞
0

√
|NjNk|(t)dt < ∞ for all j 6= k. Use the shorthands M>t0 = {p ∈

M : t(p) > t0} and J−(J+(t0)) = J−(J+(p)) for some p ∈M with t(p) = t0. Then the
following holds:

1. limt0→∞ diamh [J−(J+(t0)) ∩ {q ∈M : t(q) = t0}] = 0.

2. limt0→∞ diamg [J−(J+(t0)) ∩ {q ∈M : t(q) = t0}] = 0.
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3. For t0 > 0 large enough, ∂J−(J+(t0)) 6= ∅.

4. For t0 > 0 large enough, [J−(J+(t0))∩Mt0 , (∂J
−(J+(t0)))∩Mt0 ] is diffeomorphic

to [(0, 1) × B3, (0, 1) × ∂B3], where B3 is the three dimensional unit ball, and the
sets are diffeomorphic as manifolds with boundary.

Proof. If
∫∞
t0

maxj 6=k
√
|NjNk|(t)dt < ∞, then limt0→∞

∫∞
t0

maxj 6=k
√
|NjNk|(t)dt = 0,

which proves (1). (2) follows because the metric coefficients gij are bounded. (4) follows
because the injectivity radius injh(t) of the hypersurfaces of homogeneity is independent
of the time t, if we measure it with respect to the (time-independent) h-metric. (3)
follows trivially from (4).

Now

Recombination

Singularity

(a) A sketched spacetime, where homogeneity
of the observable universe could be explained
by mixing between the big bang and recom-
bination.

Now

Recombination

Singularity

(b) A sketched spacetime, where homogeneity
of the observable universe cannot be explained
by mixing between the big bang and recom-
bination.

Figure 3: Whether observed homogeneity could be explained by mixing depends on
the relation of the conformal distance between recombination and singularity versus the
conformal distance between the present time and recombination.

Particle Horizons and Homogenization Astronomical observations show that the
universe appears to be mostly homogeneous at large scales. A possible explanation for the
observed homogeneity, c.f. e.g. [Mis69], might be that the universe, i.e. matter, radiation,
etc, mixed in the early universe. This is only possible if the outer parts of our optical
past light-cone have a joint causal past (see Figure 3), and is superficially at odds with
the formation of particle horizons.

However, optical astronomical observations go only back to the recombination, the
moment where the primordial plasma condensed to a gas and became transparent to
light. Hence, there is only a bounded region of spacetime in our past, which is optically
accessible, and mixing may have happened in the time-frame between the initial singu-
larity and recombination. This is a reason that the formation of particle horizons does
not necessarily spell doom for attempts to explain the observed homogeneity through
mixing (apart from the actual universe not being a homogeneous, anisotropic vacuum
spacetime of Bianchi type VIII or IX).

Indeed, the same problem is present in the “standard model” of cosmology, which
is a (homogeneous isotropic) FLRW model. There, the observed homogeneity is typic-
ally explained by inflation, i.e. one postulates a phase of rapid expansion that increases
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the conformal distance between recombination and singularity, mediated by an exotic,
hitherto unobserved matter field.

2.3 The Wainwright-Hsu equations

Recall (2.1.3). The equation for H is decoupled from the remaining equations. Thus,
we can drop the equation for H, solve the remaining equations, and afterwards integrate
to obtain H. Likewise, we can stick with the equations for Ni instead of Ñi, such that
n̂i = signNi. For Bianchi-types VIII and IX this already determines the metric, and for
the lower Bianchi types we can again integrate afterwards. This yields a standard form
of the vacuum Wainwright-Hsu equations from (2.1.3), as used in e.g. [Rin01, HU09a,
HU09b, LHWG11, Bég10], up to constant factors. The most useful equations are also
summarized in Section A.1.

It is useful to solve for the linear constraint Σ1 + Σ2 + Σ3 = 0, introducing Σ =
(Σ+,Σ−) by

T1 = (−1, 0) T2 =

(
1

2
,−1

2

√
3

)
T3 =

(
1

2
,
1

2

√
3

)

Σi = 2〈Ti,Σ〉 Σ+ = −1

2
Σ1 Σ− =

1

2
√

3
(Σ3 − Σ2),

(2.3.1)

which turns the vacuum Wainwright-Hsu differential equations into a system of five
ordinary differential equations on R5 = {(Σ+,Σ−, N1, N2, N3)} = {Σ,N}, with one
algebraic constraint equation (2.3.3). The three points T1,T2,T3 are called Taub-points.
We will, in an abuse of notation, consider the Taub-points both as points in R2, and as
points in R5 (where all three Ni vanish). The Wainwright-Hsu equations are then given
by the differential equations

N ′i = −(Σ2 + 2〈Ti,Σ〉)Ni (2.3.2a)

= −
(
|Σ + Ti|2 − 1

)
Ni (2.3.2b)

Σ′ = N2Σ + 2
(
N2

1 T1 +N2
2 T2 +N2

3 T3 +N1N2T3 +N2N3T1 +N3N1T2

)

(2.3.2c)

= N2Σ + 2




T1 T3 T2

T2 T1

T3


 [N ,N ], (2.3.2d)

and the Gauss constraint equation

1
!

= Σ2 +N2 =: G(x), (2.3.3)

where we used the shorthands

Σ2 = Σ2
+ + Σ2

−, N2 = N2
1 +N2

2 +N2
3 − 2(N1N2 +N2N3 +N3N1).
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We can unpack these equations with unambiguous notation into

N ′1 = −(Σ2 − 2Σ+)N1 (2.3.4a)

N ′2 = −(Σ2 + Σ+ −
√

3Σ−)N2 (2.3.4b)

N ′3 = −(Σ2 + Σ+ +
√

3Σ−)N3 (2.3.4c)

Σ′+ = N2Σ+ − 2N2
1 +N2

2 +N2
3 +N1N2 − 2N2N3 +N1N3 (2.3.4d)

Σ′− = N2Σ− +
√

3
(
−N2

2 +N2
3 +N1N2 −N1N3

)
, (2.3.4e)

which is, up to constant factors, the form of the vacuum Wainwright-Hsu equations used
in e.g. [Rin01, LHWG11, Bég10].

It is occasionally useful to fully tensorize the Wainwright-Hsu equations, yielding the
form

N ′ = −〈Σ,Σ〉N −D[Σ,N ]

Σ′ = Q[N ,N ]Σ + T [N ,N ]

G(Σ,N) = 〈Σ,Σ〉+Q[N ,N ]
!

= 1,

(2.3.5)

where Q : R3 × R3 → R and T : R3 × R3 → R2 and D : R2 × R3 → R3. We write Q as
a 3 × 3-matrix with entries in R such that Q[N ,M ] = NTQN = N2; we write T as a
similar 3× 3-matrix with entries in R2. We write D as a 3× 3-matrix with entries in R2

such that D[Σ,N ] = (DN) ·Σ, where DN is the usual matrix product (with entries
in R2) and the dot-product is evaluated component wise. Then the tensors Q,T ,D can
be written as

Q =




1 −2 −2
1 −2

1


 , T =




2T1 2T3 2T2

2T2 2T1

2T3


 , D =




2T1

2T2

2T3




(2.3.6)

Permutation Equivariance. The equations (2.1.3) are equivariant under permuta-
tions σ : {1, 2, 3} → {1, 2, 3} of the three indices. This permutation invariance also
applies to (2.3.2) as

(Σ, N1, N2, N3)→ (AσΣ, Nσ(1), Nσ(2), Nσ(3)),

where Aσ : R2 → R2 is the linear isometry with ATσTi = Tσ(i). The equations are also
equivariant under (Σ,N)→ (Σ,−N), as can be seen directly from (2.3.5).

Invariance of the Constraint. The signs of the Ni are preserved under the flow,
because N ′i is a multiple of Ni and therefore Ni = 0 implies N ′i = 0.

Claim 2.3.1. The quantity G is preserved under the flow.
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M = {x ∈ R5 : G(x) = 1} the physically relevant Phase-space
Mn̂ = {x ∈M : signNi = n̂i} a specific octant of the Phase-space
K =M000 = {x ∈M : N = 0} the Kasner circle
A = {x ∈M : at most one Ni 6= 0} the Mixmaster attractor

An̂ =Mn̂ ∩ A a specific octant of A
Ti = {x ∈M : Nj = Nk, 〈Tj ,Σ〉 = 〈Tk,Σ〉} a Taub-space
T = T1 ∪ T2 ∪ T3 all three Taub-spaces

T Li = {x ∈M : Nj = Nk, Ni = 0, Σ = Ti} ⊆ Ti a Taub-line

T G
i = {x ∈M : |Nj | = |Nk|, 〈Tj ,Σ〉 = 〈Tk,Σ〉} a generalized Taub-space;

only invariant if signNj = signNk

Table 2: Named subsets. Here (i, j, k) stands for a permutation of {1, 2, 3} and n̂ ∈
{+, 0,−}3. All of these sets, except for T Gi , are invariant.

Proof. This can best be seen from (2.3.5):

DtG = 2〈Σ,Σ′〉+Q[N ,N ′] +Q[N ′,N ]

= 2Q[N ,N ]〈Σ,Σ〉+ 2Σ · T [N ,N ]− 2〈Σ,Σ〉Q[N ,N ]

−Q[D[Σ,N ],N ]−Q[N ,D[Σ,N ]]

= Σ ·NT
[
2T −DTQ−QD

]
N .

Using T1 + T2 + T3 = 0 and (2.3.6), it is a simple matter of matrix multiplication
to verify that 2T −DTQ − QD = 0 and hence DtG = 0. Therefore, sets of the form
{x ∈ R5 : G(x) = c} are invariant for any c ∈ R and especially for the physical c = 1.

Claim 2.3.2. The setM = {x ∈ R5 : G(x) = 1} is a smooth embedded submanifold.

Proof. This is apparent from the implicit function theorem, since (if x 6= 0)

1

2
dG = Σ+dΣ+ + Σ−dΣ−
+ (N1 −N2 −N3)dN1 + (N2 −N3 −N1)dN2 + (N3 −N1 −N2)dN1 6= 0.

Named invariant sets. There are several recurring important sets, which require
names and are listed in Table 2.

The set M is invariant because G is a constant of motion. The Taub-space Ti is
invariant because of the equivariance under exchange of the two other indices j and k.
The invariance of the Taub-lines T Li can be seen by considering (2.3.4) for i = 1 and
applying the permutation invariance for T L2 and T L3. The generalized Taub-spaces T Gi
are not invariant if n̂j 6= n̂k. The other sets are invariant because the signs n̂i = signNi

are fixed.
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Recall that the signs of the Ni correspond to the Bianchi Type of the Lie-algebra
associated to the homogeneity of the cosmological model and are given in Table 1, page
8 (up to index permutations).

Auxiliary Quantities. The following quantities turn out to be useful later on (where
(i, j, k) is a permutation of (1, 2, 3)):

∆ = |N1N2N3|
1
3 (2.3.7a)

δi = 2
√
|NjNk| (2.3.7b)

ri =

√
(|Nj | − |Nk|)2 +

1

3
〈Tj −Tk,Σ〉2 (2.3.7c)

ψi such that:

r1 cosψ1 =
1√
3
〈T3 −T2,Σ〉 = Σ− r1 sinψ1 = |N2| − |N3| (2.3.7d)

r2 cosψ2 =
1√
3
〈T1 −T3,Σ〉 = −

√
3

2
Σ+ −

1

2
Σ− r2 sinψ2 = |N3| − |N1| (2.3.7e)

r3 cosψ3 =
1√
3
〈T2 −T1,Σ〉 =

√
3

2
Σ+ −

1

2
Σ− r3 sinψ3 = |N1| − |N2|. (2.3.7f)

The auxiliary products δ2
i can be used to measure the distance from the Mixmaster

attractor A = {x : maxi δi(x) = 0}. The ri and can be used to measure the distance
from the generalized Taub-space T Gi = {x : ri(x) = 0}, and the (ri, ψi)-pairs form polar
coordinates around the generalized Taub-spaces.

The products ∆ and δi obey an especially geometric differential equation, similar to
(2.3.2b):

∆′ = −|Σ|2∆ (2.3.8a)

δ′i = −
(∣∣∣∣Σ−

Ti

2

∣∣∣∣
2

− 1

4

)
δi. (2.3.8b)

Volume Expansion In the following, we will give a short overview of the behaviour
of logarithmic volumes under the flow defined by (2.3.2). More details and proofs are
provided in Section 7, and some general facts about the interplay between flows and
volumes are given in Appendix A.4.

Set βi = − log |Ni|, and consider the Lebesgue-measure on these coordinates, i.e. the
volume-form ω5 = dΣ+ ∧ dΣ− ∧ dβ1 ∧ dβ2 ∧ dβ3. It is trivial to see from (2.3.2) that
Dtω5 = 2N2ω5. Define the four-form ω4 such that ω5 = ω4∧dG, e.g. by ω4 = ιXω5 where
X = ∇G

〈∇G,∇G〉 . Then ω4 is a volume-form onM. Because G is a constant of motion, we
have DtdG = 0 and Dtω4 = 2N2ω4. This formula is remarkable for its simplicity and
simple proof, and is extensively used in Section 7.

Indeed, the formula Dtω4 = 2N2ω4 is one of the major insights of this work. To the
best of our knowledge, this insight is novel.
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Preliminary Estimates We immediately see from (2.3.8a) that ∆ is nonincreasing.
The following condenses some basic estimates onM, using the constraintG = 1 only. The
appearing constants do not substantially matter, and could be replaced by an unspecific
C; mostly non-sharp choices are nevertheless given explicitly, for easier verification:

Lemma 2.4. Let x ∈M. The following holds, using ∆3 = |N1N2N3|:

1. If x ∈ M is not of Bianchi type IX, i.e. x 6∈ M+++ ∪M−−−, then N2 ≥ 0 and
|Σ|2 ≤ 1.

2. If x ∈ M is of Bianchi type IX, i.e. x ∈ M+++ ∪M−−−, then N2 ≥ −4∆2 and
|Σ|2 ≤ 1 + 4∆2, and |Σ| ≤ 1 + 2∆2.

3. If ∆ ≤ 1 and |N3| ≥ |N2| ≥ |N1| ≥ 0, then δ3 ≤ δ2 ≤ 5
√

∆ and |N2−N3| ≤ 1+ 7
2∆.

4. If ∆ ≤ 1 and |x| ≥ 10 and |N3| ≥ |N2| ≥ |N1| ≥ 0, then n̂2 = n̂3 and δ1/2 ≥
|N2| ≥ 1√

2
|x| − 6 > 1 > |N1|, and |N1| ≤ ∆3|N2|−2, and δ3 ≤ δ2 ≤ 2∆

3
2 |N2|−

1
2 .

For |x| � 10, if N2 > 0, we will describe such points colloquially with N2 ≈ N3 �
1� |N1|.

5. If ∆ ≥ 1 and |N3| ≥ |N2| ≥ |N1| ≥ 0, then δ3 ≤ δ2 ≤ 5∆ and |N2 −N3| ≤ 9
2∆2.

6. If ∆ ≥ 1 and |x| ≥ 10∆2 and |x| ≥ 5 and |N3| ≥ |N2| ≥ |N1| ≥ 0, then n̂2 = n̂3

and δ1/2 ≥ |N2| ≥ 1√
3
|x| − 6∆2 > ∆2 ≥ 1 > |N1|, and |N1| ≤ ∆3|N2|−2 ≤ |N2|−

1
2 ,

and δ3 ≤ δ2 ≤ 2∆
3
2 |N2|−

1
2 . For |x| � 10∆2, if N2 > 0, we will describe such points

colloquially with N2 ≈ N3 � 1� |N1|.

7. Suppose |N1N2N3| ≤ 10−6, i.e. ∆ ≤ 10−2. Then it is impossible to have ri ≤ 0.1
for all three i ∈ {1, 2, 3}. Furthermore, if δi ≥ 1, then ri ≤ 2.

Proof. Claim (1) works by assuming without loss of generality N1 < 0 < N2, N3; we get

N2 = (N1 +N2 −N3)2 − 4N1N2 > 0. (2.3.9)

Then, one applies |Σ|2 +N2 = 1.
Claim (2) works by assuming without loss of generality N3 ≥ N2 ≥ N1 > 0; we get

N2 = (N1 +N2 −N3)2 − 4N1N2 ≥ −4N1N2

≥ −4(N1N2N3)
2
3

(
N1N2

N3N3

) 1
3

≥ −4(N1N2N3)
2
3 .

(2.3.10)

By the permutation symmetry, the above inequality holds regardless of which Ni is
largest. Then, one applies |Σ|2 +N2 = 1.

Claims (3) and (5) work by seeing |N1| ≤ ∆ and |N1N2| ≤ ∆2. Use 1 ≥ N2 ≥
−4|N1N2|−2|N1| |N2−N3|+ |N2−N3|2 in order to see |N2−N3| ≤ ∆ +

√
1 + 4∆2 + ∆.
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This yields |N1N3| ≤ |N1N2| + |N1(N2 − N3)| ≤ 2∆2 + ∆
√

1 + 4∆2 + ∆. Considering
∆ ≤ 1 and ∆ ≥ 1, the claims (3) and (5) follow.

Claim (4) follows directly from |x|2 ≤ 2N2
3 + |Σ2| + 1, applying (1) or (2) to see

|N3| ≥ 1√
2

√
|x|2 − 5 ≥ 1√

2
|x| − 1, applying (3) to see |N2 −N3| ≤ 5 and hence n̂2 = n̂3

and |N2| ≥ 1√
2
|x| − 6 > 1 > |N1|. The other inequalities are simple reformulations of

|N3| ≥ |N3| ≥ |N1|.
Claim (6) follows directly from |x|2 ≤ 3N2

3 + |Σ2| + 1, applying (1) or (2) to see
|N3| ≥ 1√

3

√
|x|2 − 5∆2 ≥ 1√

3
|x| −∆2, applying (5) to see |N2 − N3| ≤ 5∆2 and hence

n̂2 = n̂3 and |N2| ≥ 1√
3
|x| − 6∆2 > 1. The other inequalities are simple reformulations

of |N3| ≥ |N3| ≥ |N1|.
In order to see claim (7), note that if all three ri ≤ 0.1, then all three ||Nj |−|Nk|| ≤ 0.1

are roughly equal and maxi |Ni| ≤ ∆3 + 0.1 ≤ 0.2, which yields N2 ≤ 0.36. However,
|Σ| ≤

√
3/10, and hence N2 = 1− |Σ|2 ≥ 0.9, yielding the desired contradiction.

In order to see the last part of claim (8), assume without loss of generality that
|N3| ≥ |N2| ≥ |N1| ≥ 0. By (4), using ∆ < 10−2, we have δ2 ≤ 5

√
∆ ≤ 0.2; hence, we

only need to show that r1 ≤ 3. We have 1 ≥ r2
1 − 2|N1N2| − 2|N1N3| ≥ r2

1 − 15
√

∆ and
hence r2

1 ≤ 3.

2.4 The Wainwright-Hsu equations in polar coordinates

Near the generalized Taub-spaces T Gi , it is possible to use polar coordinates (2.3.7).
Without loss of generality we will only transform (2.3.2) into these coordinates around
the Taub-space T G1 (the other ones can be obtained by permuting the indices and rotating
or reflecting Σ).

The use of polar coordinates near the Taub-spaces Ti for Bianchi IX, i.e. M+++, is
by no means novel (c.f. e.g. [Rin01], [HU09a]). However, to the best of our knowledge,
polar coordinates around the generalized Taub-spaces T Gi have not been used previously
in the case where the generalized Taub-space fails to be invariant.

We only use polar coordinates onM = {x : G(x) = 1}.

Polar Coordinates around the invariant Taub-spaces. Consider the caseM∗++,
where N2, N3 > 0 are positive and we are interested in a neighbourhood of T1 = {x :
Σ− = 0, N2 −N3 = 0}. The sign of N1 does not significantly matter. The best form of
the Wainwright-Hsu equations for transformation into polar coordinates is (2.3.4).

We use the additional shorthands

N− = N2 −N3 N+ = N2 +N3, (2.4.1a)

such that (with (2.3.7)):

r1 ≥ 0 : r2
1 = Σ2

− +N2
− (2.4.1b)

ψ1 : N− = r1 sinψ1 Σ− = r1 cosψ1 (2.4.1c)

N2
+ = N2

− + δ2
1 N2 = N2

− +N1(N1 − 2N+). (2.4.1d)
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This gives us the differential equations (using Σ2 +N2 = 1):

N ′− = (N2 − 1− Σ+)N− +
√

3Σ−N+ (2.4.1e)

N ′+ = (N2 − 1− Σ+)N+ +
√

3Σ−N− (2.4.1f)

Σ′− = N2Σ− −
√

3N− (N+ −N1) , (2.4.1g)

allowing us to further compute

r′1
r1

=
Σ−Σ′− +N−N ′−

r2
1

= N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N−
r2

1

(2.4.2a)

ψ1
′ =

Σ−N ′− −N−Σ′−
r2

1

=
√

3N+ − (Σ+ + 1)
N−Σ−
r2

1

−
√

3N1
N2
−
r2

1

(2.4.2b)

δ′1
δ1

= N2 − (Σ+ + 1) (2.4.2c)

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N−
r2

1

. (2.4.2d)

Near T1, i.e. for Σ+ ≈ −1, we can rearrange some terms in (2.4.2), using

1 + Σ+ =
Σ2
− +N2

1− Σ+
=
r2

1 +N1(N1 − 2N+)

1− Σ+
. (2.4.3)

This yields

r′1
r1

= r2
1 sin2 ψ1

−Σ+

1− Σ+
+N1 hr (2.4.4a)

δ′1
δ1

=
−1

1− Σ+
r2

1 cos2 ψ1 +
−Σ+

1− Σ+
r2

1 sin2 ψ1 +N1 hδ (2.4.4b)

Dt log
δ1

r1
=

−1

1− Σ+
r2

1 cos2 ψ1 +N1(hδ − hr) (2.4.4c)

ψ1
′ =
√

3r1

√
sin2 ψ1 +

δ2
1

r2
1

− r2
1

1− Σ+
sinψ1 cosψ1 +N1 sinψ1 hψ, (2.4.4d)

where

hr = +
√

3
Σ−N−
r2

1

+ (N1 − 2N+)

(
1− N2

−
(1− Σ+)r2

1

)
(2.4.5a)

hδ = (N1 − 2N+)
−Σ+

1− Σ+
(2.4.5b)

hψ = −
√

3 sinψ1 − cosψ1
N1 − 2N+

1− Σ+
. (2.4.5c)

Let us recall the convention that formally meaningless equations are to be ignored,
e.g. (2.4.4d) if r1 = 0; time-derivatives of logarithms, like e.g. (2.4.2a), are to be in-
terpreted as r′1 =

[
N2 − (Σ+ + 1) . . .

]
r1.
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Claim 2.4.1. We have |hr|, |hδ|, |hψ| ≤ 5 if |N1|, |N+|, |N−| ≤ 1
2 and Σ+ < 0.

Proof. The equations (2.4.4) and (2.4.5) follow directly from (2.4.2) by plugging in (2.4.3),
and collecting the “morally higher order” terms into (2.4.5). The estimates can be verified,
and improved upon, by direct calculation.

Polar Coordinates around the non-invariant generalized Taub-spaces. Without
loss of generality, assume that we are inM∗+−, i.e. N2 > 0 > N3, and that we are inter-
ested in a neighbourhood of T G1 = {x : Σ− = 0, |N2| − |N3| = 0}.

The assumption N2 > 0 > N3 is incompatible with N3 = N2; hence,M∗+− ∩T1 = ∅,
which is why we have to work with T G1 . Since T G1 is not invariant, we expect the
corresponding equations for r′1 and ψ1

′ to become singular near r1 = 0.
We will proceed analogous to the case of T1, using the same names for quantities

which fulfil the same function in this work, such that the definitions of e.g. N+, N− will
depend on the signs n̂2, n̂3. Hence, we introduce shorthands

N− = |N2| − |N3| = N2 +N3, N+ = |N2|+ |N3| = N2 −N3, (2.4.6a)

such that (with (2.3.7)):

r1 ≥ 0 : r2
1 = Σ2

− +N2
− (2.4.6b)

ψ1 : N− = r1 sinψ1 Σ− = r1 cosψ1 (2.4.6c)

N2
+ = N2

− + δ2
1 N2 = N2

+ +N1(N1 − 2N−). (2.4.6d)

This gives us the differential equations (using Σ2 +N2 = 1):

N ′− = (N2 − 1− Σ+)N− +
√

3Σ−N+ (2.4.6e)

N ′+ = (N2 − 1− Σ+)N+ +
√

3Σ−N− (2.4.6f)

Σ′− = N2Σ− −
√

3 (N−N+ −N+N1) , (2.4.6g)

allowing us to further compute

r′1
r1

=
Σ−Σ′− +N−N ′−

r2
1

= N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N+

r2
1

(2.4.7a)

ψ1
′ =

Σ−N ′− −N−Σ′−
r2

1

=
√

3N+ − (Σ+ + 1)
N−Σ−
r2

1

−
√

3N1
N−N+

r2
1

(2.4.7b)

δ′1
δ1

= N2 − (Σ+ + 1) (2.4.7c)

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N+

r2
1

. (2.4.7d)

Near T1, i.e. for Σ+ ≈ −1, we can rearrange some terms in (2.4.7), using

1 + Σ+ =
Σ2
− +N2

1− Σ+
=
r2

1 + δ2
1 +N1(N1 − 2N−)

1− Σ+
. (2.4.8)
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r′1
r1

=
−Σ+

1− Σ+
r2

1 sin2 ψ1 + δ2
1

cos2 ψ1 − Σ+

1− Σ+
+N1 hr (2.4.9a)

δ′1
δ1

=
−1

1− Σ+
r2

1 cos2 ψ1 +
−Σ+

1− Σ+
r2

1 sin2 ψ1 +
−Σ+

1− Σ+
δ2

1 +N1 hδ (2.4.9b)

Dt log
δ1

r1
=

−1

1− Σ+
r2

1 cos2 ψ1 − δ2
1

cos2 ψ1

1− Σ+
+N1(hδ − hr) (2.4.9c)

ψ1
′ =
√

3r1

√
sin2 ψ1 +

δ2
1

r2
1

− r2
1 + δ2

1

1− Σ+
cosψ1 sinψ1 +N1 sinψ1 hψ, (2.4.9d)

where

hr = +
√

3
Σ−N+

r2
1

+ (N1 − 2N−)

(
1− N2

−
(1− Σ+)r2

1

)
(2.4.10a)

hδ = (N1 − 2N−)
−Σ+

1− Σ+
(2.4.10b)

hψ = −
√

3

√
sin2 ψ1 +

δ2
1

r2
1

− cosψ1
N1 − 2N−

1− Σ+
. (2.4.10c)

Claim 2.4.2. If |N1|, |N+|, |N−| ≤ 1
2 and Σ+ < 0 and r1 > 0, and δ1

r1
≤ 1, then

|hr|, |hδ|, |hψ| ≤ 5.

Proof. The equations (2.4.9) and (2.4.10) follow directly from (2.4.7) by plugging in
(2.4.8), and collecting the “morally higher order” terms into (2.4.10). In order to see the
inequalities, note that N+ =

√
N2
− + δ2

1 and hence N+ ≤
√

2r1. Then, the estimates can
be verified, and improved upon, by direct calculation.

3 Description of the Dynamics

We will now give an overview of the behaviour of trajectories of (2.3.2). This overview
will contain most of the classic results about Bianchi type A vacuum cosmological models.

Our overview will be organized by first describing the simplest subsets named in Table
2 and then progressing to the higher dimensional subsets, finally describing Bianchi Type
IX (M+++) and Bianchi Type VIII (M++−) solutions. Our approach in this section is
very similar to [Rin01] and [HU09b]; unless explicitly otherwise stated, all observations
in this section can be found therein.

A very short summary of relevant dynamics. The Kasner circle K is actually a
circle and consists entirely of equilibria. The so-called Mixmaster attractor A consists
of three 2-spheres {x : Σ2

+ + Σ2
− + N2

i = 1, Nj = Nk = 0}, which intersect in K. Only

31



half of these spheres are accessible for any trajectory, since the signNi are fixed. For this
reason, these half-spheres are also called “Kasner-caps”, i.e. A+00 is the N1 > 0-cap.

The dynamics on the Kasner-caps will be discussed in Section 3.1; each orbit in a
Kasner-cap is a heteroclinic orbit connecting two equilibria on the Kasner-circle K.

The long-time behaviour of the lower dimensional Bianchi-types (at least one Ni = 0)
is well-understood: All such solutions converge to an equilibrium p ∈ K as t → ∞.
The behaviour in the highest-dimensional Bianchi Types IX and VIII is not yet fully
understood, and is therefore of most interest in this work.

It is known (c.f. [Rin01]) that Bianchi Type IX solutions that do not lie in a Taub-
space converge to the Mixmaster attractor as t → +∞, i.e. towards the big bang sin-
gularity. It has been conjectured that generic Bianchi Type VIII solutions share this
behaviour; this will be proven in this work (Theorem 4 and 5).

The question of particle horizons was mentioned in the introduction and further
discussed from a physical viewpoint in Section 2.2. In terms of the Wainwright-Hsu
equations, the question can be formulated as (see Section 2.2, or c.f. e.g. [HR09]):

Is I(x) = max
i

∫ ∞

0
δi(φ(x, t))dt = 2 max

i

∫ ∞

0

√
|NjNk|(t)dt <∞ ?

Here φ is the flow to (2.3.2). The spacetime associated to the solution φ(x, ·) forms a
particle horizon if and only if I <∞.

It is known that there exist solutions in Bianchi IX and VIII, where I <∞ (c.f. [LHWG11]).
It is not known, whether there exist any nontrivial solutions with I = ∞ (it is known
that solutions starting in T1 in Bianchi VIII and IX converge to an equilibrium outside
of A, and hence have I = ∞). We prove that, in both Bianchi IX and VIII and for
Lebesgue almost every initial condition, particle horizons develop (I <∞) (Theorem 6).

3.1 Lower Bianchi Types

Bianchi Type I: The Kasner circle. The smallest, i.e. lowest dimensional, Bianchi-
type is Type I, M000 = K, where all three Ni vanish (see Table 2). By the constraint
N2 + Σ2 = 1, we can see that K is the unit circle in the (Σ+,Σ−)-plane, and consists
entirely of equilibria.

The linear stability of these equilibria is given by the following

Lemma 3.1. Let p = (Σ+,Σ−, 0, 0, 0) ∈ K; first consider the case p 6= Ti and without
loss of generality |p + T1| < 1. Then the vectorfield has one central direction given by
∂K = (−Σ−,Σ+, 0, 0, 0), one unstable direction given by ∂N1 = (0, 0, 1, 0, 0), and two
stable directions given by ∂N2 = (0, 0, 0, 1, 0) and ∂N3 = (0, 0, 0, 0, 1).

The three Taub-points Ti have each one stable direction given by ∂Ni and three center
directions given by ∂K, ∂Nj and ∂Nk .

Proof. We first note that the four vectors ∂K and ∂Ni form a basis of the tangent space
TpM = ker dG.
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The stability of an equilibrium is determined by the eigenvalues and eigenspaces of
the Jacobian of the vector field; a generalized eigenspace is central, if its eigenvalue has
vanishing real part, it is stable if its eigenvalue has negative real part, and it is unstable
if its eigenvalue has positive real part. The Jacobian Df of the vector field f given by
(2.3.2) at p ∈ K is diagonal with three entries of the form Df = λ1∂N1 ⊗ dN1 + λN2∂2⊗
dN2 + λ3∂N3 ⊗ dN3; we can read off the stability from (2.3.2b) and Figure 4a.

T1

T2

T3

−T1

−T2

−T3

−2T1

−2T2

−2T3

(a) The three discs, where N ′
i/Ni > 0 and

a short heteroclinic chain.

δ1

δ2

δ3

T1

T2

T3

−T1

−T2

−T3

−2T1

−2T2

−2T3

(b) The three discs, where δ′i/δi > 0. Also,
the Kasner-map K is a double cover.

Figure 4: Stability properties and the Kasner map. All figures are in (Σ+,Σ−)-projection.

The Taub-line. There exists another structure of equilibria, given by T Li := {x ∈
M : Nj = Nk, Ni = 0, Σ = Ti}. Up to index permutations and N → −N , this set has
the form T L1 ∩M0++ = {p : p = (−1, 0, 0, n, n), n > 0}. We observe that this is a line
of equilibria. Each such equilibrium has one stable direction (corresponding to N1) and
three center directions.

Bianchi Type II: The Kasner caps. Consider without loss of generality the set
M+00, i.e. N1 > 0 = N2 = N3. The constraint G = 1 then reads

1 = N2
1 + Σ2

+ + Σ2
−,

i.e. the so-called “Kasner-cap” M+00 forms a half-sphere with K as its boundary. Con-
sidering (2.3.2), we can see that Σ′ = (Σ + 2T1)N2

1 is a scalar multiple of Σ + 2T1;
hence, the Σ-projection of the trajectory stays on the same line through −2T1. Since
N2

1 ≥ 0, this trajectory is heteroclinic and converges in forward and backward times to
the two intersections of this line with the Kasner circle K, where the α-limit is closer to
−2T1. Such a trajectory is depicted in Figure 4a.
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The Mixmaster-Attractor A. The most relevant set for the long-time behaviour
of the Bianchi system is the Mixmaster attractor A. It consists of the union of all six
Bianchi II pieces and the Kasner circle. Since the signs of the Ni stay constant along
trajectories, it is useful to only study a piece of A, given without loss of generality by:

A+++ =M+00 ∪M0+0 ∪M00+ ∪ K.

The set A+++ is given by the union of three perpendicular half-spheres (the three Kasner-
caps), which intersect in the Kasner-circle. The dynamics in the Mixmaster-Attractor
now consists of the Kasner circle K of equilibria and the three caps, consisting of hetero-
clinic orbits to K. It is described in detail by the so-called Kasner-map.

The Kasner-map K : K → K. We wish to describe which equilibria in K are connec-
ted by heteroclinic orbits. We can collect this in a relation K ⊆ K × K, i.e. we write
p−Kp+ if either p− = p+ = Ti or there exists a heteroclinic orbit γ : R→ A such that
p− = limt→−∞ γ(t) and p+ = limt→+∞ γ(t).

We can see by Figure 4a (or Lemma 3.1) that each non-Taub point p− has a one-
dimensional unstable manifold, i.e. one trajectory in An̂, which converges to p− in back-
wards time. Therefore, the relation K can be considered as a (single-valued, everywhere
defined) map.

This map is depicted in Figure 4b, and has a simple geometric description in the
(Σ+,Σ−)-projection: Given some p− ∈ K, we draw a straight line through p− and the
nearest of the three points −2Ti. This line has typically two intersections p− and p+ ∈ K
with the Kasner-circle, one of which is nearer to −2Ti, which is p−, and one which is
further away, which is p+. At a Ti, there are two possible choices of nearest −2Tj and
−2Tk and the lines through these points are tangent to K; we just set K(Ti) = Ti. We
see from Figure 4b that this map K : K → K is continuous and a double cover (i.e. each
point p+ has two preimages p1

− and p2
−, which both depend continuously on p+).

Looking at Figure 4a, we can also see that the Kasner-map is expanding. Hence it is
C0-conjugate to either [z]Z → [2z]Z or [z]Z → [−2z]Z; since it has three fixed points the
latter case must apply. Hence we have

Proposition 3.2. There exists a homeomorphism Ψ : K → R/3Z, such that Ψ(Ti) =
[i]3Z and

Ψ(K(p)) = [−2Ψ(p)]3Z ∀p ∈ K.

A formal proof of Proposition 3.2 is a digression; for this reason, it is deferred until
Section A.2, where we give a more detailed description of the Kasner map.

Basic Heuristics near the Mixmaster Attractor. Heuristically, the Kasner-map
determines the behaviour of solutions near A: Consider an initial condition x0 ∈M±±±
near A, i.e. an initial condition where none of the Ni vanish. Then the trajectory x(t)
will closely follow the heteroclinic solution γ1 passing near x0. Let p1 be the end-point
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of this heteroclinic; x(t) will follow γ1 and stay for some time near p1 (since it is an
equilibrium). However, if p1 6= Ti, then one of the Ni directions is unstable; therefore,
x(t) will leave the neighbourhood of p1 along the unique heteroclinic emanating from
p1, and follow it until it is near p2 = K(p1). This should continue until x(t) leaves the
vicinity of A, which should not happen at all (at least if the name “Mixmaster Attractor”
is well deserved).

The expansion of the Kasner-map is the source of the (so far heuristic) chaoticity
of the dynamics of the Bianchi system: The expansion along the Kasner-circle supplies
the sensitive dependence on initial conditions, while the remaining two directions are
contracting. The last direction is neutral and corresponds to the time-evolution.

Bianchi-Types VII0 and VI0. There are two Bianchi-types, where exactly one of
the three Ni vanishes: Types VII0 and VI0. In these Bianchi-Types, we have monotone
functions (Lyapunov functions), which suffice to almost completely determine the long-
time behaviour of trajectories. Without loss of generality, we focus on the case where
N1 = 0. Then we can write

Σ′+ = (1− Σ2)(Σ+ + 1), 1 = Σ2 + (N2 −N3)2. (3.1.1)

We can immediately see that Σ+ is non-decreasing along trajectories; indeed, we must
have limt→±∞Σ2(t) = 1 for all trajectories. Considering (2.3.2b) and Figure 4a, we can
see that, for t→ +∞ we must either have Σ+ ≥ 1

2 andN2, N3 → 0 (since (N2−N3)2 → 0)
or Σ+ = −1 and N2 = N3 all along; then the trajectory lies in the Taub-line T L1. In
backward time, we must have Σ+ → −1: All other points on the Kasner-circle have one
of the two N2, N3 unstable. These statements can be formalized as

Lemma 3.3. Consider an initial condition x0 with x0 ∈M0+−, i.e. N2 > N1 = 0 > N3.
Then, in forward time, the trajectory x(t) = φ(x0, t) converges to a point on the Kasner-
circle limt→∞ x(t) = p+ ∈ K with Σ+(p+) > 1

2 . In backwards time, the trajectory
converges to the Taub-point T1 = (−1, 0, 0, 0, 0) = limt→−∞ x(t).

Lemma 3.4. Consider an initial condition x0 with x0 ∈ M0++ \ T L1. Then, in
forward time, the trajectory x(t) = φ(x0, t) converges to a point on the Kasner-circle
limt→∞ x(t) = p+ ∈ K with Σ+(p+) > 1

2 . In backwards time, the Σ-projection of the
trajectory converges to the Taub-point T1 = (−1, 0) = limt→−∞Σ(x(t)). No claim about
the dynamics of the Ni(t) for t→ −∞ is made.

Proof of Lemma 3.3 and 3.4. Most of the proof is contained in the preceding paragraph;
we only need to exclude the possibiliy that Σ+(p+) = 1

2 , i.e. limt→∞ x(t) ∈ {T2,T3}.
In order to exclude this case, we permute indices such that x0 ∈ M±0± and exclude
limt→∞ x(t) = T1. Recall the polar coordinates (2.4.4a); using N2 = 0 we have N− = N+

and can simplify to

Dt log r1 = r2
1 sin2 ψ1

−Σ+

1− Σ+
+
√

3N1
Σ−N−
r2

1

+N1(N1−2N+)

(
1− N2

−
(1− Σ+)r2

1

)
≥ −C|N1|.
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However, |N1|′ ≤ −|N1| near T1; hence, integrating this inequality shows that we cannot
have limt→∞ r1(t) = 0.

It can be shown that, in the case of Bianchi VII0, i.e. x0 ∈ M0++ \ T L1, the limit
limt→−∞ x(t) = p ∈ T L1 \ {T1} exists and does not lie on the Kasner circle. This claim
follows directly from Lemma 5.6; however, the proof of Lemma 5.6 is rather lengthy and
not required for our main results.

3.2 Bianchi-Types VIII and IX for large N

As we have seen, the lower Bianchi types do not support recurrent dynamics. This is
different in the two top-dimensional Bianchi-types VIII and IX. This section is devoted
to first describing the behaviour far from A, where |N | may be large.

First, recall the definition and differential equation (2.3.8a), Dt∆ = −|Σ|2∆ for
∆ = |N1N2N3|

1
3 and Lemma 2.4. This tells us that the triple product |N1N2N3| is

monotonically decreasing. This decrease is strict, because, by elementary calculation,
Σ = 0 implies N2 = 1 and Σ′ 6= 0.

Also, observe the following equation, easily derived from (2.3.2) and (2.3.3):

DtΣ+ = (1− Σ2)(Σ+ + 1) + 3N1(N2 +N3 −N1). (3.2.1)

Using these observations, we can easily see the following:

Lemma 3.5 (Long-Time Existence). Every solution x : [0, T ) → M of (2.3.2) has
unbounded forward existence time (i.e. no finite-time blow-up occurs towards the future,
i.e. towards the big bang singularity).

If x 6∈ M+++∪M−−− is not of Bianchi type IX, then the solution also has unbounded
backward existence time.

Proof. The only way that long-term existence can fail is finite-time blow-up, i.e.
limt→Tmax |x(t)| =∞ for some 0 < Tmax < ∞. We cannot exclude this possibility a
priori, since the vectorfield given by (2.3.2) is polynomial.

From (2.3.2) we see that |DtN | ≤ C(1+Σ2)|N |. The claim follows from ∆(t) ≤ ∆(0)
for all t ≥ 0, apparent from (2.3.8a), and Lemma 2.4.

Finite-time blow-up in backwards time for Bianchi IX is not excluded, and can indeed
occur (“recollapse” of the described universe, c.f. e.g. [Rin01]). In Appendix A.3, we
address the notational problems posed by the failure of long-time backwards existence.

We have seen in (2.3.8a) that the triple product |N1N2N3| is strictly decreasing; we
will now show that this decrease is exponential. In the following, it is useful to imagine
C∆,3.1 = 1:

Lemma 3.6 (Essentially exponential convergence of |N1N2N3|). For every C∆,3.1 > 0,
there exists c3.1 = c3.1(C∆,3.1) > 0 such that for all trajectories x : [t1, t2] → M with
∆(t1) ≤ C∆,3.1 we have

∆(t2) ≤ 2e−c3.1(t2−t1)∆(t1).
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Proof. We consider the averaged rate of decay s :M→ [0,∞), given by

s(y) =

∫ 1

0
Σ2(φ(y, t))dt.

Suppose we had shown a lower bound s(y) > c3.1 ∈ (0, 0.5) for all y ∈ M with ∆(y) ≤
C∆,3.1. Then, for t2 = t1 + k + t with k ∈ N and t ∈ [0, 1):

− log
∆(t2)

∆(t1)
=

∫ t2

t1

Σ2(t)dt ≥ kc3.1 ≥ (t2 − t1 − 1)c3.1

and the assertion would follow. The remainder of this proof is devoted to showing such
a bound.

At first we note that s(x) > 0 for all x ∈ M, since Σ = 0 implies N2 = 1 and
Σ′ 6= 0, as we remarked at the beginning of Section 3.2. Since s is clearly continuous
it is uniformly bounded above zero on all compact subsets. Hence, the only potential
problems are for x → ∞, with bounded ∆(x) ≤ C∆,3.1; there, we must exclude the
possibility that s(x)→ 0.

In view of Lemma 2.4 we have, without loss of generality with respect to index
permutations, |N1| � 1 � |N2| ≈ |N3|, and |N1|(|N2| + |N3|) � 1 for x → ∞ with
bounded ∆(x) ≤ C∆,3.1. These inequalities are preserved for one unit of time, since
Dt|Ni| ≤ C(1 + |Σ|2)|Ni|.

Then, (3.2.1) yields DtΣ+(x) ≈ (1−|Σ|2)(Σ++1). This clearly contradicts s(x)→ 0:
Assume s(x0) ≈ 0; then, integration shows Σ+(t) ≈ t+ Σ+(0) for t ∈ [0, 1].

In order to see this more rigorously, assume s(x0) < ε1 and |N1|(|N2| + |N2|) < ε2,
for all x(t) = φ(x, t) with t ∈ [0, 1], and estimate Σ+(t)−Σ+(0) ≥ t− 3ε2t− ε1−

√
tε1−

2ε1(1 + 2∆2(0)). Here, we used that generally
∫ a

0 |f |(b)db ≤
√
a
∫ a

0 f
2(b)db, and that

|Σ| ≤ 1+2∆2. This implies, for t ∈ [0.5, 1], that Σ+(t)−Σ+(0) ≥ 0.5−cε2−Cε1(1+c3.1).
Adjusting ε2 (from x → ∞) and ε1 (our claim) yields the desired contradiction, and
concludes the proof.

This result, i.e. Lemma 3.6, is not as explicitly stated in the previous works [Rin01,
HU09b], and certainly not as extensively used, but is not a novel insight either. It directly
proves that metric coefficients stay bounded, see Section 2.2.

Using Lemma 3.6, we can relatively quickly see the following:

Lemma 3.7 (Existence of ω-limits). For every initial condition x0 ∈M, the ω-limit set
is nonempty, ω(x0) 6= ∅, i.e. there exists a sequence of times (tn)n∈N with limn→∞ tn =∞
such that the limit limn→∞ x(tn) exists.

Proof. The only way of avoiding the existence of an ω-limit is to have limt→∞ |x(t)| =
∞. Assume that we had such a solution x = x(t), where without loss of generality
|N1N2N3|(t) ≤ 1 for all t ≥ 0; we will derive a contradiction. Recalling Lemma 2.4, we
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see that |N1| → 0 and |N2|, |N3| → ∞, without loss of generality with respect to index
permutations. Recall and estimate, using Lemma 2.4 and Lemma 3.6:

DtΣ+(t) = (1− Σ2)(Σ+ + 1) + 3N1(N2 +N3 −N1) (3.2.1)

≥ |(1− Σ2)(Σ+ + 1)| − Ce−ct (3.2.2)

Dt log δ1(t) = −(Σ2 + Σ+). (3.2.3)

Suppose that Σ+ → −1 as t → +∞. Then, by (3.2.2), this convergence must be
exponentially fast. This means that the right-hand side of (3.2.3) decays exponentially,
contradicting the assumption δ1 = 2

√
|N2N3| → ∞.

Suppose on the other hand that Σ+ 6→ −1 as t → ∞. Since |Σ|2 ≤ 4∆2, we then
must have 1 + Σ+(t) > ε for some ε > 0 for all sufficiently large times t ≥ T0. Informally,
we can see from Figure 4b that, with 1 + Σ+ > ε, either DtΣ+ � 0 or Dt log(δ1) � 0,
and therefore C > Σ+ > −1 + ε contradicts δ1 →∞.

Formally, since Σ+ is bounded,
∫∞
T0

(1 − Σ2)εdt <
∫∞
T0

Σ′+dt + C < ∞, and hence∫∞
T0

(1−Σ2)dt <∞. However, Dt log(δ1) = −Σ2−Σ+ ≤ 1−Σ2− ε and integration shows
limt→∞ δ1(t) = 0, contradicting the assumption δ1 = 2

√
|N2N3| → ∞.

3.3 The Bianchi IX Attractor Theorem

The Mixmaster Attractor was known at least since [Mis69]. However, the first proof that
A actually is an attractor was given comparatively recently in [Rin01, Theorem 19.2,
page 65], and simplified in [HU09b]. This important result is the following:

Theorem 1 (Classical Bianchi IX Attractor Theorem). Let x0 ∈M+++ \ T . Then

lim
t→∞

dist(x(t),A) = 0.

Also, the ω-limit set ω(x0) contains a point p ∈ K \ T .

The proofs of Theorem 1 given in [Rin01] and [HU09b] require some subtle averaging
arguments (summarized as Lemma 5.6), which are lengthy and fail to generalize to the
case of Bianchi VIII initial data. We will now give the first steps leading to the proof
of Theorem 1, up to the missing averaging estimates for Bianchi IX solutions. Then, we
will state the missing estimates and show how they prove Theorem 1. Afterwards, we
will give a high-level overview of how we replace Lemma 5.6 in this work. Nevertheless,
for the sake of completeness, we provide a proof of Lemma 5.6 in Section 5.3.

Rigorous steps leading to Theorem 1. We first show that solutions cannot converge
to the Taub-line T Li, if they do not start in the Taub-space Ti:

Lemma 3.8 (Taub Space Instability). There exists constants ρ3.1 = 0.1 and C3.2 > 0,
such that the following holds:
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For any piece of trajectory x : [t1, t2]→ {x ∈M : |Σ(x)−T1| ≤ ρ3.1} with N2, N3 ≥
0, the following estimate holds:

r1(x(t2)) ≥ e−C3.2h(x(t1))r1(x(t1)), where (3.3.1a)

h(x) = |N1|+ |N1|2 + |N1N2|+ |N1N3|. (3.3.1b)

Proof. This Lemma uses the polar coordinates introduced in Section 2.4, i.e. (2.4.4a) to
see that:

Dt log r1 =
−Σ+

1− Σ+
r2

1 sin2 ψ1 +
√

3N1 sinψ1 cosψ1

+N1(N1 − 2N2 − 2N3)

(
1− sin2 ψ1

1− Σ+

)
(3.3.2a)

≥ −C|N1| − C|N1|2 − C|N1N2| − C|N1N3| (3.3.2b)
Dt log |N1| ≈ −3 ≤ −1, (3.3.2c)

Dt logN2 ≈ Dt logN3 ≈ 0. (3.3.2d)

The desired estimate then follows by integration.
Since this is the first of many proofs of the same style, let us be more verbose, once.

Following the general convention explained on page 17, (3.3.2c) is to be interpreted as
DtN1 = fN1 N1 and fN1 ≤ −1, and similarly for the other equations. Hence, there is no
problem of ill-definedness with (3.3.2a) in the case that one or more of r1, N1, N2, N3 are
zero. The actual inequalities (3.3.2a) are easily verified by direct calculation.

Now, let us integrate. First, integrating (3.3.2c) shows |N1|(s) ≤ e−(s−t1)|N1|(t1) for
all s ∈ [t1, t2], and an analogue inequality for |N1|2. Using the analog (3.3.2d), we see
h(s) ≤ e−(s−t1)h(t1) for all s ∈ [t1, t2], and, using this, the claim follows from integrating
(3.3.2b).

Together with Lemma 3.7, this allows us to see that there are ω-limit points on
K. Even more, we can give quite a detailed description of how solutions might fail to
have ω-limit points on K. The following Lemma and its proof require a little bit more
background knowledge from the theory of dynamical systems; this is all summarized
in Appendix A.3, see especially Lemma A.2 for basic properties of ω-limit sets. The
heteroclinic trajectory connecting −Ti → Ti is denoted by W u(−Ti) = W s(Ti), i.e. it
is the unstable manifold of −Ti, and at the same time the stable manifold of W s(Ti).
Of course, there are two such trajectories, one with Ni > 0 and one with Ni < 0. Which
one is meant will always be apparent from the context, and in an abuse of notation we
suppress the implicit subscript n̂ ∈ {+1,−1, 0}3 to W u

n̂ (Ti).

Lemma 3.9. Let x : [0,∞)→∈M±±± be a solution. Then, one of the following cases
applies (for some i):

1. The Attract case. There exists a non-Taub ω-limit point p ∈ ω(x0) ∩ (K \ T ).

2. The Taubi case. We have n̂j = n̂k and x0 ∈ Ti.
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3. The Excepti case. We have n̂j = −n̂k and x converges to the heteroclinic cycle
−Ti → Ti → −Ti. By this, we mean W u(−Ti) ( ω(x0) ⊆W u(−Ti)∪W s(−Ti)∪
{Ti,−Ti}. Then, lim supt→∞ δi(t) > 0.

4. The TaubExcepti case. We have n̂j = n̂k and x converges to the heteroclinic
cycle −Ti → T Li → −Ti. By this, we mean W u(−T1) ( ω(x0) ⊆ W u(−Ti) ∪
W s(−Ti) ∪ {−Ti} ∪ T Li. Then, lim supt→∞ δi(t) > 0.

5. The TaubConvergei case. We have n̂j = −n̂k and limt→∞ x(t) = Ti.

Let us remark that the cases TaubConverge and TaubExcept are actually im-
possible, due to Lemma 5.4 and Lemma 6.3. We do not know whether the case Except
is possible.

Proof. The proof proceeds by indirection: We assume that neither Attract nor Taub
applies for x, and will then describe the possible limit sets (nonempty due to Lemma
3.7). Assume without loss of generality that |N1N2N3| < 1 for all t ≥ 0 (otherwise, wait
some time; recall Lemma 3.6).

Let us first exclude a case that is prominently absent from the above list: We cannot
have ω(x0) ⊆ T Li and n̂j = n̂k. This is evident from Lemma 3.8.

Let y ∈ ω(x0); we will now discuss possible cases for y, before putting them all
together in the end. We know from Lemma 3.6 that y has N1N2N3 = 0, i.e. is of lower
Bianchi type.

Assume that y ∈ K. Then, by our assumption that Attract does not apply, we
must have y ∈ {+Ti,−Ti : i ∈ {1, 2, 3}}.

Assume that y ∈ A. Then, by our assumptions, we must have y ∈ W s(−Ti) for
some i ∈ {1, 2, 3}, in order to not contradict the assumption that Attract does not
apply. This is because α(y) ⊆ ω(x0) and ω(y) ⊆ ω(x0), due to the abstract theory of
dynamical systems.

Assume that y ∈ M0+−, without loss of generality. Then, by Lemma 3.3, we must
have y ∈W s(−T1) ∩M0+−.

Assume that y ∈ M0++ \ T L1, without loss of generality. Then, by Lemma 3.4, we
must have y ∈W s(−T1) ∩M0++.

The last possible case is that y ∈ T L1, without loss of generality. This is an exhaust-
ive description of all possible ω-limit points y ∈ ω(x0).

We have therefore shown, for x0 ∈Mn̂ \ T , where Attract does not apply, that

ω(x0) ⊆M∗n̂ :=Mn̂ ∩
⋃

i

(T Li ∪W s(−Ti) ∪ {Ti} ∪W u(−Ti)).

Assume that we are in Bianchi VIII, without loss of generality x0 ∈ M++− \ T .
Then, due to Lemma 2.4 and the constraint 1 = |Σ|2 +N2, the set M∗−++ has three con-
nected components; two of them, associated toM−0+ andM−+0, are bounded, and one,
associated toM0++, is unbounded. Due to the abstract theory of dynamical systems (see
Lemma A.2), ω-limit sets are either compact and connected, or non-compact. Therefore,
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only one of the indices i from the definition of M∗−++ can appear in ω(x0). Morally,
this means that exactly on of the mutually exclusive cases TaubExcept1, Except2,
Except3, TaubConverge2 or TaubConverge3 must apply; formally, we still need
to prove some additional claimed properties of the solution in the cases Except and
TaubExcept. The claimed lower bound W u(−Ti) ⊆ ω(x0) in the cases Excepti and
TaubExcepti from the fact that x(t) cannot converge to −Ti, since |Ni| > 0 is unstable
(and any hypothetical “creeping along the center manifold K” would contradict the as-
sumption that Attract does not apply). The same argument showsW u(−Ti) ( ω(x0),
and hence ω(x0)∩ (W s(−Ti) \A) 6= ∅, and hence the lower bound lim supt→∞ δi(t) > 0.

Let us next consider the case of Bianchi IX, without loss of generality x0 ∈M+++\T .
Then, due to Lemma 2.4 and the constraint 1 = |Σ|2 + N2, the set M∗+++ has three
connected components, all three of them unbounded.

We would like to apply the same argument as in Bianchi VIII; however, this does not
directly work, because non-compact ω-limit sets can generally be disconnected. Deferring
this problem for a moment, we see that the conclusions would follow if we could show that
only one index i appears in ω(x0) ⊂ M∗+++: Then, one of the three mutually exclusive
cases TaubExcept1, TaubExcept2 and TaubExcept3 would apply.

However, we can see from Lemma 2.4 that this problem is cosmetic only, since the
three unbounded parts of M∗+++ “do not touch at infinity”.

Let us make this rigorous; we will modify the standard proof that compact ω-limit
sets are connected, given in Lemma A.2. Consider X := M+++ ∩ {N1N2N3 ≤ 1}; we
split X = X0 ∪ (X1 ∪X2 ∪X3), where X1, X2, X3 are open and mutually disjoint, and
X0 is open and bounded (as a subset of R5). In view of Lemma 2.4, take e.g. X0 = {x ∈
X : |x| < 11} and Xi = {x ∈ X : |x| > 10, Ni < 1}. Then, find three mutually disjoint
open sets Ui ⊂ X0 that cover M∗+++ ∩ X0, with the set corresponding to M0++ ⊆ U1

and analogously for the other indices. Now assume that the solution x : [0, T ) → X is
not eventually contained in Ui ∪ Xi for some i; we will derive a contradiction. Indeed,
recalling the proof of Lemma A.2, we immediately find a sequence tn → ∞ such that
x(tn) 6∈ ⋃i Ui ∪ Xi. However, we must have x(tn) ∈ X0 for all n; taking a convergent
subsequence, possible because X0 is bounded, yields the desired contradiction.

Therefore, we know that lim inft→∞maxi δi(t) = 0 and hence lim inft→∞ dist(x(t),A) =
0 for initial conditions in M±±± \ T . Furthermore, we know that, in the case of Bi-
anchi IX, there must be multiple ω-limit points. In the case of Bianchi VIII, with
N1 < 0 < N2, N3, it is still imaginable that ω(x0) ⊆ {T2,T3}; this will be excluded in
Lemma 5.4. While we presently lack the necessary estimates to prove the missing part
of the attractor theorem, lim supt→∞maxi δi(t) = 0, we can at least describe how this
may fail: Each δi can only grow by a meaningful factor in the vicinity of a Taub-point
Ti. This fact has, unfortunately, a relatively technical formulation in Lemma 3.10. This
statement may become clearer when Lemma 3.10 is used in the proof of Theorem 1, page
42.

Lemma 3.10. Given ρ3.2 > 0, there exist C3.3, c3.4 = C3.3, c3.4(ρ3.2) > 0 such that the
following holds:
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Suppose we have a piece of trajectory x : [t1, t2]→M±±±, such that:

1. We have the product bound |N1N2N3|(t1) < c3.4 (and hence for all t ∈ [t1, t2]).

2. The first point of the partial trajectory is bounded away from the Taub-line T L1,
i.e. 1 + Σ+(t1) > ρ3.2.

3. The piece of trajectory has 1 ≥ δ4
1(t) ≥ |N1N2N3|(t) for all t ∈ [t1, t2], i.e. |N1| ≤

4δ2
1 = 16|N2N3| for all t ∈ [t1, t2], i.e. δ1 is large compared to N1, but bounded.

Then δ1 can only increase by a bounded factor along this piece of trajectory, i.e. δ1(t2) ≤
C3.3δ1(t1).

Proof. Recall the proof of Lemma 3.7. From δ4
1 ≥ |N1N2N3|, we know that |N1| ≤ 4δ2

1

and |N1| ≤ 2
√
|N1|δ1 = 2

√
|N1N2N3|. Therefore, equation (3.2.2) holds.

If c3.4 > 0 is small enough, this allows us to see that 1 + Σ+(t) > 1
2ρ3.2 for all

t ∈ [t0, t1]. Since |Σ+| ≤ 2 is bounded, integrating (3.2.2) shows
∫ t2
t1
|1 − Σ2|ρ3.2dt < C

and hence
∫ t2
t1
|1 − Σ2|dt < C

ρ3.2
. Integrating (3.2.3), i.e. Dt log δ1 = (1 − Σ2) − (1 +

Σ+) ≤ (1− Σ2)− 1
2ρ3.2, yields the claim.

Sketch of classic proofs of Theorem 1. The previous proofs of Theorem 1, both in
[Rin01] and [HU09b], rely on the following estimate (Lemma 3.1 in [HU09b], Section 15
in [Rin01]):

Lemma 5.6. We consider the neighbourhood of T1 with N2, N3 > 0. There exist constants
ρ5.3 > 0 small enough and C5.14 > 1 large enough, such that, for any piece of trajectory
x : [0, T ]→ {y ∈M∗++ : |Σ(y)−T1| ≤ ρ5.3}, the following estimate holds:

δ1(x(T )) ≤ C5.14e
C5.14h(x(0))δ1(x(0)), where (5.3.2)

h(x) = |N1|+ |N1|2 + |N1N2|+ |N1N3|.

The proof of this Lemma 5.6 requires some lengthy averaging arguments and will be
deferred until Section 5.3, page 56. We stress that Lemma 5.6 is not actually needed for
any of the results in this work, and will be proven only for the sake of completeness of
this literature review.

Proof of Theorem 1 using Lemma 5.6. We will first proof the following
Claim 3.3.1. For solutions x : [0,∞)→M±++ \ T1, we have limt→∞ δ1(t) = 0.

Proof of Claim 3.3.1. Make Lemma 3.10 and Lemma 5.6 compatible by choosing ρ3.2 =
ρ5.3. Assume that, without loss of generality, |N1N2N3|(t) < c3.4 for all t ≥ 0.

By Lemma 3.9, we have lim inft→∞ δ1(t) = 0. For any sub-interval [TL, TR] ⊆ [0,∞)
with 1 > δ4

1 > |N1N2N3| for all t ∈ [TL, TR], we can only have a bounded increase
δ1(TR) ≤ C3.3C5.14δ1(TL): Large relative increases of δ1 are neither possible away
from T1 (Lemma 3.10), nor near T1 (Lemma 5.6). Now, since limt→∞ |N1N2N3| =
lim inft→∞ δ1 = 0, this implies lim supt→∞ δ1(t) = 0. �
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This clearly proves limt→∞ δi(t) = 0 for all three i ∈ {1, 2, 3} for solutions inM+++ \
T . In order to see that an ω-limit point p ∈ K \ T exists, consider Lemma 3.9. The
possibilities Except and TaubConverge are a priori impossible, since we are inM+++.
The possibility TaubExcept is excluded by Claim 3.3.1. �

Remark 3.11. Lemma 5.6 includes the Bianchi VIII case of N2, N3 > 0 > N1. The
versions stated in [Rin01, HU09b] only consider the Bianchi IX case N1, N2, N3 > 0;
however, their proofs extend to this case virtually unchanged.

This allows us to show Claim 3.3.1, that proves N2N3 → 0 in the Bianchi VIII case
N1 < 0 < N2, N3, also keeping the proofs of [Rin01, HU09b] virtually unchanged.

To the best of our knowledge, Claim 3.3.1 has not been explicitly stated in the
literature before; nevertheless, since it is a trivial corollary of the previously known
(nontrivial!) proofs for Bianchi IX, it should not be considered a novel result of this
work.

The above proof also shows that in Bianchi VII0, i.e. for any x0 ∈ M0++ \ T1, we
must have limt→−∞ x(t) = p− with p− = (−1, 0, 0, N,N) for some N > 0. This is false
in the case of Bianchi VI0: Any x0 ∈ M0+− has limt→−∞ x(t) = (−1, 0, 0, 0, 0). Hence,
δ1 can grow by an arbitrarily large factor near T1 inM∗+−, and no analogue of Lemma
5.6 can hold in the Bianchi VIII modelsM∗+− andM∗−+. In other words, attempts to
trivially adapt the proof of Claim 3.3.1 to show δ2, δ3 → 0 are doomed.

This difficulty is partially responsible for the fact that, for Bianchi the VIII case x0 ∈
M−++, it was previously unknown whether limt→∞N1N2(t) = 0 and limt→∞N1N3(t) =
0.

Sketch of our replacement for Lemma 5.6. In this work, we will replace the rather
subtle averaging estimates from Lemma 5.6 by the program outlined the introduction and
in this paragraph. Let us first repeat the reasons, why we want to avoid Lemma 5.6:

1. The analogue statement of Lemma 5.6 in Bianchi VIII is wrong. Lemma 3.3 shows
that counterexamples to such a generalization can be found by taking any sequence
{xn} of initial data converging to any point in M0−+. Therefore, any argument
relying on Lemma 5.6 has no chance of carrying over to the Bianchi VIII case.

2. The proof of Lemma 5.6 is lengthy and requires subtle averaging arguments.

3. The complexity of the proof of Lemma 5.6 is not unavoidable: Most of the effort
is spent trying to understand asymptotic regimes that do not occur anyway.

Our replacement is described by the following program:

1. At first, we study pieces of trajectories x : [0, T ]→M±±±, which start near A and
stay bounded away from the generalized Taub-spaces T Gi , i.e. have all ri > ρ3.3.
Along such partial solutions, all three δi decay essentially exponentially (Proposi-
tion 4.1).
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2. Next, consider how solutions near A can enter the neighbourhood of the generalized
Taub-spaces. This can only happen near some −Ti (Proposition 4.2).

3. For such solutions entering the vicinity of −Ti, the quotient δi
ri

is initially small,
and stays small near −Ti and along the heteroclinic leading to +Ti (Proposition
5.1).

4. Next, we study solutions near Ti for which δi
ri

is initially small. Then, δi
ri

stays
small. This additional condition (δi � ri) allows us to describe solutions with
easier averaging arguments and stronger conclusions than Lemma 5.6. Bianchi
VIII solutions can be analysed in the same way. This is done in Section 5.2,
leading to the conclusion that δi decays essentially exponentially, with nonuniform
rate ∼ cr2

i , which is, up to constant factors, the same rate as on the Kasner circle
(Proposition 5.3).

5. Finally, we combine the previous steps in Section 6 in order to prove Theorems 2,
3 and 4. These extend Theorem 1 with somewhat finer control over solutions and
provide an analogue in Bianchi VIII.

4 Dynamics near the Mixmaster-Attractor A
Our previous arguments in Section 3 about the dynamics of (2.3.2) have been of a rather
qualitative and global character. We have established that there exist ω-limit points on
the Mixmaster-attractor A.

We have also sketched the classical proof that trajectories converge to A in the case
of Bianchi Type IX (Theorem 1) (where we deferred the proof of the crucial estimate
Lemma 5.6 to a later point).

In this section, we will give a more precise description of the behaviour near A. The
goal of this section is to show that pieces of trajectories x : [0, T ]→M near A converge
to A essentially exponentially, at least as long as they stay bounded away from the
Taub-points Ti.

The goal of this section is to prove the following two Propositions 4.1 and 4.2:

Proposition 4.1 (Essentially uniform exponential convergence to A away from the Taub
points). For any 0 < ρ4.1 ≤ 0.1 small enough, there exist constants, c4.1, C4.2, εd,4.1 =
c4.1, C4.2, εd,4.1(ρ4.1) > 0, such that the following holds:

Consider a trajectory x : [0, T ∗) → M±±±, such that, for all t ∈ [0, T ∗) and i ∈
{1, 2, 3} the following inequalities hold:

max
i
δi(t) < εd,4.1 (4.1a)

min
i
d(x(t),Ti) > ρ4.1. (4.1b)

Then, each δi is essentially uniformly exponentially decreasing in [0, T ∗), i.e. for all
0 ≤ t1 ≤ t2 < T ∗ and i ∈ {1, 2, 3}:

δi(t2) ≤ C4.2e
−c4.1(t2−t1)δi(t1). (4.2a)
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Figure 5: The relevant regions are colored in gray and are not up to scale (except for
Fig.4a and Fig.4b). See also Fig.4.



We can replace the assumption (4.1a) by maxi δi(x0) < C4.2εd,4.1. Then, if T ∗ <∞ and
one of the inequalities (4.1b), (4.1a) is violated at time T ∗, it must be (4.1b), and (4.1a)
must still hold at T ∗.

Furthermore, given c4.3, εN,4.2 > 0 arbitrarily small, we can adjust εd,4.1 > 0 down-
wards, such that, if 0 ≤ t1 < t2 < T ∗, such that |Nj |(t1) > εN,4.2 and |Nk|(t2) ≥ εN,4.2
with j 6= k, then for all t ∈ [t2, T

∗):

δi(t) ≤ c4.3δi(t1). (4.2b)

First, note that the part of the Proposition about replacing the assumption (4.1a) by
maxi δi(x0) < C4.2εd,4.1. is really a trivial corollary of the remaining claims. Informally,
Proposition 4.1 states that trajectories near A converge exponentially to A, as long as
they stay bounded away from the Taub points. The following Proposition 4.2 extends
this by describing that the only way for trajectories near A to reach the vincinity of the
Taub-points is via the heteroclinic connection −Ti → Ti:

Proposition 4.2. Assume the setting of Proposition 4.1. It is possible to choose εN,4.2,
εd,4.1 > 0 small enough such that additionally the following estimate holds, with C4.4 = 5:

Assume that T ∗ = inf{t > 0 : d(x(t),T`) ≤ ρ4.1} < ∞, and that initially, for all
i ∈ {1, 2, 3}

d(x0, Ti) > C4.4ρ4.1. (4.3a)

Then the final part of the trajectory preceding T ∗ must have the form depicted in Figure
5c, i.e. there is ` ∈ {1, 2, 3} and ` 6= j ∈ {1, 2, 3} and there are times 0 < TA < TB <
TC ≤ T ∗ (typically TC = T ∗) such that

|Nj |(TA) ≥ εN,4.2 (4.4a)

d(x(t),−T`) ≤ C4.4ρ4.1 ∀t ∈ [TA, TB] (4.4b)

|N`(t)| ≥ εN,4.2 ∀t ∈ [TB, TC ] (4.4c)

d(x(t),T`) ≤ C4.4ρ4.1 ∀t ∈ [TC , T ∗]. (4.4d)

Informal Outline of Proofs

Informal proof of Proposition 4.1. We split the trajectory into time intervals where it is
either near K (i.e. maxi |Ni| ≤ εN ) or away from K (i.e. maxi |Ni| ≥ εN ).

Near K, we can see from (2.3.2b) and (2.3.8b) that each Dt log |Ni| and Dt log δi
depends only on the Σ-coordinates and is positive only on some disc in R2. These six
discs are plotted in Figures 5a and 5b. We can observe that these discs only touch and
intersect K at the three Taub-points and that near each point p ∈ K \ {Ti}, exactly
one of the log |Ni| is increasing and the two remaining log |Nj | and all three log δi are
decreasing. Under our assumption mini d(x(t),Ti) > ρ, this increase and decrease is
uniform if εN = εN (ρ) > 0 is small enough and maxi |Ni| ≤ εN .

Hence, for any small piece of trajectory x : [t1, t2] → {x ∈ M : mini d(x,Ti) ≥
ρ, maxi |Ni| ≤ εN}, one of the |Ni| is uniformly exponentially increasing, while all three
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δi and the remaining two |Nj |, |Nk| are uniformly exponentially decreasing, with some
rate 2c4.1 = 2c4.1(ρ4.1, εN,4.2) > 0.

Eventually the trajectory will leave the neighbourhood of K; since we assumed that
we are near A, i.e. maxi δi < εd, this can only happen near one of the Kasner caps
(Bianchi type II). By continuity of the flow, the trajectory will follow a heteroclinic orbit
until it is near K again, and will spend only bounded amount of time T < C(εN ) for this
transit. Hence, all |Ni| and δi can only change by a bounded factor, independent of εd,
during such a heteroclinic transit.

The time spent nearK between two heteroclinic transits is bounded below byO(| log εd|)
(for fixed ρ, εN ): Consider an interval [t1, t2] spent near K, where t1 > 0. Suppose
without loss of generality that initially |N1|(t1) = εN and that |N2| is uniformly expo-
nentially increasing, such that |N2|(t2) = εN . Then, we must have |N2|(t1) =

δ23
4|N1|(t1) ≤

CεN
−1εd

2 � |N2|(t2) = εN , and we must have t2 − t1 ≥ c| log εd|. Hence, if εd � εN
is small enough, the exponential decrease of the three δi will dominate all contributions
from the heteroclinic transits and we obtain an estimate of the form (4.2a). The estimate
4.2b follows if we have at least one heteroclinic transit.

Informal proof of Proposition 4.2. We again use continuity of the flow: Each small het-
eroclinic “bounce” near one of the Ti must increase the distance from Ti by at least
some c4.5 = c4.5(ρ) > 0. By continuity of the flow, each episode with maxi |Ni| ≥ εN
therefore must increase the distance from Ti by c4.5/2; near K, the trajectory is almost
constant and d(x0,Ti) cannot shrink by more that c4.5/3. Hence the only way to reach
the vicinity of a Taub point is by following the heteroclinic −T` → T`.

Formal Proofs The remainder of this section is devoted to making these informal
proofs rigorous, i.e. filling all the gaps and replacing the hand-wavy arguments by formal
ones. We begin by naming the regions of the phase-space, where the various estimates
hold:

Definition 4.3. Given ρ, εN , εd > 0 (later chosen in this order) we define:

Cap[εN , εd] = {x ∈M : max |Ni| ≥ εN ,max
i
δi ≤ εd}

Circle[εN , εd] = {x ∈M : max |Ni| ≤ εN , max
i
δi ≤ εd}

Hyp[ρ, εN , εd] = Circle[εN , εd] \ [Bρ(T1) ∪Bρ(T2) ∪Bρ(T3)] .

(4.5)

These sets are sketched in Figure 5 (not up to scale). They are constructed such that
for appropriate parameter choices:

1. The union Cap∪Circle contains an entire neighbourhood of A (by construction).

2. The region Circle is a small neighbourhood of the Kasner circle. This is because
of the constraint 1 = Σ2 +N2 and |N2| < CεN

2 (see Figure 5e).
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3. The region Cap has three connected components, where one of the three |Ni| � 0,
because by maxi |Ni| ≥ εN at least one Ni must be bounded away from zero and
by maxi 2

√
|NjNk| ≤ εd at most one Ni can be bounded away from zero (this only

works if εd is small enough, depending on εN ).

The region Cap is bounded away from the Kasner circle (see Figure 5d). By
continuity of the flow, the dynamics in Cap can be approximated by pieces of
heteroclinic orbits in A, up to uniformly small errors (Lemma 4.5).

4. The region Hyp has three connected components. In each connected component,
one of the |Ni| is uniformly exponentially increasing and the remaining two |Nj |,
|Nk| are uniformly exponentially decreasing. All three products δi are uniformly
exponentially decreasing in Hyp (Lemma 4.4; this only works if εN is small enough,
depending on ρ).

5. The remaining part of the neighbourhood of A, i.e. Circle \Hyp, consists of the
neighbourhoods of the three Taub points. The analysis of the dynamics in these
neighbourhoods is deferred until Section 5.

Lemma 4.4 (Uniform Hyperbolicity Estimates). Given any ρ4.2 > 0 small enough, we
find 0 < εN,4.3 = εN,4.3(ρ4.2) < 0.1 and c4.6 = c4.6(ρ4.2) > 0 small enough, such that for
any x ∈ Hyp[ρ4.2, εN,4.3,∞], we find one i ∈ {1, 2, 3} such that Dt log |Ni| > c4.6, and
the remaining two Dt log |Nj | < −c4.6 and all three Dt log δj < −2c4.6.

Let ρ4.2, εN,4.3, c4.6 > 0 as above, and C4.7 = 2. For any piece of trajectory x :
(t1, t2)→ Hyp[ρ4.2, εN,4.3,∞], we can conclude

∫ t2

t1

|Ni|dt <
εN,4.3
c4.6

diamx(t1, t2) ≤
∫ t2

t1

|x′(t)|dt ≤ C4.7

∫ t2

t1

max
i
|Ni|(t)dt ≤ C4.7

εN,4.3
c4.6

.

(4.6)

Proof. The first part of the lemma consists of choosing c4.6 and εN,4.3, depending on ρ4.2.
From Equations (2.3.2b) and (2.3.8b), we see that each Dt log |Ni| and Dt log δi depends
only on the Σ-coordinates and is positive only on some disc in R2. These six discs are
plotted in Figures 5a and 5b. The three δi-discs (Fig. 5b) do not intersect K, and touch
only near the three Taub-points; the three Ni-discs (Fig. 5a) intersect K only at the three
Taub-points. Hence, when we exclude a neighbourhood of the Taub-points, and consider
a small neighbourhood of K, all six logarithmic derivatives are bounded away from zero.

By the constraint 1 − Σ2 = N2 and |N2| ≤ 9ε2N,4.3, the set Hyp, depicted in Figure
5, is near K (as described), and the desired uniformity estimates hold.

The second part follows from the uniform hyperbolicity in Hyp: In each component
of Hyp, exactly one Ni is unstable (see Figure 5 and Figure 4a). Suppose without loss
of generality that N1 is the unstable direction; then we can estimate for t ∈ (t1, t2):

|N1(t)| ≤ e−c4.6(t2−t)|N1(t2)|, |N2(t)| ≤ e−c4.6(t−t1)|N2(t1)|.
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For |N3|, the analogous estimate as for N2 holds. Using |N1(t2)| ≤ εN,4.3 and |N2(t1)| ≤
εN,4.3 and integrating yields the claim about

∫
|N |dt. From (2.3.2), we see |x′| ≤

C4.7 maxi |Ni| (if maxi |Ni| ≤ 0.1).

Continuity of the flow allows us to approximate solutions in Cap by heteroclinic
solutions in A, up to any desired precision c, if we only chose the distance from A
(i.e. εd > 0) small enough. More precisely:

Lemma 4.5 (Continuity of the flow near Cap). Let εN,4.4 > 0 and c4.8 > 0. Then
there exists εd,4.5 = εd,4.5(εN,4.4, c4.8) > 0 small enough and C4.9 = C4.9(εN,4.4) > 0 large
enough, such that the following holds:

Let x : (t1, t2)→ Cap[εN,4.4, εd,4.5] be a piece of a trajectory. Then t2− t1 < C4.9 and
there exists y ∈ A such that

d(x(t), φ(y, t− t1)) < c4.8 for all t ∈ (t1, t2). (4.7)

Proof. Follows from continuity of the flow and the fact that all trajectories in A are
heteroclinic and must leave Cap at some time.

We now have collected all the ingredients to formally prove the two main results from
this section. At first, we combine Lemma 4.4 and Lemma 4.5 in order to show that each
δi is uniformly essentially exponentially decreasing in Cap ∪Hyp:

Formal proof of Proposition 4.1. We are given ρ4.1 > 0. We will first care only about
ρ4.1, afterwards adjust constants in order to prove the “furthermore” claim involving
c4.3, εN,4.2. We first apply Lemma 4.4 with ρ4.2 = ρ4.1. We fix c4.1 = c4.6. Next, we apply
Lemma 4.4, with εN,4.4 = εN,4.3 and c4.8 = 1, and will later choose εd,4.1 ≤ εd,4.5), and
C4.2 > 0.

Set µi = δ′i/δi + c4.6; in order to prove (4.2a), it suffices to show that
∫ t2
t1
µi(t)dt <

logC4.2 is bounded above, independently of the partial trajectory x = x(t), i ∈ {1, 2, 3}
and t1,t2. Fix x : [t1, t2]→M and t1 < t2.

Decompose [t1, t2] into intervals Sk < Tk < Sk+1 corresponding to the preimages of
the regions Cap and Hyp, i.e. such that x([Sk, Tk]) ⊆ Hyp and x([Tk, Sk+1]) ⊆ Cap.

We begin by considering the contribution from Cap, i.e., an interval [Tk, Sk+1].
By Lemma 4.5, we have Sk+1 − Tk < C4.9; since µi < 5 is bounded above, we get∫ Sk+1

Tk
µi(t)dt < 5C4.9.

Next, we consider the contributions from Hyp. In this region, µi < −c4.6. Take
an interval [Sk, Tk], which is not the initial or final interval, i.e. t1 < Sk < Tk < t2.
Assume without loss of generality that |N1(Sk)| = |N2(Tk)| = εN,4.3. Then |N2(Sk)| =
0.25δ2

3/|N1|(Sk) < ε2d,4.1ε
−1
N,4.3. Since |N ′2/N2| < 3, we obtain Tk − Sk > −2

3 log
εd,4.1
εN,4.3

.
Adjust εd,4.1 > 0 to be so small, that c4.1(Tk − Sk) > 5C4.9. Then such an interval gives
us a contribution of

∫ Tk
Sk
µi(t)dt < −5C4.9.

For the complete interval (t1, t2), sum over k; two disjoint intervals in the Cap-region
must always enclose an interval in the Hyp-section, which cancels the contribution of its
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preceding Cap-region. Therefore, at most the last Cap-region stays unmatched and we
obtain

∫ t2
t1
µi(t)dt < logC4.2 = 5C4.9.

The remaining “furthermore” claim (4.2b) is trivial: Its assumption ensures that we
have at least one t1 ≤ Sk < Tk ≤ t2, and we can make its contribution arbitrarily large
by decreasing εd,4.1, depending on εN,4.2, c4.3.

Next, we adjust the constants from Lemma 4.5 in order to show that trajectories near
A can only enter the vicinity of Taub-points via the heteroclinic −T` → T`:

Formal proof of Proposition 4.2. We find some 0 < c4.10 < ρ4.1 such that d(K(p), Ti) >
d(p, Ti) + c4.10 for every p ∈ K with d(p,Ti) ∈ (ρ4.1, 0.5]. It is evident from Figure 4a
(or, formally, Proposition 3.2) that this is possible.

By Lemma 4.4, we can choose εN,4.2 small enough that diamx([t1, t2]) < c4.10/8 for
pieces of trajectories x : (t1, t2)→ Hyp. Using the continuity of the flow, i.e. Lemma 4.5,
we can make εd,4.1 small enough such that pieces x : (t1, t2) → Cap are approximated
by heteroclinic orbits up to distance c4.8 = c4.10/8.

Now, we know by assumption that d(x(T ∗),T`) ≤ ρ4.1 for some ` ∈ {1, 2, 3}. There
are two cases: If x(T ∗) ∈ Cap[εN,4.2, εd,4.1], then we set TC = T ∗. Otherwise, we take

TC = inf
{
t ≤ T ∗ : x([t, T ∗]) ⊂ B1.5ρ4.1(T`) ∩Circle[εN,4.2, εd,4.1

}
.

By the assumption (4.3a), we have TC > 0. Now, x(TC) ∈ Cap[εN,4.2, εd,4.1]: We cannot
have d(T`,x(TC)) = 1.5ρ4.1, since we already know diamx([TC , T ∗]) ≤ c4.10/8 < 0.5ρ4.1

(since, by construction, x([TC , T ∗]) ⊆ Hyp(ρ4.1, εN,4.2, εd,4.1)). This proves (4.4d), as
well as

x(TC) ∈ ∂Cap[εN,4.2, εd,4.1] ∩ ∂Circle[εN,4.2, εd,4.1] ∩B1.5ρ4.1(T`).

Next, we set

TB = inf
{
t ∈ [0, TC) : x([t, TC)) ⊆ Cap[εN,4.2, εd,4.1]

}
.

In the interval t ∈ [TB, TC ], the trajectory is in one of the three Cap regions; this must
be the |N`| ≥ εN cap, since otherwise d(x(t),T`) would be increasing (see Figure 4a).
We set

TA = inf
{
t ∈ [0, TB) : x([t, TB)) ⊆ Circle[εN,4.2, εd,4.1]

}
.

Similar arguments yield the claim (4.4b).

Remark 4.6. The constants generated in this section are sub-optimal (at least exponen-
tially so). If one cared at all about their numerical values, then one would need to replace
Lemma 4.5 and Proposition 3.2 by explicit estimates.
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5 Analysis near the generalized Taub-spaces T Gi
In this section, we will study the dynamics in the vicinity of the generalized Taub-spaces,
without loss of generality T G1 , using the polar coordinates from Section 2.4. Throughout
this section, we will work under the assumption that r1 ≤ ρ5.1 = 0.1. The results in this
section do not directly rely on Section 4; nevertheless, we think that it is useful to read
Section 4 first. This section is structured in the following way:

In Section 5.1, we study the behaviour of trajectories near the heteroclinic orbit
−T1 → T1, which come from either the N2-cap or the N3-cap. In Section 5.2, we study
the further behaviour near T1 of such trajectories.

In Section 5.3, we will study the behaviour of trajectories near T1 which do not ne-
cessarily have the prehistory described in Section 5.1, and especially provide the deferred
proof of Lemma 5.6. This section is mostly optional for our main results: Any trajectory
which ever leaves the region where Section 5.3 is necessary will never revisit this region, a
fact which is proven without referring to any results from Section 5.3. Therefore, Section
5.3 is not required for the proofs of Theorems 2 and 7; it is required for the proofs of
Theorems 3, 4, 5 and 6, as well as the completion of the literature review.

5.1 Analysis near −T1 and near the heteroclinic −T1 → T1

The behaviour of trajectories away from T1 is already partially described by Proposition
4.1; we only need to additionally estimate the quotient δ1

r1
in this region. The necessary

estimates can be summarized in the following. Note that, up to renaming of constants,
this is the setting described in the conclusion of Proposition 4.2, only that we allow to
start the analysis at a later time 0 ∈ [TA, TC ].

Proposition 5.1. Let ρ5.1 = 0.1. For any 0 < εN,5.1 ≤ 0.1, we find C5.1, C5.2, c5.3, C5.4,
εd,5.2 = C5.1, C5.2, c5.3, C5.4, εd,5.2(εN,5.1) > 0, such that the following holds:

Let 0 ≤ TB ≤ TC and x : [0, TC)→M±±± \ T1 be a trajectory, such that:

r1(t) ≤ ρ5.1 ∀ t ∈ [0, TC) (5.1.1a)

|N1|(t) ≤ εN,5.1 and d(x(t),−T1) ≤ 2ρ5.1 ∀ t ∈ [0, TB) (5.1.1b)

|N1|(t) ≥ εN,5.1 ∀ t ∈ [TB, TC) (5.1.1c)

δi(t) ≤ εd,5.2 ∀ t ∈ [0, TC), i ∈ {1, 2, 3} (5.1.1d)
δ1

r1
(t) ≤ 1 ∀ t ∈ [0, TC). (5.1.1e)

Then, the following estimates hold:

δ1

r1
(t2) ≤ C5.1

δ1

r1
(t1) ∀0 ≤ t1 ≤ t2 < TC (5.1.2a)

δi(t2) ≤ C5.4e
−c5.3(t2−t1)δi(t1) ∀0 ≤ t1 ≤ t2 < TC , i ∈ {1, 2, 3} (5.1.2b)

r1(t2) ≥ C5.2r1(t1) ∀TB ≤ t1 ≤ t2 < TC . (5.1.2c)
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We can replace the assumption (5.1.1d) by δi(0) < C5.4εd,5.2, and assumption (5.1.1e) by
δ1
r1

(0) < C5.1. If εd,5.2 > 0 is small enough, then the latter follows from |N2|(0) = εN,5.1.

Note that the cases TB = 0 is admissible; then, some of the assumptions and conclu-
sions are vacuous. Note that the last claim about replacing assumptions is exactly what
we want to do if we start from 0 = TA, provided by Proposition 4.2.

Proof. Let us first prove the part about replacing assumptions. It is obvious from (5.1.2b)
that we can replace the assumption (5.1.1d) by δi(0) < C5.4εd,5.2, and, using (5.1.2a),
assumption (5.1.1e) by δ1

r1
(0) < C5.1.

We can replace the assumption (5.1.1e) by |N2|(0) = εN,5.1 (or, equivalently |N3|(0) =
εN,5.1): Assuming that εd,5.2 is small enough compared to εN,5.1, we have |N2|(0) =
δ21(0)

4|N3(0)| ≤ ε2d,5.2ε
−1
N,5.1 ≤ 0.5εN,5.1 and hence r1(0) ≥ |N3| − |N2| ≥ 0.5εN,5.1. Then, we can

adjust εd,5.2.
TC − TB < C is bounded, by continuity of the flow. For t ∈ [0, TB], all three

Dt log δi < −0.5, by direct calculation. This implies the decay of the δi, i.e. (5.1.2b).
The only remaining claims are that r1 cannot significantly shrink in [TB, TC ], i.e. (5.1.2c),

and that δ1
r1

cannot significantly grow in [0, TC ], i.e. (5.1.2a).
Let us first handle the case where N2 > 0 > N3. Note that δ1 ≤ r1, i.e. (5.1.1e),

implies N+ =
√
N2
− + δ2

1 ≤
√

2r1. Recall and estimate, using N2 ≤ 2, |Σ| ≤ 1:

Dt log r1 = N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N+

r2
1

≥ −4. (2.4.7a)

Hence, (5.1.2c), using TC − TB < C. Next, recall and estimate

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N+

r2
1

≤
√

6|N1|. (2.4.7d)

Hence, (5.1.2b), using TC − TB < C, and Dt log |N1| ≥ 0.5 for t ∈ [0, TA].
The proof for N2, N3 > 0 works almost the same way. We do not need to invoke

N+ ≤
√

2r1, but instead need |Σ| ≤ 1 + 2∆2 ≤ 1 +
√
|N1|. Recall and estimate, using

N2 ≤ 2

Dt log r1 = N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N−
r2

1

≥ −4 (2.4.2a)

Hence, (5.1.2c), using TC − TB < C. Next, recall and estimate

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N−
r2

1

≤
√

3|N1|. (2.4.2d)

Hence, (5.1.2b), using TC − TB < C, and Dt log |N1| ≥ 0.5 for t ∈ [0, TA].
This concludes the proof, since all other combinations of signs of N2, N3 can be

reduced to these two cases by permutations.
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Remark 5.2. In Proposition 5.1 relied on (5.1.1e). This means geometrically that we
excluded a set of the form Inaccessible[εq] from our analysis, given by

Inaccessible[εq] = {x ∈ R5 : δ1 ≥ εqr1},

i.e. we described the dynamics outside of Inaccessible and showed that the set Inaccessible
cannot reached by initial conditions described by Proposition 4.2. We will next show that
Inaccessible cannot be reached by solutions starting near T1, but outside Inaccessible.

Even though Bianchi VIII, i.e.M∗+−, lacks an explicit invariant Taub-space T1, the
Inaccessible-set around the generalized Taub-space T G1 is a suitable “morally back-
wards invariant” replacement.

The set Inaccessible looks like a cone times R2, since both r1 and δ1 are ho-
mogeneous of first order in N2, N3,Σ− and independent of N1 and Σ+. Of course,
M∩ Inaccessible is not a cone, since the constraint G = 1 is nonlinear.

5.2 Analysis near T1

Our analysis of the neighbourhood of T1 can be summarized in the following, where one
could mentally replace 0 = TC for the time-interval where the solution x is described:

Proposition 5.3. Let ρ5.1 = 0.1. There exist constants εq,5.3, C5.5, c5.6, c5.7, C5.8, C5.9,
C5.10 > 0 (depending on no other constants), such that the following holds:

Let x : [0, T ∗) → Bρ5.1(T1) ∩ M∗±± \ T1 be a partial trajectory, such that for all
t ∈ [0, T ∗):

δ1

r1
(t) ≤ εq,5.3. (5.2.1)

Then, for all 0 ≤ t1 ≤ t2 < T ∗, the following estimates hold:

(|N1|, δ2, δ3)(t2) ≤ C5.5 exp [−c5.6(t2 − t1)] (|N1|, δ2, δ3)(t1) (5.2.2a)
δ1

r1
(t2) ≤ C5.10

δ1

r1
(t1) (5.2.2b)

r1(t2) ≥ C5.9r1(t1) (5.2.2c)

δ1(t2) ≤ C5.8 exp
[
−c5.7r

2
1(t1)(t2 − t1)

]
δ1(t1) (5.2.2d)

T ∗ <∞. (5.2.2e)

The assumption (5.2.1) can be replaced by δ1
r1

(0) ≤ εq,5.3C5.10.

First, note that it is obvious from the (5.2.2b) that the assumption (5.2.1) can be
replaced by δ1

r1
(0) < εq,5.3C5.10. We begin by proving the first three of the claims, in a

way analogous to the proof of Proposition 5.1:

Proof of Proposition 5.3, conclusions (5.2.2a), (5.2.2b), (5.2.2c). The exponential decay
(5.2.2a) follows trivially from (2.3.2b), see e.g. Figures 5a and 4a.
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The claims (5.2.2b) and (5.2.2c) follow almost exactly like in the proof of Proposition
5.1. First, for N2 > 0 > N3, recall (2.4.7d), use δ1 ≤ r1 to see N+ ≤

√
2r1, and use

|Σ| ≤ 1 to see estimate Dt log δ1
r1
≤
√

6|N1|. Using Dt log |N1| ≤ −1, the claim (5.2.2b)
follows by integration. In order to see (5.2.2c), recall (2.4.9a) and Claim 2.4.2, estimate
Dt log r1 ≥ −C|N1|, and integrate.

Let us next handle the case of N2, N3 > 0. In order to see (5.2.2b), recall (2.4.9c)
and Claim 2.4.1, estimate Dt log r1 ≥ −C|N1|, and integrate. In order to see (5.2.2c),
recall (2.4.4a) and Claim 2.4.1, estimate Dt log r1 ≥ −C|N1|, and integrate.

and use 1 + Σ+ ≥ −C∆ to see from (2.4.7d) that Dt log δ1
r1
≤ C∆ +C|N1|. Then the

claim follows by integration.
Using δ1

r1
< 1, we can look at (2.4.9a) and (2.4.4a) to estimate Dt log r1 > −C|N1|,

which upon integration yields the claim (5.2.2c).

The next estimate (5.2.2d) requires a slightly more involved averaging-style argument,
similar to the proof of Proposition 4.1:

Proof of Theorem 5.3, conclusion (5.2.2d). We set

µ = Dt log δ1 + 0.1r2
1.

It suffices to prove that
∫ t2
t1
µ(t)dt ≤ logC5.8 is bounded above. The cases of Bianchi VIII

and IX work the same way; we will here only explicitly discuss the Bianchi VIII-case
N2 > 0 > N3. Recall

δ′1
δ1

=
−1

1− Σ+
r2

1 cos2 ψ1 +
−Σ+

1− Σ+
r2

1 sin2 ψ1 +
−Σ+

1− Σ+
δ2

1 +N1 hδ. (2.4.9b)

Strategy. We will first consider times where |N1| 6� r1; the integral
∫
µdt over these

times will be bounded by
∫
|N1|dt. Next, we consider later times, where |N1| � r1. We

will split µ into a nonpositive and a nonnegative part; the nonnegative (bad) part will
have a contribution for every ψ1 rotation that is bounded by Cr1, while the nonpositive
(good) part will have a negative contribution for every ψ1-rotation which scales with
r1 log δ1

r1
. Adjusting εq,5.3 will then yield the desired estimate (after summing over ψ1-

rotations).

Estimates for large |N1|. Choose T̃ (possibly T̃ = 0) such that |N1(t)| ≥ 0.1r2
1(t) for

t ∈ (0, T̃ ] and |N1(t)| ≤ 0.1r2
1(t) for t ∈ [T̃ , T ∗]. This is possible, since Dt log |N1| ≈ −3 <

2Dt log r1. Then |µ(t)| ≤ C
√
|N1(t)| for all t ∈ [0, T̃ ] and hence

∫ T̃
0 |µ(t)|dt < C5.11.

Averaging Estimates. Consider without loss of generality only times larger than T̃ .
Using Σ+ ≈ −1 and δ1 ≤ 0.1r1, we can estimate hδ < 1 and

µ ≤ −0.4r2
1 cos2 ψ1 +0.6r2

1 sin2 ψ1 +0.01r2
1 +0.1r2

1 + |N1| ≤ −0.25r2
1 +r2

1 sin2 ψ1. (5.2.3)
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Recall

ψ1
′ =
√

3r1

√
sin2 ψ1 +

δ2
1

r2
1

− r2
1 + δ2

1

1− Σ+
cosψ1 sinψ1 +N1 sinψ1 hψ. (2.4.9d)

We can estimate:

r1| sinψ1| ≤ ψ1
′ ≤ 2r1

√
sin2 ψ1 +

δ2
1

r2
1

. (5.2.4)

Let µ+ = r2
1 sin2 ψ1 be the positive (bad) part of µ; take times t1 < tL < tR < t2 with

|ψ1(tR)− ψ1(tL)| ≤ 2π. Then

∫ tR

tL

µ+(t)dt ≤
∫ ψ1(tR)

ψ1(tL)

µ+(t)

ψ1
′(t)

dψ1 ≤ C−1
5.9r1(tR)

∫ 2π

0
| sinψ1|dψ1 = 4C−1

5.9r1(tR). (5.2.5)

On the other hand, let µ− = −0.25r2
1 be the negative (good) part of µ. Take times

t1 < tL < tR < t2 with ψ1(tL) = kπ − 0.1 and ψ1(tR) = kπ + 0.1 for some k ∈ Z; then
we can estimate

∫ tR

tL

µ−(t)dt ≤ −1

4

∫ +0.1

−0.1

r2
1

ψ1
′dψ1 ≤ −

1

8

∫ +0.1

−0.1

r1√
sin2 ψ1 +

δ21
r21

dψ1

≤ −1

8
r1(TL)C−1

5.9

∫ +0.1

−0.1

1√
sin2 ψ1 + ε2q,5.3

dψ1

≤ −cr1(TL) log εq,5.3.

We can immediately see that, if εq,5.3 > 0 is small enough, then
∫ tR
tL µ−(t)dt < −4C−1

5.9 .
Hence, by summing over rotations, we can conclude the assertion (5.2.2d), with error
C5.8 = exp

[
4C−1

5.9ρ5.1 + C5.11

]
and rate c5.7 = 0.1C−2

5.9 .

Proof of Proposition 5.3, conclusion (5.2.2e). We need to show that solutions with small
quotient δ1

r1
cannot stay near T1 forever.

Assuming without loss of generality |N1| ≤ 0.1r2
1 we have Dψ1 log r1 ≥ cr1| sinψ1| −

C|N1|. This shows that the only way never leaving the vicinity of T1 is for the angle
ψ1 ∈ R to stay bounded, i.e. limt→∞ ψ1(t) = ψ1

∗∗ and limt→∞ δ1(t) = 0 (since otherwise
r1 increases by a too large amount during each rotation). This is impossible, since the
possible limit-points lie on the Kasner-circle K \ {T1} and are not T1; hence, either N2

or N3 is unstable and since initially N2 6= 0 6= N3, the trajectory cannot converge to such
a point.
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5.3 Analysis in the Inaccessible-cones

Our whole approach aims at avoiding the much more tricky analysis of the dynamics in
the Inaccessible-cones, where possibly δ1 ≥ r1: Since trajectories starting outside of
these cones never enter them, it is unnecessary to know what happens in the Inaccess-
ible-cones. However, for various global questions, it is useful to collect at least some
results inside of these cones.

We already know that solutions in Bianchi IX cannot converge to the Taub-points;
the same holds in Bianchi VIII, even for solutions in Inaccessible:

Lemma 5.4. For an initial condition x0 ∈M++−, it is impossible to have limt→∞ x(t) =
T1.

Proof. Suppose we have such a solution. Using equation (2.4.7d), we can write near T1:

Dt log |N1|
δ1

r1
≤
√

3
|Σ−|
r1
|N1|

√
N2
− + δ2

1

r1
− 2.5 ≤ 2|N1|

δ1

r1
− 2.5.

Hence, if ever |N1| δ1r1 < 1, this inequality is preserved and |N1| δ1r1 decays exponentially.
Then we can estimate, using (2.4.9a), Dt log r1 ≥ −C|N1| − C|N1| δ1r1 ; all the terms on
the right hand side have bounded integral and r1 → 0 is impossible.

On the other hand, if r1 < |N1|δ1 for all sufficiently large times, we can estimate,
using (2.4.9b), Dt log δ1 ≥ −Cr2

1 − C|N1| ≥ −C
√
|N1|, which has bounded integral and

thus contradicts δ1 → 0.

Unfortunately, this is all we can presently say in the Inaccessible cone in Bianchi
VIII.
In the case of Bianchi IX, we can still average over ψ1-rotations, even if δ1 � r1, leading
to the following two results:

Lemma 5.5. We consider the neighbourhood of T1 with N2, N3 > 0. There exist constants
ρ5.2, c5.12, C5.13 > 0, such that, for any piece of trajectory x : [0, T ] → {y ∈ M∗++ :
|Σ(y)−T1| ≤ ρ5.2}, the following estimate holds:

log
δ1(T )

δ1(0)
≤ C5.13(1 + h(x(0))) + (1− c5.12) log

r1(T )

r1(0)
, where (5.3.1)

h(x) = |N1|+ |N1|2 + |N1N2|+ |N1N3|.

Lemma 5.6. We consider the neighbourhood of T1 with N2, N3 > 0. There exist constants
ρ5.3 > 0 small enough and C5.14 > 1 large enough, such that, for any piece of trajectory
x : [0, T ]→ {y ∈M∗++ : |Σ(y)−T1| ≤ ρ5.3}, the following estimate holds:

δ1(x(T )) ≤ C5.14e
C5.14h(x(0))δ1(x(0)), where (5.3.2)

h(x) = |N1|+ |N1|2 + |N1N2|+ |N1N3|.
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Lemma 5.5 follows trivially from Lemma 5.6. The required statement from Lemma
5.5 is only that for a piece of trajectory near T1, if r1 increases by a large factor, then
δ1
r1

must decrease by a large factor. Lemma 5.6 is not actually needed, except in the
Literature review in Section 3.3, and only given for the sake of completeness.

Proof of Lemma 5.5.

Assumptions without loss of generality. We can assume, without loss of gener-
ality, that δ1 > εq,5.4r1, for all t ∈ [0, T ], for some small εq,5.4 > 0, because otherwise
(i.e. for later times) Proposition 5.3 applies. Likewise, we can assume without loss of
generality that h(t) < 1, because h is exponentially decreasing and log δ′1 < C(1 +
h). We can as well assume |N1| ≤ C5.15r

4
1 for all t ∈ [0, T ], for arbitrarily large

C5.15 > 0, because of a similar argument as in the proof of Proposition 5.3. The claim
that c5.12, C5.13 > 0 are independent of other constants remains true, even if formally
c5.12, C5.13 = c5.12, C5.13(ρ5.3, εq,5.4, C5.15).

Differential Estimates. Let us now collect some differential estimates. We use the
auxilliary quantity ζ = δ1

r1
> εq,5.4; using (2.4.4), we can easily see

cr1ζ ≤ Dtψ1 ≤ Cr1ζ
cr2

1ζ
−1 sin2 ψ1 − C|N1| 1

ψ1
′ ≤ Dψ1r1 ≤ Cr2

1ζ
−1

cr1 cos2 ψ1 − C|N1| 1
ψ1
′ ≤ −Dψ1ζ ≤ cr1.

(5.3.3)

We will use ψ1 as a new time variable.

Proof. Since |Dψ1 log ζ| < C and |Dψ1 log r1| are bounded, it suffices to prove an es-
timate of the form

∫ 2π

0
Dψ1 log ζdψ1

!
≤ −c

∫ 2π

0
Dψ1 log r1dψ1.

Using (5.3.3), and the fact that terms of order |N1| are negligible, it suffices to show
∫ 2π

0
r1ζ
−1 cos2 ψ1dψ1

!
≥ c

∫ 2π

0
r1ζ
−1 sin2 ψ1dψ1.

This estimate is obvious, since r1(ψ1) and ζ(ψ1) can only vary by bounded factors along
a single rotation.

Proof of Lemma 5.6. We continue at the end of the proof of Lemma 5.5.

Integral Estimates. Clearly, r1 is almost non-decreasing and bounded, and therefore∫ ψ1(T )
ψ1(0) |Dψ1r1|dψ1 < C. Using the previously stated averaging, we see that this implies
∫ ψ1(T )
ψ1(0) r2

1ζ
−1dψ1 < C.
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Program Our goal is to show
∫ ψ1(T )

ψ1(0)

Dt log δ1

Dtψ1
dψ1 < C.

We will introduce a parametrized family Fθ = Fθ(x) of functions, θ ∈ [0, 1], that inter-
polates between F1 = Dt log δ1

Dtψ1
and some better behaved F0. Then, we will estimate

∫ ψ1(T )

ψ1(0)
F1(x(ψ1))dψ1 ≤

∫ ψ1(T )

ψ1(0)
F0(x(ψ1))dψ1 +

∫ ψ1(T )

ψ1(0)
max
θ∈[0,1]

|DθFθ(x(ψ1))|dψ1.

Estimates of pertubative terms We define

Fθ(x) =
r1√

3(2− θ r
2
1+N1(N1−2N+)

1−Σ+
)

· sin2 ψ1 − cos2 ψ1√
sin2 ψ1 + ζ2 + θ r1

1−Σ+
cosψ1 sinψ1 + θN1 sinψ1hψ

− θ

Dtψ1
r2

1 cos2 ψ1
r2

1 +N1(N1 − 2N+)

(1− Σ+)2
+

θ

Dtψ1
N1hδ.

Using (1 + Σ+)(1 − Σ+) = r2
1 + N1(N1 − 2N+), we can easily verify that Dt log δ1

Dtψ1
= F1.

We will estimate for θ ∈ [0, 1]:

|DθFθ| ≤ C
(
r2ζ−1 + r−1

1 ζ|N1|
)
.

We have already estimated the resulting integrals at the beginning of the proof; this will
therefore yield

∫ ψ1(T )

ψ1(0)
max
θ∈[0,1]

|DθFθ(ψ1,x(ψ1))|dψ1 < C.

Now, in order to generate the estimates DθFθ, we just differentiate and estimate for
each occurrence of θ separately, using Dtψ1 > cr1ζ for the last two additive terms. The
explicit calculations and estimates are trivial.

Time-advanced Estimate. We will now estimate
∫
F0dψ1. We have

F0(ψ1, r1, ζ) =
1

2
√

3

r1√
sin2 ψ1 + ζ2

(
sin2 ψ1 − cos2 ψ1

)
.

Let ψ̃1 = ψ1 + π/2 and (r̃1, ζ̃) = (r1, ζ)(ψ1 + π/2) be time-advanced variables. Clearly,
it suffices to estimate
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∫ ψ1(T )−π
2

ψ1(0)
F0(ψ1, r1, ζ)dψ1 +

∫ ψ1(T )

ψ1(0)+π
2

F0(ψ1, r1, ζ)dψ1

=

∫ ψ1(T )−π
2

ψ1(0)

[
F0(ψ1, r1, ζ) + F0(ψ̃1, r̃1, ζ̃)

]
dψ1

=

∫ ψ1(T )−π
2

ψ1(0)

[
F0(ψ1, r1, ζ) + F0(ψ̃1, r1, ζ)

]
dψ1 (5.3.4)

+

[∫ ψ1(t2)−π
2

ψ1(t1)
|∂ζF0| |ζ − ζ̃|+ |∂r1F0| |r1 − r̃1|dψ1

]
!
≤ C.

Now, the critical estimate is that the term (5.3.4) has a sign:

F0(ψ1,r1, ζ) + F0(ψ̃1, r1, ζ)

=
r1

2
√

3

(
1√

sin2 ψ1 + ζ2
− 1√

cos2 ψ1 + ζ2

)
(
sin2 ψ1 − cos2 ψ1

)
≤ 0.

This can be trivially seen by separately considering the cases sin2 ψ1 ≥ cos2 ψ1 and
sin2 ψ1 ≤ cos2 ψ1.

In order to estimate the remaining terms, we easily see |Dr1F0| ≤ C and |r − r̃| ≤
Cr2ζ−1, as well as |DζF0| ≤ Cr1ζ

−1, and |ζ − ζ̃| ≤ C |N1|
Dtψ1

+ Cr1. All the resulting
integrals have been estimated at the beginning of the proof.

6 Attractor Theorems

The goal of this section is to prove that typical initial conditions converge to A. We have
already seen Theorem 1, which is however somewhat unsatisfactory: It tells nothing
about the speed and the details of the convergence; it relies on Lemma 5.6, which has a
rather lengthy proof (page 56f) mainly discussing the case δ1 � r1, which is not supposed
to happen anyway ; lastly, the proof of Theorem 1 has no chance of generalizing to the
case of Bianchi VIII.

In this section, we will combine the analysis of the previous Sections 4 and 5 in order
to prove a local attractor result, holding both in Bianchi VIII and IX. Together with
the results from Section 3 and some minor calculation, this will yield a “global attractor
theorem”, i.e. a classification of solutions failing to converge to A, which happen to be
rare; in the case of Bianchi IX, this recovers and extends Theorem 1, and in the case of
Bianchi VIII, this answers a longstanding conjecture.

6.1 Statement of the attractor Theorems.

The local attractor theorem is given by the following (proof on page 63):
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Theorem 2 (Local Attractor Theorem). There exist constants εq,6.1, εd,6.2, C6.1, C6.2,
C6.3 > 0 such that the following holds:

Let x0 ∈M±±± be an initial condition in either Bianchi VIII or IX, with

δi
ri
< εq,6.1 and δi < εd,6.2 ∀i ∈ {1, 2, 3}. (6.1.1)

Then, for all i ∈ {1, 2, 3} and t2 ≥ t1 ≥ 0:

δi(t2) ≤ C6.2δi(t1) (6.1.2a)
δi
ri

(t2) ≤ C6.1
δi
ri

(t1). (6.1.2b)

Furthermore, for all i ∈ {1, 2, 3},

lim
t→∞

δi(t) = 0 (6.1.2c)

lim
t→∞

δi
ri

(t) = 0 (6.1.2d)
∫ ∞

0
δ2
i (t)dt < C6.3

δ2
i

r2
i

(x0), (6.1.2e)

and the ω-limit set ω(x0) must contain at least one point p ∈ K \ T .

Note that the constants appearing in Theorem 2 are really constants, i.e. depend on
nothing. The name “local attractor theorem” is descriptive: We describe a subset of the
basin of attraction, i.e. an open neighbourhood of A \ T which is attracted to A and
given by

Basinn̂[εd, εq] =

{
x ∈Mn̂ : δi ≤ εd,

δi
ri
≤ εq ∀i ∈ {1, 2, 3}

}
. (6.1.3)

The integral estimate (6.1.2e) tells us that the convergence to A must be reasonably fast.
We can combine the local attractor Theorem 2 with the discussion in Section 3 in

order to prove a global attractor theorem. Since some trajectories fail to converge to A,
most notably trajectories in the Taub-spaces, a global attractor theorem must necessarily
take the form of a classification of all exceptions. In this view, the global result for the
case of Bianchi Type IX models is the following (proof on page 65):

Theorem 3 (Bianchi IX global attractor Theorem). ConsiderM+++, i.e. Bianchi IX.
Then, for any initial condition x0 ∈ M+++, the long-time behaviour of x(t) falls into
exactly one of the following mutually exclusive classes (i ∈ {1, 2, 3}):

Attract. For large enough times, Theorem 2 applies.

Taubi. We have x0 ∈ Ti, and hence x(t) ∈ Ti for all times.
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The set of initial conditions for which Attract applies is “generic” in the following
sense: It is open and dense in M+++ and its complement has Lebesgue-measure zero
(evident from the fact that Ti are embedded lower dimensional submanifolds, of both
dimension and codimension two).

The analogous, novel result for the case of Bianchi VIII is the following (proof on
page 65):

Theorem 4 (Bianchi VIII global attractor Theorem). Consider M++−, i.e. Bianchi
VIII with N1, N2 > 0 > N3. Then, for any initial condition x0 ∈ M++−, the long-time
behaviour of x(t) falls into exactly one of the following mutually exclusive classes:

Attract. For large enough times, Theorem 2 applies.

Taub3. We have x0 ∈ T3, and hence x(t) ∈ T3 for all times.

Except1. For large enough times, the trajectory follows the heteroclinic object

−T1 → T1 → −T1.

In other words, let W s(−T1) be the two-dimensional stable manifold of −T1 and
let W u(−T1) = W s(T1) be the one-dimensional unstable manifolds of −T1. Then,
W u(−T1) ( ω(x0) ( W u(−T1) ∪W s(−T1) ∪ {T1,−T1}. Furthermore, we have
limt→∞max(δ2, δ3)(t) = 0 and lim supt→∞ δ1(t) > 0 = lim inft→∞ δ1(t).

Except2. The analogue of Except1 applies, with the indices 1 and 2 exchanged.

This theorem should be read in conjunction with the following, the proof of which
will be deferred until page 70 in Section 7:

Theorem 5 (Bianchi VIII global attractor Theorem genericity). In Theorem 4, the set
of initial conditions x0 for which Attract applies is “generic” in the following sense:
It is open and dense inM++− and its complement has Lebesgue-measure zero.

Question 6.1. It is currently unknown, whether the case Except in Bianchi VIII is
possible at all. Is it?

We expect that solutions in Except1 actually converge to the heteroclinic cycle, where
T1 → −T1 is realized by the unique connection in T G1 , i.e. limt→∞ r1(t) = 0, instead of
following any other heteroclinic in W u(T1) ∩W s(−T1). Can this be shown?

For topological reasons, we naively expect that the set of initial conditions, where
Except applies, is nonempty, and is of dimension and codimension two.

6.2 Proof of the local attractor Theorem.

Let us now prove the local attractor theorem. In order to simplify the proof, we will first
prove the following:
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Lemma 6.2 (Un-bootstrapped local attractor theorem). There exist constants εq,6.3,
εd,6.4, C6.1, C6.2, C6.3 > 0 such that the following holds:

Let x0 : [0, T ] → M±±± be a solution in either Bianchi VIII or IX, such that the
following holds for all t ∈ [0, T ]:

δi
ri
< εq,6.3 and δi < εd,6.4 ∀i ∈ {1, 2, 3}. (6.2.1)

Then, for all i ∈ {1, 2, 3} and 0 ≤ t1 ≤ t2 < T :

δi(t2) ≤ C6.2δi(t1) (6.1.2a)
δi
ri

(t2) ≤ C6.1
δi
ri

(t1). (6.1.2b)

Furthermore, for all i ∈ {1, 2, 3},
∫ T

0
δ2
i (t)dt < C6.3

δ2
i

r2
i

(x0). (6.1.2e)

This is almost equivalent to Theorem 2.

Informal proof. Let us first give the ingredients of the proof, where the problem of
how to choose appropriate constants is ignored. Recall Section 5, especially Propositions
5.1 and 5.3, as well as Section 4, and Section 4, especially Propositions 4.1 and 4.2.

These results tell us that δi can only grow by bounded amounts, and must then shrink
again when they are in Hyp, and the literally same estimates hold for the quotients δi

ri
.

More precisely: We split [0, T ] into a finite sequence 0 < . . . < TAn < TBn < TCn <
TAn+1 < . . . < T , such that Proposition 4.1 applies in [TAn , T

B
n ] (i.e. we are away from

the Taub-spaces), Proposition 5.1 applies in [TBn , T
C
n ] (i.e. we are near −Ti or near the

heteroclinic −Ti → Ti) and Proposition 5.3 applies in [TCn , T
A
n+1] (i.e. we are near Ti).

This splitting is made possible by Proposition 4.2.
In every such interval, each δi and each quotient can only grow by a bounded factor:

1. In [TAn , T
B
n ], away from the Taub-spaces, (4.2a) shows that δi can only grow by

C4.2, and by boundedness of ri, δiri can only grow by C4.2
2
ρ4.1

.

2. In [TBn , T
C
n ], near the heteroclinic −T` → T`, (5.1.2b) shows that δi can only grow

by C5.4, and (5.1.2a) shows that δi
ri

can only grow by C5.1.

3. In [TCn , T
A
n+1], near T`, (5.2.2d) shows that δi can only grow by C5.8, and (5.2.2b)

shows that δi
ri

can only grow by C5.10.

Of course, the analogue estimates hold for the first time-interval starting at 0, and the
last time-interval ending in T .

However, due to (4.2b), each δi must decay by a total factor of c4.3 over the course of
every [TAn , T

B
n ] interval. Hence, each quotient δi

ri
must decay by a total factor of c4.3

2
ρ4.1

over such an interval.
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If c4.3 is sufficiently small, then this decay can cancel the growth from adjacent
intervals, and we obtain (6.1.2a) and (6.1.2b), similar as in the proof of Proposition 4.1.
In fact, this shows the following

Claim 6.2.1. δi
ri

(TCn ) and δi(TCn ) decay uniformly exponentially in n (not in time TCn !).
Proof. Contained in preceding paragraph. �

The claim (6.1.2e) then follows from integrating (5.2.2d) (and (5.1.2b) and (4.2a).

Choice of constants. Let us now give the deferred choice of appropriate constants.
First, ρ4.1 = 0.01 and εN,4.2 > 0, such that Proposition 4.2 holds; this fixes C4.2, c4.1 >

0. Now, the choice of c4.3 > 0 is still open, as is εd,4.1 = εd,4.1(c4.3) > 0, and will be
deferred for a moment.

Next, we fix ρ5.1 = 0.1 and εN,5.1 = εN,4.2 > 0 in Propositions 5.1 and 5.3. This is
possible, since we are allowed to adjust both εN,5.1 and εN,4.2 downwards. This fixes the
remaining constants in the used Propositions, except for c4.3 > 0.

Now, let us choose c4.3 > 0. We choose c4.3 > 0 so small, that the following two
inequalities hold:

c4.3C4.2C5.4C5.8 <
1

2
, c4.3C4.2

2

ρ4.1
C5.1C5.10 <

1

2
.

This fixes, finally, εd,4.1 > 0, and all these constants are now “constant constants”, i.e. de-
pend on nothing.

Now, let us state the constants appearing in the statement of the Lemma; they are:

C6.2 = C4.2C5.4C5.8, C6.1 = C4.2
2

ρ4.1
C5.1C5.10,

C6.3 = 2 min

(
C4.2

c4.1
,
C5.8

c5.7

)
, εq,6.3 = min(1, εq,5.3),

εd,6.4 = min(εd,4.1, εd,5.2, εq,5.3).

Rigorous proof. Now we know precisely what to prove. With these constants fixed,
the referenced Propositions are applicable and the first paragraph constitutes a rigorous
proof of Lemma 6.2.

We claimed that Lemma 6.2 was almost equivalent to Theorem 2. This works the
following way:

Proof of the local attractor Theorem 2. There are two differences between Theorem 2 and
Lemma 6.2: Firstly, the assumptions differ, and secondly, we get new conclusions that
we need to show.

Let us adapt the assumptions first. We set εd,6.2 = C6.2εq,6.3 and εq,6.1 = C6.1εq,6.3.
Then, under the assumptions of Theorem 2, we can see that the assumptions of Lemma
6.2 are satisfied for all times t > 0.

Apart from this, we need to show the additional claims (6.1.2c) and (6.1.2d), and
that the ω-limit set ω(x0) must contain at least one point in K \ T .
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Let us begin with the claims (6.1.2c) and (6.1.2d). Consider again the sequence
TAn < TBn < TCn < TAn+1 from the proof of Lemma 6.2. If this sequence is infinite, the
claims (6.1.2c) and (6.1.2d) follow from the exponential decay in n. If this sequence ends
in some TAn , then we eventually avoid the neighbourhood of the Taub-spaces, and (4.2a)
proves the conclusions. The sequence cannot end in some TBn , by construction. It also
cannot end in some TCn , due to (5.2.2e).

If the sequence TAn < TBn < TCn < TAn+1 ends in some TAn , then the claim on ω(x0)
follows by taking an arbitrary y ∈ ω(x0), and p = α(y). If the sequence is infinite instead,
we use the same construction with an arbitrary accumulation point of the sequence
x(TAn ).

6.3 Proof of the global attractor theorems

Next, we prove the global results for Bianchi IX and VIII. This is simply a matter of
combining Theorem 2, Lemma 3.9, and Lemma 5.5 and 5.4. We view this as a novel and
simpler proof of the global attractor theorem, compared to the one given on page 42,
since Lemma 5.5 replaces Lemma 5.6.

Recall Lemma 3.9. We will first exclude the case TaubExcept: In order to reuse
parts of the proof of the global Bianchi IX attractor theorem for the analogue in Bianchi
VIII, we will split it off into the following First, exlcude the case TaubExcept from
Lemma 3.9:

Lemma 6.3. The case TaubExcept is impossible in Lemma 3.9.

Proof of Lemma 6.3. The proof is by contradiction; assume we had a solution x : [0,∞)→
M±++ \ T1, where TaubExcept1 applies.

Without loss of generality, assume that δ1
r1

(t) ≥ εq,6.5 for all t > 0 (by Lemma 2.4 and
Theorem 2).

We will now take a look at the dynamics of the quotient δ1
r1
, and will show that

δ1
r1
→ 0, contradicting our assumptions and concluding the proof.
Recall

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N−
r2

1

. (2.4.2d)

As we have seen several times already, in the neighbourhood of {−T1} ∪ W u(T1) ∪
{T1} ∪ T L1, the integral

∫
|N1|dt is bounded, and the quotient can only grow by a

bounded factor. Using (1− Σ+)(1 + Σ+) = r2
1 + N1(N1 − 2N+), and the fact that |N1|

and |N1|N+ are arbitrarily small and exponentially decreasing near {T1} ∪ T L1, we see
that r1 must increase up to some finite value r1 ≥ ε > 0 near {T1} ∪ T L1 (otherwise,
we could not leave the neighbourhood again to visit −T1). Applying Lemma 5.5, we see
that the quotient δ1

r1
must therefore decrease by an arbitrarily large factor.

Therefore, the last necessary step is to show that the quotient can only increase by a
bounded factor on the return trip {T1}∪T L1 → −T1, along W s(−T1). In other words,

64



we want to show that along any time-interval [TL, TR] connecting from {y : |Σ−T1| < ε}
to {y : |y+T1| < ε} while staying bounded away from Basin, we have

∫ TR
TL |N1(t)|dt < C.

We will now show that |N1| ≤ δ1 for all t ∈ [TL, TR]. If, at some t ∈ [TL, TR], we
had |N1| = δ1, then we get at time t that 0 ≈ N1N2N3 = N3

1 /4 = 2
√

3δ3
1 . Then, the

only way of having δ1/r1(t) ≥ εq,6.1 is r1(t) ≈ 0. Therefore, (1 − Σ+)(1 + Σ+) = r2
1 +

N1(N1 − 2N+) ≈ 0, contradicting our assumptions on [TLn , T
R
n ].

Therefore, |N1| ≤ δ1 for all t ∈ [TL, TR], and hence |N1| ≤ 2
√
|N1|

√
|N1N2N3|,

which has bounded integral.
This shows that the quotient δ1

r1
can only grow by a bounded factor on the return-trip

from T1 ∪ T L1 to −T1. Together with the arbitrarily large decrease when leaving the
neighbourhood of T1∪T L1, and the bounded growth near {−T1}∪W u(T1)∪{T1}∪T L1,
we see that δ1

r1
→ 0, contradicting the assumptions.

Proof of the global Bianchi IX attractor Theorem 3. Follows trivially from Theorem 2,
Lemma 3.9 and Lemma 6.3.

Proof of the global Bianchi VIII attractor Theorem 4. The proof works by contradiction;
let x : [0,∞)→M++− \ T3, such that Attract does not apply.

Recall Lemma 3.9; the case TaubExcept3 is excluded by Lemma 6.3 and the cases
TaubConverge2,3 are excluded by Lemma 5.4.

The only remaining claim to prove is that, without loss of generality in Except1,
δ2, δ3 → 0. This follows from the fact that ω(x0) ⊂M0+− ∪ A is compact.

7 Phase-Space Volume and Integral Estimates

This section is devoted to proving the last three main Theorems of this work. The first
one is the already stated genericity of the attracting case in Theorem 4:

Theorem 5 (Bianchi VIII global attractor genericity Theorem). In Theorem 4, the set
of initial conditions x0 for which Attract applies is “generic” in the following sense:
It is open and dense inM++− and its complement has Lebesgue-measure zero.

The second theorem of this section answers affirmatively the “locality” part of the
longstanding BKL conjecture for spatially homogeneous Bianchi class A vacuum space-
times, for measure theoretic notions of genericity, and can be considered the main result
of this work:

Theorem 6 (Almost sure formation of particle horizons). For Lebesgue almost every ini-
tial condition inM, with respect to the induced measure from R5 = {(Σ+,Σ−, N1, N2, N3)},
the following holds:

∫ ∞

0
max
i
δi(t)dt = 2

∫ ∞

0
max
i 6=j

√
|NiNj |(t) <∞. (7.1)
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This means that almost every Bianchi VIII and IX vacuum spacetime forms particle
horizons towards the big bang singularity. This physical interpretation is described in
Section 2.2, Lemma 2.2 or [HR09].

This result about Lebesgue a.e. solutions immediately raises the question for counter-
examples:

Question 7.1. It is currently not known, whether there exist any solutions, which are
attracted to A and have infinite integral

∫∞
0 δi(t) =∞.

Do such solutions exist? Is it possible to describe an example of such a solution?

We very strongly expect that such solutions do exist, for reasons which will be explained
in future work.

The third and last theorem of this section strengthens and extends the previous result:

Theorem 7 (Lp estimates for the generalized localization integral). Let α ∈ (0, 2) and
p ∈ (0, 1] such that αp > 2p − 1, i.e. p < 1

2−α . Let M ⊂ M±±± be a compact subset
such that Theorem 2 holds for every initial condition in x0 ∈M , i.e. M ⊂ Basin. Then
Iα ∈ Lp(M), where

Iα(x0) :=

∫ ∞

0
max
i
δαi (t)dt, (7.2)

i.e., using φ for the flow to (2.3.2) and d4x for the (four dimensional) Lebesgue measure
onM±±±,

∫

M

[∫ ∞

0
δαi (φ(x, t))dt

]p
d4x <∞ ∀ i ∈ {1, 2, 3}. (7.3)

If instead α ≥ 2, we already know from Theorem 2 that Iα ∈ L∞(M).

Theorem 7 makes a much stronger claim than Theorem 6, even for α = 1: Local
Lp-integrability is a sufficient condition for a.e. finiteness, but not necessary. On the
other hand, we are aware of no immediate physical interpretation of Theorem 7.

The proof of Theorem 7 does not rely on Theorem 6. Even though the proof of
Theorem 6 is therefore entirely optional, we nevertheless choose to state and prove The-
orem 6 separately, because we view it as the more important result, and can give a more
geometric proof than for Theorem 7.

Question 7.2. Unfortunately, the case α = 1 = p = 1, i.e. I1 ∈ L1
loc, is out of reach of

Theorem 7, which only provides I1 ∈ L1−ε
loc for any ε > 0. An extension to α = p = 1

would imply finite expectation of the conformal size of particle horizons.
Is it possible to say something about α = p = 1?
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Outline of the proofs. Let us now give a short overview over the remainder of this
section. Our primary tool will be a volume-form ω4, which is expanded under the flow φ of
(2.3.2). An alternative description would be to say that we construct a density function,
such that φ is volume-expanding. The volume-form will be constructed and discussed
in Section 7.1. We will use some very basic facts and definitions from the intersection
of differential forms, measure theory and dynamical systems theory, which are given in
Appendix A.4 for the convenience of the reader.

We will use this expanding volume-form in order to prove our three Theorems in
Section 7.2.

7.1 Volume Expansion

This section studies the evolution of phase-space volumes. Using logarithmic coordinates
βi = − log |Ni|, the equations differential equations (2.3.2) without the constraint (2.3.3)
yield the remarkably simple and controllable formula Dtω5 = 2N2ω5 for the evolution of
the five-dimensional Lebesgue-measure ω5 (with respect to Σ±, βi). This formula shows
that the flow φ expands the volume ω5. Such a volume expansion is impossible for systems
living on a manifold with finite volume; it is possible with logarithmic coordinates because
these coordinates have pushed the attractor to infinity, and typical solutions escape to
infinity in these coordinates.

Volume expansion for the extended system (without constraint G = 1). Con-
sider coordinates βi given by

βi = − log |Ni| dβi = −dNi

Ni
∂βi = −Ni∂Ni (7.1.1a)

Ni = n̂ie
−βi dNi = −n̂ie−βidβi ∂Ni = −n̂ieβi∂βi . (7.1.1b)

and consider the Lebesgue-measure with respect to the βi coordinates:

ω5 = |dΣ+ ∧ dΣ− ∧ dβ1 ∧ dβ2 ∧ dβ3|. (7.1.2)

Let λ(x, t) denote the volume expansion for φ(x, t), i.e. φ∗(x, t)ω5 = λ(x, t)ω5, where
φ∗ is the pull-back acting on differential forms.

Claim 7.1.1. We can compute Dtω5 = 2N2ω5, and hence

λ(x, t) = exp

[
2

∫ t

0
N2(φ(x, s))ds

]
. (7.1.3)

Proof. Write the vectorfield f corresponding to (2.3.2) in βi coordinates. The volume
expansion is given by the trace Dtλ = tr f . We see that fβi is independent of βi, and
tr ∂ΣfΣ = 2N2 is the only occuring term.
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Volume expansion on M. We are not really interested in the behaviour of φ on R5,
and the measure ω5. Instead, we are interested in dynamics and measures on the set
M = {x ∈ R5 : G(x) = 1}. We can get an induced measure on M by choosing a
vectorfield X : R5 → TR5 such that DXG = 1 in a neighbourhood ofM. Then we set

ω4 = ιXω5, i.e.
ω4[X1, . . . , X4] = ω5[X,X1, . . . X4] for X1, . . . , X4 ∈ TM.

(7.1.4)

Claim 7.1.2. The induced volume ω4 is independent of the choice of X (as long as
DXG = 1). Since G is a constant of motion, we have DtdG = 0 and ω4 is transformed
by the same λ as ω5, i.e. Dtω4 = 2N2ω4.

Proof. The independence of the choice of X follows from abstract theory. We have seen
in Claim 2.3.1 that G is a constant of motion on R5. By abstract theory, this implies
that ω4 is transported by the same equation as ω5.

The volume ω4 is really expanding: In most of the phase space, N2 > 0, and always
N2 > 4∆2 = −4|N1N2N3|

2
3 , which has bounded integral by Lemma 3.6. Let us state

this more precisely:

Lemma 7.3. For every εN,7.1 > 0, there exist εd,7.2, c7.1 = εd,7.2, c7.1(εN,7.1) > 0, such
that the following holds:

For every x0 ∈M with maxi |Ni| ≥ εN,7.1 and maxi δi ≤ εd,7.2, and every time t ≥ 1,
we have λ(x0, t) ≥ 1 + c7.1, where λ is defined in (7.1.3).

Proof. Assume first that x0 is not of Bianchi type IX. Then N2 ≥ 0, and if εd,7.2 > 0
is small enough, then we clearly have |N1| � |N2|, |N3|, without loss of generality, and
hence N2(x0) ≥ εN,7.1/2. This clearly implies λ(x0, 1) > 1 + c, and by N2 ≥ 0 outside
of Bianchi IX, λ(x0, t) ≥ λ(x0, 1) > 1 + c, for some small c7.1 > 0, and all constants
independent of x0.

If we are in Bianchi type IX, then the same proof shows λ(x0, 1) > 1 + 2c7.1. In view
of Lemma 3.6, we can choose εd,7.2(ε) > 0 small enough that

∫∞
0 |min(N2, 0)|(t)dt < ε

for all x0 fulfilling our assumptions (since |N1N2N3| ≤ ε
2
3
d,7.2). Adjusting constants yields

the conclusion for Bianchi type IX.

Volume expansion for Poincaré-maps. We consider the volume-form ω3 = ιfω4,
where f is the vectorfield (2.3.2). By invariance of f under the flow φ, we again have
φ∗(x, t)ω3 = λ(x, t)ω3.

If S ⊆ M is a Poincaré-section and K ⊆ S is a set with |K|ω3 =
∫
S χK |ω3| = 0,

then, by Fubini’s Theorem, |φ(K,R)|ω4 = 0. The same applies for the (manifold-, not
topological) boundary ∂S. The measure ω4 is absolutely bi-continuous with respect to
the ordinary Lebesgue measure, i.e. the notions of sets of measure zero coincide for the
ordinary Lebesgue-measure and ω4.

At some point, we need to actually compute integrals, in coordinates. For this, we
use the following:

68



Lemma 7.4. Let S ⊆ M+±± be a Poincaré-section intersecting the heteroclinic orbit
−T1 → T1, of the form:

S ⊆ {x ∈M : N1 = const = h, r1 ≤ ε, δ1 ≤ ε},

with ε > 0 small enough. For the sake of concreteness, one can take h = 0.1 and
ε = 0.05. Then, S can be written as a smooth graph Σ+ = Σ+(Σ−, N2, N3), and we can
write ω3 = ρ(x)dΣ−∧dβ2∧dβ3 with a bounded density function ρ(x) < C7.2 = C7.2(h, ε).

Proof. It is obvious that S is a smooth graph with |∂Σ−,β2,β3Σ+| ≤ O(ε). Note ∂β1G =
2N2

1 − 2N1N− ≥ C > 0 if ε > 0 is small enough, and Σ′+ = fΣ+ > C > 0. We can then
write

ω3 = |dΣ− ∧ dβ2 ∧ dβ3|
·
∣∣ω5

[
f, |∂β1G|−1∂β1 , ∂Σ− + (∂Σ−Σ+)∂Σ+ , ∂β2 + (∂β2Σ+)∂Σ+ , ∂β3 + (∂β3Σ+)∂Σ+

]∣∣
≤ C|dΣ− ∧ dβ2 ∧ dβ3|.

7.2 Proofs of the main Theorems

We will now use the ω3-expansion between Poincaré-sections in order give proofs of the
main results. Note that the return-times to the Poincaré-sections are very similar the
times TC , used in Sections 4, 5 and 6.

The proofs of Theorems 5 and 6 rely on the following:

Lemma 7.5. Consider a small Poincaré-section S, as in Lemma 7.4, intersecting the
heteroclinic −T1 → T1:

S = {x ∈M : N1 = const = h, r1 ≤ ε, δ1 ≤ ε}.

Let g : [0, ε) → [0, 1) be continuous and increasing. Define Badg = {x ∈ S ∩M±±± :

δ1 ≥ g(r1)}. If
∫ 0.1

0 | log g(r)|2dr <∞.
Assume that

∫ 0.1
0 | log g(r)|2dr < ∞. Then, |Badg|ω3 < ∞, and Lebesgue almost

every solution eventually avoids Badg.

Proof. Fix the signs n̂ ∈ ±3. In an abuse of notation, we suppress this in the following.
Claim 7.2.1. |Badg|ω3 <∞.

Proof. Take logarithms in the defining inequality for Badg, in order to see Badg = {x ∈
S : β2 + β3 ≤ log 4 + 2| log g(r1)|} ⊂ {x ∈ S : β2 + β3 ≤ log 4 + 2| log g(|Σ−|)|}. Then,
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estimate

|Bad ∩ S|ω3 ≤ |{x ∈ S : β2 + β3 ≤ C + C| log g(|Σ−|)|}|ω3
(7.2.1a)

=

∫

{x∈S:β2+β3≤C+C| log g(|Σ−|)|}
|ω3| (7.2.1b)

≤ C
∫

{x∈S:β2+β3≤C+C| log g(|Σ−|)|}
|dΣ− ∧ dβ2 ∧ dβ3| (7.2.1c)

≤ C + C

∫ ε

−ε
| log g(|Σ−|)|2dΣ− <∞. (7.2.1d)

From (7.2.1c) to (7.2.1d), we integrated β2, β3, using β2, β3 ≥ 0. In order to go from
(7.2.1b) to (7.2.1c), we used Lemma 7.4. �

Define BadRecurrentg = {x ∈ S : Φk
S(x) ∈ Bad for infinitely many k}, where

ΦS is the Poincaré-map to S.
Claim 7.2.2. |BadRecurrentg|ω3 = 0.

Proof. We can write

|BadRecurrentg|ω3
=

∣∣∣∣∣∣
⋂

n∈N

⋃

k≥n
Φ−kS (Badg)

∣∣∣∣∣∣
ω3

≤ lim
n→0

∑

k≥n

∣∣∣Φ−kS (Badg)
∣∣∣
ω3

≤ lim
n→0

∑

k≥n
q−k |Badg|ω3

= 0.

where q = inf{λ(x, TS(x)) : x ∈ S} > 1. ��

Proof of Theorem 5 (Bianchi VIII global attractor genericity). Attract holds for an
open set of initial conditions (by virtue of continuity of the flow). Since Taub can
only happen on an embedded submanifold of lower dimension, it suffices to prove that
Except1 happens only for a set of initial conditions with Lebesgue measure zero, without
loss of generality with respect to index permuations.

Recall Theorem 2 and apply Lemma 7.5, with g(r) =
εq,6.1

2 r.

Proof of Theorem 6 (almost sure formation of particle horizons). Without loss of gener-
ality, we will concentrate on showing

∫∞
0 δ1(t)dt <∞. Let S ⊂M be a Poincaré-section,

as in the proof of Lemma 7.5. For a solution x : [0,∞)→ Basin, i.e. for a solution where
Theorem 2 applies, let T1(x) < T2(x) < . . ., and xn = x(Tn(x)) ∈ S be the (possibly
finite) sequence of recurrence times and points to S.

If the sequence of recurrence times is finite (or empty), ending in some Tk, then
δ1(t) ≤ e−ct for all t > Tk (see Claim 6.2.1; alternatively, consider this obvious from the
preciding sections). Then, we have

∫
0∞δ1(t)dt < ∞; hence, we will assume that the

sequence of recurrence times is infinite, for the rest of the proof.
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We know that δ1(Tn) ≤ e−cn for all n ≥ 0; for a proof, see Claim 6.2.1; alternatively,
consider this obvious from the preceding sections, or alternatively, note that |h|δ2

1 = ∆3,
where h = N1 was the defining equation for S, and ∆(t) ≤ e−ct.

Consider g(r) = r4, and apply Lemma 7.5, in order to see that almost every solution
x has δ1 ≤ r4

1, for all sufficiently late recurrence times Tn, n > 0 large enough.
Let x be such a solution, starting in x0 = x(0), that avoids Badg for returns later

than Tk0 . Assuming that the sequence of recurrence times in infinite, we can estimate:

∫ ∞

0
δ1(φ(x0, t))dt =

∫ Tk0

0
δ1(t)dt+

∞∑

n=k0

∫ Tn+1

Tn

δ1(t)dt

≤ C(x0) +
∞∑

n=k0

∫ Tn+1

Tn

C5.8 exp
[
−c5.7r

2
1(Tn)(t− Tn)

]
δ1(Tn)dt

≤ C(x0) +

∞∑

n=k0

C
δ1

r2
1

(Tn)

≤ C(x0) +

∞∑

n=k0

C
√
δ1(Tn) <∞,

where we used Propositions 5.3, 4.1 and δ1 < r4
1 and the fact that the sequence δ1(Tn)

decays uniformly exponentially in n. For solutions where the sequence of recurrence
times is finite, the above series becomes a finite sum; then, the same estimate holds.

Proof of Theorem 7 (Lp estimates for the generalized localization integral). We want to
show that Iα ∈ Lploc(Basin). The claim for α ∈ [2,∞) and p =∞ follows trivially from
Theorem 2.

Without loss of generality, we restrict our attention to δ1, and p ≤ 1. Consider the
known Poincaré-Section S through −T1 → T1; set Q = S∩Basin. We will first estimate
Iα in Q, and will extend this to the rest of phase-space afterwards.
Claim 7.2.3. Iα ∈ Lp(Q,ω3), if α, p are as in the assumptions, and p ≤ 1.

Proof. Let Qn = Φ−1
S (Qn−1), and Q0 = Q be the sets of points that return to Q at least

n times, and let Tn : Q→ [0,∞] be the recurrence times, such that T0 = 0, Tn(x) <∞ if
and only if x ∈ Qn, and φ(x, Tn(x)) ∈ Q for x ∈ Qn. We can estimate, for some positive
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s ∈ (2p− 1, αp), p ≤ 1:

∫

x∈Q

[∫ ∞

0
δαi (φ(x, t))dt

]p
|ω3| =

∫

x∈Q

[∑

n

∫ Tn+1

Tn

δαi (φ(x, t))dt

]p
|ω3|

≤
∑

n

∫

x∈Qn

[∫ Tn+1

Tn

δαi (φ(x, t))dt

]p
|ω3| (7.2.2a)

≤ C
∑

n

∫

x∈Qn

[
δαi
r2
i

(Tn)

]p
|ω3|

= C
∑

n

∫

x∈Qn

[
δαp−si r−2p+s

i

(
δi
ri

)s]
(Tn) |ω3|

≤ C
∑

n

sup
x∈Qn

(
δi
ri

)s
(Tn) ·

∫

x∈Qn

[
δαp−si r−2p+s

i

]
(Tn) |ω3|.

(7.2.2b)

Here, the first inequality is meant only informally. We have used p ≤ 1 in order to split
the integral in (7.2.2a) and the Hölder inequality in (7.2.2b). We continue the estimates
by noting that supx∈C

δi
ri

(Tn) decreases exponentially in n. Hence we only need to bound
the second factor. This can be done by using αp− s > 0 and −2p+ s > −1 in order to
see

∫

x∈Qn

[
δαp−si r−2p+s

i

]
(Φn

Sx) |ω3| =
∫

y∈ΦS(Qn)

[
δαp−si r−2p+s

i

]
(y) |(Φn

S)∗ω3|

≤ C
∫

S

[
δαp−si r−2p+s

i

]
|ω3|

≤ C
∫ 0.1

−0.1

[∫

β2,β3≥0
e−

(β2+β3)(αp−s)
2 |Σ−|−2p+s|dβ2 ∧ dβ3|

]
dΣ−

≤ C
∫ 0.1

−0.1
|Σ−|−2p+sdΣ− <∞.

�

Therefore, we have shown Iα ∈ Lp(Q,ω3), if either 0 < α ≤ 1 and p < (2− α)−1, or
if 1 < α < 2 and p ∈ (0, 1].

In order to get a more global estimate, let p ∈ Basin \S. Let R ⊂ Basin be a small
Poincaré-section with p ∈ R, such that R ⊂ Basin is compact, and solutions starting
in R never return to R (this can be constructed by e.g. using the strictly decreasing
|N1N2N3|).
Claim 7.2.4. Iα ∈ Lp(R,ω3).

Proof. Set RQ = Φ−1(Q) ⊆ R and R∞ = R \RQ. Then, by construction, ΦS : RQ → Q
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is injective, and we can estimate:

∫

x∈R

[∫ ∞

0
δαi (φ(x, t))dt

]p
|ω3| ≤

∫

x∈R∞
Iα|ω3|+

∫

x∈RQ

[∫ TS(x)

0
δαi (φ(x, t))dt

]p
ω3

+

∫

y=ΦS(x)

[∫ ∞

0
δαi (φ(y, t))dt

]p
|Φ∗Sω3| <∞.

�

Now, we are done, since open sets of the form φ(Rp, (0, 1)) form an open cover of
Basin; hence, for any compact K ⊂ Basin, we only need to consider finitely many such
sets and add up the Lp-integrals of Iα. The property of being LpLoc is independent of the
underlying volume-form, as long as it has a continuous positive density function.

Note that the proof of Theorem 7 does not depend on the volume expansion; it only
needs volume non-contraction.
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A Appendix

A.1 Glossary of Equations and Notations

For easier reference, we compressed the most frequently referenced equations and nota-
tions on few pages.

Wainwright-Hsu equations The Wainwright-Hsu equations are given by:

N ′i = −(Σ2 + 2〈Ti,Σ〉)Ni (2.3.2a)

= −
(
|Σ + Ti|2 − 1

)
Ni (2.3.2b)

Σ′ = N2Σ + 2




T1 T3 T2

T2 T1

T3


 [N ,N ], where (2.3.2c)

T1 = (−1, 0) T2 =

(
1

2
,−1

2

√
3

)
T3 =

(
1

2
,
1

2

√
3

)
(2.3.1)

1
!

= Σ2 +N2 = Σ2
+ + Σ2

− +N2
1 +N2

2 +N2
3 − 2(N1N2 +N2N3 +N3N1). (2.3.3)

Auxiliary quantities are given by:

δi = 2
√
|NjNk| (2.3.7b)

ri =

√
(|Nj | − |Nk|)2 +

1

3
〈Tj −Tk,Σ〉2 (2.3.7c)

δ′i = −
(∣∣∣∣Σ−

Ti

2

∣∣∣∣
2

− 1

4

)
δi. (2.3.8b)

Named Sets We use M = {x ∈ R5 : G(x) = 1}, and Mn̂ ⊂ M to denote the signs
of the three Ni, with n̂ ∈ {+,−, 0}3. If we use ± in subscripts, the repeated occurences
are unrelated, such that M±±± = {x ∈ M : all three Ni 6= 0}. We use the notation
Ti = {x ∈ M : 〈TjΣ〉 = 〈Tk,Σ〉, Nj = Nk} for the Taub-spaces, where i, j, k are a
permutation of {1, 2, 3}.

We frequently use the following subsets of M (with the obvious definition for sub-
scripts n̂ ∈ {+,−, 0}3 ):

Cap[εN , εd] = {x ∈M : max |Ni| ≥ εN ,max
i
δi ≤ εd} (4.5)

Circle[εN , εd] = {x ∈M : max |Ni| ≤ εN , max
i
δi ≤ εd} (4.5)

Hyp[ρ, εN , εd] = Circle[εN , εd] \ [Bρ(T1) ∪Bρ(T2) ∪Bρ(T3)] (4.5)

Basinn̂[εd, εq] =

{
x ∈Mn̂ : δi ≤ εd,

δi
ri
≤ εq ∀i ∈ {1, 2, 3}

}
. (6.1.3)

74



Polar Coordinates for Bianchi IX In polar coordinates, the equations around r1 �
1 become for N2, N3 > 0:

Σ− = r1 cosψ1, N− = r1 sinψ1 = N3 −N2, N+ = N3 +N2

Dt log r1 = N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N−
r2

1

(2.4.2a)

= r2
1 sin2 ψ1

−Σ+

1− Σ+
+N1 hr (2.4.4a)

Dt log δ1 = N2 − (Σ+ + 1) (2.4.2c)

=
−1

1− Σ+
r2

1 cos2 ψ1 +
−Σ+

1− Σ+
r2

1 sin2 ψ1 +N1 hδ (2.4.4b)

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N−
r2

1

(2.4.2d)

=
−1

1− Σ+
r2

1 cos2 ψ1 +N1(hδ − hr) (2.4.4c)

ψ1
′ =
√

3r1

√
sin2 ψ1 +

δ2
1

r2
1

− r2
1

1− Σ+
sinψ1 cosψ1 +N1 sinψ1 hψ, (2.4.4d)

where the terms |hr|, |hδ|, |hψ| are bounded (if |Ni|, Σ+ < 0, and Σ− are bounded) and
given in (2.4.5), page 29.

Polar Coordinates for Bianchi VIII In polar coordinates, the equations around
r1 � 1 become for N2 > 0 , N3 < 0:

Σ− = r1 cosψ1, N− = r1 sinψ1 = N2 +N3 N+ = N2 −N3

Dt log r1 = N2 − (Σ+ + 1)
N2
−
r2

1

+
√

3N1
Σ−N+

r2
1

(2.4.7a)

=
−Σ+

1− Σ+
r2

1 sin2 ψ1 + δ2
1

cos2 ψ1 − Σ+

1− Σ+
+N1 hr (2.4.9a)

Dt log δ1 = N2 − (Σ+ + 1) (2.4.2c)

=
−1

1− Σ+
r2

1 cos2 ψ1 +
−Σ+

1− Σ+
r2

1 sin2 ψ1 +
−Σ+

1− Σ+
δ2

1 +N1 hδ (2.4.9b)

Dt log
δ1

r1
= −(Σ+ + 1)

Σ2
−
r2

1

−
√

3N1
Σ−N+

r2
1

(2.4.7d)

=
−1

1− Σ+
r2

1 cos2 ψ1 − δ2
1

sin2 ψ1

1− Σ+
+N1(hδ − hr) (2.4.9c)

ψ1
′ =
√

3r1

√
cos2 ψ1 +

δ2
1

r2
1

− r2
1 + δ2

1

1− Σ+
cosψ1 sinψ1 +N1 cosψ1 hψ, (2.4.9d)

where the terms |hr|, |hδ|, |hψ| are bounded (if |Ni|, Σ+ < 0, Σ−, and δ1
r1

are bounded)
and given in (2.4.10), page 31.
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A.2 Properties of the Kasner Map

We deferred a detailed discussion of the Kasner-map K in Section 3.1, especially the
proof of Proposition 3.2. We will first give a simple proof of Proposition 3.2, and then
discuss classical ways of describing the Kasner map.

T1

T2

T3

−2T1

−2T2

−2T3

p−

p+

(a) A graphical proof of Lemma A.1.

[12]

[21]

[23]

[32]

[31]

[13]

T1

T2

T3

−T1

−T2

−T3

−2T1

−2T2

−2T3

u=∞

u=∞

u=∞

u=1

u=1

u=1

(b) The Kasner-parameter in the six seg-
ments.

Figure 6: Expansion of the Kasner-map

Expansion of the Kasner-map. We can see from Figure 4b (p. 33) that the Kasner-
map is a double-cover, has three fixed points and reverses orientation. From Figure 6a,
we can see that K is non-uniformly expanding:

Lemma A.1. Consider the vectorfield ∂K(p) = (−Σ−(p),+Σ+(p)). Assume without
loss of generality that p− is such that the Kasner-map p+ = K(p−) proceeds via the
N1-cap, i.e. d(p−,−T1) < 1 (see Figure 4).

Then the Kasner-map K is differentiable at p− and we have

K ′(p−) = −|p+ + 2T1|
|p− + 2T1|

< −1, where K ′(p′) : K∗∂K(p−) = K ′(p−)∂K(p+).

Proof of Lemma A.1. Informally, differentiability is evident from the construction in Fig-
ure 6a. The component of ∂K which is normal to the line through p+, p− and −T1 gets
just elongated by a factor λ = |p++2T1|

|p−+2T1| . The angle between this line and the Kasner-
circle, i.e. ∂K, is constant; therefore, the length of the component tangent to K must get
elongated by the same factor. The negative sign is evident from Figure 6a.

Formally, the relation between p+ and p− is described by

|p−| = |p+| = 1 p+ + 2T1 = λ(p− + 2T1).
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Setting p− = p−(t), we obtain a differentiable function λ = λ(t) by the implicit function
theorem (as long as 〈p+,p−+2T1〉 6= 0) and obtain (where we use ′ to denote derivatives
with respect to t):

p′+ = λ′(p− + 2T1) + λp′−.

Assuming p+ 6= p−, we can set

v =
p+ + 2T1

|p+ + 2T1|
=

p− + 2T1

|p− + 2T1|
=

p+ − p−
|p+ − p−|

,

and compute the projection to the normal component of v: (1−vvT )p′+ = λ(1−vvT )p′−,
since the vector coefficient of λ′ is parallel to v. Now the vectors p′+ and p′− are tangent
to the Kasner-circle; letting J(Σ+,Σ−) = (−Σ−,Σ+) be the unit rotation we can see
that p′+ = ±|p′+|Jp+ and p′− = ±|p′−|Jp−. Hence

|(1− vvT )p′+|2 =
(
1− 〈v, Jp+〉2

)
|p′+|2 =

(
1− 〈p−, Jp+〉2
|p+ − p−|2

)
|p′+|2

|(1− vvT )p′−|2 =
(
1− 〈v, Jp−〉2

)
|p′−|2 =

(
1− 〈p+, Jp−〉2
|p+ − p−|2

)
|p′−|2.

By antisymmetry of the matrix J , i.e. 〈p−, Jp+〉 = −〈Jp−,p+〉, we therefore have |p′+| =
λ|p′−|.

Symbolic Description. For a given p0 ∈ K, we can symbolically encode the trajectory
(pn)n∈N (with pn+1 = K(pn)) under the Kasner-map. The easiest way to do so is to
encode it by (sn)n∈N ∈ {1, 2, 3}N, where sn = i if pn → pn+1 occurs via the |Ni| > 0-cap.
Then (sn)n∈N has the property that no symbol repeats, i.e. sn+1 6= sn for all n ∈ N. We
have, however, an ambiguity if pN = Ti for some N > 0. If this occurs, then also all
later points have pN+n = Ti. We chose to allow both encodings pN = j and pN = k, as
long as the property that no symbol repeats is preserved. Factoring out this ambiguity
gives us a map

Ψ : K → {(sn)n∈N{1, 2, 3}N : no sumbol repeats} / {(∗ij) = (∗ji)},
Ψ(p0) = (sn)n∈N, such that d(pn,−Tsn) ≤ 1 and no symbol repeats,

where ∗ stands for an arbitrary initial piece and jk stands for a periodic tail (∗jk) =
(∗jkjkjk . . .). This map Ψ is continuous (since the Kasner-map is continuous), where we
endow the target space {1, 2, 3}N/ ∼ with the quotient topology of the product topology.
Note that, by construction, Ψ semi-conjugates the Kasner-map K to the shift-map σ:

Ψ ◦K = σ ◦Ψ, where σ : (s0s1s2 . . .)→ (s1s2 . . .).

In order to see that Ψ is a homeomorphism, we construct a continuous inverse. Denote
the three segments of K as Ki = {p ∈ K : d(p,−Ti) ≤ 1}. We can construct inverse
maps K−1

ij : Kj → Ki, such that K ◦K−1
ij : Ki → Ki = id. Then we get an inverse map

Ψ−1 : (sn)n∈N →
⋂

`∈N
K−1
s0s1K

−1
s1s2 . . .K

−1
s`s`+1

(Ks`+1
).
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We now need to show that Ψ−1((sn)n∈N) = {p} is a single point, which depends con-
tinuously on (sn)n∈N, and is actually the inverse of Ψ.

We first consider a sequence (sn)n∈N which does not end up in a Taub-point.
In order to see that Ψ−1((sn)n∈N) is nonempty, note that it is the intersection of a

descending sequence of nonempty compact sets. In order to see that it contains only
a single point, note that K−1

ij is (nonuniformly) contracting by Lemma A.1; hence the
length len` = |K−1

s0s1K
−1
s1s2 . . .K

−1
s`s`+1

(Ks`+1
)| is decreasing. The length len` also cannot

converge to some len∞ as `→∞, since we have |K−1
ij (I)| < |I| for any interval I with

|I| > 0. In order to see that Ψ−1 is continuous, we need to show that diam Ψ−1{(rn)n∈N :
rn = sn ∀n ≤ N} → 0 as N → ∞. This also follows from the previous argument of
decreasing lengths.

Next, we consider a sequence (sn)n∈N which does end up in a Taub-point Ti at
n = N . Let (s′n)n∈N denote the other representative of (sn)n∈N, i.e. we changed
(s0, . . . , sN−1, jk)↔ ((s0, . . . , sN−1, kj)). The previous arguments about single-valuedness
and continuity still apply for each of the two representatives; we only need to show that
Ψ−1 coincides for both. This is obvious.

It is also obvious by our construction that Ψ and Ψ−1 are inverse to each other. Hence
Ψ and Ψ−1 C0-conjugate K to the shift-map

Ψ ◦K ◦Ψ−1 = σ : (s0s1s2 . . .)→ (s1s2 . . .).

The exact same arguments apply in order to conjugate the map D : R/3Z → R/3Z,
D : [x]3Z → [−2x]3Z to the same shift, where we replaced Ti = i and Ki = [i+ 1, i+ 2].
Hence, the Kasner-map is C0 conjugate to D:

Proposition 3.2. There exists a homeomorphism Ψ : K → R/3Z, such that Ψ(Ti) =
[i]3Z and

Ψ(K(p)) = [−2Ψ(p)]3Z ∀p ∈ K.

Kasner Eras and Epochs. A useful and customary description of the symbolic dy-
namics of K is obtained by distinguishing between “small” bounces around a Taub-point,
called “Kasner epochs” and denoted by the letter S in this work, and “long” bounces,
called “Kasner eras” and denoted by the letter L in this work. The S and L encoding of
an orbit can be obtained from previous {1, 2, 3}-encoding by the map

EpochEra : {s ∈ {1, 2, 3}N : sn 6= sn+1} → {(s0s1|r0r1 . . .) : s0, s1 ∈ {1, 2, 3}, rn ∈ {S,L}}

(s0s1s2 . . .)→ (s0s1|r0r1 . . .), where

{
rn = S if sn = sn+2,
rn = L if sn 6= sn+2.

We can remember the value of sn as a sub-index of rn, such that e.g.

(132121213231 . . .)→ (13|L1L3L2S1S2S1S2L1L3S2L3 ∗1 . . .).
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Then the Kasner-map becomes

(s0s1|r0r1r2r3 . . .)→
{

(s1i|r1r2 . . .) if s0 = i and r0 = S

(s1i|r1r2 . . .) if s0 6= i 6= s1 and r0 = L.

Note that the first two indices in {1, 2, 3} describe in which of the six symmetric segments
of K a point lies, see Figure 6b.

Another customary way of writing such sequences is to write every symbol L as a
semicolon “;” and abbreviate the S symbols in between by just their number, such that
the previous example becomes

(13|L1L3L2S1S2S1S2L1L3S2L3 ∗1 . . .)→ (13|0; 0; 0; 4; 0; 1; . . .).

The Kasner-Parameter. There exists an explicit coordinate transformation, related
to the continued fraction expansion, which realizes the conjugacy to the shift-space. This
is done via the so-called Kasner-parameter u, and is the most standard way of discussing
the Kasner-map.

In order to introduce the Kasner-parameter, it is useful to use the coordinates which
make the permutation symmetry of the indices more apparent. This is done via

Σi = 2〈Ti,Σ〉 Σ+ = −1

2
Σ1 Σ− =

1

2
√

3
(Σ3 − Σ2).

These variables are constrained by Σ1+Σ2+Σ3 = 0 and have Σ2
1+Σ2

2+Σ2
3 = 6(Σ2

++Σ2
−).

The parametrization of K depends not only on a real parameter u ∈ R, but also on
a permutation (i, j, k) of {1, 2, 3} and is given by Σ = Σ(u, (ijk)) such that

Σi = −1 + 3
−u

u2 + u+ 1
Σj = −1 + 3

u+ 1

u2 + u+ 1
Σk = −1 + 3

u2 + u

u2 + u+ 1
.

We can immediately observe that 〈T1 + T2 + T3,Σ〉 = 0, as it should be; hence, the
above really defines a function Ψ : R×sym3 → R2, where sym3 is the set of permutations
of {1, 2, 3}. Direct calculation shows that Σ2

1 + Σ2
2 + Σ2

3 = 6 for all u ∈ R. Hence, the u
coordinates do actually parametrize the Kasner circle. We have the noteworthy symmetry
properties

Σ (u, (ijk)) = Σ
(
u−1, (ikj)

)
= Σ (−(u+ 1), (jik)) = Σ

(
−1
u+1 , (jki)

)

= Σ
(
− u
u+1 , (kji)

)
= Σ

(
−u+1

u , (kij)
)
.

We can use the symmetry to normalize u to a value u ∈ [1,∞], thus giving a paramet-
rization of the Kasner circle as in Figure 6b.
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The Kasner-map in u-coordinates. We consider without loss of generality a het-
eroclinic orbit γ ⊆ M+00. In the Σ-projection, this heteroclinic orbit is a straight line
through −2T1; hence, the quotient Σ−

2−Σ+
stays constant. It is given by

Σ−
2− Σ+

(u) =
√

3
u2 − 1

4(u2 + u+ 1)− (u2 + 4u+ 1)
=

√
3

3

u2 − 1

u2 + 1
.

If we write the α-limit of γ with respect to the 123 permutation, then we must have
u ∈ [0,∞] (because N1 would not be unstable otherwise). Then the Kasner-map must
be given by (u, (123)) → (−u, 123). Assume that u ∈ [2,∞]; then we can renormalize
K(u), such that K(u, 123) = (u− 1, 213). If instead u ∈ [1, 2], then we can renormalize
such that K(u, 123) =

(
1

u−1 , 231
)
. Applying symmetrical arguments for the other caps

yields the following way of writing the Kasner map:

K = sym3 × [1,∞]
/
{(1, ijk) = (1, ikj), (∞, ijk) = (∞, jik)}

K : K → K (u, ijk)→





(u− 1, jik) if u ∈ [2,∞]
(

1

u− 1
, jki

)
if u ∈ [1, 2].

Note that the Kasner-map is actually well-defined and continuous at u = 2, due to the
identification (1, ijk) = (1, ikj). It is also well-defined at u = 1, since the identifications
(1, ijk) = (1, ikj) and (∞, ijk) = (∞, jik) are compatible. It is continuous at u = 1,
since we use the usual compactification at u = ∞, such that a neighbourhood basis
of (∞, ijk) is given by {([R,∞], ijk) ∪ ([R,∞], jik)}R�0. Likewise, the Kasner-map is
well-defined and continuous at the three fixed-points u = ∞, due to the identification
(∞, ijk) = (∞, jik) and the compactification at u =∞.

Symbolic description in u-coordinates. The two local inverses of the Kasner-map
in u-coordinates are given by

S : (u, ijk)→ (u+ 1, jik)

L : (u, ijk)→
(

1 +
1

u
, kij

)

Using the same construction as in the proof of Proposition 3.2, we see that the inverse
coding map Cfe−1 given by the continued fraction expansion

Cfe−1 : (ij|a0; a1; a2; . . .)→
(

1 + a0 +
1

1 + a1 + 1
1+a2+...

, ijk

)
,

and the Kasner-map is given by

Cfe ◦K ◦Cfe−1 : (ij|a0; a1; a2; . . .)→
{

(ji | a0 − 1; a1; a2; . . .) if a0 > 0
(jk | a1; a2; . . .) if a0 = 0.
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A.3 General Properties of Dynamical Systems

This section contains some basic facts and definitions about dynamical systems. These
are common knowledge in the dynamical systems community; readers who familiar with
this background need only skim paragraphs on invariant sets, long-time existence in the
Bianchi system, and invariant manifolds, where some slightly non-standard notation is
explained. For reference, we recommend e.g.[Wig03].

Local flows A local flow is a continuous map φ : U → X, where U ⊂ X × R is
open, X is a topological space, and X × {0} ⊂ U , with the properties φ(x, 0) = x and,
whenever all expressions are defined, φ(x, t+ s) = φ(φ(x, t), s). The domain U is called
maximal if additionally, for x ∈ X and t, s ∈ R with ts > 0, (x, t+ s) ∈ U if and only if
(φ(x, s), t) ∈ U . In the following, we will always assume that local flows are defined on
their maximal domain.

The local flow is called global, if U = X×R (for the maximal domain); otherwise, we
say that it has finite-time blow-up. Note that local flows on compact spaces are always
global. Also note that the only way that global forward existence can fail is by points
x0 ∈ X, with T ∗ = sup{t ≥ 0 : (x0, t) ∈ U} < ∞, such that limt→T ∗ φ(x0, t) does not
exist. Global backward existence can only fail only in the analogous way.

The Picard-Lindelöf Theorem states that locally Lipschitz vectorfields f on finite-
dimensional differentiable manifolds X (without boundary, but possibly non-compact)
define a unique local flow solving Dtφ(x, t) = f(φ(x, t)), and that this local flow is as
regular as f .

For some technical points it is more convenient to work with global flows. For
flows coming from vectorfields, we can conveniently associate a global flow via an Euler-
multiplier, i.e. via a loc. Lipschitz function µ : X → (0,∞). Then, we discuss the flow
to µf instead of f . Many dynamical properties are invariant under Euler-multipliers,
since these correspond to a simple reparametrization of time; for these, we can avoid the
discussion of local flows.

Claim A.3.1. Euler-multipliers correspond to a time-rescaling.

Proof. To the system Dtx = f(x), add the equation Dtτ = µ(x). Then, Dtφ(x, τ(t)) =
µ(φ(x, τ(t)))f(φ(x, τ(t))).

One way of obtaining a suitable Euler-multiplier is the following: Fix some met-
ric d on X, such that all coordinate charts are locally Lipschitz; then, we set ρ(x) =
sup{0 < r ≤ 1 : {y : d(x,y) ≤ r} is compact}, and µ = 0.1 ρ

1+|f |d , where |f(x)|d :=

lim supt→0, t 6=0 |t|−1d(x, φ(x, t)).

Claim A.3.2. Using the above construction, µf is associated to a global flow.

Proof. Let (x0, T ) be in the maximal domain of the local flow φ to µf , and use the short-
hand x(t) = φ(x0, t). Then, we can estimate diamd x([0, T ]) ≤

∫ T
0 |µf |d(φ(x(t))dt ≤

0.1 max{ρ(x(t)) : t ∈ [0, T ]} ≤ 1
9ρ(x0). Since |µf |d < 1 is bounded, this excludes

(forward) finite time blow-up. Backward finite time blow-up is similarly impossible.
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Invariant sets Assume that φ is a global flow. Then, we define a set M ⊆ X to be
forward invariant if φ(M, t) ⊆ M for all t ≥ 0, we define it to be backward invariant if
φ(M, t) ⊆ M for all t ≤ 0, and we define it to be invariant if it is both forward and
backward invariant; then, φ(M, t) = M for all t ∈ R. The notions of invariance are
clearly invariant under Euler-multipliers, as long as we are considering global flows.

For local flows, there are multiple contenders for a sensible definition of (forward,
backward) invariant sets. We choose the following: Take a global flow that is associated
by Euler-multiplier, and take the definitions for global flows.

This means that we have only given a definition for invariant sets for local flows
that are associated to a locally Lipschitz vectorfield on a differentiable manifold. This is
sufficiently general in the context of this work.

Long-time existence in the Bianchi system Let φ denote the local flow on M,
such that t→ φ(x, t) are solutions to (2.3.2). In Lemma 3.5, we prove that φ is defined
for all positive times, and remark (without proof) that backwards finite time blow-up
can occur in Bianchi IX, and remark (with proof) that φ is defined for all negative times
for all other relevant Bianchi types than IX.

We mostly discuss the behaviour of solutions for positive times; hence, we very rarely
encounter situations where global backward existence of solutions is a possible issue.
For this reason, we decided that applying a global Euler-multiplier that ensures global
existence is not worth the hassle, and the clutter in (2.3.2). For a work that decides to
modify the equations in order to get rid of this problem, see e.g. [HU09b].

An unfortunate side-effect is that the effective definitions of invariant sets are super-
ficially asymmetric in time: A set M ⊆ M is forward invariant, if {φ(x, t) : t ≥ 0, x ∈
M} ⊆M , and backward invariant if {x : ∃t ≥ 0 : φ(x, t) ∈M} ⊆M , and invariant if it
is both forward and backward invariant.

We can consider preimages of sets or pull-backs of differential forms, without having
to invert any maps.

In an abuse of notation, we nevertheless sometimes write φ(M, (−∞, 0]) := {x : ∃t ≥
0 : φ(x, t) ∈ M} for the generated backward invariant set, and φ(M,R) := φ(M,R−) ∪
φ(M,R+) for the generated invariant set.

Invariant Manifolds Let f : X → TX be a vectorfield that is at least C1, and let φ
be its associated local flow. Let p ∈ X be a fixed point, i.e. f(p) = 0, and let A = Df(p)
be its Jacobian. We can split its spectrum, i.e. its set of eigenvalues specA ⊆ C, into
three parts, depending on the signs of their real parts. An eigenvalue λi ∈ specA is
called stable if its real part is negative; it is called central if its real part is zero, and
it is called unstable if its real part is positive. Let πs, πc, πu be the spectral projections
corresponding to this splitting.

Theorem (Invariant Manifold Theorem). Let W s(p) = {x ∈ X : limt→∞ φ(x, t) =
p exponentially}. Then, W s(p) is an immersed submanifold, with an immersion Ψ :
πsTpX → X that has DΨs(0) = id (i.e. DΨs(0) is the embedding πsTpX ⊆ X). This
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immersion is as smooth as the vectorfield. W s(p) is called the stable manifold of p; it is
invariant and unique.

Let W u(p) = {x ∈ X : limt→−∞ φ(x, t) = p exponentially}. Then, W u(p) is an
immersed submanifold, with an immersion Ψu : πuTpX → X that has DΨu(0) = id
(i.e. DΨ(0) is the embedding πuTpX ⊆ X). This immersion is as smooth as the
vectorfield. W u(p) is called the stable manifold of p; it is invariant and unique.

There exists an immersion Ψc : πcTpX → X that has DΨ(0) = id (i.e. DΨc(0) is
the embedding πcTpX ⊆ X), with the following properties. W c(p) := Range Ψc is called
the center manifold; it is invariant. Furthermore, for all sufficiently small ε > 0, there
exists ε′ > 0, such that Ψc(Bc

ε′(0)) is a graph over πcTpX and contains all points x ∈ X
with the property that φ(x, t) < ε for all t ∈ R. Here, Bc

r(0) denotes the ball of radius r in
πcTpX, centred at the origin, with respect so some arbitrary norm. The center manifold
is in general non-unique, so is should rather be called “a center manifold”. It can be
arranged that Ψc is Ck, k <∞, if f ∈ Ck.

In this work, we never really apply this theorem; however, we use its notation, and
the intuitions it implies.

When we use this notation, we suppress an index n̂ ∈ {+1,−1, 0}. For example,
W s(−T1) has the eight parts W s(−T1) ∩M0∗∗, and in an abuse of notation, we some-
times write W s(−T1) when we rather mean W s

n̂(−T1) := W s(−T1)∩Mn̂, trusting that
the Bianchi type is apparent from the context.

Elementary Properties of ω-limit sets Let us recall some basic properties of ω-limit
sets. In the following, we assume that φ is a global flow on a locally compact (possibly
incomplete and non-compact) metric space (X, d). In the Bianchi system, we apply the
definitions to a global flow that is associated by Euler-multiplier.

Let x0 ∈ X. We define its ω-limit set ω(x0) as the set of all y ∈ X, such that there
exists a sequence of times tn → ∞, with limn→∞ φ(x0, tn) = y. Analogously, we define
its α-limit set α(x0) as the set of all y ∈ X, such that there exists a sequence of times
tn → −∞, with limn→∞ φ(x0, tn) = y.
Claim A.3.3. The notion of α and ω-limit sets is invariant under Euler-multipliers.

Proof. Obvious.

Lemma A.2. Let x0 ∈ X. If X is compact, then ω(x0) 6= ∅. The set ω(x0) ⊆ X
is closed and invariant. If ω(x0) is compact, then it is connected. If y ∈ ω(x0), then
ω(y) ⊆ ω(x0) and α(y) ⊆ ω(x0).

The same statements hold if we exchange α and ω limit sets, i.e. reverse time.

Proof. First, note that the claims about invariance under Euler-multipliers and reversing
time are obvious. If X is compact, then it is sequentially compact, and clearly ω(x0) 6= ∅.
The claim that ω(x0) is (relatively) closed is obvious when considering the meaning of
y 6∈ ω(x0). The claim that ω(x0) is invariant is obvious from its definition.

The claims that ω(y) ⊆ ω(x0) and α(y) ⊆ ω(x0) follow directly from invariance and
closedness of ω(x0).
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Let us now show that ω(x0) is connected if it is compact. Assume otherwise: Let
U, V ⊆ X be two disjoint open sets with ω(x0) ⊆ U ∪ V , and neither ω(x0) ⊆ U nor
ω(x0) ⊆ V . There exists a sequence of times tn →∞, such that φ(x0, tn) ∈ X \ (U ∪V ):
Otherwise, we would have φ(x0, [T,∞)) ⊆ U (or ⊆ V ), for some sufficiently late time
T ≥ 0, since [T,∞) is connected for all T ∈ R, and φ is continuous. This is however
excluded by our setup.

Now, we can use the assumed compactness of ω(x0) to find a convergent subsequence,
i.e. a sequence tn →∞ such that φ(x0, tn) ∈ X \ (U ∪V ) converges. This is a contradic-
tion.

A.4 Transformation of Volumes on Manifolds

This section contains some basic facts about the transformation of volumes under flows.
These facts are common knowledge; for reference, we recommend one of [Kön13, Lan06,
Rud64]. Recall the general conventions about integrals from the beginning of Section 2.

Volume and integral transformation in Rn. If U ⊆ Rn is open, and Φ : U →
Φ(U) ⊆ Rn is a diffeomorphism onto its image, then integrals transform by

∫

y∈Φ(U)
f(y)dy =

∫

x∈U
f(Φ(x))λ(x)dx, λ(x) = | det DΦ(x)|,

for any a.e. defined measurable function f : Φ(U) → [0,∞], henceforth simply called
a.e.-function. (if one side of the integral is infinite, then so is the other). If we want to
integrate with respect to a density, i.e. an a.e. function ρ : Rn → (0,∞), then we get

∫

y∈Φ(U)
f(y)ρ(y)dy =

∫

x∈U
f(Φ(x))λ(x)ρ(x)dx, λ(x) =

ρ(Φ(x))

ρ(x)
| det DΦ(x)|.

Denote indicator functions of sets K by χK , i.e. χK(x) = 1 if x ∈ K and χK(x) = 0
if x 6∈ K. Then, this equation tells us how to transform volumes volρ(K) := |K|ρ :=∫
Rn χK(x)ρ(x)dx of measurable sets K ⊆ U :

volρ(Φ(K)) =

∫

Φ(U)
χKρ|dx| =

∫

U
χΦ−1(K)λρdx.

Note that |K|ρ = 0 if and only if |K| := |K|1 = 0, and
∫
Rn fdx = 0 if and only if∫

Rn fρdx = 0, for non-negative a.e.-functions f , and a.e. densities ρ : Rn → (0,∞) (the
notion of sets with finite measure, however, is not independent of ρ). If U ⊆ Rn is
open and p ∈ (0,∞), then we say that an a.e. function f is in LpLoc(U) if

∫
K f

pdx <∞
for every compact K ⊂ U . If ρ : U → (0,∞) is continuous, then this is equivalent to∫
K f

pρdx <∞ for every compact K ⊂ U .
The same transformations of integrals apply for piecewise diffeomorphisms Φ : U →

V , in the following sense: Suppose that we have a countable family Ωi ⊆ Ui ⊆ U ,
such that each Ui is open, each Ωi is measurable, and Φi : Ui → Φi(Ui) is a family of
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diffeomorphisms onto their image. Suppose that the sets (Ωi)i∈N are pairwise disjoint,
as are the sets (Φi(Ωi))i∈N, and suppose that |U \ ⋃i Ωi| = 0 and |V \ ⋃i Φi(Ωi)| = 0.
Then, set Φ(x) = Φi(x) for x ∈ Ωi, and λ(x) = λi(x) for x ∈ Ωi. Then, Φ and λ are
a.e. defined, and for every a.e. function f : Φ(U)→ [0,∞]

∫

Φ(U)
f(y)dy =

∫

U
f(Φ(x))λ(x)dx.

Volume transformation under flows in Rn Suppose that we have a flow φ : Rn ×
[0,∞) → Rn, corresponding to a C1 vectorfield f : Rn → Rn. Then, we want to
compute λ : Rn × [0,∞) → R+, given by λ(x, t) = det Dxφ(x, t). Clearly, λ(x, t1 +
t2) = λ(x, t1)λ(φ(x, t1), t2) for all t1, t2 ≥ 0; this allows us to compute Dtλ(x, t) =
λ(x, t)tr ∂xf(φ(x, t)), using Dt detA(t)|t=0 = tr DtA(t)|t=0, for any differentiable family
of matrices with A(0) = id. Integrating this yields log λ(x, t) =

∫ t
0 tr∂xf(φ(x, s))ds.

If we instead want to transform with respect to a differentiable density ρ : Rn →
(0,∞), i.e. are interested in λ(x, t) = ρ(φ(x,t))

ρ(x) det Dxφ(x, t), then we get log λ(x, t) =
∫ t

0 ∂x log(ρ) · f(φ(x, t)) + tr∂xf(φ(x, s))ds.

Volume transformation on manifolds The language of differential forms gives a
supremely convenient framework for transforming integrals. Let Φ : M → Φ(M) ⊂ N
be a diffeomorphism between n-differential manifolds, and let ωN , ωM be volume-forms.
Then, the above transformation of integrals reads, for a.e. functions f on Φ(M), as

∫

Φ(M)
f |ωN | =

∫

M
f ◦ Φ |Φ∗ωN | =

∫

M
f ◦ φλ|ωM |,

where λ : M → [0,∞) is such that |ωM | = λ|Φ∗ωN |, and the pull-back is given by
Φ∗ωN [X1, . . . , Xn] = ωN [Φ∗X1, . . . ,Φ∗Xn] for vectors X1, . . . Xn ∈ TpM , with Φ∗Xi =
DΦ(p)Xi.

Volume transformation under flows on manifolds If we have an n-dimensional
differentiable manifold M , with volume form ω = ρ , and a flow φ : M × [0,∞) → M
associated to a differentiable vectorfield f , then we can again write φ(·, t)∗ω = λ(·, t)ω
and have λ(x, t1 + t2) = λ(x, t1)λ(φ(x, t1), t2) for t1, t2 ≥ 0. In practice, we will compute
λ in coordinates.

Restriction to Iso-Surfaces. Let Φ : M →M be a diffeomorphism on an n-dimensional
manifold M with volume form ω, which gets transported by λ = |Φ∗ω|

|ω| . Suppose that
G : M → R is a preserved quantity under Φ, i.e. G(Φ(x)) = G(x) and suppose that 1 is
a regular value of G. Now we are interested in the iso-surface M1 = {x ∈M : G(x) = 1}
and in a volume form ω̃ on M1, which gets transported by the same λ. This can be
realized by choosing some vectorfield X : M1 → TM with DXG = const = 1 and set-
ting ω̃ = ιXω. Since G is preserved, we have Φ∗X − X ∈ TM1 and hence for a basis
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X1, . . . , Xn−1 of TM1:

λω̃[X1, . . . Xn] = λω[X,X1, . . . , Xn] = ω[Φ∗X,Φ∗X1, . . . ,Φ∗Xn−1]

= ω[X,Φ∗X1, . . . ,Φ∗Xn−1] + ω[Φ∗X −X,Φ∗X1, . . . ,Φ∗Xn−1]

= Φ∗ω̃[X1, . . . , Xn−1].

It is clear that the induced volume ω̃ does not depend on the choice of X, up to possibly
a sign.

Contraction with invariant vectorfields. Let Φ : M →M be a diffeomorphism on
an n-dimensional manifold M with volume form ω, which gets transported by λ = Φ∗ω

ω .
Suppose that the vectorfield Y : M → TM is preserved quantity under Φ, i.e. Φ∗Y = Y .
Then the contracted volume-form ω̃ = ιY ω has Φ∗ω̃ = λω̃:

Φ∗ω̃[X2, . . . , Xn] = ω[Y,Φ∗X2, . . . ,Φ∗Xn] = ω[Φ∗Y,Φ∗X2, . . . ,Φ∗Xn]

= Φ∗ω[Y,X2, . . . , Xn] = λω[Y,X2, . . . , Xn] = λω̃[X2, . . . , Xn].

Poincaré-Sections Suppose that φ : M × R → M is a local flow with forward long-
time existence, corresponding to the vectorfield f on an n-dimensional manifold M with
volume form ω, such that φ(x, t)∗ω = λ(x, t). Set ω̃ = ιfω. Clearly, φ(·, t)∗f = f .

Let S ⊂ M be a Poincaré-section, i.e. an embedded submanifold with boundary of
codimension one, that is transverse to f (i.e. f(S) ∩ TS = ∅). Let K ⊂ S be a set
with |K|ω̃ = 0. Then, |φ(K, (−ε, ε))|ω = 0, by Fubini’s theorem, and |φ(K,R)|ω = 0 by
absolute continuity of the flow. For technical reasons, we do not consider the boundary
∂S to be a subset of S, but nevertheless |φ(∂S,R)|ω = 0, for the same reasons.

Let x0 ∈M , and t > 0 such that φ(x0, t) ∈ S. Then, by the implicit function theorem,
we find an open neighbourhood U 3 x and differentiable function TS : U → R+, such
that ΦS(x) := φ(x, TS(x)) is a differentiable map ΦS : U → S. We call ΦS a branch of
the Poincaré-map. We can compute Φ∗Sω̃ = λSω̃, where λS(x) = λ(x, TS(x)). This is
because, for any vectorfield X on U , ΦS∗X = φ∗(·, TS(·))X + f DXTS , and hence

Φ∗Sω̃[X2, . . . , Xn] = ω[f, φ∗(·, T (·))X2 + fDX2TS , . . . , φ∗(·, TS(·))Xn + fDXnTS ]

= ω[f, φ∗(·, T (·))X2, . . . , φ∗(·, TS(·))Xn]

= ω[φ∗(·, TS(·))f, φ∗(·, TS(·))X2, . . . , φ∗(·, TS(·))Xn] = λSω̃[X2, . . . , Xn].

Next, we consider the first-return map, i.e. we (partially, discontinuously) define
TS(x) = inf{t > 0 : φ(x, t) ∈ S}, and ΦS(x) = φ(x, TS(x)), and λS(x) = λ(x, TS(x)),
and Φ−1

S (S) := {x ∈ M : TS(x) < ∞} = φ(S, (−∞, 0)). We want to apply the first-
return map on S; note that the restriction on S, i.e. ΦS |S, is injective. Then, recalling
the initial discussion of the transformation under piecewise diffeomorphisms, we get for
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any measurable set M ⊆ S, and for a.e. functions f : S → [0,∞]:

|ΦS(M ∩ Φ−1
S (S))|ω̃ =

∫

M∩Φ−1
S (S)

λS |ω̃|

|Φ−1
S (M) ∩ S|ω̃ =

∫

M∩ΦS(S)

1

λS(Φ−1
S (x))

|ω̃|
∫

x∈Φ−1
S (S)∩S

f(ΦS(x))λS(x)|ω̃| =
∫

y∈ΦS(S)∩S
f(y)|ω̃|.

Note that we only need countably many pieces because Φ−1
S (S) ∩ S is open. Also, the

set of points that hit ∂S before hitting S is a set of measure zero, so it is ultimately
irrelevant whether we consider ∂S to be a subset of S in the definition of ΦS .

A.5 Derivation of the Wainwright-Hsu equations

The goal of this section is to connect the Einstein field equations of general relativ-
ity to the Wainwright-Hsu equations (2.3.2) discussed in this work. Alternatively, we
recommend [WE05].

A.5.1 Spatially Homogeneous Spacetimes

We are interested in spatially homogeneous spacetimes. We assume that (M4, g) is a
Lorentz-manifold, and we have a symmetry adapted co-frame: {ω1, ω2, ω3,dt}, corres-
ponding to a frame of vectorfields {e0, e1, e2, e3}, such that e1, e2, e3 are Killing, i.e. the
metric depends only on t. We assume that the metric has the form

g = g00(t)dt⊗ dt+ g11(t)ω1 ⊗ ω1 + g22(t)ω2 ⊗ ω2 + g33(t)ω3 ⊗ ω3,

where g00 < 0 and the other three gii > 0. The spatial homogeneity is described by the
commutators of the three Killing fields e1, e2, e3; we assume that it is given (for positive
permutations (i, j, k) of (1, 2, 3)) by:

[ei, ej ] = γkijek = n̂kek dωi = −n̂iωj ∧ ωk,

where n̂i ∈ {−1, 0,+1} describe the Bianchi type of the surfaces {t = const} of spatial
homogeneity.
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General equations for the Christoffel symbols. The general equations for Chris-
toffel symbols are given by:

∇eiej =
∑

k

Γkijek

[ei, ej ] = ∇eiej −∇ejei ⇒ Γkij − Γkji = γkij

Deig(ej , ek) = ∂eigjk =
∑

`

g`kΓ
`
ij + g`jΓ

`
ik

∂eigjk + ∂ejgik − ∂ekgij =
∑

`

g`kΓ
`
ij + g`jΓ

`
ik + g`kΓ

`
ji + g`iΓ

`
jk − g`iΓ`kj − g`jΓ`ki

=
∑

`

g`iγ
`
jk + g`jγ

`
ik + g`kγ

`
ji + 2g`kΓ

`
ij

We can solve this for the Christoffel symbols by multiplying with the inverse metric:

Γkij =
1

2
gk`

(
∂eigj` + ∂ejgi` − ∂e`gij −

∑

n

gniγ
n
j` − gnjγni` − gn`γnji

)

=
1

2
gkk
(
∂eigjk + ∂ejgik − ∂ekgij − giiγijk − gjjγjik − gkkγkji

)
,

where we used the fact that the metric is diagonal in the last equation.

Christoffel symbols for spatially homogeneous space times. If we insert the
indices into this equation, we obtain up to index permutations the following non-vanishing
Christoffel symbols:

∇e0e0 = Γ0
00e0 Γ0

00 =
1

2
g00∂e0g00

∇e1e2 = Γ3
12e3 Γ3

12 = −1

2
g33
(
g11γ

1
23 + g22γ

2
13 + g33γ

3
21

)

=
1

2
g33 (g11n̂1 − g22n̂2 − g33n̂3)

∇e0e1 = Γ1
01e1 = Γ1

10e1 Γ1
10 =

1

2
g11∂e0g11

∇e1e1 = Γ0
11e0 Γ0

11 = −1

2
g00∂e0g11

Extrinsic Curvature of surfaces of homogeneity. The Weingarten-map K j
i and

second fundamental form Kij of the surfaces of spatial homogeneity given, up to per-
mutation, by:

K(e1) = ∇e1
1√−g00

e0 =
√
−g00Γ1

10e1 Kj
i = δji

√
−g00Γii0

Kij = g(ei,∇ej
√
−g00e0) =

√−g00Γ0
ji =

∑

k

gki
√
−g00Γkj0, i.e.,

Γ1
10 =

√−g00K
1
1 , Γ0

11 =
√
−g00g11K

1
1
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The extrinsic curvature corresponds to the normalized time-derivative of the spatial
coefficients of the metric:

√
−g00∇e0

√
gii =

√
−g00

1

2

√
giig

jj∇e0gkk =
√
−g00Γii0

√
gii = Ki

i .

Riemannian Curvature. The Riemannian curvature tensor is given by the equation
∑

`

R `
ijk e` =

(
∇ei∇ej −∇ej∇ei −∇[ei,ej ]

)
ek

=
∑

`,n

(
ΓnjkΓ

`
in − ΓnikΓ

`
jn +∇eiΓ`jk −∇ejΓ`in − γnijΓ`nk

)
e`.

If we lower the last index, we have Rijk` = g((∇ei∇ej−∇ej∇ei−∇[ei,ej ])ek, e`). Together
with (∇ei∇ej −∇ej∇ei −∇[ei,ej ])g(ek, e`) = 0, this makes apparent the anti-symmetries
Rijk` = −Rjik` = Rji`k = −Rij`k.

Inserting the indices gives us the following potentially non-vanishing terms of the
Riemann tensor, up to permutation and anti-symmetry, which are relevant for the Ricci
curvature:

R 2
121 = Γ3

21Γ2
13 − Γ0

11Γ2
20 − γ3

12Γ2
31

R 1
010 = Γ1

10Γ1
01 − Γ0

00Γ1
10 +∇e0Γ1

10.

Raising and using R̃ for the intrinsic curvature of the surfaces of homogeneity gives us

R 12
12 = g11Γ3

21Γ2
13 − γ3

12Γ2
31g

11 − g11Γ0
11Γ2

20

= R̃ 12
12 −K1

1K
2
2

R 01
01 = g00Γ1

10Γ1
01 − g00Γ0

00Γ1
10 + g00∇e0Γ1

10

= −K1
1K

1
1 +

√
−g00Γ0

00K
1
1 + g00∇e0

√−g00K
1
1

= −K1
1K

1
1 −

√
−g00∇e0K1

1 .

Setting

ni = n̂i
√
g11g22g33gii = n̂iñi, i.e. ñi =

√
g11g22g33gii,

the spatial curvature is given by

R̃ 12
12 = g11Γ3

21Γ2
13 − g11γ3

12Γ2
31 = g11

(
Γ3

21Γ2
13 − Γ3

12Γ2
31 + Γ3

21Γ2
31

)

=
1

4

(
−n2

1 − n2
2 + 3n2

3 + 2n1n2 − 2n2n3 − 2n3n1

)

R̃ 1
1 = R̃ 12

12 + R̃ 13
13 =

1

2

(
−n2

1 + n2
2 + n2

3 − 2n2n3

)

R̃ = R̃ 1
1 + R̃ 2

2 + R̃ 3
3 =

1

2
(n2

1 + n2
2 + n2

3 − 2(n1n2 + n2n3 + n3n1)).
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A.5.2 The Einstein Field equation

The Einstein equations in vacuum state that the spacetime is Ricci-flat, i.e.

R 0
0 = R 01

01 +R 02
02 +R 02

02 = 0

R 1
1 = R 01

01 +R 12
12 +R 13

13 = 0

R 2
2 = R 02

02 +R 21
21 +R 23

23 = 0

R 3
3 = R 03

03 +R 31
31 +R 32

32 = 0.

Adding the last three equations and subtracting the first gives us an equation which does
not contain time-derivatives of K and hence is a constraint equation, called the “Gauss
constraint”. It is given by

0 = R 12
12 +R 23

23 +R 31
31 =

1

2
R̃−K1

1K
2
2 −K2

2K
3
3 −K3

3K
1
1 .

The evolution equations are given by
√
−g00∇e0 ñi =

√
−g00∇e0

√
giigjjgkk =

√
−g00(Γii0 − Γjj0 − Γkk0)ñi = (Ki

i −Kj
j −Kk

k )ñi,

and

R 0i
0i = −R ij

ij −R ik
ik = R jk

jk√
−g00∇e0Ki

i = −Ki
iK

i
i +Kj

jK
k
k − R̃ jk

jk .

Trace-free formulation. It is useful to split the variables into their trace and trace-
free parts:

H =
1

3
(K1

1 +K2
2 +K3

3 ), i.e. H is the mean curvature of {t = const}

σi = Ki
i −H

1

6
R̃ =

1

3

(
R̃ 12

12 + R̃ 23
23 + R̃ 31

31

)
=

1

12

(
n2

1 + n2
2 + n2

3 − 2(n1n2 + n2n3 + n3n1)
)

si = R̃ jk
jk −

1

6
R̃ =

1

3

(
2n2

i − n2
j − n2

k − ninj + 2njnk − nkni
)
,
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where we note that (σ1 + σ2 + σ3)2 = 0 = σ2
1 + σ2

2 + σ2
3 + 2(σ1σ2 + σ2σ3 + σ3σ1). We

then obtain

0 =
1

2
R̃− (σ1 +H)(σ2 +H)− (σ2 +H)(σ3 +H)− (σ1 +H)(σ3 +H)

=
1

2
R̃− 3H2 − (σ1σ2 + σ2σ3 + σ3σ1)

=
1

2
R̃− 3H2 +

1

2
(σ2

1 + σ2
2 + σ2

3)
√
−g00∇e0 ñi = (2σi −H)ñi

√
−g00∇e0H =

1

3

[
− (σ1 +H)2 − (σ2 +H)2 − (σ3 +H)2

+ (σ1 +H)(σ2 +H) + (σ2 +H)(σ3 +H) + (σ3 +H)(σ1 +H)

− R̃ 23
23 − R̃ 13

13 − R̃ 12
12

]

= −1

2
(σ2

1 + σ2
2 + σ2

3)− 1

6
R̃ = −1

3
(σ2

1 + σ2
2 + σ2

3)−H2

√
−g00∇e0σ1 = −(σ1 +H)2 + (σ2 +H)(σ3 +H)− R̃ 23

23 −
√
−g00∇e0H

= σ2σ3 − σ2
1 + (σ2 + σ3 − 2σ1)H − R̃ 23

23 −
√
−g00∇e0H

= (σ1 + σ3)(σ1 + σ2)− σ2
1 − 3σ1H +

1

2
(σ2

1 + σ2
2 + σ2

3) +
1

6
R̃− R̃ 23

23

= −3σ1H − si.

Hubble Normalization. We can further simplify by Hubble-normalizing to Σi = σi
H

and N i = ni
H , and introducing a shorthand for Σ2 and N2

N i = Ñ in̂i

Σ2 =
1

6

(
Σ2

1 + Σ2
2 + Σ2

3

)

N2 =
1

12

[
N

2
1 +N

2
2 +N

2
3 − 2(N1N2 +N2N3 +N3N1)

]
=

1

6
R̃H−2

Si = −1

3

[
−2N

2
1 +N

2
2 +N

2
3 +N1N2 − 2N2N3 +N3N1

]
= siH

−2

which yields equations

1 = Σ2 +N2

√
−g00∇e0H = −

(
2Σ2 + 1

)
H2

√
−g00∇e0Ñ i = (2Σi − 1 + 2Σ2 + 1)Ñ iH = 2(Σ2 + Σi)Ñ iH√
−g00∇e0Σ1 = −3Σ1H − siH−1 + (2Σ

2
+ 1)H = 2(Σ2 − 1)Σ1H − SiH.

The Wainwright-Hsu equations as used in this work. Assuming H < 0 for
an initial surface (which can be obtained if H 6= 0 by choosing the direction of the unit
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normal
√
−g00e0 and reverting the direction of time), we can set

√
−g00 = −1

2H. Setting

Ñi =
√

12 Ñ i, we obtain the variant of the Wainwright-Hsu equations used in this work,
(2.1.3), corresponding to the metric (2.1.1).
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