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1) Abstract 

 
 
A genome-wide association study (GWAS) is a standard study design for examining the 

association between genotype and disease status without knowledge of the underlying biological 

mechanisms. GWASs have led to the identification and classification of numerous variants 

associated with human traits. However, while this design has been widely used in contemporary 

genetic research, it is prone to technical biases and errors, which necessitate the development of 

a standardized workflow and analysis methodology. 

  

To address this problem, we developed a simulation-based framework for calibrating GWAS 

pipelines. Using Ricopili, our comprehensive GWAS pipeline, we developed a standard 

common-variant analysis workflow and then demonstrated the pipeline’s various functionalities 

and features. Furthermore, we demonstrated that this pipeline’s current framework could be 

successfully used to perform full-scale analyses of genotype data, ranging from quality control to 

the downstream analysis of variants. 

  

Furthermore, this thesis investigated the genetic architecture of panic disorder (PD) in six 

independent collections taken from four European countries. Given the comparably small total 

sample size of 2,147 cases and 7,760 controls, no genome-wide significant single nucleotide 

polymorphism (SNPs) were identified; however, we demonstrated a highly significant polygenic 

risk score (PRS) that explained up to 2.6% of the phenotypic variance. The SNP-based 

heritability for PD was estimated at 28.0–34.2%, and 135 out of the 255 most significant SNPs 

exhibited the same direction of effect in an independent replication sample (p = 0.048). In a 

combined meta-analysis, rs144783209 in the gene SMAD1 exhibited the strongest association 

(Pcomb = 3.10 × 10−7) with PD. A significant genomic correlation was detected with published 

GWAS results for major depressive disorder (p = 0.025), depressive symptoms (p = 0.010), and 

neuroticism (p = 0.002).  

  

Moreover, in a distinct psychiatric phenotype, we found a highly significant genetic correlation 

(30–60%) between borderline personality disorder (998 cases and 1,545 controls) and three 

published adult psychiatric disorders, namely schizophrenia (p = 4.37 × 10−5), bipolar disorder (p 



7 
 

= 2.99 × 10−3), and major depression (p = 1.04 × 10−3). In a third analysis, we demonstrated that 

PRSs in the IMAGEN cohort (n = 1,475) derived from published GWASs of intelligence 

significantly explained 0.33–3.2% of the variance in general IQ. 

 

In summary, our meta-analysis of PD represents a significant advancement in elucidating its 

genetic architecture, including the first SNP-based heritability estimate. We observed a notable 

genetic connection between PD and neuroticism. Additionally, the significant genetic correlation 

of borderline personality disorder (BPD) with other psychiatric disorders suggests that BPD 

shares underlying factors with these disorders, consistent with clinical observations. Finally, our 

research affirms the polygenic nature of general intelligence within the IMAGEN cohort. 
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2) Zusammenfassung 
 

Die genomweite Assoziationsstudie (GWAS) ist eine Standardmethode, die Assoziationen von 

Allel- oder Genotyphäufigkeiten sogenannter SNPs (Single Nucleotide Polymorphisms) zu 

Fall/Kontroll-Verteilungen oder zu quantitativen Merkmalen untersucht. Während GWAS das 

Verständnis der genetischen Grundlage komplexer Merkmale stark vorantreibt, ist sie auch 

anfällig für technisch/statistische Verzerrungen und Fehler, die die Einhaltung eines hoch 

standardisierten Arbeitsablaufs und Analysemethodik erfordert.  

 

Um diese zu erarbeiten, haben wir ein simulationsbasiertes Framework zur Kalibrierung von 

GWAS Pipelines entwickelt. Mit Hilfe unserer umfassenden GWAS-Pipeline Ricopili 

entwickelten wir einen standardisierte Analyseplan und demonstrieren die verschiedenen 

Funktionalitäten und Eigenschaften unserer Pipeline. Wir zeigen, wie mit dieser Pipeline 

erfolgreiche Analyse von Genotyp-Rohdaten durchgeführt werden können, angefangen von der 

Qualitätskontrolle bis hin zur endgültigen Assoziationsanalyse. 

 

Wir untersuchen den Einfluss von häufigen genetischen Varianten auf die Panikstörung (PD) in 

einer Meta-Analyse von sechs unterschiedlichen Kohorten aus vier europäischen Ländern. Wie 

erwartet identifizierten wir bei einer vergleichsweise kleinen Gesamtstichprobengröße von 2,147 

Patienten und 7,760 Kontrollen keine genomweit signifikanten Varianten, jedoch konnten wir 

einen signifikanten polygenen Risikoscore (PRS) nachweisen, der bis zu 2.6% der 

phänotypischen Varianz erklärt. Die SNP-basierte Heritabilität für PD schätzen wir auf 28.0-34.0 

%. In einer unabhängigen Replikationskohorte zeigen 135 der 255 signifikantesten SNPs mit 

Schwellenwert die gleiche Effektrichtung wie in unserem Hauptdatensatz (signifikant mit p = 

0.048). In der kombinierten Meta-Analyse zeigte sich rs144783209 im Gen SMAD1 als stärkste 

Gesamt - Assoziation (p = 3.10 × 10-7). Schliesslich konnten wir eine signifikante Korrelationen 

mit der Unipolaren Depression (Major Depressive Disorder - MDD) (p = 1.04 × 10−3), 

depressiven Symptomen (p = 0.025) und Neurotizismus (p = 0.002) finden.  

  

Bei einer weiteren psychiatrischen Erkrankung fanden wir eine hochsignifikante genetische 

Korrelation (zwischen 30 und 60 %) zwischen der Borderline-Persönlichkeitsstörung (998 Fälle 
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und 1,545 Kontrollen) und den drei zentralen psychiatrischen Erkrankungen: Schizophrenie (p = 

4.37 × 10−5), Bipolare Störung (p = 2.99 × 10−3) und Major Depression (p = 1.04 × 10−3). In einer 

dritten hier vorgestellten Analyse konnten wir polygene Riskoscores in der IMAGEN-Kohorte 

(n=1,475), aus GWASs der Intelligenz abgeleiten, die signifikant 0.33% bis. 3.2% der Varianz 

des allgemeinen IQ erklären. 

 

Zusammenfassend stellt unsere Meta-Analyse von PD einen bedeutenden Fortschritt bei der 

Aufklärung seiner genetischen Architektur dar, einschließlich der ersten Schätzung der erblichen 

Veranlagung basierend auf SNPs. Wir haben eine bemerkenswerte genetische Verbindung 

zwischen PD und Neurotizismus beobachtet. Darüber hinaus legt die signifikante genetische 

Korrelation der Borderline-Persönlichkeitsstörung (BPS) mit anderen psychiatrischen Störungen 

nahe, dass BPS gemeinsame zugrunde liegende Faktoren mit diesen Störungen teilt, was mit 

klinischen Beobachtungen übereinstimmt. Schließlich bestätigt unsere Forschung die polygene 

Natur der allgemeinen Intelligenz innerhalb der IMAGEN-Kohorte. 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

 



10 
 

3) Introduction 

3.1 Genomics: Brief highlights 
Human traits and disorders are influenced by both genetic and environmental factors. The 

complete genetic material of an organism is known as its genome. The genome is composed of 

deoxyribonucleic acid (DNA), a biomolecule that carries genetic information for trait 

functioning and development (Figure 3.1). 

 

 
Figure 3.1a: DNA structure; The depiction illustrates the composition of DNA, featuring a chromosome, 
nucleosome, histone, gene, and nucleotide base pairs, including guanine, cytosine, adenine, and thymine. 
Additionally, it includes a cell with its nucleus [© (copyright year as seen in the illustration) Terese Winslow LLC, 
U.S. Govt. has certain rights: Permission granted]. 
 

DNA has a double-helix structure with nucleotides as its repeating units. Each nucleotide 

consists of a deoxyribose sugar, a phosphate group, and a nitrogenous base. Adenine (A) and 

guanine (G) are purines, while cytosine (C) and thymine (T) are pyrimidines (Figure 3.1). 

Adenine always pairs with thymine, and cytosine always pairs with guanine, forming base pairs 

and giving DNA its unique structure. The 146–147 base pair-long chain of DNA coils around a 

core of histone proteins to form nucleosomes, which are tightly packed into larger units called 

chromosomes (Figure 3.1). Human cells contain 23 pairs of chromosomes, with approximately 

3.2 billion base pairs. Chromosomes carry genes, which are the fundamental units of heredity. 
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There are approximately 20,000 to 25,000 protein-coding genes in humans. This fraction of 

protein-encoding base pairs is only 1–2% of the total human genome. These genes contain 

instructions, which consist of triplets of nucleotides called codons. Each codon specifies a 

particular amino acid, the building blocks of proteins. Out of the 64 (43) possible codons, 61 

code for amino acids, while the remaining three are stop codons. 

 

Furthermore, the human genome is diploid, which means that it contains two sets of 

chromosomes inherited from each biological parent. As a result, different forms of the same 

gene, called alleles, can occur at a given genomic location or locus. These variations can be 

single-base or segment variations in the DNA sequence. The representation of these variations is 

referred to as the genotype of an individual at that locus. A homozygous genotype occurs when 

an individual inherits two identical alleles from their parents, while a heterozygous genotype 

occurs when an individual inherits two different alleles at a genomic locus. Crucially, 

approximately 99.9% of the genomes of all individuals are the same.  

 

Variation within the genome can lead to differences in traits and disorders among individuals, 

and heritability, which refers to the proportion of the variation in a trait or disorder that can be 

attributed to genetic factors, plays a significant role in understanding the interplay between 

genetics and these traits and disorders. 

 

The central dogma of molecular biology is a theory that describes the flow of genetic 

information from DNA to RNA (ribonucleic acid) to protein. It underlies the processes that 

govern the functioning and development of traits at a molecular level. Understanding genetics 

and genetic variations is crucial to comprehending human traits and disorders.  

 
3.2 Monogenic disorders 
Monogenic disorders are the result of a mutation in a single gene. Their inheritance pattern 

usually follows Mendel’s laws (e.g., autosomal recessive), and thus, they are also termed 

Mendelian disorders. The effect size or penetrance of each variant is typically large; 

consequently, its frequency is usually driven low in a population by selective pressures. 

Huntington’s disease is an example of a Mendelian disorder. 
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Linkage analysis is a study design used for identifying the causal gene associated with 

monogenic disorders or traits. In linkage analysis, the location of a disease-causing gene is 

identified by analyzing patterns of inheritance in related individuals. Usually, multiple families 

with a disorder (or trait of interest) are recruited, and their disease status and co-segregating 

genetic markers (e.g., short tandem repeat) are measured. Finally, the segregation patterns of 

these markers within the families are examined. A successful example of linkage analysis 

identified multiple CFTR gene mutations as the causal variants for cystic fibrosis (Kerem et al., 

1989).  

 

3.3 Complex traits 
In contrast to Mendelian traits, complex traits are not explained by genetic variation in single 

genes. They have genetic and environmental components associated with them and are relatively 

more common than Mendelian disorders. Furthermore, the genetic component is usually spread 

across the genome – a phenomenon known as “polygenicity.” Most psychiatric disorders are 

examples of common complex genetic disorders (Brainstorm Consortium., 2018), including 

diabetes mellitus (Xue et al., 2018) and Crohn’s disease (Verstockt et al., 2018). Traits such as 

adult height (Yengo et al., 2018) and IQ (Savage et al., 2018) are examples of common/complex 

nonpsychiatric traits.  

 

3.3.1 Common disease – common-variant hypothesis  

The common disease – common-variant (CD-CV) hypothesis states that a common disorder is 

likely to be caused by genetic variation common in the population. The CD-CV hypothesis 

implies that a moderate-to-large number of variants across the genome contribute to disease risk 

and that each variant has relatively low penetrance and a small effect size (i.e., polygenicity). 

These common, polygenic traits are the antithesis of monogenic disorders, where variants usually 

have a low prevalence and a large effect.  

 

3.3.2 Genome-wide association studies 

Linkage analyses applied to common or complex disorders have typically been unsuccessful 

(Altmüller et al., 2001; Hirschhorn & Daly., 2015), which indicates that common disorders’ 
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genetic architectures differ from those of Mendelian disorders. Genome-wide association studies 

(GWASs) have proven to be a successful tool for testing the CD-CV hypothesis. In principle, a 

GWAS compares the allele frequency (AF) of each single nucleotide polymorphism (SNP) 

across the human genome between cases and controls. In practice, this frequency–phenotype 

association is tested in a regression framework, which allows covariates like population 

stratification to be adjusted for. SNPs are the most prevalent form of genetic variation detected in 

the human genome, where approximately 88 million unique SNPs (1000 Genomes Project 

Consortium., 2015) have been identified in various worldwide populations. There are 

approximately 10 million SNPs in European ancestry with a minor AF (MAF) greater than 1% 

(1000 Genomes Project Consortium., 2015).  

 

3.4 Technical and statistical aspects of GWASs 
In the subsequent sections, a concise overview is provided of the fundamental procedures 

employed in genotype data analysis. These subsections delve into quality control measures, 

encompassing both technical and genomic aspects, with the aim of mitigating biases and 

minimizing the occurrence of false positive results. Furthermore, genotype imputation and 

association analysis are presented. Moreover, the significance of the Ricopili pipeline, which 

serves as an efficient tool for optimizing this entire workflow, is emphasized. 

 

3.4.1 Technical quality control 

While GWASs are a powerful tool for expanding our understanding of complex disorders, they 

are also prone to biases. If not considered, such biases can result in false-positive associations. 

While testing millions of markers across the genome, a minor bias can lead to a high type 1 error 

rate (i.e., rate of false positives). Proper quality control (QC) on individuals and genotypes (i.e., 

SNPs) can eliminate many of these biases. QC per individual includes checking consistencies 

between the sex predicted by the X chromosome and the ascertained sex, missing genotype rates 

per individual, and heterozygosity rates. The QC of SNPs consists of the missing rate per SNP, 

missing rate difference between cases and controls, deviation from Hardy–Weinberg equilibrium 

(HWE), and AF (variants with very low MAF, e.g., < 1%). 
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3.4.2 Genomic quality control 
Genomic QC primarily corrects for a systemic bias attributed to AF differences due to different 

ancestries, which is known as population stratification. To identify such stratification, a 

multidimensional scaling method, such as principal component analysis (PCA), is used. One- 

and two-dimensional PCA plots are used to visualize the genetic heterogeneity in the study 

cohort (or across multiple cohorts), and subpopulations and outliers are separated or excluded 

from the analysis. The estimated PCs are also used to control for population stratification in 

downstream analysis. 

 

Genomic QC is also used to address cryptic relatedness (the nonindependence of individuals) 

within a cohort. Identity by descent (IBD) is computed for each individual pair in a cohort, and 

first-, second-, and third-degree relatives are excluded from further analysis.  

 

3.4.3 Tag SNPs and genotype imputation  

Tag SNPs contains implicit information about linked contiguous stretches of DNA (also called 

haplotypes) shared between individuals, which are more substantial within single ancestries and 

inherited together. This nonrandom correlation or association between alleles located at distinct 

loci (genetic positions) on the same chromosome is known as linkage disequilibrium (LD). LD 

is a natural correlation structure present between SNPs in physical proximity to each other on the 

human genome. In a GWAS, a moderate number of tag SNPs are genotyped on chip-based 

microarrays (e.g., Illumina and Affymetrix), thereby avoiding the extra cost of assaying all SNPs 

due to LD. Most modern genotyping chips contain in the order of 600,000 SNPs, tagging 

approximately 8 million SNPs in the European population through imputation, for example.  

 

Imputation allows researchers to infer missing genotypes that are not directly genotyped. It 

exploits the LD information of tagged SNPs using large, publicly available reference panels, 

such as HapMap (International HapMap Consortium., 2003), 1000 Genomes (1000 Genomes 

Project Consortium, 2010), or the Haplotype Reference Consortium (HRC; McCarthy et al., 

2016). Imputation allows meta-analyses to be performed between genotyped cohorts on various 

platforms, boosting a GWAS’s power as well as enhancing fine mapping. This is achieved by 

increasing the number of SNPs up to 8 million from 600,000 directly genotyped on a modern 
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chip, such as the global screening array (GSA). There are many algorithms for genotype 

imputation, such as MaCH (Li., 2010), beagle (Browning et al., 2018), and impute2 (Howie et 

al., 2009), of which the output is a probabilistic estimate of genotype status.  

 

In addition, several metrics exist for assessing the quality of genotype imputation. One such 

metric used for impression quality assessment is the information (INFO) score, which estimates 

how well the imputed genotypes correspond to the true genotypes on the reference genome. It 

compares the imputed allelic dosages, their variances, and the corresponding AFs with those in 

the reference data. The INFO score ranges from 0 to 1, where higher values indicate more 

reliable imputations and lower values indicate lower-quality genotype imputation.  

 

3.4.4 Association analysis and meta-analysis  

After comprehensive QC and imputation, the data are ready for association mapping. 

Traditionally, single SNP association analysis is performed, and the choice of statistical test 

depends on, among other variables, the type of phenotype. For quantitative phenotypes, a linear 

regression is typically performed, whereas for case-control phenotypes, logistic regression is 

mostly used. Regardless of phenotypes, how genotypes are encoded influences the power of the 

statistical analysis through altering the degrees of freedom in the test statistic. The genotypic-

based test, where three genotype classes (two homozygous and one heterozygous) are combined 

and tested for association with the phenotype, has two degrees of freedom. By contrast, the 

additive, dominant, recessive or “heterozygote advantage” models use tests with one degree of 

freedom. The additive genetic model is frequently used in genetic research for testing 

associations and identifying various genetic risk factors, including dominant and recessive 

effects. However, it may not reveal the genetic association linked to heterozygote advantage 

models. 

 

Principal components (PCs) generated from PCA analysis are used to control population 

stratification. If necessary, the regression is adjusted for clinical covariates (e.g., age, sex, 

clinical site, and batch effect). Many independent cohorts are usually meta-analyzed using an 

inverse variance weighted method, which implicitly gives more weight to larger studies with 
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higher imputation quality. A meta-analysis estimates the aggregated effect size, standard error, 

and associated p values of all the independent cohorts together. 

3.4.5 Multiple testing and genome-wide significance 
In general, a p value equal to or below 0.05 is considered significant (i.e., the alpha value) for a 

single statistical test. It implies that in a statistical test, there is a 5% probability of incorrectly 

rejecting the null hypothesis when it is actually true. If one conducts multiple hypothesis tests, 

the probability of incorrectly rejecting the null hypothesis naturally increases, and therefore, the 

burden of detecting a false positive is higher due to multiple testing. The various methods used to 

correct multiple testing problems in a GWAS are Bonferroni correction, the Benjamini–

Hochberg false discovery rate (FDR), and permutation testing.  

 

For GWASs in European and Asian populations, the most common alpha value is 5 × 10-08. This 

is equivalent to a Bonferroni correction of p = 0.05 for 1 million independent common variants 

across the human genome. The number of independent tests in the African population is higher 

compared with that in the European population. Thus, a recommended alpha value is 1 × 10-08. 

Pe’er et al. (2008) confirmed these thresholds for genome-wide significance with phenotype 

simulations in the International HapMap Consortium.  

3.4.6 Ricopili: Our computational pipeline  
A computational pipeline is a cohesive set of computational programs, tools, and software 

packages that are organized to perform specific tasks in a logical sequence. It operates by taking 

the output of one program and using it as input for the next program in a predefined order. The 

purpose of a pipeline is to make efficient use of computational resources and to streamline the 

execution of computational tasks. By using a pipeline, errors can be minimized, and a standardized 

approach can be established for processes that involve multiple programs (steps).  

 

It is often helpful and common practice to assign a name (acronym) to a pipeline that performs 

specific tasks, as it assists its easy identification and use by others. In this thesis, we used the 

Ricopili pipeline, which integrates a set of tools and algorithms that perform technical QC, 

genomic QC, imputation, and statistical analysis for a GWAS (described Section 3.4).  
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3.5 Panic disorder  
Panic disorder (PD) is a debilitating and severe form of anxiety disorder characterized by a 

sudden onset of fear and discomfort that lasts for several minutes or longer. PD has at least four 

anxiety-related symptoms, which might include “palpitations, diaphoresis, tremors, shortness of 

breath, suffocation, chest pain, chills, heat sensations, nausea, dizziness, depersonalization, 

paresthesia, derealization, fear of loss of control and fear of dying, numbness” (Virginia C., 

2016, Pages 266-288 and Cackovic et al., 2020). The lifetime prevalence of PD is approximately 

2–4%, while its lifetime morbid risk is 6% (Kessler et al., 2012). The age at which PD typically 

starts ranges from 26 to 35 years (Lijster et al., 2017). Constant panic attacks can further 

deteriorate the patient’s health by hindering a healthy social life, leading to the development of 

pathological symptoms, such as long-term disabilities and agoraphobia (Hendriks et al., 2014). 

 

3.5.1 Etiology of PD 

The etiology of PD is only vaguely understood, with most research suggesting that the causes are 

a complex combination of genetic and environmental factors. The following subsections discuss 

PD’s genetic risk factors, environmental risk factors, and neurobiology. 

 

3.5.1.1 Genetic risk factors for PD  

Twin and family studies of PD patients have reported heritability estimates of 40% (Hettema et 

al., 2001), implying that a significant genetic component contribute to PD liability (Schumacher 

& Deckert., 2010). Several linkage and association studies have been conducted to understand 

the mechanisms behind PD, but none have convincingly and robustly identified the underlying 

genetic factors. Furthermore, linkage analyses of PD have identified several chromosomal loci to 

the syndrome, including 1q, 2q, 4q31-q34, 7p, 9q, 12q, 13q, 14q, 15q, and 22q, but all of them 

have exhibited little consistency across studies (Na et al., 2011). This is in line with the general 

underperformance of linkage analyses for complex traits (see Section 3.2). Moreover, few PD 

GWASs have been published, and none have reported genome-wide significant SNPs. Erhardt et 

al. reported two SNPs, namely rs7309727 and rs11060369, in the TMEM132D gene on 

chromosome 12q24 associated with PD. Their study consisted of 909 cases and 915 controls of 

European ancestry (Erhardt et al., 2011), and they replicated these associations in five PD 

cohorts. The following year, Otowa et al. conducted a GWAS on 718 PD cases, and 1,717 
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controls and reported many putative associations (with variation contained in BDKRB2 and 

NPY5R) in the Japanese population (Otowa et al., 2012). Still, none of these reported variants 

reached the genome-wide significance of 5 × 10-8. A recent meta-analysis of combined anxiety 

and PD revealed the SNPs rs1709393 on an uncharacterized noncoding RNA locus on 

chromosomal 3q12.3 (with p = 1.65 × 10−8) and rs1067327 within the coding region of the gene 

CAMKMT on chromosome 2p21 (with p = 2.86 × 10-9; Otowa et al., 2016). However, due to the 

combined nature of the phenotype, these associations were not specific to PD. 

 

3.5.1.2 Environmental risk factors for PD  

A 40% heritability of PD indicates that approximately 60% of the risk is likely attributed to 

environmental factors. This understanding has been studied for many decades to gain insights 

into environmental risk factors for PD. 

The disruption of early attachment, as supported by the Epidemiological Catchment Area Study 

(Tweed et al.,1989), plays a significant role in the development of PD. The study (N = 3,803) 

found that individuals whose mothers died before they turned 10 years of age were nearly seven 

times more likely to be diagnosed with agoraphobia accompanied by panic compared with those 

without a history of early maternal death. Similarly, individuals whose parents separated or 

divorced before the age of 10 years were also found to have an increased likelihood of being 

diagnosed with agoraphobia with panic. Extensive preclinical research has strongly indicated that 

early disruptions in the attachment between infants and their mothers result in enduring 

behavioral and biological changes, such as those observed in PD (Francis & Meaney et al., 1999 

and Anisman et al., 1998). 

 

Furthermore, bodily sensations are closely linked to the onset of PD (Roy et al., 2006), and 

anxiety sensitivity is one such factor that heightens these sensations (Reiss et al., 1980). The 

anxiety sensitivity index predicts the development of PD in several and diverse cohorts. This 

predictive power has been found to remain even after accounting for previous depression 

(Hayward et al., 2000, Maller & Reiss et al., 1992 and Ehlers et al., 1995). However, anxiety 

sensitivity is commonly associated with neuroticism and a propensity for experiencing negative 

emotions, as opposed to being a direct causal factor for PD (Roy et al., 2006). 
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3.5.1.3 Neurobiology of PD  

Several compounds with distinct mechanisms of action have been identified to induce panic 

symptoms in patients but not in control subjects. Examples of such compounds include 

hyperosmolar sodium lactate, caffeine, isoproterenol, yohimbine, carbon dioxide, and 

cholecystokinin (Roy et al., 2006). Although relevant studies have not significantly contributed 

to the understanding of the biological mechanisms that underlie PD, they have elucidated the 

activation of a broader neural network associated with conditioned fear, which is currently 

proposed to be the neural network for PD (Gorman et al., 2000). The sensory input for the 

conditioned stimulus travels through the anterior thalamus to the lateral nucleus of the amygdala 

before being transmitted to its central nucleus. The amygdala’s central nucleus serves as a central 

hub for information dissemination, coordinating autonomic and behavioral responses associated 

with PD. 

3.5.2 Comorbidity of PD 

Individuals with panic disorder often present with one or more concurrent medical illnesses. In a 

study conducted by Starcevic et al. in 1999, which included 88 individuals diagnosed with PD, it 

was found that 82% of patients were diagnosed with one or more Axis I disorders, and 49% of 

patients were diagnosed with one or more Axis II disorders. 

 

The most prevalent Axis I disorder among these PD patients was anxiety disorder, specifically 

Generalized Anxiety Disorder (GAD), with prevalence rates ranging from 22% (as reported by 

Turki et al. in 2017) to 59% (as reported by Starcevic et al. in 1999). Major Depressive Disorders 

(MDD) also exhibited a high prevalence, with an approximate rate of around 50% in both the 

study by Starcevic et al. in 1999 and the research by Gorman et al. in 1996. 

 

Regarding Axis II disorders, Cluster B (or emotional) personality disorders, including Antisocial 

Personality Disorder, Borderline Personality Disorder, and Histrionic Narcissistic Personality 

Disorder, showed prevalence rates ranging from 25% to 27%. On the other hand, Cluster C 

(anxious) personality disorders, comprising Avoidant Personality Disorder, Dependent 

Personality Disorder, and Obsessive-Compulsive Personality Disorder, exhibited prevalence 
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rates ranging from 15% to 40% (as reported by Ozkan & Altindag in 2005 and Starcevic et al. in 

1999). 

 

PD is also found to be associated with personality traits. In a study by Zugliani et al. (2017), a 

significant association was found between PD patients and higher neuroticism scores and lower 

extraversion scores compared to healthy controls. 

 

PD also frequently co-occurs with other medical illnesses that share symptomatology, such as 

respiratory conditions (e.g., asthma and Chronic Obstructive Pulmonary Disease), cardiovascular 

conditions (e.g., hypertension and coronary heart disease), Irritable Bowel Syndrome, and 

Diabetes. This comorbidity is associated with a significant increase in PD patients, estimated to 

be at least 1.5 to twofold (Meuret et al. in 2020).  

 

 

3.6 Borderline personality disorder  
Patients with borderline personality disorder (BPD) experience unstable relationships, perception 

shifts, cognitive and self-image issues, and intense emotions as well as engage in impulsive and 

risky behaviors during emotional distress. BPD is a complex neuropsychiatric disorder with a 

lifetime prevalence of approximately 3% (Tomko et al., 2014). The typical age of onset of BPD 

(Biskin., 2015) is 18 years, but its symptoms (e.g., self-harm) can start as early as 12 years 

(Zanarini et al., 2008). BPD is more commonly diagnosed in female patients, who account for 

approximately 75% of cases (American Psychiatric Association., 2000). BPD is associated with 

high healthcare utilization and a chronic, severely debilitating clinical course (Bohus & Schmahl 

et al., 2007). Suicide rates range between 6% and 8%, and up to 90% of patients engage in 

nonsuicidal self-injurious behavior (Zanarini et al., 2018).  

 

3.6.1 Etiology of BPD 

The following subsections present BPD’s genetic risk factors, environmental risk factors, and 

neurobiology.  
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3.6.1.1 Genetic risk factors for BPD 

Distel et al. (2008) reported a heritability estimate of 42% in a twin study conducted across three 

different cohorts from The Netherlands, Belgium, and Australia, implying the existence of a 

genetic component in BPD. However, most available studies have focused on candidate genes 

and had relatively small sample sizes (Calati et al., 2013). Several of these studies have reported 

associations of genetic variants within genes such as tryptophan hydroxylase 1 and the serotonin 

1B receptor, but these associations yielded insignificant results, as highlighted in a systematic 

review (meta-analysis) conducted by Amad et al. (2014).  

 

Nevertheless, a GWAS by Lubke et al. (2014) identified a potential association between the 

SERINC5 gene, which plays a role in myelination, and affective instability, a key characteristic 

of manic phases of bipolar disorder (hereinafter “BP”). 

 

3.6.1.2 Environmental risk factors for BPD 

Environmental factors explain approximately 58% of the variation in BPD, as reported by Distel 

et al. (2008). Adverse childhood experiences, including trauma and maltreatment, strongly 

contribute to the development of BPD (Zanarini et al., 1987 and Afifi et al., 2011). Separation 

from mothers at an early age (Crawford et al., 2009), abnormal attachment (Rogosch & 

Cicchetti., 2004), and delays in identity development during adolescence (Fonagy & Bateman., 

2008) can also lead to personality pathology. Other childhood and adolescent disorders, such as 

depression, anxiety, and disruptive behavior disorders, increase people’s predisposition to BPD 

(Helgeland et al., 2005).  

 

3.6.1.3 Neurobiology of BPD  

Altered functioning in specific brain regions, such as the medial prefrontal cortex, 

temporoparietal junction, posterior cingulate cortex, and precuneus, contributes to distorted self-

perception and thoughts about others in individuals with BPD (Krause et al., 2014 and Beeney et 

al., 2016). Impulsivity in BPD involves changes in the reward and control circuits, mediated by 

the ventral striatum and prefrontal areas (Herbort et al., 2016 and Gunderson et al., 2018).  
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3.6.2 Comorbidity of BPD 

BPD is a condition characterized by a high degree of comorbidity. In the Collaborative 

Longitudinal Personality Disorders Study conducted by McGlashan et al. in 2000, which 

included 175 BPD patients, it was found that individuals with BPD had an average of 4.1 

lifetime Axis I comorbidities and 1.9 lifetime Axis II comorbidities (personality disorders). 

 

The most common Axis I comorbidity in individuals with BPD is mood disorders, affecting 

approximately 95% of them (Shah & Zanarini, 2018). Within this category, MDD exhibits a 

prevalence ranging from 71% (Zanarini et al., 1998a) to 83% (McGlashan et al., 2000), while the 

comorbidity between BPD and BP is less prevalent and debated, as they have overlapping 

symptoms but distinct features specific to each. The comorbidity ranges from 9% (Zanarini et al., 

2004) to 20% (Fornaro et al., 2014) between BPD and BP. In contrast, Tsanas et al. (2016) 

highlighted symptomatic differences between the two groups. Anxiety disorders, particularly 

Post-Traumatic Stress Disorder, are highly prevalent, co-occurring in approximately 51% of 

individuals with BPD (McGlashan et al., 2000 and Zanarini et al., 1998a), making them the 

second most common comorbidity. Psychotic disorders represent the least common Axis I 

comorbidity with BPD, with schizophrenia (SCZ) reported in 2% (Slotema et al., 2018) to 17% 

(Kingdon et al., 2010) of cases.  

 

Among Axis II comorbidities, the most prevalent disorders in conjunction with BPD were from 

the anxious cluster (Cluster C personality disorders). Within this category, Avoidant Personality 

Disorder ranged from 43% to 47%, and Dependent Personality Disorder ranged from 16% to 

51% (Zanarini et al., 1998b and McGlashan et al., 2000). 

 

Moreover, a twin study (Distel et al., 2009) and a large population-based study (Gale et al., 

2016) have suggested a genetic association between BPD’s features and neuroticism – a 

recognized risk factor for BP and other psychiatric conditions. 
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3.7 Aims and hypotheses of the Dissertation 
The sensitivity of GWASs to various biases and errors makes following a highly standardized 

workflow or analysis methodology critical. This dissertation incorporates four publications in the 

following two chapters (Chapter 4: Materials and methods and Chapter 5: Results), each of 

which has four subsections that correspond to each publication.  

 

The first publication (4.1 and 5.1) presents Ricopili, a well-developed, highly standardized, and 

flexible GWAS analysis pipeline that we designed to analyze large genomic data sets. First, we 

demonstrate how our pipeline can detect and correct for biases and technical errors in simulated 

genotype data and develop a framework along the way. We implement this workflow and 

conduct a GWAS on 2,248 PD cases and 7,992 healthy controls to characterize the genetic 

variation associated with PD in 4.2 and 5.2. This dissertation’s aims are as follows: 

1. To investigate and identify the genetic variation associated with PD; 

2. To estimate the proportion of genetic variance within our cohort that can explain the 

development of PD; 

3. To determine the extent to which causal genes overlap across different conditions and 

suggest potential common pathways or mechanisms underlying various other complex 

disorders; 

4. To examine, through in silico functional analysis, the genes involved in regulating the 

causal biological pathways of PD, thereby providing insights into the molecular 

mechanisms that underlie PD development and potential therapeutic targets for 

intervention. 

 

In addition, I present my contribution to deciphering the genetic architecture by estimating the 

extent of genetic overlap between BPD and schizophrenia (SCZ), bipolar disorder (BD), and 

Major Depressive Disorder (MDD) as detailed in 4.3 and 5.3. Furthermore, I examine the 

polygenic nature of general IQ, as outlined in 4.4 and 5.4.  
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4) Materials and methods 

This chapter provides a comprehensive description of the materials used and the methods 

employed in conducting this research work. Section 4.1 begins by presenting a standardized 

GWAS methodology developed using the pipeline’s features and modules, which are detailed in 

sub-sections 4.1.1 to 4.1.6. Additionally, sub-section 4.1.7 explains the incorporation of 

simulated data with artificial technical and genomic interventions that is used to test and fine-

tune the methodology. 

 

Section 4.2 provides an in-depth overview of the panic disorder (PD) cohorts, covering the 

methodology used for technical and genomic quality control, imputation, association analysis, 

leave-one-out polygenic risk score (LOO-PRS) analysis, replication, heritability estimation, 

genetic correlation and functional analysis.   

 

In Section 4.3, the cohort of borderline personality disorder (BPD) is described, along with the 

materials and statistical methods used to estimate its genetic correlation with psychiatric 

disorders such as schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder 

(BP).  

 

Finally, section 4.4 introduces the IMAGEN cohorts, outlines how intelligence measures are 

inferred, and details the methodology used to generate polygenic scores. 

 

4.1 Development of a standard GWAS analysis methodology (Lam and 

Awasthi et al., 2020): 

The simulated genotype cohorts along with the interventions listed in Table 4.1a were used to 

standardize and develop a GWAS workflow. The workflow, presented in Figure 4.1a, is 

representative of standard, common-variant GWASs and is applicable to a wide range of 

common disorders. Comprehensive QC (technical and genomic) can be performed by employing 

the pre-imputation and PCA modules of the Ricopili pipeline, in addition to some manual quality 

checks.  
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As depicted in the flowchart (Figure 4.1a), the initial QC module should be started only if the 

number of cases and controls both exceed 50. Excessive SNP loss (attributable to various 

influences, such as batch effect, batch sizes, and ancestral composition) should be addressed 

before proceeding further. In cases of high numbers of excluded individuals, their reported 

phenotypic information should be checked and corrected if possible (e.g., sex errors). Crucially, 

one should also check whether a general bias exists in the test statistics. This can be examined 

using lambda GC, which is estimated from the initial association analysis. Lambda GC is 

quantified as the ratio of the median of the empirically observed test statistics to the expected test 

statistic distribution. High lambda inflation (i.e., λGC > 1.05) should be controlled by applying a 

stricter filtering criterion or addressing sample heterogeneity and cryptic relatedness through the 

PCA module. In the initial association analysis, significant findings should be carefully 

examined and included only if they fail to meet more rigorous filtering criteria than the default 

(Subsection 4.1.1). For instance, SNPs with a missingness rate greater than 0.01 or a frequency 

lower than 5% could be excluded. 
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Figure 4.1a: Analysis flowchart developed and used throughout this project. 
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Finally, after automated and manual QC, the total number of SNPs in the QC must be at least 

200,000 (preferably >400,000) to ensure robust imputation. Post-imputation PCA is performed 

on the best-guess genotype to compute fine-grained PCs, which are then used to control for 

population stratification in the final downstream analysis. When performing the PCA module on 

multiple cohorts, overlapping/related individuals across cohorts are identified; therefore, only 

nonrelated individuals are analyzed. Finally, the post-imputation module is used to perform 

association and meta-analyses. 

4.1.1. Pre-imputation/QC module  

By default, the QC module of the Ricopili pipeline performs QC for each SNP and individual 

through the following steps: 

1. Excluding SNP missingness >0.05 (before the removal of individual subjects); 

2. Excluding individuals with missing SNPs >0.02; 

3. Excluding individuals with autosomal heterozygosity deviation (|Fhet| > 0.2); 

4. Excluding individuals whose reported sex does not match the predicted sex by the 

chromosome X genotypes; 

5. Excluding SNP with missingness >0.02; 

6. Excluding SNPs with a difference in missingness >0.02 between patients and controls; 

7. Excluding SNPs that deviate from HWE (p < 10−10 in patients, p < 10−6 in controls); 

8. Excluding SNPs without valid association p values with the phenotypes (i.e., invariant 

SNPs). 

This module also performs baseline association analysis without covariates to identify genome-

wide inflation (λGC) due to technical artifacts.  

4.1.2 PCA module 

The PCA module addresses three purposes, namely the control of lambda inflation, calculation 

of ancestral components, and estimation of relatedness. These purposes are respectively outlined 

in Subsections 4.1.2.1, 4.1.2.2, and 4.1.2.3. 
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4.1.2.1 Control of lambda inflation  

The PCA module generates two- and one-dimensional PC plots, which help to identify 

population outliers. These are useful quantities during the QC process as they allow lambda 

inflation due to population outliers to be adjusted for. 

4.1.2.2 Calculation of ancestral components 

The PCA module produces, by default, 20 PCs and identifies those that are significantly 

associated with the phenotype. These significant PCs are used to adjust for fine-grained 

population stratification; the first four PCs should be included regardless of their association with 

phenotypes. 

4.1.2.3 Estimation of relatedness 

IBD is evaluated between each pair of individuals within and across cohorts using a sufficiently 

large number of high-quality SNPs. This quantity is commonly known as PiHat and is defined as 

the sum of the probability of individuals sharing two homozygous alleles and half of the 

likelihood of them sharing heterozygous alleles. Identical twins or duplicated individuals will 

have a PiHat >0.9 (share 90+% of IBD); first-degree relatives will have a PiHat of approximately 

0.5 (50% of IBD); and second- and third-degree relatives share approximately 25% and 12.5% of 

IBD, respectively. All pairs of individuals with PiHat >0.2 are identified. One individual is 

excluded among all pairs until there is no relatedness among any pair of individuals with PiHat 

>0.2. To maximize the power to detect associations, trios are preferentially retained, followed by 

cases, and finally individuals genotyped on a preferred platform specified by the user. This 

automated process can be modified manually. 

4.1.3 Imputation module 

This module implements the imputation of quality-controlled genotypes using a user-defined 

reference panel. The imputation module automates the following steps: First, it converts the 

cohort to hg19 (Human Build GRCh37) in the case of different genome builds (Hinrichs et al., 

2006). Second, it aligns SNP names and alleles, removing SNPs whose alleles do not match the 

reference. Third, strand flips are adjusted for unambiguous (A/C and T/G) and ambiguous (A/T 

and G/C) SNPs. Fourth, from ambiguous SNPs, the module removes SNPs with frequencies 



29 
 

between 40% and 60%. SNPs with a frequency difference of more than 15% from the selected 

ancestral reference are also removed. For computational efficiency, the whole genome is split 

into genomic chunks of variable sizes with overlapping windows to keep the LD structure at the 

dividing lines. For example, in the imputation reference from the HRC, the data are split into 132 

genomic chunks, but users are free to choose between a variety of chunk sizes. Within each 

genomic chunk, haplotype estimation (phasing) is performed with Eagle (Loh et al., 2016) and 

finally genotype imputation using Minimac3 (Das et al., 2016), although the user can also choose 

other imputation and phasing algorithms. 

 

Once finished, the module will have generated genotype probability files for markers with INFO 

> 0.1 and MAF > 0.005. Moreover, a ready-for-analysis “best-guess genotype” is also created 

through the module making a hard call to the genotype with a probability >0.8. The pipeline 

produces three variations of best-guess genotype files based on the following filtration criteria: 

(1) no additional filter; (2) missing rate <2%; (3) missing rate <1%; and MAF >5%.  

 

For trio cohorts, Ricopili generates pseudo-controls from the nontransmitted alleles after phasing, 

using relatedness information from the families. For example, if the alleles of the case are A/A 

and those of the parents are A/G and A/G, then the nontransmitted alleles will be G/G for the 

pseudo-controls. The imputation of each affected offspring (probands) and the perfectly matched 

pseudo-control is then performed independently. For downstream analyses, controlling for 

population stratification is not necessary.  

4.1.4 Post-imputation module 

The post-imputation module performs a genome-wide association separately within the imputed 

dosage chunks (e.g., ~132 by default in HRC imputation) generated in the imputation module. 

This process is highly parallelized and computes association statistics for each genomic chunk 

for each study independently. Additional covariates can be adjusted for along with the PCs 

generated in the PCA modules. Naturally, this module also allows the testing of alternative 

phenotypes. The meta-analysis of multiple cohorts is conducted within each chunk and then 

combined genome-wide. The pipeline also incorporates genome-wide summary statistics from 

external sources. It uses PLINK (Purcell et al., 2007), METAL (Willer et al., 2010), and R 
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scripts (R Core Team., 2013) to achieve its tasks. The module produces publication-ready 

results, including whole genome summary statistics, Manhattan plots, Q–Q plots, forest- and 

regional-level plots, and Excel files. 

4.1.5 Post-imputation module for generating polygenic risk scores 

The post-imputation module is also used to estimate PRSs for each individual in a test cohort. It 

uses genetic loads from independent LD-clumped training data (see Subsection 4.1.6.2). By 

default, SNPs with a MAF <5% and an info score <0.9 are excluded. To create the PRS of each 

individual, the natural log of each variant’s odds ratio (OR) is multiplied by the 

imputation/genotype probability of the risk allele. The resulting values are then summed over the 

whole genome to create a single PRS for each individual. This is computed separately over 10 p-

value thresholds (5 × 10-8, 1 × 10-6, 1 × 10-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1.0) in the 

training data.  

 

Next, the module tests the association of the risk scores with the phenotype and estimates the 

variance explained. The variance explained is calculated using Nagelkerke’s R2 by comparing 

scores generated from a full model (containing covariates and PRSs) and a reduced model 

(covariates only). The liability for the trait or disease within the population is represented as a 

continuum of PRSs. The individuals with higher risk scores are positioned at higher points on the 

liability scale, indicating an elevated predisposition to the disease and vice-versa. Diseases with 

higher prevalence encompass a broader range of PRSs above a certain threshold on the liability 

scale, while diseases with a lower prevalence may involve individuals with exceptionally high 

PRSs.  

4.1.6 Additional modules of the Ricopili pipeline 

The following section describes the array of additional analysis modules within the Ricopili 

pipeline, which greatly facilitate downstream GWAS analysis. 

4.1.6.1 Reference builder 
This module helps the first-time user to set up the publicly available genome reference (e.g., a 

1000 Genomes reference panel) or those available by permission (e.g., HRC) in the Ricopili 
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format on their cluster. It also defines genomic chunks for roughly equal SNP numbers 

throughout the genome. 

4.1.6.2 Clumper module 

This module allows LD-clumping to be performed on summary statistics to produce independent 

regions. By default, the most significant SNP is retained by discarding all SNPs within 500 kb 

with a high LD of r2 ≥ 0.1. This is useful for assessing the number of independent SNPs 

associated with the phenotype. In the complicated and large major histocompatibility complex 

(MHC) region of chromosome 6, only the most significant SNP is retained. 

4.1.6.3 Replication module 

The Ricopili pipeline also provides a module for performing a replication analysis. The 

replication module allows users to calculate sign tests of the effect directions between discovery 

and replication data and the meta-analyses of top SNPs (e.g., p < 1 × 10-06).  

4.1.6.4 Leave-one-out polygenic risk score 

This module eases the leave-one-out (LOO) PRS analysis even for a larger number of cohorts. 

The pipeline automates the creation of training data by leaving out every single cohort one at a 

time. It then creates the PRS (using the method described in Section 4.1.5) for individuals in the 

excluded cohort (see Section 5.1.4). 

4.1.7 Simulated data  
We simulated genotype data using the freely available tool HAPGEN (Su., 2011), which 

produces genome-wide haplotypes based on the LD pattern of a reference panel of one’s choice. 

For this project, we used the 1000 Genomes Phase 3 reference panel to simulate genotype data 

and generated one cohort for a European ancestry population (the EUR data set; 503 reference 

individuals) and another for an East Asian ancestry population (the EAS data set; 504 reference 

individuals). After simulations, both data sets consisted of 100,000 simulated individuals. We 

performed first-pass filtering by removing all variants with an MAF <0.005, duplicate variant 

identifiers, or genomic location matches. After QC, 11,015,883 variants remained for the EUR 

data set, and 9,952,334 variants remained for the EAS data set. To create data sets relevant for 

education and method development, we further modified the simulated data. 
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4.1.7.1 Description of data interference: Population stratification 
From the HAPGEN simulated sets, we randomly chose 6,000 individuals of European ancestry 

(EUR) and 200 of East Asian ancestry (EAS). We extracted SNPs from the widely used Illumina 

OmniExpress platform. The EUR cohort was split into five subcohorts (N = 2,000, 1,000, 1,000, 

1,000, and 1,000) and the EAS cohort was split into two subcohorts (N = 100). The case and 

control status of every individual were assigned randomly (50:50) in the EUR cohort and at 

ratios of 2:98 and 5:95 to the EAS. Finally, we merged the two EAS cohorts with two of the 

EUR cohorts (cohort 1: N = 2,100 and cohort 3: N = 1,100; Table 4.1a) to create artificially 

unbalanced population stratification.  

4.1.7.2 Description of data interference: Technical errors 
We selected cohorts 1 and 2 to contain technical errors with false-positive associations. To do so, 

we performed the following steps separately for cases and controls in both cohorts: 

 

1. To generate autosomal heterozygosity rate deviations in individuals, heterozygous 

genotypes were substituted with homozygous genotypes for all SNPs in 10 selected 

probands.  

2. To create missingness per individual, 100 probands were randomly selected, and an 

SNP-missing rate per individual of 0–10% was introduced (from a right-skewed 

distribution with a lower probability of higher missing rates).  

3. To create sex errors, 10 (male/female) probands were chosen randomly, and their gender 

assignments were switched to the opposite sex. 

4. To create missingness per SNP, 2% of all SNPs were randomly selected to induce 

missing genotypes by choosing missingness rates between 0–10% (from a right-skewed 

distribution with a higher probability of low missing rates).  

5. To create Hardy–Weinberg disequilibrium per SNP, 2% of all SNPs were randomly 

selected to induce artificial excess homozygosity.  

6. To create false-positive associations, 20 SNPs were randomly selected, and their alleles 

A and B were swapped along with missingness being introduced to provide a sign for a 

technical error.  
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Finally, cases and controls were merged back into a single cohort. Table 4.1 provides a 

comprehensive description of each dataset, along with a detailed account of the interference 

applied to them. 

 
Table 4.1a: Description of the simulated data cohort. 

 Data set Name N Cases Control

s  

SNPs  Interference 

1 sim_sim1a_eur_sa_

merge.miss 

hap1a 2,100 985 1,115 547,7641 Population stratification 

(merging European with Asian 

cohort 1) and technical errors 

2 sim_sim2a_eur_sa_

merge.miss 

hap2a 1,000 474 526 593,970 Only technical errors 

3 hapgen_sample3a hap3a 1,100 478 622 547,7641 Only population stratification 

(merging European with Asian 

cohort 1) 

4 hapgen_sample4b hap4a 1,000 483 517 593,970 Shares 10 overlapping 

individuals with cohort 5 

5 hapgen_sample5a.p

h 

hap5a 1,000 516 484 593,970 – 

 
 

 
 
 
 
 

 
1 The number of SNPs are less than the other cohorts as these were formed by a merging Asian and European cohort, so we only 
took the overlapping SNPs between them. 
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4.2 Panic disorder cohort description (Forstner, Awasthi, and Wolf et al., 2019): 
This PD GWAS consisted of 2,248 cases and 7,992 controls originating from four European 

countries, namely Germany, Denmark, Estonia, and Sweden. Moreover, the written and 

informed consent of all participants was received, as was the approval of local ethics committees. 

DSM-III-R, DSM-IV, or ICD-10 criteria were used to diagnose lifetime PD in all patients. Table 

4.2a presents the sample sizes for each cohort, both for cases and controls. 

 
Table 4.2a: Description of the panic disorder cohort. 

PD Cases (N = sample 

size) 

Controls (N = sample size) 

 Germany I (N = 492) Heinz Nixdorf Recall study (N = 1,882; Schmermund et al., 2002) 

 Germany II (N = 251) Munich-based community cohort (N = 538) 

 Germany III (N = 290) Munich-based community cohort (N = 856) 

Denmark (N = 254) Danish (N = 1,034) 

 Estonia (N = 346) Estonian (N = 1,065) 

Sweden (N = 615) Swedish (N = 2,617; Ripke et al., 2002) 

 

4.2.1 SNP QC of six PD cohorts 

QC was applied to each cohort independently using the parameters and methodology described 

in Section 4.1.1. To summarize, we used the pre-imputation module to exclude problematic 

SNPs and samples, and if the Q–Q plots indicated high lambda inflation, they were scrutinized 

for genetic biases (Section 4.1.2). Details regarding pre- and post-QC sample sizes, along with 

the number of exclusions due to technical issues per cohort, are provided in Table 4.2b. Manual 

adjustments were necessary for the Germany I, Germany III, and Sweden cohorts. 

4.2.2 Genomic QC 

Relatedness testing was conducted using the PCA module with a subset of 47,513 high-quality 

SNPs. This subset was obtained through LD pruning (r2 > 0.02), a process that involves 
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removing SNPs in high linkage disequilibrium, reducing data redundancy. Additionally, SNP 

with low imputation quality (INFO score < 0.8), high missingness (SNP missingness > 0.01), 

and low minor allele frequency (MAF < 0.05) were excluded. The PCA module identified 8, 4, 

and 12 pairs of related or overlapping individuals within the Germany I, Germany II, and 

Sweden cohorts, respectively. Additionally, 12 pairs of individuals were found to be related 

across the German cohorts, with further details provided in Table 4.2b. Randomly, one member 

out of each pair (case–case/control–control) with π-hat > 0.2 was removed. If related individuals 

are cases and controls, we retain the cases and exclude the controls. The PCs were also estimated 

from the genotype data, and their phenotype association was tested using logistic regression. PCs 

1–7, 11, 16, and 18 significantly influenced the genome-wide test statistics and were used in 

further analyses to adjust for population stratification. 

 
Table 4.2b: Pre- and post-QC distribution of sample sizes and single nucleotide polymorphisms. This table provides 

a comprehensive overview of SNPs and individual exclusion details, including corresponding technical errors. 

Cohort Pre-QC Post-QC Exclusion Count and Reasons 

Germany	I Nsnp	=	

219,166 

Nsnp	=	

218,563 
• 361 SNPs were excluded due to them being missing in more 

than 2% of individuals. 

• 86 SNPs were excluded due to missing differences > 0.020 

between cases and controls. 

• Two	SNPs	were	manually	excluded	due	to	significantly	

higher	deviation	of	AFs	compared	with	the	reference	

genome. 

Ncas	=	492,	

Ncon	=	1,882 

Ncas	=	472,	

Ncon	=	1,803 

• Four	cases	and	six	controls	were	excluded	due	to	missing	

SNPs	>	2%. 

• Four	controls	were	excluded	due	to	the	heterozygosity	

rate	being	outside	+−0.20. 

• 12	cases	and	61	controls	were	excluded	due	to	sex	

violations.	 

• Eight	pairs	of	overlapping	or related	samples	were	found	

within	this	cohort,	resulting	in	the	exclusion	of	eight 

controls. 

• Four cases were excluded as they were	overlapping or related 

to cases	in	Germany II (n = 2) and Germany III (n = 2).  

Germany	II Nsnp	=	

296,835 

Nsnp	=	

295,955 
• 110 SNPs were excluded due to missingness > 0.2. 

• 770 SNPs were excluded due to missing differences > 0.020 

between cases and controls. 
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Ncas	=	251,	

Ncon	=	538 

Ncas	=	247,	

Ncon	=	537 

• Four	cases	were	excluded	as	they	were	overlapping	or	

related	to	cases	in	Germany	I	along	with	one	control	that	

was	related	to	an	individual	in	Germany	III.		

Germany	III Nsnp	=	

486,864 

Nsnp	=	

485,410 
• 621 SNPs were excluded due to missingness > 0.2. 

• 829 SNPs were excluded due to missing differences > 0.020 

between cases and controls. 

• Two SNPs were excluded due to an HWE p value of less 

than 10-8 in cases. 

• Two	SNPs	were	manually	excluded	for	a	significantly	

higher	deviation	of	AF	compared	with	the	reference	

genome. 

Ncas	=	290,	

Ncon	=	856 

Ncas	=	280,	

Ncon	=	855 

• Four cases were excluded due to missing SNPs > 2%. 

• Four pairs of overlapping and related samples were found 

within this cohort, resulting in the exclusion of four cases. 

• Two	cases	were	excluded	as	they	were	overlapping	or	

related	to	cases	in	Germany	I	along	with	one	control	that	

was	related	to	an	individual	in	Germany	II. 

Denmark Nsnp	=	

248,028 

Nsnp	=	

232,069 
• 5,955	SNPs	were	excluded	due	to	missingness	>	0.2. 

• 2,472	invariant	SNPs	were	excluded. 

• 1,776	SNPs	were	excluded	due	to	missing	differences	>	

0.020	between	cases	and	controls.	

• 5,734	SNPs	were	excluded	due	to	an	HWE	p	value	of	less	

than	10-6	in	controls. 

• 22	SNPs	were	excluded	due	to	an	HWE	p	value	of	less	

than	10-8	in	cases. 

Ncas	=	254,	

Ncon	=	1,034 

Ncas	=	248,	

Ncon	=	970 

• Two	controls	were	excluded	due	to	missing	SNPs	>	2%. 

• Two	cases	and	20	controls	were	excluded	due	to	sex	

violations.	 

• Two	cases	and	42	controls	were	identified	as	population	

outliers	and	were	subsequently	excluded. 

Estonia Nsnp	=	

247,451 

Nsnp	=	

225,045 

• 2,925	SNPs	were	excluded	due	to	missingness	>	0.2.	

• 11,553	SNPs	were	excluded	due	to	missing	differences	>	

0.020	between	cases	and	controls.	

• 2,479	invariant	SNPs	were	excluded.	

• 169 SNPs were excluded due to an HWE p value of less than 

10-8 in cases.	

• 5,280	SNPs	were	excluded	due	to	an	HWE	p	value	of	less	

than	10-6	in	controls.	
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Ncas	=	346,	

Ncon	=	1,065 

Ncas	=	339,	

Ncon	=	1,004 

• 26	controls	were	excluded	due	to	missing	SNPs	>	2%. 

• 20	controls	were	excluded	due	to	sex	violations.	 

• Seven	cases	and	15	controls	were	identified	as	population	

outliers	and	subsequently	excluded. 

 

Sweden Nsnp	=	

222,726 

Nsnp	=	

213,578 
• 341	SNPs	were	excluded	due	to	missingness	>	0.2. 

• 384	SNPs	were	excluded	due	to	missing	differences	>	

0.020	between	cases	and	controls.	

• Seven	invariant	SNPs	were	excluded. 

• Three	SNPs	were	excluded	due	to	an	HWE	p	value	of	less	

than	10-6	in	controls. 

• 7,413	SNPs	with	a	MAF	of	less	than	1%	were	manually	

excluded. 

Ncas	=	615,	

Ncon	=	2,617 

Ncas	=	561,	

Ncon	=	2,591 

• 12	cases	were	excluded	due	to	missing	SNPs	>	2%.	

• 21	pairs	of	overlapping	and	related	samples	were	found	

within	this	cohort,	resulting	in	the	exclusion	of	five	cases	

and	16	controls. 

• 37	cases	and	10	controls	were	identified	as	population	

outliers	and	subsequently	excluded. 

 

4.2.3 Imputation 

The imputation of quality-controlled data for all six cohorts was performed using IMPUTE2 

(Howie et al., 2012) and SHAPEIT (Delaneau et al., 2011) as well as the pre-phasing/imputation 

stepwise approach. We used default parameters, a chunk size of 3 megabases (Mb), and the 1000 

Genomes Project reference panel (release “v3.macGT1”). 

 4.2.4 Association testing and meta-analysis.  

Each marker was tested for associations with PD using an additive logistic regression model and 

by controlling for PCs 1–7, 11, 16, and 18 independently in six PD cohorts. The p value 

threshold of 5 × 10−8 was used to assign genome-wide significance. Furthermore, the six cohorts 

were meta-analyzed using METAL (Willer et al., 2010), averaging the genetic effects (ORs) 

weighted by inverse standard error (SE) of the effect.  
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4.2.5 Leave-one-out polygenic risk scoring 

LOO polygenic risk scoring was performed on all six cohorts by excluding one of them and 

using the remaining meta-analytic summary statistics to compute the PRS (using the method 

described in Section 4.1.5) for the individuals of the left-out cohort. This was done using the 

LOO-PRS module of the Ricopili pipeline. 

 

4.2.6 Replication 

We used three independent European PD studies for the follow-up analysis. These included 

iPSYCH (Denmark, n = 905 cases, n = 3,620 controls); deCODE (Iceland, n = 547 cases, n = 

220,285 controls); and NESDA/NTR (the Netherlands, n = 956 cases, n = 4,565 controls). The 

combined meta-analysis included 2,498 PD patients and 228,470 from the follow-up cohorts. 

The meta-analysis was performed using the inverse standard error-weighted OR combination. A 

binomial “sign test” was performed on the number of same-direction effects in the replication 

data to test for significant accumulation. 

4.2.7 Heritability estimation and genetic correlation  

Linkage disequilibrium score regression (Sullivan et al., 2015) was used to determine the SNP-

based heritability of PD. To test PD’s genetic overlap with a wide range of phenotypes, we took 

advantage of the online database and web interface LD HUB (Zheng et al., 2017), which is based 

on the LD score regression method. The linkage disequilibrium adjusted kinship (LDAK) model 

of the SumHer tool was used to confirm the results. 

4.2.8 Functional analysis 

To classify our risk variants associated with PD, we performed a gene-based test, gene-set 

enrichment, and tissue enrichment analyses using a gene analysis tool MAGMA (de Leeuw et 

al., 2015) implemented in online web interface FUMA (Watanabe et al., 2017).  

 



39 
 

4.3 Borderline personality disorder cohort (Witt et al., 2017): 

The BPD cohort consisted of 1,075 cases and 1,675 controls. The cases and controls of European 

ancestry were obtained from multiple sites (Table 4.3a) and merged into a single cohort. Patients 

aged 16–65 years with a lifetime DSM-IV diagnosis of BPD were included.  
Table 4.3a: Description of the borderline personality disorder cohort. 

BPD Cases (N = sample size) Controls (N = sample size) 

1. Department of Psychiatry, Charité, Campus 

Benjamin Franklin, Berlin (N = 494) 

1. Central Institute of Mental Health 

Mannheim (N = 1,583) 

2. Department of Psychosomatic Medicine, Central 

Institute of Mental Health, Mannheim (N = 350) 

2. University Medical Center Mainz 

(N = 92) 

3. Department of Psychiatry and Psychotherapy, 

University Medical Center Mainz (N = 231) 

 

LD score regression (Sullivan et al., 2015) was used to estimate the genetic correlation of BPD 

with schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BP). The 

GWAS summary statistics for these disorders were obtained from Psychiatric Genomics 

Consortium (PGC) publications: 

1. SCZ: 33,640 cases and 43,456 controls (Ripke et al. 2014); 

2. BP: 20,352 cases and 31,358 controls (Stahl et al. 2019); 

3. MDD: 16,823 cases and 25,632 controls (Ripke et al 2013). 

 

4.4 IMAGEN cohort (Kaminski et al., 2018): 

IMAGEN is a large multicenter (longitudinal) neuroimaging and genetics study at eight locations 

in four different European countries, namely Germany, the United Kingdom, France, and Ireland 

(Schumann et al., 2010). Each European center enrolls at least 250 healthy adolescents aged 14 

years, who are then tracked at the ages of 16, 19, and 22 years. The primary aim is to leverage 
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the substantial sample size (N > 2,000) to establish a robust statistical confirmation of whether 

the associations between brain structure, function, and genetic variance are direct (e.g., linked to 

substance abuse) or if they emerge as secondary consequences of the disorder (e.g., due to the 

effects of pharmacological drugs (Mascarell Maričić and Walter et al., 2020). 

 

For this project, our cohort comprised 1,475 subjects (mean age = 14.43 years; SD = 0.45, 

including 765 female participants) selected from the IMAGEN study. 

4.4.1 Intelligence measurement 

We estimated a measure of general cognitive ability by performing PCA (Deary et al., 2010) 

over WISC-IV scores, consisting of matrix reasoning, block design, digit span backward and 

forward, similarities, and vocabulary (Wechsler., 2003). The first PC explained the largest 

proportion of variance and was used as an intelligence marker (general IQ; gIQ). 

 

4.4.2 Polygenic risk scoring  
GWAS results for childhood intelligence (Benyamin et al., 2014) on 7,989 individuals 

(1,380,159 SNPs) and human intelligence (Sniekers et al., 2017) on 78,308 adults (10,499,625 

SNPs) were first LD-clumped using the method described in Subsection 4.1.6.2. The clumped 

GWAS results were further used to generate polygenic scores (using the method described in 

Section 4.1.5) for each individual in the IMAGEN cohort. To examine the association between 

polygenic scores and gIQ, we performed linear regression models using the polygenic scores as 

predictors.  
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5) Results 

This chapter presents the results obtained from this dissertation work. Section 5 provides a 

summary of the standardized GWAS methodology and details the technical and genomic QC 

results that refined this methodology. 

 

Section 5.2 presents the results of the QC, imputation, meta-analysis, replication, leave-one-out 

polygenic risk score (LOO-PRS) analysis, heritability estimation, genetic correlation, gene 

based, get set and tissue enrichment analysis.   

 

In Section 5.3, the results of genetic correlation estimation between borderline personality 

disorder (BPD) and psychiatric disorders such as schizophrenia (SCZ), major depressive disorder 

(MDD), and bipolar disorder (BP) are discussed.  

 

Finally, Section 5.4 presents the results of the association between intelligence measures and 

polygenic scores in the IMAGEN cohorts 

 

5.1 Standard GWAS analysis methodology (Lam and Awasthi et al., 2020): 

The flowchart in Figure 4.1a (Chapter 4 – Materials and methods) illustrates the standard GWAS 

methodology that was developed in this project and used throughout. The flowchart uses various 

modules of the Ricopili pipeline along with some manual inspections and corrections.  

 

In summary, this process entailed conducting thorough QC (both technical and genomic) through 

using the pre-imputation and PCA modules of the Ricopili pipeline, supplemented with manual 

quality checks. These two modules were employed iteratively, in various sequences, and 

multiple times if necessary, until a reliable genotype data set was obtained. Additionally, 

subsequent steps such as imputation, association/meta-analysis, and downstream modules were 

executed to perform a comprehensive GWAS analysis using our pipeline. 

 



42 
 

5.1.1 Simulated cohorts 
The methodology presented in Section 5.1 and depicted in Figure 4.1a was used to analyze the 

simulated cohorts 1–5. This section only includes the results for cohort 1, as the same process 

was extended to all other cohorts (2–5). Later sections showcase plots and figures obtained 

through using the modules described in Section 4.1.  

 

5.1.2 QC on simulated cohort 1 

This section demonstrates the use of Ricopili’s QC module to identify and rectify the technical 

interventions and biases introduced in the simulated data. This module generates comprehensive 

QC reports that aid in high-quality data analysis and visualization. The illustrations from Figures 

5.1 a–i were extracted from this QC report. 

 

The flags (Figure 5.1a) obtained from the initial run of the QC module of Ricopili indicated that 

this cohort needed more work even after automatic QC. Green flags indicate that no double-

check was necessary and the cohorts could thus proceed directly to imputation and meta-

analysis. Cohorts with yellow flags needed to be carefully examined; if a sufficient explanation 

was provided, they could progress to the next steps. Lastly, red flags signal that additional 

filtering and repeated QC were necessary until all red flags were resolved.  

 

 
 

Figure 5.1a: All flagged (red), warning (yellow), and nonflagged (green) technical issues with the genotypes. [Ref. 

Lam and Awasthi et al., 2020, Bioinformatics: Permission granted] 
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Figure 5.1b presents an exclusion table for individuals and low-quality SNPs. The table indicates 

that 112 individuals were excluded due to a low call rate, sex violation, and heterozygosity 

deviation. A total of 40,271 (7.4%) SNPs were excluded due to high HWE deviation and high 

missing rates. After QC, 507,493 SNPs were retained. However, Figure 5.1b presents 29 SNPs 

that were significantly associated with the phenotype even after GC correction (genomic control 

for lambda inflation). These false positives would carry through imputation, and thus, they were 

scrutinized in the following steps. 

 

 
Figure 5.1b: Size of sample (top panel): This provides a broad overview of the sample size and SNP distribution 

before and after QC, along with the number of exclusions. The sample is further described in detail, split into two 

different categories. First, it is divided by phenotypes (cases, controls, and missing data), and second, it is divided by 

gender (males, females, and unspecified). Exclusion overview (bottom panel): This provides a quantitative list of 

excluded SNPs and individuals (in the “N” column) along with the corresponding technical reasons for exclusion (in 

the “Filter” column). [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted] 

 

The Q–Q plot (Figure 5.1c) revealed inflated lambda values even after QC filters. These were at 

least partly driven by population stratification given the two genetically distinct populations 

(Figure 5.1d) in this cohort and/or sample overlap. Here, as we sought to restrict the analysis to 
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European ancestry, we chose a threshold that excluded the much smaller Asian subset (e.g., 

PCA1 = 0.01). 

 

 
Figure 5.1c: Post-QC Manhattan plot (left); The y axis represents the −log of p values for variants with a p value < 

0.001, presented along their genomic locations on the x axis (22 autosomes). Q–Q plot (right): The x axis represents 

expected −log10(P) values, while the y axis represents observed −log10(P) values. The gray shaded area surrounded 

by a red line indicates the 95% confidence interval under the null (no inflation). Lambda is the observed median χ2 

test statistic divided by the median expected χ2 test statistic under the null (p = 0.5). Since lambda scales with 

sample sizes, it is informative to examine the rescaled lambda for 1,000 cases and 1,000 controls (i.e., lambda 1000; 

de Bakker., 2008). All SNPs with MAF > 0.02 were used to create the Q–Q plot [Ref. Lam and Awasthi et al., 2020, 

Bioinformatics: Permission granted]. 
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Figure 5.1d: PCA plot: x axis = principal component (PC) 1 and y axis = PC 2. Red dots represent cases and blue 

dots represent controls. Two distinct populations, European (PCA1 < 0.00), and East Asian (PCA1 > 0.08), are 

identified [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]. 

 

After we removed the Asian subset from the cohort, a significant drop in lambda inflation 

occurred (compare Figure 5.1 c and e). Still, there were 28 genome-wide significant SNPs, as 

listed in Figure 5.1f. In summary, some red QC flags from Figure 5.1a were resolved, but not all 

of them. In Figure 5.1f, we identified high missing rates indicated in columns F_MISS (overall 

proportion of missing genotype data), F_MISS_A (proportion of missing genotype data in 

cases), and F_MISS_U (proportion of missing genotype data in controls) for flagged SNPs and 

excluded them from further analysis. 
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Figure 5.1e: Manhattan plot (left) and Q–Q plot (right) after removing population outliers. Compare it with Figure 

5.2.c [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]. 
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Figure 5.1f: Summary statistics of genome-wide significant SNPs. “RSID”: SNP identifier; “CHR”: 

chromosome number; “BP”: base pair position of the SNP; “A1”: reference allele for the SNP and also the 

effect allele; “F_A”: allele frequency of the effect allele; “F_U”: allele frequency of the effect allele in 

controls; “A2”: alternative allele for the SNP; “P_ASSOC”: p value representing the statistical association 

of the SNP with the phenotype; “OR”: odds ratio (a measure of effect size); “SE”: standard error of the 

OR; “MAF”: minor allele frequency; “F_MISS”: overall proportion of missing genotype data; 

“F_MISS_A”: proportion of missing genotype data in cases; “F_MISS_U”: proportion of missing 

genotype data in controls; “F_MISS_DIFF”: difference in missing genotype data between cases and 

controls; “F_MISS_P”: p value representing the statistical significance of the difference in missing 

genotype data between cases and controls; “log(P)_HWE_cas”: log-transformed p value for the HWE test 

in cases; “log(P)_HWE_con”: log-transformed p value for the HWE test in controls; and 

“log(P)_HWE_all”: log-transformed p value for the HWE test in all samples (cases and controls 

combined) [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]. 

 

 
Figure 5.1g: Flagging after automatic and manual QC [Ref. Lam and Awasthi et al., 2020, Bioinformatics: 

Permission granted]. 
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Figure 5.1h: SNP and individuals excluded due to various technical issues after automatic and manual QC [Ref. Lam 

and Awasthi et al., 2020, Bioinformatics: Permission granted]. 

 

Finally, Figures 5.1g and 5.1h indicate that with these various QC actions, we produced a data 

set with no noticeable biases. The 10 green QC flags (in Figures 5.1g) also support this. After 

QC, 507,493 SNPs remained, which was a sufficient number (i.e., greater than 200,000) for 

proper imputation. The previous sections have described the QC actions and results specific to 

cohort 1. The same process (also outlined in the flowchart in Figure 4.1a) was subsequently 

extended to all other cohorts (2–5). 

5.1.3 Meta-analysis 

The 7,149,025 SNPs imputed in the simulated cohorts were tested for association with the 

randomly generated null phenotype. As expected, no genome-wide significant marker was 

discovered (Figure 5.1i), and genome-wide inflation of p values was absent.  
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Figure 5.1i: Manhattan plot illustrating association results of 2,820 random cases and 2,962 random controls. The y 

axis represents the −log of p values for variants with p < 0.001, presented along their genomic locations on the x 

axis (22 autosomes). The green diamond is the lead variant in each locus, and the red line is genome-wide 

significance [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]. 

 

5.1.4 LOO-PRS analysis 

PRSs for each simulated cohort were calculated through the GWAS meta-analysis of the 

remaining four cohorts. As expected for a simulated collection, the correlations (measured as 

Nagelkerke’s r2) between genetic risk scores and the random phenotypes displayed a seemingly 

random direction of effect with no statistical significance for any of the p value thresholds 

(Figure 5.1j). 
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Figure 5.1j: Leave-one-out polygenic risk score: This figure illustrates the PRS results of each of the five simulated 

cohorts generated using GWAS meta-analysis effects of the remaining four cohorts as training data. PRSs were 

calculated at 10 different p-value thresholds indicated by respective color bars in the legend. The variance explained 

by PRSs is presented along the y axis. Not a single result in any category was statistically significant at p < 0.05 

(and not a single absolute R2 score reached more than 0.5% explained variance) [Ref. Lam and Awasthi et al., 2020, 

Bioinformatics: Permission granted]. 

 

As expected in simulated cohorts, the null phenotype yielded an SNP heritability that was 

indistinguishable from 0 (2.24% – SE of 7%). 

5.1.6 LD score regression analysis: Genetic correlation (co-heritability) 

No co-heritability existed between the association results with the null phenotype and the results 

from the SCZ and MDD GWAS. 
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5.1.7 Replication analysis 

Sign analysis was performed between simulated cohort 4 (replication cohort) and discovery 

meta-analysis of the remaining four cohorts as the discovery set. In the binomial test, 60 out of 

127 top associated SNPs (discovery p value < 1 × 10−4) exhibited the same direction effects, 

which were not distinguishable from randomness – as expected for a null phenotype. 

 

5.2 Panic disorder GWAS (Forstner, Awasthi and Wolf et al., 2019): 

5.2.1 QC and imputation 

The thorough technical and genomic QC resulted in more than 200,000 SNPs in each cohort 

(Table 4.2b), which was a sufficient number for genotype imputation. Genotype imputation 

further increased the SNP count (by predictions based on the reference genome) to 

approximately 10 million in each cohort. 

5.2.2 Meta-analysis results 

None of the 8,757,275 high-quality SNPs revealed any significant association to PD in the meta-

analysis (Figure 5.2a), and the genome-wide association signal exhibited no significant inflation 

(Q–Q plot in Figure 5.2b). A small intergenic deletion on chromosome 14 exhibited the highest 

significance (p = 1.01 × 10−7, OR = 1.64, MAF in controls = 0.05, MAF in cases = 0.07, 

imputation INFO score = 0.59). 
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Figure 5.2a: Manhattan plot illustrating association results of 2,147 PD cases and 7,760 controls. The y axis 

represents −log of p values for all the tested variants, while their genomic location is along the x axis. The green 

diamond is the lead variant in each locus, and the red line is genome-wide [Ref. Andreas, Awasthi and Wolf et al., 

2019, Molecular Psychiatry: Permission granted]. 
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Figure 5.2b: Q–Q plot – the x axis represents expected −log10(P) values and the y axis represents observed 

−log10(P) values. The gray-shaded area surrounded by a red line indicates the 95% confidence interval under the 

null (no inflation). Lambda is the observed median χ2 test statistic divided by the median expected χ2 test statistic 

under the null (p = 0.5). Since lambda scales with sample sizes, it was informative to examine the rescaled lambda 

for 1,000 cases and 1,000 controls (i.e., lambda 1,000; de Bakker., 2008) [Ref. Andreas, Awasthi and Wolf et al., 

2019, Molecular Psychiatry: Permission granted]. 

 

5.2.3 Replication analysis 

By comparing the direction of effects between the replication and discovery results on the 243 

SNPs with a discovery p value of < 1 × 10−4, we were able to demonstrate a nominally 

significant (p = 0.048) proportion of same-direction effects in 135 SNPs using the sign test. 

 

The combined meta-analysis of the discovery PD and replication cohorts found no significant 

single SNP genome-wide association, with PD.SNP rs144783209 – located on chromosome 

4/intron 1 of the SMAD1 gene – exhibiting the lowest p value (Pcomb = 3.10 × 10−7). 
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5.2.4 LOO-PRS analysis 

In contrast to the null phenotype (Figure 5.1j and Section 5.1.4) the LOO-PRS analysis for PD 

reliably predicted disease status in all five cohorts (Figure 5.2c). For lower p-value thresholds, 

the analysis demonstrated the same direction of effect in all cohorts, with the maximum 

explained observed variance ranging from 0.8% (Swedish) to 2.6% (Germany II).  

 

 
Figure 5.2c: Leave-one-out polygenic risk score (PRS) results of six GWAS cohorts using the GWAS results from 

the remaining five at 10 different p-value thresholds, as indicated by the respective color bars in the legend. The 

observed variance explained by PRS is along the x axis; * indicates the significance of variance over each bar [Ref. 

Andreas, Awasthi and Wolf et al., 2019, Molecular Psychiatry: Permission granted]. 

 

5.2.5 LD score regression analysis: SNP-based heritability 

Using the LD score regression (SR) method, we observed that SNP-based heritability for PD 

significantly ranged from 28.0% (SD = 5.7%) for a lifetime prevalence of 2% to 34.2% (SD = 
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6.9%) for a lifetime prevalence of 4%. Using the SumHer/LDAK method, we confirmed these 

values with 36.3% (SD = 4.7%) and 44.0% (SD = 5.6%), respectively.  

 

5.2.6 LD score regression analysis: Genetic correlation (co-heritability)  

A significant genetic correlation of PD was observed with MDD (genetic correlation/rg = 0.431; 

SE = 0.134; p value corrected for multiple testing/Pcorr = 0.025); depressive symptoms (rg = 

0.322; SE = 0.093; pcorr = 0.010); and neuroticism (rg = 0.316; SE = 0.082; Pcorr = 0.002). 

Moreover, a slightly significant positive genetic correlation was observed with anxiety disorder, 

posttraumatic stress disorder (PTSD), PGC cross-disorder analysis phenotype, and SCZ, whereas 

a significantly negative genetic correlation was observed with years of schooling as a surrogate 

marker for IQ (Figure 5.2d). 

 

Furthermore, we estimated the co-heritability of PD with MDD in two settings – namely PD 

patients (1) with and (2) without comorbid MDD. Noteworthily, MDD exhibited a nominally 

significant genetic correlation with PD without MDD (rg = 0.415; SE = 0.209; p = 0.047), but it 

had no significant correlation with PD with MDD (rg = 0.662; SE = 0.422; p = 0.117). This 

supports the hypothesis of an observed co-heritability between PD and MDD that is largely 

driven by shared genetic variants and not by PD–MDD comorbidity. A disparity existed in 

sample sizes between these two settings, indicating the need for additional confirmation. 

 

Moreover, using the SumHer/LDAK method, we confirmed the strong positive genetic 

correlation between PD and (i) MDD (rg = 0.208; SD = 0.065); (ii) depressive symptoms 

(rg = 0.275; SD = 0.092); and (iii) neuroticism (rg = 0.260; SD = 0.077) and other phenotypes. 
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Figure 5.2d: Genetic correlations between PD and other phenotypes: For the 19 phenotypes on the right, the genetic 

correlation is denoted as a dot with a line as the standard error. The significance of each correlation is described in 

the upper left [Ref. Andreas, Awasthi and Wolf et al., 2019, Molecular Psychiatry: Permission granted]. 
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5.2.7 Gene-based analysis 

A gene-based analysis was performed using MAGMA on a total of 18,335 genes. In total, 42 

genes were found to be significantly associated with PD at p = 0.001, but none of them reached 

significance after Bonferroni correction (p < 0.05/18,335 = 2.73 × 10−6).  

5.2.8 Gene set analysis 

A gene set analysis using gene-based results (Section 5.2.6) revealed 521 gene sets/pathways to 

be nominally significant. Again, however, none of the gene sets remained significant (p < 

0.05/10 891 = 4.59 × 10−6) after Bonferroni correction. 

 

 5.2.9 Tissue enrichment analysis 

Tissue enrichment analysis revealed an enrichment of associated genes expressed in brain 

tissues. Genes expressed in the cortex exhibited the most robust enrichment, followed by those 

expressed in the amygdala (Figure 5.2e). Here again, none of the 53 investigated tissues reached 

statistical significance after Bonferroni correction. 
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Figure 5.2e: Illustration of the results of tissue enrichment analysis implemented by MAGMA (embedded in 

FUMA), using GTEx data for 53 tissue types. Nominal −log10 p values are presented along the y axis. None of the 

investigated tissues exhibited a significant enrichment after correction for multiple testing [Ref. Andreas, Awasthi 

and Wolf et al., 2019, Molecular Psychiatry: Permission granted]. 
 

The following sections present findings from two additional research projects. Notably, I 

emphasize significant genetic insights within two complex traits – namely BPD (presented in 

Section 5.3) and general intelligence (presented in Section 5.4).  

 

5.3 Borderline personality disorder (Witt et al., 2017): Genetic correlation 

with schizophrenia, major depressive disorder, and bipolar disorder 

A total of 207 individuals were excluded due to technical and genomic QC, mostly due to 

genetic overlap and population outliers. The post-QC cohort consisted of 998 BPD cases (914 

female/84 male) and 1,545 controls (868 female/677 male). These were finally imputed using the 

1000 Genomes Project reference panel (Abecasis et al., 2010). As the most critical outcome, we 

were able to demonstrate significant genetic correlations of BPD with BP (rg = 0.28; SE = 

0.094; p = 2.99 × 10−3), MDD (rg = 0.57; SE = 0.18; p = 1.04 × 10−3), and SCZ (rg = 0.34; SE = 

0.082; p = 4.37 × 10−5).  
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5.4 General intelligence in the IMAGEN cohort (Kaminski et al., 
2018): Association between gIQ and polygenic scores 
PRSs were derived from a childhood intelligence GWAS (Benyamin et al., 2014) with 7,989 

individuals as well as a human intelligence GWAS (Sniekers et al., 2017) with 78,308 

participants. The former PRSs were significantly associated with gIQ at a p-value threshold of 

0.1 (comprising 16,972 SNPs) and explained 0.33% of the phenotypic variance (p = 1.7 × 10-2). 

By contrast, the latter PRSs used a p-value threshold of 0.01 (leaving 5,636 SNPs) and increased 

the explained variance up to 3.2% (p = 7.3 × 10−8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

6) Discussion 

GWASs have changed our understanding of a plethora of complex human traits in medical and 

nonmedical fields. Genome-wide summary statistics derived from GWASs are used for 

downstream analyses, which assist in understanding the biology of complex traits and the 

etiology of complex disorders. Thus, to support such progress, the National Institute of Health 

requests that such data be made publicly available (Paltoo et al., 2014). There are a growing 

number of resources in which one can find publicly available genome-wide data, such as the 

PGC (Sullivan et al., 2018), GWAS Atlas (Watanabe et al., 2019), UK BioBank (Sudlow et al., 

2015), LocusZoom (Pruim et al., 2010), dbGAP (Mailman et al., 2007), and EGA (Lappalainen 

et al., 2015). However, conclusions drawn from these results will not be robust if the GWAS 

analysis was initially compromised. Even minor biases and errors can increase the rate of false-

positive and -negative results (Finno et al., 2014). Therefore, it is essential to produce high-

quality GWAS results to ensure a reliable clinical impact, such as through individual risk 

prediction or gene interaction pathways. 

 

Our Ricopili pipeline and the best practice methodology are aimed at helping to produce robust 

GWAS results by addressing a multitude of real-world biases and errors throughout. The pipeline 

incorporates state-of-the-art tools and techniques used in GWASs to provide a coherent and 

streamlined workflow. It comprises four major modules—pre-imputation/QC, PCA, imputation, 

and post-imputation. Each module ensures the seamless progression of a GWAS, effectively 

identifying any biases that might compromise the integrity of the results and analysis. This 

efficient approach significantly reduces researchers’ time investment by allowing them to focus 

on result interpretation and target discovery rather than laborious data management.  

 

Furthermore, the Ricopili pipeline automates report generation and produces informative plots in 

each module, thus facilitating the early detection and correction of errors. For example, to ensure 

accurate representation of the population, it is crucial to perform LD pruning and remove long-

range LD regions. Additionally, aligning genotypes to the reference build is essential, as failure 

to do so can lead to poorly imputed genotypes and inadequate signals. Analysts often overlook 

these steps, and an efficient pipeline like Ricopili helps to mitigate such issues.  
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This standardized procedure and reporting system also contribute to documentation, which is 

often a time-consuming task for analysts. Designed to be easily installed on high-performance 

clusters and adaptable to various job management systems (e.g., Slurm or qsub), the Ricopili 

pipeline enhances scalability and the efficient use of computational resources. These advantages 

bolster scientific rigor, promote reproducibility, and alleviate the computational burden on 

researchers, enabling them to devote more attention to the scientific aspects of their research. 

 

However, the Ricopili pipeline also has some limitations. The pipeline is difficult to be installed 

on a normal computing machine. It usually deals with data and algorithms that are 

computationally expensive, requiring extensive computation resources, such as High-

Performance Computing (HPC) Clusters. Initially, installing it on a new system and 

understanding all the algorithms, tools, and scripts could be daunting. However, comprehensive 

documentation of the pipeline are available online. Users should possess certain skills, such as 

working with a Unix operating system, to work smoothly with the pipeline. 

 

Nonetheless, this work is a valuable learning resource and will hopefully encourage more 

researchers to perform genome-wide studies. The five HAPGEN-generated simulated data sets 

used to develop the methodology are publicly available for download, along with a detailed 

guiding tutorial. The simulated data will help to educate new users about Ricopili and GWASs as 

well as further motivate experienced users to develop new functionality using these data. This 

work has produced many protocols for performing and tuning various downstream analyses. 

Within this project, we tested this developed methodology on PD, BPD, and gIQ later in the 

project. 

 

As expected, the GWAS of the to-date largest PD cohort did not reveal any genomic loci 

associated with PD due to its small sample size. However, it did reveal interesting genetic 

characteristics of the disorder. Furthermore, the LOO-PRS analysis significantly predicted cases 

and control in all subcohorts, ranging from 0.8% to 2.6% variance explained, which strongly 

supports the shared risk-variant consistency among these subcohorts. These results also confirm 

that uniform diagnostic criteria were applied to recruit the PD patients and that shared risk 

variants existed among the subcohorts. This phenotypic variance explained by common variants 
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is comparable to other complex psychiatric traits with similar sample sizes, such as SCZ (Ripke 

et al., 2013; Purcell et al., 2009). Additionally, we present the first estimate of SNP-based 

heritability (28–34%) from this cohort of 2,248 cases and 7,992 controls using the LDSR and 

SumHerr (LDAK) methods, which implied that common variants with small effect sizes 

influence a large proportion of PD susceptibility. 

 

Furthermore, this study identified a strong positive genetic correlation of PD with MDD, 

depressive symptoms, and neuroticism, consistent with those frequently observed at clinics 

(Dold et al., 2017). Moreover, these results also supported the previously published finding of 

overlapping genetic risk factors between depression and anxiety (Demirkan et al., 2011). We 

performed an additional analysis of PD with/without MDD on 11,153 individuals (with the 

presence and absence of a lifetime history of MDD available) to assess the potential influence of 

MDD comorbidity on the reported genetic correlations. Noteworthily, this additional analysis 

revealed a significant positive correlation between MDD and PD without MDD. Quantitatively, 

the correlation between MDD and PD with MDD exhibited a stronger but statistically 

nonsignificant effect. These results suggested that MDD and PD’s reported correlation is mostly 

independent of comorbidity, but they might have inflated the current estimate to a small extent. 

 

Notably, the strongest correlation was found between PD and neuroticism, a trait that is highly 

correlated with many internalizing mental disorders. This is consistent with previous clinical 

findings of a possible relationship between PD and neuroticism (Võhma et al., 2010). This study 

also found nominally significant positive correlations of PD with anxiety disorder, PTSD, PGC 

cross-disorder, and SCZ as well as a negative correlation with years of schooling. These are 

expected to be replicated in larger cohorts in the future. 

  

Moreover, the gene-based, gene set, and tissue expression analyses from MAGMA revealed no 

significant results after correcting multiple tests. However, the results implied that the genes 

tagged by variants in our present cohorts are enriched for expression in various brain-related 

tissues. Specifically, the strongest enrichment was observed for the brain cortex’s genes, 

followed by the amygdala. These results support that PD’s biological origin lies in the brain and 
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confirm the previously reported roles of the brain cortex and amygdala in the neural networks of 

anxiety and fear (Dresler et al., 2013; Pfleiderer et al., 2007; Kim et al., 2011). 

  

While this study has provided insights into PD’s etiology, it also had some limitations. First, the 

sample size could not point to specific variants significantly associated with PD. However, the 

positive sign test and polygenic results anticipated that PD’s genetic association will become 

robust as the sample size grows in future studies. Second, this study cannot be generalized to a 

population other than that of European ancestry, but this limitation is addressed with various 

worldwide efforts in diverse GWAS ancestry studies. 

 

In two related side projects, we were able to uncover valuable insights. Our BPD project 

revealed significant genetic overlaps with various psychiatric traits, such as BP (rg = 0.28) and 

SCZ (rg = 0.34) or MDD (rg = 0.57). BP’s genetic correlation was the weakest, even though 

some diagnostic criteria for BPD overlap. The overlap between BP, SCZ, and MDD is consistent 

with previous genetic overlap observations of other psychiatric disorders (Lee et al., 2013). 

 

In the last part of our project, we were able to replicate significant associations with gIQ with 

PRSs derived from childhood intelligence (Benyamin et al., 2014) and human intelligence 

(Sniekers et al., 2017) GWASs. These associations are consistent with studies that have reported 

a substantial heritable background of intellect in individuals along with environmental effects 

(Davies et al., 2016; Flynn 1987). 
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7) Conclusion 

GWAS results could be misleading, even due to slight biases. In the future, only good-quality 

outcomes can ensure reliable clinical impacts of GWAS results. Our Ricpoili pipeline and best 

practice tutorial can address many of these biases as well as assist with the production of reliable 

results. This work will encourage and educate more researchers to perform clean and robust 

genome-wide studies. The developed methodology is expandable over a broad range of 

polygenic traits and will improve the overall quality of GWASs. 

 

In this PhD project, the method was effectively employed to assess the genetic factors that 

influence PD, BPD, and gIQ. These three GWAS analyses lacked a well-powered sample size 

for single variant discoveries. However, we were first to report SNP-based heritability for PD 

and estimate a significant genetic correlation with depression and neuroticism. The BPD cohort 

analysis revealed a significant genetic overlap with BP, SCZ, and MDD. Furthermore, the 

findings from the PD and BPD analyses suggested that both traits are not discrete but rather have 

an etiological overlap with other personality and psychiatric disorders. Examinations of shared 

and nonshared clinical and genetic characteristics are critical for developing new and 

personalized treatments for PD, BPD, and other complex disorders. The final part of this thesis 

confirmed the polygenic characteristics of general intelligence in the IMAGEN cohort. 

 

A deeper understanding of the intricacies of genomics and its role in complex traits and disorders 

unlocks new doors to understanding the human condition. Such studies not only enhance 

knowledge in this field but also transform the treatment of psychiatric disorders into a patient-

specific, precision medicine approach. It is in these scientific findings that we find the power to 

improve lives and offer hope for a brighter future.  
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