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Zusammenfassung 

Einleitung: Metastasen sind Haupttodesursache des kolorektalen Karzinoms (KRK).  

Trotz kurativer Therapie entwickeln 50% der nicht-metastasierten KRK-Fälle metachrone 

Metastasen. Das Sekretom des Primärtumors könnte eine frühe Metastasierung fördern. 

Metastasis-associated in colon cancer-1 (MACC1) ist ein Treiber der Tumorprogression, 

aber seine Rolle im Tumorsekretom ist unbekannt. Hier wurde versucht durch Hemmung 

der MACC1-abhängigen Tumorzellmotilität die metachrone Metastasierung zu verhin-

dern.  

Methoden: MACC1-konditioniertes Medium wurde funktionell und in seiner Peptid-Zu-

sammensetzung analysiert. Kaplan-Meier Schätzer bewertete das KRK-Risiko anhand 

der RNA-Expression von MACC1 und S100A4 in Tumor- und Blutproben. Korrelation von 

MACC1 und S1000A4 wurde in drei Kohorten von KRK-Tumorproben analysiert. 

S100A4-Regulation wurde auf Promoter-, RNA- und Proteinebene gemessen. In funktio-

nellen Versuchen wurde S100A4 mittels CRISPR-Cas9 oder mit pharmakologischen In-

hibitoren unterdrückt. Proteininteraktionen wurden mit Massen-Spektrometrie und Ko-Im-

munopräzipitation untersucht. Wundheilungsversuche ermittelten die KRK-Zellmigration 

unter Gabe von Statinen (Atorvastatin, Fluvastatin, Lovastatin) und Niclosamid. Metasta-

sen wurden modelliert durch Injektion von KRK-Zellen in die Milz von SCID bg/bg Mäusen 

und unter oraler Gabe von Statinen und Niclosamid monitiert. Mikrometastasen wurden 

anhand der Last an humaner Satelliten-DNA in tumorfrei erscheinendem Lebergewebe 

gemessen. 

Ergebnisse: MACC1 induzierte KRK-Zellmotilität und S100A4-Sekretion in das Kulturme-

dium. Hohe MACC1- und S100A4-Expression im Tumorgewebe und in Patientenblut 

sagte ein schlechtes metastasenfreies und gesamtes Überleben voraus. MACC1 stimu-

lierte die Promoteraktivität, die RNA- und Proteinexpression von S100A4 in Zellkultur und 

in Tumoren von ApcMin-Mäusen mit ektopischem MACC1. MACC1 steigerte die Motilität 

nur in KRK-Zellen mit intakter S100A4-Expression, aber nicht unter S100A4-Depletion. 

Wnt/-Catenin-Inhibitoren unterdrückten MACC1-abhängige Hochregulation von 

S100A4. MACC1 interagierte mit -Catenin und verstärkte dessen Phosphorylierung und 

Interaktion mit TCF4. Kombinierte Gabe von Statinen und Niclosamid unterdrückte die 

Motilität von KRK-Zellen. Orale Gabe von Statin und Niclosamid verhinderte nicht das 
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Auswachsen von Metastasen, aber unterdrückte die Absiedelung von Mikrometastasen 

in Mauslebern. 

  

Schlussfolgerungen: MACC1 treibt die Krebsprogression durch sekretorisches S100A4, 

und Überexpression beider Biomarker zeichnet Hochrisiko-KRK aus. MACC1 induziert 

S100A4 via Wnt/-Catenin durch Interaktion mit -Catenin und Stimulation seiner tran-

skriptionellen Aktivität. Die Kombination transkriptioneller Inhibitoren von MACC1 und 

S100A4 unterdrücken synergistisch das metastatische Potential von KRK-Zellen in vitro 

und in vivo. MACC1 und S100A4 kooperieren in der KRK-Progression als Induktor und 

Effektor innerhalb einer MACC1--Catenin-S100A4-Achse der Metastasierung. 
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Abstract 

Introduction: Metastasis is the main cause of colorectal cancer CRC death. Despite cu-

rative therapy, 50% of non-metastasized CRC cases will develop metachronous metas-

tasis. Factors secreted by the primary tumor might facilitate early metastasis into distant 

organs. Metastasis-associated in colon cancer-1 (MACC1) drives cancer progression, yet 

it’s involvement in the tumor secretome is unknown. This project aimed to target MACC1-

driven motility of cancer cells to prevent metachronous metastasis.  

Methodology: MACC1-conditioned medium was analyzed functionally and for peptide 

composition. CRC risk assessment employed Kaplan-Meier estimation on MACC1 and 

S100A4 RNA expression in patient-derived tumor and blood samples. Correlation of 

MACC1 and S1000A4 expression was analyzed in three cohorts of CRC tumor speci-

mens. Regulation of S100A4 was measured with promoter reporters, and on RNA and 

protein level. CRISPR-Cas9 knock-out and pharmacological inhibitors were employed to 

inhibit S100A4 in functional assays. Protein-protein interactions were examined via Mass-

spectrometry and Co-Immunoprecipitation. Wound healing experiments assessed CRC 

cell migration under statins (atorvastatin, fluvastatin or lovastatin) and niclosamide. Me-

tastasis was modelled by injection of CRC cell into the spleen of SCID bg/bg mice and 

monitored non-invasively under oral administration of statins and niclosamide. Microme-

tastases were quantified by measuring loads of human satellite DNA in tumor-free ap-

pearing liver tissue. 

Results: MACC1 induced CRC cell motility and S100A4 secretion into culture medium. 

High MACC1 and S100A4 expression in tumor tissue and in patient blood predicted dis-

mal metastasis-free and overall survival. MACC1 stimulated promoter activity, RNA, and 

protein expression of S100A4 in cell culture and in tumors of ApcMin mice with ectopic 

MACC1. MACC1 enhanced motility only in CRC cells with intact S100A4 expression, but 

not in S100A4-depleted cells. Wnt/-catenin signaling inhibitors suppressed S100A4 up-

regulation by MACC1. MACC1 interacted with -catenin and enforced its phosphorylation 

and interaction with TCF4. Combined administration of statins and niclosamide synergis-

tically suppressed the motility of CRC cells. Oral combinations of statin and niclosamide 

did not prevent metastatic outgrowth but suppressed the abundance of micrometastases 

in mouse liver. 
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Conclusion: MACC1 drives cancer progression via secretory S100A4, and combined 

overexpression of these biomarkers hallmarks high-risk CRC tumors. MACC1 induces 

S100A4 via Wnt/-catenin by interacting with -catenin and stimulating its transcriptional 

activity. Combination of respective transcriptional inhibitors synergistically suppress the 

metastatic potential of CRC cells in vitro and in vivo. MACC1 and S100A4 cooperate in 

CRC progression as inducer and effector within a druggable MACC1--catenin-S100A4 

axis of metastasis.
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1 Introduction 

1.1  Colorectal cancer 

1.1.1 Clinical relevance of CRC 

Colorectal cancer (CRC) is not only the third-most common cancer but also the second-

most common cause of cancer-related deaths worldwide [Fig. 1] [1]. Rather than local 

progression of the primary tumor, which is usually removed surgically upon diagnosis, it 

is the development and outgrowth of distant metastases that remains the main culprit of 

CRC-related deaths. In fact, 20 to 40% of patients are diagnosed with CRC at a stage 

where distant metastases have developed (stage IV) [2,3]. Recent advantages in surgical 

and medical oncology allow management of metastatic CRC at relatively good health, yet 

this disease stage is still regarded incurable and terminal. However, also the CRC pa-

tients without detectable metastases at time of diagnosis face risk of up to 30% of distant 

recurrence within 5 years after initial treatment [4]. 

 

 

Figure 1: Cancer statistics 2020. Colorectal is the third-most frequent type of cancer, and the second-most frequent 
cause of cancer deaths (figures taken from Sung et al., 2020). 
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 1.1.2 Current state of the art disease management 

In present day CRC diagnosis and therapy, the Union intérnationale contre le cancer 

(UICC) staging system is the main therapy decision aid in clinical use, which is based 

solely on histopathological criteria such as tumor size and depth of invasion, presence of 

regional lymph node metastases, and presence of distant metastases. Recently however, 

it has been hypothesized that primary tumors of would-be metastatic CRC shed meta-

static cells very early during tumor progression [5]. Therefore, conventional staging is 

insufficient to assign patients to the least toxic and most efficient therapy possible [6,7]. 

Post-operative treatment of non-metastasized CRC patients is limited to chemotherapy 

in current guidelines, while antibodies and kinase inhibitors are given exclusively to pa-

tients with inoperable metastatic CRC. Conventional chemotherapy is limited by its poor 

selectivity and extensive toxicity, but in the present scarcity of clinically safe and effective 

small molecular inhibitors it remains the mainstay of the postoperative management of 

CRC patients [8,9]. Recently, microsatellite instability (MSI) found in about 15% of CRC 

cases was shown to qualify patients for adjuvant immunotherapy in post-surgical cancer 

management [10]. The field of translational oncology is growingly interested in tailoring 

cancer therapies to the molecular Achilles’ heel of a given tumor to prevent recurrence or 

to halt tumor progression, while complementing or even replacing conventional chemo-

therapy. 

There have been numerous approaches to employ gene expression analysis from the 

tissue of the primary tumor and blood for risk stratification in order to predict survival and 

to assign patients to more or less aggressive therapies [11–13]. Moreover, a vast majority 

of genetic markers merely predict poor survival. Purely prognostic markers are of limited 

clinical value due to their sole potential to identify whom to treat. In order to inform clini-

cians of how to treat, true predictive biomarkers are strongly desired so as to tailor adju-

vant therapy to the individual molecular vulnerabilities of the tumor and the success of 

targeted therapies [14–16]. 

 

1.1.3 Mechanisms of CRC genesis and progression 

It is hypothesized that CRC arises from single transformed cells within the crypts of the 

colorectal mucosa, to form abnormal crypt foci. These will eventually grow to adenomas, 

detectable macroscopically in colonoscopy procedures. If left in situ, the benign neoplasia 
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will progress to a carcinoma-in-situ and adopt features of epithelial-to-mesenchymal tran-

sition and invasion into the basal lamina. Further mutations enable recruitment of neoan-

giogenesis, i.e., the establishment of new blood vessels. In parallel, the ensuing inflam-

mation attracts lymphocytes, that infiltrate the nascent neoplasia. At the constant threat 

of elimination by the immune cells, progressing tumors maintain an intricate interaction 

between the tumor-infiltrating lymphocytes (TIL) and the surrounding cancer-associated 

fibroblasts (CAF). Eventually, the tumor invades blood and lymphatic vessels and sheds 

circulating tumor cells (CTCs) that colonize regional lymph nodes and distant organs such 

as the liver [17,18]. It is hypothesized, that metastasis is heavily controlled by the primary 

tumor. Not only do exosomes shed by tumor cells of certain phenotypes create pre-met-

astatic niches in the liver, but also prevent implantation by recruiting monocytes to these 

niches in the case of non-metastatic cancer cells[19,20]. Remarkably, primary tumors can 

suppress the outgrowth of undetectable metastases by the release of angiopoietin-like 4 

(ANGPTL4), and the removal of the tumor triggers the metastatic outgrowth [21]. 

The vast majority of colon adenomas arise from a hyperactivation of the Wnt/β-catenin 

signaling cascade due to loss of APC or activating mutations within exon 3 of the CTNNB1 

locus, allowing β-catenin to evade physiological inactivation by a destruction complex 

formed by APC, Axin, casein kinase-1 and GSK-3β [22,23]. Additional mutations in tumor 

suppressor genes such as p53 and in oncogenes such as K-Ras lead to persistent acti-

vation of MAPK/ERK, TGF-β and PI3K-Akt signaling, amongst others, resulting in malig-

nant transformation of CRC, hallmarked by epithelial-mesenchymal transition, increased 

cell motility and invasion, recruitment of de-novo blood vessel formation (neoangiogene-

sis), and eventually metastasis. Wnt/β-catenin signaling regulates a multitude of target 

genes and continues to contribute to all stages of CRC progression, fueling hyperprolif-

eration and adenoma formation as well as less proliferative states such as stemness and 

senescence [23–25]. During cancer progression, β-catenin experiences stabilization 

even in absence of physiological Wnt-dependent activation [26–28]. In fact, β-catenin 

harbors multiple phosphorylation sites, of which the N-terminal serine-33, -37, -45 and 

threonine-41 mediate swift proteasomal degradation via CK1 and GSK-3β, while residues 

towards the C-terminus are substrates to various kinases that support β-catenin stability: 

serine-552 (Akt, PKA) [29], serine-552 and -675 (PKA) [30,31], tyrosine-654 and -670 

(MET), serine-663 and -675 (PAK1) [32–35]. Lacking DNA-binding domains, -catenin 

relies on recruitment of TCF transcription factors to induce a plethora of target genes, 

such as Cyclin-D1, MMP7, MET, Oct4 and Nanog [23,36]. 
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1.2  Drug repositioning against cancers 

There is an ever-growing body of knowledge about non-oncologic drugs that either re-

duce cancer incidence (primary prevention) or mitigate cancer morbidity and mortality by 

either controlling the aggressiveness of localized tumors (secondary prevention) or the 

development of systemic, metastatic disease (tertiary prevention). 

Daily intake of acetylsalicylic acid reduces risk of CRC by 25%, while statins achieve a 

risk reduction of up to 47% [37–39]. Even more surprisingly, endometrial cancer incidence 

is reduced by oral contraceptives [40]. While preventing tumorigenesis is of universal in-

terest, combatting the progress of cancer and development of metachronous metastasis 

is a pressing demand after diagnosis and initial therapy of cancer. Through competitive 

antagonism of estrogen, the abortifacients mifepristone and metapristone inhibit adhesion 

and invasion of breast cancer and trophoblastic cells, suggesting that similar molecular 

pathways underly zygotic implantation in the uterine mucosa and dissemination of CTCs 

to form metastasis [41,42]. 

Small molecules are being developed to intervene in signaling cascades deregulated in 

cancer. In fact, inhibitors of receptor tyrosine kinases (RTKs) have been a paradigm-

shifting supplement to hitherto chemotherapy-based tumor therapy. However, blocking 

growth receptor signaling is toxic also to normal organ tissue and further burdened by the 

capability of tumors to develop resistance to RTK-inhibitors. An ideal drug would target a 

molecular mechanism that is exclusive to the malignant tissue while being orally bioavail-

able. Therefore, drug discovery involves screens of large compound libraries for tran-

scriptional inhibitors of cancer-specific genes, followed by elimination of cytotoxic candi-

dates and establishing dosages effective in vivo. Screening clinically approved drugs for 

novel transcriptional inhibitor circumvents the necessity of preclinical safety testing and 

de novo drug approval, as antitumoral efficacy can be tested in clinical trials immediately 

[43]. 

1.3  Mechanistic and predictive biomarkers 

Our group has identified two gene products, MACC1 and S100A4, that independently (1) 

predict poor metastasis-free survival, (2) evidentially promote distant metastasis by in-

duction of cell motility in vitro and metastasis in vivo, and (3) have been successfully 

targeted pharmacologically by repositioned FDA-approved drugs [44–49]. Given their 
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high specificity to predict distant metastasis and the availability of effective small molec-

ular inhibitors, we set out to (1) study the effectiveness of a hypothesis-driven, gene-

based risk stratification of CRC patients, (2) to demonstrate how a MACC1-Wnt/β-

catenin-S100A4 axis drives cell motility and metastasis in CRC and (3) to gauge syner-

gistic effects of combinatorial inhibition in preventing CRC cell motility and metastasis. 

MACC1 has been discovered in CRC of stage I-III as being highly expressed in tumors 

which yielded metachronous metastases, while being lowly expressed in non-metasta-

sizing CRC. In fact, upregulation of MACC1 was found already in late adenomas, indicat-

ing that a MACC1-driven metastatic career is laid out even before the tumor presents 

hallmarks of malignant progression [46,50]. The prognostic biomarker capabilities of 

MACC1 has since been confirmed in over 22 (solid) cancer entities in individual reports 

and 5 meta-analyses (extensively reviewed in [49]). Of note, the absence of MACC1 in 

mismatch-repair (MMR) proficient CRC identified patients with a low risk of metachronous 

metastases, comparable to the favorable outcome of MSI CRC [51]. This finding promises 

value as a predictive biomarker in that absent MACC1 expression in MSS-CRC could 

warrant omitting adjuvant chemotherapy. While it has been established that MACC1 is a 

versatile inducer of cancer progression and metastasis, there is not much known about 

molecular details of its mechanism. MACC1 is a 852 amino acid containing protein, and 

in silico predictions have suggested the existence of several conserved structural do-

mains frequently implemented in protein-protein interactions, such as a proline-rich motif 

(PRM), ZU5, UPA, Src homologue 3 (SH3) and Death domains (DD) [52]. In previous 

works we found that MACC1 itself occupies promoter regions of MET, SPON2 and Nanog 

[46,53,54]. In the absence of DNA-binding motifs within the MACC1 gene product, it must 

be assumed that MACC1 mediates transcription by recruiting proper transcription factors 

to these promoter regions. 

S100A4, a target gene of Wnt/β-catenin signaling, is a versatile mediator of cancer cell 

migration, invasion and metastasis [44,55]. Intracellular as well as extracellular mecha-

nisms of cancer metastasis by S100A4 have been described. S100A4 modulates the 

turnover of non-muscle-myosin-II, the contractible component of stress fibers that hall-

mark migrating cells [56,57]. Extracellularly, soluble S100A4 triggers CRC motility 

through binding to the receptor of advanced-glycosylation-end-products (RAGE), which 

in turn feeds into MEK/ERK signaling [58]. S100A4 itself potently induces Wnt/-catenin 
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signaling by suppressing the transcription of DKK1, a physiological inhibitor of Wnt acti-

vation [59]. Interactions between the tumor and the underlying stroma are crucial in the 

progression of cancer. Secretion of prometastatic factors such as S100A4 leads to T-cell 

recruitment and reprogramming of fibroblasts, which aid in tumor invasion and metastasis 

[60,61]. Furthermore, solid tumors have been shown to secrete proteins and shed exo-

somes, i.e., microvesicles containing RNA, DNA and proteins, into the blood stream, 

which effectively contribute to the formation of pre-metastatic niches in distant organs 

such as the liver. Kupffer cells within the liver sinusoids internalize cancer-derived exo-

somes and initiate secretion of TGF-β and fibronectin, leading to microenvironment fibro-

sis and recruitment of macrophages from the bone marrow. These niches facilitate the 

engraftment of circulating tumor cells (CTCs) [62–64]. 

Both S100A4 and MACC1 are stage-independent prognostic biomarkers of metachro-

nous metastases in CRC and other malignancies [44,46,49]. We previously demonstrated 

that combined elevation of MACC1 and S100A4 transcripts reads in liquid biopsies in 

CRC, gastric and ovary cancer best identifies patients at high risk for dismal cancer-spe-

cific and overall survival [65–67]. 

 

1.4  Aims and hypotheses 

Here we set out to identify secreted factors that exert MACC1-dependent cancer cell mi-

gration by functional experiments and proteomic analyses. 

Thereafter, assays in preclinical and clinical samples and expression data were per-

formed to scrutinize the relevance of such associations in the real world. 

Subsequently, we probed the mechanism by which MACC1 induces the transcription of 

factors exerting cancer cell migration. 

Finally, we attempted to explore whether combining already established transcriptional 

inhibitors to achieve antimetastatic efficacy is superior to use of single repositioned drugs. 
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2 Methodology 

2.1  Cell culture and manipulation of gene expression 

CRC cell lines employed in this study are listed in Table 1. A clone with ectopic overex-

pression of MACC1 (SW480/MACC1) was obtained by lipofection of a recombinant DNA 

vector encoding the human CDS of MACC1 driven by a CMV promoter (pcDNA3.1-

MACC1-V5), followed by selection of stable clones with geneticin. Cells transfected with 

an identical vector without insertion of the MACC1 CDS served as a negative control 

(SW480/vector). SW620, a cell line with high levels of MACC1 was depleted of MACC1 

via lentiviral RNA-interference (SW620/shMACC1), or a non-functional construct as a 

negative control (SW620/shCtrl). All cell lines are listed in Table 1.  

 

Table 1: Cell lines used in the study 

Cell line Entity Origin ATCC MMR APC CTNNB1 

SW480 CRC Primary tumor CCL-228 Stable wt/mut wt/wt 

 SW480/vector Transfected with CMV-V5 

 SW480/MACC1 Transfected with CMV-MACC1-V5 

SW620 CRC Metastasis CCL-227 Stable wt/mut wt/wt 

 SW620/Cas9-ev Transfected with Cas9 and no sgRNA 

 SW620/MACC1-KO Transfected with Cas9 and MACC1 sgRNA 

 SW620/shCtrl Transduced with pU6-shScrambled-RFP 

 SW620/shMACC1 Transduced with pU6-shMACC1-RFP 

HCT116 CRC Primary tumor CCL-247 Instable wt/wt wt/delS45 

 HCT116/vector Transduced with CMV-GFP 

 HCT116/MACC1  Transduced with CMV-MACC1-GFP 

 HCT116/Cas9-ev Transfected with Cas9 and no sgRNA 

 HCT116/S100A4-KO Transfected with Cas9 and S100A4 sgRNA 

 HCT116/CMV-Luc Transduced with CMV-driven Luciferase 

HT-29 CRC Primary tumor HTB-38 Stable wt/mut wt/wt 

LS174T CRC Primary tumor CL-188 Instable wt/wt wt/S45F 

(author’s own representation) 



Methodology 19 

In HCT116, MACC1-GFP was overexpressed by lentiviral transduction, while GFP served 

as empty vector control. GFP-positive (i.e. fluorescent in the GFP channel) cells were 

collected for further cultivation using a LSR Fortessa™ FACS device (BD Bioscience). 

 

Table 2: sgRNA and knockout-sequencing primer 

Oligonucleotide Sequence 

sgMACC1 forward 5' - CAC ATC AAG TTC ATC ACC GGA GG - 3' 

sgS100A4 forward 5' - TTT GCC CGA GTA CTT GTG GAT GG - 3' 

MACC1 sequencing forward 5' - GTA ACT CAC AGT GCC ACC TT - 3' 

reverse 5' - AGC CAC TCT AAG TCG TGT AGT - 3' 

S100A4 sequencing forward 5' - GAA TCT CCA GAG CTT GCG C - 3' 

reverse 5' - AGC CAC CCC ACT GAT AGA TG - 3' 

(author’s own representation) 

 

 
Figure 2: CRISPR-Cas9 mediated knockout of MACC1 and S100A4. The SW620 MACC1-KO clone used for all studies 
showed a major deletion of 141 bp, and the HCT116 S100A4-KO clone used for cell motility assays showed a single 
nucleotide deletion. 

MACC1 and S100A4 were depleted from SW620 and HCT116 cells using the CRISPR-

Cas9 system. A Cas9-puromycin- and a Cas9-GFP-sgRNA-plasmid specific for either 

MACC1 or S100A4 (Applied StemCell Inc., Milpitas CA, USA) were co-lipofected into 

SW620 and HCT116 cells to inflict double strand breaks, provoking error-prone non-ho-

mologous end joining within the respective gene locus. Upon puromycin selection for 48 

h, single cell clones were raised and tested for knockout of either MACC1 

(SW620/MACC1-KO) or S100A4 (HCT116/S100A4-KO) by Western blot. A mixed popu-

lation of SW620 or HCT116 lipofected with Cas9-puromycin alone served as empty vector 
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(Cas9-ev) control. Knock-out was confirmed by Western blot and by Sanger sequencing 

of the genomic locus with primers reported in Table 2.  

2.2  Compositional and functional analysis of the MACC1-specific secretome 

MACC1-conditioned medium was obtained from SW620 wildtype, SW480/MACC1 and 

SW480/vector cells. Cells were seeded at 50% confluence and incubated at 37°C, 5% 

atmospheric CO2 and 100% relative humidity. After 48 h medium was collected, cleared 

of floating cells and subcellular particles by centrifugation at 500 g for 10 min. 

The composition of cell media from SW480/MACC1 and SW480/vector cells were com-

paratively analyzed employing SILAC. Cells were grown in DMEM SILAC media contain-

ing heavy lysine and arginine (15N2 13C6 Lys, 15N4 13C6 Arg). Secreted proteins collected 

after 24 h were concentrated using a 30 kDa molecular filter cartridge (Millipore) to be 

analyzed in Mass-Spectrometry (section 2.6). 

To assess functional signaling properties of MACC1-conditioned medium, the CRC cell 

lines SW480, HCT116, HT-29, LS14T, SW620-shMACC1 and SW620-shCtrl were 

seeded and grown to 50% confluency. At 70% confluency, half of the medium was ex-

changed with MACC1-conditioned medium from SW480/MACC1 or SW480/vector cells, 

and additionally from SW620 wildtype cells. 

2.3  RNA expression analysis 

RNA transcripts were quantified in RT-qPCR assays. Briefly, RNA of 2 × 105 cells treated 

as indicated for 24 h was isolated with the Universal RNA purification kit (Roboklon). After 

quantification of RNA yield (Nanodrop), 50 ng of RNA was reverse transcribed with ran-

dom hexamers in a reaction mix (10 mM MgCl2, 1 × RT Buffer, 250 μM pooled dNTPs, 1 

U RNAse inhibitor, 2.5 U Moloney murine leukemia virus reverse transcriptase) at 30°C 

for 10 min, 50°C for 40 min and 99°C for 5 min, followed by cooling at 4°C. PCR was 

carried out on a LightCycler 480 II system at 95°C for 2 min followed by 40 cycles of 95°C 

for 5 s and 60°C for 20 s using exon-spanning primers. Primer sequences are listed in 

Table 3. 
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2.4 Protein expression analysis 

PBS-washed cells were lysed with RIPA buffer supplemented with cOmplete protease 

inhibitor cocktail and phosStop phosphatase inhibitor (Roche), when indicated. For frac-

tionation of cytoplasmic and nuclear protein, cell monolayers were scraped off with NE-

PER buffer and processed further according to manufacturer’s protocol. After 30 min of 

lysis on ice and centrifugation at 12,000 g for 10 min at 4°C, protein concentration was 

quantified with the Pierce BCA system (Thermo Fisher) and spectrometry using Magellan 

v7 software (Tecan). 2 μg (for total protein analysis) or 30 μg (for phospho-protein analy-

sis) of protein were boiled with 0.1 M DTT (Sigma-Aldrich) and 1 × LDS loading buffer 

(NuPage). Cellular proteins were resolved in SDS page and transferred onto PVDF mem-

branes (BioRad), followed by blocking with 5% w/v skim milk powder in TBS-T for 1 h. 

Proteins of interest were detected by probing membranes with specific primary antibodies 

at 4°C overnight and secondary HRP-conjugated antibodies for 1 h at room temperature, 

and subsequent visualization with WesternBright and exposure of Fuji medical X-ray film 

SuperRX. X-ray films exposed to chemoluminesence from Western blot experiments 

were digitally scanned. Densitometric measurements in Western blots were performed 

by band analysis routines in AlphaView 3.4.0 software (ProteinSimple, Minneapolis MN, 

USA). For supernatant WB, 1 × 106 cells were seeded into a 6-well plate, and complete 

medium was replaced with 1.5 ml serum-free culture medium. After 24 h, the cell culture 

supernatant was carefully collected, and floating cells were eliminated by centrifugation 

at 500 g for 5 min. a portion of clarified cell culture medium was boiled with 0.1 M DTT 

and 1 × LDS loading buffer. Meanwhile, cells from the same well were counted to load 

proportional medium samples into SDS page. To study the post-translational phosphory-

lation of β-catenin, cells were seeded at 50% confluence. On the following day cells were 

synchronized by starvation for 18 h. The cell monolayers were washed with PBS on ice 

and immediately lysed on the culture dish with RIPA buffer. The fraction of β-catenin 

phosphorylated at Ser-552 relative to total β-catenin was assessed by Western blot. An-

tibodies employed in Western blot experiments are listed in Table 4, buffers are described 

in Table 5. 

2.5 Protein-protein interaction analysis 

Co-Immunoprecipitation (Co-IP) experiments were carried out from cell lysates and in 

cell-free mixtures of human recombinant proteins. Cells were grown to ~80% confluence 
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in 10 cm dishes, washed twice with ice-cold PBS and scraped off with 1 ml Co-IP buffer 

to obtain cell lysates. Aliquots of 500 µg cellular protein were topped up to 1 ml with Co-

IP buffer. 200 µg human recombinant MACC1 (TP324774) and β-catenin (TP308947) 

were dissolved in 1 ml of Co-IP buffer. Each 1 ml aliquot was incubated with 1 μg specific 

antibody (MACC1: HPA020081, β-catenin: 610154) or non-specific immunoglobulin G 

under constant agitation overnight at 4°C on a test tube rotator to form immune complexes 

of antibodies and the respective protein-of-interest. Protein-G coated agarose beads (Al-

phaBiosciences) were added to absorb immune complexes during 4h on the test tube 

rotator, followed by centrifugation for 45 mins at 2,500 g to precipitate immune complexes. 

The agarose bead pellets were washed at least 4 times with lysis buffer (resuspension, 

centrifugation for 5 mins at 2,500 g) and protein precipitations were eluted with LDS buffer 

at 95°C for 10 min for SDS page. In Western blot experiments β-catenin was detected in 

MACC1-specific and non-specific immunoprecipitations, and MACC1 was detected in β-

catenin-specific and non-specific precipitations. To identify the MACC1-interactome, 

MACC1-specific immunoprecipitations were processed as described in 2.6. 

2.6 Mass-Spectrometry 

Proteins were digested according to Kanashova[68], purified and measured in a Q-Exac-

tive plus mass spectrometer (Thermo-Fisher) coupled to a Proxeon nano-LC system 

(Thermo-Fisher). MaxQuant software suite (version 1.5.2.8)[69] was used to interprete 

the data, employing the human UniProt database (downloaded 06.08.2014)[70] with car-

bamylation of cysteins set as a fixed modification and oxidation of methionines and N-

terminal protein acetylation set as variable modifications[70,71]. MS data were statisti-

cally analyzed with R-software[72]. 

2.7 Immunohistochemistry 

Protein expression in organ tissue was assessed using immunohistochemistry (IHC). Fro-

zen human tumor tissues were cryosectioned at a thickness of 5 mm, draped on glass 

slips, thawed, and fixed with ethanol. Formalin-fixed and paraffin-embedded mouse tu-

mors were cut at ambient temperature and draped on glass slips, followed by deparaffini-

zation and rehydration with xylol and ethanol. Primary antibodies against MACC1 

(HPA020081, 1:100 in 2% BSA/PBS), S100A4 (A5114, 1:400 in 2% BSA/PBS) and hu-

man cytokeratin 19 (TA336845, 1:200 in 2% BSA/PBS) were incubated overnight at 4°C. 
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After washing with PBS-T, a Rabbit-IgG-specific antibody (Horseradish-conjugated, 

1:1000 in 2% BSA/PBS) was incubated on the tissue slides for 1 h at ambient tempera-

ture. After washing with PBS-T and PBS, secondary antibodies were detected with a bi-

otin-based ABC kit. Cell nuclei were counterstained with hematoxylin. Slides incubated 

without any primary antibody served as a control for unspecific staining. Microscopic im-

ages were taken at 20x and 63x magnification using the Axiovision 4.2 software (Zeiss). 

2.8  CRC cohorts and biomarker tests 

In a cohort of primary CRC tumors (UICC Stages I-III, n = 60) and in another cohort of 

plasma samples of newly diagnosed CRC (n = 49) RNA was purified from cryopreserved 

tumor tissue or patient blood drawn before surgery, respectively, and the amount of 

MACC1 and S100A4 messenger RNA (mRNA) was quantified by RT-qPCR. To predict 

patient survival from continuous mRNA expression values, binary classifiers for MACC1 

and S100A4 were established by receiver operating characteristic (ROC) curve against 

the endpoints “death” and “distant metastasis” to be used in the prognosis of Overall Sur-

vival (OS) and Metastasis-Free Survival (MFS). All cases were sorted into the four sub-

groups “MACC1 and S100A4 low”, MACC1 low and S100A4 high”, “MACC1 high and 

S100A4 low”, “MACC1 and S100A4 high”. Subsequently, patient survival was compared 

using log rank rest. All patients gave their written informed consent to take part in our 

tumor biobank. We obtained expression data of CRC tumor microarrays from the public 

functional genomics data repository Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo). Two RNA expression datasets comprising 98 CRC cases 

(GDS4393 and GDS4718)[73,74] and an additional dataset of 117 CRC tissue sample 

from the OncoTrack consortium[75] dataset were obtained. RNA expression values of 

MACC1 and S100A4 were normalized to G6PDH and analyzed for their correlation using 

Spearman statistics. Spearman coefficients were calculated and plotted along with scat-

ter plots of MACC1 and S100A4 expression values. 

2.9 Reporter assays of promoter activity and pathway signaling activity 

Wnt/β-catenin and S100A4-promoter activity was examined in firefly luciferase-based as-

says. Plasmids encoding a CDS of firefly luciferase under the transcriptional control of a 

series of TCF4 binding sites or the genomic sequence of the S100A4 promoter were 

lipofected into CRC cells (500 ng per 250,000 cells)[44]. A plasmid encoding a CDS of 
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renilla luciferase under the transcriptional control of a constitutively active CMV promoter 

served as a transfection control (25 ng per 250,000 cells). After incubation for 48 h, the 

cells were lysed and the chemiluminescence (indicative of abundance of firefly and renilla 

luciferase) was measured with proprietary substrates (Promega) in a microplate reader 

(Tecan), according to the manufacturer’s protocol. 

2.10 Application of small molecular inhibitors in vitro and in vivo 

The small molecule inhibitors FH535, LF3 (Selleckchem LLC, Houston TX, USA) and 

niclosamide (Sigma-Aldrich St. Louis MO, USA) were used to probe Wnt/β-catenin sig-

naling in the context of S100A4 regulation [45,76,77]. Prochlorpromazine (Selleckchem 

LLC, Houston TX, USA) is an allosteric inhibitor of S100A4[78]. Atorvastatin, fluvastatin 

and lovastatin (Selleckchem)  were employed as transcriptional inhibitors of MACC1[47]. 

For application in cell culture compounds were dissolved in DMSO to obtain a 1000x 

stock solution. Stock solutions were then diluted in cell culture medium at a ratio of 

1:1000. Pure DMSO in culture medium was used as negative control. For application in 

animal experiments compounds were dissolved in 10% Kolliphor EL in 0.9% NaCl, while 

identical, compound-free formulations served as control treatment.  

2.11 CRC cell motility in vitro and metastasis in vivo. 

CRC cell motility was assessed in vitro using Boyden chamber and wound healing as-

says. The Boyden chamber setup tests chemotaxis and transwell migration of cells to-

wards a positive gradient of FBS through a membrane with pores of 8 µm in diameter, 

while the wound healing assay assesses the cells’ capacity to repopulate a cell-free area 

of the dish after mechanic abrasion of a portion of the cell monolayer by lateral movement. 

For transwell migration assays, cells were seeded at 50% confluence to settle overnight. 

The next day, the medium was changed to implement conditioning by specific media or 

drug treatment for another 24 to 48 h. After this period, the complete medium on the 

subconfluent cell monolayers was replaced with pure, FBS-free culture medium, to starve 

and synchronize the cells for 8 h. 24-well and 96-well setups were employed throughout 

the study. In either case, standard 24-well or 96-well cell culture plates were prefilled with 

complete medium (DMEM or RPMI, supplemented with 10% v/v FBS). Size-appropriate 

transwell inserts (Corning) were placed into the wells and left for about 10 min for com-
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plete removal of air entrapments. Meanwhile, the cells were recovered by enzymatic de-

tachment with trypsin for 2-3 min and were carefully resuspended under gentle pipetting 

to break up cell clusters. In 24-well setups, 2.5 × 105 cells were pipetted onto the transwell 

insert membrane, while in 96-well setups, 5 × 104 cells were inserted, with a final concen-

tration of about 700 cells per µl. After 20 h, the number of cells that have migrated to the 

bottom face of the transwell insert membrane (towards the FBS-containing medium in the 

bottom well) was assessed by fixation, nuclear staining with DAPI (which intercalates in 

DNA to fluoresce under excitation with UV light at 405 nm wavelength) and counting un-

der a microscope. Alternatively, and in 96-well plate format, medium in the bottom well 

was removed and replaced with trypsin to detach cells present at the lower face of the 

membrane. After 5 min, the cell-trypsin suspensions were transferred into 200 µl reaction 

tubes, and the cells were collected by centrifugation at 500 g for 5 min. Following removal 

of the supernatant, the cell pellets were lysed with CellTiter Glo®, and transferred by 

pipetting to an opaque, white-bottom plate. The lysing reagent produces a fluorescent 

light signal with an intensity proportional to the amount of ATP present in the entirety of 

cells in the pellet, thus providing a readout of viable cells collected. 

Synergisms of statins and niclosamide in suppressing cell motility in vitro were examined 

in wound healing assays. 1 × 105 HCT116 cells per well were seeded into 96-well plates, 

to reach confluence after 8 h. Subsequently, cell monolayers were wounded by shaving 

off cells using a proprietary WoundMaker device (EssenBioScience), followed by thor-

ough removal of floating cells by washing with PBS, and replenishing of culture medium 

with the respective treatment. Niclosamide was applied in concentrations of 0.25, 0.5 and 

1 µM and the statins atorvastatin, fluvastatin and lovastatin were applied in concentrations 

of 1.25, 2.5 and 5 µM. Wound closure was monitored for 7 days in an IncuCyte system. 

Using IncuCyte Zoom software, the repopulation of wounds relative to their size at zero 

minutes was computationally measured. 

Splenohepatic metastasis of HCT116 cells served as an in vivo model of CRC metastasis. 

1 × 106 HCT116/CMV-Luc cells, constitutively expressing luciferase, were xenografted 

by laparotomic injection into the spleen of immunodeficient SCID bg/bg mice (Charles 

River; Wilmington MA, USA). Niclosamide and either atorvastatin, fluvastatin or lovas-

tatin, or combinations thereof, were administered by daily oral gavage. The dosage of 

niclosamide was 250 mg/day, to match human equivalent doses of 1.5 g per patient per 

day, while all statins were given at 3.25 mg/kg, equivalent to 20 mg per patient per 

day[79]. Following CRC cell xenografting, SCID mice were caged (n = 60, 10 animals per 
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group). Luciferin (VivoGlo®) was administered by tail-vein injection to evoke biolumines-

cence in the xenografted HCT116/CMV-Luc cells, which allowed non-invasive measure-

ment of the size of any tumors present in the mice in an imaging chamber (Berthold Tech-

nologies; done at EPO GmbH, Berlin-Buch). Tumor and metastasis bioluminescence data 

from in vivo studies were processed using ImageJ (NIH, Bethesda MD, USA). 

Mice were euthanized after 24 days or as soon as ethical endpoints (signs of significant 

suffering, immobility, reduced feeding and/or drinking, tumor burden, enlarged abdomen) 

were observed. Mice were immediately dissected to retrieve the spleen (site of xenotrans-

plant injection) and liver (site of distant metastasis), which were shock frozen in liquid 

nitrogen. Cryosections were obtained for isolation of genomic DNA and mRNA, and for 

immunohistochemistry. 

To assess abundance of micrometastases, tumor-free appearing mouse liver tissue was 

collected at a distance of at least 2 mm of any visible tumor metastasis and lysed to ob-

tain genomic DNA. Human satellite DNA was quantified in qPCR experiments using 

specific primers (Table 3) on identical amounts of mouse liver DNA. 

2.12  Computational evaluation of data and statistical analysis. 

Numeric results shown means ± SEM of 3 independent experiments, test for significance 

with ANOVA and Tukey correction for multiple testing. All graphs show means ± SEM of 

3 independent experiments, test for significance with Student’s t-test. When applicable, 

ANOVA and Dunnett’s correction for multiple testing were applied to establish levels of 

significance. Statistical software products used were SPSS 28.0 (IBM, Armonk NY, USA) 

and GraphPad Prism v8.0 and v9.0 (GraphPad, San Diego CA, USA). Drug synergisms 

were quantified using the Combenefit software v2.02, which employs a Loewe interaction 

analysis [80]. 

Devices used throughout at the study are listed in Table 6: Devices used in the exper-

imentsTable 6, while reagents are listed in Table 7. 
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Table 3: Primers 

Oligonucleotide Sequence 

hMACC1 forward 5' - TTC TTT TGA TTC CTC CGG TG - 3' 

reverse 5' - TTC TTT TGA TTC CTC CGG TG - 3' 

hS100A4 forward 5' - CTC AGC GCT TCT TCT TTC - 3' 

reverse 5' - GGG TCA GCA GCT CCT TTA - 3' 

mS100a4 forward 5' - TGA GCA ACT TGG ACA GCA ACA - 3' 

reverse 5' - CTT CTT CCG GGG CTC CTT ATC - 3' 

mGapdh forward 5' - AAC CTG CCA AGT ATG ATG AC - 3' 

reverse 5' - CTG TTG CTG TAG CCG TAT T - 3' 

hRP-II forward 5' - GAA GAT GGT GAT GGG ATT TC - 3' 

reverse 5' - GAA GGT GAA GGT CGG AGT - 3' 

hCyclin-D1 forward 5' - CTG TTT GGC GTT TCC CAG AGT CAT C - 3' 

reverse 5' - AGC CTC CTC CTC ACA CCT CCT C - 3' 

hMMP7 forward 5' - TCG GAG GAG ATG CTC ACT TCG A - 3' 

reverse 5' - GGA TCA GAG GAA TGT CCC ATA CC - 3' 

hCTNNB1 forward 5' - GTG CTA TCT GTC TGC TCT AGT A - 3' 

reverse 5' - CTT CCT GTT TAG TTG CAG CAT C - 3' 

human satellite DNA forward 5' - GGG ATA ATT TCA GCT GAC TAA ACA G - 3' 

 reverse 5' - AAA CGT CCA CTT GCA GAT TCT AG - 3' 

(author’s own representation) 

 
 
Table 4: Antibodies, recombinant proteins 

Specificity Host; Dilution in Western blot Manufacturer 
Primary antibodies 
Anti-MACC1 (HPA020081) Rabbit, polyclonal IgG; 1:10,000  Sigma-Aldrich (St. Louis MO, USA) 
Anti-S100A4 (A5114) Rabbit, polyclonal IgG; 1:1,000 DAKO (Carpinteria CA, USA) 
Anti--catenin (610154) Mouse, monoclonal IgG; 1:20,000 Thermo Fisher Scientific (Waltham MA, USA) 
Anti-pSer552--catenin (#9566) Rabbit, polyclonal IgG; 1:2,000 Cell Signaling Technology (Cambridge, UK) 
Anti-TCF7L (ab76151) Rabbit, polyclonal IgG; 1:1,000 Abcam (Cambridge, UK) 
Anti--actin (clone AC-15) Mouse, monoclonal IgG; 1:20,000 Thermo Fisher Scientific (Waltham MA, USA) 
Anti-human CK19 (TA336845) Rabbit, polyclonal IgG; 1:400 (IHC only) OriGene (Rockville MD, USA) 

Secondary antibodies 
Anti-Rabbit-HRP (W401B) HRP-conjugated antibody; 1:10,000 Promega Corporations (Madison WI, USA) 
Anti-Mouse-IgG-HRP (HP-03) HRP-conjugated antibody; 1:30,000 Thermo Fisher Scientific (Waltham MA, USA) 

Human recombinant proteins 
MACC1 (TP324774) cell-free interaction studies Origene (Herford, Germany) 
-catenin (TP308947) cell-free interaction studies Origene (Herford, Germany) 

(author’s own representation) 
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Table 5: Buffers used in wet-lab experiments 

Buffer Name Ingredients 

1 × PBS(-T) 155 mM NaCl, 0.2 g, 1 mM KH2PO4, 3 mM Na2HPO4 (, Tween® 20) 

1 × RIPA Buffer 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5 % sodium deoxycholate, Protease inhibitor 

IP-lysis Buffer 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% NP40, 1 mM EDTA, 1% Triton X, 1 tbl./10 ml protease and phosphatase 

inhibitors 

1 × Transfer Buffer 25 mM Tris-HCl pH 7.5, 200 mM Glycine, 0.1 % SDS, 20 % Methanol 

1 × TBS-T 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1%, Tween®20 

Skim milk Blocking Buffer 1 × TBS-T in 5 % skim milk 

BSA Blocking Buffer 1 × TBS-T in 5 % BSA 

Mild Stripping Buffer 15 g/L Glycine, 1 g/L SDS, 10 ml Tween® 20, pH2.2 

(author’s own representation) 

 

Table 6: Devices used in the experiments 

Device Purpose Manufacturer 

Cell culture incubator Cell incubation at 37°C, 5% CO2, 5% humidity Heraeus Instruments (Hanau, Germany) 

CountessTM cell counter  Cell counting in cell-medium suspension Invitrogen (Karlsruhe, Germany) 

Transwell inserts, 8 mm pores Assessment of cell migration through 8 mm pores Corning Inc. (Corning NY, USA) 

LSR Fortessa™ FACS device  Sorting of fluorescent cells  BD Bioscience (San Jose CA, USA) 

Cooling Centrifuge 5804 R Centrifugation at ambient and 4°C temperature Eppendorf (Hamburg, Germany) 

NanoDrop 1000 Quantification of DNA and RNA concentration Peqlab (Erlangen, Germany) 

Light Cycler® 480 II Reverse transcription and quantitative PCR Roche Diagnostic (Mannheim, Germany) 

Infinite F200 PRO Spectrometry and chemoluminescence assays Tecan (Männedorf, Switzerland) 

Belly Dancer Mild agitation of Western blot membranes Stovall Life Science (Greensboro, USA) 

Transblot® TurboTM Transfer from SDS page gel to PVDF membranes BioRad Laboratories Inc. (Singapore) 

SuperRX Medical X-Ray Film Recording chemiluminescence in Western blot Fujifilm (Tokyo, Japan) 

Vortex Genie 2TM Harsh agitation of reaction tubes Scientific Industries, Inc. (New York, USA) 

IncuCyte® ZOOM Automated wound healing monitoring EssenBioScience (Ann Arbor MI, USA) 

NightOWL LB 981 system In vivo bioluminescence measurements Berthold Technologies (Bad Wildbad, Germany). 

Cryomicrotome  Tumor sections of 3-5 mm Thermo Scientific (Waltham MA, USA). 

Zeiss Axioplan 2 Microscope Zeiss (Oberkochen, Germany) 

Axiocam HRc camera Digital microscopic camera Zeiss (Oberkochen, Germany) 

Amicon Ultra-2 Centrifugal Filter Concentration of proteins of up to 30 kDa size Sigma-Aldrich (St. Louis MO, USA) 

Q-Exactive plus  Mass spectrometer Thermo Scientific (Waltham MA, USA). 

Proxeon nano-LC system Sample feed into Mass spectrometer Thermo Scientific (Waltham MA, USA). 

(author’s own representation) 
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Table 7: Reagents used in cell culture, animal experiments and wet-lab analyses 

Reagent Manufacturer 

DMEM medium; RPMI-1640 medium Gibco - Thermo Fisher Scientific (Waltham MA, USA) 

Fetal calf serum (FBS) PAA Laboratories (Cölbe, Germany) 

Trypsin-EDTA Thermo Fisher Scientific (Waltham MA, USA) 

Trypan-Blue Invitrogen (Karlsruhe, Germany) 

Opti-MEM medium PAA Laboratories (Cölbe, Germany) 

TransIT 2020 Invitrogen (Karlsruhe, Germany) 

Geneticin (G418) Sigma-Aldrich (St. Louis MO, USA) 

Puromycin Thermo Fisher Scientific (Waltham MA, USA) 

Dimethylsulfoxid (DMSO) Carl Roth (Karlsruhe, Germany) 

MycoAlert™ Mycoplasma Detection Kit Lonza (Basel, Switzerland) 

Dual-Luciferase® Reporter Assay, CellTiter Glo® Promega (Madison WI, USA) 

NE-PER™ Nuclear and Cytoplasmic Extraction Reagents Thermo Fisher Scientific (Waltham MA, USA) 

DNA Extraction and Purification Kit Qiagen (Hilden, Germany) 

Universal RNA Purification Kit Roboklon (Berlin, Germany) 

MgCl2 (25 mM) Applied Biosystems (Foster City, USA) 

10 × PCR-buffer II Invitrogen (Karlsruhe, Germany) 

Desoxyribonucleotide (dNTPs) mix Biozym (Hessisch Oldendorf, Germany) 

RNase Inhibitor Biozym (Hessisch Oldendorf, Germany) 

Random Hexamers Biozym (Hessisch Oldendorf, Germany) 

MuLV Reverse Transcriptase Biozym (Hessisch Oldendorf, Germany) 

Ethanol, Isopropanol, Methanol Carl Roth (Karlsruhe, Germany) 

GoTaq® qPCR Master Mix Promega (Madison, USA) 

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific (Waltham MA, USA) 

Bovine Serum Albumin (BSA) Standard Pierce (Rockford, USA) 

NuPAGE® LDS Sample Buffer Invitrogen (Karlsruhe, Germany) 

Dithiothreitol (DTT) Sigma-Aldrich (St. Louis MO, USA) 

NuPAGE® 10% Bis-Tris Gel Invitrogen (Karlsruhe, Germany) 

SpectraTM Multicolor Broad Range Protein Ladder Fermentas (Sankt Leon-Rot, Germany) 

Ponceau S solution Sigma-Aldrich (St. Louis MO, USA) 

LDS Buffer Thermo Fisher Scientific (Waltham MA, USA) 

WesternBright™ ECL Advansta (San Jose CA, USA) 

Protein G-agarose beads Alpha Diagnostic International Inc. (San Antonio, Texas) 

Skim milk and Bovine Serum Albumin (BSA) powder Sigma-Aldrich (St. Louis MO, USA) 

cOmplete protease inhibitor cocktail Roche Diagnostics (Risch, Switzerland) 

PhosStop® phosphatase inhibitors Roche Diagnostics (Risch, Switzerland) 

Polysorbate 20 (Tween® 20) Carl Roth (Karlsruhe, Germany) 

VivoGlo® Promega (Madison WI, USA) 

Kolliphor® EL Sigma-Aldrich (St. Louis MO, USA) 

ABC Peroxidase Standard Staining Kit Thermo Fisher Scientific (Waltham MA, USA) 

Hematoxylin Carl Roth (Karlsruhe, Germany) 

(author’s own representation) 
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3 Results 

3.1 MACC overexpression confers a promigratory secretome via S100A4. 

To test whether the secretome of CRC cells expressing MACC1 induces cell motility in a 

paracrine fashion, culture medium of two SW480/MACC1 clones and SW620 cells was 

obtained, cleared of floating cells and debris by centrifugation. Cell lines with low endog-

enous expression levels of MACC1 (SW480, HCT116, HT-29 and LS14T) were cultured 

to be conditioned by these culture media for 24 or 48 h, followed by assessment of 

transwell migration in Boyden chamber experiments [Fig. 3A]. SW480 cells demonstrated 

increased motility after 24 and 48 h of medium treatment [Fig. 3B]. 

 
Figure 3: The MACC1 secretome induces CRC cell migration via S100A4. Baseline protein expression of MACC1 and 
S100A4 in the human colon carcinoma cell lines SW480, SW620, HCT116, HT-29 and LS174T (A). Culture medium 
of MACC1-overexpressing cells stimulated migration of SW480 cells (B), and in HCT116, HT-29 and LS174T (C). The 
same culture supernatants rescued migration of SW620/shMACC1 that was diminished after depletion of MACC1 (D) 
(modified after Kortüm et al., 2022). 
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Since results were more pronounced after 48 h, further experiments were carried out with 

the longer incubation period. HCT116, HT-29 and LS174T all experienced significant in-

duction of migration after treatment with media of SW480/MACC1 cells, while medium of 

wildtype SW620 did not share this effect [Fig. 3C]. Medium of SW480/vector cells served 

as a negative control and did not elicit promigratory effects. SW620 is a cell line raised 

from a CRC lymph node metastasis and features extremely high levels of MACC1. In fact, 

the SW480 cell line originates from the primary tumor of the same patient. Following de-

pletion of MACC1 through RNA-interference, SW620/shMACC1 cells demonstrate re-

duced migration as compared to SW620-shCtrl controls with high endogenous expres-

sion of MACC1 left intact. We probed whether MACC1-conditioned media can restore 

migration in MACC1-depleted cells. Indeed, only medium of wildtype SW620 cells, but 

none of the SW480 clones, was able to partially restore migration.  

 

 
Figure 4: The MACC1 secretome features S100A4. Cell culture medium of SW480/vector and SW480/MACC1 cells 
differed in SILAC analysis, in that S100 proteins were overrepresented in medium of MACC1-overexpressing cells. 
Western blot from cell culture supernatant (sample volume proportional to respective cell count at time of medium 
harvest) confirmed increased presence of soluble S100A4 (sS100A4) in the secretome of SW480/MACC1 cells. (mod-
ified after Kortüm et al., 2022). 
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We hypothesized that MACC1 itself is not part of the secretome, but rather its overex-

pression within the cells shapes the proteome of the culture medium. To ascertain the 

MACC1-specific secretome we employed SILAC to compare the cell-free media of 

SW480/vector and SW480/MACC1 cells. Several S100 proteins, including S100A4, were 

dramatically enriched in SW480/MACC1 medium compared to SW480/vector medium. 

Increased soluble S100A4 in the cell free supernatant of MACC1-overexpressing cells 

was confirmed by direct Western blotting [Fig. 4]. 

3.2 CRC metastasis involves MACC1 and S100A4 co-expression. 

We took advantage of a tumor tissue bank from 60 CRC patients and obtained 5 µm thick 

sections. Immediately adjacent sections were fixed, permeated, and stained immuno-

histochemically with antibodies against MACC1 or S100A4. Tumors with pronounced 

staining of MACC1 were predominantly enriched in S100A4 expression. Conversely, sec-

tions with faint immunoreactivity against MACC1 demonstrated weak expression of 

S100A4 [Fig. 5].  

 
Figure 5: Co-expression of MACC1 in human CRC sections. Tumors that did not yield metachronous metastases ex-
pressed faint amounts of MACC1 and S100A4, while recurrent CRC (tumors with metachronous metastases) showed 
pronounced expression of MACC1 and S100A4. Also note the marked positivity for S100A4 in the stroma (modified 
after Kortüm et al., 2022). 
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Of note, in S100A4-rich sections, a substantial staining was observable also outside of 

the tumor cells, throughout the surrounding stroma tissue. In three external CRC cohorts 

MACC1 and S100A4 correlated significantly with Spearman ρ values of 0.392, 0.431 and 

0.317, respectively [Fig. 6]. 

 
Figure 6: Co-expression of MACC1 and S100A4 in patient cohorts. In publicly available of three independent clinical 
cohorts, the expression of MACC1 and S100A4 mRNA correlated positively (modified after Kortüm et al., 2022). 

 

These findings suggest a potential co-regulation of both biomarkers. Therefore, and since 

MACC1 and S100A4 have independently been shown to predict dismal cancer survival, 

we examined whether combined upregulation would define high risk CRC patients. In a 

cohort of 60 CRC patients, we established Youden’s J cut-off values of MACC1 and 

S100A4 mRNA expression for the endpoints Overall Survival and Metastasis-Free Sur-

vival to stratify all cases for survival analysis. The combination of “high MACC1 and 

S100A4” expression was associated with the shortest OS, while the longest OS was 

found in “MACC1 and S100A4 low” [Fig. 7]. 

 
Figure 7: Prognostic biomarker combination of MACC1 and S100A4. High tumor RNA expression of both markers 
predicts poor metastasis-free and overall survival. Patients with elevated transcript levels of MACC1 and S100A4 in 
blood samples face poor overall survival (modified after Kortüm et al., 2022). 
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Similarly, combined overexpression of MACC1 and S100A4 identified patients with the 

shorted MFS. In an unrelated collection of 49 preoperative serum samples, “high MACC1 

and S100A4” expression was associated with the shortest OS, while “MACC1 and 

S100A4 low” was associated with the longest MFS, conversely. This underlines that com-

bining both biomarkers result in robust prediction of high risk in CRC patients and demon-

strates that MACC1 and S100A4-level assessments in the primary tumor and in patient 

blood are similarly informative. 

3.3 MACC1 induces S100A4 via Wnt/-catenin to exert cancer cell migration. 

We hypothesized a transcriptional connection between MACC1 and S100A4. To test this 

hypothesis in vitro, we overexpressed MACC1 in HCT116 (low intrinsic expression) cells 

by lentiviral transduction, while we depleted MACC1 in SW620 (high intrinsic expression) 

cells using CRISPR-Cas9 technology. Indeed, overexpression of MACC1 in HCT116 

cells led to increased luciferase activity in the S100A4-promoter driven luciferase activity. 

Finally, HCT116/MACC1 cells expressed significantly more S100A4 mRNA and protein 

than HCT116/vector cells, while SW620/MACC1-KO showed reduction of S100A4 mRNA 

and protein compared to SW620/Cas9-ev cells [Fig. 8]. 

 
Figure 8: MACC1-regulated S100A4 expression. Overexpressing MACC1 in HCT116 increases S100A4 promoter ac-
tivity, RNA, and protein expression. Elimination of MACC1 in SW620 had the opposite effect (modified after Kortüm et 
al., 2022). 
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Ectopic MACC1 (vil-MACC1-ApcMin) leads to malignant transformation of non-invasive 

ApcMin tumors model, accompanied by upregulated Wnt/-catenin signaling [54]. To an-

swer whether S100A4 was involved in this process, we sectioned vil-MACC1-ApcMin and 

ApcMin tumors for immunohistochemical detection of MACC1 and S100A4 protein. 

S100A4 immunoreactivity was stronger in vil-MACC1-ApcMin tissue than in ApcMin tis-

sues [Fig. 9A]. Tumor tissue was scraped off with a sterile scalpel for extraction of mRNA. 

We found that villin-promoter driven overexpression of MACC1 was detectable in vil-

MACC1-ApcMin tissue, but not in tissues of ApcMin littermates. This finding was reflected 

in higher concentrations of human MACC1 (hMACC1) in RT-qPCR [Fig. 9B]. Importantly, 

we assessed murine mRNA of S100a4 (mS100a4) by mouse-specific primers and found 

increased expression levels of mS100a4 in tumors of vil-MACC1-ApcMin mice [Fig. 9C]. 

 
Figure 9: Co-expression of MACC1 and S100A4 in a transgenic mouse model. Immunoreactivity against S100A4 was 
stronger in vil-MACC1/ApcMin mice in comparison to ApcMin littermates. The ectopic human MACC1 transgene 
(hMACC1) leads to upregulation of mouse intrinsic S100a4 (mS100a4) (modified after Kortüm et al., 2022). 
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We examined whether MACC1 can induce cell migration independently of S100A4. 

MACC1 was overexpressed in HCT116/Cas9-ev cells and HCT116 S100A4-KO cells. 

MACC1 increased the transwell migration of S100A4-competent HCT116 Cas9-ev cells 

but did not increase cell migration of HCT116 S100A4-KO cells [Fig. 10A]. 

 

 
 Figure 10: MACC1-specific migration via S100A4. Deletion (A), transcriptional inhibition (B, C) and pharmacological 
blocking (D) of S100A4 halts MACC1-driven cancer cell migration (modified after Kortüm et al., 2022). 

 

To replicate S100A4 deficiency pharmacologically, we pretreated HCT116/vector and 

HCT116/MACC1 cells and SW480/vector and SW480/MACC1 cells with niclosamide for 

24 h and performed Boyden chamber experiments. Under 0.25 µM and 0.5 µM, niclosa-

mide significantly eliminated the increased migration of MACC1-overexpressing cells in 

comparison to negative controls [Fig. 10B and C]. We also ventured into testing whether 

prochlorpromazine, a phenothiazine that was able to complex and polymerize S100A4 in 

cell-free experiments, can mitigate migration of cells [78]. Indeed, migration of 

SW480/MACC1 was reduced to SW480/vector 

levels after treatment with 20 µM prochlorproma-

zine [Fig. 10D]. 

To test whether MACC1 upregulates S100A4 

transcriptionally, we employed three different 

Wnt/-catenin inhibitors, FH535, LF3 and niclos-

amide. In HCT116/MACC1 cells, all inhibitors 

were able to revert S100A4 upregulation to ex-

pression levels of HCT116/vector cells [Fig. 11]. 

  

Figure 11: Wnt inhibitors revert MACC1-driven S100A4 overex-
pression. S100A4 expression is elevated in HCT116/MACC1, and 
returned to HCT116/vector levels by niclosamide, FH535 and LF3 
(modified after Kortüm et al., 2022). 
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3.4 -catenin is directly engaged by MACC1. 

We have established that MACC1 and β-catenin engage in direct protein-protein interac-

tion (PPI). By deciphering the interactome of MACC1 using mass-spectrometry, seven 

peptides could be mapped to β-catenin [Fig. 12A].  

 

 

Figure 12: MACC1 binds β-catenin. Mass-Spectrometry of the MACC1 interactome identified 6 peptide fragments of β-
catenin (A). This interaction occurred also in co-Immunoprecipitation experiments with whole and fractioned cell lysate 
(B) and in cell-free assays (C) (modified after Kortüm et al., 2022). 

 

We verified this PPI in co-immunoprecipitation experiments. In whole lysate of SW620 

cells, MACC1 was immune-absorbed to a specific antibody, followed by incubation with 

protein-G coated agarose beads. Centrifugation and stringent and repeated washing of 

these beads exposed complexes of antibody bound MACC1 and interacting proteins. 

Western blotting of the eluate with a β-catenin-specific antibody resulted in a band match-

ing β-catenin in the input control, while no band was detectable in the eluate of IgG control 

pulldown. These findings could be replicated in cytoplasmatic as well as nuclear protein 

lysates [Fig. 12B]. Furthermore, recombinantly produced MACC1 and β-catenin protein 

also interacted in entirely cell-free experiments [Fig. 12C]. 
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To elucidate the significance of this hitherto unknown PPI, we examined implications on 

the transcriptional activity of β-catenin. TOP-flash assay for Wnt/β-catenin signaling, while 

knock-out of MACC1 in SW620 cells decreased TOP-flash activity. Similar results were 

found on mRNA-expression levels of the Wnt target genes Cyclin-D1 MMP7 and S100A4, 

while -catenin mRNA was not induced [Fig. 13A]. 

 
Figure 13: MACC1 enhances β-catenin signaling. Overexpression of MACC1 in HCT116 increased activity of TOP-
Flash reporter for Wnt/β-catenin/TCF signaling, and upregulated the Wnt targets cyclin D1, MMP7 and S100A4. De-
pletion of MACC1 in SW620, conversely, had the opposite effect. Expression of β-catenin RNA (CTNNB1) was unaf-
fected (A). phosphorylation of Ser-552 of β-catenin is increased under MACC1 overexpression (B), concomitant with 
increased interaction with TCF4 (C) (modified after Kortüm et al., 2022). 

The activity and stability of β-catenin is mainly regulated by post-translational modifica-

tions. It has been shown that activating phosphorylation of β-catenin is sufficient to pro-

mote its translocation into the nucleus [29]. We observed increased phosphorylation of β-

catenin at Ser-552 in HCT116/MACC1 compared to HCT116/vector, and decreased 

phosphorylation of these sites in SW620/MACC1-KO compared to SW620/Cas9-ev [Fig. 

13B]. TCF4 is crucial for -catenin-dependent gene transcription. We assessed the inten-

sity of -catenin/TCF4 interaction under MACC1 overexpression by simultaneous Co-IP 
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experiments in HCT116/vector and HCT116/MACC1 cells and found higher abundance 

of TCF4 protein in precipitates of -catenin in MACC1 overexpressing cells [Fig. 13C]. 

The MACC1 protein itself lacks sequences suggesting kinase activity [52]. Given these 

findings, we hypothesize that MACC1 acts as an adapter protein by interacting with both 

a kinase and its substrate, thus increasing the efficiency of post-translational stabilization 

of β-catenin and potentially modifying the target gene spectrum. 

3.5 Niclosamide and statins synergistically halt CRC cell motility. 

To test the potential clinical feasibility of MACC1-S100A4-targeted therapy in CRC, we 

combined transcriptional inhibitors against MACC1 and S100A4 in wound healing and 

metastasis assays. A combination of 2.5 µM atorvastatin and 0.5 µM niclosamide was the 

most effective combination in restricting wound healing of HCT116 cells [Fig. 14A]. 

 
Figure 14: Statins synergize with niclosamide against CRC motility. The statins atorvastatin (A), fluvastatin (B) and 
lovastatin (C) were combined with niclosamide in wound healing assays for cell motility. In Loewe interaction analyses, 
atorvastatin showed the strongest synergy with niclosamide, at 5 µM and 0.5 µM, respectively (modified after Kortüm 
et al., 2022). 



Methodology 40 

In comparison, fluvastatin or lovastatin and niclosamide given alone at higher concentra-

tions (5 µM and 1 µM, respectively) did suppress HCT116 cell migration, but less effec-

tively than in combination [Fig. 14B, C]. 

3.6 Niclosamide and statins synergistically suppress CRC cell metastasis. 

We sought to validate the synergisms of niclosamide and statins in restricting cell motility 

in vitro in an in vivo model of metastasis. To this end, SCID bg/bg mice were injected with 

1 × 106 HCT116/CMV-Luc, forming a xenograft of human CRC cells. Starting from day 5 

after xenotransplantation, the animals were orally administered either statins or niclosa-

mide, or combination thereof, while solvent-treated animals served as a control cohort. 

For each experiment, 60 animals were randomly assigned to one of 6 treatment groups 

(n = 10). Luciferin, a substrate of luciferase expressed by HCT116/CMV-Luc cells, was 

administered into the tail vein of the mice, eliciting bioluminescence in the HCT116/CMV-

Luc cells. This allowed non-invasive monitoring of tumors and metastases. An initial ex-

periment using 100% of the human equivalent dose of statins (13 mg/kg) and 164 mg/kg 

niclosamide was performed to assess toxicity and efficacy of the pharmaceuticals to mit-

igate macroscopic and microscopic metastasis. Luminescence data from day 20 showed 

significant suppression of tumor growth in all statin-based treatments, so that any poten-

tial synergistic effects were obfuscated [Fig. 15A]. Conversely, administration of 12.5% of 

the human equivalence dose of statins (1.5 mg/kg) and niclosamide (164 mg/kg) did not, 

neither in single dose nor in combination, elicit any significant suppression of tumor and 

metastasis growth [Fig. 15B]. Nevertheless, the highest doses of statins and niclosamide 

were found to be safe. Mouse body weights were equal in all treatments [Fig. 15C]. Under 

administration of statins at 25% of the human equivalent dose (3.25 mg/kg) and 250 

mg/kg niclosamide, both fluvastatin + niclosamide and atorvastatin + niclosamide groups 

showed the lowest reads of tumor bioluminescence [Fig. 15D]. We sought to also com-

pare the load of micrometastases between the treatment groups. Immediately after eu-

thanasia, mouse livers were shock frozen in liquid nitrogen to be cryosectioned and im-

munostained with antibodies specific for human cytokeratin 19 (hCK19) to detect human 

HCT116 cells that have disseminated into the tumor-free appearing mouse liver [Fig. 

15E]. Treatment with solvent and monotherapy with either statin or niclosamide (1-4) was 

associated with high abundance of hCK19, while both combinatorial treatments (5, 6) 

showed virtually no hCK19 signal. 
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Figure 15: Dose-finding for statin-niclosamide synergy for suppression of CRC metastasis. Luminescence of metasta-
ses in murine livers following CRC cell xenografts under treatment with 100 % (A) and 12.5 % (B) human equivalent 
dosage of respective drug. Under 100 % dosage, all drugs significantly reduced liver metastases, and synergistic ef-
fects were obscured, while at 12.5 % no effects were observed, and dosage was not sufficient to elicit synergism of 
niclosamide and statin. Body weight curves normalised to control treated mice showed no toxicity of either treatment 
(C). Luminescence over time in the final experiment (D). IHC against hCK19 detected disseminated human CRC cells 
in murine liver (E) Representative murine liver sections show abundance of hCK19, indicating micrometastases (0 = 
healthy liver, 1 = solvent, 2 = niclosamide, 3 = fluvastatin, 4 = atorvastatin, 5 = fluvastatin + niclosamide, 6 = atorvastatin 
+ niclosamide) (modified after Kortüm et al., 2022). 
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Statins (3.25 mg/kg) and niclosamide (250 mg/kg) did not affect macroscopic tumor 

growth and liver metastases [Fig. 16A, B]. However, loads of human satellite DNA, indic-

ative of micrometastases, were reduced by monotherapies, and more potently by combi-

nations of statin and niclosamide [Fig. 16C]. 

 

 
Figure 16: Synergistic suppression of CRC metastasis. Under treatment with either atorvastatin (3.25 mg/kg, 20 mg 
per patient per day), fluvastatin (3.25 mg/kg, 20 mg per patient per day) or niclosamide (250 mg/day, 1.5 g per patient 
per day). Growth of macroscopic liver metastases did not differ amongst the treatment groups. However, micrometas-
tases in tumor-free appearing liver tissue were only diminished in combinations of statin and niclosamide (C) (modified 
after Kortüm et al., 2022). 
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4 Discussion 

4.1 Brief summary of results 

CRC cells with intrinsically or extrinsically high levels of MACC1 secrete S100A4. Cell 

culture medium of MACC1-overexpressing cells stimulates migration of CRC cell lines 

with low expression levels of MACC1. S100A4 and MACC1 are co-expressed in tumor 

samples, and combined overexpression of both markers in tumors and clinical blood sam-

ples identifies high risk patients with dismal MFS and OS. MACC1 directly promotes 

S100A4 expression through enforced -catenin-dependent transcriptional activity. Induc-

tion of cancer cell migration relies on S100A4 and is druggable by small molecule tran-

scriptional inhibitors of Wnt/-catenin signaling and S100A4. Niclosamide (S100A4 inhib-

itor) and statins (MACC1 inhibitors) are individually able to halt cancer cell motility in vitro. 

In combinatorial use, the effects on cultured cells are potentiated and in a mouse model 

of CRC, niclosamide and statins synergize in prevention of metastasis. 

4.2 Interpretations of results 

Upregulation of MACC1 is associated with overexpression and secretion of S100A4. CRC 

cells with high levels of MACC1 demonstrate high expression of intracellular S100A4 and 

elevated secretion of soluble S100A4. In tumor samples of patients and mice, S100A4 

was not only found upregulated within the tumor cells, but also in the surrounding stromal 

tissue. Both biomarkers are positively correlated in expression and, potentially due to 

being, mechanistically linked, in that MACC1 interacts with -catenin, a translational ac-

tivator of S100A4, leading to its posttranslational stabilization and an enforced interaction 

with downstream transcription factors. Combinatorial transcriptional inhibition of MACC1 

and S100A4 is superior to separate use in the restriction of migration in vitro and metas-

tasis in vivo, in line with antineoplastic drug synergism. 

We report here the mechanistic link between two seemingly unrelated metastasis induc-

ers. MACC1 enforces Wnt/β-catenin signaling and expression of its target gene S100A4 

by direct modification of β-catenin. Furthermore, phosphorylation of β-catenin is in-

creased at serine-552, which has been described in a variety of cancers. In the absence 

of intrinsic kinase activity, MACC1 might act as an adapter protein and bind to β-catenin 

to shift the stoichiometry of β-catenin interacting with its kinases Akt, MET or PAK1. An 
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interaction with a kinase able to phosphorylate β-catenin with MACC1 has yet to be es-

tablished. 

We established, that macroscopic metastasis (i.e., detectable by bioluminescence) was 

not affected by either treatment, but that the abundance of micrometastases in the liver 

tissue around the large tumor masses was reduced only in combinatorial treatments. This 

means, that statins and niclosamide overall decrease the risk of metastasis development, 

but do not prevent the outgrowth of some metastatic lesions once they have escaped 

pharmacological inhibition. 

4.3 Strengths and limitations 

We have been able to test the combination of both biomarkers in tumor samples and 

liquid biopsies in predicting cancer survival. Of note, these CRC cohorts are independent. 

It would have been ideal to have matched tumor and blood samples from the same cohort 

of patients to compare risk stratification from blood plasma and tumor samples side-by-

side. Nevertheless, being able to predict OS from tumor samples and then liquid biopsies 

demonstrates a certain robustness of our biomarker combination, and our approach of 

isolating RNA transcripts from unprocessed blood plasma, without ultracentrifugation or 

material-intensive purification of subcellular vesicles, is potentially easy to implement in 

routine laboratory medicine. Furthermore, artificial release of S100A4 protein from blood 

cells after sampling as well as elevated S100A4 protein in non-cancerous diseases dis-

qualify its assessment as a biomarker [81,82]. 

Supernatant of SW480/MACC1 cells drives migration of SW480 and all other cell lines, 

but not SW620, while supernatant of SW620 only drives (restores) SW620-shMACC1 

migration. Clearly, ectopic overexpression of MACC1 in SW480 is by far not sufficient to 

render them SW620 cells, and the very different origin of both cell lines only emphasize 

that highly contextual mechanisms are at play. High expression and activity of MACC1 

must be studied functionally in cellular models of benign and malign tumor stages as well 

as healthy and developmental contexts. 

It must be noted that we did not distinguish between S100A4 in free solution in the me-

dium and within subcellular vehicles, or exosomes. In fact, both MACC1 and S100A4 

proteins were more abundant in exosomes of the metastatic SW620 cell line compared 

to the primary tumor-derived SW480 counterpart [83]. Tumor-derived exosomes, shed 

into the blood stream, have been found to be assimilated by Kupffer cells in the liver of 
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mice and induce formation of premetastatic niches [64]. It remains to be clarified, whether 

upregulation of S100A4 in the tumor stroma is attributable to secretion of S100A4 by the 

tumor cells alone or by hitherto unknown mechanisms through which MACC1-expressing 

cancer cells induce the fibroblasts to increase synthesis of S100A4 themselves.  

To strengthen the evidence for the mechanisms by which Wnt/-catenin is activated by 

MACC1, it would have been desirable to inactivate the phosphorylation site at serine-552 

of -catenin by site-directed mutagenesis. Furthermore, this study did not specify which 

kinase phosphorylates -catenin downstream of MACC1. 

4.4 Implications for the standard of care and future research of CRC 

We have characterized the interplay of MACC1 and S100A4 in CRC, in vitro and in vivo 

models of CRC, and pharmaceuticals primarily targeting -catenin/TCF4 signaling. CRC 

is a cancer entity largely driven by aberrantly active Wnt/-catenin signaling – 85% of 

cases demonstrate either loss-of-function of APC or gain-of-function of -catenin. How-

ever, clearly this pathway is not equally prevalent in most other cancer entities. 

Therefore, we must regard our findings limited to the majority of CRC, and not directly 

applicable to other entities. Nevertheless, we postulate that similarly to our study, reposi-

tioning drugs against pathways that are decisive in progression of other tumor entities 

would be feasible. Our group has demonstrated that the lipid profile of patient plasma is 

informative for CRC risk [84]. Extensive work is being done on circulating tumor cells and 

cell-free DNA, RNA and proteins, either dissolved freely in blood plasma or contained in 

extracellular vesicles (exosomes) [85]. Focusing on feasibility, we have isolated RNA from 

blood plasma without prior enrichment of extracellular vesicles. While important biological 

information is lost, we argue that this approach is more easily adoptable in clinical routine 

by avoiding the need of ultracentrifugation. 

The problematic toxicity profile of currently used chemotherapies calls for a quest for sup-

plementary or even alternative pharmaceuticals for the management of cancers and the 

prevention of metastasis. Our group has outlined several of the emerging non-cytotoxic 

strategies such as inhibiting transcription and biosynthesis of tumor-promoting genes or 

alternatively, targeting the proteins that effect cancerous phenotypes [86]. Most notably 

in the context of this study, single molecules of phenothiazine-type antipsychotic drugs 

bind to S100A4 protein, coercing the formation of pentamers that are biologically inert 

within the cell [78]. An efficacy in cell culture has yet to be tested, yet in initial experiments 
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we were able to suppress MACC1-driven CRC cell migration with 20 µM prochlorproma-

zine [Fig. 10]. To our best knowledge, this is the first translation of an interesting biochem-

ical report into cell culture. While novel biologics such as recombinant antibodies are 

poised to become a new mainstay of cancer therapy, the prospect of combatting cancer 

metastasis with already available, and orally taken, drugs warrants further development 

and research [87]. 
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5 Conclusions 

We have identified a novel MACC1-Wnt/β-catenin-S100A4 axis, which directly fuels cell 

motility and metastasis, the most dreaded complication of CRC. Contrary to most risk 

stratification studies that derive novel biomarkers from unsupervised data analyses, our 

approach is hypothesis-driven, therefore provides a molecular rationale and, in the case 

of MACC1 and S100A4, also a set of small molecule inhibitors already confirmed to have 

anti-metastatic effects in CRC. Additional to MACC1-targeting strategies, neutralization 

of S100A4 might be beneficial in preventing MACC1-dependent cancer progression. 
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