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Abstract

Compartmentalization by membranes is a common feature of
eukaryotic cells and serves to spatiotemporally confine biochemi-
cal reactions to control physiology. Membrane-bound organelles
such as the endoplasmic reticulum (ER), the Golgi complex, endo-
somes and lysosomes, and the plasma membrane, continuously
exchange material via vesicular carriers. In addition to vesicular
trafficking entailing budding, fission, and fusion processes, organ-
elles can form membrane contact sites (MCSs) that enable the
nonvesicular exchange of lipids, ions, and metabolites, or the
secretion of neurotransmitters via subsequent membrane fusion.
Recent data suggest that biomolecule and information transfer via
vesicular carriers and via MCSs share common organizational prin-
ciples and are often mediated by proteins with intrinsically disor-
dered regions (IDRs). Intrinsically disordered proteins (IDPs) can
assemble via low-affinity, multivalent interactions to facilitate
membrane tethering, deformation, fission, or fusion. Here, we
review our current understanding of how IDPs drive the formation
of multivalent protein assemblies and protein condensates to
orchestrate vesicular and nonvesicular transport with a special
focus on presynaptic neurotransmission. We further discuss how
dysfunction of IDPs causes disease and outline perspectives for
future research.
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Introduction

A hallmark of eukaryotic cells is the elaborate membrane system

that serves to create physically and functionally distinct organelles,

which enable cells to compartmentalize metabolic networks and

signaling cascades. Membrane-bound cell organelles such as the

endoplasmic reticulum (ER), Golgi complex, endosomes and lyso-

somes, and the plasma membrane (PM) continuously exchange bio-

molecules (e.g., proteins, lipids, and metabolites) via vesicular and

tubular carriers (hereafter referred to as vesicular transport) in pro-

cesses such as the internalization of membranes (endocytosis via

membrane fission) or the secretion of proteins, hormones, or neuro-

transmitters (exocytosis via membrane fusion; Bonifacino &

Glick, 2004; Sudhof & Rothman, 2009; Bethune & Wieland, 2018;

Yarwood et al, 2020). Vesicular transport (Fig 1) via membrane

fusion, fission, and maturation processes underlies a broad range of

cellular functions beyond exo- and endocytosis, for example, in cell

morphogenesis, migration, cell signaling, or tissue formation.

Organelles such as the ER and the PM also display further subcom-

partmental organization and heterogeneity at the nanoscale level

that allow for the segregation of functional biochemical units for

information processing (e.g., neurotransmitter receptors localized

within the postsynaptic density; Sudhof & Rothman, 2009) and/or

the vectorial transfer of biomolecules (e.g., the polarized secretion

of enzymes or hormones; Bonifacino, 2014). Recent data show that

changing environmental conditions or physiological stimuli such as

starvation, stress, or patterns of neuronal activity impinge on vesic-

ular transport to control cell and organismic physiology.

In addition to vesicular transport, many organelles can form sta-

ble or transient membrane contact sites (MCS) with each other

(Cohen et al, 2018; Wu et al, 2018; Prinz et al, 2020; Fig 1). In this

way, opposing organelles are tethered to each other to enable the

nonvesicular exchange of lipids (e.g., cholesterol and phospho-

lipids), ions (e.g., store-operated calcium entry via STIM1-ORAI

channels at ER-PM contacts), and metabolites, or to secrete neuro-

transmitters via a subsequent fusion event (e.g., exocytosis of syn-

aptic vesicles (SVs) docked at the PM within the so-called active

zone (AZ; Sudhof & Rothman, 2009; Haucke et al, 2011). As in

vesicular trafficking, MCS are subject to dynamic regulation, for

example, via cell signaling cascades (e.g., involving calcium or

small GTPases such as Rabs) and in response to nutrient status and

metabolism (Cohen et al, 2018; Wu et al, 2018; Prinz et al, 2020),
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thereby providing a means of interorganellar communication that is

independent of the formation of vesicular carriers, that is, mem-

brane fission and fusion.

Emerging evidence suggests that biomolecule and information

transfer via vesicular transport and nonvesicular transport at MCS

(Fig 1) share organizational principles. Membrane fusion/fission

and MCS formation both require the finely tuned regulation of the

interaction of proteins with membranes that capitalizes on coinci-

dent recognition of small GTPases, for example, Rab GTPases, and

phosphoinositide signaling lipids (phosphorylated derivatives of

phosphatidylinositol collectively referred to as PIs). PIs and Rabs act

as determinants of compartmental membrane identity (Behnia &

Munro, 2005) and spatiotemporal cues to direct both vesicular

transport and MCS formation or dissolution, in addition to other cel-

lular functions (e.g., in signaling; Di Paolo & De Camilli, 2006;

Schink et al, 2016; Posor et al, 2022). For instance, Rab5 and phos-

phatidylinositol 3-phosphate [PI(3)P] serve as spatiotemporal land-

marks for endosomes and direct vesicular transport in the early

endocytic pathway by facilitating both membrane fusion (Fig 2A)

and formation of MCS with the ER (Simonsen et al, 1998; Zerial &

McBride, 2001; Ohya et al, 2009). These MCS control endosome

position and dynamics, lipid exchange, and, conversely, ER shape

(Jang et al, 2022). Many of the membrane-associated effector pro-

teins recruited by co-incident recognition of small GTPases and PIs

that orchestrate vesicular and nonvesicular transport harbor

extended intrinsically disordered regions (IDRs) that are essential

for their functionality (Uversky et al, 2008; Wright & Dyson, 2015;

Jamecna & Antonny, 2021; Coskuner-Weber et al, 2022; Schiano

Lomoriello et al, 2022).

In this review, we discuss how the formation of multivalent pro-

tein assemblies and phase-separated biomolecular condensates may

enable intrinscially disordered proteins (IDPs) to orchestrate vesicu-

lar and nonvesicular transport in health and disease with special

emphasis on presynaptic neurotransmission.

Vesicular and nonvesicular transport

Vesicular transport
In vesicular transport, vesicle coat proteins are recruited to and

assembled on defined nanodomains of an organelle (e.g., endocytic

sites on the PM, ER exit sites) to mediate the transport of various

Figure 1. Cellular modes of material exchange: Vesicle trafficking and nonvesicular transport via membrane contact site (MCS) formation.

Shown are cellular locales using vesicular traffic and MCS formation for the exchange of metabolites, lipids ions, or proteins. ER, endoplasmic reticulum; COPI, coat

protein complex I; COPII, coat protein complex II; TGN, trans-Golgi network. Created with BioRender.com.
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cargos (e.g., proteins and lipids) for the biogenesis of organelles,

secretion of proteins, peptide hormones or neurotransmitters, and

for cargo uptake (e.g., endocytosis) into cells as well as to control

plasma membrane composition (Bonifacino & Glick, 2004; Faini

et al, 2013; Bethune & Wieland, 2018). Vesicle coat proteins serve to

induce and stabilize membrane curvature and couple this to the

sorting of transmembrane and luminal cargos into the emerging

transport vesicle. The best studied examples of vesicle coats are the

various types of clathrin-coated vesicles defined by distinct clathrin

adaptor complexes (e.g., AP-1 to AP-5) and coat protein I (COPI)

and coat protein II (COPII) vesicles that mediate bidirectional trans-

port at the ER–Golgi interface (Faini et al, 2013; Bethune & Wie-

land, 2018). Architecturally, the components of these vesicle coats

are characterized by the presence of extended a-solenoid and b-
propeller domains that are also found in some membrane tethers

(see below) and in nucleoporin proteins that delineate the nuclear

pore (Rout & Field, 2017).

Recruitment and assembly of vesicle coats typically requires

coincident detection of membrane lipid composition (e.g., acidic

lipids) together with proteinaceous factors, most often—though not

always—the activated GTP-bound form of a small GTPase (e.g.,

ADP ribosylation factor 1, Arf1; Fig 2B). In many cases, coat recruit-

ment and polymerization are accompanied by conformational

changes within vesicle coat components (e.g., clathrin adaptors)

that facilitate membrane binding and couple coat assembly to the

sorting of transmembrane cargo (Faini et al, 2013; Fig 2A). A prime

example is the conformational activation of the clathrin adaptor

complex AP-2 by coincident detection of phosphatidylinositol 4,5-

bisphosphate [PI(4,5)P2] and sorting signals within cargo receptors

that enables assembly of clathrin, that is, the outer coat layer, on

the cytoplasmic face of the plasma membrane (McMahon &

Boucrot, 2011; Kaksonen & Roux, 2018). Assembly of vesicle coats

and coat-associated proteins often comprising IDRs drives the acqui-

sition of positive membrane curvature via hydrophobic insertion of

Figure 2. Principles of vesicular transport.
(A) Schematic representation of vesicle formation and budding. Vesicle coat complexes are recruited in a stepwise manner via coincident detection of cargo or cargo
receptors and a specific small GTPase and/or acidic membrane lipids. (B) Schematic representation of the steps toward homotypic fusion orchestrated by tethering
complexes, cognate SNARE complexes, as well as GTP-bound Rab proteins and phosphoinositides serving as membrane identity markers. Created with BioRender.com.
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amphipathic helices and/or the scaffolding of curved membranes by

crescent-shaped lipid binding domains (e.g., bin-amphiphysin-rvs

[BAR] domains; Antonny, 2011; Stachowiak et al, 2013; Daumke

et al, 2014; Kaksonen & Roux, 2018). As the vesicle bud matures, a

negatively curved tubular membrane neck forms that eventually is

separated from the donor membrane by protein-catalyzed fission. In

the case of endocytic vesicle formation, membrane fission is medi-

ated by a GTP hydrolysis-induced conformational change in oligo-

meric assemblies of the large GTPase dynamin. Vesicle release is

tightly coupled to the disassembly of vesicle coats, thereby enabling

the free uncoated vesicle to be transported (e.g., via motor proteins)

to its target membrane (McMahon & Boucrot, 2011; Daumke et al,

2014; Kaksonen & Roux, 2018).

A topologically opposite type of vesicle formation away from the

cytoplasm (e.g., into the lumen of endosomes or into the extracellu-

lar space) is catalyzed by the endosomal sorting complex required

for transport (ESCRT) machinery. This pathway involves a spring-

loaded mechanism of membrane fission via spiral assembly of

ESCRT-III proteins on the cytoplasmic face of the budding mem-

brane (Raiborg & Stenmark, 2009; Pfitzner et al, 2021). Yet, another

distinct type of vesicle formation occurs in autophagy. This process

involves the ordered assembly of core autophagy machinery pro-

teins at sites where ATG9-containing vesicles coalesce with ER

membranes resulting in the formation of double membrane vesicles

covered on either side with lipid-conjugated LC3 family proteins.

The content of autophagic vesicles is eventually delivered to lyso-

somes via membrane fusion for degradation (Vargas et al, 2023).

At the target membrane, incoming vesicles (e.g., secretory or

endocytic vesicles, autophagosomes) are captured by Rab protein-

associated tethering factors (Zerial & McBride, 2001). Rabs together

with PI lipids (e.g., PI(4,5)P2 at the plasma membrane) are codeter-

minants of organelle identity and membrane nanodomain organiza-

tion and a conserved part of the machineries for vesicle docking and

fusion (Fig 2B). Like vesicle coats, tethering factors are recruited to

membranes via coincident binding to active small GTPases (i.e.,

GTP-bound Rab proteins) and membrane lipids (e.g., PIs; Behnia &

Munro, 2005; Di Paolo & De Camilli, 2006; Posor et al, 2022).

Tethering factors fall into two principle classes of unrelated pro-

teins based on primary sequence and domain structure: Extended

coiled-coil proteins such as the Golgins or early endosome antigen 1

(EEA1) and multisubunit tethers, which can be further subdivided

into the Complexes Associated with Tethering Containing Helical

Rods (CATCHR) and Class C MTCs (multisubunit tethering com-

plexes) subfamilies (Ungermann & Kummel, 2019). Examples of

multisubunit tethering factors are the homomeric vacuole fusion

and protein sorting (HOPS) and class C core vacuole endosome teth-

ering (CORVET) complexes, the Exocyst complex (Ungermann &

Kummel, 2019), and the assemblies formed by the presynaptic

active zone protein Munc13 (discussed below; Sakamoto et al,

2018), which function in membrane fusion within the endolyso-

somal system and in regulated neuroexocytosis. Once vesicles are

docked to their target, membrane fusion is driven by zippering of

trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment

protein receptor) complexes present on either side of the fusing

membranes (Fig 2B). The assembly of trans-SNARE protein com-

plexes that drive fusion requires chaperoning by S/M (Sec1/

Munc18) proteins and is aided by tethers as exemplified by Munc13

at the presynaptic AZ (Sudhof & Rothman, 2009; Jahn &

Fasshauer, 2012). Finally, postfusion cis-SNARE complexes are

disassembled via the activity of the N-ethylmaleimide-sensitive fac-

tor (NSF) ATPase and its adaptor protein a-SNAP.

Nonvesicular transport
Apart from exchanging signals, metabolites, and other molecules

(e.g., proteins and lipids) by vesicular transport, organelles commu-

nicate and integrate their activities by nonvesicular transport at

membrane contact sites (MCS). Membrane contact sites are sites of

close membrane apposition (e.g., at distances that vary between

about 20 to 60 nm), at which two or possibly more organelles physi-

cally interact but typically do not undergo fusion. In addition,

intraorganelle contact sites between two regions of the same organ-

elle (e.g., distinct parts of the ER or mitochondrial subcompart-

ments) exist (Cohen et al, 2018; Wu et al, 2018; Prinz et al, 2020;

Guillen-Samander & De Camilli, 2023). A prominent hub for MCS

formation is the ER, which forms a plethora of contacts with essen-

tially all other eukaryotic cell organelles (Wu et al, 2018; Guillen-

Samander & De Camilli, 2023). Membrane contact sites considerably

differ with respect to shape, composition, function, and dynamics.

While some MCS are highly dynamic and form and dissociate on

timescales of a few seconds, others such as the specialized contacts

between the ER and the PM in muscle essentially persist for the

entire lifetime of the cell or tissue. Among the known functions of

MCS are calcium and lipid signaling and transport, metabolic

channeling, membrane fission and fusion (e.g., of mitochondria;

Wu et al, 2018; Guillen-Samander & De Camilli, 2023), as well as

organelle transport, dynamics, and reshaping (e.g., of the ER by

MCS with endosomes; Jang et al, 2022).

Nonvesicular transport of signaling molecules, lipids, and metab-

olites at MCS (Fig 1) depends on membrane tethering proteins.

Known tethers include transmembrane proteins (e.g., VAPs, VAMP-

associated proteins) in the ER and the PM (Saheki & De Camilli,

2017a; e.g., E-Syts, extended synaptotagmins; Saheki & De Camilli,

2017b) as well as membrane-associated factors recruited by coinci-

dent recognition of PIs and small GTPases (e.g., active Rabs) or

other membrane-bound proteins.

Well-known examples of tethers at MCS are the complexes

formed by ER-localized VAP proteins with oxysterol-binding protein

1 (OSBP1) at the trans-Golgi network (TGN; Mesmin et al, 2013)

and with oxysterol-binding protein-related proteins (ORPs) 5/8 at

the PM (Chung et al, 2015). Moreover, the exchange of phosphatidy-

linositol for phosphatidic acid at PM-ER MCS by the evolutionary

conserved VAP-binding protein Nir2 (RdgB in Drosophila melanoga-

ster; Kim et al, 2015; Yadav et al, 2015) and the calcium-regulated

association of STIM1 in the ER with PM ORAI1 channels to mediate

store-operated calcium entry (Liou et al, 2005; Zhang et al, 2005;

Feske et al, 2006) are of key importance for the maintenance and

regulation of receptor signaling. Most MCS are held together by mul-

tiple, possibly partially redundant tethers. For example, at least

seven different protein complexes are involved in tethering the corti-

cal ER to the PM in yeast (Saheki & De Camilli, 2017a). Many of the

tethering proteins at MCS serve additional roles, for example, as

channels or transporters for lipids (e.g., OSBP, ORPs, E-Syts, and

ATG2; Saheki & De Camilli, 2017b; Leonzino et al, 2021) or calcium

(e.g., STIM1-ORAI1) or as enzymes (e.g., phosphatidylinositol 4-

phosphate [PI(4)P] hydrolysis by Sac1). Among the various types of

factors found at MCS are proteins involved in membrane fission
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(e.g., the dynamin-related protein DRP1; Kleele et al, 2021), mem-

brane bending (e.g., the PX-BAR domain protein SNX [sorting

nexin] 2; Dong et al, 2016), organelle transport via motor proteins

(e.g., the protrudin/FYCO1 complex at ER/late endosome MCS;

Raiborg et al, 2015), vesicle budding (e.g., the ESCRT-III protein

IST1), or cell signaling (e.g., the protein phosphatase PTP1B).

Common principles of vesicular and
nonvesicular transport and the role of IDPs

Although vesicular and nonvesicular transport via MCS display

apparent functional and morphological differences, work in recent

years has uncovered a number of noteworthy molecular and con-

ceptual similarities.

First, both vesicular and nonvesicular transport depend on iden-

tity determinants (e.g., small GTPases and PIs) that mark the respec-

tive membrane nanodomain to enable the specific recruitment and

multimeric assembly of proteins (e.g., proteins from the cytoplasm

or the cytoplasmic domains of membrane proteins) that serve as

effectors in the pathway (Behnia & Munro, 2005; Di Paolo & De

Camilli, 2006; Saheki & De Camilli, 2017a; Prinz et al, 2020; Posor

et al, 2022). Depending on the process, these include coat proteins

(Faini et al, 2013), membrane deforming proteins (e.g., BAR pro-

teins and sorting nexins; (Daumke et al, 2014), or proteinaceous

membrane tethers (Ungermann & Kummel, 2019). The latter may

facilitate membrane apposition as in the case of MCS (Stefan

et al, 2017; Prinz et al, 2020) or enable subsequent fusion by down-

stream factors as in SV exocytosis (Sudhof & Rothman, 2009;

Haucke et al, 2011; Jahn & Fasshauer, 2012). As vesicle formation

typically depends on membrane-active (i.e., deforming) proteins

(Daumke et al, 2014; Pfitzner et al, 2021), we predict that proteins,

particularly IDPs, involved in nonvesicular transport at MCS in

many cases may also be membrane-active. Experimental evidence

for this proposal is lacking at this time. Second, the pivotal role of

PIs and small GTPases necessitates mechanisms for the spatiotem-

porally controlled writing and erasing of membrane identity on the

nanoscale (Behnia & Munro, 2005; Posor et al, 2022). Consistently,

overlapping sets of PI kinases and phosphatases (Di Paolo & De

Camilli, 2006; Schink et al, 2016; Posor et al, 2022) as well as gua-

nine nucleotide exchange factors (GEFs) and GTPase-activating pro-

teins (GAPs; Lamber et al, 2019) have been implicated in vesicle

formation, fission, and fusion (Fig 2) and in MCS assembly (Fig 1)

to facilitate nonvesicular transport. Finally, the dynamic nature of

vesicular and nonvesicular transport necessitates that the underly-

ing biochemical network comprises low-affinity protein–protein and

protein–lipid interactions that are considerably strengthened when

restricted to the two-dimensional space of membrane interfaces

(Kalappurakkal et al, 2020).

To cope with the geometrical constraints (e.g., the varying dis-

tance of two organelles undergoing MCS formation or docking and

fusion) and to enable metastability of the system (McMahon &

Boucrot, 2011; Faini et al, 2013), many of the proteins involved in

vesicular and nonvesicular transport display a pearls-on-a-string-like

architecture, in which stably folded domains (e.g., an enzymatic

core) are paired with long (> 30 amino acids in length, also referred

to as long disordered regions) IDR segments harboring low-affinity

(Kd of 1–100 lM) protein or lipid interactions motifs (Fig 3A).

Intrinsically disordered proteins may constitute more than 30% of

the eukaryotic proteome (Colak et al, 2013; Deiana et al, 2019) and

can be predicted by computational and machine-learning-based

methods (> 40 algorithms exist; e.g., Jones & Cozzetto, 2015; Liu

et al, 2019) based on amino acid sequence complexity and flexibil-

ity, bias toward certain amino acids and secondary structure infor-

mation. These methods are often used in conjunction with

experimental data derived from nuclear magnetic resonance (NMR)

spectroscopy, protein X-ray crystallography, electron paramagnetic

resonance (EPR) spectroscopy, circular dichroism spectroscopy,

small-angle X-ray scattering, or single-molecule fluorescence reso-

nance energy transfer (see Chowdhury et al, 2023 and references

within) to generate IDR/IDP databases. Typically, IDRs display a rel-

atively low proportion of hydrophobic and bulky aromatic residues,

which usually form the hydrophobic core of globular proteins

(Jamecna & Antonny, 2021). Instead, they are enriched in polar or

charged residues and in secondary structure-disrupting proline resi-

dues (Martin & Holehouse, 2020). Intrinsically disordered regions

Figure 3. Principle modes of operation and functional roles of IDPs.
(A) The continuum of intrinsic disorder. Top, proteins can be described either as folded, as having a modular architecture with both folded and intrinsically disordered
regions (IDRs), or as true IDPs, in which the entire polypeptide contains little or no stable structure. Bottom, multivalent proteins can polymerize via homotypic and/or
heterotypic association (i.e., N-mers) into condensates. (B) Principle functionalities promoted by IDPs. Created with BioRender.com.
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do not fold into a fixed three-dimensional structure but instead exist

in a heterogeneous ensemble of conformations (Fig 3A). Intrinsi-

cally disordered regions have recently entered mainstream cell biol-

ogy in the context of liquid–liquid phase separation (LLPS; Martin &

Holehouse, 2020). Clearly, IDRs are frequently found to be enriched

in phase-separated compartments, and indeed recent evidence sug-

gests that IDRs in addition to displaying conserved site-specific

interaction motifs contribute to the formation of mesoscale protein

assemblies via LLPS into protein condensates. These condensates

often exhibit a low degree of internal order and could operate over a

broad range of stoichiometries between the protein molecules that

form the assembly. An important functional distinction can be made

between driver proteins, which spontaneously phase separate, and

client proteins that require additional components—typically driver

proteins—to phase separate (Banani et al, 2017).

While the presence of an IDR in a protein is frequently assumed

to be diagnostic of its ability to phase separate, it is important to

note that although some disordered regions will robustly drive

phase separation, others will not (Martin & Holehouse, 2020).

Likely, instead of disorder per se, multivalency (also referred to as

avidity) may be at the core of IDP function in biology (Fig 3A).

Often, multivalent IDR-containing proteins adopt states character-

ized by autocontacts that are biologically inactive. Upon the arrival

of specific signals or physiological cues these proteins might “open”

up and exploit their multivalent character to promote homo- and/or

heterotypic protein assembly (Fig 3A). In this context, multivalent

IDPs may also serve as co-incidence detectors (Fig 3B) that integrate

distinct signals into coherent biological action (McMahon &

Boucrot, 2011; Musacchio, 2022). Among the numerous examples

of IDPs in vesicular and nonvesicular transport (i.e., membrane

remodeling) are components of vesicle coats (e.g., AP clathrin adap-

tors, SNXs, Sec31/COPII), tethers (e.g., Munc13, Golgins and related

Rab effectors such as EEA1, VAP-A/B), or enzymes (i.e., GEFs,

GAPs for small GTPases, PI phosphatases, and their complexes).

As indicated above, condensate formation has been found to be

regulated by various cellular signals including changes in local con-

centrations, posttranslational modifications, energy-consuming pro-

cesses, and biomolecular interactions, for example, with small

molecules including lipids (Garcia-Cabau & Salvatella, 2021). By

now, LLPS of membrane-associated IDPs has been implicated in the

clustering of synaptic vesicles for temporally controlled fusion and

storage (e.g., Milovanovic et al, 2018; Pechstein et al, 2020; Sansev-

rino et al, 2023), the formation of autophagosomes (Fujioka et al,

2020; Agudo-Canalejo et al, 2021) and endocytic vesicles (Day

et al, 2021), and in nonvesicular lipid transport at MCS between the

ER and the TGN mediated by VAP proteins (Jamecna & Antonny,

2021; Subra et al, 2023).

In the following, we will discuss specific examples that illustrate

how this property of IDPs may facilitate both vesicular and nonvesi-

cular transport.

Membrane-associated IDPs in vesicular transport

A well-studied example of vesicular transport is the formation of

clathrin-coated endocytic vesicles at the PM. Clathrin-mediated

endocytosis (CME) produces spherical vesicles of 80–150 nm in

diameter that are covered by regular hexagonal and pentagonal

arrays of stably folded clathrin triskelia, whose formation is

governed by a complex assembly pathway involving specific coinci-

dent recognition of endocytic proteins and membrane lipids (Di

Paolo & De Camilli, 2006; McMahon & Boucrot, 2011; Kaksonen &

Roux, 2018; Posor et al, 2022). The vast majority of endocytic pro-

teins (e.g., Epsins, CALM/AP180, Eps15, FCHo1/2, Intersectin1/2,

AP2, Stonin2, Amphiphysin1/2) contain IDRs, resulting in a “fuzzy”

endocytic protein interaction network (McMahon & Boucrot, 2011;

Kaksonen & Roux, 2018; Schiano Lomoriello et al, 2022). The IDRs

in endocytic proteins may aid endocytic vesicle assembly through

distinct mechanisms. Short IDRs found, for example, in the N termi-

nus of Epsin, upon binding to charged lipids can undergo folding

into amphipathic helices that promote PM curvature acquisition

(Ford et al, 2002). Additionally, the long IDRs that form the C-

terminal domains of Epsin or AP180 appear to exhibit sterically

repulsive entropic forces that further promote PM bending to aid

endocytic vesicle formation (Busch et al, 2015; Yuan et al, 2023).

Moreover, it has recently been shown that the early-acting endocytic

initiator proteins Eps15 (Ede1 in yeast) and FCHo use weak, multi-

valent interactions involving IDRs to form liquid-like assemblies

that promote the recruitment of downstream interactors and,

thereby, facilitate endocytic vesicle formation (Day et al, 2021). This

mechanism appears to be evolutionary conserved from yeast to man

(Kozak & Kaksonen, 2022). Intersectin, an Eps15-binding early-

acting endocytic protein with a prominent role at synapses and in

cell signaling has been shown to coalesce into LLPS in the presence

of phase-separating driver proteins such as Synapsin (Milovanovic

et al, 2018; Pechstein et al, 2020). It is tempting to speculate that

subsequent steps of endocytic vesicle formation may also involve

LLPS of distinct sets of proteins (e.g., CALM, HIP1R, or Epsins), pos-

sibly resulting in multiphase condensates that couple endocytic pro-

tein nanoscale localization to distinct steps in CME (Witkowska &

Haucke, 2021).

Protein condensate formation via LLPS has also been demon-

strated to play a role in the formation of autophagic vesicles. In

yeast cells starved for nitrogen, autophagy is initiated at distinct

intracellular sites via co-condensation of the kinase autophagy-

related protein 1 (Atg1), the homolog of ULK1/2 in mammals, with

its binding partners Atg13, another IDR protein, and the Atg17-

Atg29-Atg31 complex into a large multimeric protein assembly

(Yamamoto et al, 2016). This assembly interacts with endomem-

branes to facilitate the subsequent steps of autophagic double mem-

brane vesicle formation. In mammalian cells, it has been suggested

that LLPS of p62, a protein that serves as a receptor for degradation-

prone protein aggregates (i.e., aggrephagy), creates a template for a

wetting process that enables the assembly of autophagic vesicles on

the surface of the p62 condensate (Agudo-Canalejo et al, 2021).

Intrinsically disordered proteins have also been implicated in ER-

phagy, the specific autophagy of ER membranes. Here, the long

extended IDR of the ER-phagy receptor TEX264 has been shown to

bridge between the ER (i.e., the autophagic cargo) and the autopha-

gosomal vesicle membrane (Chino et al, 2019).

These examples illustrate how IDRs can support and control

vesicular transport in multiple ways by regulating the assembly and

physicochemical properties of multivalent protein complexes

involved in vesicle formation. We predict that the IDRs found in

many other vesicular transport proteins play similarly important

roles in the control of vesicle formation, docking, and fusion.
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Membrane-associated IDPs in nonvesicular lipid transport
and MCS assembly

Nonvesicular lipid transport at MCS is mediated by lipid transfer

proteins (LTPs), which frequently contain both structured

domains and IDRs (Jamecna & Antonny, 2021). Recent data sug-

gest that IDRs affect nonvesicular lipid transport by (i) acting as

flexible tethers between membranes, (ii) by serving as entropic

barriers that regulate protein density and the spatial arrangement

of the tether, and (iii) by controlling the catalytic lipid-transfer

domains of LTPs (Jamecna et al, 2019; Jamecna & Antonny,

2021). Well-studied examples of LTPs are the various members of

the oxysterol-binding protein-related proteins (ORPs; Chung

et al, 2015; Stefan et al, 2017; Wu et al, 2018; Peretti et al, 2019;

Subra et al, 2023). Oxysterol-binding protein-related proteins typi-

cally harbor an N-terminal IDR of about 50–140 amino acids

upstream of their PH domain. In case of ORP5 and ORP8, that is,

ORPs that localize to ER-PM MCS, it was demonstrated that the

N-terminal IDRs contribute to PM targeting by electrostatic inter-

actions, thereby synergizing with the PI-binding PH domain

(Chung et al, 2015). Biochemical and cellular experiments have

suggested that the N-terminal IDR of OSBP, the founding member

of the ORP family, can act as an entropic shield that serves a

dual function: It prevents the homotypic symmetrical apposition

of two Golgi membranes via the PI(4)P-binding PH domain of

OSBP dimers and counteracts protein crowding to facilitate the

dynamic tethering of TGN membranes to the ER (Jamecna

et al, 2019). Recent data have uncovered yet another function of

IDRs in nonvesicular lipid transport at MCS by controlling the

partitioning of multifunctional tethers between distinct MCS. Spe-

cifically, it was demonstrated that the IDR of ER-localized VAP

proteins is required for its association with OSBP and CERT to

enable lipid exchange at ER-Golgi MCS, but dispensable for VAP-

mediated MCS with PTPIP51 and Vps13A at mitochondria (Subra

et al, 2023; Fig 4). Hence, in case of VAP, the IDR serves to

adjust the geometry to the organization and dynamics of the

respective MCS. One might hypothesize that modulation of such

IDR-mediated mechanisms (e.g., via posttranslational modifica-

tions) enables cells to channel nonvesicular lipid transport

according to physiological needs.

Many other LTPs such as the mammalian lipid transporter

TMEM24 (also called C2CD2L; Lees et al, 2017) and the yeast

ER membrane protein Ist2, proteins enriched at MCS between

the ER and the PM, have been shown to contain IDRs of differ-

ent length (Wong et al, 2021) and may thereby contribute to the

regulation of the distance between the two apposed membranes.

Another function of IDRs within proteins involved in nonvesi-

cular lipid transport is exemplified by the autophagy protein

ATG2. Here, an amphipathic helix in the C-terminal region of

ATG2 binds to membranes and facilitates ATG18 binding to PI

(3)P to target the ATG2-ATG18 complex to the preautophago-

somal structure to enable autophagic vesicle formation (Kotani

et al, 2018). Whether IDR-containing proteins at MCS, possibly

depending on cell state and conditions, can undergo phase sepa-

ration and whether and how this may contribute to the regula-

tion of MCS dynamics and the nonvesicular transport of lipids

and other molecules is an exciting open question (Jamecna &

Antonny, 2021).

Membrane-associated IDPs in presynaptic
neurotransmission

Presynaptic neurotransmitter release is dominated by the synaptic

vesicle (SV) cycle and entails the biogenesis, fusion, recycling, refor-

mation, or turnover of SVs (Haucke et al, 2011)—processes that

involve bulk movement of membrane lipids and proteins (Binotti

et al, 2016; Fig 5). Synaptic vesicle undergo regulated membrane

fusion and endocytosis at high speed (e.g., at sub-millisecond time-

scale for excocytosis), way faster than at most other cellular locales

(Sudhof & Rothman, 2009; Haucke et al, 2011; Jahn &

Fasshauer, 2012). At the same time, robust performance is key to

maintain the functionality of the synapse for circuit and ultimately

brain function. Moreover, the system is highly plastic across time-

scales ranging from milliseconds (short-term) to hours (long-term)

and more, as neurotransmission is adapted to internal or external

cues (e.g., learning). Indeed, fast, use-dependent remodeling of the

presynaptic protein architecture (“presynaptic plasticity”) is consid-

ered to be of major importance for nervous system function, for

example, for acute information filtering and sensation, long-term

memory, or sleep homeostasis (Monday et al, 2018; Huang &

Sigrist, 2021; Shahoha et al, 2022). In order to be able to quickly

boost SV release, a large proportion of SVs typically is sequestered

within the so-called reserve pool. Reserve pool SVs can be trans-

ferred and finally docked at the neuronal AZ plasma membrane by

forming a metastable MCS (i.e., docked SVs) that enables millisec-

ond fusion in response to an incoming action potential. Physical

docking is intimately intertwined with biochemical “priming” of SVs

that serves as an essential precondition for subsequent membrane

fusion via tightly assembled SNARE complexes. Ultimately, SV

fusion is triggered by the action potential evoked nanodomain Ca2+

entry via voltage-gated Ca2+ channels (Sudhof & Rothman, 2009;

Jahn & Fasshauer, 2012). Voltage-gated Ca2+ channels are posi-

tioned with high nanoscale precision relative to docked SVs that

harbor the exocytic Ca2+-sensing transmembrane protein Synapto-

tagmin. Following fusion, exocytosed SV proteins and lipids are

internalized by kinetically distinct forms of endocytosis, typically

involving dynamin-mediated membrane fission (Kononenko &

Haucke, 2015; Chanaday et al, 2019). The key functions of this com-

pensatory endocytosis are to restore PM area and tension and to

recycle SV proteins and lipids for SV reformation via clathrin-

mediated vesicle budding to refill the SV pool. Many, if not all, of

these steps (Fig 5) are regulated by actin dynamics (Wu &

Chan, 2022) and by IDPs, possibly involving LLPS (Wu et al, 2020;

Hayashi et al, 2021; Lautenschlager, 2022). Bioinformatic analysis

of the presynaptic protein repertoire, for example proteins that con-

trol the SV cycle, has revealed a particularly high abundance of IDPs

(Lautenschlager, 2022). These include many scaffold proteins of the

AZ scaffold (discussed in detail below), factors involved in SV

docking or priming (i.e., Munc13-family) as well as endocytic pro-

teins (e.g., FCHo1/2, Intersectin1/2, Amphiphysin/BIN1, AP180,

CALM, AP2, and Stonin2) including Eps15/Eps15R (Day et al, 2021)

and Dynamin 1 (Imoto et al, 2022). The overrepresentation of IDPs

at the presynapse may relate to two of the mentioned key features

of neurotransmission (Fig 5): The extremely high speed of SV exo-

and endocytosis and the remarkable spatiotemporal precision with

which SV docking, fusion and endocytic recycling occur. Plastic

assembly and dynamics of physically extended IDP-based protein
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networks may be required to orchestrate the required crosstalk

between the distinct functional subsystems of the presynapse, for

example, the machineries for SV docking at the AZ (Acuna

et al, 2016; Wu et al, 2019, 2021), clustering of SVs within the

reserve pool (Milovanovic et al, 2018; Pechstein et al, 2020), and

endocytic membrane retrieval at sites that surround the AZ mem-

brane (Day et al, 2021; Witkowska & Haucke, 2021).

The active zone and the docked pool of SVs
The so-called AZ for SV fusion harbors an evolutionary conserved

set of physically extended IDPs that comprise the multidomain RIM

proteins (RIM1/2), RIM-binding proteins (RIM-BP1/2), ELKS/CAST

(orthologs of BRP in D. melanogaster), Liprin-a, and Syd-1. A major

function of AZ proteins is to direct SVs to defined “release sites,”

which in turn are spatially and, likely, biochemically coupled to pre-

synaptic voltage-gated Ca2+ channels (Sakamoto et al, 2018; Fig 5).

Recent biochemical data suggest that presynaptic scaffold proteins

via their extended IDRs might form ordered assemblies and display

the propensity to undergo LLPS. RIM and RIM-BP, when mixed in

vitro, can autonomously form condensed assemblies via LLPS. Such

RIM/RIM-BP condensates have been demonstrated to enable the

clustering of the cytosolic tails of voltage-gated Ca2+-channels teth-

ered to lipid membranes (Wu et al, 2021). RIM/RIM-BP condensates

might thus serve as “molecular rulers” that determine the position-

ing of SV docking and biochemical priming with respect to voltage-

gated Ca2+ channels within the AZ membrane nanodomains

Figure 4. Model showing how the IDR enables VAP-A to engage in distinct contacts between the ER and the TGN (left) or mitochondria (right).

Short-lived MCS with the TGN require VAP-A to explore a large conformational space via its flexible linkers. Stable MCS between the ER and mitochondria allow VAP-A
to be in a more rigid, compact conformation. See review text for more information. Created with BioRender.com.
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organizing neurotransmitter release. In support of this, phase-

separated RIM/RIM-BP assemblies have recently been shown (Wu

et al, 2021) to be able to capture negatively charged liposomes or

native SVs purified from brain on the surface of giant unilamellar

vesicle (GUV) membranes harboring the clustered cytoplasmic IDRs

of voltage-gated Ca2+-channels. This LLPS-based mechanism for

organizing the highly specialized MCS between release-ready SVs

and Ca2+-channels within the AZ membrane appears to be evolu-

tionary conserved. In D. melanogaster RIM-BP cooperates with the

large AZ scaffold protein BRP, the ortholog of ELKS/CAST proteins

in mammals and Caenorhabditis elegans, to cluster voltage-gated

Ca2+-channels (Petzoldt et al, 2020) and couple them to release-

ready SVs associated with BRP at the so-called electron-dense body

AZ scaffold (Hallermann et al, 2010). Loss of BRP results in fast use-

dependent synaptic depression caused by defective recruitment of

primed SVs to Ca2+-channels at the AZ release site, a phenotype sim-

ilar to that observed at rodent hair cell synapses devoid of RIM-BP2

(Krinner et al, 2017). Conversely, sustained presynaptic potentiation

is driven by increased recruitment of voltage-gated Ca2+ channels to

the AZ and a concomitant compaction of BRP nanoclusters and the

associated channels, possibly reflecting phase transitions of the AZ

scaffold (Ghelani et al, 2023).

Studies in C. elegans have shown that the ability of AZ scaffolds

to undergo LLPS via multivalent interactions between Liprin-a and

the N-terminal domain of ELKS/CAST (i.e., the ortholog of BRP)

underlies also presynapse assembly during development. Liprin-a
and ELKS/CAST initially form highly dynamic liquid condensates

(Fig 5) during early developmental stages, which then mature into

more rigid condensates characteristic of the mature AZ (McDonald

et al, 2021).

The SV reserve pool
The docked SV pool is physically, functionally, and molecularly dis-

tinct from the SV reserve pool (Fig 5). Phase-separating AZ IDPs

(for example, ELKS/CAST/BRP, Munc13, RIM-BPs) are likely largely

absent from the SV reserve pool and disruption of AZ scaffolds

Figure 5. IDPs orchestrating presynaptic neurotransmission and vesicle cycling.
SVs are organized into a docked SV pool close to the active zone (AZ) and a reserve pool that is controlled by Synapsin and a-Synuclein. AZ proteins such as RIM1/2,
RIM-binding proteins, ELKS/CAST, Liprin-a, Syd-1, and the C terminus of voltage-gated Ca2+ channels may form a protein condensate that facilitates fast neurotransmis-
sion. Endocytosis of SV membranes and SV reformation via membrane fission and budding processes is mediated by IDR-containing endocytic proteins such as Eps15/
Eps15R, FCHo1/2, Intersectin 1/2, Amphiphysin/BIN1, AP180, CALM, AP2, Stonin2, and Dynamin 1 that may form endocytic protein condensates. Created with BioRender.
com.
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selectively impairs the docked pool of SVs (Acuna et al, 2016; Wang

et al, 2016). Instead, as mentioned above, reserve pool SVs are

marked by Synapsin, an abundant IDP that reversibly binds to

highly curved membranes such as SVs (Krabben et al, 2011) and

can undergo LLPS and thereby form vesicle assemblies akin to those

observed at synapses in situ (Milovanovic et al, 2018). Consistently,

perturbation or loss of Synapsin selectively impacts the SV reserve

pool, whereas the docked SV pool at the AZ remains unchanged

(Pieribone et al, 1995; Rosahl et al, 1995). Interestingly, the Parkin-

son’s disease-associated IDP a-Synuclein can mix with Synapsin

phases, and the presence of SVs enhances the rate of Synapsin con-

densation, suggesting that SVs act as catalysts for the formation of

Synapsin/a-Synuclein co-condensates (Hoffmann et al, 2021).

Liquid–liquid phase separation thus likely underlies the ability of

Synapsin to cluster SVs within the reserve pool at native synapses

in brain.

These data favor a model according to which the distinct pools of

SVs comprise distinct condensates of the same organelles (i.e., SVs)

and thereby contribute to the spatial organization of the presynapse

on the nanoscale.

Regulation of the SV cycle and synapse function
The emerging role of IDPs and their ability to undergo LLPS in

presynapse formation and function poses the important question by

which principles IDPs drive assembly and how their association

with membranes is regulated. Synapsin, the IDP that marks and

drives SV reserve pool organization (Rosahl et al, 1995; Milovanovic

et al, 2018; Pechstein et al, 2020), has long been known to undergo

activity-dependent phosphoregulation. Phosphorylation of Synapsin

by presynaptic kinases such as Cdk5 facilitates its dissociation from

SV membranes, thereby enabling the migration of SVs to the docked

vesicle pool at the AZ (Verstegen et al, 2014). Similarly, ELKS/

CAST/BRP and Liprin-a3 have been shown to be the substrates of

kinases (i.e., SRPK79D for BRP and PKC for Liprin-a3) that can

reversibly regulate their assembly and, thereby, control AZ scaffold

protein transport, assembly, and ultimately neurotransmission

(Driller et al, 2019; Emperador-Melero et al, 2021).

Aside from kinases and phosphatases Rab GTPases have been

shown to play major roles in presynapse assembly and function.

Rab3, Rab27, and Rab35 have been suggested to regulate distinct

steps of SV cycling and/or the endosomal sorting of SV proteins via

vesicular transport (Schluter et al, 2006; Binotti et al, 2016). Many of

their GEFs, GAPs and effectors such as RIM and Rabphilin, are IDPs

(Wu et al, 2020; Hayashi et al, 2021; Lautenschlager, 2022), opening

the possibility that Rabs indeed might acts as molecular switches that

reversibly direct LLPS to plastically change synapse function.

Recent work (Imoto et al, 2022) has shown that a phase-

separating splice variant of the membrane-fissioning GTPase

Dynamin 1 (called Dynamin 1xA) is pre-recruited to endocytic sites

via the FBAR-SH3 domain protein Syndapin. This mechanism has

been postulated to enable ultrafast endocytosis in response to single

action potentials in hippocampal neurons. It is conceivable, if not

likely, that endocytic protein condensate formation (Day et al, 2021;

Witkowska & Haucke, 2021) also is of importance during SV refor-

mation via clathrin/AP2-mediated budding from endosome-like vac-

uoles within presynaptic nerve terminals (Fig 5).

Similar principles may apply to membrane dynamics at the post-

synaptic compartment, where IDPs that comprise the postsynaptic

density (Zeng et al, 2016) and AMPA-type glutamate receptors

(Zeng et al, 2019) have been shown or suggested to undergo LLPS.

IDP dysfunction in genetic disorders of vesicular and
nonvesicular membrane dynamics

Over the last decades, mutations in more than 300 genes implicated in

vesicular and nonvesicular membrane dynamics have been identified

to underlie human diseases, many of them encoding IDPs. These

monogenic diseases essentially can affect any type of tissue or organ

(e.g., neurological disease, metabolic disorders, liver, muscular, and

renal disorders, diabetes, cancer) and most frequently arise from loss-

of-function mutations, although toxic gain-of-function mutants have

been reported as well. Monogenic diseases of IDPs involved in mem-

brane dynamics may be developmental in nature or only manifest dur-

ing adulthood or in aging, often with prominent phenotypes in the

brain. We focus here on alluding to general principles and some spe-

cific examples of genetic disorders of membrane dynamics caused by

mutations in IDPs (Table 1). For a systematic overview, the reader is

referred to excellent recent reviews (Sanger et al, 2019; Yarwood

et al, 2020; Garcia-Cazorla et al, 2022). In many cases, the identified

mutations alter the expression level, stability, or the assembly proper-

ties of the encoded IDP (see the example of Tau) or, in case of

enzymes such as MTM1 or MTMR2, their enzymatic activity, rather

than affecting the IDR itself. Hence, the fact that many of the disease

genes implicated in vesicular and nonvesicular membrane dynamics

encode IDPs may reflect the importance of IDPs within disease-

relevant pathways rather than a specific function of the IDRs them-

selves. In fact, mutations within IDRs often may be tolerated compara-

bly well as they lie within poorly structured regions of the protein.

Genetic disorders of IDPs involved in vesicular transport
Mutations in the endosomal clathrin adaptor complex AP5, a protein

comprising a central a-solenoid with two long flexible IDRs harbor-

ing protein–protein interacting appendage domains, and the associ-

ated large IDPs SPG11/Spatacsin (Stevanin et al, 2007) and

ZFYVE26/Spastizin (Vantaggiato et al, 2019) cause autosomal-

recessive spastic paraplegia/paraparesis (HSP), a movement disor-

der that manifests in progressive loss of lower limb movement control

(Table 1). Mutations in SPG11/Spatacsin are also implicated in amyo-

trophic lateral sclerosis (ALS; type 5; Orlacchio et al, 2010), another

type of movement disorder caused by motoneuron degeneration. AP5,

SPG11/Spatacsin and ZFYVE26/Spastizin have been linked to autop-

hagy and vesicular membrane dynamics within the endolysosomal

system (Toupenet Marchesi et al, 2021). A different form of hereditary

spastic paraplegia is associated with loss-of-function mutations in the

closely related clathrin adaptor complex AP4 (Sanger et al, 2019) that

indirectly affects autophagy by regulating vesicular traffic of the trans-

membrane protein ATG9. Mutations in the IDR-containing b and d
subunits of the endosomal AP3 complex have been linked to hypopig-

mentation in Hermansky–Pudlak syndrome (Dell’Angelica, 2009;

Huizing et al, 2020). Mutations in the μ subunit of the endocytic AP2

complex have been found to underlie developmental epileptic ence-

phaly in children (Helbig et al, 2019). Some neurodevelopmental dis-

orders with microcephaly have been found to be caused by mutations

in genes encoding the clathrin adaptor complex AP1 (Usmani

et al, 2021), a critical mediator of clathrin-coated vesicle formation at
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Table 1. Examples of genetic disorders involving IDR-containing proteins implicated in vesicular transport.

Gene Protein function
Transport
process

Known
synaptic
function Disease Ref.

SPG11
(Spatacsin)

IDP associated with AP5
complex

Autophagy/
lysosome function

No Ataxia: Autosomal recessive hereditary spastic
paraplegia/paraparesis (HSP) & Amyotrophic lateral
sclerosis (ALS)

Orlacchio
et al (2010), Stevanin
et al (2007),
Vantaggiato
et al (2019)

ZFYVE26
(Spastizin)

IDP associated with AP5
complex

Autophagy/
lysosome function

No Ataxia: Autosomal recessive hereditary spastic
paraplegia/paraparesis (HSP)

Vantaggiato
et al (2019)

AP4B1
AP4E1
AP4M1
AP4S1

Subunits of AP4
complex

TGN/endosomal
sorting of
autophagy protein
ATG9

Yes Ataxia: Hereditary spastic paraplegia/paraparesis
(HSP)

Sanger et al (2019)

TANGO2 Scaffold protein at the
ER with possible
additional role at
mitochondria

ER-to-Golgi-
transport; possibly
also mitochondrial
function

No Ataxia: Hereditary spastic paraplegia/paraparesis
(HSP) (SPG6) with encephalopathy and seizures;
rhabdomyolysis, lactic acidosis, hypoglycemia;
cardiac arrhythmias

Berat et al (2021)

AP1G1
AP1S1
AP1S2

Subunits of AP1
complex

TGN/endosomal
sorting

Yes Microcephaly (all); Intellectual disability & Epilepsy
(AP1G1) MEDNIK syndrome (AP1S1) Pettigrew
Syndrome (AP1S2)

Usmani et al (2021)

TBC1D20 Rab1-GAP Golgi traffic &
integrity

No Microcephaly: Warburg Microsyndrome cataracts;
male Infertility

Liegel et al (2013)

AP3B1
AP3D1

Subunits of AP3
complex

Endosomal sorting Yes Early infantile epileptic encephalopathy;
Hermansky-Pudlak Syndrome 2 (albinism,
immunodeficiency)

Dell’Angelica (2009),
Huizing et al (2020)

AP2M1 Subunit of AP2 complex Endocytosis Yes Developmental and epileptic encephalopathy Helbig et al (2019)

ARH Endocytic clathrin
adaptor for LDL
receptor

Endocytosis No Autosomal recessive hypercholesterolemia Garcia et al (2001)

SYNJ1 Phosphatidylinositol 40-
and 50-phosphatase

Endocytosis;
synaptic vesicle
cycling; autophagy

Yes Parkinson’s disease; Alzheimer’s disease Krebs et al (2013),
Quadri et al (2013)

SAC2/
INPP5F

Phosphatidylinositol 40-
phosphatase

Endocytic vesicle
dynamics

Yes Parkinson’s disease Cao et al (2020)

BIN1 Endocytic adaptor
amphiphysin 2

Endocytosis;
synaptic vesicle
cycling

Yes Alzheimer’s disease Lee et al (2002),
Nicot et al (2007)

PICALM Endocytic clathrin
adaptor CALM

Endocytosis of
postsynaptic AMPA
receptors

Yes Alzheimer’s disease Harold et al (2009),
Jun et al (2010)

MTM1 Phosphatidylinositol 30-
phosphatase

Membrane
dynamics at
endosomes;
autophagy

No Centronuclear myopathy Amoasii et al (2012),
Laporte et al (2000)

MTMR14 Phosphatidylinositol 30-
phosphatase MTMR14

Membrane
dynamics at
endosomes;
autophagy

No Centronuclear myopathy Amoasii et al (2012)

MTMR2 30-phosphatase MTMR2 Membrane
dynamics at
endolysosomes

No Charcot–Marie-Tooth Type 4B1 Amoasii et al (2012)

MTMR5
(SBF1)

Noncatalytic subunit of
30-phosphatase MTMR2

Membrane
dynamics at
endolysosomes

No Charcot–Marie-Tooth Type 4B3 Azzedine et al (2003)

MTMR13
(SBF2)

Noncatalytic subunit of
30-phosphatase MTMR2

Membrane
dynamics at
endolysosomes

No Charcot–Marie-Tooth Type 4B2 Azzedine et al (2003)
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the trans-Golgi network (TGN)/endosome interface, the COPII vesicle

coat protein Sec23, or the COPII-associated IDP TANGO2 (Bethune &

Wieland, 2018). TANGO2 variants result in a complex disease pheno-

type consisting of encephalopathy, seizures, rhabdomyolysis, lactic

acidosis, hypoglycemia, and cardiac arrhythmias (Berat et al, 2021). A

further prominent example is the ARH gene, which encodes an endo-

cytic PI lipid-binding IDP dedicated to the endocytic sorting of low-

density lipoprotein receptor. Mutation of ARH causes an autosomal

recessive form of hypercholesterolemia (Garcia et al, 2001).

In addition to these bona fide components of the machinery for

vesicle formation (Table 1), mutations in the genes encoding PI phos-

phatases, for example enzymes that control organelle identity and

membrane flux between compartments, have been found to cause

human diseases. Most notable examples are the members of the

myotubularin family of PI 3-phosphatases, which comprise IDRs of

variable lengths and regulate vesicular and nonvesicular membrane

dynamics in the endolysosomal system and in autophagy (Table 1).

Mutations in MTM1 (Laporte et al, 2000) and MTMR14 lead to inher-

ited forms of centronuclear myopathy (Amoasii et al, 2012), while

mutations in MTMR5, MTMR13 (Azzedine et al, 2003), and MTMR2

are associated with a specific subtype of Charcot Marie Tooth disease

(i.e., CMT4B), a demyelinating sensory neuropathy. A closely related

centronuclear myopathy similar to loss-of-function of MTM1 is due to

dominant autosomal mutations in the endocytic IDP amphiphysin2/

BIN1 (Lee et al, 2002; Nicot et al, 2007), possibly reflecting opposing

roles of both proteins in the vesicular uptake and delivery of integrin

molecules to the muscle surface. Finally, oculocerebrospinal syndrome

of Lowe is a rare X-linked disease characterized by congenital cata-

racts, glaucoma, intellectual disability, growth retardation, and renal

tubule dysfunction caused by loss-of-function of the PI 5-phosphatase

OCRL (Hoopes Jr et al, 2005).

Genetic disorders of IDPs involved in nonvesicular transport
at MCS
One of the most crucial components of ER-based MCS and, thereby, a

critical regulator of nonvesicular lipid transport, are the ER membrane

VAP-A and VAP-B proteins (Di Mattia et al, 2020). Mutations in VAP-

B (Mao et al, 2019; Borgese et al, 2021) have been linked to both ALS

(see above) and spinal muscular atrophy, a rare neuromuscular disor-

der characterized by loss of spinal cord motoneurons (Table 2). These

data suggest a close functional relationship between VAP-B-mediated

nonvesicular lipid transport at ER-based MCS and vesicular transport

Table 1 (continued)

Gene Protein function
Transport
process

Known
synaptic
function Disease Ref.

OCRL Phosphatidylinositol 50-
phosphatase

Membrane
dynamics at
endosomes

No Oculocerebrorenal syndrome of Lowe; Dent’s
disease

Hoopes Jr et al (2005)

Table 2. Examples of genetic disorders involving IDR-containing proteins implicated in nonvesicular transport and MCS.

Gene Protein function Transport process

Known
synaptic
function Disease Ref.

VAP-B ER membrane protein forming
MCS

Transport of diverse lipids across ER-
based MCS

No Amyotrophic lateral sclerosis
Spinal muscular atrophy

Borgese
et al (2021), Mao
et al (2019)

VSP13A Lipid transport at ER-based
MCS

Transport of lipids at MCS between ER
and mitochondria or lipid droplets

No Chorea acanthocytosis Rampoldi
et al (2001)

VPS13B Golgi scaffold, relationship to
MCS is unclear

Unclear No Cohen syndrome
(developmental disorder with
microcephalie)

Kolehmainen
et al (2003)

VPS13C Lipid transport at ER-based
MCS

Transport of lipids at MCS between ER
and late endosomes/lysosomes or lipid
droplets

No Parkinson’s disease Lesage
et al (2016)

VPS13D Lipid transport at ER-based
MCS

Transport of lipids at MCS between ER
and mitochondria or peroxisomes

No Spinocerebellar ataxia with
spasticity and mitochondrial
defects

Dziurdzik
et al (2020)

SNCA a-Synuclein binds lipids a-Synuclein is implicated in SV reserve
pool organization & possibly
mitochondrial function via MCS

Yes Parkinson’s disease and related
neurodegenerative disorders
with Lewy bodies

Hoffmann
et al (2021),
Mukherjee
et al (2023)

MAPT Tau binds and stabilizes
neuronal microtubules to
facilitate axonal transport

Pathogenic Tau can bind SV membranes
and thereby impair vesicle mobility and
neurotransmission

Yes Alzheimers’s disease and other
neurodegenerative disorders

Wegmann
et al (2018),
Zhou
et al (2017)

UNC13A Munc13-1/UNC13A scaffold
protein

Docks release-ready SVs to the
presynaptic active zone to enable fusion

Yes Autism-spectrum disorder
(ASD)

Lipstein
et al (2017)
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via AP5, SPG11/Spatacsin and ZFYVE26/Spastizin. The importance of

nonvesicular transport at MCS is further underscored by the fact that

mutations in the four human family members of the large yeast

chorein-domain lipid transport protein Vps13 (Leonzino et al, 2021;

Melia & Reinisch, 2022) are all linked to disease. Vps13A-D are struc-

turally related proteins that act as lipid bridges between VAP proteins

in the ER and various other organelles such as mitochondria (Vps13A;

Subra et al, 2023), late endosomes/lysosomes (Vps13C; Kumar

et al, 2018), and lipid droplets (Vps13A, Vps13C; Ramseyer et al,

2018; Chen et al, 2022), while Vps13B predominantly functions at the

Golgi complex (Kolehmainen et al, 2003; Seifert et al, 2011). VPS13A

loss-of-function pathogenic variants are characterized by a spectrum

of movement disorders (chorea acanthocytosis, dystonia, tics, and

sometimes parkinsonism; Rampoldi et al, 2001), Vps13B (also called

COH1) mutations cause microcephaly (i.e., Cohen syndrome; Koleh-

mainen et al, 2003), and Vps13C is strongly implicated in Parkinson’s

disease (Lesage et al, 2016; Table 2). It is noteworthy that mutations

in the IDR-containing lipid phosphatases such as the PI 4�/5-

phosphatase Synaptojanin 1 (Krebs et al, 2013; Quadri et al, 2013)

and the PI 4-phosphatase Sac2/INPP5F (Cao et al, 2020) are also caus-

ally linked to Parkinsonism, implicating dysfunctional lipid metabo-

lism in the disease.

Genetic disorders of IDPs involved in membrane dynamics
at synapses
Given the important roles of vesicular and nonvesicular membrane

dynamics for neuronal function and the abundance of IDPs at synap-

ses (Fig 5), it is not surprising that defects in IDP-encoding genes with

a role in vesicular and nonvesicular transport are implicated in neuro-

degeneration and neurological disease. Disease phenotypes in the

brain may be further exacerbated by the fact that neurons are nondi-

viding long-lived cells and, thus, are particularly, vulnerable to defects

in membrane homeostasis. A well-known example of IDP-driven syn-

aptic dysfunction is the aggregation of a-synuclein into the so-called

Lewy bodies in Parkinson’s disease and Lewy body dementia

(Table 2). a-Synuclein is an IDP enriched within the presynaptic com-

partment that together with the SV-associated IDP synapsin (Hoff-

mann et al, 2021; Mukherjee et al, 2023) regulates the partitioning of

SVs between the phase-separated vesicle reserve pool and the releas-

able pool of SVs (Milovanovic et al, 2018; Sansevrino et al, 2023).

Synapsin dysfunction is also implicated in epilepsy (Garcia

et al, 2004), a neuronal network disorder resulting from excitatory/

inhibitory imbalance. A further example of a well-known IDP is Tau, a

microtubule-binding protein implicated in more than 20 neurodegener-

ative diseases, including Alzheimer’s disease by aggregating into

phase-separated b-sheet amyloid-like fibrils (Wegmann et al, 2018)

that can spread in human brains. Elegant work in flies and rat neurons

has shown that pathogenic Tau binds to synaptic vesicles via its N-

terminal domain and interferes with presynaptic functions, including

synaptic vesicle mobility and release rate, resulting in impaired pre-

synaptic neurotransmission (Zhou et al, 2017). This mechanism likely

contributes to Tau pathology (Robbins et al, 2021). The endocytic pro-

tein PICALM, a clathrin-associated IDP that controls the selective

endocytosis of calcium-permeable AMPA-type glutamate receptors at

postsynaptic sites, is implicated genetically in Alzheimer’s disease

(Harold et al, 2009; Jun et al, 2010; Table 1) and mutations in AP2, a

clathrin adaptor involved in SV reformation and vesicular neurotrans-

mitter endocytosis (L�opez-Hern�andez et al, 2022), are linked to

epilepsy (Helbig et al, 2019). Strong genetic and functional links impli-

cate the endocytic PI 4- and 5-phosphatase synaptojanin (Miranda

et al, 2018), an important regulator of vesicle uncoating at synapses,

and the endosomal Retromer complex (Small et al, 2005) in Alzhei-

mer’s disease. Synaptojanin is a binding partner of the endocytic IDP

Amphiphysin/BIN1, which has also been linked to Alzheimer’s dis-

ease, and of Endophilin, a substrate of the LRRK2 protein kinase

(McMahon & Boucrot, 2011). LRKK2 is a major risk gene for Parkin-

son’s disease (Deng et al, 2007; Floris et al, 2009). Mutations in the

presynaptic IDP Unc13A (also called Munc13-1), a key factor for regu-

lated SV exocytosis, are causative of a variety of neurological diseases

including autism-spectrum and dyskinetic movement disorders

(Lipstein et al, 2017). Finally, multiple lines of evidence link genes

involved in autophagic vesicle formation to brain aging and neurode-

generation (Soreng et al, 2018; Bademosi et al, 2023).

These examples illustrate a critical role of IDPs involved in mem-

brane dynamics at synapses for the function of the nervous system.

Conclusions and perspectives

Given the complexity of membrane organization and dynamics,

as well as the interplay between membrane-bound compartments

and IDPs recruited from or formed within the cytoplasm of

eukaryotic cells and tissues, major knowledge gaps persist, in par-

ticular with respect to the nature of IDP-organized assemblies in

vivo. As conventional microscopy lacks the spatial and/or tempo-

ral resolution to capture the dynamics of IDP-based protein

assemblies, the size, composition, and dynamics of protein assem-

blies in vivo often remain unknown. Thus, in spite of the pro-

gress, major questions related to the function of IDR proteins in

membrane dynamics remain unsolved (see Box 1: In need of

answers).

Box 1. In need of answers

i What is the role and importance of specific molecular interac-
tions (ordered assembly) vs. low-affinity weakly adhesive
condensate-type interactions between IDR-containing proteins
(Musacchio, 2022) for vesicular and nonvesicular transport pro-
cesses and subcellular membrane dynamics?

ii Do IDPs and their condensates conceivably act as seeds in the
assembly of large protein complexes such as vesicle coats or
active zone scaffolds? If yes, how exactly do they operate?

iii Do membranes modulate the biogenesis and dynamics of phase-
separated IDP condensates by serving as assembly platforms
and/or by forming direct contacts?

iv Do condensates represent a “storage form” of IDR-containing
membrane-associated proteins that buffers their cytoplasmic
pool by forming a specific chemical environment allowing pro-
teins to maintain solubility akin to the postulated function of
RNA granules?

v How are IDR-promoted protein assemblies regulated by internal
and external cues?

vi How exactly do specific posttranslational modifications (i.e., IDR
protein phosphorylation and acetylation) control IDP assemblies?
How does their reversible association with ligands such as cal-
cium or membrane phospholipids (e.g., PIs) control IDP assembly
state?
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So far, IDPs have been investigated with a broad range of

methods, especially nuclear magnetic resonance (NMR) spectros-

copy, small-angle X-ray scattering, electron paramagnetic resonance

(EPR) spectroscopy, and single-molecule fluorescence spectroscopy,

often using integrative approaches in combination with molecular

simulations or machine-learning-based approaches (see Chowdhury

et al, 2023 and references within). An important next step will be to

relate the properties of IDPs determined in vitro to their cellular

functions. Ultimately, we seek to understand IDP interactions quan-

titatively within their native environment, for example, in cells and

tissues (Plitzko et al, 2017). An important advantage of single-

molecule spectroscopy in this context is the ability to observe specif-

ically labeled biomolecules even in complex environments (Follain

et al, 2017). With the development of fast cameras and powerful

localization algorithms for rapid and accurate localization of thou-

sands of molecules, the nanometer localization and motion of hun-

dreds and thousands of particles can be observed in live cells, even

in the low-millisecond regime, thereby enabling the visualization of

IDP assemblies at nanoscale membrane sites and compartments.

Apart from having command over microscopic techniques

allowing for following individual proteins (and lipids), and ensem-

bles thereof, in complex, crowded environments, introducing appro-

priate labels into living cells or even the whole organism is greatly

facilitated by the advent of highly efficient CRISPR/Cas9-based gene

editing. Particularly suitable preparations for in vivo single molecule

imaging, as, for example, the Drosophila neuromuscular synapse,

have recently allowed for an in vivo analysis of “plastic” state transi-

tions of the IDP-orchestrated active zone scaffold controlling the

motility and density of voltage-gated Ca2+ channels (Ghelani

et al, 2023). We predict that similar approaches will be useful for

other experimental models of vesicular and nonvesicular transport.
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