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Nonlinear Mixed-Effects Model of Z-Endoxifen 
Concentrations in Tamoxifen-Treated Patients 
from the CEPAM Cohort
Anna M. Mc Laughlin1,2,† , Thomas Helland3,4,5,† , Fenja Klima1,2 , Stijn L.W. Koolen6,7 , 
Ron H.N. van Schaik8 , Ron H.J. Mathijssen6 , Patrick Neven9, Jesse J. Swen10 , Henk-Jan Guchelaar10 , 
Florence Dalenc11,12, Melanie White-Koning12 , Robin Michelet1 , Gerd Mikus1,13 , 
Werner Schroth14,15 , Thomas Mürdter14,15, Hiltrud Brauch14,15,16,17 , Matthias Schwab15,16,17,18 , 
Håvard Søiland5,19 , Gunnar Mellgren4,5,  Fabienne Thomas11,12 ,  Charlotte Kloft1,‡ , and 
Daniel L. Hertz3,*,‡  on behalf of the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) 
Consortium                                                      

Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 
is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of 
plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds 
below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials 
of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. 
Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment 
outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling 
and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by 
pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After 
cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and 
Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total 
endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and 
contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen 
pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single 
agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen 
concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold 
would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive 
breast cancer.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	; Efficacy of tamoxifen treatment may be compromised in pa-

tients with hormone-receptor positive breast cancer whose sys-
temic Z-endoxifen is below a threshold concentration. Systemic 
concentrations of Z-endoxifen are determined by CYP2D6 
genotype and potentially other clinical and genetic factors.
WHAT QUESTION DID THIS STUDY ADDRESS?
	; This study uses nonlinear mixed-effects modeling of a large 

(> 6,000) pooled cohort of tamoxifen-treated patients with 
measured systemic endoxifen concentrations to determine the 
contribution of genetic and clinical variables to systemic Z-
endoxifen concentrations.

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
	; The final parent-metabolite model can predict Z-endoxifen 

concentrations for patients based on their CYP2D6 and 
CYP2C9 genotype, body weight, and co-medication with 
CYP2D6 inhibitors.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	; This model can be used to simulate Z-endoxifen concentra-

tions in patients who received tamoxifen within large prospec-
tive clinical trials with long-term survival data to identify the 
Z-endoxifen systemic concentration threshold below which ta-
moxifen treatment is less efficacious.

ARTICLE

https://orcid.org/0000-0002-5936-1877
https://orcid.org/0000-0002-8681-9601
https://orcid.org/0009-0002-8504-9788
https://orcid.org/0000-0002-0973-7530
https://orcid.org/0000-0003-1864-2151
https://orcid.org/0000-0001-5667-5697
https://orcid.org/0000-0002-3965-5552
https://orcid.org/0000-0002-7085-1383
https://orcid.org/0000-0001-5072-5489
https://orcid.org/0000-0002-5485-607X
https://orcid.org/0000-0003-1783-133X
https://orcid.org/0000-0003-1412-4592
https://orcid.org/0000-0001-7531-2736
https://orcid.org/0000-0002-9984-075X
https://orcid.org/0000-0002-9285-2774
https://orcid.org/0000-0001-9886-412X
https://orcid.org/0000-0001-9344-8514
mailto:
https://orcid.org/0000-0003-0501-1035
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpt.3238&domain=pdf&date_stamp=2024-03-18


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 116 NUMBER 3 | September 2024 691

Tamoxifen is a selective estrogen receptor modulator approved 
for use in the prevention, adjuvant, and metastatic treatment of 
hormone receptor positive breast cancer and its use has resulted 
in large gains in survival when used in the adjuvant treatment of 
pre- and postmenopausal women.1 Currently, the drug is most 
commonly used in the adjuvant setting for premenopausal pa-
tients either as monotherapy or with ovarian function suppression 
or for postmenopausal patients who cannot tolerate aromatase 
inhibitors, with a recommended treatment time of 5–10 years.2,3 
Despite its effectiveness, ~ 25% of patients with early-stage breast 
cancer experience recurrence within 10 years of diagnosis.

Endocrine resistance caused by aberrations in the ER/PgR signal-
ing pathways or conversion to estrogen receptor (ER)-independent 
pathways4 are established mechanisms of resistance to tamoxifen 
therapy. Another mechanism is metabolic resistance, which is the 
inability to generate adequate concentrations of tamoxifen active 
metabolites. Tamoxifen is a weak anti-estrogen that is metabolically 
activated to more potent anti-estrogens, specifically Z-endoxifen and 
Z-4-hydroxy-tamoxifen (4OHtam). Z-endoxifen is regarded as the
most important active metabolite due to its plasma concentrations
exceeding 4OHtam by 5–10 times.5 The major route of Z-endoxifen
formation is via CYP2D6, an enzyme encoded by the highly poly-
morphic CYP2D6 gene. Patients carrying allelic variants that impair 
CYP2D6 activity have lower systemic Z-endoxifen concentrations,
which may predict worse tamoxifen efficacy.6,7 Secondary analyses of 
prospective studies have identified threshold Z-endoxifen concentra-
tions below which breast cancer recurrence risk may be increased8–11; 
however, prospective studies have failed to validate a direct associ-
ation between recurrence and Z-endoxifen pharmacokinetics12–14 
or CYP2D6 genotype.15 This has resulted in conflicting clinical
guidelines on whether to use drug concentration measurements or
CYP2D6 genotype to personalize tamoxifen treatment.16–18

Validation of a therapeutic Z-endoxifen threshold in large, 
prospective tamoxifen clinical trials with long-term efficacy fol-
low-up has not been possible because these trials did not collect 
samples for endoxifen measurement.19,20 Conducting such a trial 
is also infeasible, as a recent analysis concluded that 1,500–4,500 
patients with ER-positive breast cancer would have to be followed 
for many years for a sufficiently powered trial.21 Previous attempts 
to use retrospectively genotyped CYP2D6 as a surrogate marker 
for predicting Z-endoxifen concentrations in these trials have been 
unsuccessful,19,20 possibly because CYP2D6 genotype explains 

only about half of the variability in Z-endoxifen concentration6 
and potentially due to technical challenges with genotyping ar-
chived tumor tissue,22,23 limitations with translating genotype to 
activity phenotype,24 or inclusion of patients currently receiving 
other anti-cancer treatment.25 Clinical factors, such as age, weight, 
and concomitant medications, also contribute to tamoxifen/ 
Z-endoxifen pharmacokinetics.5,6,26–28 The generation of endoxi-
fen from tamoxifen requires multiple metabolic steps and genetic
alterations in enzymes responsible for upstream metabolism have
also been associated with endoxifen concentrations. Reduced activ-
ity variants (*2 and *3) in CYP2C9 have been associated with lower 
endoxifen concentrations in several studies, whereas CYP3A4
*22, a reduced activity variant, demonstrated the opposite effect
by increasing endoxifen levels in tamoxifen-treated patients.6,27 In
addition, genetic alterations in phase II metabolic enzymes, such
as UGTs and SULTs, responsible for endoxifen elimination have
been demonstrated to affect endoxifen concentration.6

The primary objective of the CYP2D6 Endoxifen Percentage 
Activity Model (CEPAM) consortium is to apply pharmacometric 
modeling and simulation to existing data to determine whether there 
is an association between Z-endoxifen pharmacokinetics and tamox-
ifen treatment outcomes. The first critical step, reported here, is the 
generation of an endoxifen concentration prediction algorithm by 
pharmacometric modeling of existing datasets of tamoxifen-treated 
patients in whom systemic endoxifen concentrations were also mea-
sured, and pharmacogenetic and clinical data are available.

METHODS
Clinical study database
The raw CEPAM database collected clinical study cohorts of patients re-
ceiving tamoxifen treatment with endoxifen concentration measurement 
and CYP2D6 genetic data. All studies had been conducted in accor-
dance with the Declaration of Helsinki and approved by the respective 
institutional review board. Tamoxifen and Z-endoxifen or total endox-
ifen (measurements obtained using assays not separating Z- and Z-4′-
endoxifen) concentrations had been quantified in plasma or serum using 
various analytical methods (detailed information in Table S1). For each 
patient, one measurement was available for inclusion in the CEPAM da-
tabase. Genetic variants (Table S2) and enzyme inhibitors and inducers 
for CYP2D6 and other relevant pharmacogenes were collected from each 
study that had such data available.

In the data cleaning step, each pharmacokinetic study was checked for 
representation of the target population, completeness, meeting the inclu-
sion criteria, and missing data values. Graphical and numerical methods 
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were used to assess dose-normalized endoxifen and tamoxifen concentra-
tions, and studies with concentration ranges that deviated substantially 
with no explanation were excluded. Missing data in the analysis dataset 
was addressed using imputation. Details on the data cleaning process, in-
cluding the studies/patients that were excluded and the rationale, and a 
detailed list of the imputation strategy are provided in Supplementary 
Text S1.

Tamoxifen adherence, based on patient self-report, medication dia-
ries, or prescription records, was reported for < 50% of the patients in 
the database. Therefore, tamoxifen concentrations ≤ 60 ng/mL29 were 
used to assign nonadherence status in patients receiving ≥ 20 mg tamox-
ifen daily.

Development of the Z-endoxifen concentration prediction 
algorithm
The development of the endoxifen concentration prediction algorithm 
was to be based on a previously published joint parent-metabolite 
nonlinear mixed-effects pharmacokinetic model of tamoxifen and 
Z-endoxifen.26 The model was selected following the principle of par-
simony and taking the patient population and the available analyte mea-
surements into consideration. From recently published models,30,31 the
most recent and parsimonious model built on the broadest patient co-
hort compared with other available models of the two analytes tamoxifen 
and Z-endoxifen was selected.26 In short, this pharmacokinetic model
consisted of a gut compartment, a tamoxifen compartment, and a Z-
endoxifen compartment (Figure 1a) and postulated linear absorption,
metabolism, and elimination processes. Detailed information on this
model and its development are available in our previous publications.26,32

Using the previous pharmacokinetic model as a starting point, the 
development of the endoxifen concentration prediction algorithm using 
NONMEM consisted of several steps:

1. External evaluation of the previous model using the CEPAM anal-
ysis dataset.

2. Exploratory graphical analysis of the CEPAM analysis dataset to
identify potential additional covariates for testing.

3. Covariate analysis to refine already included covariate relationships 
and test for the inclusion of new covariates.

4. Model extension to allow inclusion of patients with total endoxifen 
measurements.

External model evaluation. The external evaluation aimed to identify 
the overall predictive performance of the previously published pharma-
cokinetic model for the CEPAM analysis dataset. For this, the model 
was used to predict tamoxifen and Z-endoxifen concentrations in the 
CEPAM analysis dataset (excluding patients with co-medication, non-
adherent patients, patients with only total endoxifen concentrations, 
and patients included in 2 studies (18 and 19), which had already been 
used for model development). The predictions were then compared with 
the measured concentrations, and bias and precision were assessed using 
mean prediction errors (MPEs) and mean absolute prediction errors 
(MAPEs), respectively.33

Exploratory graphical analysis of the CEPAM analysis dataset. An 
exploratory graphical analysis (EGA) was performed to identify trends 
in tamoxifen and/or Z-endoxifen concentrations across patient and/or 
treatment characteristics and to guide the selection of potential patient/
treatment characteristics to be included for the covariate analysis. A list 
of tested patient and treatment characteristics included in the EGA is 
provided in Supplementary Text S1.

Covariate analysis. Patient and treatment characteristics that had 
shown a trend in the exploratory graphical analysis and whose impact 
on a model parameter was considered physiologically plausible were 
selected for testing on model parameters, that is, tamoxifen clearance 
(CL20/F), Z-endoxifen formation (CL23/F) or tamoxifen bioavail-
ability (F). Available genotype data were translated to predicted ac-
tivity phenotype, as previously described.27,34 To reduce the number 
of parameters to estimate, the previously applied categorical imple-
mentation of CYP2D6 activity score (AS) on CL23/F26 was replaced 
with an exponential ordinal CYP2D6 AS covariate relationship, 

Figure 1  Schematic representation of the joint tamoxifen (TAM) and endoxifen (END) pharmacokinetic model. The model and implemented 
covariate relationships for the starting model were generated from a previous publication26 (a) and extended in this updated analysis (b). 
(a) Tamoxifen was modeled to be absorbed from the gut compartment by a first-order process (ka) with lag time (tlag). Once absorbed and
distributed in the central compartment (TAMC) with the apparent volume of distribution VTAM,C/F, it could either be metabolized to Z-endoxifen
(apparent formation C23/F) or to other metabolites (apparent clearance CL20/F); both metabolism pathways were implemented as first-order
processes. The apparent elimination of Z-endoxifen from its central compartment (Z-ENDXC) with apparent volume of distribution VENDX,C/F
was modeled using a first-order process (CL30/F). Covariate-parameter relationships on CL20/F and CL23/F which had been included in
the starting model are shown using tildes (~). (b) In the extended model, total endoxifen (TOT-ENDXC) was included using a conversion factor
(CF) from the central Z-endoxifen compartment. Covariate-parameter relationships on CL20/F, CL23/F, or on the apparent bioavailability (F)
which had been included in the starting model or were additionally identified during model development are shown using tildes (~). Covariate-
parameter relationships with a star (*) had been included in the starting model but were now refined in the extended model.
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requiring the estimation of a single parameter only. The same ap-
proach was applied for the implementation of CYP2C9 and CYP3A4 
metabolic phenotypes and the implementation of co-medication with 
CYP enzyme inhibitors and inducers, provided that the strength of 
the inhibitor/inducer was reported. Continuous covariates were nor-
malized to the median value in the CEPAM dataset and implemented 
using power functions. Nonadherence was implemented on F using a 
fractional change model. Concomitant medication information was 
translated into strength of inhibition or induction for each relevant 
enzyme system using the Drug Interactions Flockhart Table35 and 
tested as an ordinal covariate in the model. Stepwise covariate model-
ing36 using significance criteria of α = 0.05 for the forward inclusion 
followed by α = 0.001 for the backward exclusion was performed to as-
sess the significance of the potential covariate impact and account for 

multivariate analysis. Covariates included in the previous model were 
re-tested in the backward exclusion step to determine whether they 
still provided significant contributions. For covariates of interest, if 
the percentage of missing data was high (fractions > 32%), a sensitivity 
analysis regarding the impact of the imputation was performed by ex-
cluding patients with missing covariate information and re-estimating 
model parameters.

Model extension to allow for inclusion of patients with total 
endoxifen measurements
Total endoxifen is the sum of the active Z-endoxifen and other inactive 
endoxifen isomers, of which Z-4′-endoxifen is the most abundant.37

Z-endoxifen represents approximately half of the total, but this can vary 

Figure 2  CONSORT diagram. Patient and data exclusion steps from the complete CEPAM database to the CEPAM analysis dataset are 
depicted. CEPAM, CYP2D6 Endoxifen Percentage Activity Model.
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dramatically between patients38 and may be related to genetic and clin-
ical variables. The CEPAM database includes endoxifen concentrations 
measured by various bioanalytical assays, some of which did not sepa-
rate the isomeric forms of endoxifen. To allow the inclusion of studies 
with measured total endoxifen concentrations into the analysis, the 
model was investigated for extension. The formations of Z-endoxifen 
and Z-4′-endoxifen are assumed to be competing processes27 and the
conversion factor is therefore assumed to vary based on the individual 
Z-endoxifen formation.37 Consequently, the conversion factor was im-
plemented in the model as a function of the individual Z-endoxifen for-
mation (CL23/F). Details on the model extension process are given in
Supplementary Text S1.

Assessment of model performance
Information on the parameter estimate precision was obtained using 
sampling importance resampling.39 Model performance was assessed 
using the objective function value (OFV) criterion, goodness-of-fit plots, 
plots of conditional weighted residuals vs. typical predictions and time, 
and stratified prediction-corrected visual predictive checks (pcVPCs)40 
using 200 simulations for accurate predictions.

RESULTS
CEPAM analysis dataset
The raw CEPAM database included 7,441 patients from 28 
study cohorts, from which studies and patients were elimi-
nated for a variety of reasons (Figure 2): 582 (7.8%) patients 
were removed due to not meeting the analysis inclusion criteria 
(Supplementary Text S2). Five studies (9.5% of the patients) 
were removed due to substantial deviations from tamoxifen 
or endoxifen ranges as compared with the rest of the database 
(Supplementary Text S2). Finally, 70 (0.94%) patients were re-
moved due to implausible concentration measurements or dos-
ing as specified in Figure 2. The final CEPAM analysis dataset 
comprised 6,083 patients from 23 study cohorts (Table 1, 
Table S3).

Estimation of Z- and total endoxifen
The measured endoxifen type was reported as total and  
Z-endoxifen for 21.8% and 78.2% of patients, respectively. Four
studies (5.6% of patients in the raw database) were re-assigned
from total to Z-endoxifen, and one study (2.4% of patients in the
raw database) was re-assigned from Z-endoxifen to total endoxi-
fen based on inspection of concentration distributions and after
review of the analytical chemistry methods (Supplementary Text 
S2). To test the impact of the study re-assignment on the final pa-
rameter estimates, the re-assigned studies were removed and the
model parameters re-estimated. No substantial changes in the
parameter estimates were observed. After re-assignment, 86%
of endoxifen concentration measurements were assumed to be 
Z-endoxifen measurements. For 26% of patients with Z-endoxifen 
measurements, additional Z-4′-endoxifen measurements were 
available.

Development of the endoxifen concentration prediction 
algorithm

External model evaluation. The model predictions, especially 
for the relevant lower concentration range, for the external 

Table 1  Clinical study and population characteristics in the 
CEPAM analysis dataset

Characteristic

Total (n = 6,083) number of 
patients or PK measurements 
(%), except for age and body 

weight: median, range

Number of PK measurements (after re-classification)

Tamoxifen 6,083 (100)

Z-endoxifen 5,231 (86.0)

Z-4′-endoxifen 1,384 (22.8)

Total endoxifen 852 (14.0)

Tamoxifen dose

5 mg q.d. 154 (2.53)

10 mg q.d. 4 (0.0658)

20 mg q.d. 5,919 (97.3)

40 mg q.d. 2 (0.0329)

Missing dataa 4 (0.0658)

Age, years

Median 51

Range 22–95

Missing dataa 472 (7.76)

Body weight [kg]

Median 67

Range 32–190

Missing dataa 2,022 (33.2)

CYP2D6 activity score

0 324 5.33)

0.25 97 (1.59)

0.5 497 (8.17)

0.75 33 (0.542)

1 111 (26.5)

1.25 427 (7.02)

1.5 707 (11.6)

2 2,168 (35.6)

2.25 3 (0.0493)

2.5 17 (0.279)

3 125 (2.05)

Missing dataa 74 (1.22)

CYP2D6 inhibitor co-medicationb

None 3,832 (63.0)

Weak 203 (3.34)

Moderate 7 (0.115)

Strong 64 (1.05)

Missing dataa 1,977 (32.5)

CYP3A4 genotype-predicted phenotypes

Poor metabolizer 3 (0.0493)

Intermediate metabolizer 230 (3.78)

Normal metabolizer 2,208 (36.3)

Missing dataa 3,642 (59.9)

 (Continued)
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evaluation dataset (n = 3,615 patients) were accurate and 
precise (Figure 3), as indicated by small MPEs of 1.91 ng/mL 
and − 0.983 ng/mL, and small/moderate MAPEs of 7.75 ng/mL 
and 7.05 ng/mL for tamoxifen and Z-endoxifen, respectively. 
Thus, the previously published joint parent-metabolite model26 
was considered appropriate for use in the further model 
development.

Exploratory graphical analysis of the CEPAM analysis dataset. 
Several associations between patient/treatment characteristics 
and the two main model parameters were identified:  
Z-endoxifen formation (CL23/F) showed an inverse relation

with body weight and a direct relation with increasing CYP2C9 
activity; tamoxifen clearance (CL20/F) was positively related 
with increasing CYP3A4 activity. Co-medication with CYP2D6 
inhibitors was associated with lower Z-endoxifen formation 
whereas co-medication with CYP3A4 inducers was associated 
with higher tamoxifen clearance. For co-medication with 
CYP2C9 inducers or inhibitors, a weak association was observed 
with tamoxifen clearance. All other potential covariates tested 
did not show any trends (Supplementary Text S2).

Covariate analysis. Table S4 and Supplementary Text S2 
show all tested covariate-parameter relationships, their result 
during stepwise covariate modeling and the final covariate-
parameter equations; Table 2 shows their estimates. The 
magnitude of the covariate impact was high on Z-endoxifen 
formation (CL23/F) for CYP2D6 AS34 (62% decrease from 
AS = 2 to AS = 0) and CYP2D6 inhibitor co-medication (60% 
decrease for strong inhibitors; Figure 4) and on tamoxifen F 
for nonadherence (66% lower). The magnitude of the covariate 
impact was moderate-to-low for other covariates: Z-endoxifen 
formation was impacted by CYP2C9 phenotype (27% decrease 
from normal metabolizer (NM) to poor metabolizer (PM)) and 
body weight (53% decrease from lightest to heaviest; Figure S2) 
and tamoxifen clearance by age (20% increase from oldest to 
youngest), body weight (47% increase from lightest to heaviest), 
and CYP3A4 phenotype (30% increase from PM to NM). In 
total, a patient with “worst case” combination of the dataset 
characteristics for Z-endoxifen formation being at highest 
risk of subtherapeutic Z-endoxifen (5th or 95th percentiles of 
patient characteristics: young (37 years), heavy (100 kg) with 
CYP2D6 AS 0, CYP3A4 nNM and CYP2C9 intermediate 
metabolizer (IM) phenotype and weak CYP2D6 inhibitor 
co-medication) revealed a 80% lower Z-endoxifen formation 
(without CYP2D6 inhibitor co-medication: 72% lower  
Z-endoxifen formation) and 30% higher tamoxifen clearance

Characteristic

Total (n = 6,083) number of 
patients or PK measurements 
(%), except for age and body 

weight: median, range

CYP2C9 genotype-predicted phenotypes

Poor metabolizer 28 (0.460)

Intermediate metabolizer 446 (7.33)

Normal metabolizer 1,100 (18.1)

Missing dataa 4,509 (74.1)

Adherence (PK threshold > 60 ng/mL)c

Yes 5,410 (88.9)

No 663 (10.9)

Missing dataa 10 (0.164)

Further clinical study and population characteristics in the CEPAM analysis 
dataset are provided in Table S3.
CEPAM, CYP2D6 Endoxifen Percentage Activity Model; PK, pharmacokinetic(s); 
q.d., once daily.
aMissing data was imputed for analysis as described in Supplementary Text
S1. bInhibitor strength as defined by Flockhart Table available at: https://
medic​ine.​iu.​edu/​inter​nal-​medic​ine/​speci​alties/​clini​cal-​pharm​acolo​gy/​drug-​
inter​actio​n-​flock​hart-​table​. cFor patients receiving tamoxifen doses < 20 mg,
adherence was assigned as reported in the database.

Table 1  (Continued)

Figure 3  Goodness-of-fit plots for external evaluation. Goodness-of-fit plots showing the external evaluation results for the previous model for 
the measured tamoxifen (left) and Z-endoxifen (right) concentrations in the CEPAM analysis dataset. The diagonal black line marks the line of 
identity. CEPAM, CYP2D6 Endoxifen Percentage Activity Model.
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compared with the reference patient (51 years, 67 kg, CYP2D6 
AS 2 with CYP3A4 IM and CYP2C9 NM phenotype and no 
CYP2D6 inhibitor co-medication; see Table 2). Comparable 
parameter estimates were observed for covariates impacting 
the endoxifen formation rate or tamoxifen clearance in the 
sensitivity analysis when excluding the imputed missing values 
for CYP2D6 inhibitor information, CYP2D6 phenotype, 
CYP2C9 phenotype, and CYP3A4 phenotype, demonstrating 
imputation to be justified (see Table S5). In addition, the 
individual parameter estimates for Z-endoxifen formation 

and tamoxifen clearance stratified by CYP2D6 phenotype, 
CYP2D6 inhibitor, CYP2C9 phenotype, or CYP3A4 
phenotype, respectively, showed an incremental increase among 
the groups, supporting the implementation of these covariates 
using ordinal scales.

Model extension to allow for inclusion of patients with total 
endoxifen measurements. The model was successfully extended 
with a total endoxifen compartment linked to the Z-endoxifen 
compartment via a conversion factor from Z-endoxifen to 

Table 2  Final parameter estimates of the extended joint parent-metabolite tamoxifen and endoxifen model and their 
imprecision

Parameter [unit] Parameter description Estimate RSE, %

Fixed effects ka [1/h]a Absorption rate constant 1.08 Fixed

tlag [h]a Absorption lag time 0.442 Fixed

VTAM/F [L]a Tamoxifen volume of distribution 912 Fixed

CL30/F [L/h]a Z-endoxifen clearance 5.10 Fixed

VENDX/F [L]a Z-endoxifen volume of distribution 400 Fixed

CL20/F [L/h] Tamoxifen clearance for the reference patient 5.36 1

CL20/F_Ageb Exponent for the covariate effect of age on the 
tamoxifen clearance

−0.126 23

CL20/F_Body weightb Exponent for the covariate effect of body weight 
on the tamoxifen clearance

0.213 15

CL20/F_CYP3A4 phenotypec Fractional change in the tamoxifen clearance for 
CYP3A4 phenotype ≠ IM

0.129 9

CL23/F [L/h] Z-endoxifen formation for the reference patient 0.569 1

CL23/F_CYP2D6 ASc Fractional change in the Z-endoxifen formation 
for CYP2D6 AS≠2

0.480 2

CL23/F_CYP2D6 inhibitord Fractional change in the Z-endoxifen formation 
for CYP2D6 inhibitors

−0.302 7

CL23/F_CYP2C9 phenotypec Fractional change in the Z-endoxifen formation 
for CYP2C9 phenotype ≠ NM

0.158 16

CL23/F_Body weightb Exponent for the covariate effect of body weight 
on the Z-endoxifen formation

−0.419 11

F_Nonadherence Fractional change in the apparent bioavailability 
due to non-adherence

−0.661 1

Conversion Factor Conversion factor intercept (power function) 1.44 1

Conversion Factor_Exponent Conversion factor exponent (power function) −0.333 3

Random effects IIV CL20/F Interindividual variability in the tamoxifen 
clearance

43.7% CV 1

IIV CL23/F Interindividual variability in the Z-endoxifen 
formation

60.5% CV 1

IIV CF Interindividual variability in the conversion 
factor

12.3% CV 10

RUV tamoxifen Residual unexplained variability in the observed 
tamoxifen concentrations

0.0295 (17.3% 
CV)

Fixed

COVRUVtam-RUVendx Correlation between RUV tamoxifen and RUV 
endoxifen

0.0228 Fixed

RUV endoxifene Residual unexplained variability in the observed 
endoxifen concentrations

0.037 (19.4% CV) Fixed

The reference patient had a body weight of 67 kg, an age of 51 years, CYP2D6 AS 2, CYP3A4 IM phenotype, CYP2C9 NM phenotype, was considered adherent 
and received no CYP2D6 inhibitor co-medication. Final parameter equations including reference covariate values are provided in Supplementary Text S2.
aModel parameters were fixed to the estimates from the previously published pharmacokinetic model as the dataset comprised mainly minimal concentrations 
not containing sufficient informativeness to estimate them. bImplemented as power covariate model. cFractional change using an ordinal scale. dFractional 
change using an ordinal scale (0: no inhibitor, 1: weak inhibitor, 2: moderate inhibitor, 3: strong inhibitor). eRUV parameters were fixed to previously published 
values,26 as the availability of only one sample per patient did not allow the simultaneous identification of IIV and RUV parameters.
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total endoxifen estimated based on the CEPAM analysis 
dataset (Figure 1b, Supplementary Text S1: Derivation of the  
Z-endoxifen – total endoxifen conversion factor). The median
estimated conversion factor was 1.94 (range: 1.19–3.92) allowing the
inclusion of both Z-endoxifen only and total endoxifen only studies
in the analysis. The final model structure is shown in Figure 1b and
the final model parameters are presented in Table 2.

Assessment of model performance
All model parameters were estimated with sufficient precision. 
The model predictions captured the observed concentrations of 
tamoxifen (Figure S3), and both total and Z-endoxifen (Figure 5, 
Figure S5). The conditional weighted residuals vs. typical predic-
tions were randomly spread around zero and thus did not indicate 
systematic bias in the model predictions. Finally, the pcVPCs for 
both tamoxifen and endoxifen confirmed the high predictivity 
of the developed model demonstrated by the high overlap of the 
observed concentrations and the model predictions along all per-
centiles (Figure S4).

DISCUSSION
An association between Z-endoxifen concentrations and tamoxifen 
efficacy has been observed8–11; however, it has been challenging to 
validate in prospective trials and is unlikely to be directly validated in 
existing datasets or future prospective clinical trials.21 Indirect vali-
dation via CYP2D6 genotype as a surrogate of Z-endoxifen concen-
tration has also been unsuccessful, perhaps because CYP2D6 only 
partially explains the variability in Z-endoxifen concentrations6 
and other factors, including concurrent anti-cancer treatment.25 
As such, we conducted a pooled analysis of data from > 6,000 

tamoxifen-treated patients with measured endoxifen concentration 
to develop a precision endoxifen concentration prediction algorithm 
based on a previously published parent-metabolite pharmacokinetic 
model.26 Importantly, the resulting extended model confirmed the 
primary role of CYP2D6 genotype on Z-endoxifen concentration 
and identified significant contributions from additional clinical 
and genetic variables. This final joint parent-metabolite model 
could be used to simulate Z-endoxifen concentrations in patients 
who participated in large prospective clinical trials of tamoxifen to 
test the association between (simulated) Z-endoxifen pharmacoki-
netics and tamoxifen treatment survival.
CYP2D6 genotype-predicted phenotype has been reported 

to explain up to 50% of Z-endoxifen concentration variability.6 
Although our model-based results cannot be directly compared 
with R2 measures from linear regression, our results confirm 
the predominant effect of CYP2D6 genotype-predicted phe-
notype. In our model, 15% of the total 18% of variability in  
Z-endoxifen formation explained by the model was due to
CYP2D6 (15%/18% = 84%; see Supplementary Text S2). 
Numeric modeling diagnostic parameters such as OFV and
Akaike information criterion (AIC) also confirm this, as removing 
CYP2D6 AS causes the largest reduction in model performance of 
any variable influencing Z-endoxifen formation (ΔOVF = +1,398 
and ΔAIC = +1,395). The model confirmed, and has now quanti-
fied, the previously reported contributions of additional variables
including age,41 body weight,9 and CYP2D6 inhibitor use5,6,28 to
Z-endoxifen concentrations. Of note, patients who are younger,
have higher body weight, and are co-administered CYP2D6 inhib-
itors have lower Z-endoxifen concentrations, and may be at higher
risk of tamoxifen treatment failure.26

Figure 4  Impact of CYP2D6 activity and CYP2D6 inhibitors on individual endoxifen formation. Dots are the individual endoxifen formation 
estimates. Colored lines: typical endoxifen formation relation to CYP2D6 activity score stratified by co-medication with no, mild, moderate, or 
strong CYP2D6 inhibitor.
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Inherited variants in genes encoding several other tamoxifen-
metabolizing enzymes (e.g., CYP3A4/5, CYP2C9/19, SULTs, 
and UGTs) have been reported to contribute to concentrations 
of Z-endoxifen or other metabolites.6 Our pooled analysis con-
firmed and quantified contributions for CYP3A4 and CYP2C9 
genotype-predicted phenotype, but did not confirm roles for other 
variables reported to be associated with tamoxifen metabolism or 
benefit including CYP2C19 phenotype42 or CYP3A4 inhibitor co-
administration.43 CYP3A4 metabolizes tamoxifen to N-desmethyl-
tamoxifen and 4OHtam to Z-endoxifen. CYP3A4*22 is a variant 
that is associated with reduced CYP3A4 activity. Patients homo-
zygous for CYP3A4*22 (PM) and patients with CYP3A4*1/*22 
(IM) had a 23% and 12% lower predicted tamoxifen clearance than 
NMs, respectively, consistent with other studies reporting higher 
tamoxifen concentrations among these patients,27,30 which may be 

related to the role of CYP3A4 in first-pass metabolism. We also ob-
served increased tamoxifen clearance to be associated with the use 
of CYP3A4 inducers, further indicating a role for CYP3A4 in first-
pass metabolism. Carriers of common, diminished activity CYP2C9 
variant alleles (e.g., CYP2C9*2 and *3) have been reported to have 
lower Z-endoxifen concentrations,44 perhaps due to less conversion 
of tamoxifen to 4OHtam.10 This is in line with our results, show-
ing a moderately decreased (27%) estimated Z-endoxifen formation 
with decreased CYP2C9 activity from NM to PM.

Overall, clinical and non-CYP2D6 genetic variables explained 
< 20% of the total explained variability in Z-endoxifen forma-
tion. This estimate is consistent with other studies that reported 
relatively minor contributions from non-CYP2D6 variables on 
Z-endoxifen concentrations.6,26 Regardless of the relatively minor
contribution of these variables, our population pharmacokinetic

Figure 5  Goodness-of-fit plots for the final model. (a) Goodness-of-fit plots for the final extended joint parent-metabolite model comparing 
typical (left) and individual (right) dose-normalized endoxifen predictions with the measured dose-normalized concentrations, colored by 
CYP2D6 genotype-predicted phenotype. Measured and predicted total endoxifen concentrations were converted to Z-endoxifen predictions 
using the individual model-estimated conversion factors. The diagonal black line marks the line of identity. (b) Diagnostic plots for the 
endoxifen predictions using the final extended joint parent-metabolite model. Left: conditional weighted residual vs. typical endoxifen 
predictions, colored by endoxifen type. Right: Conditional weighted residual vs. time after last dose. The black horizontal lines mark the zero-
line. IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; UM, ultrarapid metabolizer.
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modeling approach incorporates new aspects compared with pre-
viously reported regression and pharmacokinetics models. Our 
final parent-metabolite model accounts for several levels of vari-
ability and can be used to predict Z-endoxifen concentrations. 
Importantly, our extended model now allows for the inclusion of 
studies regardless of whether only Z-endoxifen or only total en-
doxifen has been measured. Furthermore, our extended model is 
significantly more precise than our previously published model,26 
as indicated by the distribution of the datapoints in the observa-
tion vs. prediction plot around the line of identity, which served 
as a starting point for this analysis (Figure 5a). Another advantage 
of our model is that it can incorporate data from nonadherent pa-
tients, which enables a fit-for-purpose analysis of “real-world” data. 
Despite these advantages, given that the current model explains 
only a fraction of Z-endoxifen variability (18%), immediate use 
in clinical trials for the prediction of endoxifen levels is unlikely 
without further model refinement, for example, implementation 
of linear-scaled CYP2D6 allele activities.

The CEPAM model will be used in future studies to indirectly 
validate the association of Z-endoxifen pharmacokinetics with ef-
ficacy of single-agent tamoxifen treatment using data from large 
clinical trials with prospectively collected recurrence and survival 
data (e.g., ATAC and BIG 1–98).6,19,20 If the association can be 
validated, the endoxifen concentration prediction algorithm could 
be implemented clinically as a dose-prediction model for patients 
initiating tamoxifen treatment, similar to integrated dosing algo-
rithms developed for warfarin.45 Model-informed precision dos-
ing46 could ensure that all patients achieve target Z-endoxifen 
concentrations, thereby avoiding under-treatment and treatment 
failure. Of note, prospective studies have demonstrated the feasi-
bility and safety of tamoxifen dose escalation in patients who have 
reduced activity CYP2D6 genotypes or low Z-endoxifen systemic 
concentrations,47,48 although no studies have demonstrated an ef-
ficacy benefit of this approach.49

This pooled analysis applied advanced pharmacokinetic model-
ing techniques to the largest international database of tamoxifen-
treated patients with measured endoxifen concentration and 
comprehensive clinical and pharmacogenetic data. This enabled 
robust estimation of the contribution of clinical and genetic vari-
ables on tamoxifen bioactivation to Z-endoxifen. Despite these 
strengths, this study has some limitations that should be consid-
ered. Missing and inconsistent data are inherent limitations of 
pooled analyses, which can result both in bias and inflated P val-
ues of estimates. CEPAM had adequate availability of most clini-
cal variables, but some variables including non-CYP2D6 genetics 
and co-medications had greater missingness (Table 1, Tables S2, 
S3). We imputed missing continuous data with the median value 
and missing categorical data with the most common category, the 
robustness of which were supported by our sensitivity analyses. 
Another weakness was that only one measurement of endoxifen 
was available per patient, which prevents assessment of variabil-
ity between measurements for the same individual. Additionally, 
the CEPAM dataset included studies using a variety of bioana-
lytical assays that measured Z-endoxifen or total endoxifen. We 
accounted for this by reviewing assay methods and including 
the measured isoform in our model. Finally, studies differed in 

CYP2D6 genotyping, ranging from a single variant to multiplexed 
assays that analyzed 33 CYP2D6 star (*) alleles, with or without 
copy number interrogation. Default assignment of untested alleles 
to CYP2D6 wild-type could inflate unexplained variability, which 
is one possible reason the variability explained by CYP2D6 in this 
study is lower than that reported in previous studies.30 This model 
used the consensus CYP2D6 AS system50 to accurately quantify 
the activity of the alleles available; however, future work will use 
this uniquely large dataset to estimate CYP2D6 activity per indi-
vidual star (*) allele on a continuous scale,51 which likely will im-
prove the contribution of independent CYP2D6 diplotypes to the 
interindividual variability of endoxifen plasma levels.

In conclusion, this pooled analysis of the largest ever database of 
tamoxifen-treated patients generated a novel precision algorithm 
that integrates pharmacogenetic and clinical factors to predict Z-
endoxifen concentration during tamoxifen treatment. Validation 
of the association of predicted Z-endoxifen concentration with 
tamoxifen treatment efficacy in available clinical trial cohorts will 
enable personalized tamoxifen treatment to achieve therapeutic 
Z-endoxifen concentrations and improve treatment outcomes in
patients with hormone receptor-positive breast cancer.6
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