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Zusammenfassung 

Moderne datengetriebene medizinische Forschungsansätze („Künstliche Intelligenz“, 

„Data Science“) benötigen große Datenmengen („Big Data“). Dies kann im Regelfall nur 

durch eine institutionsübergreifende Datennutzung erreicht werden („Data Sharing“). 

Datenschutz und der Schutz der Privatsphäre der Betroffenen ist dabei eine zentrale 

Herausforderung. Um dieser zu begegnen, können verschiedene Methoden, wie etwa 

Anonymisierungsverfahren oder föderierte Auswertungen, eingesetzt werden. Allerdings 

findet Data Sharing in der Praxis nur selten statt, obwohl es von vielen Seiten gefordert 

und gefördert wird. Ein Grund hierfür ist die Unklarheit über Vor- und Nachteile 

verschiedener Data Sharing-Ansätze. Erstes Ziel dieser Arbeit war es, ein Instrument zu 

entwickeln, welches diese Vor- und Nachteile transparent macht. Das Instrument 

bewertet Ansätze anhand von zwei Dimensionen - Nutzen und Schutz - wobei jede 

Dimension mit drei Achsen weiter differenziert ist. Die Achsen bestehen etwa aus dem 

Grad des Schutzes der Privatsphäre, der durch die Ergebnisse der durchgeführten 

Analysen gewährleistet wird oder der Flexibilität einer Plattform hinsichtlich der Arten von 

Analysen, die durchgeführt werden können. Das Instrument wurde zu 

Evaluationszwecken für die Analyse des Status Quo sowie zur Identifikation von Lücken 

und Potenzialen für innovative Verfahren eingesetzt. Als zweites Ziel wurde anschließend 

ein innovatives Werkzeug für den praktischen Einsatz von kryptographischen Data 

Sharing-Verfahren entwickelt. Der Einsatz entsprechender Ansätze scheitert bisher vor 

allem an zwei Barrieren: (1) der technischen Komplexität beim Aufbau einer 

Kryptographie-basierten Data Sharing-Infrastruktur und (2) der Benutzerfreundlichkeit 

kryptographischer Data Sharing-Verfahren, insbesondere für medizinische Forschende. 

Das neue Werkzeug EasySMPC zeichnet sich dadurch aus, dass es eine 

kryptographisch sichere Berechnung von Summen (beispielsweise Häufigkeiten von 

Diagnosen) über Institutionsgrenzen hinweg auf Basis einer einfach zu bedienenden 

graphischen Benutzeroberfläche ermöglicht. Zur Anwendung ist weder technische 

Expertise noch der Aufbau spezieller Infrastrukturkomponenten notwendig. Die 

Praxistauglichkeit von EasySMPC wurde in einer ausführlichen Performance-Evaluation 

experimentell analysiert. 
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Abstract 

Implementing modern data-driven medical research approaches ("Artificial intelligence", 

"Data Science") requires access to large amounts of data ("Big Data"). Typically, this can 

only be achieved through cross-institutional data use and exchange ("Data Sharing"). In 

this process, the protection of the privacy of patients and probands affected is a central 

challenge. Various methods can be used to meet this challenge, such as anonymization 

or federation. However, data sharing is currently put into practice only to a limited extent, 

although it is demanded and promoted from many sides. One reason for this is the lack 

of clarity about the advantages and disadvantages of different data sharing approaches. 

The first goal of this thesis was to develop an instrument that makes these advantages 

and disadvantages more transparent. The instrument systematizes approaches based on 

two dimensions - utility and protection - where each dimension is further differentiated 

with three axes describing different aspects of the dimensions, such as the degree of 

privacy protection provided by the results of performed analyses or the flexibility of a 

platform regarding the types of analyses that can be performed. The instrument was used 

for evaluation purposes to analyze the status quo and to identify gaps and potentials for 

innovative approaches. Next, and as a second goal, an innovative tool for the practical 

use of cryptographic data sharing methods has been designed and implemented. So far, 

such approaches are only rarely used in practice due to two main obstacles: (1) the 

technical complexity of setting up a cryptography-based data sharing infrastructure and 

(2) a lack of user-friendliness of cryptographic data sharing methods, especially for 

medical researchers. The tool EasySMPC, which was developed as part of this work, is 

characterized by the fact that it allows cryptographically secure computation of sums (e.g., 

frequencies of diagnoses) across institutional boundaries based on an easy-to-use 

graphical user interface. Neither technical expertise nor the deployment of specific 

infrastructure components is necessary for its practical use. The practicability of 

EasySMPC was analyzed experimentally in a detailed performance evaluation. 
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1. Introduction 

In order to use recent medical research approaches ("Artificial intelligence ", "Data 

Science") access to large amounts of data is necessary ("Big Data") [1]. Typically, this 

can only be achieved through cross-institutional data use and exchange ("Data Sharing") 

[2]. Data sharing is being promoted by various organizations [3–5], has been described 

as an “ethical and scientific imperative” [6] and it is expected to be a standard practice in 

the future. However, it is important to distinguish between different types of data sharing: 

(1) data sharing in the sense of publishing raw data, for example together with scientific 

articles for reproducibility purposes, and (2) data sharing to pool data across institutions 

to improve sample sizes [7]. This thesis puts a specific focus on the latter challenge and 

the term data sharing will be used accordingly. 

Although the scientific community as well as the public have a positive attitude 

towards data sharing, it has not yet become widely established in practice [8]. A prominent 

obstacle to practical data sharing are laws restricting how medical data can be processed 

e.g., for privacy protection reasons [9]. The US Health Insurance Portability and 

Accountability Act (HIPAA) [10] and the EU General Data Protection Regulation (GDPR) 

[11] are two important examples. Moreover, the willingness of patients and citizens to 

share their own data has been shown to be much higher when privacy is maintained [12]. 

Different methods have emerged for providing a solid legal basis for performing 

data-driven research, also in cross-institutional settings: (1) obtaining informed consent 

by affected patients and participants, (2) anonymization of data, which refers to the 

process of changing data so that it cannot be traced back to specific individuals, or (3) 

the use of more complex data sharing infrastructures, which have specifically been 

designed to support the privacy-preserving analysis of data which is distributed across 

multiple institutions (for a more detailed description of (2) and (3) see below). A typical 

example in the context of data sharing infrastructures would be the exchange of 

aggregated, non-personal data (see Section 3.1 for further details on different types of 

data sharing infrastructures). While obtaining informed consent can be considered the 

gold standard from the data protection and ethics perspective, it is often not possible if 

data is to be used in retrospect on a large scale. Moreover, anonymization is challenging 

for high-dimensional data [13]. As a consequence, a range of alternative approaches has 

been developed, which exhibit different strengths and weaknesses. The central 

importance of privacy-preserving data sharing technologies and the need to develop them 
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further is clearly underlined by the recently published National Strategy to Advance 

Privacy-Preserving Data Sharing and Analytics of the US government [14]. I believe that 

the resulting heterogeneity of the proposed approaches to data sharing is one of the 

reasons why they are not widely used in practice. 

1.1 Risks associated with sharing different types of medical data 

 As mentioned in the previous section, the main motivation for developing more 

complex data sharing infrastructures is a legal need to ensure the anonymity of the data 

subjects that often arises. Intuitively, one might believe that this can be achieved by 

removing directly identifying data, such as names and addresses from data. However, 

this approach was disproved by the famous case of William Weld, in which structured 

medical data about the then-governor of Massachusetts was re-identified in an alleged 

anonymous dataset by combining it with publicly available information [15]. A wide variety 

of research has shown that this is possible with different types of medical data, such as 

genetic data [16], clinical free text [17] and medical images [18]. The focus of this work 

is, however, structured tabular data. There are several ways in which the anonymity and 

privacy of individuals can be breached based on data. They can be systematized into 

different categories [19]: 

 Membership disclosure: The possibility of an attacker to learn whether data 

referring to a certain individual is in a dataset or not [20]. 

 Attribute disclosure: The possibility of an attacker to learn about sensitive attributes 

of an individual [21]. Please note that this does not necessarily mean that the 

specific record of the individual is identified. 

 Identity disclosure: The possibility of an attacker to link one or several records in a 

dataset to an individual [22]. 

As the example of William Weld already shows, protecting data from such threats 

while sharing it with others is challenging. One simple and popular approach for protecting 

individual-level data is performing data anonymization using k-anonymity [23], in which 

data is aggregated into groups of not less than k indistinguishable individuals. However, 

as already noted above, this process quickly reaches its limits when data is high-

dimensional or contains information about a small number of individuals [24]. At the same 

time, scientific analyses usually aim for statistical results and hence aggregated data. 
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While this can provide some degree of protection, additional privacy controls are also 

needed for aggregated data, as is illustrated in Figure 1. 

 

 

Figure 1: An example of a protection of a dataset with k-anonymity and with aggregation (own 

illustration). 

In subfigure (a), the figure shows an example of an original dataset for the rare disease 

Phenylketonuria with some demographic data about patients as well as a documented 

comorbidity. I point out that the dataset is a simplified example intended for illustrative 

purposes only. In subfigure (b), the figure shows an example of a modified version of the 

dataset fulfilling k-anonymity with k = 2. The aggregation provides a certain level of 

privacy, but also reduces the utility of the data as information has been removed. However 

the dataset still contains a potential privacy thread: an attacker knowing that data of a 

specific individual male can be found in the dataset can easily infer that this named 

individual must suffer from depression as well, which constitutes attribute disclosure. 

Another example for the problem is the possibility of retrieving personal information 

from frequency tables when cell counts are low or zero [25]. This problem is illustrated in 

part (c) of Figure 1 with an example that is closely related to the example in part (b). The 

subfigure displays a frequency table which has been generated for the variables sex and 

comorbidity. The table shows the number of common occurrences of the corresponding 

values of the variables. Since this is aggregated data, one might think that it poses no 

privacy risk to the data subjects. However, as with sub-figure (b), an attacker who knows 
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about the presence of a particular men in the dataset can infer that this men suffers from 

depression, since all men in the dataset have this comorbidity. 

Similar problems can also arise with other forms of aggregated data [26]. The issue 

has been formalized in the Database Reconstruction Theorem stating that with too many, 

too accurate statistics generated about a protected dataset the original dataset can be 

reconstructed [27]. Other well-known examples for the general problem include (1) 

possible membership disclosure attacks using the p-values of a genetic statistical 

analysis as long as the genome is known [28], (2) the possible reconstruction of the 

original data when only co-variance values are known [29] or (3) possible membership 

attacks from machine learning model parameters [30]. However, it is worthwhile noting 

that the data privacy related risks induced by the described problems can be reduced 

when increasing the amount of data processed. Part (c) of Figure 1 can serve as an 

example for this claim: An increase of the number of patients displayed could lead to a 

frequency table in which no cell has a count of zero. This would in turn not allow for the 

above described attribute disclosure. 

1.2  Aims and contributions of this work 

The previous sections highlight the challenges of preserving privacy while sharing 

data and the wide range of methods that have been proposed for this purpose, leading to 

significant complexity in assessing the landscape of available solutions. Consequently, 

this thesis approaches the topic in two consecutive steps. First, I hypothesized that a 

systematic categorization of properties of privacy-preserving data sharing methods can 

successfully map diverse implementations into a unified framework, providing a coherent 

perspective on the current landscape of solutions. Second, I hypothesized that a "no-

code" cryptographic data sharing tool that requires no dedicated technical setup is 

feasible, thus addressing a significant barrier to adoption in medical environments 

identified in my first contribution.  

The instrument to systematize and compare data sharing approaches was designed 

to make their advantages and disadvantages more transparent. To this end, the 

instrument categorizes approaches based on two dimensions - utility and protection - 

where each dimension is further differentiated along three axes. The instrument was then 

used to analyze the status quo and to identify gaps and potentials for innovative 

approaches.  
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The innovative “no-code” tool EasySMPC for cryptographic data sharing in medicine 

has been designed to (1) work without requiring a specific technical setup in hospitals 

and (2) be usable for medical researchers without programming knowledge (cf. the recent 

recommendation of the US government to “improve usability and inclusiveness of PPDSA 

[privacy-preserving data sharing and analytics] solutions” [14] as a strategic priority to 

promote data sharing). The feasibility of EasySMPC was analyzed experimentally in a 

detailed performance evaluation. 

The development and evaluation of these two methods constitute the contribution 

of this dissertation. Their details will be presented in the chapters below.
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2. Methods  

In this section, I will briefly present the methods developed during my research. 

The structure of the section reflects my approach of working on the topic from two sides 

that also build upon on each other. The first method has been developed for improving 

the ability to evaluate and compare medical data sharing approaches. The second 

method aims to overcome certain limitations of existing approaches and can thus enable 

new ways of sharing data.  

2.1 Development of a novel method to assess data sharing infrastructures 

2.1.1 Theoretical framework  

Research in medical informatics, which is a field on the intersection of computer 

science and medicine, can be performed with a variety of methods. Vessey, Ramesh, 

and Glass proposed a taxonomy with 19 different classes of research methods in 

computer science, including (1) proof of concept implementation, (2) action research, (3) 

conceptual analysis and (4) simulation [31]. Since the goal of the first part of this work 

was to systematize and analyze data sharing infrastructures, I performed a conceptual 

analysis. This is closely related to conceptualization which is defined as creating an 

“abstract, simplified view of the world that we wish to represent for some purpose” [32]. 

The conceptual analysis was performed following the research framework proposed by 

Holz et al. [33]. Here, the idea is to structure the research process along four key 

questions: (A) “What do we want to achieve?”, (B) “Where does the data come from?”, 

(C) “What do we do with the data?” and (D) “Have we achieved our goal?”. 
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Figure 2: Process implemented while researching for the method (adopted from [33]). 

 

Figure 2 illustrates the application of the framework while developing a 

systematization for assessing data sharing infrastructures. As can be seen, my aim was 

to design a systematization (A), which was derived from data about existing data sharing 

approaches (B) that was then clustered (C). Finally, the systematization was validated by 

using it to compare different approaches and identify gaps (D). 

2.1.2 Existing concepts and methods 

Ideally, data sharing could simply be realized by loading all relevant data into a 

central, potentially cross-institutional database, with which data scientists could interact 

to perform research. This approach would provide a very high degree of scientific 

usefulness. However, it offers limited privacy protection and is often not possible, if 

anonymity guarantees are needed to obtain a legal basis for processing (see Section 

1.1). Any measures implemented to further improve privacy protection will inevitably lead 

to a reduced scientific utility. This can be visualized analogously to the well-known “risk-

utility curves”, which are often used to study data anonymization methods [34], as is 

illustrated in Figure 3. 
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Figure 3: Relationship of privacy protection and data usefulness (adopted from [35]) 

As can be seen, privacy protection needs to be balanced against scientific 

usefulness. The point “poor results”, for example, indicates a data sharing solution 

protecting privacy very well but failing to provide accurate analytical results (e.g., based 

on anonymization), while the point “poor protection”, indicates an approach providing 

accurate analytical results but little privacy protection (e.g., the central database 

mentioned above). 

For reasoning about the protection provided by offering secure access to a central 

database, the well-known Five Safes Framework has been proposed [36], which is 

illustrated in Figure 4. 

 

Figure 4: Axes of the Five Safes Framework [35]. 

 

As the name indicates, the framework covers five different aspects that define the 

degree of protection provided during data access: 

 Safe People: Captures the degree of trustworthiness of researchers who 

are provided with data access. 

 Safe Project: Reflects the appropriateness (e.g., from a legal and ethical 

perspective) of the projects which are carried out with the data. 
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 Safe Data: Covers the degree of identifiability of the data that is accessed. 

 Safe Settings: Captures the degree of protection provided through the 

access mechanism including access rules and roles. 

 Safe Output: Reflects the privacy risks associated with statistical results 

generated during data use. 

2.1.3 A novel systematization to assess data sharing infrastructures 

This work proposes a novel method in form of a framework and systematization 

for studying the trade-off between protection and usefulness provided by data sharing 

approaches, analogously to risk-utility curves for anonymization methods. In the process 

of creating the systematization, I selected the three technical aspects of the Five Safes 

Framework – which has been designed to reason about protective measures used to 

safeguard access to a central database – and described how they can be used to 

describe properties of a wider variety of data sharing infrastructures. Moreover, I defined 

three utility aspects representing common and important requirements for biomedical 

research projects [37]. Finally, I combined all aspects into a holistic framework. An 

overview of the systematization is shown in Figure 5.  

 

 

 

Figure 5: Dimensions and axes of the developed framework (adopted from [35]). 
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The figure illustrates the privacy protection dimension on the left and the 

usefulness dimension on the right with three axes, i.e. aspects, each. As mentioned, the 

axes for the degree of privacy protection are derived from the Five Safes Framework: 

 Safe Data: The approach addresses privacy risks on the data level, e.g., by 

applying anonymization, aggregation or encryption. 

 Safe Settings: The approach addresses privacy risks through secure 

environments, in which the users have limited access to the data. 

 Safe Outputs: The approach ensures that results produced do not result in 

privacy risks. 

 

 

 

Figure 6: Horizontal and vertical data distribution [35]. 

Moreover, I derived three axes describing the usefulness of data sharing approaches 

from common requirements in real-world data-driven research: 

 De-duplication / Record Linkage: This axis describes the ability of an 

approach to support (1) linkage between vertically distributed data or (2) 

identification of an overlap in patient populations for vertically distributed 

data. As illustrated in  

Figure 6, data can be distributed horizontally (i.e. records about patients 

from the population are distributed across different sites, cf.  

Figure 6b) or vertically (i.e. different properties about the same patients or 

probands can be distributed across different sites, cf.  

Figure 6c). Combinations of horizontal and vertical distribution are also 

common in practice. 
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 Flexibility: This axis describes the degree to which an approach can be 

used to implement different types of analyses or whether it is extendable 

with new analytical methods. 

 Scalability: This axis covers the scalability of an approach, e.g., in terms of 

execution times, storage requirements or hardware requirements as well 

as required network bandwidth and latency when increasing sites, data 

volume or dimensionality. 

2.2 Design and development of a novel data sharing method 

2.2.1 Theoretical framework 

The second part of the work described in this thesis focused on filling one gap 

regarding cryptographic-based data sharing infrastructures that was identified by applying 

the previously described method (cf. Section 4.1.3). Referring to the taxonomy by Vessey, 

Ramesh, and Glass, I used the following methods: (1) software product implementation 

and (2) laboratory experiments with software for evaluation purposes. Those steps were 

combined in a cycle following the framework by Holz et al. [33], as is illustrated in Figure 

7. 

  

Figure 7: Research framework for designing and developing a novel data sharing method 

(adopted from [33]). 
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As can be seen, a software product (A) was designed and implemented (B), then 

evaluated (C) and tuned in an iterative process until acceptable performance was 

achieved (D). 

A particular focus was put on developing a usable product, as several authors 

stress the importance of developing software products and not only prototypes in 

research, since this provides more reliable evidence on the practicability of a new method 

[38–40]. Given the fact that one prominent goal of medical informatics is to support 

biomedical research with new findings and good software systems, development is a 

crucial part of research in medical informatics [41].  

2.2.2 Secure multiparty computation 

The general idea behind the cryptographic methods of Secure Multiparty 

Computation can be described with the following analogy [42]: Confidential data of 

different parties is shared with a trusted third party. This third party performs computations 

(e.g., statistical analyses) and shares the results with the parties involved. Therefore, no 

input data of any party is shared with another party (apart from the trusted third party). 

SMPC protocols provide the same guarantees without the need of a trusted third party by 

means of cryptographic methods. A very common example is the “millionaires' problem” 

in which two millionaires want to find out who is richer without revealing their bank account 

statements to one another. Yao proposed garbled circuits to solve this problem [43]. 

Another famous protocol is the GMW protocol developed by Goldreich, Micali and 

Wigderson [44], in which a Boolean function can be computed with the secure inputs of 

several parties by using logical XOR and AND operations. GMW can be extended to an 

Arithmetic Secret Sharing protocol, in which a common sum of values from three or more 

parties can be calculated, without sharing the single summands.  
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Figure 8: Example of the Arithmetic Secret Sharing protocol executed with two parties (own 

illustration). 

 Figure 8 shows an exemplary, simplified execution of the Arithmetic Secret 

Sharing protocol with two participants. Both participants “Alice” and “Bob” have a secret 

number they want to sum up without revealing their own number to one another. To 

achieve this, they each generate a random number, which is the public share. The secret 

share is the difference between the secret number and the public share. The secret share 

will remain confidential and the public share is sent to the respective other party in a first 

round of communication. The received public share will then be added with the secret 

share and this sum will be sent again to the respective other party in a second round of 

communication. The last line shows that, at the end of the protocol, the shares cancel 

each other out so that only the sum of the two secret original values remains. I note that 

an actual use of the protocol always requires at least three participants to keep the secret 

values confidential and that real-world implementations of the protocol are a bit more 

complex. Moreover, I note that this approach is suitable for exchanging aggregated data 

(that in fact often is privacy-sensitive as well; see Section 1.1) and not for sharing 

individual-level data. For a detailed discussion of analyses supported and limitations of 

the approach I refer to Section 4.2.3. 
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2.2.3 The software EasySMPC 

The Arithmetic Secret Sharing protocol is a good first step for performing basic 

statistical analysis in a secure manner across sites for biomedical research. This is 

especially true for research on rare diseases in which population numbers are so low that 

other types of secure data sharing mechanisms usually fail to protect privacy. 

However, as the analysis presented in Section 3.1.2 showed, SMPC-based 

methods like Arithmetic Secret Sharing have not been widely adopted in practice. One 

important reason is that cryptographic methods are not very approachable to non-IT-

experts. To improve this, I designed and implemented EasySMPC, an innovative software 

focusing on usable SMPC. The software supports the steps illustrated in Figure 8 through 

a user-friendly graphical interface, supporting the secure addition and subtraction of data 

from three or more participants (e.g., hospitals). It has been developed as a cross-

platform, stand-alone application and was designed for non-technical users. EasySMPC 

is implemented in the programming language Java following the widely-used model-view-

controller pattern [45]. The model-view-controller pattern separates the responsibility of 

the different software modules into (1) a data model, (2) the view presented to the user 

and (3) a controller interacting with the model and the view. EasySMPC runs on the local 

computers of the participants (e.g., physicians in a hospital) and installation is supported 

through an easy-to-use installer. No additional infrastructure, such as server backends 

are needed, since EasySMPC uses e-mails as its communicative backbone. The most 

important modules of the software are shown in Figure 9. 

  

Figure 9: Architecture of EasySMPC [46]. 

As the figure illustrates, the Application View and View-Controller module is built 

on top of two subsystems for (1) SMPC operations as well as data manipulation and (2) 

interaction with external applications as well the other participants. In more detail, the 

three modules serve the following purposes: 
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 Application View and View-Controller: The module consists of eight different 

perspectives developed with Swing, a programming library for developing 

Graphical User Interfaces (GUIs) in Java, directing the user through the 

different steps of the process. 

 Model, Controller and SMPC: This module includes the application’s data 

model allowing controlled access to and manipulation of data during the 

execution of the protocol. Moreover, the module includes the implementation 

of the Arithmetic Secret Sharing protocol. 

 Input and Output: The module provides functionalities to import and export data 

in different formats (e.g., Excel, text files). Moreover, the module is responsible 

for sending and receiving e-mail messages automatically. 

 

 The implementation relies on Java standard libraries as well as Jakarta Mail and 

the packages “POI”, “Commons” and “Logging” provided by the Apache Software 

Foundation. 

2.2.4 Performance evaluation 

Since EasySMPC is, to the best of my knowledge, the first software to use e-mail 

as a communication channel for running SMPC protocols and SMPC protocols are well 

known to have significant requirements in terms of network performance, I conducted an 

extensive evaluation to study the behavior of the software. To cover a wide range of 

application scenarios, I varied two technical and two user-specific factors as part of the 

evaluation: 

 Technical factor 1: Polling frequency - The frequency at which EasySMPC 

checks for new e-mail messages (settings used: 1, 5, 10, 15 and 20 seconds). 

 Technical factor 2: Network latency - The time data packages in a network take 

from the sender to the receiver network. This was simulated using the tool tc1 

(settings used: 30 milliseconds (ms) to simulate data exchange in a national 

project and 100 ms to simulate data exchange in an overseas setup). 

 User-specific factor 1: Number of participants - The number of participants (e.g., 

hospitals) taking part in the computation (settings used: 3, 5, 10 and 20). 

                                            
1 https://man7.org/linux/man-pages/man8/tc.8.html 
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 User-specific factor 2: Number of variables - The number of variables summed 

up within one calculation (settings used: 1000, 2500, 5000 and 10000). 

 
The performance evaluation was conducted on a single computer with 64 1.8 GHz 

AMD EPYC 7502 CPUs and 512 GB of RAM running CentOS 8.4 as an operation system 

and a dedicated Mailserver (iRedMail) installed. The evaluation was executed 15 times 

for each of combination of user-specific and technical factors described above. The 

following outcome variables were collected: (1) the time needed to complete an 

EasySMPC calculation process, (2) the number of messages sent and (3) the overall data 

volume exchanged. The code and the experimental results are publicly available [47]. 
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3. Results 

In this section, I will briefly present the results of my research. In line with my 

research approach, the results consist of a conceptual and a methodological contribution. 

3.1 Assessment and comparison of data sharing infrastructures 

3.1.1 Principal results 

The developed systematization was applied to assess various data sharing 

infrastructures, such as DataSHIELD [48], OMOP/OHDSI [49] or the Personal Health 

Train approach [50]. The results are illustrated in Table 1. The table shows the respective 

infrastructure, the year in which a first paper describing the approach was published, its 

classification along the different axes as well as the category assigned through clustering 

(see Section 3.1.2). 

 

Table 1: Results of the analysis of solutions for privacy-preserving data sharing [35] 

Approach Year Category 1. Privacy protection  2. Usefulness  

   1. Safe  

Data 

2. Safe 

Setting 

3. Safe 

Outputs 

1. De- 

Duplication 

2. 

Flexibility 

3. Scal-

ability 

SHRINE/i2b2 2008 Distributed data 

analysis 

Yes No Yesb No Low Yes 

DataSHIELD 2010 Distributed data 

analysis 

Yes No Yesb No High Yes 

OHDSI 2014 Distributed data 

analysis 

Yes No Yesb No High Yes 

Personal 

Health Train 

2017 Distributed data 

analysis 

Yes No Yesb No High Yes 

Clinerion 2015 Distributed data 

analysis 

Yes No Yesb No Low Yes 

TriNetX 2015 Distributed data 

analysis 

Yes No Yesb No Low Yes 

MedCo 2018 Secure multiparty 

computation 

Yesa Yes Yes No Low No 

Sharemind 2008 Secure multiparty 

computation 

Yesa Yes Yes Yes High No 

Scottish 

national Safe 

Haven 

2015 Data enclave No Yes Yes Yes High Yes 
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Virtual 

Research 

Center 

2014 Data enclave No Yes Yes Yes Low Yes 

a The processed data is encrypted individual-level data and thus safe. 

b Safe Outputs is an implicit result of providing Safe Data as input. 

3.1.2 Categories of data sharing infrastructures identified 

Based on shared properties of the different solutions listed in Table 1, I were able 

to group the results into three different categories of data sharing infrastructures: 

 Distributed data analysis: This category refers to solutions exchanging only 

aggregated (and hence non-personal) data. A common example is the 

calculation of a mean value locally for each participating party, which is 

thereafter exchanged with the other parties. The assessed solutions provided 

Safe Data and Safe Outputs, while Safe Settings are not necessary, since Safe 

Data is provided already as input. Regarding scientific usefulness, none of the 

assessed infrastructures from this category allowed for De-Duplication / 

Record-Linkage and all provided a high degree of Scalability. Flexibility is 

usually high, although there are limitations as to what can be calculated by 

exchanging aggregated data only. A typical example for a Distributed Data 

Analysis approach is implemented in the software DataSHIELD [48]. 

 Secure Multiparty Computation: This category refers to solutions using SMPC 

protocols. These approaches only exchange encrypted Safe Data. The 

cryptographic algorithms forming the basis can also be understood as providing 

a Safe Setting. It must be noted SMPC protocols don’t necessarily provide Safe 

Outputs, as they can reveal information about individuals if not designed and 

used carefully. For instance, a SMPC protocol might output a statistical table 

with small cell counts, which can make individuals identifiable (see Section 1.1). 

Moreover, Flexibility as well as Scalability are a challenge for SMPC-based 

solutions, while support for De-Duplication / Record-Linkage can be provided 

by some implementations. A typical example for an SMPC-based infrastructure 

is the software MedCo [51]. 

 Data enclaves: This category refers to solutions in which data is submitted to a 

trusted-third party, who allows eligible researchers to perform analyses against 

the data through safe access methods, e.g., monitored remote desktop 

connections. Therefore, no Safe Data is processed and stored in the enclave. 
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However, the data is processed in a Safe Setting and usually measures are 

implemented to ensure that only Safe Output can be exported. Moreover, Data 

Enclaves support De-Duplication / Record-Linkage and provide Scalability, 

while the Flexibility of the assessed solutions differed. A typical example for a 

Data Enclave is the US Center for Medicare and Medicaid Services Virtual 

Research Data Center [52]. 

3.2 A new tool enabling cryptography-based data sharing  

3.2.1 Software overview 

EasySMPC is an easy-to-use software for users with little or no technical 

knowledge. The user is guided through the secure data sharing process based on six 

consecutive perspectives, of which four are shown in Figure 10. 

 

Figure 10: Perspectives in EasySMPC [46]. 
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In the first perspective the study can be set up and contact details for the individual 

sites can be added. Moreover, the data can either be entered manually or loaded from 

Excel or CSV files. Please note that the participants’ contact details as well as the names 

of the variables will be shared with the other participants while the data values entered 

next to the names remain confidential. In the second perspective the data is send to all 

sites for the first round of communication (cf. Section 2.2.2 for a description of the rounds). 

In the third perspective data is received for the first round of communication. In the fourth 

and fifth perspective, the processes executed in the second and third perspective are 

repeated to perform the second round of communication. They are thus omitted in Figure 

10. Finally, in the last perspective the results are displayed. 

Sites are identified by email addresses and all data is exchanged via the Simple 

Mail Transfer Protocol (SMTP) and the Internet Message Access Protocol (IMAP). The 

software also features a dialog for connecting it to mailboxes. 

 

3.2.2 Performance evaluation 

In this section, I present results of the performance evaluation with a network 

latency of 30 ms (national data sharing scenario). For further results I refer the interested 

reader to the respective publication [46]. Figure 11 provides an overview of the data 

volumes exchanged with different settings. 

 

 

Figure 11: Number of messages and total data volume exchanged (30 ms) [46]. 

Figure 11a shows that the number of messages exchanged by EasySMPC grows 

quadratically with an increasing number of sites involved in a computation. The total data 

volume increases analogously with the number of participating sites (Figure 11b). The 

figure further shows a linear influence of the number of variables on the exchanged data 

volume (Figure 11c). Overall execution times are illustrated in Figure 12 for different 

polling intervals, number of variables and number of participating sites. 
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Figure 12: Execution times for increasing numbers of participants and variables as well as 

different polling frequencies (30 ms) [46]. 

As can be seen, execution times correlate with the data volume exchanged and 

grows quadratically with the number of participating sites and linearly with the number of 

variables. Increasing the polling frequency reduces execution times. 

In summary, the numbers clearly show that EasySMPC is scalable enough to be 

used in real-world applications. Summing up the value of 10,000 variables over 20 sites 

from the same geographic area (e.g., country) can be performed in under 5 minutes.
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4. Discussion 

In this section, I will briefly discuss and compare the results of my work. The 

structure of the section reflects the two directions from which I have worked on the topic 

of medical data sharing. The next section (see "Conclusions"), will bring both 

contributions together. 

4.1 Discussion of the method to assess data sharing infrastructures  

4.1.1 Principal results 

 A method in form of a systematization was developed to capture and assess the 

characteristics of data sharing approaches. The systematization consists of two 

dimensions each containing three different axes. Moreover, the systematization was used 

to assess ten existing data sharing approaches showing its practicability. By clustering 

approaches based on their properties, three different categories of approaches with 

similar characteristics could be identified. It is notable that the category Distributed Data 

Analysis was most prominent. One explanation for this might be the fact that Distributed 

Data Analysis infrastructures are relatively simple to develop, explain and use. SMPC-

based infrastructures as well as Data Enclaves are either more complex in terms of 

technology or are associated with additional legal challenges. Based on the 

systematization and the analysis of existing approaches, I was able to identify important 

gaps in the system landscape, such as a lack of user-friendly SMPC-based solutions. 

4.1.2 Comparison with prior work 

The presented systematization method builds upon the Five Safes Framework 

[36], which has been used for assessing data access environments in various areas of 

research. Moreover, other work has been published assessing data sharing activities in 

the biomedical area, which, however, differ from my approach: For instance, Knoppers 

[53] proposed a framework focusing on trust, compliance and responsible research, while 

Aziz et al. [54] gave an overview of data sharing with a specific focus on genomic data 

and cryptographic methods. Similarly, Mittos et al. [55] present a framework to asses 

technologies providing privacy protection when working with genomic data in various 

scenarios, not only when sharing data. Moreover, Thapa et al. [56] published an overview 

of data sharing specific to the area of „precision health“, also focusing on different 

cryptographic techniques. To the best of our knowledge, the proposed systematization is 
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the first targeting the trade-off between privacy and usefulness for different types of data 

sharing approaches for biomedical research with different types of data. 

4.1.3 Limitations and future work 

A limitation of the presented systematization is its qualitative nature and its 

suitability only for high-level comparisons. Although a more formalized and detailed 

framework would be desirable, it is very challenging to create such a framework. Some 

reasons for this are given by Richie and Green when arguing for the qualitative nature of 

the Five Safes Framework [57]. They argue, for instance, that it is very difficult to model 

the interactions between the different Safes correctly. Moreover, a formalized and 

quantitative framework would require precise metrics for data privacy and usefulness, 

which is still an open research problem (a paper by Wagner and Eckoff [58] listed over 

80 different privacy models suggested by the research community). Thus, there are 

several potential directions for future work: Firstly, the presented systematization could 

be extended, for example by incorporating the most common privacy models and by 

adding more axes, such as User-Friendliness. Moreover, there is the potential to bridge 

open gaps, such as the lack of user-friendly SMPC-based approaches. Current SMPC-

based solutions often require complex infrastructures and service-side components to set 

up, leading to hurdles for getting them deployed in real-world settings and operated 

securely. In addition to that, SMPC-based solutions often rely on software libraries or 

domain-specific languages and require knowledge of and experience with programming 

for their application. I have already worked towards a solution that does not come with 

such requirements in the second part of my doctoral work.  

4.2 Discussion the new data sharing approach 

4.2.1 Principal results 

I have designed and developed EasySMPC, which supports an innovative method 

for the secure calculation of sums across different sites while keeping the single 

summands confidential. The tool is user-friendly and easy to roll-out, as no server 

infrastructure or network setup is necessary. EasySMPC uses existing e-mail 

infrastructures. The results of our performance evaluation demonstrate its applicability in 

real-world contexts. EasySMPC is available as open source software and the source code 
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as well as comprehensive documentation, executables and installers ca be obtained 

online [59].  

4.2.2 Comparison with prior work 

Several other SMPC-based data sharing solutions have been proposed. The 

solutions can be roughly assigned to four different categories: 

 Record-linkage processes: Some related works describe the secure conduction 

of record-linkage processes with SMPC protocols [60,61]. 

 Specific usage cases: Other related works describe SMPC-based solutions for 

specific use cases in biomedical research, such as drug discovery [62], genome-

wide association studies [63] or genomic diagnostics [64]. 

 Specific statistical methods: Further related works describe the secure 

implementation of specific statistical methods, such as Kaplan-Meier estimators 

[65] or regression analyses [66].  

 Generic frameworks and data sharing infrastructures: Finally, some related works 

present SMPC-based generic programming frameworks like Sharemind MPC 

[67], ABY [68] or FRESCO [69] and complete SMPC-based data sharing 

platforms such as MedCo [51] or FAMHE [70]. 

 

In comparison to the first three groups of related work, EasySMPC is rather generic 

and focused on users with a non-technical background. Moreover, as described before, 

it is an actual software product and not only a research prototype. This also applies to 

other solutions such as MedCo and FAMHE. However, the deployment and operation of 

these products requires much more effort and technical knowledge. 

4.2.3 Limitations and future work 

EasySMPC is a tool for exchanging aggregated data securely across sites to 

generate common aggregated statistics. Typical applications include the calculation of 

descriptive statistics of cohorts with certain characteristics across sites, such as the 

overall prevalence of a condition or sex or age distributions (see Section 4.2 in [46] for an 

overview of statistical methods supported). I emphasize that specific methods are needed 

for calculating such statistics across sites if the characteristics are rare in a cohort (cf. 

Section 1.1). For example, under many circumstances, counts of less than 11 are 

considered to be personal information under the GDPR [71] and hence restrictions apply 



Discussion 27 

to how this data can be shared with others. The goal of EasySMPC is to enable 

performing such analyses with as little hurdles as possible. On the legal side this is 

achieved by exchanging and combining data in encrypted form only. While there is still 

some legal uncertainty around the question of whether this constitutes a processing of 

personal data, the simplicity of the algorithms employed by EasySMPC facilitate legal 

assessments. On the technical side EasySMPC strives to require as few preparations as 

possible, while on the user side a point-and-click user interface makes it as easy as 

possible to participate in joint calculations. Ultimately, I hope that this will help to get 

SMPC-based data sharing in medicine into broader use. However, to calculate some 

statistics with EasySMPC, manual steps are necessary. 

EasySMPC also has two limitations regarding privacy protection and security: 

Firstly, since the participants only authenticate with their e-mail addresses, a man-in-the-

middle-attack could be performed, in which an intruder replaces a regular participant. 

However, this attack could only lead to wrong results at the end of the calculation and not 

to the disclosure of data from another site. Secondly, when considering the privacy 

protection dimension of the systematization developed in the first part of my doctoral 

project, EasySMPC provides Safe Data and a Safe Setting, but not necessarily Safe 

Outputs. As with other SMPC-based approaches, care needs to be taken to ensure that 

anonymity is provided. Future work could extend EasySMPC with more robust 

authentication methods and integrate process-level anonymization processes, such as 

Differential Privacy [72], to also protect its outputs.
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5. Conclusions 

Bringing both methods and their results together, Figure 13 shows an assessment 

of EasySMPC with the new systematization.  

  

 

Figure 13: An assessment of EasySMPC with the developed systematization (adopted from [35]). 

As can be seen, EasySMPC offers two Safes in the privacy protection dimension 

as well as Scalability and Flexibility in the utility dimension. Whether EasySMPC provides 

Safe Outputs depends on the input utilized. If, for example, every participating site but 

one provides a value of zero for a variable, the non-zero value of one site will be disclosed. 

This can be prevented in different ways, however. One option is to utilize a minimum 

threshold rule to ensure that each site contributes a non-zero value or using an additional 

round of EasySMPC to determine whether enough sites are able to contribute non-zero 

values. The user-friendliness of EasySMPC is currently not reflected by the 

systematization.  

Recently, a push can be observed towards the real-world deployment of privacy-

preserving data sharing infrastructures in Germany. For example, DataSHIELD has been 

used in the Medical Informatics Initiative [73] and, based on specific laws created for this 

purpose, Data Enclaves are being established in the Centre for Cancer Registry Data and 

in the Research Data Center at the Federal Institute for Drugs and Medical Devices. Also 

EasySMPC is being used in practice in the project “Collaboration on Rare Diseases” 
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(CORD_MI). Since the disease investigated in CORD_MI are rare by definition, it is hard 

to collect and aggregate epidemiological data on them without running into privacy 

challenges. EasySMPC is being used in CORD_MI to overcome these challenges while 

being able to focus on legal and scientific - not technical - questions. While EasySMPC 

is only suitable for sharing aggregated statistical data, this already enables a range of 

questions to be answered. For example, the CORD_MI project is interested in 

understanding how many women suffering from cystic fibrosis gave birth to a child 

between the years 2015 and 2022 across all German university hospitals. This can be 

answered with EasySMPC while ensuring that the individual site-specific statistics are not 

disclosed.
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Privacy-preserving data sharing 
infrastructures for medical research: 
systematization and comparison
Felix Nikolaus Wirth*, Thierry Meurers, Marco Johns and Fabian Prasser 

Abstract 

Background: Data sharing is considered a crucial part of modern medical research. Unfortunately, despite its 

advantages, it often faces obstacles, especially data privacy challenges. As a result, various approaches and infra-

structures have been developed that aim to ensure that patients and research participants remain anonymous when 

data is shared. However, privacy protection typically comes at a cost, e.g. restrictions regarding the types of analyses 

that can be performed on shared data. What is lacking is a systematization making the trade-offs taken by different 

approaches transparent. The aim of the work described in this paper was to develop a systematization for the degree 

of privacy protection provided and the trade-offs taken by different data sharing methods. Based on this contribution, 

we categorized popular data sharing approaches and identified research gaps by analyzing combinations of promis-

ing properties and features that are not yet supported by existing approaches.

Methods: The systematization consists of different axes. Three axes relate to privacy protection aspects and were 

adopted from the popular Five Safes Framework: (1) safe data, addressing privacy at the input level, (2) safe settings, 

addressing privacy during shared processing, and (3) safe outputs, addressing privacy protection of analysis results. 

Three additional axes address the usefulness of approaches: (4) support for de-duplication, to enable the reconcili-

ation of data belonging to the same individuals, (5) flexibility, to be able to adapt to different data analysis require-

ments, and (6) scalability, to maintain performance with increasing complexity of shared data or common analysis 

processes.

Results: Using the systematization, we identified three different categories of approaches: distributed data analyses, 

which exchange anonymous aggregated data, secure multi-party computation protocols, which exchange encrypted 

data, and data enclaves, which store pooled individual-level data in secure environments for access for analysis pur-

poses. We identified important research gaps, including a lack of approaches enabling the de-duplication of horizon-

tally distributed data or providing a high degree of flexibility.

Conclusions: There are fundamental differences between different data sharing approaches and several gaps in their 

functionality that may be interesting to investigate in future work. Our systematization can make the properties of 

privacy-preserving data sharing infrastructures more transparent and support decision makers and regulatory authori-

ties with a better understanding of the trade-offs taken.

Keywords: Biomedical data sharing, Privacy, Usefulness, Systematization, Distributed computing, Secure multi-party 

computing, Data enclave
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Background

Introduction

Data sharing is the practice of making data from 

research and healthcare available for secondary pur-

poses and to third parties. �is enables data-driven 

medical research, which promises to significantly 

improve public health as well as prevention, diagno-

sis, treatment and follow-up care [1, 2]. It is advocated 

at both national and international levels [3–5] and is 

steadily becoming a standard practice in biomedical 

research [6]. �e benefits of data sharing include larger 

sample sizes and the ability to generate new insights 

and to replicate results in times of increasing personali-

zation of medicine. Data sharing is also associated with 

higher citation rates [7, 8] and promoted by several 

funding agencies [9, 10].

Despite its promises, several obstacles make data shar-

ing difficult and often even impossible. An important 

obstacle are legal issues [11], caused by severe restric-

tions on the processing of personal medical data imposed 

by national and international data protection laws. 

Important examples include the US Health Insurance 

Portability and Accountability Act (HIPAA) [12] and the 

EU General Data Protection Regulation (GDPR) [13]. To 

process data in compliance with these regulations, organ-

izational and legal procedures need to be implemented to 

protect the privacy of patients and research participants. 

An important prerequisite for data processing in medical 

research is usually informed consent. However, collect-

ing consent can be difficult and is not always feasible [14], 

in particular when data is to be shared retrospectively at 

large scale. An alternative that is often suggested (and 

permitted in many jurisdictions) is anonymization, i.e. 

the altering of data in such a way that individual patients 

and research participants cannot be identified, rendering 

the data non-personal [15]. However, a trade-off between 

privacy protection and the quality and hence utility of 

output data needs to be considered in this process [16]. 

In this context, the complexity and heterogeneity of clini-

cal and research data makes effective anonymization 

without disproportionately negative effects on data qual-

ity sometimes difficult and in some cases even impossible 

[17]. How strict the requirements for anonymization are 

depends on the applicable legislation. For example, while 

the HIPPA Privacy Rule [12] provides an interpretable 

and implementable framework, anonymization under the 

GDPR is more difficult due to a lack of concrete require-

ments and resulting heterogeneous policies and legal 

interpretations [18]. In addition, researchers often do 

not want to lose control of their data and institutions are 

often reluctant to disclose data that is considered confi-

dential from a business perspective, e.g. for competitive-

ness reasons [19].

�ese challenges can be tackled by implementing 

infrastructures that enable analyzing data stored in dis-

tributed databases and computing a common result with-

out exchanging individual-level data [10]. In the context 

of this work, we refer to such methods as “data sharing 

infrastructures”, which involve different parties or sites 

(e.g. hospitals) in a joint analysis.

On the methodological side, there are different options 

for implementing this process. One well-known exam-

ple is the exchange of aggregated statistics (see e.g. [20]), 

which are then combined to a common result, compara-

ble to a meta-analysis. Another example is cryptographic 

protocols (e.g. [21]), enabling different parties to jointly 

process a function on their private data without revealing 

each other’s input. Such modern secure multiparty com-

puting schemes often employ homomorphic encryption, 

which supports operations such as addition and multipli-

cation on encrypted data [22].

Technology infrastructures built on these approaches 

have already been successfully used to investigate a range 

of medical questions. Examples include studies of asso-

ciations of maternal movement and newborn birth size 

[23], outcomes of partial or full knee replacement [24], 

treatment patterns for comorbidities of patients suffering 

from cancer [25], survival of patients with intrahepatic 

cholangiocarcinoma [26] and of interactions between 

food intake as well as gut bacteria and metabolite pat-

terns [27]. Other projects have implemented manual 

processes for distributed data analysis, such as the 4CE 

consortium [28], which focuses on the clinical trajectory 

of COVID-19 patients or a study carried out in the Ger-

man Medical Informatics Initiative, focusing on multi-

morbidity and rare diseases [29].

Objectives and contributions

Despite the fact that privacy-preserving infrastructures 

are often considered to be the most important enabler for 

comprehensive data sharing in the medical domain and 

despite the multitude of technological approaches avail-

able and studies that have successfully utilized such tech-

nologies (see above), these infrastructures are only rarely 

used for sharing healthcare and medical research data 

today. We believe that one of the main reasons for this is 

uncertainties for decision makers and regulatory authori-

ties regarding the exact characteristics of such infra-

structures, particularly regarding the degree of privacy 

protection and anonymity for data subjects they provide. 

Indeed, as we will show in this article, there are funda-

mental differences between current solutions.

As a first step towards making the properties of data 

sharing infrastructures more transparent, the aim of this 

work is to introduce a systematization of general tech-

niques and their properties along two dimensions. Firstly, 
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the systematization is intended to structure the design 

space, as a development step towards tools for compre-

hensively assessing the privacy protection properties of 

data sharing infrastructures. Secondly, we also believe 

that the systematization can contribute to developing 

instruments for assessing the usefulness of data shar-

ing infrastructures, i.e. the impact that their protection 

mechanisms have on options to analyze data compared 

to the simple (but often not feasible) approach of pooling 

all data in a common database.

�e need for a framework for comparing differ-

ent approaches to data sharing is also illustrated by the 

fact that several previous papers have been published 

on related topics (see section “Comparison with prior 

work”). However, our work is fundamentally different in 

that we do not only consider specific types of solutions 

(e.g., based on cryptographic methods) and aim at sys-

tematically mapping the usefulness dimension in addi-

tion to the privacy protection dimension. �is comes at 

the expense of a higher degree of abstraction.

To show that our approach is practicable, we used it to 

perform a high-level analysis and comparison of several 

existing solutions. In summary, our work provides the 

following contributions:

(1) We present a high-level and technology-agnostic 

framework consisting of three axes describing the 

degree of protection and three axes describing the 

degree of usefulness provided by data sharing infra-

structures.

(2) We use this framework to analyze and compare ten 

different real-world data sharing platforms. Our 

results show that they can be grouped into three 

general types of solutions with common properties.

(3) Based on our results we derive insights into 

research gaps that may be worthwhile to investi-

gate when developing next-generation data sharing 

infrastructures.

Methods

Trade-o� between privacy protection and usefulness

Data sharing would be easy to implement if all relevant 

data could simply flow freely and be stored in a com-

mon database. As mentioned above, this is not possible 

in practice, however. Any attempt to take measures to 

meet privacy protection requirements inevitably leads to 

limitations in comparison to this basic approach. �ese 

limitations may relate, for example, to the time that the 

data sharing process takes or to the number of analysis 

methods supported. �is fundamental conflict between 

unrestricted processing of data and the protection of 

the privacy of data subjects is well known in the field of 

privacy-enhancing technologies. An important example 

is data anonymization, where, as also mentioned above, 

the quality of output data often must be traded off against 

the degree of privacy protection achieved (see e.g. [30]).

Similar trade-offs must be made when designing and 

implementing privacy-preserving data sharing infra-

structures. Figure  1 provides an abstract, schematic 

illustration of this trade-off. It is derived from the con-

cept of risk-utility curves, as used in data anonymization 

research (see e.g. [31]). �e y-axis describes the level of 

privacy protection, while the x-axis describes the level of 

usefulness of an infrastructure. Examples of aspects that 

could be captured by the x-axis include the spectrum of 

functionalities offered, how scalable their implemen-

tations are and how much work is required to add new 

functionalities.

�ere are two extreme types of approaches. 

Approaches located in the top-left corner significantly 

limit the amount of data shared, e.g. only patient or 

research participant counts, which typically implies a 

very high degree of protection. Approaches located in the 

bottom-left corner exchange fine-grained data in nearly 

unmodified form, e.g. by pooling all data in a central 

database which is open for access by researchers. Obvi-

ously, this would be extremely useful, but offers little pri-

vacy protection.

In between these two extremes, there is a broad spec-

trum of potential solutions based on different trade-offs 

between privacy protection and usefulness. To be rel-

evant, those data sharing approaches need to provide 

added value in comparison to the basic approaches, i.e. 

they need to significantly reduce privacy risks, while 

Fig. 1 Abstract graph illustrating the trade-off between the 

degree of privacy protection and the usefulness of a data sharing 

infrastructure
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maintaining a high degree of usefulness. In the graph, 

this is indicated by the non-linear relationship between 

the extreme points.

One example is the aforementioned meta-analysis 

approach in which more than counts can be exchanged 

when appropriate safeguards are implemented (e.g. for 

regression coefficients [32]). Still, functionality is lim-

ited, as only aggregated data from individual sites can be 

included in the analysis, hence reducing the number of 

(scientific) questions that can be answered. At the same 

time, privacy is relatively easy to protect by making sure 

that the aggregate data released does not leak sensitive 

personal information.

A framework for systematizing properties of data sharing 

techniques

For assessing the degree of privacy protection and the 

usefulness provided by data sharing approaches, we pro-

pose a first systematization containing three axes for 

each of these aspects. �ese axes are illustrated in Fig. 2 

and will be explained in more detail in this section.

Aspect 1: Assessing the degree of privacy protection 

provided

As a baseline for assessing the degree of protection pro-

vided we suggest to apply the Five Safes Framework, 

which was developed by Desai, Ritchie and Welpton as 

a general framework for reasoning about privacy protec-

tion when sharing data [33] (important examples are dis-

cussed in Section “Comparison with prior work”).

�e Five Safes Framework specifies five different axes, 

which are illustrated in Fig. 3: (1) Only Safe People, e.g. 

trustworthy researchers, should be provided with access 

to data (cf. the British Office for National Statistics 

research and data access policy [34]), (2) only Safe Pro-

jects should be carried out, e.g., analyses that respect 

patient privacy and which are appropriate from an ethi-

cal perspective, (3) only Safe Data should be processed 

meaning that identifiability should be reduced to an 

acceptable minimum already on the level of input data 

(cf. the principle of data minimization under the GDPR 

and the Minimum Necessary Standard of HIPAA [10]), 

(4) Safe Settings should be used for providing access or 

performing analyses, which reduces the likelihood that 

sensitive data is leaked during processing and (5) Safe 

Outputs should be guaranteed (e.g., by ensuring that the 

output of analyses does not disclose sensitive personal 

information).

For our framework we will only consider the technical 

aspects of the Five Safes Framework and thus exclude the 

first two axes, Safe People and Safe Projects. �e reason 

is that these aspects need to be either addressed on an 

organizational level (e.g. ethics committee / Institutional 

Review Board (IRB) approval) or with technical solutions 

that are not directly related to data sharing (e.g. Authen-

tication and Authorization Infrastructures). In the con-

text of data sharing, there are specific measures that can 

be taken along the remaining technical axes:

Axis 1.1: Safe data

Data provided as input to analyses supported by data 

sharing is considered safe if the identifiability of patients 

or research participants has been reduced. Safe Data can 

for example be obtained by anonymization, aggregation 

or encryption. Protection achieved with the first two 

techniques may be irreversible, while it may be possible 

to decrypt encrypted data at the end of the process. Even 

if anonymization or aggregation has limitations, resid-

ual risks of identifiability can potentially be managed by 

implementing safeguards along the other axes.

Axis 1.2: Safe settings

�e setting in which distributed data is processed is con-

sidered safe if no or at least only some data is leaked dur-

ing processing. A well-known example of a Safe Setting 

are virtual data access environments, in which data can 

be analyzed without handing out individual-level data, 

e.g. through a remote desktop connection. Infrastruc-

tures using cryptographic secure multi-party computing 

protocols also provide a secure setting in which data can 

Fig. 2 Illustration of privacy protection and usefulness axes 

considered

Fig. 3 Elements of the five safes framework. Axes with relevance to 

this work are highlighted in blue
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be analyzed in an encrypted form only and only mutu-

ally calculated results can be decrypted [35] (more details 

will be provided in the “Results” section). However, even 

with such safe settings being used to perform analyses, 

additional efforts may need to be made to ensure that the 

results are also safe.

Axis 1.3: Safe outputs

�e result calculated using a data sharing infrastructure 

is considered safe, if the resulting data disclosed to the 

users of the infrastructure is non-identifiable/non-per-

sonal. One way of achieving this is to only allow com-

putations producing aggregate data. However, this must 

be carefully designed, as e.g. disclosing statistical tables 

with small cell counts can reveal details about individu-

als [36]. To mitigate this risk, anonymization methods 

can be used to transform data before it is being disclosed. 

For example, data points can be rounded up, they can be 

omitted or random noise can be added [37]. A state-of-

the-art technique to provide Safe Outputs is Differential 

Privacy which formulates a general mathematical prop-

erty for data processing algorithms that, if parameter-

ized correctly, renders output data non-identifiable [38]. 

We note that a data sharing infrastructure will automati-

cally provide Safe Outputs when Safe Data is provided as 

input (cf. the meta-analysis approach).

Aspect 2: Assessing the usefulness of data sharing 

technologies

As a first step, we suggest to assess the usefulness of 

infrastructures for sharing medical data in terms of 

three different axes that reflect important require-

ments in multi-institutional medical research: (1) De-

duplication/record-linkage, which refers to the ability to 

combine data from different sources while taking into 

account that some records might relate to one another 

(e.g. to the same patient), (2) Flexibility, which reflects 

the degree to which a solution is able to support different 

types of statistical analyses and use cases as well as adapt 

to different analytical requirements as they can change 

over time and (3) Scalability, that refers to how an infra-

structure performs when the amount of data or the com-

plexity of an analysis increases.

Axis 2.1: De-duplication/record-linkage

�is axis is related to the ability to resolve different types 

of data distribution, which are sketched in Fig.  4. Most 

data sharing infrastructures are able to resolve horizontal 

distribution of data but ignore potential relationships on 

the level of individuals. �is is for example the case with 

meta-analyses in which patient data from different hospi-

tals is simply added to a larger sample without checking 

for population overlap. In order to determine or resolve 

such overlap, privacy-preserving methods for reconcil-

ing records belonging to the same individuals must be 

implemented, which is non-trivial. �is becomes even 

more challenging, when also vertical distribution is to be 

resolved. A typical example is the need to integrate differ-

ent types of data for the same patients stored at different 

locations (e.g. at hospitals and health insurances). Pro-

cedures allowing for such a cross-site duplicate resolu-

tion range from probabilistic linkage algorithms [39] and 

cross-site pseudonymization methods to secure linkage 

based on encrypted identifying information using secure 

multi-party computing protocols [40, 41]. �is results 

in different characteristics with regard to risks and use-

fulness, which manifests itself, for example, in the pos-

sibility of verifying the correctness of linkage results. A 

Fig. 4 Horizontal and vertical data distribution
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cross-site pseudonymization procedure poses the great-

est risks but provides the highest linkage quality, whereas 

probabilistic linkage and cryptographic methods offer a 

very high level of protection, but make it difficult to ver-

ify the results. �e associated risks are reflected by axes 

1.1, 1.2 and 1.3, while the usefulness of de-duplication 

and record-linkage is reflected by this axis. For the sake 

of clarity, we will simply refer to this axis as “De-duplica-

tion” in the remainder of this article.

Axis 2.2: Flexibility

�is axis refers to the ability of infrastructures to sup-

port a range of different analyses and to its extensibility 

to future use cases. For example, some of the solutions 

analyzed in this article have been tailored towards a lim-

ited set of very specific functionalities (e.g. cohort selec-

tion). On the other hand, some solutions are based on 

generic frameworks that provide a high degree of exten-

sibility and options to integrate new analysis methods. 

In between these two extremes, there are solutions, e.g. 

based on meta-analyses, which offer a certain degree of 

flexibility, but only support some types of analyses. For 

example, the quality of survival analyses might be incon-

sistent, analyses of subgroups might require additional 

efforts for each subgroup and longitudinal studies as 

well as explorative investigations and assessments of data 

quality may be difficult to perform [42, 43]. �ere are also 

differences regarding the effort required to integrate new 

methods into different types of solutions. For example, 

integrating new types of analyses into solutions based on 

secure multi-party computing requires developing imple-

mentations using special cryptographic primitives, which 

is time-consuming and requires expert-level knowledge 

of cryptography.

Axis 2.3: Scalability

�is axis refers to the ability of an infrastructure to func-

tion well, i.e. to return a result to the analysis performed 

within a reasonable timeframe and with a reasonable 

demand for compute and storage resources, when load is 

increased (this is also called load scalability [44]). Within 

the context of data sharing infrastructures, an increase 

in load can be caused by an increase in the volume (e.g. 

number of patients) or dimensionality (e.g. number of 

attributes per patient) of the data analyzed, or the num-

ber of sites participating in the sharing process. Scal-

ability is a particular challenge for approaches based on 

secure multiparty computing, as current state-of-the-art 

approaches are known to not scale well with respect to 

both of these aspects. It general, it can be said that the 

performance of all secure multiparty computing meth-

ods is determined by the number of messages exchanged 

between the parties involved, the required number of 

rounds of communication between the parties and the 

computational overhead per round. It should be noted, 

however, that the exact increase in computational com-

plexity depends on the particular type of method used 

[45]and the operation performed [46].

Results

In this section, we present the results of an application 

of the framework proposed for an analysis of a range of 

well-known data sharing infrastructures for medical data 

that exhibit different characteristics along the axes sug-

gested. We note that some infrastructures are relatively 

generic and can be used to implement different methods 

with different characteristics. In these cases, we analyzed 

typical applications of the infrastructures and present 

alternative use cases in the “Discussion” section. In par-

ticular, we analyzed the following solutions: SHRINE/

i2b2 [47], dataSHIELD [20], OMOP/OHDSI [48], Per-

sonal Health Train [49], Clinerion Patient Network 

Explorer [50], TriNetX [51], MedCo [52], Sharemind 

MPC [53] and examples implementing the popular Data 

Enclave concept [54, 55]. Based on common privacy pro-

tection properties of the approaches studied, we assigned 

them to three different categories: (1) distributed data 

analysis, (2) cryptographic secure multi-party computing 

approaches and (3) data enclaves.

Distributed data analysis

One category, termed distributed data analysis, con-

tains approaches that exchange aggregated and poten-

tially anonymized data only. �is non-personal data 

is generated locally at the participating sites and then 

merged across locations using meta-analysis methods. 

Hence, regarding our framework, only aggregated or 

anonymized data (and thus Safe Data) is exchanged (axis 

1.1), no Safe Setting is hence needed (axis 1.2) and Safe 

Outputs are provided by design (axis 1.3). However, there 

are significant limitations regarding the analytical util-

ity of these types of data sharing approaches. None of 

the solutions analyzed from this category supports De-

duplication (axis 2.1), since vertical integration can only 

be conducted with additional measures (see “Discus-

sion” section). Moreover, some of the approaches in this 

category are very specific and others are quite generic 

(Flexibility, axis 2.2), while all share the disadvantages of 

meta-analyses described in section “Aspect 2: Assessing 

the usefulness of data sharing technologies”, such as lim-

ited possibilities to perform subgroup analyses. However, 

all approaches provide a high degree of computational 

Scalability, as computations can be offloaded to the par-

ticipating sites effectively (axis 2.3). Important examples 

of approaches in this category are:
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• SHRINE/i2b2 Informatics for Integrating Biology 

& the Bedside (i2b2) is an open-source clinical data 

warehouse used in various projects worldwide [47]. 

�e Shared Health Research Information Network 

(SHRINE) is an extension of i2b2 for distributed 

analysis [56]. It allows the creation of a network 

of peer sites, in which aggregated results of que-

ries are collected. SHRINE is for example used in 

a registry of pediatric patients with rheumatic dis-

ease [57] or in a network supporting clinical trial 

recruitment [58]. �e solution is specific, since it 

has been designed specifically to support cohort 

selection functions (Flexibility, axis 2.2).

• DataSHIELD �is software supports distributed 

analyses based on the R statistical computing envi-

ronment [20]. It creates a network of server nodes 

that connect to local instances of R. �rough a cli-

ent node, researchers can then send commands 

which are distributed to the local sites to calculate 

aggregated results without individual-level data 

leaving the sites. DataSHIELD has been deployed, 

for instance, in a network that investigates interac-

tions of ageing, mental well-being and environment 

[59] and it is a generic solution, since it supports a 

range of analysis methods based on R (Flexibility, 

axis 2.2).

• OMOP/OHDSI �e Observational Health Data Sci-

ences and Informatics (OHDSI) project [48] has 

developed the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM), 

which can be used to create highly structured and 

standardized local databases for real-world evidence 

studies. For distributed analyses, scripts can be exe-

cuted at the sites to derive aggregate data that can 

then be combined in meta-analyses. �is process is 

also supported by a range of tools provided by the 

OHDSI community. In practice, this approach has for 

example been utilized in a study of models for pre-

dicting stroke in women [60]. �e European Health 

Data Evidence Network (EHDEN) [61] aims to fos-

ter the adoption of OMOP/OHDSI in Europe. �e 

approach is generic, since a wide range of analyses is 

supported (Flexibility, axis 2.2).

• Personal Health Train �e Personal Health Train 

(PHT) is data sharing concept developed by differ-

ent private and public contributors [49]. It is based 

on a train analogy: (1) the data sources are called 

train stations, (2) the data analysis methods (e.g. 

query and merge procedures) are called trains. In all 

current implementations only aggregated data leave 

the stations towards the trains, hence implementing 

a meta-analysis approach. �e PHT has for instance 

been used to realize a study on distributed learning 

for predicting the post-treatment two-year survival 

of lung cancer patients [62]. It is a generic solution 

conceptualizing a container-based data sharing infra-

structure that can be used to implement wide a range 

of meta-analysis approaches (Flexibility, axis 2.2).

• Clinerion Patient Network Explorer and TriNetX 

Both the Patient Network Explorer by Clinerion [50] 

and the software by TriNetX [51] are parts of propri-

ety data sharing networks for hospitals established by 

these companies. After installing the software, local 

nodes in the hospitals provide interfaces for central 

services to collect aggregated data, for instance the 

number of patients meeting certain inclusion criteria. 

As an example, TriNetX has been used to collect data 

for investigating the risk of COVID-19 for people 

suffering from intellectual and developmental disabil-

ities [63]. Both solutions can be described as specific, 

as privacy protection is implemented by restricting 

the analysis methods supported (Flexibility, axis 2.2).

Secure multi-party computation

Approaches using cryptography-based secure multi-

party computation protocols to ensure that only 

encrypted individual-level data leaves the participat-

ing sites form an important additional category of data 

sharing infrastructures. Typically, it is also ensured that 

only analytical results aggregating the data from multiple 

sites can be decrypted at the end of a computation (thus 

also providing protection on the institutional level). As a 

result, only Safe Data (i.e. encrypted data) is exchanged 

(axis 1.1) in a Safe Setting, as data is not disclosed dur-

ing processing (axis 1.2). All solutions identified that fall 

into this category further implement specific analysis 

methods that ensure that only Safe Outputs are disclosed 

(axis 1.3). We note, however, that this is not an inher-

ent property of cryptographic approaches but a result of 

performing secure analyses or perturbing output data by 

the approaches investigated. It is well-known that Scal-

ability can be a problem for secure multi-party computa-

tion protocols (axis 2.3). Performance is often non-linear 

in the number of participating sites, implementations 

require a lot of computational resources and low-latency 

network connections with a high transmission rate, 

which can typically not be provided when data is shared 

over the internet. Whether or not duplicates can be 

detected and resolved (De-duplication, axis 2.1) and dif-

ferent types of analyses can be performed (Flexibility, 

axis 2.2) depends on the exact implementation. Impor-

tant examples of approaches from this category are:

• MedCo �e open source software MedCo uses addi-

tively homomorphic encryption to enable research-
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ers to perform analyses on encrypted data across sites 

[52]. �e analysis results are encrypted and can only 

be decrypted by authorized investigators. MedCo is 

implemented as an extension to i2b2 (analogously 

to SHRINE). �e software, for example, forms the 

backbone of the SCOR network for sharing data on 

patients with COVID-19 [64]. �e software focuses 

on cohort exploration and survival analysis. MedCo 

does not support resolving duplicates (De-dupli-

cation, axis 2.1) and is specific, as it only supports a 

limited set of functionalities and extensions require 

implementations to be developed based on the cryp-

tographic methods used by the software (Flexibility, 

axis 2.2).

• Sharemind MPC �is proprietary software has been 

developed by the company Sharemind. Similar to 

MedCo it enables computations on encrypted data 

hosted at multiple sites without decrypting it first 

[53]. �e software is oriented towards data scien-

tists. Analyses can either be designed in a proprietary 

programming language or in an environment which 

resembles the R statistics programming environ-

ment. �e solution has, for example, been used to 

analyze 10 million synthetic health records distrib-

uted to 1,000 health centers that also involved detect-

ing and removing duplicates (De-duplication, axis 

2.1) [65]. Sharemind MPC provides a generic frame-

work for privacy-preserving data sharing (Flexibility, 

axis 2.2).

Data enclaves

�e third category of approaches consists of implemen-

tations of the data enclave concept, in which individual-

level data of one or multiple sites is submitted to a data 

custodian maintaining a secure environment for data 

access [66]. Eligible researchers can run queries against 

the data stored by the custodian, the results of which are 

checked for anonymity before they are returned. Hence, 

individual-level, non-safe data is exchanged (Safe Data, 

axis 1.1) but access is restricted through a Safe Setting 

(axis 1.2) which ensures that no data is leaked and that 

output data is safe (Safe Outputs, axis 1.3). On the use-

fulness dimension, duplicate resolution is supported 

(De-duplication, axis 2.1) and large datasets as well as 

data from many participant sites can be shared in scal-

able manner (Scalability, axis 2.3). However, real-world 

implementations differ regarding their extensibility and 

Flexibility (axis 2.2). Important examples of data enclaves 

are:

• Scottish National Safe Haven �is enclave is operated 

by the Scottish National Health Services (NHS) and 

provides access to various health datasets [54]. Data 

is stored in pseudonymized form to enable record 

linkage. Data access is provided through a virtual net-

work with no internet access and no ability to install 

custom software. �e infrastructure has, for example, 

been used to study temporal trends in breast cancer 

incidence [67]. �e solution is somewhat generic, 

as typical data analysis methods are supported, but 

extensibility is limited as additional software, pack-

ages and functionalities can only be implemented by 

the enclave (Flexibility, axis 2.2).

• US Center for Medicare and Medicaid Services Vir-

tual Research Data Center �is enclave is operated 

by the US Center for Medicare and Medicaid Ser-

vices and provides access to claims data combined 

with other types of medical data [55]. To ensure that 

output data is safe, researchers are only allowed to 

export aggregated information which is reviewed and 

screened for identifiability before it can be down-

loaded [68]. �e system has, for example, been used 

for a study on the relative risk of Alzheimer’s disease 

among patients with prostate cancer who received 

androgen deprivation therapy [69]. �e solution is 

specific, since its software and functionalities focus 

on integration and analysis of claims data (Flexibility, 

axis 2.2).

Discussion

Principal results

In the previous sections, we have proposed a schema for 

systematizing privacy-preserving data sharing infrastruc-

tures for medical research. We applied this framework to 

study a wide range of solutions proposed and found that 

they can be assigned to three distinct categories, based 

on common properties. Table 1 summarizes the results of 

our analysis.

As can be seen from this summary, most solutions 

identified fall into the category of distributed data analy-

ses. One reason for this could be the fact that the tech-

nical complexity of this approach is relatively low, while 

it supports a fairly wide range of use cases. In compari-

son, secure multi-party computation is quite complex 

from a technical perspective and data enclaves are dif-

ficult to set up in some legislations, as individual-level 

data may not be allowed to leave the institutions in 

which it was initially collected. Distributed data analy-

sis, however, reaches its limits when analyses on indi-

vidual-level are needed or complex record-linkage and 

duplicate detection functionalities are required. Secure 

multi-party computation and data enclaves are relatively 

new approaches to medical data sharing, which can 

provide more functionalities. For them to be used even 
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more widely, technical challenges (e.g. regarding suitable 

cryptographic protocols) as well as legal challenges (e.g. 

regarding the question whether encrypted data be con-

sidered non-personal or what an appropriate legal status 

for data custodians could look like) will need to be over-

come. To accelerate work on these issues, policymakers 

should consider incentives for making innovative choices 

regarding data sharing architectures.

Comparison with prior work

Our work builds on the Five Safes framework to systema-

tize privacy protection. In prior work, the framework 

has already been used to study data sharing in official 

statistics [70], social and political sciences [71] and psy-

chology [72]. In the biomedical domain, the framework 

has been adopted to model risk-based anonymization 

approaches [73]. To the best of our knowledge, our work 

is the first to apply the framework to common biomedical 

data sharing infrastructures, however. Moreover, we have 

complemented the Five Safes framework for modeling 

privacy protection with additional axes for systematizing 

the usefulness of data sharing technologies, considering 

common requirements from biomedical research. Other 

articles analyzing data sharing infrastructures, such as 

the work by Foster [71], are not systematic and do not 

focus on biomedical research.

Other frameworks for data sharing in biomedical 

research have been proposed, which can also be used 

to analyze different technical approaches. �ese focus 

on other aspects, however. For example, Knoppers [74] 

proposed a framework for the sharing of genomic data 

with a particular emphasis on trust, responsible research 

and oversight using organizational and legal safeguards. 

�is is comparable to the non-technical axes Safe Peo-

ple and Safe Projects of the Five Safes Framework [33]. 

Moreover, Aziz et al. [75] presented an overview of pri-

vacy-preserving techniques for sharing genomic data, 

which is particularly sensitive and difficult to protect 

from privacy breaches. Hence, the paper puts a spe-

cific focus on cryptographic methods tailored towards 

genomic data sharing, which provide strong and prov-

able degrees of protection. Compared to our approach 

their framework used for comparisons is rather specific, 

focusing on cryptographic algorithms and their technical 

properties and less on off-the-shelf, more generic infra-

structures. Still, many of the aspects used by Aziz et al. 

in their comparisons are partially congruent to aspects of 

our framework (e.g. execution time, memory usage and 

network communication as aspects of Scalability, secure 

Table 1 Results of our analysis of solutions for privacy-preserving data sharing

a The processed data is encrypted individual-level data and thus safe

b Safe Outputs is an implicit result of providing Safe Data as input

Approach Year of 
publication

Category 1. Privacy protection 2. Usefulness

1. Safe data 2. Safe settings 3. Safe outputs 1. 
De-duplication

2. Flexibility 3. Scalability

SHRINE/i2b2 2008 Distributed data 
analysis

Yes No Yesb No Specific Yes

dataSHIELD 2010 Distributed data 
analysis

Yes No Yesb No Generic Yes

OHDSI 2014 Distributed data 
analysis

Yes No Yesb No Generic Yes

Personal Health 
Train

2017 Distributed data 
analysis

Yes No Yesb No Generic Yes

Clinerion 2015 Distributed data 
analysis

Yes No Yesb No Specific Yes

TriNetX 2015 Distributed data 
analysis

Yes No Yesb No Specific Yes

MedCo 2018 Secure multi-
party compu-
tation

Yesa Yes Yes No Specific No

ShareMIND 2008 Secure multi-
party compu-
tation

Yesa Yes Yes Yes Generic No

Scottish National 
Safe Haven

2015 Data enclave No Yes Yes Yes Generic Yes

Virtual Research 
Data Center

2014 Data enclave No Yes Yes Yes Specific Yes
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computations and output privacy as synonyms for Safe 

Settings and Safe Outputs, and accuracy as an aspect of 

Usefulness), which can be seen as an additional indicator 

for the broad applicability of our framework. Also Mittos 

et al. [76] presented a systematization of privacy-enhanc-

ing technologies for processing genomic data. However, 

their work focuses on many different types of processing, 

from which data sharing is just one example. Still, many 

of the open issues identified, such as the computational 

costs of some approaches and the need to improve the 

usefulness of results are in-line with our findings. Naveen 

et  al. [77] presented an overview of applications, chal-

lenges and solutions for genomic data processing, which 

also includes aspects of data sharing. �eir work contains 

lists of known privacy threats and specific approaches for 

implementing different use cases while mitigating those 

threats. Along these lines they systematically analyze 

open challenges within different application areas, but do 

not propose a common systematization spanning all of 

them. Notably, they also highlight some of the challenges 

mentioned in our work, such as the inherent trade-off 

between degrees of protection and usefulness. �apa 

et  al. [78] presented an overview of data sharing tech-

nologies for the more general area of “precision health”, 

also focusing primarily on cryptographic methods 

and methods requiring specific hardware support (e.g. 

Trusted Computing Environments). Consequently, the 

aspects used in their comparison of different approaches 

are quite similar to the aspects used by Aziz et al., which 

are well aligned with our more high-level framework as 

discussed above. In addition to that, they analyzed spe-

cific applications of data sharing frameworks, e.g. for dis-

tributed machine learning. �e axes used for comparing 

such solutions could serve as a basis for future extensions 

of our framework (see section “Limitations, future work 

and open research questions”).

A framework for real-world multi-database studies 

has been presented by Toh [79]. On a conceptual level, 

this framework is most closely related to our work. How-

ever, it puts a strong focus on study design and feasibility 

and thus only considers weighing analytic flexibility with 

privacy protection on the utility and risk axes as well as 

trading off data pooling and distributed analyses on the 

technology axes. Finally, a comprehensive, yet unsys-

tematic, overview of infrastructures for sharing data on 

COVID-19 has been presented by Raisaro et al. [64].

Limitations, future work and open research questions

We note that the systematization proposed is abstract 

and of a qualitative nature. It is hence only suited for 

performing initial high-level comparisons of differ-

ent solutions in the field as exemplified by the results 

of our analysis of selected implementations. Although 

a rigorous and formal framework would be desirable to 

enable more detailed comparisons, constructing such a 

framework is highly challenging. Important reasons can 

be found in a recent comment by Richie and Green [80] 

in which the authors advocate for the qualitative nature 

of the Five Safes framework. Aziz et  al. [75] also report 

challenges in identifying technical and quantitative cri-

teria that are general enough to apply to different types 

of approaches and that at the same time can be used for 

specific comparisons.

At a more fundamental level, even the quantitative 

modeling of privacy risks and usefulness is still an open 

research problem. Both aspects can only be captured by 

models that make very specific assumptions, which in 

turn may not apply to all projects and usage scenarios. 

For example, a recent overview by Wagner and Eckhoff 

lists 80 different formal privacy models [81]. However, 

some data sharing infrastructures and approaches sup-

port different privacy models to provide Safe Data and 

Safe Outputs, e.g. Differential Privacy [38] or solutions 

limiting the uniqueness of disclosed data, such as cell 

suppression [82] or k-anonymity [83]. In future work, 

we plan to extend our framework by incorporating the 

most common models. Regarding the usefulness of solu-

tions, some of the more fine-grained axes used in [75, 78] 

might serve as a starting point. One example is Accuracy, 

which reflects the impact of privacy models on output 

data quality and hence captures the risk-utility trade-off 

inherent to such technologies.

�e results of our analysis of the current landscape of 

solutions can also provide insights into potential direc-

tions for future work on data sharing methods. One 

important example is the low number of solutions sup-

porting de-duplication or record linkage. When analyz-

ing horizontally distributed data, the inability to identify 

and resolve population overlap can significantly reduce 

the quality of results [84]. If a study intends to analyze 

vertically distributed data, record linkage is crucial, as 

different data sets need to be combined on a patient-

level. One important example is research on rare dis-

eases, as patients with such conditions typically visit a 

wide range of healthcare providers and relevant data for 

each patient is therefore inherently distributed. Future 

work could be carried out to extend distributed data 

analysis infrastructures with record-linkage function-

alities, e.g. by enriching data with secure record linkage 

tokens [85]. Also, secure multi-party computation envi-

ronments could be extended with libraries including dif-

ferent record-linkage algorithms (see [86] for a recent 

example). Moreover, future work could explore ways to 

provide strong protection guarantees for inherently flex-

ible approaches, such as the Personal Health Train. �is 

could, for example, be achieved by integrating libraries 
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providing support for a wide range of privacy-preserving 

analysis functions within such infrastructures. Finally, a 

challenge with privacy-preserving data sharing infra-

structures is that access to individual-level data in some 

cases cannot be provided at all, although access to data 

from at least one site is often needed to develop analysis 

algorithms that can then be executed in the distributed 

network. One approach to overcome this limitation is to 

provide synthetic data derived from the original data for 

this preparatory process (see [87] for a recent example in 

the context of distributed data analysis).

Conclusion

In this article, we proposed a high-level framework for 

analyzing and comparing privacy-preserving data shar-

ing infrastructures for medical research. We believe that 

our framework makes the properties of data sharing 

approaches more transparent and can serve as a starting 

point for developing more comprehensive systematiza-

tions, ultimately supporting decision makers and regula-

tory authorities in gaining a better understanding of the 

trade-offs taken. We have shown that our systematization 

is of value, by using it to analyze existing solutions, show-

ing that there are fundamental differences between them. 

Finally, our results also provide insights into gaps, regard-

ing the systematization itself as well as the current land-

scape of data sharing infrastructures, that may be worth 

exploring in the future.
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Abstract 

Background: Modern biomedical research is data-driven and relies heavily on the 

re-use and sharing of data. Biomedical data, however, is subject to strict data protec-

tion requirements. Due to the complexity of the data required and the scale of data 

use, obtaining informed consent is often infeasible. Other methods, such as anonymi-

zation or federation, in turn have their own limitations. Secure multi-party computa-

tion (SMPC) is a cryptographic technology for distributed calculations, which brings 

formally provable security and privacy guarantees and can be used to implement a 

wide-range of analytical approaches. As a relatively new technology, SMPC is still rarely 

used in real-world biomedical data sharing activities due to several barriers, including 

its technical complexity and lack of usability.

Results: To overcome these barriers, we have developed the tool EasySMPC, which 

is implemented in Java as a cross-platform, stand-alone desktop application provided 

as open-source software. The tool makes use of the SMPC method Arithmetic Secret 

Sharing, which allows to securely sum up pre-defined sets of variables among different 

parties in two rounds of communication (input sharing and output reconstruction) and 

integrates this method into a graphical user interface. No additional software services 

need to be set up or configured, as EasySMPC uses the most widespread digital com-

munication channel available: e-mails. No cryptographic keys need to be exchanged 

between the parties and e-mails are exchanged automatically by the software. To 

demonstrate the practicability of our solution, we evaluated its performance in a wide 

range of data sharing scenarios. The results of our evaluation show that our approach 

is scalable (summing up 10,000 variables between 20 parties takes less than 300 s) and 

that the number of participants is the essential factor.

Conclusions: We have developed an easy-to-use “no-code solution” for performing 

secure joint calculations on biomedical data using SMPC protocols, which is suitable for 

use by scientists without IT expertise and which has no special infrastructure require-

ments. We believe that innovative approaches to data sharing with SMPC are needed 

to foster the translation of complex protocols into practice.

Keywords: Secure multi-party computation, SMPC, Secret sharing, GMW protocol, 

User experience, No-code, Joint calculations
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Background

Introduction

Biomedical research is becoming increasingly data-driven [1]. To create the large data-

sets needed to answer precise scientific questions, data needs to be re-used for more 

than the initial purpose of collection and shared between different actors in the health-

care system and the research community [2–7]. As a consequence, “data sharing” is 

endorsed by various funding agencies (e.g., [8–10]) and increasingly implemented in 

practice [11, 12]. �e term "data sharing" is used in a variety of ways. In this paper, we 

use it to refer to joint analyses of data stored at different institutions, which does not 

necessarily require the exchange of individual-level data. In research, data sharing can 

enable the generation of new knowledge (e.g., [13]) and also lead to higher citation rates 

[14, 15]. In addition to the increasing promotion of data sharing, there are also major 

hurdles to its adoption. Here, data protection and data privacy concerns are a central 

example (e.g., [7]). However, patients and the public have a positive attitude toward data 

sharing as long as their privacy is being protected [16–18].

Important laws protecting the privacy of patients and probands include the US Health 

Insurance Portability and Accountability Act (HIPAA) [19] and the EU General Data 

Protection Regulation (GDPR) [20]. Re-using or sharing data typically requires either 

(1) obtaining informed consent or (2) anonymizing the data [21]. However, on the one 

hand, obtaining consent is often infeasible, e.g., when data is analyzed in retrospect [22]. 

Anonymization, on the other hand, requires making inherent trade-offs between the 

degree of protection and the quality and hence utility of output data [23], often render-

ing individual-level data unsuited for answering medical research questions. As a result, 

a range of alternative approaches have been developed [24]. One example are distrib-

uted data sharing networks, in which no individual-level data, but aggregated results, are 

being shared amongst the partners to perform various types of joint analyses [25–27]. 

However, also this approach has limitations, for example when very small patient popu-

lations, e.g., with rare diseases, are to be studied, whose data cannot be aggregated [28].

Secure multi-party computation (SMPC) is an emerging cryptographic technology 

[29–31], which can be used to address the shortcomings of federated data networks. On 

an abstract level, SMPC protocols provide guarantees comparable to those of a trusted 

third party, with which the participating parties share their data with [32]. �is trusted 

third party performs joint analyses and sends only the results back to the participants. 

�e involved parties do not directly exchange data with each other and hence no infor-

mation is being disclosed between them. SMPC can provide exactly the same guaran-

tees by following specific cryptographic protocols that exchange encrypted data between 

the parties—without a trusted third party being involved. SMPC offers provable security 

guarantees and clearly stated assumptions. Especially for extremely sensitive informa-

tion, including various types of biomedical data as targeted in this work, those strong 

guarantees provide a way to perform distributed analyses that otherwise could not be 

performed due to data protection challenges.

As a relatively new technology, SMPC has only been implemented for practical data 

sharing in the last few years [33–35] and it has been argued that this is the case in bio-

medical research as well [36, 37]. While some examples have been described in the lit-

erature, e.g., for survival analyses, genome-wide association studies [38–41], genomic 
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diagnostics, detection of adverse drug events, or infection numbers during the COVID-

19-epidemic [42] (see Section “Comparison with Prior Work”), these are mostly research 

prototypes or specific implementations of SMPC for specific analyses in the context of 

specific projects. �ere are several reasons for the slow adoption of SMPC technologies, 

amongst which are legal barriers, communication barriers, technical barriers and usabil-

ity challenges (see “Limitations and future work” section).

Challenges and objectives

In the work described in this paper, we addressed two important barriers—technical 

complexity and usability—to foster the adoption of SMPC technologies for biomedical 

data sharing:

1. Technical complexity: To enable distributed analyses of data across institutions, 

external queries against local IT solutions must be allowed and responses must be 

returned. �is requires the installation of local services and an opening up of institu-

tional firewalls. Both needs to be done with great care, which can lead to high efforts 

and potentially a reluctance to participate in data sharing networks.

2. Usability: SMPC protocols are typically implemented as command-line applications 

or provided as programming libraries (e.g., for statistical computing environments), 

thus addressing technical specialists, data scientists or other SMPC researchers. �is 

makes it difficult for scientists involved in biomedical research projects, such as clini-

cians, to engage in SMPC-based data sharing.

We tackled these challenges by developing EasySMPC, which provides a “no-code solu-

tion” for securely performing joint calculations on distributed data using an intuitive 

graphical application. Moreover, no local services need to be installed and no permis-

sive network configuration is necessary, as the application uses e-mails to exchange data 

between the participants while executing its protocol. To demonstrate the practicability 

of our solution, we evaluated its performance in a wide range of data sharing scenarios.

Implementation

Secure multi-party computation

SMPC describes a field of cryptographic techniques concerned with joint computa-

tions while maintaining confidentiality guarantees regarding the parties’ secret inputs. 

�e field emerged in the 1980s with Andrew Yao’s publication of the “Garbled Circuits” 

protocol [43]. Another widely used SMPC method is the GMW-Protocol [44], which 

describes a way to securely compute a joint (Boolean) function on the secret inputs of n 

parties. �e underlying Boolean circuit uses only logical AND and XOR operations (that 

is, it states the function in algebraic normal form).

�e GMW protocol can easily be extended to not only operate on Boolean circuits 

with logical values, but also on Arithmetic circuits with values of a finite ring. �e idea 

of the secret sharing scheme is the same in both variants: generate shares (henceforth 

called “secret shares”) by mixing the secret value with randomness so that the combina-

tion of all shares results in the reconstructed secret. In the joint arithmetic computation, 
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additions can be evaluated locally and multiplications are evaluated using interactive 

sub-protocols, such as the Gilboa-Multiplication for the two-party case [45].

�is arithmetic extension of the GMW protocol, referred to as Arithmetic Secret Shar-

ing, is the central method implemented in EasySMPC. For further information, we refer 

interested readers to Additional file  1 of this paper and to the literature (the book by 

Evans et al. provides a good starting point [46]).

Design of EasySMPC

General approach

�e general idea of EasySMPC is to provide a user-friendly tool for making SMPC-based 

data sharing available through an intuitive interface. EasySMPC uses Arithmetic Secret 

Sharing over the finite ring Z 2
127

− 1  , that is a ring of integers with 2127 − 1 elements. 

�is assures, that for all practical values and number of parties the computation will not 

be restricted by the size of the finite field.1 As we only employ addition in this version, 

the protocol can be evaluated with two rounds of communication: first one round of 

sending/receiving shares for the values that are to be kept secret (e.g., case numbers of 

a rare disease in a hospital), hence revealing no information, and then a second round 

of sending/receiving shares for the intermediate results which can then be recombined 

to obtain the final result. As an inherent property of this family of secure protocols, this 

can be implemented without exchanging cryptographic keys in the classical sense during 

set up or prior to a computation, which is an additional factor contributing to the usabil-

ity of the tool. Finally, we note that the scheme used by EasySMPC is a "full-threshold" 

protocol, meaning that it is robust against up to n − 1 corrupted parties, where n is the 

total number of participating parties, thus, providing a very high degree of protection.

From the user perspective, EasySMPC uses three concepts: (1) Studies are the over-

arching concept composed of participants, variables and protocol states; (2) Participants 

refer to different people or institutions, such as hospitals, who wish to engage in a com-

mon computation. Participants are identified by their name and e-mail address. Each 

study is initiated by exactly one study creator and involves two or more additional par-

ticipants; (3) Variables refer to the data items that are independently summed up in one 

data sharing process and which are identified by unique names.

Figure 1 provides an overview of the overall process implemented by EasySMPC and 

the different steps that users need go through when using the tool.

As depicted, the process consists of two rounds of data exchange: In the first round, 

meta-data and the shares for the participants’ secret values are exchanged. For this 

purpose, the study initiator creates the study, thereby providing a study name, a list 

of participants and their contact details as well as the list of (named) variables that 

will be summed up. �e initiator also enters their own secret value for each varia-

ble, which will remain confidential. �e sharable information is then sent to all other 

participants. Each participant receives their message, initializes the study and enters 

their own secret value for each variable, which will also remain confidential. Each 

participant (apart from the initiator) now sends a message to all other participants to 

1 We note that EasySMPC nevertheless supports the summation of decimal numbers by using a fixed-point representa-
tion.
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distribute their respective secret share. Between communication rounds, each party 

calculates their new secret share locally by summing up the secret shares from round 

1. In the second round, the same process is repeated, thereby exchanging the shares of 

the result. When a participant receives the final message, the result is reconstructed 

from the secret shares and the resulting sum for each variable across all participants 

is displayed. With n participants, each user sends and receives 2 · (n − 1) messages. 

�at is, the number of messages for each participant grows linearly with the number 

of participants, implying that the overall number of messages sent during a calcula-

tion grows quadratically.

EasySMPC offers two ways of exchanging messages: (1) in the semi-manual mode the 

users exchange all messages by manually using their preferred e-mail client. �e e-mails 

are, however, pre-generated by EasySMPC and can be imported automatically from the 

clipboard; (2) in the automated mode the participants receive and import the initial mes-

sage manually. All further messages are exchanged automatically by an e-mail client built 

into the software.

Architecture and implementation of the software

�e architecture of EasySMPC follows the classic model-view-controller approach 

which is often used to implement applications with graphical user interfaces [47]. An 

overview of the most important modules is presented in Fig. 2.

EasySMPC is implemented in Java as a cross-platform, stand-alone application that 

was tested on Windows, MacOS and Linux. �e graphical application is built on top 

of two subsystems, (1) one for cryptographic SMPC operations and (2) one for input- 

and output as well as data exchange with external applications and the other partici-

pants. �e application itself consists of a module containing the different user-facing 

Fig. 1 Overview of the steps in EasySMPC

Fig. 2 General architecture of EasySMPC
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views and perspectives (described in more detail in the following section), as well as 

parts of the application controller, which is in charge of manipulating the model.

In detail, the three modules are designed as follows: (1) �e Application View and 

View-Controller consists of eight different perspectives that reflect the process illustrated 

in Fig. 1 and guide users through its execution. For the perspectives, highly extendable 

components based on Java Swing were implemented. (2) �e Model, Controller and 

SMPC module is two-fold: �e module contains (a) the application model holding all 

data that is needed for executing the protocol and provides methods to safely switch 

between the states defined in the state machine (see below). Moreover, the module 

implements (b) the cryptographic Arithmetic Secret Sharing scheme presented in Addi-

tional file 1 of this paper. All interactions with this part of the subsystem are performed 

through the application model. (3) �e Input and Output (I/O) subsystem provides func-

tionalities for importing data from Excel and CSV files and for sending and receiving 

data by e-mail. A message can either be sent semi-manually by opening the user’s default 

e-mail client with all relevant fields (recipient, name of study etc.) pre-filled or in a fully 

automated manner by the I/O subsystem. In both cases the message itself is included 

in each mail as a Base64 encoded string. Each message contains all relevant metadata 

including the participants of the calculation, the name of all variables and the current 

state of the protocol execution, as well as a checksum to detect possible corruptions. 

Note, that a corrupted message may only lead to an erroneous result but cannot com-

promise input data privacy. A message can be received semi-manually by copying and 

pasting data into EasySMPC or be retrieved automatically by the I/O subsystem. In the 

first case, the application also monitors the user’s clipboard and automatically imports 

all EasySMPC-related messages that are contained in any text copied by the user. In the 

second case, a bus specifically developed for EasySMPC is used to exchange the data 

automatically between the different e-mail accounts.

Fig. 3 High-level class diagram
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For the implementation, Java standard libraries as well as the libraries Jakarta 

Mail, Apache POI, Commons and Logging were used. Figure 3 displays a high-level 

class diagram of the software. �e class Study is central to the execution of calcula-

tions through EasySMPC, as it implements the core algorithm. It makes use of fur-

ther classes in the same module representing Participants as well as various types 

of messages and data used and exchanged. Data exchange is implemented through 

an abstract Bus system of which an implementation using e-mail is included. User 

interaction is controlled through the App, which contains the various perspectives 

described. It also acts as a mediator between the perspectives, the SMPC algorithm, 

data exchange and the tool’s data import and export capabilities.

As mentioned, a finite state machine makes sure that the cryptographic protocol 

is followed as needed and that no invalid state transitions are being performed. �e 

states and possible transitions are shown in Fig. 4. �e state machine is also the rea-

son why the application model, which handles the current state of the software, also 

contains parts of the controller. Given the asynchronous nature of data exchange, the 

API also allows saving the current state of the application at any time, not only after 

state transitions have been finalized.

Results

Overview of the software

�e different perspectives of EasySMPC are shown in Fig. 5. In the example, a com-

mon frequency distribution of co-morbidities of patients with Phenylketonuria 

(PKU), a congenital metabolic disease, is computed with four participating health 

care institutions. �e figure shows the perspectives for (1) initializing a study, (2) 

sending messages, (3) receiving messages and (4) displaying the result. Similar per-

spectives that are used for the second round of the protocol have been omitted for 

brevity.

As can be seen, EasySMPC features a structured and intuitive design, in which data 

is displayed to the users in tabular form. A progress bar at the top of the applica-

tion informs the user about the current step in the execution of the protocol. Impor-

tant actions for the respective step are directly available in each perspective. Further 

operations, such as loading and saving a project, can be performed via the application 

menu.

Fig. 4 Application states
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Performance evaluation

To evaluate the performance of EasySMPC we performed a wide range of experiments 

covering realistic application scenarios. Here we quickly provide an overview of results 

obtained using the default settings of EasySMPC. For a detailed description of the exper-

imental setup and the results we refer to Additional file 2.

We varied two aspects: (1) the number of participants and (2) number of variables.

Figure 6a shows the total number of messages exchanged when processing the data of 

a varying number of participants while Fig. 6b, c show the total exchanged data volumes 

and execution times, which depend on the number of variables summed up as well as 

the number of participants.

In summary, our experiments confirm that the approach implemented by EasySMPC 

is feasible even in complex scenarios. �e aggregation of 10,000 variables amongst 20 

participants can be performed in less than five minutes.

Fig. 5 Perspectives of EasySMPC for (1) initializing a study, (2) sending messages, (3) receiving messages and 

(4) displaying the result

Fig. 6 Experimental results obtained using the default settings



Page 9 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531  

�e size of the messages exchanged by EasySMPC depends on the length of the names 

of the variables and the sizes of its values. �e numbers obtained in our experiments 

show that, in a typical usage scenario, it can be expected that each variable-value-pair 

can be encoded in approximately 30 bytes (we used 10 random letters for each variable 

and values in the range of single-precision floating-point numbers). Many mail servers 

enforce a limit on the maximum size of messages that can be processed. Assuming a 

conservative limit of 10 Mbyte and based on the data obtained in our experiments this 

limit would be reached with about 340,000 variables. However, to support scenarios 

with even more variables, EasySMPC will split up larger messages into several smaller 

messages. �e maximum message size is configurable in the software.

More details on the complexity of the algorithms involved is provided in “Computa-

tional complexity” section.

Discussion

Principal results

EasySMPC is a tool that allows summing up values of variables keeping the participants’ 

inputs confidential. To realize this, the software uses an established Arithmetic Secret 

Sharing protocol.

EasySMPC’s innovative aspects lie in the fact that it is very easy to roll out, as no addi-

tional effort for installing software services or configuring network interfaces is required 

and that it offers an intuitive user interface that addresses the needs of non-technical 

users, such as medical researchers. �rough integration into the users’ desktop environ-

ments and existing e-mail infrastructures, the tool is able to leverage the most common 

communication channel that is likely to be readily available at sites wanting to engage in 

a common secure calculation. By using multiple rounds of calculations, several impor-

tant statistical analyses can be realized (see next section). We have demonstrated its 

practicability by an extensive evaluation. EasySMPC is released as open-source software 

under a permissive license and its source code is available online [48].

Supported data analyses

To make EasySMPC as easy to use as possible, the range of supported functionality has 

been kept to a minimum, focusing on the secure addition of a pre-defined set of vari-

ables. However, this basic functionality can be used to perform a range of more com-

plex statistical analyses. For this purpose, different (derived) variables can be processed 

in multiple cycles, where each cycle is defined as one execution of EasySMPC, i.e., two 

rounds of sending and receiving messages. An overview of how the most fundamen-

tal statistical methods in biomedical research, as identified by Scotch et al. [49], can be 

implemented with EasySMPC is provided in Table 1.

�e table shows that a range of analyses can be performed with one cycle in 

EasySMPC. Most of these analyses are suited for variables with a nominal level of meas-

urement (indicating that the values have no natural order) and variables with an ordinal 

scale of measure (indicating that values have a natural order, but no relative distance 

between values can be expressed). Important examples include the computation of com-

mon frequency distributions (already mentioned above) and chi-square tests, where 

the cells of the relevant contingency table have to be defined a priori and cell counts 
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can be summed up with EasySMPC to derive the final chi-square statistics. For ordinal 

data, quartiles can be derived from the common frequency distribution. Moreover, an 

inferential test of two independent distributions, the Wilcoxon rank sum test, can be 

performed using two common distributions computed with EasySMPC. For variables 

with an interval scale (indicating a natural order and a relative distance between values), 

further analyses are supported. For example, a common mean can be calculated by hav-

ing each participant share a sum of a variable and the number of values, which can be 

divided with each other after computing common sums. Implementing further statisti-

cal analyses will require more than one cycle. For example, the standard deviation of a 

common distribution can be computed by calculating the mean in a first cycle. In a sec-

ond cycle, each participant can calculate the variation of its data compared to the global 

mean. By using the variance computed in the second cycle and the total number of val-

ues calculated in the first cycle, the participants can further calculate the total standard 

deviation. In a third cycle, the total covariance can be computed to investigate a correla-

tion for horizontally distributed data. Analogously, a t-test or analysis of variance can 

be performed by calculating the mean per group in a first cycle and the variance of local 

data in relationship to the global mean in a second cycle. When all those common sums 

are computed, the t-test and analysis of variance (ANOVA) statistics can be calculated.

We note that when an analysis is performed using more than one cycle, more data 

will be disclosed than when the complete process would have been performed using a 

tailored SMPC protocol. However, we would like to point out that, as already mentioned 

above, only aggregated and likely less sensitive data (cf. GDPR Recital 162 (5) [20]) is 

disclosed in the intermediate results. However, this needs to be carefully analyzed on a 

case-by-case basis before performing more complex analyses.

Computational complexity

With its actual runtime being highly dependent on the employed (networking) hard-

ware, the asymptotic complexities regarding runtime and space usage are important for 

evaluating the protocol. EasySMPC employs a SMPC protocol with a constant num-

ber of communication rounds and outside of those interactions only non-interactive, 

Table 1 Example of common statistical methods that can be implemented with EasySMPC

a All participants learn the global sum of the data entered locally. No participant learns local values of the other participants

b t‑test is a special case of the analysis of variance with two groups

c Only possible if data for both variables to be correlated are available at the parties (horizontal data distribution)

Statistical method Level of 
measurement

Input  dataa Cycles with 
EasySMPC

Frequency distribution Nominal Local frequencies per class 1

Chi-square test Nominal Local frequencies per cell 1

Quartiles (median, interquartile range) Ordinal Local frequencies per class 1

Wilcoxon rank sum test Ordinal Local frequencies per class 1

Mean Interval Local sum and local count of values 1

Standard deviation (SD) Interval Data for mean and local deviation of 
mean

2

t-test/analysis of variance (ANOVA)b Interval Local sum, local count of values and 
local deviation of group mean

2

Correlation  coefficientc Interval SD per variable, co-variance per variable 3
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computationally inexpensive additions. �is means that EasySMPC’s asymptotic runt-

ime complexity is linear in the number of network interactions. �e number of mes-

sages sent by each participant in a computation with n participants is 2 · (n − 1) (see 

also “Design of EasySMPC” section). �is also means that it is unlikely that limits of 

typical mail servers regarding the number of messages that can be sent within a certain 

timeframe will be reached in calculations with a reasonable number of participants. �e 

overall number of messages, which determines runtime performance, is O(n2) , which 

is executed in a parallel manner over n concurrent processes (one executed by each 

participant).

Space complexity, again, is dependent on the number of messages. �e messages con-

tain the variable names and values, as well as a small overhead. Each individual message 

scales linearly in the number of variables. �e overall space complexity of EasySMPC 

therefore is O(v·n2) with v being the number of variables, where each participant needs 

memory of O(v · n).

Lastly, the consecutive execution of EasySMPC to create the more complex analyses 

listed in Table 1 (see “Supported data analyses” section) compose linearly, as all exam-

ples use the same number of participants and variables for each iteration. As the number 

of iterations is small in every given case, the incurred small factor can be omitted in an 

asymptotic complexity analysis.

Comparison with prior work

A number of SMPC protocols and solutions have already been described in the literature 

that can be used in different areas of biomedical research. For example, Stammler et al. 

[41] and other authors [50–52] have investigated general secure record-linkage pro-

cesses [53]. Moreover, El Emam et al. describe a protocol for the secure linkage of data 

for surveillance registries [54]. Several works describe the application of SMPC tech-

niques for specific use cases in biomedical research. Examples include methods for con-

ducting drug-target interaction assessments [55, 56], drug screening [57], genome-wide 

association studies [38, 39, 58–63] and genomic diagnostics [64]. Other works propose 

the application of SMPC techniques to realize specific statistical methods allowing bio-

medical data analyses, such as (1) the calculation of Kaplan–Meier estimators [65, 66], 

(2) linear [67] or (3) logistic [68–71] regression analyses and k-means clustering [72]. 

In addition, there are generic frameworks that can be used as a basis for implementing 

specific SMPC algorithms. Important examples include technical programming librar-

ies and environments such as Sharemind MPC [73], FRESCO [74], ABY [75], MOTION 

[76] or MP-SPDZ [77] and generic data sharing infrastructures, such as MedCo [78] or 

FAMHE [79]. Tools that specifically target usability are also a hot topic in the biomedical 

field (see, e.g., [80, 81] for recent examples).

�e papers cited in the first three areas describe complex algorithms which have 

been developed for a particular purpose. EasySMPC, on the other hand, follows a dif-

ferent strategy and supports a generic functionality optimized for usability by people 

that are not IT specialists. Moreover, we note that EasySMPC is not a research proto-

type but has been designed for real-world applications. �e same is true for MedCo 

and FAMHE, which provide more comprehensive functionalities than EasySMPC. 
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However, the efforts required to install, configure and maintain these solutions is rel-

atively high, while EasySMPC was designed to be as easy as possible to install and use.

Limitations and future work

�e current restriction of EasySMPC to addition and subtraction is a major limita-

tion of the software. While, as we have shown, this basic functionality can be used 

to implement a range of analyses, this can be cumbersome, as several independent 

rounds need to be performed. In future versions of the tool, we plan to add support 

for additional basic operations as well as more complex data analyses. On the user 

interface level, we plan to maintain EasySMPC’s usability by using a spreadsheet-like 

approach for entering data and displaying results.

In addition to the controlled experiments presented in this paper, we have also per-

formed feasibility evaluations with EasySMPC in a real-world setting involving sev-

eral hospitals from the German CORD project for research on rare diseases. While 

EasySMPC worked very well in all of those settings, the use of e-mail as a commu-

nication infrastructure resulted in some limitations. One example is that common 

mail servers may flag communication as spam if a very large number of messages is 

exchanged due to a large number of participants being involved. To also support such 

use cases, work is currently underway to extend the bus functionality of EasySMPC to 

other common communication technologies.

On the security and privacy-side, some trade-offs had to be made. First, the dif-

ferent parties are only authenticated via access to the e-mail accounts, meaning that 

a man in the middle attack could be performed and the integrity of the calculation 

cannot be guaranteed. However, this does not affect the confidentiality of the data 

entered by the participants, since the employed protocol is proven to be secure [44]. 

�us, in the worst case, an attacker might maliciously change the calculated results, 

but is never able to obtain the input data of other participants. Moreover, like many 

other SMPC solutions [34], EasySMPC provides a safe setting for processing data but 

does not necessarily guarantee that the output data is also protected (see also “Sup-

ported data analyses” section). In future work, we plan to address these issues by inte-

grating more comprehensive authentication mechanisms and methods for providing 

safe outputs, such as Differential Privacy [82].

Finally, there are a few general barriers to the further adoption of SMPC methods 

that are not specific to EasySMPC. For example, Tõldsepp et  al. [83] identified the 

following important challenges that also apply to our software: (1) legal frameworks 

often do not consider SMPC, methods which in turn leads to legal uncertainties 

(see also [37]), (2) it can be challenging to explain and communicate the properties 

of SMPC to relevant stakeholders (e.g., Institutional Review Boards (IRBs) or ethics 

committees; see also [37, 46, 84]), (3) users may misuse SMPC technologies leading to 

additional risks in the honest but curious attacker model typically assumed (see also 

[85]) and (4) data analysts might find it difficult to analyze data they cannot access 

directly (see also [46, 86]). By developing EasySMPC which makes such technologies 

available to a broader audience and more use cases, we hope to be able to contribute 

to overcoming these barriers.
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Conclusions

In this paper we have presented EasySMPC, a user-friendly graphical application 

supporting the secure analysis of distributed data across multiple institutions with-

out requiring IT expertise. Although SMPC methods are considered a break-through 

technology for data-driven medical research, they are not in widespread use to date 

and implementing them can be associated with major hurdles. We believe that inno-

vative no-code approaches to secure data sharing, as the one presented in this paper, 

can foster the translation of more complex protocols into practice.

Availability and requirements

Project name: EasySMPC. Project home page: https:// github. com/ prass er/ easy- smpc. 

Operating system(s): Platform independent. Programming language: Java. Other 

requirements: Java 14 or higher. License: Apache 2.0. Any restrictions to use by non-

academics: none.
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