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List of abbreviations

Abbreviations Definition

A Adenine

AF Allele frequency

ANOVA Analysis of variance

BP Bipolar disorder

BPD Borderline personality disorder

C Cytosine

CD-CV Common disease - common variant hypothesis
DNA Deoxyribonucleic acid

EA East asian

EUR European

FDR False discovery rate

G Guanine

GC Genomic control

glQ General Intelligence quotient

GSA Global screening array

GWAS Genome-wide associations study
HRC Haplotype reference consortium
IBD Identity by descent

INFO score Information score

LD Linkage disequilibrium

LDSR Linkage disequilibrium score regression
LOO-PRS Leave-one-out Polygenic risk score
MAF Minor allele frequency

MDD Major depressive disorders

OR Odds ratio

p p value

pcorr p value after correcting for multiple testing
PC Principal component

PCA Principal component analysis

PD Panic disorder

PRS Polygenic risk scores

QC Quality control

Q-Q plot Quantile quantile plot

rg Genetic correlation

RNA Ribonucleic acid

SCZ Schizophrenia

SE Standard error

SNP Single nucleotide polymorphism

T Thymine

HWE Hardy-Weinberg Equilibrium
WISC-1IV Wechsler Intelligence Scale for Children - Fourth Edition




1) Abstract

A genome-wide association study (GWAS) is a standard study design for examining the
association between genotype and disease status without knowledge of the underlying biological
mechanisms. GWASs have led to the identification and classification of numerous variants
associated with human traits. However, while this design has been widely used in contemporary
genetic research, it is prone to technical biases and errors, which necessitate the development of

a standardized workflow and analysis methodology.

To address this problem, we developed a simulation-based framework for calibrating GWAS
pipelines. Using Ricopili, our comprehensive GWAS pipeline, we developed a standard
common-variant analysis workflow and then demonstrated the pipeline’s various functionalities
and features. Furthermore, we demonstrated that this pipeline’s current framework could be
successfully used to perform full-scale analyses of genotype data, ranging from quality control to

the downstream analysis of variants.

Furthermore, this thesis investigated the genetic architecture of panic disorder (PD) in six
independent collections taken from four European countries. Given the comparably small total
sample size of 2,147 cases and 7,760 controls, no genome-wide significant single nucleotide
polymorphism (SNPs) were identified; however, we demonstrated a highly significant polygenic
risk score (PRS) that explained up to 2.6% of the phenotypic variance. The SNP-based
heritability for PD was estimated at 28.0-34.2%, and 135 out of the 255 most significant SNPs
exhibited the same direction of effect in an independent replication sample (p = 0.048). In a
combined meta-analysis, rs144783209 in the gene SMADI1 exhibited the strongest association
(Pcomb =3.10 x 1077) with PD. A significant genomic correlation was detected with published
GWAS results for major depressive disorder (p = 0.025), depressive symptoms (p =0.010), and
neuroticism (p = 0.002).

Moreover, in a distinct psychiatric phenotype, we found a highly significant genetic correlation
(30-60%) between borderline personality disorder (998 cases and 1,545 controls) and three
published adult psychiatric disorders, namely schizophrenia (p = 4.37 x 1075), bipolar disorder (p
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=2.99 x 1073), and major depression (p = 1.04 x 1073). In a third analysis, we demonstrated that
PRSs in the IMAGEN cohort (n = 1,475) derived from published GWASs of intelligence
significantly explained 0.33—-3.2% of the variance in general 1Q.

In summary, our meta-analysis of PD represents a significant advancement in elucidating its
genetic architecture, including the first SNP-based heritability estimate. We observed a notable
genetic connection between PD and neuroticism. Additionally, the significant genetic correlation
of borderline personality disorder (BPD) with other psychiatric disorders suggests that BPD
shares underlying factors with these disorders, consistent with clinical observations. Finally, our

research affirms the polygenic nature of general intelligence within the IMAGEN cohort.



2) Zusammenfassung

Die genomweite Assoziationsstudie (GWAS) ist eine Standardmethode, die Assoziationen von
Allel- oder Genotyphéufigkeiten sogenannter SNPs (Single Nucleotide Polymorphisms) zu
Fall/Kontroll-Verteilungen oder zu quantitativen Merkmalen untersucht. Wahrend GWAS das
Verstidndnis der genetischen Grundlage komplexer Merkmale stark vorantreibt, ist sie auch
anfillig fiir technisch/statistische Verzerrungen und Fehler, die die Einhaltung eines hoch

standardisierten Arbeitsablaufs und Analysemethodik erfordert.

Um diese zu erarbeiten, haben wir ein simulationsbasiertes Framework zur Kalibrierung von
GWAS Pipelines entwickelt. Mit Hilfe unserer umfassenden GWAS-Pipeline Ricopili
entwickelten wir einen standardisierte Analyseplan und demonstrieren die verschiedenen
Funktionalititen und Eigenschaften unserer Pipeline. Wir zeigen, wie mit dieser Pipeline
erfolgreiche Analyse von Genotyp-Rohdaten durchgefiihrt werden konnen, angefangen von der

Qualitdtskontrolle bis hin zur endgiiltigen Assoziationsanalyse.

Wir untersuchen den Einfluss von hiufigen genetischen Varianten auf die Panikstérung (PD) in
einer Meta-Analyse von sechs unterschiedlichen Kohorten aus vier europdischen Lindern. Wie
erwartet identifizierten wir bei einer vergleichsweise kleinen Gesamtstichprobengréf3e von 2,147
Patienten und 7,760 Kontrollen keine genomweit signifikanten Varianten, jedoch konnten wir
einen signifikanten polygenen Risikoscore (PRS) nachweisen, der bis zu 2.6% der
phénotypischen Varianz erkldrt. Die SNP-basierte Heritabilitdt fiir PD schétzen wir auf 28.0-34.0
%. In einer unabhéngigen Replikationskohorte zeigen 135 der 255 signifikantesten SNPs mit
Schwellenwert die gleiche Effektrichtung wie in unserem Hauptdatensatz (signifikant mit p =
0.048). In der kombinierten Meta-Analyse zeigte sich rs144783209 im Gen SMADI als stérkste
Gesamt - Assoziation (p = 3.10 x 1077). Schliesslich konnten wir eine signifikante Korrelationen
mit der Unipolaren Depression (Major Depressive Disorder - MDD) (p = 1.04 x 1073),
depressiven Symptomen (p = 0.025) und Neurotizismus (p = 0.002) finden.

Bei einer weiteren psychiatrischen Erkrankung fanden wir eine hochsignifikante genetische

Korrelation (zwischen 30 und 60 %) zwischen der Borderline-Personlichkeitsstorung (998 Fille
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und 1,545 Kontrollen) und den drei zentralen psychiatrischen Erkrankungen: Schizophrenie (p =
4.37 x 1079), Bipolare Stoérung (p = 2.99 x 10~%) und Major Depression (p = 1.04 x 1073). In einer
dritten hier vorgestellten Analyse konnten wir polygene Riskoscores in der IMAGEN-Kohorte
(n=1,475), aus GWASs der Intelligenz abgeleiten, die signifikant 0.33% bis. 3.2% der Varianz

des allgemeinen 1Q erkléren.

Zusammenfassend stellt unsere Meta-Analyse von PD einen bedeutenden Fortschritt bei der
Aufklarung seiner genetischen Architektur dar, einschlieBlich der ersten Schitzung der erblichen
Veranlagung basierend auf SNPs. Wir haben eine bemerkenswerte genetische Verbindung
zwischen PD und Neurotizismus beobachtet. Dariiber hinaus legt die signifikante genetische
Korrelation der Borderline-Personlichkeitsstorung (BPS) mit anderen psychiatrischen Storungen
nahe, dass BPS gemeinsame zugrunde liegende Faktoren mit diesen Stérungen teilt, was mit
klinischen Beobachtungen tibereinstimmt. SchlieBlich bestdtigt unsere Forschung die polygene

Natur der allgemeinen Intelligenz innerhalb der IMAGEN-Kohorte.



3) Introduction

3.1 Genomics: Brief highlights

Human traits and disorders are influenced by both genetic and environmental factors. The
complete genetic material of an organism is known as its genome. The genome is composed of
deoxyribonucleic acid (DNA), a biomolecule that carries genetic information for trait

functioning and development (Figure 3.1).
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Figure 3.1a: DNA structure; The depiction illustrates the composition of DNA, featuring a chromosome,
nucleosome, histone, gene, and nucleotide base pairs, including guanine, cytosine, adenine, and thymine.
Additionally, it includes a cell with its nucleus [© (copyright year as seen in the illustration) Terese Winslow LLC,
U.S. Govt. has certain rights: Permission granted].

DNA has a double-helix structure with nucleotides as its repeating units. Each nucleotide
consists of a deoxyribose sugar, a phosphate group, and a nitrogenous base. Adenine (A) and
guanine (G) are purines, while cytosine (C) and thymine (T) are pyrimidines (Figure 3.1).
Adenine always pairs with thymine, and cytosine always pairs with guanine, forming base pairs
and giving DNA its unique structure. The 146—147 base pair-long chain of DNA coils around a
core of histone proteins to form nucleosomes, which are tightly packed into larger units called
chromosomes (Figure 3.1). Human cells contain 23 pairs of chromosomes, with approximately

3.2 billion base pairs. Chromosomes carry genes, which are the fundamental units of heredity.
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There are approximately 20,000 to 25,000 protein-coding genes in humans. This fraction of
protein-encoding base pairs is only 1-2% of the total human genome. These genes contain
instructions, which consist of triplets of nucleotides called codons. Each codon specifies a
particular amino acid, the building blocks of proteins. Out of the 64 (4°) possible codons, 61

code for amino acids, while the remaining three are stop codons.

Furthermore, the human genome is diploid, which means that it contains two sets of
chromosomes inherited from each biological parent. As a result, different forms of the same
gene, called alleles, can occur at a given genomic location or locus. These variations can be
single-base or segment variations in the DNA sequence. The representation of these variations is
referred to as the genotype of an individual at that locus. A homozygous genotype occurs when
an individual inherits two identical alleles from their parents, while a heterozygous genotype
occurs when an individual inherits two different alleles at a genomic locus. Crucially,

approximately 99.9% of the genomes of all individuals are the same.

Variation within the genome can lead to differences in traits and disorders among individuals,
and heritability, which refers to the proportion of the variation in a trait or disorder that can be
attributed to genetic factors, plays a significant role in understanding the interplay between

genetics and these traits and disorders.

The central dogma of molecular biology is a theory that describes the flow of genetic
information from DNA to RNA (ribonucleic acid) to protein. It underlies the processes that
govern the functioning and development of traits at a molecular level. Understanding genetics

and genetic variations is crucial to comprehending human traits and disorders.

3.2 Monogenic disorders

Monogenic disorders are the result of a mutation in a single gene. Their inheritance pattern
usually follows Mendel’s laws (e.g., autosomal recessive), and thus, they are also termed
Mendelian disorders. The effect size or penetrance of each variant is typically large;
consequently, its frequency is usually driven low in a population by selective pressures.

Huntington’s disease is an example of a Mendelian disorder.
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Linkage analysis is a study design used for identifying the causal gene associated with
monogenic disorders or traits. In linkage analysis, the location of a disease-causing gene is
identified by analyzing patterns of inheritance in related individuals. Usually, multiple families
with a disorder (or trait of interest) are recruited, and their disease status and co-segregating
genetic markers (e.g., short tandem repeat) are measured. Finally, the segregation patterns of
these markers within the families are examined. A successful example of linkage analysis

identified multiple CFTR gene mutations as the causal variants for cystic fibrosis (Kerem et al.,

1989).

3.3 Complex traits

In contrast to Mendelian traits, complex traits are not explained by genetic variation in single
genes. They have genetic and environmental components associated with them and are relatively
more common than Mendelian disorders. Furthermore, the genetic component is usually spread
across the genome — a phenomenon known as “polygenicity.” Most psychiatric disorders are
examples of common complex genetic disorders (Brainstorm Consortium., 2018), including
diabetes mellitus (Xue et al., 2018) and Crohn’s disease (Verstockt et al., 2018). Traits such as
adult height (Yengo et al., 2018) and IQ (Savage et al., 2018) are examples of common/complex

nonpsychiatric traits.

3.3.1 Common disease — common-variant hypothesis

The common disease — common-variant (CD-CV) hypothesis states that a common disorder is
likely to be caused by genetic variation common in the population. The CD-CV hypothesis
implies that a moderate-to-large number of variants across the genome contribute to disease risk
and that each variant has relatively low penetrance and a small effect size (i.e., polygenicity).
These common, polygenic traits are the antithesis of monogenic disorders, where variants usually

have a low prevalence and a large effect.

3.3.2 Genome-wide association studies
Linkage analyses applied to common or complex disorders have typically been unsuccessful

(Altmiiller et al., 2001; Hirschhorn & Daly., 2015), which indicates that common disorders’
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genetic architectures differ from those of Mendelian disorders. Genome-wide association studies
(GWAS:s) have proven to be a successful tool for testing the CD-CV hypothesis. In principle, a
GWAS compares the allele frequency (AF) of each single nucleotide polymorphism (SNP)
across the human genome between cases and controls. In practice, this frequency—phenotype
association is tested in a regression framework, which allows covariates like population
stratification to be adjusted for. SNPs are the most prevalent form of genetic variation detected in
the human genome, where approximately 88 million unique SNPs (1000 Genomes Project
Consortium., 2015) have been identified in various worldwide populations. There are
approximately 10 million SNPs in European ancestry with a minor AF (MAF) greater than 1%
(1000 Genomes Project Consortium., 2015).

3.4 Technical and statistical aspects of GWASs

In the subsequent sections, a concise overview is provided of the fundamental procedures
employed in genotype data analysis. These subsections delve into quality control measures,
encompassing both technical and genomic aspects, with the aim of mitigating biases and
minimizing the occurrence of false positive results. Furthermore, genotype imputation and
association analysis are presented. Moreover, the significance of the Ricopili pipeline, which

serves as an efficient tool for optimizing this entire workflow, is emphasized.

3.4.1 Technical quality control

While GWAS:s are a powerful tool for expanding our understanding of complex disorders, they
are also prone to biases. If not considered, such biases can result in false-positive associations.
While testing millions of markers across the genome, a minor bias can lead to a high type 1 error
rate (i.e., rate of false positives). Proper quality control (QC) on individuals and genotypes (i.e.,
SNPs) can eliminate many of these biases. QC per individual includes checking consistencies
between the sex predicted by the X chromosome and the ascertained sex, missing genotype rates
per individual, and heterozygosity rates. The QC of SNPs consists of the missing rate per SNP,
missing rate difference between cases and controls, deviation from Hardy—Weinberg equilibrium

(HWE), and AF (variants with very low MAF, e.g., < 1%).

13



3.4.2 Genomic quality control

Genomic QC primarily corrects for a systemic bias attributed to AF differences due to different
ancestries, which is known as population stratification. To identify such stratification, a
multidimensional scaling method, such as principal component analysis (PCA), is used. One-
and two-dimensional PCA plots are used to visualize the genetic heterogeneity in the study
cohort (or across multiple cohorts), and subpopulations and outliers are separated or excluded
from the analysis. The estimated PCs are also used to control for population stratification in

downstream analysis.

Genomic QC is also used to address cryptic relatedness (the nonindependence of individuals)
within a cohort. Identity by descent (IBD) is computed for each individual pair in a cohort, and

first-, second-, and third-degree relatives are excluded from further analysis.

3.4.3 Tag SNPs and genotype imputation

Tag SNPs contains implicit information about linked contiguous stretches of DNA (also called
haplotypes) shared between individuals, which are more substantial within single ancestries and
inherited together. This nonrandom correlation or association between alleles located at distinct
loci (genetic positions) on the same chromosome is known as linkage disequilibrium (LD). LD
is a natural correlation structure present between SNPs in physical proximity to each other on the
human genome. In a GWAS, a moderate number of tag SNPs are genotyped on chip-based
microarrays (e.g., [llumina and Affymetrix), thereby avoiding the extra cost of assaying all SNPs
due to LD. Most modern genotyping chips contain in the order of 600,000 SNPs, tagging

approximately 8 million SNPs in the European population through imputation, for example.

Imputation allows researchers to infer missing genotypes that are not directly genotyped. It
exploits the LD information of tagged SNPs using large, publicly available reference panels,
such as HapMap (International HapMap Consortium., 2003), 1000 Genomes (1000 Genomes
Project Consortium, 2010), or the Haplotype Reference Consortium (HRC; McCarthy et al.,
2016). Imputation allows meta-analyses to be performed between genotyped cohorts on various
platforms, boosting a GWAS’s power as well as enhancing fine mapping. This is achieved by

increasing the number of SNPs up to 8 million from 600,000 directly genotyped on a modern
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chip, such as the global screening array (GSA). There are many algorithms for genotype
imputation, such as MaCH (Li., 2010), beagle (Browning et al., 2018), and impute2 (Howie et
al., 2009), of which the output is a probabilistic estimate of genotype status.

In addition, several metrics exist for assessing the quality of genotype imputation. One such
metric used for impression quality assessment is the information (INFO) score, which estimates
how well the imputed genotypes correspond to the true genotypes on the reference genome. It
compares the imputed allelic dosages, their variances, and the corresponding AFs with those in
the reference data. The INFO score ranges from 0 to 1, where higher values indicate more

reliable imputations and lower values indicate lower-quality genotype imputation.

3.4.4 Association analysis and meta-analysis

After comprehensive QC and imputation, the data are ready for association mapping.
Traditionally, single SNP association analysis is performed, and the choice of statistical test
depends on, among other variables, the type of phenotype. For quantitative phenotypes, a linear
regression is typically performed, whereas for case-control phenotypes, logistic regression is
mostly used. Regardless of phenotypes, how genotypes are encoded influences the power of the
statistical analysis through altering the degrees of freedom in the test statistic. The genotypic-
based test, where three genotype classes (two homozygous and one heterozygous) are combined
and tested for association with the phenotype, has two degrees of freedom. By contrast, the
additive, dominant, recessive or “heterozygote advantage” models use tests with one degree of
freedom. The additive genetic model is frequently used in genetic research for testing
associations and identifying various genetic risk factors, including dominant and recessive
effects. However, it may not reveal the genetic association linked to heterozygote advantage

models.

Principal components (PCs) generated from PCA analysis are used to control population
stratification. If necessary, the regression is adjusted for clinical covariates (e.g., age, sex,
clinical site, and batch effect). Many independent cohorts are usually meta-analyzed using an

inverse variance weighted method, which implicitly gives more weight to larger studies with
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higher imputation quality. A meta-analysis estimates the aggregated effect size, standard error,

and associated p values of all the independent cohorts together.

3.4.5 Multiple testing and genome-wide significance
In general, a p value equal to or below 0.05 is considered significant (i.e., the alpha value) for a

single statistical test. It implies that in a statistical test, there is a 5% probability of incorrectly
rejecting the null hypothesis when it is actually true. If one conducts multiple hypothesis tests,
the probability of incorrectly rejecting the null hypothesis naturally increases, and therefore, the
burden of detecting a false positive is higher due to multiple testing. The various methods used to
correct multiple testing problems in a GWAS are Bonferroni correction, the Benjamini—

Hochberg false discovery rate (FDR), and permutation testing.

For GWASs in European and Asian populations, the most common alpha value is 5 x 10°%. This
is equivalent to a Bonferroni correction of p = 0.05 for 1 million independent common variants
across the human genome. The number of independent tests in the African population is higher
compared with that in the European population. Thus, a recommended alpha value is 1 x 10-%,
Pe’er et al. (2008) confirmed these thresholds for genome-wide significance with phenotype

simulations in the International HapMap Consortium.

3.4.6 Ricopili: Our computational pipeline

A computational pipeline is a cohesive set of computational programs, tools, and software
packages that are organized to perform specific tasks in a logical sequence. It operates by taking
the output of one program and using it as input for the next program in a predefined order. The
purpose of a pipeline is to make efficient use of computational resources and to streamline the
execution of computational tasks. By using a pipeline, errors can be minimized, and a standardized

approach can be established for processes that involve multiple programs (steps).

It is often helpful and common practice to assign a name (acronym) to a pipeline that performs
specific tasks, as it assists its easy identification and use by others. In this thesis, we used the
Ricopili pipeline, which integrates a set of tools and algorithms that perform technical QC,

genomic QC, imputation, and statistical analysis for a GWAS (described Section 3.4).
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3.5 Panic disorder

Panic disorder (PD) is a debilitating and severe form of anxiety disorder characterized by a
sudden onset of fear and discomfort that lasts for several minutes or longer. PD has at least four
anxiety-related symptoms, which might include “palpitations, diaphoresis, tremors, shortness of
breath, suffocation, chest pain, chills, heat sensations, nausea, dizziness, depersonalization,
paresthesia, derealization, fear of loss of control and fear of dying, numbness” (Virginia C.,
2016, Pages 266-288 and Cackovic et al., 2020). The lifetime prevalence of PD is approximately
2-4%, while its lifetime morbid risk is 6% (Kessler et al., 2012). The age at which PD typically
starts ranges from 26 to 35 years (Lijster et al., 2017). Constant panic attacks can further
deteriorate the patient’s health by hindering a healthy social life, leading to the development of
pathological symptoms, such as long-term disabilities and agoraphobia (Hendriks et al., 2014).

3.5.1 Etiology of PD
The etiology of PD is only vaguely understood, with most research suggesting that the causes are
a complex combination of genetic and environmental factors. The following subsections discuss

PD’s genetic risk factors, environmental risk factors, and neurobiology.

3.5.1.1 Genetic risk factors for PD

Twin and family studies of PD patients have reported heritability estimates of 40% (Hettema et
al., 2001), implying that a significant genetic component contribute to PD liability (Schumacher
& Deckert., 2010). Several linkage and association studies have been conducted to understand
the mechanisms behind PD, but none have convincingly and robustly identified the underlying
genetic factors. Furthermore, linkage analyses of PD have identified several chromosomal loci to
the syndrome, including 1q, 2q, 49q31-q34, 7p, 9q, 12q, 13q, 14q, 15q, and 22q, but all of them
have exhibited little consistency across studies (Na et al., 2011). This is in line with the general
underperformance of linkage analyses for complex traits (see Section 3.2). Moreover, few PD
GWASSs have been published, and none have reported genome-wide significant SNPs. Erhardt et
al. reported two SNPs, namely rs7309727 and rs11060369, in the TMEM 132D gene on
chromosome 12q24 associated with PD. Their study consisted of 909 cases and 915 controls of
European ancestry (Erhardt et al., 2011), and they replicated these associations in five PD
cohorts. The following year, Otowa et al. conducted a GWAS on 718 PD cases, and 1,717
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controls and reported many putative associations (with variation contained in BDKRB2 and
NPYS5R) in the Japanese population (Otowa et al., 2012). Still, none of these reported variants
reached the genome-wide significance of 5 x 108, A recent meta-analysis of combined anxiety
and PD revealed the SNPs rs1709393 on an uncharacterized noncoding RNA locus on
chromosomal 3q12.3 (with p = 1.65 x 107®) and rs1067327 within the coding region of the gene
CAMKMT on chromosome 2p21 (with p = 2.86 x 10; Otowa et al., 2016). However, due to the

combined nature of the phenotype, these associations were not specific to PD.

3.5.1.2 Environmental risk factors for PD

A 40% heritability of PD indicates that approximately 60% of the risk is likely attributed to
environmental factors. This understanding has been studied for many decades to gain insights
into environmental risk factors for PD.

The disruption of early attachment, as supported by the Epidemiological Catchment Area Study
(Tweed et al.,1989), plays a significant role in the development of PD. The study (N = 3,803)
found that individuals whose mothers died before they turned 10 years of age were nearly seven
times more likely to be diagnosed with agoraphobia accompanied by panic compared with those
without a history of early maternal death. Similarly, individuals whose parents separated or
divorced before the age of 10 years were also found to have an increased likelihood of being
diagnosed with agoraphobia with panic. Extensive preclinical research has strongly indicated that
early disruptions in the attachment between infants and their mothers result in enduring
behavioral and biological changes, such as those observed in PD (Francis & Meaney et al., 1999

and Anisman et al., 1998).

Furthermore, bodily sensations are closely linked to the onset of PD (Roy et al., 2006), and
anxiety sensitivity is one such factor that heightens these sensations (Reiss et al., 1980). The
anxiety sensitivity index predicts the development of PD in several and diverse cohorts. This
predictive power has been found to remain even after accounting for previous depression
(Hayward et al., 2000, Maller & Reiss et al., 1992 and Ehlers et al., 1995). However, anxiety
sensitivity is commonly associated with neuroticism and a propensity for experiencing negative

emotions, as opposed to being a direct causal factor for PD (Roy et al., 2006).
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3.5.1.3 Neurobiology of PD

Several compounds with distinct mechanisms of action have been identified to induce panic
symptoms in patients but not in control subjects. Examples of such compounds include
hyperosmolar sodium lactate, caffeine, isoproterenol, yohimbine, carbon dioxide, and
cholecystokinin (Roy et al., 2006). Although relevant studies have not significantly contributed
to the understanding of the biological mechanisms that underlie PD, they have elucidated the
activation of a broader neural network associated with conditioned fear, which is currently
proposed to be the neural network for PD (Gorman et al., 2000). The sensory input for the
conditioned stimulus travels through the anterior thalamus to the lateral nucleus of the amygdala
before being transmitted to its central nucleus. The amygdala’s central nucleus serves as a central
hub for information dissemination, coordinating autonomic and behavioral responses associated

with PD.

3.5.2 Comorbidity of PD

Individuals with panic disorder often present with one or more concurrent medical illnesses. In a
study conducted by Starcevic et al. in 1999, which included 88 individuals diagnosed with PD, it
was found that 82% of patients were diagnosed with one or more Axis I disorders, and 49% of

patients were diagnosed with one or more Axis II disorders.

The most prevalent Axis I disorder among these PD patients was anxiety disorder, specifically
Generalized Anxiety Disorder (GAD), with prevalence rates ranging from 22% (as reported by
Turki et al. in 2017) to 59% (as reported by Starcevic et al. in 1999). Major Depressive Disorders
(MDD) also exhibited a high prevalence, with an approximate rate of around 50% in both the
study by Starcevic et al. in 1999 and the research by Gorman et al. in 1996.

Regarding Axis II disorders, Cluster B (or emotional) personality disorders, including Antisocial
Personality Disorder, Borderline Personality Disorder, and Histrionic Narcissistic Personality
Disorder, showed prevalence rates ranging from 25% to 27%. On the other hand, Cluster C
(anxious) personality disorders, comprising Avoidant Personality Disorder, Dependent

Personality Disorder, and Obsessive-Compulsive Personality Disorder, exhibited prevalence
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rates ranging from 15% to 40% (as reported by Ozkan & Altindag in 2005 and Starcevic et al. in
1999).

PD is also found to be associated with personality traits. In a study by Zugliani et al. (2017), a
significant association was found between PD patients and higher neuroticism scores and lower

extraversion scores compared to healthy controls.

PD also frequently co-occurs with other medical illnesses that share symptomatology, such as
respiratory conditions (e.g., asthma and Chronic Obstructive Pulmonary Disease), cardiovascular
conditions (e.g., hypertension and coronary heart disease), Irritable Bowel Syndrome, and
Diabetes. This comorbidity is associated with a significant increase in PD patients, estimated to

be at least 1.5 to twofold (Meuret et al. in 2020).

3.6 Borderline personality disorder

Patients with borderline personality disorder (BPD) experience unstable relationships, perception
shifts, cognitive and self-image issues, and intense emotions as well as engage in impulsive and
risky behaviors during emotional distress. BPD is a complex neuropsychiatric disorder with a
lifetime prevalence of approximately 3% (Tomko et al., 2014). The typical age of onset of BPD
(Biskin., 2015) is 18 years, but its symptoms (e.g., self-harm) can start as early as 12 years
(Zanarini et al., 2008). BPD is more commonly diagnosed in female patients, who account for
approximately 75% of cases (American Psychiatric Association., 2000). BPD is associated with
high healthcare utilization and a chronic, severely debilitating clinical course (Bohus & Schmahl
et al., 2007). Suicide rates range between 6% and 8%, and up to 90% of patients engage in

nonsuicidal self-injurious behavior (Zanarini et al., 2018).

3.6.1 Etiology of BPD
The following subsections present BPD’s genetic risk factors, environmental risk factors, and

neurobiology.
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3.6.1.1 Genetic risk factors for BPD

Distel et al. (2008) reported a heritability estimate of 42% in a twin study conducted across three
different cohorts from The Netherlands, Belgium, and Australia, implying the existence of a
genetic component in BPD. However, most available studies have focused on candidate genes
and had relatively small sample sizes (Calati et al., 2013). Several of these studies have reported
associations of genetic variants within genes such as tryptophan hydroxylase 1 and the serotonin
1B receptor, but these associations yielded insignificant results, as highlighted in a systematic

review (meta-analysis) conducted by Amad et al. (2014).

Nevertheless, a GWAS by Lubke et al. (2014) identified a potential association between the
SERINCS gene, which plays a role in myelination, and affective instability, a key characteristic

of manic phases of bipolar disorder (hereinafter “BP”).

3.6.1.2 Environmental risk factors for BPD

Environmental factors explain approximately 58% of the variation in BPD, as reported by Distel
et al. (2008). Adverse childhood experiences, including trauma and maltreatment, strongly
contribute to the development of BPD (Zanarini et al., 1987 and Afifi et al., 2011). Separation
from mothers at an early age (Crawford et al., 2009), abnormal attachment (Rogosch &
Cicchetti., 2004), and delays in identity development during adolescence (Fonagy & Bateman.,
2008) can also lead to personality pathology. Other childhood and adolescent disorders, such as
depression, anxiety, and disruptive behavior disorders, increase people’s predisposition to BPD

(Helgeland et al., 2005).

3.6.1.3 Neurobiology of BPD

Altered functioning in specific brain regions, such as the medial prefrontal cortex,
temporoparietal junction, posterior cingulate cortex, and precuneus, contributes to distorted self-
perception and thoughts about others in individuals with BPD (Krause et al., 2014 and Beeney et
al., 2016). Impulsivity in BPD involves changes in the reward and control circuits, mediated by

the ventral striatum and prefrontal areas (Herbort et al., 2016 and Gunderson et al., 2018).
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3.6.2 Comorbidity of BPD

BPD is a condition characterized by a high degree of comorbidity. In the Collaborative
Longitudinal Personality Disorders Study conducted by McGlashan et al. in 2000, which
included 175 BPD patients, it was found that individuals with BPD had an average of 4.1

lifetime Axis I comorbidities and 1.9 lifetime Axis Il comorbidities (personality disorders).

The most common Axis I comorbidity in individuals with BPD is mood disorders, affecting
approximately 95% of them (Shah & Zanarini, 2018). Within this category, MDD exhibits a
prevalence ranging from 71% (Zanarini et al., 1998a) to 83% (McGlashan et al., 2000), while the
comorbidity between BPD and BP is less prevalent and debated, as they have overlapping
symptoms but distinct features specific to each. The comorbidity ranges from 9% (Zanarini et al.,
2004) to 20% (Fornaro et al., 2014) between BPD and BP. In contrast, Tsanas et al. (2016)
highlighted symptomatic differences between the two groups. Anxiety disorders, particularly
Post-Traumatic Stress Disorder, are highly prevalent, co-occurring in approximately 51% of
individuals with BPD (McGlashan et al., 2000 and Zanarini et al., 1998a), making them the
second most common comorbidity. Psychotic disorders represent the least common Axis I
comorbidity with BPD, with schizophrenia (SCZ) reported in 2% (Slotema et al., 2018) to 17%
(Kingdon et al., 2010) of cases.

Among Axis II comorbidities, the most prevalent disorders in conjunction with BPD were from
the anxious cluster (Cluster C personality disorders). Within this category, Avoidant Personality
Disorder ranged from 43% to 47%, and Dependent Personality Disorder ranged from 16% to
51% (Zanarini et al., 1998b and McGlashan et al., 2000).

Moreover, a twin study (Distel et al., 2009) and a large population-based study (Gale et al.,

2016) have suggested a genetic association between BPD’s features and neuroticism — a

recognized risk factor for BP and other psychiatric conditions.
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3.7 Aims and hypotheses of the Dissertation

The sensitivity of GWASSs to various biases and errors makes following a highly standardized
workflow or analysis methodology critical. This dissertation incorporates four publications in the
following two chapters (Chapter 4: Materials and methods and Chapter 5: Results), each of

which has four subsections that correspond to each publication.

The first publication (4.1 and 5.1) presents Ricopili, a well-developed, highly standardized, and
flexible GWAS analysis pipeline that we designed to analyze large genomic data sets. First, we
demonstrate how our pipeline can detect and correct for biases and technical errors in simulated
genotype data and develop a framework along the way. We implement this workflow and
conduct a GWAS on 2,248 PD cases and 7,992 healthy controls to characterize the genetic
variation associated with PD in 4.2 and 5.2. This dissertation’s aims are as follows:

1. To investigate and identify the genetic variation associated with PD;

2. To estimate the proportion of genetic variance within our cohort that can explain the
development of PD;

3. To determine the extent to which causal genes overlap across different conditions and
suggest potential common pathways or mechanisms underlying various other complex
disorders;

4. To examine, through in silico functional analysis, the genes involved in regulating the
causal biological pathways of PD, thereby providing insights into the molecular
mechanisms that underlie PD development and potential therapeutic targets for

intervention.

In addition, I present my contribution to deciphering the genetic architecture by estimating the
extent of genetic overlap between BPD and schizophrenia (SCZ), bipolar disorder (BD), and
Major Depressive Disorder (MDD) as detailed in 4.3 and 5.3. Furthermore, I examine the

polygenic nature of general 1Q, as outlined in 4.4 and 5.4.
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4) Materials and methods

This chapter provides a comprehensive description of the materials used and the methods
employed in conducting this research work. Section 4.1 begins by presenting a standardized
GWAS methodology developed using the pipeline’s features and modules, which are detailed in
sub-sections 4.1.1 to 4.1.6. Additionally, sub-section 4.1.7 explains the incorporation of
simulated data with artificial technical and genomic interventions that is used to test and fine-

tune the methodology.

Section 4.2 provides an in-depth overview of the panic disorder (PD) cohorts, covering the
methodology used for technical and genomic quality control, imputation, association analysis,
leave-one-out polygenic risk score (LOO-PRS) analysis, replication, heritability estimation,

genetic correlation and functional analysis.

In Section 4.3, the cohort of borderline personality disorder (BPD) is described, along with the
materials and statistical methods used to estimate its genetic correlation with psychiatric
disorders such as schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder

(BP).

Finally, section 4.4 introduces the IMAGEN cohorts, outlines how intelligence measures are

inferred, and details the methodology used to generate polygenic scores.

4.1 Development of a standard GWAS analysis methodology (Lam and
Awasthi et al., 2020):

The simulated genotype cohorts along with the interventions listed in Table 4.1a were used to
standardize and develop a GWAS workflow. The workflow, presented in Figure 4.1a, is
representative of standard, common-variant GWASs and is applicable to a wide range of
common disorders. Comprehensive QC (technical and genomic) can be performed by employing
the pre-imputation and PCA modules of the Ricopili pipeline, in addition to some manual quality

checks.
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As depicted in the flowchart (Figure 4.1a), the initial QC module should be started only if the
number of cases and controls both exceed 50. Excessive SNP loss (attributable to various
influences, such as batch effect, batch sizes, and ancestral composition) should be addressed
before proceeding further. In cases of high numbers of excluded individuals, their reported
phenotypic information should be checked and corrected if possible (e.g., sex errors). Crucially,
one should also check whether a general bias exists in the test statistics. This can be examined
using lambda GC, which is estimated from the initial association analysis. Lambda GC is
quantified as the ratio of the median of the empirically observed test statistics to the expected test
statistic distribution. High lambda inflation (i.e., Agc > 1.05) should be controlled by applying a
stricter filtering criterion or addressing sample heterogeneity and cryptic relatedness through the
PCA module. In the initial association analysis, significant findings should be carefully
examined and included only if they fail to meet more rigorous filtering criteria than the default
(Subsection 4.1.1). For instance, SNPs with a missingness rate greater than 0.01 or a frequency

lower than 5% could be excluded.
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Figure 4.1a: Analysis flowchart developed and used throughout this project.



Finally, after automated and manual QC, the total number of SNPs in the QC must be at least
200,000 (preferably >400,000) to ensure robust imputation. Post-imputation PCA is performed
on the best-guess genotype to compute fine-grained PCs, which are then used to control for
population stratification in the final downstream analysis. When performing the PCA module on
multiple cohorts, overlapping/related individuals across cohorts are identified; therefore, only
nonrelated individuals are analyzed. Finally, the post-imputation module is used to perform

association and meta-analyses.

4.1.1. Pre-imputation/QC module

By default, the QC module of the Ricopili pipeline performs QC for each SNP and individual
through the following steps:

1. Excluding SNP missingness >0.05 (before the removal of individual subjects);

2. Excluding individuals with missing SNPs >0.02;

3. Excluding individuals with autosomal heterozygosity deviation (|[Fhet| > 0.2);

4. Excluding individuals whose reported sex does not match the predicted sex by the
chromosome X genotypes;
Excluding SNP with missingness >0.02;
Excluding SNPs with a difference in missingness >0.02 between patients and controls;

Excluding SNPs that deviate from HWE (p < 107'? in patients, p < 107 in controls);

e

Excluding SNPs without valid association p values with the phenotypes (i.e., invariant
SNPs).
This module also performs baseline association analysis without covariates to identify genome-

wide inflation (Agc) due to technical artifacts.

4.1.2 PCA module

The PCA module addresses three purposes, namely the control of lambda inflation, calculation
of ancestral components, and estimation of relatedness. These purposes are respectively outlined

in Subsections 4.1.2.1, 4.1.2.2, and 4.1.2.3.
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4.1.2.1 Control of lambda inflation

The PCA module generates two- and one-dimensional PC plots, which help to identify
population outliers. These are useful quantities during the QC process as they allow lambda

inflation due to population outliers to be adjusted for.

4.1.2.2 Calculation of ancestral components

The PCA module produces, by default, 20 PCs and identifies those that are significantly
associated with the phenotype. These significant PCs are used to adjust for fine-grained
population stratification; the first four PCs should be included regardless of their association with

phenotypes.

4.1.2.3 Estimation of relatedness

IBD is evaluated between each pair of individuals within and across cohorts using a sufficiently
large number of high-quality SNPs. This quantity is commonly known as PiHat and is defined as
the sum of the probability of individuals sharing two homozygous alleles and half of the
likelihood of them sharing heterozygous alleles. Identical twins or duplicated individuals will
have a PiHat >0.9 (share 90+% of IBD); first-degree relatives will have a PiHat of approximately
0.5 (50% of IBD); and second- and third-degree relatives share approximately 25% and 12.5% of
IBD, respectively. All pairs of individuals with PiHat >0.2 are identified. One individual is
excluded among all pairs until there is no relatedness among any pair of individuals with PiHat
>(.2. To maximize the power to detect associations, trios are preferentially retained, followed by
cases, and finally individuals genotyped on a preferred platform specified by the user. This

automated process can be modified manually.

4.1.3 Imputation module

This module implements the imputation of quality-controlled genotypes using a user-defined
reference panel. The imputation module automates the following steps: First, it converts the
cohort to hg19 (Human Build GRCh37) in the case of different genome builds (Hinrichs et al.,
2006). Second, it aligns SNP names and alleles, removing SNPs whose alleles do not match the
reference. Third, strand flips are adjusted for unambiguous (A/C and T/G) and ambiguous (A/T
and G/C) SNPs. Fourth, from ambiguous SNPs, the module removes SNPs with frequencies
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between 40% and 60%. SNPs with a frequency difference of more than 15% from the selected
ancestral reference are also removed. For computational efficiency, the whole genome is split
into genomic chunks of variable sizes with overlapping windows to keep the LD structure at the
dividing lines. For example, in the imputation reference from the HRC, the data are split into 132
genomic chunks, but users are free to choose between a variety of chunk sizes. Within each
genomic chunk, haplotype estimation (phasing) is performed with Eagle (Loh et al., 2016) and
finally genotype imputation using Minimac3 (Das et al., 2016), although the user can also choose

other imputation and phasing algorithms.

Once finished, the module will have generated genotype probability files for markers with INFO
> (0.1 and MAF > 0.005. Moreover, a ready-for-analysis “best-guess genotype” is also created
through the module making a hard call to the genotype with a probability >0.8. The pipeline
produces three variations of best-guess genotype files based on the following filtration criteria:

(1) no additional filter; (2) missing rate <2%; (3) missing rate <1%; and MAF >5%.
g g

For trio cohorts, Ricopili generates pseudo-controls from the nontransmitted alleles after phasing,
using relatedness information from the families. For example, if the alleles of the case are A/A
and those of the parents are A/G and A/G, then the nontransmitted alleles will be G/G for the
pseudo-controls. The imputation of each affected offspring (probands) and the perfectly matched
pseudo-control is then performed independently. For downstream analyses, controlling for

population stratification is not necessary.

4.1.4 Post-imputation module

The post-imputation module performs a genome-wide association separately within the imputed
dosage chunks (e.g., ~132 by default in HRC imputation) generated in the imputation module.
This process is highly parallelized and computes association statistics for each genomic chunk
for each study independently. Additional covariates can be adjusted for along with the PCs
generated in the PCA modules. Naturally, this module also allows the testing of alternative
phenotypes. The meta-analysis of multiple cohorts is conducted within each chunk and then
combined genome-wide. The pipeline also incorporates genome-wide summary statistics from

external sources. It uses PLINK (Purcell et al., 2007), METAL (Willer et al., 2010), and R
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scripts (R Core Team., 2013) to achieve its tasks. The module produces publication-ready
results, including whole genome summary statistics, Manhattan plots, Q—Q plots, forest- and

regional-level plots, and Excel files.

4.1.5 Post-imputation module for generating polygenic risk scores

The post-imputation module is also used to estimate PRSs for each individual in a test cohort. It
uses genetic loads from independent LD-clumped training data (see Subsection 4.1.6.2). By
default, SNPs with a MAF <5% and an info score <0.9 are excluded. To create the PRS of each
individual, the natural log of each variant’s odds ratio (OR) is multiplied by the
imputation/genotype probability of the risk allele. The resulting values are then summed over the
whole genome to create a single PRS for each individual. This is computed separately over 10 p-
value thresholds (5 x 108, 1 x 106, 1 x 104, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1.0) in the

training data.

Next, the module tests the association of the risk scores with the phenotype and estimates the
variance explained. The variance explained is calculated using Nagelkerke’s R? by comparing
scores generated from a full model (containing covariates and PRSs) and a reduced model
(covariates only). The liability for the trait or disease within the population is represented as a
continuum of PRSs. The individuals with higher risk scores are positioned at higher points on the
liability scale, indicating an elevated predisposition to the disease and vice-versa. Diseases with
higher prevalence encompass a broader range of PRSs above a certain threshold on the liability
scale, while diseases with a lower prevalence may involve individuals with exceptionally high

PRSs.

4.1.6 Additional modules of the Ricopili pipeline

The following section describes the array of additional analysis modules within the Ricopili

pipeline, which greatly facilitate downstream GWAS analysis.

4.1.6.1 Reference builder
This module helps the first-time user to set up the publicly available genome reference (e.g., a

1000 Genomes reference panel) or those available by permission (e.g., HRC) in the Ricopili
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format on their cluster. It also defines genomic chunks for roughly equal SNP numbers

throughout the genome.

4.1.6.2 Clumper module

This module allows LD-clumping to be performed on summary statistics to produce independent
regions. By default, the most significant SNP is retained by discarding all SNPs within 500 kb
with a high LD of r? > 0.1. This is useful for assessing the number of independent SNPs
associated with the phenotype. In the complicated and large major histocompatibility complex

(MHC) region of chromosome 6, only the most significant SNP is retained.

4.1.6.3 Replication module

The Ricopili pipeline also provides a module for performing a replication analysis. The
replication module allows users to calculate sign tests of the effect directions between discovery

and replication data and the meta-analyses of top SNPs (e.g., p < 1 x 107,

4.1.6.4 Leave-one-out polygenic risk score

This module eases the leave-one-out (LOO) PRS analysis even for a larger number of cohorts.
The pipeline automates the creation of training data by leaving out every single cohort one at a
time. It then creates the PRS (using the method described in Section 4.1.5) for individuals in the
excluded cohort (see Section 5.1.4).

4.1.7 Simulated data
We simulated genotype data using the freely available tool HAPGEN (Su., 2011), which

produces genome-wide haplotypes based on the LD pattern of a reference panel of one’s choice.
For this project, we used the 1000 Genomes Phase 3 reference panel to simulate genotype data
and generated one cohort for a European ancestry population (the EUR data set; 503 reference
individuals) and another for an East Asian ancestry population (the EAS data set; 504 reference
individuals). After simulations, both data sets consisted of 100,000 simulated individuals. We
performed first-pass filtering by removing all variants with an MAF <0.005, duplicate variant
identifiers, or genomic location matches. After QC, 11,015,883 variants remained for the EUR
data set, and 9,952,334 variants remained for the EAS data set. To create data sets relevant for

education and method development, we further modified the simulated data.
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4.1.7.1 Description of data interference: Population stratification
From the HAPGEN simulated sets, we randomly chose 6,000 individuals of European ancestry

(EUR) and 200 of East Asian ancestry (EAS). We extracted SNPs from the widely used Illumina
OmniExpress platform. The EUR cohort was split into five subcohorts (N = 2,000, 1,000, 1,000,
1,000, and 1,000) and the EAS cohort was split into two subcohorts (N = 100). The case and
control status of every individual were assigned randomly (50:50) in the EUR cohort and at
ratios of 2:98 and 5:95 to the EAS. Finally, we merged the two EAS cohorts with two of the
EUR cohorts (cohort 1: N =2,100 and cohort 3: N = 1,100; Table 4.1a) to create artificially

unbalanced population stratification.

4.1.7.2 Description of data interference: Technical errors
We selected cohorts 1 and 2 to contain technical errors with false-positive associations. To do so,

we performed the following steps separately for cases and controls in both cohorts:

1. To generate autosomal heterozygosity rate deviations in individuals, heterozygous
genotypes were substituted with homozygous genotypes for all SNPs in 10 selected
probands.

2. To create missingness per individual, 100 probands were randomly selected, and an
SNP-missing rate per individual of 0—10% was introduced (from a right-skewed
distribution with a lower probability of higher missing rates).

3. To create sex errors, 10 (male/female) probands were chosen randomly, and their gender
assignments were switched to the opposite sex.

4. To create missingness per SNP, 2% of all SNPs were randomly selected to induce
missing genotypes by choosing missingness rates between 0—10% (from a right-skewed
distribution with a higher probability of low missing rates).

5. To create Hardy—Weinberg disequilibrium per SNP, 2% of all SNPs were randomly
selected to induce artificial excess homozygosity.

6. To create false-positive associations, 20 SNPs were randomly selected, and their alleles
A and B were swapped along with missingness being introduced to provide a sign for a

technical error.
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Finally, cases and controls were merged back into a single cohort. Table 4.1 provides a

comprehensive description of each dataset, along with a detailed account of the interference

applied to them.
Table 4.1a: Description of the simulated data cohort.
Data set Name N Cases | Control | SNPs Interference
s
1 |[sim_simla eur sa | hapla 2,100 | 985 1,115 547,764' | Population stratification
merge.miss (merging European with Asian
cohort 1) and technical errors
2 | sim_sim2a eur sa_ | hap2a 1,000 |[474 526 593,970 | Only technical errors
merge.miss
3 | hapgen_sample3a hap3a 1,100 | 478 622 547,764' | Only population stratification
(merging European with Asian
cohort 1)
4 | hapgen_sample4b | hap4a 1,000 | 483 517 593,970 | Shares 10 overlapping
individuals with cohort 5
5 | hapgen_sampleSa.p | hapSa 1,000 | 516 484 593,970 |-

h

! The number of SNPs are less than the other cohorts as these were formed by a merging Asian and European cohort, so we only

took the overlapping SNPs between them.
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4.2 Panic disorder cohort description (Forstner, Awasthi, and Wolf et al., 2019):
This PD GWAS consisted of 2,248 cases and 7,992 controls originating from four European
countries, namely Germany, Denmark, Estonia, and Sweden. Moreover, the written and
informed consent of all participants was received, as was the approval of local ethics committees.
DSM-III-R, DSM-1V, or ICD-10 criteria were used to diagnose lifetime PD in all patients. Table

4.2a presents the sample sizes for each cohort, both for cases and controls.

Table 4.2a: Description of the panic disorder cohort.

PD Cases (N = sample Controls (V= sample size)

size)

Germany [ (N =492) Heinz Nixdorf Recall study (N = 1,882; Schmermund et al., 2002)
Germany II (N =251) Munich-based community cohort (N = 538)

Germany I (N =290) Munich-based community cohort (N = 856)

Denmark (N =254) Danish (N = 1,034)

Estonia (N = 346) Estonian (N = 1,065)

Sweden (N =615) Swedish (N = 2,617; Ripke et al., 2002)

4.2.1 SNP QC of six PD cohorts

QC was applied to each cohort independently using the parameters and methodology described
in Section 4.1.1. To summarize, we used the pre-imputation module to exclude problematic
SNPs and samples, and if the Q—Q plots indicated high lambda inflation, they were scrutinized
for genetic biases (Section 4.1.2). Details regarding pre- and post-QC sample sizes, along with
the number of exclusions due to technical issues per cohort, are provided in Table 4.2b. Manual

adjustments were necessary for the Germany I, Germany I1I, and Sweden cohorts.

4.2.2 Genomic QC

Relatedness testing was conducted using the PCA module with a subset of 47,513 high-quality
SNPs. This subset was obtained through LD pruning (r*> > 0.02), a process that involves
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removing SNPs in high linkage disequilibrium, reducing data redundancy. Additionally, SNP
with low imputation quality (INFO score < 0.8), high missingness (SNP missingness > 0.01),
and low minor allele frequency (MAF < 0.05) were excluded. The PCA module identified 8, 4,
and 12 pairs of related or overlapping individuals within the Germany I, Germany II, and
Sweden cohorts, respectively. Additionally, 12 pairs of individuals were found to be related
across the German cohorts, with further details provided in Table 4.2b. Randomly, one member
out of each pair (case—case/control—control) with n-hat > 0.2 was removed. If related individuals
are cases and controls, we retain the cases and exclude the controls. The PCs were also estimated
from the genotype data, and their phenotype association was tested using logistic regression. PCs
1-7, 11, 16, and 18 significantly influenced the genome-wide test statistics and were used in

further analyses to adjust for population stratification.

Table 4.2b: Pre- and post-QC distribution of sample sizes and single nucleotide polymorphisms. This table provides

a comprehensive overview of SNPs and individual exclusion details, including corresponding technical errors.

Cohort Pre-QC Post-QC Exclusion Count and Reasons
Germany I Nsnp = Nsnp = e 361 SNPs were excluded due to them being missing in more
219,166 218,563 than 2% of individuals.

e 86 SNPs were excluded due to missing differences > 0.020
between cases and controls.
e  Two SNPs were manually excluded due to significantly

higher deviation of AFs compared with the reference

genome.
Ncas =492, Ncas =472, e Four cases and six controls were excluded due to missing
Ncon = 1,882 Ncon =1,803 SNPs > 2%.

e  Four controls were excluded due to the heterozygosity
rate being outside +-0.20.

e 12 casesand 61 controls were excluded due to sex
violations.

e  Eight pairs of overlapping or related samples were found
within this cohort, resulting in the exclusion of eight
controls.

e  Four cases were excluded as they were overlapping or related

to cases in Germany II (n = 2) and Germany III (n = 2).

Germany II Nsnp = Nsnp = e 110 SNPs were excluded due to missingness > 0.2.

296,835 295,955 e 770 SNPs were excluded due to missing differences > 0.020

between cases and controls.
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Ncas = 251,
Ncon =538

Ncas = 247,
Ncon =537

Four cases were excluded as they were overlapping or
related to cases in Germany [ along with one control that

was related to an individual in Germany III.

Germany III

Nsnp =
486,864

Nsnp =
485,410

621 SNPs were excluded due to missingness > 0.2.

829 SNPs were excluded due to missing differences > 0.020
between cases and controls.

Two SNPs were excluded due to an HWE p value of less
than 10 in cases.

Two SNPs were manually excluded for a significantly
higher deviation of AF compared with the reference

genome.

Ncas =290,
Ncon = 856

Ncas = 280,
Ncon = 855

Four cases were excluded due to missing SNPs > 2%.

Four pairs of overlapping and related samples were found
within this cohort, resulting in the exclusion of four cases.
Two cases were excluded as they were overlapping or
related to cases in Germany [ along with one control that

was related to an individual in Germany II.

Denmark

Nsnp =
248,028

Nsnp =
232,069

5,955 SNPs were excluded due to missingness > 0.2.
2,472 invariant SNPs were excluded.

1,776 SNPs were excluded due to missing differences >
0.020 between cases and controls.

5,734 SNPs were excluded due to an HWE p value of less

than 10-6 in controls.

22 SNPs were excluded due to an HWE p value of less

than 10-8 in cases.

Ncas = 254,
Ncon =1,034

Ncas = 248,
Ncon =970

Two controls were excluded due to missing SNPs > 2%.
Two cases and 20 controls were excluded due to sex
violations.

Two cases and 42 controls were identified as population

outliers and were subsequently excluded.

Estonia

Nsnp =
247,451

Nsnp =
225,045

2,925 SNPs were excluded due to missingness > 0.2.
11,553 SNPs were excluded due to missing differences >
0.020 between cases and controls.

2,479 invariant SNPs were excluded.

169 SNPs were excluded due to an HWE p value of less than
108 in cases.

5,280 SNPs were excluded due to an HWE p value of less

than 10-6 in controls.
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Ncas = 346,
Ncon = 1,065

Ncas = 339,
Ncon =1,004

26 controls were excluded due to missing SNPs > 2%.
20 controls were excluded due to sex violations.
Seven cases and 15 controls were identified as population

outliers and subsequently excluded.

Sweden

Nsnp =
222,726

Nsnp =
213,578

341 SNPs were excluded due to missingness > 0.2.

384 SNPs were excluded due to missing differences >
0.020 between cases and controls.

Seven invariant SNPs were excluded.

Three SNPs were excluded due to an HWE p value of less
than 10-6 in controls.

7,413 SNPs with a MAF of less than 1% were manually

excluded.

Ncas = 615,
Ncon =2,617

Ncas = 561,
Ncon = 2,591

12 cases were excluded due to missing SNPs > 2%.

21 pairs of overlapping and related samples were found
within this cohort, resulting in the exclusion of five cases
and 16 controls.

37 cases and 10 controls were identified as population

outliers and subsequently excluded.

4.2.3 Imputation

The imputation of quality-controlled data for all six cohorts was performed using IMPUTE2

(Howie et al., 2012) and SHAPEIT (Delaneau et al., 2011) as well as the pre-phasing/imputation

stepwise approach. We used default parameters, a chunk size of 3 megabases (Mb), and the 1000

Genomes Project reference panel (release “v3.macGT1”).

4.2.4 Association testing and meta-analysis.

Each marker was tested for associations with PD using an additive logistic regression model and

by controlling for PCs 1-7, 11, 16, and 18 independently in six PD cohorts. The p value

threshold of 5 x 107® was used to assign genome-wide significance. Furthermore, the six cohorts

were meta-analyzed using METAL (Willer et al., 2010), averaging the genetic effects (ORs)

weighted by inverse standard error (SE) of the effect.

37




4.2.5 Leave-one-out polygenic risk scoring

LOO polygenic risk scoring was performed on all six cohorts by excluding one of them and

using the remaining meta-analytic summary statistics to compute the PRS (using the method
described in Section 4.1.5) for the individuals of the left-out cohort. This was done using the

LOO-PRS module of the Ricopili pipeline.

4.2.6 Replication

We used three independent European PD studies for the follow-up analysis. These included
iPSYCH (Denmark, n = 905 cases, n = 3,620 controls); deCODE (Iceland, n = 547 cases, n =
220,285 controls); and NESDA/NTR (the Netherlands, n = 956 cases, n = 4,565 controls). The
combined meta-analysis included 2,498 PD patients and 228,470 from the follow-up cohorts.
The meta-analysis was performed using the inverse standard error-weighted OR combination. A
binomial “sign test” was performed on the number of same-direction effects in the replication

data to test for significant accumulation.

4.2.7 Heritability estimation and genetic correlation

Linkage disequilibrium score regression (Sullivan et al., 2015) was used to determine the SNP-
based heritability of PD. To test PD’s genetic overlap with a wide range of phenotypes, we took
advantage of the online database and web interface LD HUB (Zheng et al., 2017), which is based
on the LD score regression method. The linkage disequilibrium adjusted kinship (LDAK) model

of the SumHer tool was used to confirm the results.

4.2.8 Functional analysis

To classify our risk variants associated with PD, we performed a gene-based test, gene-set
enrichment, and tissue enrichment analyses using a gene analysis tool MAGMA (de Leeuw et

al., 2015) implemented in online web interface FUMA (Watanabe et al., 2017).
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4.3 Borderline personality disorder cohort (Witt et al., 2017):

The BPD cohort consisted of 1,075 cases and 1,675 controls. The cases and controls of European
ancestry were obtained from multiple sites (Table 4.3a) and merged into a single cohort. Patients

aged 16—65 years with a lifetime DSM-IV diagnosis of BPD were included.

Table 4.3a: Description of the borderline personality disorder cohort.

BPD Cases (/N = sample size) Controls (V= sample size)
1. Department of Psychiatry, Charité¢, Campus 1. Central Institute of Mental Health
Benjamin Franklin, Berlin (N = 494) Mannheim (N = 1,583)
2. Department of Psychosomatic Medicine, Central 2. University Medical Center Mainz
Institute of Mental Health, Mannheim (N = 350) (N=92)
3. Department of Psychiatry and Psychotherapy,
University Medical Center Mainz (N =231)

LD score regression (Sullivan et al., 2015) was used to estimate the genetic correlation of BPD
with schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BP). The
GWAS summary statistics for these disorders were obtained from Psychiatric Genomics
Consortium (PGC) publications:

1. SCZ: 33,640 cases and 43,456 controls (Ripke et al. 2014);

2. BP: 20,352 cases and 31,358 controls (Stahl et al. 2019);

3. MDD: 16,823 cases and 25,632 controls (Ripke et al 2013).

4.4 IMAGEN cohort (Kaminski et al., 2018):

IMAGEN is a large multicenter (longitudinal) neuroimaging and genetics study at eight locations
in four different European countries, namely Germany, the United Kingdom, France, and Ireland
(Schumann et al., 2010). Each European center enrolls at least 250 healthy adolescents aged 14

years, who are then tracked at the ages of 16, 19, and 22 years. The primary aim is to leverage
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the substantial sample size (N > 2,000) to establish a robust statistical confirmation of whether
the associations between brain structure, function, and genetic variance are direct (e.g., linked to
substance abuse) or if they emerge as secondary consequences of the disorder (e.g., due to the

effects of pharmacological drugs (Mascarell Mari¢i¢ and Walter et al., 2020).

For this project, our cohort comprised 1,475 subjects (mean age = 14.43 years; SD = 0.45,
including 765 female participants) selected from the IMAGEN study.

4.4.1 Intelligence measurement

We estimated a measure of general cognitive ability by performing PCA (Deary et al., 2010)
over WISC-IV scores, consisting of matrix reasoning, block design, digit span backward and
forward, similarities, and vocabulary (Wechsler., 2003). The first PC explained the largest

proportion of variance and was used as an intelligence marker (general 1Q; gIQ).

4.4.2 Polygenic risk scoring
GWAS results for childhood intelligence (Benyamin et al., 2014) on 7,989 individuals

(1,380,159 SNPs) and human intelligence (Sniekers et al., 2017) on 78,308 adults (10,499,625
SNPs) were first LD-clumped using the method described in Subsection 4.1.6.2. The clumped
GWAS results were further used to generate polygenic scores (using the method described in
Section 4.1.5) for each individual in the IMAGEN cohort. To examine the association between
polygenic scores and gIQ, we performed linear regression models using the polygenic scores as

predictors.
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5) Results

This chapter presents the results obtained from this dissertation work. Section 5 provides a
summary of the standardized GWAS methodology and details the technical and genomic QC
results that refined this methodology.

Section 5.2 presents the results of the QC, imputation, meta-analysis, replication, leave-one-out
polygenic risk score (LOO-PRS) analysis, heritability estimation, genetic correlation, gene

based, get set and tissue enrichment analysis.

In Section 5.3, the results of genetic correlation estimation between borderline personality
disorder (BPD) and psychiatric disorders such as schizophrenia (SCZ), major depressive disorder

(MDD), and bipolar disorder (BP) are discussed.

Finally, Section 5.4 presents the results of the association between intelligence measures and

polygenic scores in the IMAGEN cohorts

5.1 Standard GWAS analysis methodology (Lam and Awasthi et al., 2020):

The flowchart in Figure 4.1a (Chapter 4 — Materials and methods) illustrates the standard GWAS
methodology that was developed in this project and used throughout. The flowchart uses various

modules of the Ricopili pipeline along with some manual inspections and corrections.

In summary, this process entailed conducting thorough QC (both technical and genomic) through
using the pre-imputation and PCA modules of the Ricopili pipeline, supplemented with manual
quality checks. These two modules were employed iteratively, in various sequences, and
multiple times if necessary, until a reliable genotype data set was obtained. Additionally,
subsequent steps such as imputation, association/meta-analysis, and downstream modules were

executed to perform a comprehensive GWAS analysis using our pipeline.
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5.1.1 Simulated cohorts
The methodology presented in Section 5.1 and depicted in Figure 4.1a was used to analyze the

simulated cohorts 1-5. This section only includes the results for cohort 1, as the same process
was extended to all other cohorts (2—5). Later sections showcase plots and figures obtained

through using the modules described in Section 4.1.

5.1.2 QC on simulated cohort 1

This section demonstrates the use of Ricopili’s QC module to identify and rectify the technical
interventions and biases introduced in the simulated data. This module generates comprehensive
QC reports that aid in high-quality data analysis and visualization. The illustrations from Figures

5.1 a—1 were extracted from this QC report.

The flags (Figure 5.1a) obtained from the initial run of the QC module of Ricopili indicated that
this cohort needed more work even after automatic QC. Green flags indicate that no double-
check was necessary and the cohorts could thus proceed directly to imputation and meta-
analysis. Cohorts with yellow flags needed to be carefully examined; if a sufficient explanation
was provided, they could progress to the next steps. Lastly, red flags signal that additional

filtering and repeated QC were necessary until all red flags were resolved.

Flags
Nr. | Flagname value yellow-th red-th | flag color
01) | nsnps-postqc 507493 250000 200000 0 green
02) | nsnps-postqe-per-platform(OMEX) 507493 | (408380/789375) | (217882/979873) 0 | [green
03) | ncases-postqc 929 100 50 0 | 'green
04) | ncontrols-postqc 1059 100 50 0 green
05) | case-control-ratio-postqc 0.8772 (0.25/4) (0.167/6) 0| ‘green
06) | nids-lost-ratio 0.05333 0.01 0.1 1 | yellow
07) | n-nopt-postqc 0 0 10 0 green
08) | nids-sexcheck-ratio 0.0004762 0.005 0.025 0 green
09) | lambda-postqc 2.541 1.1 1.2 2 -
10) | nsnps-gws 29 0 1 2 -

Figure 5.1a: All flagged (red), warning (yellow), and nonflagged (green) technical issues with the genotypes. [Ref.

Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]
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Figure 5.1b presents an exclusion table for individuals and low-quality SNPs. The table indicates
that 112 individuals were excluded due to a low call rate, sex violation, and heterozygosity
deviation. A total of 40,271 (7.4%) SNPs were excluded due to high HWE deviation and high
missing rates. After QC, 507,493 SNPs were retained. However, Figure 5.1b presents 29 SNPs
that were significantly associated with the phenotype even after GC correction (genomic control
for lambda inflation). These false positives would carry through imputation, and thus, they were

scrutinized in the following steps.

General Info

Size of Sample

Test | pre QC | post QC ‘ exclusion-N
Cases,Controls,Missing | 985,1115,0 | 929,1059,0 56,56,0
Males,Females,Unspec | 1332,768,0 | 1262,726,0 70,42,0
SNPs 547764 507493 | 40271 (7.4%)

Exclusion overview

would have excluded 73 individuals without pre-filter (SNP-Missing 0.05)

Filter N
SNPs: call rate < 0.950 (pre - filter) 107 (0.0%)
IDs: call rate (cases/controls) < 0.980 73 (36/37)
IDs: FHET outside +- 0.20 (cases/controls) 20 (10/10)
IDs: Sex violations -excluded- (N-tested) (2100)
IDs: Sex warnings (undefined phenotype / ambiguous genotypes) 1(0/1)
SNPs: call rate < 0.980 8051 (1.5%)
SNPs: missing difference > 0.020 5472 (1.0%)
SNPs: without valid association p-value (invariant) 0 (0.0%)
SNPs: HWE-controls < -6 16427 (3.0%)
SNPs: HWE-cases < -10 10818 (2.0%)
Warning: genomewide significant SNPs (autosomal/known) 29 (29/0)

Figure 5.1b: Size of sample (top panel): This provides a broad overview of the sample size and SNP distribution
before and after QC, along with the number of exclusions. The sample is further described in detail, split into two
different categories. First, it is divided by phenotypes (cases, controls, and missing data), and second, it is divided by
gender (males, females, and unspecified). Exclusion overview (bottom panel): This provides a quantitative list of
excluded SNPs and individuals (in the “N” column) along with the corresponding technical reasons for exclusion (in

the “Filter” column). [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted]

The Q—Q plot (Figure 5.1c) revealed inflated lambda values even after QC filters. These were at
least partly driven by population stratification given the two genetically distinct populations

(Figure 5.1d) in this cohort and/or sample overlap. Here, as we sought to restrict the analysis to
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European ancestry, we chose a threshold that excluded the much smaller Asian subset (e.g.,
PCA1=0.01).

3.2 Manhattan-Plot - post-QC (QQplot with MAF 0.02)

combined_set_alt.txt

GWA-Plot
10 4 *
199 4 @ 6 o © 0@ 00 @ © Xe) @ o
(] (]

8 -

133 £
g g 67

| @ e ® g

2 ° 3

®

2

9 .
i g’
68 o
®
lambda= 2.541; N (pvals) = 502100
@ 2
@@
lambda1000= 2.557 (929 cases, 1059 controls)

I 1 1 1 1 1 T T T rrTrrrrrirTi 0

1 2 3 4 5 6 7 8 9 10 11 12 18 1151617 19 2 23 T T T J T T

0 2 4 6 8 10

Expected -log10 (P)

894 Chr/ Position(kb) 2975972
(n=14868 out of 507494)

Figure 5.1c: Post-QC Manhattan plot (left); The y axis represents the —log of p values for variants with a p value <
0.001, presented along their genomic locations on the x axis (22 autosomes). Q—Q plot (right): The x axis represents
expected —log10(P) values, while the y axis represents observed —log10(P) values. The gray shaded area surrounded
by a red line indicates the 95% confidence interval under the null (no inflation). Lambda is the observed median ?

test statistic divided by the median expected y? test statistic under the null (p = 0.5). Since lambda scales with
sample sizes, it is informative to examine the rescaled lambda for 1,000 cases and 1,000 controls (i.e., lambda 1000;
de Bakker., 2008). All SNPs with MAF > 0.02 were used to create the Q—Q plot [Ref. Lam and Awasthi et al., 2020,

Bioinformatics: Permission granted].

44



PCA2/PCA1

o
s 7 § *'Jw&#t*’%:ﬁ *4:3” e

0.06
|

@ con.sim _hapib eur @ cas.sim _hapib eur

PCA1

0.00
J

-0.05 0.00 0.05

PCA2

Figure 5.1d: PCA plot: x axis = principal component (PC) 1 and y axis = PC 2. Red dots represent cases and blue
dots represent controls. Two distinct populations, European (PCA1 < 0.00), and East Asian (PCA1 > 0.08), are

identified [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted].

After we removed the Asian subset from the cohort, a significant drop in lambda inflation
occurred (compare Figure 5.1 ¢ and e). Still, there were 28 genome-wide significant SNPs, as
listed in Figure 5.1f. In summary, some red QC flags from Figure 5.1a were resolved, but not all
of them. In Figure 5.1f, we identified high missing rates indicated in columns F_MISS (overall
proportion of missing genotype data), F_ MISS A (proportion of missing genotype data in
cases), and F_MISS_U (proportion of missing genotype data in controls) for flagged SNPs and

excluded them from further analysis.

45



combined_set_alt.txt

GWA-Plot
10 -_—— ¢
199 — ® ® 0® 00 © © © ® ©o
@
® 87
_ 133 - £
g 2 6
e s ° °
o
5 o ¢
9 -
: i
68 - °©
® ©© lambda= 1.001; N (pvals) = 497330
® 27
® ® lambda1000= 1.001 (927 cases, 965 controls)
o vy . v
I I ) I I T T T T rrTrrrrrr 0
3 4 5 6 7 8 9 10 11 12 138 14 151617 19 21 23 ) J T T T T
..................................................... 0 2 4 6 8 10
882 Chr/ Position(kb) 2969882 Expected -log10 (P)

Figure 5.1e: Manhattan plot (left) and Q—Q plot (right) after removing population outliers. Compare it with Figure
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(n=4479 out of 507399)

5.2.c [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted].




RSID CHR BP F_A FU MAF FMISS F_MISS_A F_MISS_U F_MISS_DIFF F_MISS_P log(P)_HNE_cas log(P)_HNE_con log(P)_HWE_all
rs10862292 12 81711953 0.9277 0.06955 . L1277 0.4993 0.01586 0.0151 0.01658 -0.00148 0.8553 ] -0.0967 -246
rs7611432 53971360 0.9571 0.0385 . .1663 0.4884 0.01797 0.01834 0.01762 ©.000719999999999998 1 -0.39%4 0 -200
rs4848495 118928678 0.90991 0.08281 . L1165 0.4882 0.01638 0.0151 0.01762  -0.00252 0.719% -0.162 -0.875 -211
rs221795 100283261 0.6663 0.31° .797e-101 4.3 .07003 0.4874 0.01638 0.01726 0.01554 0.00172 0.8569 -0.299 -0.301 -6.92
rs6940091 2437996 0.8615 0. .63 .09413 0.4962 0.0185 0.01834 0.01865 -0.000310000000000001 1 -0.313 0 -115

rs37267 41337044 0.8571 0. ) .09888 0.4776 ©0.01903 0.01834 0.01969 -0.00135 0.8676 -0.0495 0 -133
rs7524120 92865160 0.6559 0. . . .06965 0.486 ©0.0185 0.01726 0.01969 -0.00243 0.7353 -0.517 -7.73
rs11758794 161521680 0.9552 0. . L1612 0.4925 0.0185 0.01187 0.02487 -0.013 0.04052 0 -200
rs1417731 93635541 0.9071 0.08078 . .1168 0.4857 0.0185 ©0.01834 ©0.01865 -0.000310000000000001 1 [ -203
rs7043262 6926738 0.676 0.3103 .387e-110 4. .07058 0.4889 0.01956 0.02265 ©0.01658 ©.00607 0.4071 -0.0271 -10

rs238112 3499767 0.7233 0.2802 .93%-161 6. .07318 0.4968 0.01691 0.01942 0.01451 0.00491 0.4771 -0.168 -16.9
rs1929254 30186233 0.7555 0.2466 .847e-211 9. .07626 0.4965 0.0185 0.01618 0.02073 -0.00455 0.4986 -0.184 -29.3
rs11234161 84469196 0.8812 0.1183 . .1016  0.4919 0.01903 0.01942 0.01865 ©.00077 1 ] -144
rs12533618 52142647 0.9078 0.1111 . L1091 0.4992 0.01691 0.02265 0.0114 0.01125 0.07353  -0.161 -184
rs696964 208598450 0.7563 0.2282 .04e-227 . 0.07727 0.4863 0.01691 0.01942 0.01451 0.00491 0.4771 -0.492 -26.6
rs16947913 78554218 0.8069 0.1837 . 0.08391 0.4884 0.01744 ©.01942 ©.01554 ©.00338 0.5995 -0.47 -59.6
rs149150 3094216 0.5857 0.3976 .954e-30 . 0.06685 0.4898 0.0185 0.01834 0.01865 -0.000310000000000001 1 -0.077 -1. -0.215
rs11715915 49455330 0.6625 0.3309 .33e-91 .96 0.06953 0.4933 0.01691 ©.01726 ©.01658 ©.00068 1 -0.427 -6.37
rs2157216 35344317 0.7968 0.1828 .267e-308 . 0.08306 0.4834 0.01427 0.0151 0.01347  0.00163 0.8473 -0.0368 -60.6
rs1248060 114864252 0.5667 0.4195 .856e-19 . 0.06634 0.4919 0.01744 0.01294 0.02176 -0.00882 0.1619 -0.697 -0.0333
rs4698491 16526736 0.7243 0.259 .17e-177 s 0.07412 0.4876 0.01691 ©.01402 ©.01969 0.00567 0.3761 0.669 21.3
rs11772815 28391047 0.3713 0.6225 5.805e-53 . 0.06777 0.4992 0.01691 0.0151 0.01865 -0.00355 0.5959 -0.447 . -0.676
rs168474 15599587 0.5728 0.4155 8.632e-22 . 0.0664 0.4927 0.01638 ©.01402 0.01865 -0.00463 0.4723 -0.164 -0.287
rs275581 48848274 0.2123 0.7712 4.63e-255 . 0.0791 0.4987 0.0148 ©.01942 ©.01036 ©.00906 0.1275 -0.312 -35.9
rs558107 30172458 0.6175 0.3833 . 0.06743 0.4984 0.01586 ©.01294 0.01865 -0.00571 0.3607 -0.849 -0.979
rs740032 120264341 0.6203 0.3684 0.06779 0.4911 0.01691 ©.02265 ©.0114 0.01125 0.07353  -0.0517 -1.11
rs10412597 56473189 0.2168 0.7592
rs12140273 241542880 0.6786 0.321

.888e-240 0. 0.0782 0.4935 0.01691 0.01726 ©0.01658 0.00068 1 -0.073 -37.3

2
3.
5
3.096e-105 4. 0.0703 0.4962 0.0185 ©.01834 ©.01865 -0.000310000000000001 1 -1.02 -8.7

Figure 5.1f: Summary statistics of genome-wide significant SNPs. “RSID”: SNP identifier; “CHR”:
chromosome number; “BP”: base pair position of the SNP; “A1”: reference allele for the SNP and also the
effect allele; “F_A”: allele frequency of the effect allele; “F_U”: allele frequency of the effect allele in
controls; “A2”: alternative allele for the SNP; “P_ASSOC”: p value representing the statistical association
of the SNP with the phenotype; “OR”: odds ratio (a measure of effect size); “SE”: standard error of the
OR; “MAF”: minor allele frequency; “F_MISS”: overall proportion of missing genotype data;
“F_MISS_A”: proportion of missing genotype data in cases; “F_MISS_U”: proportion of missing
genotype data in controls; “F_MISS_DIFF”: difference in missing genotype data between cases and
controls; “F_MISS_P”: p value representing the statistical significance of the difference in missing
genotype data between cases and controls; “log(P)_HWE_cas”: log-transformed p value for the HWE test
in cases; “log(P) HWE_con”: log-transformed p value for the HWE test in controls; and
“log(P)_HWE_all”: log-transformed p value for the HWE test in all samples (cases and controls

combined) [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted].

Flags

Nr. | Flagname value yellow-th red-th | flag | color
01) | nsnps-postqc 503121 250000 200000 0 | ‘green
02) | nsnps-postqce-per-platform(OMEX) 503121 | (408380/789375) | (217882/979873) 0 | ‘green
03) | ncases-postqc 927 100 50 0 | green
04) | ncontrols-postqc 965 100 50 0 | green
05) | case-control-ratio-postqc 0.9606 (0.25/4) (0.167/6) 0 | green
06) | nids-lost-ratio 0 0.01 0.1 0 | ‘green
07) | n-nopt-postqc 0 0 10 0 | 'green
08) | nids-sexcheck-ratio 0.0005285 0.005 0.025 0 | ‘green
09) | lambda-postqc 1 1.1 1.2 0 | ‘green
10) | nsnps-gws 0 0 1 0 | green

Figure 5.1g: Flagging after automatic and manual QC [Ref. Lam and Awasthi et al., 2020, Bioinformatics:

Permission granted].
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General Info

Size of Sample

Test | pre QC ‘ post QC | exclusion-N
Cases,Controls,Missing 927,965,0 927,965,0 0,0,0
Males,Females,Unspec | 1166,726,0 | 1166,726,0 0,0,0
SNPs 503121 503121 0 (0.0%)

Exclusion overview

would have excluded 0 individuals without pre-filter (SNP-Missing 0.05)

Filter N
SNPs: call rate < 0.950 (pre - filter) 0 (0.0%
IDs: call rate (cases/controls) < 0.980 0 (0/0
IDs: FHET outside +- 0.20 (cases/controls) 0(0/0
IDs: Sex violations -excluded- (N-tested) 0 (1892

IDs: Sex warnings (undefined phenotype / ambiguous genotypes) 1(0/1
SNPs: call rate < 0.980

0 (
SNPs: missing difference > 0.020 0 (
SNPs: without valid association p-value (invariant) 0 (0.0%
SNPs: HWE-controls < -6 0 (0.0%
SNPs: HWE-cases < -10 0 (0.0%
Warning: genomewide significant SNPs (autosomal/known) 0(0/0

Figure 5.1h: SNP and individuals excluded due to various technical issues after automatic and manual QC [Ref. Lam

and Awasthi et al., 2020, Bioinformatics: Permission granted].

Finally, Figures 5.1g and 5.1h indicate that with these various QC actions, we produced a data
set with no noticeable biases. The 10 green QC flags (in Figures 5.1g) also support this. After
QC, 507,493 SNPs remained, which was a sufficient number (i.e., greater than 200,000) for
proper imputation. The previous sections have described the QC actions and results specific to
cohort 1. The same process (also outlined in the flowchart in Figure 4.1a) was subsequently

extended to all other cohorts (2-5).

5.1.3 Meta-analysis

The 7,149,025 SNPs imputed in the simulated cohorts were tested for association with the
randomly generated null phenotype. As expected, no genome-wide significant marker was

discovered (Figure 5.11), and genome-wide inflation of p values was absent.

48



Manhattan-Plot

—log10 (p)

Chromosome

Figure 5.1i: Manhattan plot illustrating association results of 2,820 random cases and 2,962 random controls. The y
axis represents the —log of p values for variants with p < 0.001, presented along their genomic locations on the x
axis (22 autosomes). The green diamond is the lead variant in each locus, and the red line is genome-wide

significance [Ref. Lam and Awasthi et al., 2020, Bioinformatics: Permission granted].

5.1.4 LOO-PRS analysis

PRSs for each simulated cohort were calculated through the GWAS meta-analysis of the
remaining four cohorts. As expected for a simulated collection, the correlations (measured as
Nagelkerke’s r?) between genetic risk scores and the random phenotypes displayed a seemingly
random direction of effect with no statistical significance for any of the p value thresholds

(Figure 5.1j).
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Figure 5.1j: Leave-one-out polygenic risk score: This figure illustrates the PRS results of each of the five simulated
cohorts generated using GWAS meta-analysis effects of the remaining four cohorts as training data. PRSs were
calculated at 10 different p-value thresholds indicated by respective color bars in the legend. The variance explained
by PRSs is presented along the y axis. Not a single result in any category was statistically significant at p < 0.05
(and not a single absolute R? score reached more than 0.5% explained variance) [Ref. Lam and Awasthi et al., 2020,

Bioinformatics: Permission granted].

As expected in simulated cohorts, the null phenotype yielded an SNP heritability that was
indistinguishable from 0 (2.24% — SE of 7%).

5.1.6 LD score regression analysis: Genetic correlation (co-heritability)

No co-heritability existed between the association results with the null phenotype and the results

from the SCZ and MDD GWAS.
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5.1.7 Replication analysis

Sign analysis was performed between simulated cohort 4 (replication cohort) and discovery
meta-analysis of the remaining four cohorts as the discovery set. In the binomial test, 60 out of
127 top associated SNPs (discovery p value < 1 x 107#) exhibited the same direction effects,

which were not distinguishable from randomness — as expected for a null phenotype.

5.2 Panic disorder GWAS (Forstner, Awasthi and Wolf et al., 2019):

5.2.1 QC and imputation

The thorough technical and genomic QC resulted in more than 200,000 SNPs in each cohort
(Table 4.2b), which was a sufficient number for genotype imputation. Genotype imputation
further increased the SNP count (by predictions based on the reference genome) to

approximately 10 million in each cohort.

5.2.2 Meta-analysis results

None of the 8,757,275 high-quality SNPs revealed any significant association to PD in the meta-
analysis (Figure 5.2a), and the genome-wide association signal exhibited no significant inflation
(Q—Q plot in Figure 5.2b). A small intergenic deletion on chromosome 14 exhibited the highest
significance (p = 1.01 x 1077, OR = 1.64, MAF in controls = 0.05, MAF in cases = 0.07,
imputation INFO score = 0.59).
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Figure 5.2a: Manhattan plot illustrating association results of 2,147 PD cases and 7,760 controls. The y axis

represents —log of p values for all the tested variants, while their genomic location is along the x axis. The green
diamond is the lead variant in each locus, and the red line is genome-wide [Ref. Andreas, Awasthi and Wolf et al.,
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Figure 5.2b: Q—Q plot — the x axis represents expected —log10(P) values and the y axis represents observed
—log10(P) values. The gray-shaded area surrounded by a red line indicates the 95% confidence interval under the
null (no inflation). Lambda is the observed median y? test statistic divided by the median expected ¥ test statistic

under the null (p = 0.5). Since lambda scales with sample sizes, it was informative to examine the rescaled lambda
for 1,000 cases and 1,000 controls (i.e., lambda 1,000; de Bakker., 2008) [Ref. Andreas, Awasthi and Wolf et al.,
2019, Molecular Psychiatry: Permission granted].

5.2.3 Replication analysis

By comparing the direction of effects between the replication and discovery results on the 243
SNPs with a discovery p value of < 1 x 1074, we were able to demonstrate a nominally

significant (p = 0.048) proportion of same-direction effects in 135 SNPs using the sign test.
The combined meta-analysis of the discovery PD and replication cohorts found no significant

single SNP genome-wide association, with PD.SNP 15144783209 — located on chromosome
4/intron 1 of the SMADI1 gene — exhibiting the lowest p value (Pcomb = 3.10 x 1077).
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5.2.4 LOO-PRS analysis

In contrast to the null phenotype (Figure 5.1j and Section 5.1.4) the LOO-PRS analysis for PD
reliably predicted disease status in all five cohorts (Figure 5.2c). For lower p-value thresholds,
the analysis demonstrated the same direction of effect in all cohorts, with the maximum

explained observed variance ranging from 0.8% (Swedish) to 2.6% (Germany II).
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Figure 5.2c: Leave-one-out polygenic risk score (PRS) results of six GWAS cohorts using the GWAS results from
the remaining five at 10 different p-value thresholds, as indicated by the respective color bars in the legend. The
observed variance explained by PRS is along the x axis; * indicates the significance of variance over each bar [Ref.

Andreas, Awasthi and Wolf et al., 2019, Molecular Psychiatry: Permission granted].

5.2.5 LD score regression analysis: SNP-based heritability

Using the LD score regression (SR) method, we observed that SNP-based heritability for PD
significantly ranged from 28.0% (SD = 5.7%) for a lifetime prevalence of 2% to 34.2% (SD =
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6.9%) for a lifetime prevalence of 4%. Using the SumHer/LDAK method, we confirmed these
values with 36.3% (SD = 4.7%) and 44.0% (SD = 5.6%), respectively.

5.2.6 LD score regression analysis: Genetic correlation (co-heritability)

A significant genetic correlation of PD was observed with MDD (genetic correlation/rg = 0.431;
SE = 0.134; p value corrected for multiple testing/Pcorr = 0.025); depressive symptoms (rg =
0.322; SE = 0.093; pcorr = 0.010); and neuroticism (rg = 0.316; SE = 0.082; Pcorr = 0.002).
Moreover, a slightly significant positive genetic correlation was observed with anxiety disorder,
posttraumatic stress disorder (PTSD), PGC cross-disorder analysis phenotype, and SCZ, whereas
a significantly negative genetic correlation was observed with years of schooling as a surrogate

marker for IQ (Figure 5.2d).

Furthermore, we estimated the co-heritability of PD with MDD in two settings — namely PD
patients (1) with and (2) without comorbid MDD. Noteworthily, MDD exhibited a nominally
significant genetic correlation with PD without MDD (rg = 0.415; SE = 0.209; p = 0.047), but it
had no significant correlation with PD with MDD (rg = 0.662; SE = 0.422; p = 0.117). This
supports the hypothesis of an observed co-heritability between PD and MDD that is largely
driven by shared genetic variants and not by PD-MDD comorbidity. A disparity existed in

sample sizes between these two settings, indicating the need for additional confirmation.
Moreover, using the SumHer/LDAK method, we confirmed the strong positive genetic

correlation between PD and (i) MDD (rg =0.208; SD = 0.065); (ii) depressive symptoms
(rg=0.275; SD =0.092); and (iii) neuroticism (rg = 0.260; SD =0.077) and other phenotypes.
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Figure 5.2d: Genetic correlations between PD and other phenotypes: For the 19 phenotypes on the right, the genetic
correlation is denoted as a dot with a line as the standard error. The significance of each correlation is described in

the upper left [Ref. Andreas, Awasthi and Wolf et al., 2019, Molecular Psychiatry: Permission granted].
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5.2.7 Gene-based analysis

A gene-based analysis was performed using MAGMA on a total of 18,335 genes. In total, 42
genes were found to be significantly associated with PD at p = 0.001, but none of them reached

significance after Bonferroni correction (p < 0.05/18,335=2.73 x 107°).

5.2.8 Gene set analysis

A gene set analysis using gene-based results (Section 5.2.6) revealed 521 gene sets/pathways to
be nominally significant. Again, however, none of the gene sets remained significant (p <

0.05/10 891 = 4.59 x 107%) after Bonferroni correction.

5.2.9 Tissue enrichment analysis

Tissue enrichment analysis revealed an enrichment of associated genes expressed in brain
tissues. Genes expressed in the cortex exhibited the most robust enrichment, followed by those
expressed in the amygdala (Figure 5.2¢). Here again, none of the 53 investigated tissues reached

statistical significance after Bonferroni correction.
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Figure 5.2e: Illustration of the results of tissue enrichment analysis implemented by MAGMA (embedded in
FUMA), using GTEx data for 53 tissue types. Nominal —log10 p values are presented along the y axis. None of the
investigated tissues exhibited a significant enrichment after correction for multiple testing [Ref. Andreas, Awasthi

and Wolf et al., 2019, Molecular Psychiatry: Permission granted].

The following sections present findings from two additional research projects. Notably, 1
emphasize significant genetic insights within two complex traits — namely BPD (presented in

Section 5.3) and general intelligence (presented in Section 5.4).

5.3 Borderline personality disorder (Witt et al., 2017): Genetic correlation

with schizophrenia, major depressive disorder, and bipolar disorder

A total of 207 individuals were excluded due to technical and genomic QC, mostly due to
genetic overlap and population outliers. The post-QC cohort consisted of 998 BPD cases (914
female/84 male) and 1,545 controls (868 female/677 male). These were finally imputed using the
1000 Genomes Project reference panel (Abecasis et al., 2010). As the most critical outcome, we
were able to demonstrate significant genetic correlations of BPD with BP (g = 0.28; SE =
0.094; p=2.99 x 1073), MDD (rg = 0.57; SE=0.18; p = 1.04 x 1073), and SCZ (rg = 0.34; SE =
0.082; p=4.37 x 107%).

58



5.4 General intelligence in the IMAGEN cohort (Kaminski et al.,
2018): Association between gIQ and polygenic scores

PRSs were derived from a childhood intelligence GWAS (Benyamin et al., 2014) with 7,989
individuals as well as a human intelligence GWAS (Sniekers et al., 2017) with 78,308
participants. The former PRSs were significantly associated with glQ at a p-value threshold of
0.1 (comprising 16,972 SNPs) and explained 0.33% of the phenotypic variance (p = 1.7 x 102).
By contrast, the latter PRSs used a p-value threshold of 0.01 (leaving 5,636 SNPs) and increased
the explained variance up to 3.2% (p=7.3 x 107%).
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6) Discussion

GWASSs have changed our understanding of a plethora of complex human traits in medical and
nonmedical fields. Genome-wide summary statistics derived from GWASs are used for
downstream analyses, which assist in understanding the biology of complex traits and the
etiology of complex disorders. Thus, to support such progress, the National Institute of Health
requests that such data be made publicly available (Paltoo et al., 2014). There are a growing
number of resources in which one can find publicly available genome-wide data, such as the
PGC (Sullivan et al., 2018), GWAS Atlas (Watanabe et al., 2019), UK BioBank (Sudlow et al.,
2015), LocusZoom (Pruim et al., 2010), dbGAP (Mailman et al., 2007), and EGA (Lappalainen
et al., 2015). However, conclusions drawn from these results will not be robust if the GWAS
analysis was initially compromised. Even minor biases and errors can increase the rate of false-
positive and -negative results (Finno et al., 2014). Therefore, it is essential to produce high-
quality GWAS results to ensure a reliable clinical impact, such as through individual risk

prediction or gene interaction pathways.

Our Ricopili pipeline and the best practice methodology are aimed at helping to produce robust
GWAS results by addressing a multitude of real-world biases and errors throughout. The pipeline
incorporates state-of-the-art tools and techniques used in GWASs to provide a coherent and
streamlined workflow. It comprises four major modules—pre-imputation/QC, PCA, imputation,
and post-imputation. Each module ensures the seamless progression of a GWAS, effectively
identifying any biases that might compromise the integrity of the results and analysis. This
efficient approach significantly reduces researchers’ time investment by allowing them to focus

on result interpretation and target discovery rather than laborious data management.

Furthermore, the Ricopili pipeline automates report generation and produces informative plots in
each module, thus facilitating the early detection and correction of errors. For example, to ensure
accurate representation of the population, it is crucial to perform LD pruning and remove long-
range LD regions. Additionally, aligning genotypes to the reference build is essential, as failure
to do so can lead to poorly imputed genotypes and inadequate signals. Analysts often overlook

these steps, and an efficient pipeline like Ricopili helps to mitigate such issues.
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This standardized procedure and reporting system also contribute to documentation, which is
often a time-consuming task for analysts. Designed to be easily installed on high-performance
clusters and adaptable to various job management systems (e.g., Slurm or gsub), the Ricopili
pipeline enhances scalability and the efficient use of computational resources. These advantages
bolster scientific rigor, promote reproducibility, and alleviate the computational burden on

researchers, enabling them to devote more attention to the scientific aspects of their research.

However, the Ricopili pipeline also has some limitations. The pipeline is difficult to be installed
on a normal computing machine. It usually deals with data and algorithms that are
computationally expensive, requiring extensive computation resources, such as High-
Performance Computing (HPC) Clusters. Initially, installing it on a new system and
understanding all the algorithms, tools, and scripts could be daunting. However, comprehensive
documentation of the pipeline are available online. Users should possess certain skills, such as

working with a Unix operating system, to work smoothly with the pipeline.

Nonetheless, this work is a valuable learning resource and will hopefully encourage more
researchers to perform genome-wide studies. The five HAPGEN-generated simulated data sets
used to develop the methodology are publicly available for download, along with a detailed
guiding tutorial. The simulated data will help to educate new users about Ricopili and GWASs as
well as further motivate experienced users to develop new functionality using these data. This
work has produced many protocols for performing and tuning various downstream analyses.
Within this project, we tested this developed methodology on PD, BPD, and gIQ later in the

project.

As expected, the GWAS of the to-date largest PD cohort did not reveal any genomic loci
associated with PD due to its small sample size. However, it did reveal interesting genetic
characteristics of the disorder. Furthermore, the LOO-PRS analysis significantly predicted cases
and control in all subcohorts, ranging from 0.8% to 2.6% variance explained, which strongly
supports the shared risk-variant consistency among these subcohorts. These results also confirm
that uniform diagnostic criteria were applied to recruit the PD patients and that shared risk

variants existed among the subcohorts. This phenotypic variance explained by common variants
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is comparable to other complex psychiatric traits with similar sample sizes, such as SCZ (Ripke
et al., 2013; Purcell et al., 2009). Additionally, we present the first estimate of SNP-based
heritability (28—34%) from this cohort of 2,248 cases and 7,992 controls using the LDSR and
SumHerr (LDAK) methods, which implied that common variants with small effect sizes

influence a large proportion of PD susceptibility.

Furthermore, this study identified a strong positive genetic correlation of PD with MDD,
depressive symptoms, and neuroticism, consistent with those frequently observed at clinics
(Dold et al., 2017). Moreover, these results also supported the previously published finding of
overlapping genetic risk factors between depression and anxiety (Demirkan et al., 2011). We
performed an additional analysis of PD with/without MDD on 11,153 individuals (with the
presence and absence of a lifetime history of MDD available) to assess the potential influence of
MDD comorbidity on the reported genetic correlations. Noteworthily, this additional analysis
revealed a significant positive correlation between MDD and PD without MDD. Quantitatively,
the correlation between MDD and PD with MDD exhibited a stronger but statistically
nonsignificant effect. These results suggested that MDD and PD’s reported correlation is mostly

independent of comorbidity, but they might have inflated the current estimate to a small extent.

Notably, the strongest correlation was found between PD and neuroticism, a trait that is highly
correlated with many internalizing mental disorders. This is consistent with previous clinical
findings of a possible relationship between PD and neuroticism (VShma et al., 2010). This study
also found nominally significant positive correlations of PD with anxiety disorder, PTSD, PGC
cross-disorder, and SCZ as well as a negative correlation with years of schooling. These are

expected to be replicated in larger cohorts in the future.

Moreover, the gene-based, gene set, and tissue expression analyses from MAGMA revealed no
significant results after correcting multiple tests. However, the results implied that the genes
tagged by variants in our present cohorts are enriched for expression in various brain-related
tissues. Specifically, the strongest enrichment was observed for the brain cortex’s genes,

followed by the amygdala. These results support that PD’s biological origin lies in the brain and
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confirm the previously reported roles of the brain cortex and amygdala in the neural networks of

anxiety and fear (Dresler et al., 2013; Pfleiderer et al., 2007; Kim et al., 2011).

While this study has provided insights into PD’s etiology, it also had some limitations. First, the
sample size could not point to specific variants significantly associated with PD. However, the
positive sign test and polygenic results anticipated that PD’s genetic association will become
robust as the sample size grows in future studies. Second, this study cannot be generalized to a
population other than that of European ancestry, but this limitation is addressed with various

worldwide efforts in diverse GWAS ancestry studies.

In two related side projects, we were able to uncover valuable insights. Our BPD project
revealed significant genetic overlaps with various psychiatric traits, such as BP (rg = 0.28) and
SCZ (rg = 0.34) or MDD (rg = 0.57). BP’s genetic correlation was the weakest, even though
some diagnostic criteria for BPD overlap. The overlap between BP, SCZ, and MDD is consistent

with previous genetic overlap observations of other psychiatric disorders (Lee et al., 2013).

In the last part of our project, we were able to replicate significant associations with glQ with
PRSs derived from childhood intelligence (Benyamin et al., 2014) and human intelligence
(Sniekers et al., 2017) GWASs. These associations are consistent with studies that have reported
a substantial heritable background of intellect in individuals along with environmental effects

(Davies et al., 2016; Flynn 1987).
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7) Conclusion

GWAS results could be misleading, even due to slight biases. In the future, only good-quality
outcomes can ensure reliable clinical impacts of GWAS results. Our Ricpoili pipeline and best
practice tutorial can address many of these biases as well as assist with the production of reliable
results. This work will encourage and educate more researchers to perform clean and robust
genome-wide studies. The developed methodology is expandable over a broad range of

polygenic traits and will improve the overall quality of GWAS:s.

In this PhD project, the method was effectively employed to assess the genetic factors that
influence PD, BPD, and glQ. These three GWAS analyses lacked a well-powered sample size
for single variant discoveries. However, we were first to report SNP-based heritability for PD
and estimate a significant genetic correlation with depression and neuroticism. The BPD cohort
analysis revealed a significant genetic overlap with BP, SCZ, and MDD. Furthermore, the
findings from the PD and BPD analyses suggested that both traits are not discrete but rather have
an etiological overlap with other personality and psychiatric disorders. Examinations of shared
and nonshared clinical and genetic characteristics are critical for developing new and
personalized treatments for PD, BPD, and other complex disorders. The final part of this thesis

confirmed the polygenic characteristics of general intelligence in the IMAGEN cohort.

A deeper understanding of the intricacies of genomics and its role in complex traits and disorders
unlocks new doors to understanding the human condition. Such studies not only enhance
knowledge in this field but also transform the treatment of psychiatric disorders into a patient-
specific, precision medicine approach. It is in these scientific findings that we find the power to

improve lives and offer hope for a brighter future.
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BP, the primary outcome of this study (mentioned under Results section “LD-score regression”). Further,
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critically reviewed the manuscript.

I created figures 1 and 2 based on my independent analysis. Figure 3 was generated by the data produced
by my analysis. All the supplementary figures (1 to 8) are created by me and depict the data produced
from my analysis. The supplementary tables 2 and 4 present the data I produced through my independent

analysis.

90



Publication 4: Kaminski, J. A., Schlagenhauf, F., Rapp, M., Awasthi, S., Ruggeri, B., Deserno, L.,
Banaschewski, T., Bokde, A. L. W., Bromberg, U., Biichel, C., Quinlan, E. B., Desriviéres, S., Flor, H.,
Frouin, V., Garavan, H., Gowland, P., Ittermann, B., Martinot, J. L., Martinot, M. P., Nees, F., Orfanos,
D. P., Paus, T., Poustka, L., Smolka, M. N., Frohner, J. H., Walter H., Whelan, R., Ripke, S., Schumann,
G., Heinz, A.; IMAGEN consortium. Epigenetic variance in dopamine D2 receptor: a marker of IQ

malleability? Translational Psychiatry. 2018.

Contribution (please set out in detail):

I conducted quality control and imputation of the genotypic data of the 1475 European subjects from the
IMAGEN project (described section “Genetics”). 1 calculated polygenic scores with two formerly
published studies, childhood intelligence GWAS (Benyamin et al., 2014) and human intelligence GWAS
(Sniekers et al., 2017), for each individual in the cohort (presented in figure. 2). 1 also performed the
whole genome epigenetic (methylation sites) association of the general 1Q, which helped prioritize the
methylation sites to test their association with general 1Q (mentioned in section “Epigenetics” and Table

3 of the supplementary text). | critically reviewed the manuscript and provided plots based on his analysis.

Figures 1 and 2 of the manuscript and supplementary figures 3, 5 and table 2,3 of the supplementary

were created by the data generated by my own independent analysis.

Signature, date, and stamp of first supervising university professor / lecturer

Signature of doctoral candidate

91



11) Publication documents (Publikationschrift)

11.1 Publication 1: (Lam and Awasthi et al., 2020)

Publication
RICOPILI: Rapid Imputation for Consortias Pipeline
Jornal
BIOINFORMATICS

Date of Submission 18/04/2019

Rank/ Total 6/78

Total Cites 95,300

Impact factor
5.481

Eigenfactor Score 0.201110

92




93

Journal Data Filtered By: Selected JCR Year: 2017 Selected Editions: SCIE,SSCI
Selected Categories: “BIOCHEMICAL RESEARCH METHODS” Selected
Category Scheme: WoS
Gesamtanzahl: 78 Journale

Journal Impact

Rank Full Journal Title Total Cites Factor Eigenfactor Score

1 NATURE METHODS 54,686 26.919 0.243170

2 Nature Protocols 36,821 12.423 0.086550
CURRENT OPINION IN

3 BIOTECHNOLOGY 14,009 8.380 0.024860
BRIEFINGS IN

4 BIOINFORMATICS 4,731 6.302 0.015010

5 LAB ON A CHIP 29,513 5.995 0.051340

6 BIOINFORMATICS 95,300 5.481 0.201110

7 ACS Synthetic Biology 3,112 5.316 0.014110
Journal of Biological

8 Engineering 756 5.256 0.001600
MOLECULAR & CELLULAR

9 PROTEOMICS 17,761 5.232 0.046930

10| BIOCONJUGATE CHEMISTRY 15,194 4.485 0.021530

11 Plant Methods| 2,026 4.269 0.004470

12 METHODS 19,646 3.998| 0.024790

13| PLoS Computational Biology 23,758 3.955 0.082790
JOURNAL OF PROTEOME

14 RESEARCH 21,459 3.950 0.041220

15 Journal of Biophotonics| 2,723 3.768 0.006190

16 New Biotechnology 2,343 3.733 0.004740

17 Journal of Proteomics| 9,432 3.722 0.025360
JOURNAL OF

18 CHROMATOGRAPHY A 61,361 3.716 0.050920
BIOLOGICAL PROCEDURES]

19 ONLINE 679 3.581 0.000770
Proteomics Clinical

20 Applications 1,972 3.567 0.004640

21 PROTEOMICS 14,902 3.532 0.023220

22 Clinical Proteomics| 661 3.516| 0.002120

23 Biotechnology Journal 4,515 3.507 0.008950

24| Expert Review of Proteomics 1,702 3.489 0.003440

25| Journal of Breath Research 1,606 3.489 0.003060

26| Biomedical Optics Express 8,120 3.482 0.022750
ANALYTICAL AND

27| BIOANALYTICAL CHEMISTRY/ 28,970 3.307 0.042400

28 CYTOMETRY PART A 4,152 3.260| 0.007940
Acta Crystallographica

29| Section D-Structural Biology 20,390 3.099 0.028000

30, Drug Testing and Analysis 2,606 2.993 0.005100
JOURNAL OF NEUROSCIENCE

31 METHODS| 15,861 2.668 0.017520

32 JALA 989 2.632 0.002390

1

Selected JCR Year: 2017; Selected Categories: “BIOCHEMICAL RESEARCH METHODS”




94

Bioinformatics, 36(3), 2020, 930-933
doi: 10.1093/bioinformatics/btz633

Advance Access Publication Date: 8 August 2019
Applications Note OXFORD

Genome analysis

RICOPILI: Rapid Imputation for COnsortias PlpeLlne

Max Lam © %345 Swapnil Awasthi,"®', Hunna J. Watson’-®®, Jackie Goldstein'?,
Georgia Panagiotaropoulou'®, Vassily Trubetskoy', Robert Karlsson @ '°,
Oleksander Frei'!, Chun-Chieh Fan'", Ward De Witte'?, Nina R. Mota @ 23,

Niamh Mullins®, Kim Briigger'®, S. Hong Lee'®, Naomi R. Wray'’-'8, Nora Skarabis®,
Hailiang Huang'?, Benjamin Neale'?, Mark J. Daly'?, Manuel Mattheisen'92%%",
Raymond Walters'? and Stephan Ripke'2%*

'Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, ?Analytic and Translational
Genetics Unit, Massachusetts General Hospital, Cambridge, MA 02114, USA, 3Division of Psychiatry Research, The Zucker Hillside
Hospital, Northwell Health, Glen Oaks, NY 11004, USA, “Research Division, Institute of Mental Health Singapore, Singapore 539747,
Singapore, Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore, ®Department of Psychiatry and
Psychotherapy, Charité - Universitatsmedizin, 10117 Berlin, Germany, ’Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, ®Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, WA 6009,
Australia, *School of Psychology, Curtin University, Perth, WA 6102, Australia, '°Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, 171 77 Stockholm, Sweden, "'NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical
Medicine, University of Oslo, Ulleval Hospital, N-0424 Oslo, Norway, '?Department of Human Genetics, Donders Institute for Brain,
Cognition and Behaviour, '*Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University
Medical Center, 6525 GA Nijmegen, The Netherlands, '*Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and
Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, 15Depanment of Informatics, University of
Bergen, 5020 Bergen, Norway, '®Australian Centre for Precision Health, University of South Australia Cancer Research Institute,
University of South Australia, Adelaide, South Australia 5000, Australia, "Institute for Molecular Bioscience, The University of
Queensland, ®Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, '*Department of Psychiatry,
Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Wiirzburg, Wiirzburg, Germany, 2°Department of
Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden and 21Department of Biomedicine,
Aarhus University, Aarhus, Denmark

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the first two authors contributed equally.
Associate Editor: Russell Schwartz

Received on April 18, 2019; revised on July 31, 2019; editorial decision on August 2, 2019; accepted on August 7, 2019

Abstract

Summary: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successful-
ly revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was devel-
oped to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality con-
trol (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide
range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics
Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in
case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis,
(vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines,
RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of
imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated dem-
onstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data inter-
pretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user train-
ing tutorials and developer work.
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Availability and implementation: RICOPILI has a flexible architecture to allow for ongoing development and incorpor-
ation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others).
Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The cen-
tral location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home

Contact: sripke@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) have enabled the discov-
ery of genetic variants underlying a plethora of complex traits
(https://www.ebi.ac.uk/gwas/diagram). GWASs have highlighted
previously unknown biological mechanisms associated with com-
plex diseases and traits (Breen et al., 2016). The Psychiatric
Genomics Consortium (PGC) (http:/www.med.unc.edu/pgc) the
largest umbrella organization for psychiatric genetics (Sullivan
et al., 2018)—have made possible to advance the objectives of (i) re-
vealing biological insights of psychiatric illness, (ii) informing clinic-
al practice and (iii) presenting new therapeutic targets through sheer
number of cohorts for GWASs across various psychiatric traits
(Breen et al., 2016; Sullivan et al., 2012). The exponential availabil-
ity of cohorts requires efficient, consistent and standardized
approaches for various aspects of GWAS data management and ana-
lysis. Here, we introduce RICOPILI, the pipeline that automates
rapid GWAS analysis workflow across various PGC workgroups.
The pipeline is state-of-art, constantly incorporating latest available
GWAS computational techniques and methods. With open-sourced
simulated GWAS datasets and training tutorials packaged with the
pipeline, RICOPILI is ideal for those contributing to large-scale gen-
etic studies.

1.1 Comparison with other GWAS quality control and
imputation pipelines

To our understanding, RICOPILI is the only open-sourced GWAS
pipeline allowing secure data management, efficient data processing
and downstream analysis scalable on both desktop and cluster envir-
onment. First, RICOPILI features an integrated quality control
(QC), imputation and association analysis within its framework.
Second, RICOPILI allows more than one imputation approach and
reference panel to be utilized within its framework. Furthermore,
computer intensive imputation can be processed locally within a
closed cluster system. Third, the RICOPILI framework allows scal-
able processing of GWAS data, from a single CPU, to a cluster set
up, or even within the cloud-based systems.

We compare RIOCPILI to existing available GWAS processing
pipelines in Supplementary Table S1. All other tools focus on specif-
ic stages of GWAS analysis and do not provide the comprehensive
features of RICOPILL In the ensuing sections we will further high-
light and discuss the features and functions of RICOPILIL.

2 Design and implementation

2.1 Pipeline description

RICOPILI automates and integrates standard GWAS analysis meth-
ods, allowing for automated cluster submission and parallelization.
The pipeline unifies standard software for its functions and imple-
ments best data analysis practices, provides sensible default settings
while permitting the user to flexibly customize filters, thresholds
and job resources as required. The optimization of cluster resources
allows computations and visualizations to be completed quickly
without significant user intervention. Written predominantly in Perl
and R, the pipeline is organized according to analysis modules. Each
module runs in its entirety via a single command line. The main
module functions include:

¢ Pre-imputation technical QC;
* Principal components analysis (PCA) and relatedness estimation;

* Genome-wide imputation of genotype probabilities and generation
of best guess genotypes in PLINK format (Purcell et al., 2007);

* Downstream analyses, including GWAS, meta-analysis and poly-
genic risk scoring;

* Harmonizing large imputation reference panels (such as 1000
Genomes and the Haplotype Reference Consortium) to fit the
architecture of RICOPILI.

RICOPILI takes dataset with unfiltered genotype calls, through
trait association analysis, multi-cohort meta-analysis, linkage dis-
equilibrium (LD) score regression (Bulik-Sullivan et al., 2015), con-
ditional analysis, replication analysis and polygenic risk scoring
(Supplementary Fig. S1). Little intermediate interaction is required,
allowing for efficient standardized analysis of genome-wide data
and results. Standardized file naming conventions are designed to
optimize overview and analysis record tracking within large-scale
genetic projects. Publication-ready data visualizations and reports
(in PDF and Excel format) permits easy evaluation of the results.
Simulated datasets are also available with the pipeline for training
and development purposes. In the ensuing sections, we describe the
main components of the pipeline.

2.2 Pre-imputation/QC
The pre-imputation/QC module (Supplementary Section S1) consists
of the following general steps (Supplementary Fig. S2):

¢ Inferring the genotyping chip;

¢ Standardizing file names and sample identifiers, incorporating
chip information and ensuring that sample IDs across distinct
cohorts are unique while keeping original sample IDs intact;

* Carrying out technical sample and variant QC procedures:
RICOPILI will assign red, yellow and green flags to various QC
parameters to help with the decision if a cohort needs further work
before going into the following modules (Supplementary Fig. S1.1).

Detailed sample and variant filtering reports provide diagnostics
to identify possible QC issues and solutions. Quality controlled
datasets are saved separately for downstream analysis.

2.3 Principal components analysis
The PCA module (Supplementary Section S2) fulfils two objectives
(Supplementary Fig. $3):

¢ Identify and remove duplicated or related samples for case-
control and trio cohorts;

¢ Assess ancestral outliers and population stratification with
EIGENSTRAT (Price et al., 2006);

¢ Principal component scores are computed and could be utilized
for visualization or as covariates to adjust for population struc-
ture in downstream post-imputation GWAS.

2.4 Imputation

RICOPILI automates computationally costly genotype imputation
with an optimized routine for high-performance computing (HPC)
environments (Supplementary Section $3 and Fig. $4). This module
aligns genotype data to the imputation reference, pre-phases haplo-
types and executes imputation. Users have the option to:
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¢ Impute genotypes to the 1000 Genomes (1000 Genomes Project
Consortium et al., 2015) or Haplotype Reference Consortium
panel (McCarthy et al., 2016);

¢ Perform pre-phasing with Eagle (Loh et al., 2016) or SHAPEIT
(Delaneau et al., 2011);

¢ Perform imputation with IMPUTE (Bycroft et al., 2018; Howie
et al., 2009) or Minimac (Das et al., 2016; Howie et al., 2012).

RICOPILI allows for automated data preparation, alignment
and sharing with public imputation servers (https://docs.google.
com/document/d/18dupvU4kw11sIREc1TUfwQwhO_elOn_MeKVp
wi4HLNA/) [e.g. Michigan (https://imputationserver.sph.umich.
edu/index.html#!pages/home), Sanger (https://imputation.sanger.ac.
uk/)], and reintegration of the results back into the RICIOPILI data
structure. This is especially beneficial if an HPC environment is not
accessible, and imputation by third party services has been approved
by the user’s local Institutional Review Board (IRB). More import-
antly with larger reference panels, such as the HRC and TopMed
imputation panels becoming available but not directly accessible,
RICOPILI allows such resources to be utilized.

The imputation output files are a set of genotype probabilities
for all markers and ‘best-guess’ genotype hardcall files filtered on
imputation quality and minor allele frequency. Hard call genotypes
are available in three levels (hardcall with genotype probability
>0.8, otherwise missing): (i) no further filter, (i) lightly filtered
(missingness <0.02) and (iii) filtered with strict criteria (missingness
<0.01; MAF >5%).

RICOPILI allows the creation of case-pseudo-controls to handle
imputation and association procedures for trios.

2.5 Post-imputation

The post-imputation module (Supplementary Section $4 and Fig.
S$5) performs association analysis using imputed dosage files, meta-
analysis via METAL (Willer et al., 2010), conditional analysis, poly-
genic risk scoring, LD score regression (Bulik-Sullivan et al., 2015)
and replication analysis. Covariates (e.g. age, sex, principal compo-
nents from PCA) and alternative phenotypes, including quantitative
traits may be incorporated within the post-imputation module.
Automated ‘clumping’ of genome-wide significant single nucleotide
polymorphisms to facilitate identification of independently associ-
ated genetic loci. Publication-ready reports and visualizations such
as Manhattan plots, QQ-plots, forest plots, annotated region plots
and polygenic risk distributions are generated by the module as well.
It is notable that genome-wide summary statistics as well as input
statistics for various Manhattan and QQ-plots, as well as clumped
summary statistics are automatically made available in the distribu-
tion/folder as part of the pipeline. These could then be utilized for
downstream and follow-on analysis (https:/docs.google.com/docu
ment/d/1jiD25BYjPAO-TLRAPKkYSspiovn8wiQ29ZmZv9Pe212U/)
(e.g. GCTA; Yang et al., 2011, Spredixcan; Barbeira et al., 2018 and
FUSION; Gusev et al., 2016) for the GWAS results.

2.6 Additional utility modules

RICOPILI allows for additional features and modules (see
Supplementary Information). Including, (i) reference builder: builds
reference data for genotype imputation from publicly accessible ref-
erence panels (Supplementary Fig. $6), (ii) replication of GWAS:
using external summary data or those generated by RICOPILI and
(iii) polygenic leave-one-out analysis: where each input dataset is
used as a hold out and polygenic risk prediction is done iteratively
across hold out data. All helper scripts and modules are saved in a
centralized location specified by the user within a folder called
rp_bin/and logging files with *_info suffix are also available.

2.7 Availability of simulated GWAS data

To allow new users to familiarize themselves with RICOPILI and
experienced users to develop new functionality for the pipeline, we
simulated freely available GWAS data using HAPGEN (Su et al.,
2011) (Supplementary Section S6). The dataset comprises 6200

‘individuals’ across ~600 000 markers based on the Illumina
OmniExpress, a widely used genotyping platform. For training and
development purposes, population stratification, cross-sample re-
latedness and technical errors were introduced to the simulated
data. The sample is separated into five datasets ‘HapGen5’ packaged
with RICOPILI (https://docs.google.com/document/d/1ux_Fbwnv
SzaiBVEwgS7eWJoYInc_oOYHFb07SPQsYjl/). Data description
and results are described in further detail in Extended Data Analysis
and User Guide.

2.8 Cluster portability

RICOPILI is portable (https:/docs.google.com/document/d/14aa-
0eTShF54118hHsDAL_420yvIHRCSFWR7gird4xco/) to  various
LINUX-based HPC environments {e.g. BSUB (https://docs.google.
com/document/d/1fNFnC3-rBZkmtH47Je_yUfGatB9ghDGi9HtMSA3_
MPw/), QSUB (https:/docs.google.com/document/d/10Y51A4a6yG_
pmbvWJC8A6MTzYoGzVIgQ_aXUwWCI8L/), SLURM, GCP [Google
Cloud Platform (https://docs.google.com/document/d/115NAaH6¢8_
C6Gn7DS]TIdfWOCMGwWUOMhxqd1Sthku-E/)]}  (Supplementary
Section S7). Support for Docker (https://hub.docker.com/r/bruggerk/
ricopili; https:/github.com/vtrubets/ricopili_docker) implementation
of RICOPILI is also underway. In the absence of an HPC environ-
ment, RICOPILI can use the full potential of multi-core machines
with parallel optimization. Regular updates and maintenance of the
pipeline are carried out to incorporate the latest advances in genetic
association methods. Ongoing support includes an active user forum
(https://groups.google.com/forum/#!forum/ricopili-user-group), sup-
port website (https://sites.google.com/a/broadinstitute.org/ricopili/
home) and detailed tutorials written by current RICOPILI analysts
(consult footnotes).

2.9 RICOPILI web app

RICOPILI is now usable via browser on a cluster backed by Google
Cloud: http://34.74.48.153. Here the user does not need any UNIX
knowledge. Naturally the user needs to make sure that IRB allows
for uploading genotype data to third party computer environments.

3 Discussion

RICOPILI has supported the analytical capability of the PGC,
encompassing over 800 investigators internationally. The consor-
tium is a testament to collaborative science that has unified much of
the field and collated data collections, and enabled rapid progress in
uncovering the genetic and biological basis of psychiatric disorders.
RICOPILI addresses the need for a rapid computational pipeline for
GWAS that integrates leading bioinformatics resources and produ-
ces publication-ready outputs. The PGC has reported GWAS studies
in high-impact publications, most of which featured RICOPILI as
the main analysis pipeline—including the seminal report identifying
108 GWAS loci for schizophrenia (Ripke et al., 2014). The pipeline
has been adapted across various consortia, with 112 analysts per-
forming rapid computation for GWAS to date. For this reason, we
introduce RICOPILI to an audience of principal investigators, aca-
demics, analysts and all personnel tasked with determining the com-
mon variation underlying complex, heritable diseases and traits.
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Genome-wide association study of borderline personality
disorder reveals genetic overlap with bipolar disorder, major
depression and schizophrenia
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Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability
and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show
comorbidity with BOR. This report describes the first case—control genome-wide association study (GWAS) of BOR, performed in one
of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and
(ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and
schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD.
GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium
score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed

no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD
(P=4.42x10"7) and PKP4 (P=8.67x 10~ 7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887,
P:pr=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable
finding of the present study was the genetic overlap of BOR with BIP (ry=0.28 [P=2.99x 10~ 3), scz (rg=0.34[P=437x10" %]) and
MDD (ry=0.57 [P=1.04x 107 3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the
genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.

Translational Psychiatry (2017) 7, e1155; doi:10.1038/tp.2017.115; published online 20 June 2017

INTRODUCTION lifetime prevalence of around 3%." Untreated cases often have a
Borderline personality disorder (BOR; for the sake of readability, chronic and severely debilitating clinical course.' BOR affects up to
we have decided to use the rather unconventional abbreviation 20% of all psychiatric inpatients, and is associated with high
‘BOR’ for Borderline Personality Disorder and the abbreviation ‘BIP’ health-care utilization. BOR therefore represents a substantial
for Bipolar Disorder) is a complex neuropsychiatric disorder with a socio-economic burden.??
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BOR is characterized by affective instability, emotional dysre-
gulation and poor interpersonal functioning.® Suicide rates in BOR
range between 6 and 8%, and up to 90% of patients engage in
non-suicidal self-injurious behavior.* Other prototypical features
include high-risk behaviors and impulsive aggression. Current
theories view dysfunctions in emotion processing, social interac-
tion and impulsivity as core psychological mechanisms of BOR.>

To date, genetic research into BOR has been limited. Available
genetic studies have involved small samples and focused on
candidate genes, while no genome-wide association study (GWAS)
of BOR patients has yet been performed.® However, Lubke et al.”
conducted a GWAS of borderline personality features using data
from three cohorts comprising n=5802, n=1332 and n=1301
participants, respectively. Using the borderline subscale of the
Personality Assessment Inventory (PAI-BOR), four borderline
personality features (affect instability, identity problems, negative
relations and self-harm) were assessed. The most promising signal
in the combined analysis of two samples was for seven SNPs in the
gene SERINC5, which encodes a protein involved in myelination.
Two of the SNPs could be replicated in the third sample.
Interestingly, here, the effect was highest for the affect instability
items, that is, features that are key characteristics of manic phases
of bipolar disorder (BIP).

Understanding of the pathogenesis of BOR remains limited.
Both environmental and genetic factors are known to have a role
in BOR etiology. Familial aggregation has been demonstrated,®®
and heritability estimates from twin studies range from 35 to 65%,
with hig_her heritability estimates being obtained with self-
ratings.'®"2

The potential comorbidity between BOR and BIP is part of an
ongoing debate. For example, Fornaro et al." report substantial
comorbidity of ~20% with BIP, whereas Tsanas et al.'* find clear
symptomatic differences between these two diagnostic groups.
BOR displays an overlap of some symptoms with BIP, such as
affective instability. In contrast, features such as dissociative
symptoms, a feeling of chronic emptiness and identity distur-
bances are specific to BOR."® To date, no twin or family study has
generated conclusive results concerning a genetic overlap
between the two disorders.'®'” However, a twin study'® and a
large-population-based study using polygenic risk score
analyses'? indicate a genetic overlap between borderline person-
ality features and neuroticism, an established risk factor for BIP
and other psychiatric disorders.2

To the best of our knowledge, the present study represents the
first case—control GWAS in BOR, and was performed in one of the
largest BOR patient samples worldwide. Given the limited
heritability and the expected complex genetic architecture of
BOR, the sample is too small to generate significant results for
single markers. Instead, the main aim of the investigation was to
detect (i) genes and gene sets with a potential involvement in BOR;
and (i) potential genetic overlap with BIP. As a substantial overlap
of common risk variants exists between BIP and schizophrenia
(SCZ), and to a lesser extent between BIP and major depressive
disorder (MDD), and as there is also a high comorbidity of BOR and
MDD, a further aim of the study was to determine whether any
observed genetic overlap between BOR and BIP, MDD and SCZ was
driven by disorder-specific genetic factors using linkage disequili-
brium (LD)-score regression and polygenic risk scores (PRS).

MATERIALS AND METHODS
Participants
The present sample comprised 1075 BOR patients and 1675 controls.?" All
the participants provided written informed consent before inclusion. The
study was approved by the respective local ethics committees.

The patients were recruited at the following German academic
institutions: Department of Psychosomatic Medicine, Central Institute of
Mental Health, Mannheim (n=350); Department of Psychiatry and

Translational Psychiatry (2017), 1-9

Psychotherapy, University Medical Center Mainz (n=231); and the
Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin
(n=494). Inclusion criteria for patients were: age 16 to 65 years; Central
European ancestry; and a lifetime DSM-IV diagnosis of BOR. The control
sample comprised 1583 unscreened blood donors from Mannheim, and 92
subjects recruited by the University Medical Center Mainz.

Clinical assessment

The diagnoses of BOR were assigned according to DSM-IV criteria and on
the basis of structured clinical interviews. The diagnostic criteria for BOR
were assessed using the German version of the IPDE?? or the SKID-IL?* All
the diagnostic interviews were conducted by trained and experienced
raters. BOR patients with a comorbid diagnosis of BIP or SCZ assessed with
SKID-I** were excluded.

Genotyping

Automated genomic DNA extraction was performed using the chemagic
Magnetic Separation Module | (Chemagen Biopolymer-Technologie,
Baesweiler, Germany). Genotyping was performed using the Infinium
PsychArray-24 Bead Chip (lllumina, San Diego, CA, USA).

Quality control and imputation
A detailed description of the quality control and imputation procedures is
provided elsewhere.?*

Briefly, quality control parameters for the exclusion of subjects and
single-nucleotide polymorphisms (SNPs) were: subject missingness > 0.02;
autosomal heterozygosity deviation (|Fhet|>0.2); SNP missingness > 0.02;
difference in SNP missingness between cases and controls >0.02; and SNP
Hardy-Weinberg equilibrium (P <10 in controls; P< 10~ '° in cases).

Genotype imputation was performed using the pre-phasing/imputation
stepwise approach in IMPUTE2/SHAPEIT (default parameters and a chunk
size of 3 Mb),>?° using the 1000 Genomes Project reference panel (release
‘v3.macGT1').2’

Relatedness testing and population structure analysis were performed
using a SNP subset that fulfilled strict quality criteria (INFO >0.8,
missingness < 1%, minor allele frequency >0.05), and which had been
subjected to LD pruning (> 0.02). This subset comprised 63 854 SNPs. In
cryptically related subjects, one member of each pair (Bhat>0.2) was
removed at random following the preferential retention of cases over
controls. Principal components (PCs) were estimated from genotype data
(see Supplementary Figures 1-6), and phenotype association was tested
using logistic regression. The impact of the PCs on genome-wide test
statistics was assessed using A.

Association analysis

Including the first four PCs as covariates, an additive logistic regression
model was used to test single marker associations, as implemented in
PLINK.2® The P-value threshold for genome-wide significance was set at
5x107%,

Gene-based analysis

To determine whether genes harbored an excess of variants with small P-
values, a gene-based test was performed with MAGMA Version 1.04 (http://
ctg.cner.nl/software/magma)® using genotyped markers only, filtered with
a minor allele frequency > 1% (n =284 220). This test uses summary data
and takes LD between variants into account. SNPs within +10 kb of the
gene boundary were assigned to each gene. Obtained P-values were
Bonferroni-corrected for the number of tested genes (n=17 755,
P=28x10"°).

Gene-set analysis

Gene-set-based analysis was implemented using genotyped markers only,
filtered as above. As in the gene-based analysis, SNPs within + 10 kb of the
gene boundary were assigned to each gene. Gene-set analyses were
carried out using Gene Ontology (GO, http://software.broadinstitute.org/
gsea/msigdb/) terms.

The discovery gene-set-based analysis was carried out using i-GSEA4G-
WASV2 (http://gseadgwas-v2.psych.ac.cn/).?® The size of the gene sets was
restricted to 20-200 genes, and the major histocompatibility complex
region was excluded. In total, 674 gene sets were tested. The results were
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adjusted for multiple testing using false discovery rate (FDR). To validate
the significant finding, the respective gene set was investigated with (i)
GSA-SNP, using the P-value of the second-best SNP in each gene (https://
gsa.muldas.org)®’ and (i) MAGMA using summary data and a nominal P-
value threshold of P < 0.05.

LD-score regression

To investigate a possible genetic overlap between BOR and SCZ, BIP and
MDD, LD-score regression was performed.>? Genetic correlations between
BOR and (i) BIP, (ii) SCZ and (iii) MDD were calculated** using the result files
of the Psychiatric Genomics Consortium (PGC) meta-analyses for SCZ
(33640 cases and 43456 controls)®® BIP (20352 cases and 31358
controls)35 and MDD (16 823 cases and 25 632 con(rols).35 There was no
overlap in cases or controls of the present BOR GWAS sample with the PGC
samples.

Polygenic risk score

To determine the impact of polygenic risk on BOR and subgroups (that is,
BOR with and without MDD), PRS were calculated for each subject based
on the above-mentioned PGC data sets.

To obtain a highly informative SNP set with minimal statistical noise, the
following were excluded: low frequency SNPs (minor allele
frequency < 0.1); low-quality variants (imputation INFO < 0.9) and indels.
Subsequently, these SNPs were clumped discarding markers within 500 kb
of, and in high LD (7> 0.1) with, another more significant marker. From the
major histocompatibility complex region, only one variant with the
strongest significance was retained. PRS were calculated as described
elsewhere.*® This involved P-value thresholds 5x 1078 1x107¢,1x 1074,
0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0, and multiplication of the natural
logarithm of the odds ratio of each variant by the imputation probability
for the risk allele. The resulting values were then totaled. For each subject,
this resulted in one PRS for SCZ, MDD and BIP for each P-value threshold.

In a first step, the association of the PRS for BIP, SCZ and MDD with BOR
case—control status was analyzed using standard logistic regression and by
including the four PCs as covariates. For each P-value threshold, the
proportion of variance explained (Nagelkerke's R? in BOR case—control
status was computed by comparison of a full model (covariates+PRS) score
to a reduced model (covariates only).

For further exploratory analysis, the P < 0.05 PRS for each disorder was
selected (that is, including all markers that reached nominal significance in
the training samples). To determine whether the different scores
contribute independently to the case—control status, a regression including
the PRS for MDD, SCZ and BIP and the four PCs was computed. In a
secondary analysis, two further models were computed. These included
the PRS for BIP and the PRS of either MDD or SCZ, while controlling for the
four PCs.

Furthermore, PRS were analyzed by differentiating between controls,
and patients with or without comorbid MDD. For each PRS, a linear model
was computed using the PRS as a dependent variable, disease state as an
independent variable and the four PCs as covariates. Differences between
groups were assessed using post hoc tests (Bonferroni-corrected).

RESULTS

Sample characteristics

Genetic quality control led to the exclusion of 207 subjects.
Reasons for exclusion were: (i) insufficient data quality (low call
rate), n=6; (ii) relatedness, n=63; and (iii) population outlier
status, n=138. After quality control, the sample comprised 998
BOR cases (914 female/84 male) and 1545 controls (868 female/
677 male). Mean age for cases was 29.58 years (range: 18-65 years,
standard deviation (s.d. =8.64)). Mean age for controls was 44.19
years (range: 18-72 years, s.d.=13.24; details see Supplementary
Table 1). Of the 998 cases, 666 had comorbid lifetime MDD, and
262 did not (data missing for 40 cases).

Single marker analysis

A total of 10 736 316 single markers were included in the analysis.
As expected for GWAS on a complex psychiatric disorder with the
current sample size, the single marker analysis revealed no
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Figure 1. Quantile-Quantile plot. Quantile-Quantile plot of the

case-control analysis (998 cases; 1545 controls) showing expected
and observed -log10 P-values. The shaded region indicates the 95%
confidence interval of expected P-values under the null hypothesis.

significant hit after correction for multiple testing (see Figures 1
and 2). The most significant marker was rs113507694 in DPPA3 on
chromosome 12 (P=2.01x10"%; odds ratio =0.35, minor allele
frequency =0.03, INFO =0.59). Single markers with P < 1x10~°
are listed in Supplementary Table 2.

Gene-based analysis

In the gene-based analysis, a total of 17 755 genes were tested.
Two genes showed significant association with BOR after
correction for multiple testing: the gene coding for Plakophilin-4
on chromosome 2 (PKP4; P=8.24x 10~ 7); and the gene coding for
dihydropyrimidine dehydrogenase on chromosome 1 (DPYD,
P=120x10"°). The most significant genes (P<5x10™% are
listed in Table 1. The top hit of the previous GWAS of borderline
personality features, SERINCS, achieved nominal significance in the
present study (Pyncorrected =0.016).

Gene-set analysis

Gene-set analysis with i-GSEA4GWASv2 revealed one significant
gene set: exocytosis (GO: 0006887; Prpr=0.019). Of 25 genes in
this gene set, 22 were mapped with variants and 15 showed
nominally significant associations. Details on significant and
nonsignificant genes in this gene set are provided in
Supplementary Table 3. All gene sets with Pyncorected < 0.01 are
shown in Table 2. A technical replication analysis with GSA-SNP
and MAGMA confirmed the gene-set exocytosis (GSA-SNP:
Puncorrected = 2.32 X 10 ™% MAGMA: Pyncorrected = 0.056).

LD-score regression

Significant genetic correlations with BOR were found for BIP
(rg=0.28; 5..=0.094; P=2.99x1073), MDD (ry=0.57; s.e.=0.18;
P=1.04x10"%) and SCZ (ry=0.34; s.e.=0.082; P=437x10"°). A
meta-analytic comparison revealed no significant differences
between the correlations (all P>0.13).

Polygenic risk score

PRS analysis revealed significant associations with BOR for the PRS
of BIP, MDD and SCZ. SCZ PRS were significant for all investigated
thresholds. BIP and MDD scores were significant for all PRS that

Translational Psychiatry (2017), 1-9
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Figure 2. Manhattan plot showing association results. Manhattan plot of the case-control analysis (998 cases; 1545 controls). For each single-
nucleotide polymorphism (SNP), the chromosomal position is shown on the x axis, and the -log10 P-value on the y axis. The red line indicates
genome-wide significance (P <5x 10” %) and the blue line indicates suggestive evidence for association (P < 1x107%).

Table 1. Results of the gene-based analysis using MAGMA
GENE CHR START STOP Nsnps Nparam Zsiar P
PKP4 2 159303476 159547941 21 13 47924 824x1077
DPYD 1 97533299 98396615 105 68 47162 1.20x10°°
GRAMD1B 1 123315191 123508478 34 28 3.8856 5.10x107°
STX8 17 9143788 9489275 38 33 3.7984 7.28x10°°
BMP2 20 6738745 6770910 7 6 3.588 1.67x10°*%
TRAF3IP1 2 239219185 239319541 1 8 3.5389 201x107*
ZP3 7 76016841 76081388 9 7 3.5037 229%107*
PINX1 8 10612473 10707394 19 1 3.5034 230x10°*
GTF3C4 9 135535728 135575471 4 4 3.4851 246x107%
DNAH1 3 52340335 52444513 1 8 3.4543 2.76x107*
YKT6 7 44230577 44263893 6 3 3.3841 3.57x107*
CCSER1 4 91038684 92533370 m 78 3.3804 3.62x107*
LRRC59 17 48448594 48484914 8 6 33716 3.74x10°*
TMEM71 8 133712191 133782914 9 8 3.3668 3.80x107*
BAP1 3 52425020 52454121 3 3 3.345 411x107*
AQR 15 35138552 35271995 8 6 3.3299 434x10°*
FGFR1 8 38258656 38336352 12 10 33162 456x10°*
Abbreviations: CHR, chromosome; Npagam, Number of parameters used in the model; Nsyps, number of single-nucleotide polymorphisms; P, P-value of gene;
Zsrar, 2-value of the gene. Most significant genes (P < 5x 10~ %) in the gene-based analysis and their chromosomal position. Genes in bold font were significant
after correction for multiple testing.

included SNPs with P-values higher than 0.0001 and 0.001,
respectively (see Supplementary Table 4). The share of
variance explained in BOR case—control status (Nagelkerke's R?)
by the respective PRS was up to 0.86% for BIP; up to 3.1%
for SCZ; and up to 2.1% for MDD (see Figure 3 and Supplementary
Table 4).

Simultaneous addition of the PRS for SCZ, BIP and MDD
(threshold P < 0.05) to the regression model explained 4.4% of the

Translational Psychiatry (2017), 1-9

variance (Nagelkerke’s R?) in BOR case—control status. The PRS for
SCZ and the PRS for MDD were significant predictors
(P=9.78x10"° and P=1.9x 1077, respectively). The PRS for BIP
was not a significant predictor in this model (P=0.28).

A secondary analysis was then performed including (i) BIP PRS
with MDD PRS and (ii) BIP PRS with SCZ PRS. Here, BIP PRS
explained variance independently of MDD PRS (P=0.0067), but
not of SCZ PRS (P=0.11).
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Differentiation between cases with and without comorbid MDD
and controls revealed significant effects of BOR diagnosis on PRS
for BIP, SCZ and MDD (all P<0.001, see Figure 4). Post hoc
analyses revealed no differences in PRS for the BIP, SCZ or MDD
PRS of the BOR subgroup with comorbid MDD compared with the
BOR subgroup without MDD (all P>0.5).

Compared with controls, PRS for SCZ and MDD were
significantly increased in the BOR subgroups with and without
comorbid MDD (all P < 0.001). The PRS for BIP only showed a
significant difference to controls in the BOR subgroup with
comorbid MDD (P < 0.001, see Figure 4).

DISCUSSION

The present study is the first case—control GWAS of BOR. As
expected, no genome-wide significant association was found for
any single marker. In the gene-based test, however, two genes
achieved genome-wide significance: dihydropyrimidine dehydro-
genase (DPYD) and Plakophilin-4 (PKP4). DPYD encodes a pyrimi-
dine catabolic enzyme, which is the initial and rate-limiting factor
in the pathway of uracil and thymidine catabolism. Genetic

Table 2. Results of the gene-set analysis

Gene-set name Number of P-value  FDR

genes P-value

GO: EXOCYTOSIS 25 0.001 0.019
GO: RESPONSE TO ORGANIC 30 0.002 0.173
SUBSTANCE

GO: BRAIN DEVELOPMENT 51 0.003  0.888
GO: HORMONE METABOLIC 30 0.003 0511
PROCESS

GO: PROTEIN C TERMINUS 73 0.003 0536
BINDING

GO: LYSOSOME 53 0.007  0.785
GO: LYTIC VACUOLE 53 0.007 0785
GO: MULTI-ORGANISM PROCESS 143 0.007  0.920
Abbreviations: FDR, false discovery rate; GO, Gene Ontology; P-value,
gene-set P-value. Most significant gene sets (uncorrected P < 0.01) in the
gene-set analysis with i-GSEA4GWASv2 are listed. Gene sets in bold font
were significant after correction for multiple testing.
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deficiency of this enzyme results in an error in pyrimidine
metabolism.3’ This is associated with thymine-uraciluria and an
increased risk of toxicity in cancer patients receiving 5-fluorouracil
chemotherapy (http://www.ncbi.nlm.nih.gov/gene/1806). Recent
PGC meta-analyses revealed an association between DPYD and
SCZ and BIP.>***3 DPYD contains a binding site for the micro-RNA
miR-137, which has previously been associated with schizo-
phrenia,*® and a previous exome-sequencing study reported two
putative functional de novo variants in DPYD in cases with SCZ.*'
PKP4 is involved in the regulation of cell adhesion and cytoskeletal
organization.*? In pathway analyses of PGC GWAS data, cell
adhesion was associated with BIP,** and SCZ* whereas cell
junction was implicated in MDD, as well as in an integrative
pathway analysis of all three disorders.*®

SERINCS, which was the top hit of the previous GWAS of
Borderline personality features,” achieved nominal significance in
the present study. The protein SERINC5 incorporates serine into
newly forming membrane lipids, and is enriched in myelin in the
brain.“® Previous research suggests that decreased myelination is
associated with a reduced capacity for social interaction.”*’

The gene-set analyses yielded significant results for exocytosis.
In neuronal synapses, exocytosis is triggered by an influx of
calcium and critically underlies synaptic signaling. Dysregulated
neuronal signaling and exocytosis are core features of neurode-
velopmental psychiatric disorders such as the autism spectrum
disorders and intellectual disability.*®*° Moreover, recent findings
from large meta-analyses have implicated dysregulated neuronal
signaling and exocytosis in the molecular mechanisms of BIP, SCZ
and MDD.*®%°! These processes may now represent promising
starting points for further research into BOR.

The most interesting finding of this study is that BOR showed a
genetic overlap with BIP, SCZ and MDD. Notably, BIP did not show
a higher correlation with BOR (ry=0.28) than SCZ (ry=0.34) or
MDD (rg=0.57). In view of the present sample size, these values
must be viewed with caution. A more accurate estimation of these
correlations will require calculations in larger cohorts.

Although comorbid BIP was excluded in the present BOR
patients, the possibility that the observed genetic overlap
between BOR and BIP was at least partly attributable to
misdiagnosis cannot be excluded. However, an alternative
explanation appears more likely, that is, that disorders currently
categorized as BOR and BIP share a common genetic background,

= PRS BIP
™ PRS SCZ
= PRS MDD

4

0.05 0.1 0.2 0.5 1

P-value threshold

Figure 3.  Polygenic risk score analysis. The proportion of variance explained in case-control status (y axis; Nagelkerke's R) by the PRS for BIP,
SCZ and MDD is depicted for the different P-value cutoffs used in the calculation of the PRS. Principal components were included in the
models to control for population stratification. 1*, P < 0.05; 2% P <0.001; 3%, P<1x10" % 4% P<1x10°%5*% P<1x107% 6% P<1x10°'%
7% P<1x10"'2 BIP, bipolar disorder; MDD, major depressive disorder; NS, nonsignificant; PRS, polygenic risk score; SCZ, schizophrenia.
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Figure 4. Polygenic risk score analysis in subgroups. Mean z-standardized PRS and standard error (s.e.) for BIP, SCZ and MDD are shown in the
control group, all cases, and in cases with and without comorbid MDD. PRS with a P-value threshold of P=0.05 were selected for this
comparison and principal components were included in the models to control for population stratification. The numbers at the top of each
bar indicate the significance of the difference in the respective PRS in comparison with the control group. 1%, P < 0.05; 2*, P <0.001; 3*%,
P<1x107%4% P<1x107%5% P<1x107% 6% P<1x107'% 7% P <1x 10" '2 BIP, bipolar disorder; BOR, borderline personality disorder;
MDD, major depressive disorder; NS, nonsignificant; PRS, polygenic risk score; SCZ, schizophrenia.

and they also do so with SCZ and MDD. This hypothesis is
supported by the present observation of a genetic overlap
between BOR and SCZ, two disorders that are rarely misdiagnosed
by psychiatrists, despite the presence of common psychotic
symptoms.

An explanation could also be that the genetic commonality
between BOR and BIP, SCZ, and MDD might be due to a common
effect of MDD. Prior to the introduction of DSM-IV, a history of
MDD was required for a diagnosis of BIP, and MDD has a high
prevalence in patients with SCZ (25-85%).°>* Therefore, the MDD
genetic risk variants that are common to BOR, BIP, and SCZ may
be responsible for the observed overlap. For this reason, we
conducted two further analyses. First, we compared PRS of BIP,
SCZ and MDD in subsamples of BOR patients with (~60%) and
without comorbid MDD. Here, no differences in any of the PRS
were found. Second, we performed a joint analysis of PRS of BIP,
SCZ and MDD in a logistic regression analysis in BOR patients vs
controls. Here, no differences were found in any of the PRS.
Second, we performed a joint analysis of the PRS of BIP, SCZ and
MDD in a logistic regression analysis in BOR patients vs controls.
Here, both the SCZ and the MDD risk score explained variance in
BOR case—control status independently. Secondary analysis
revealed that the BIP risk score explained variance independently
of the MDD risk score but not of the SCZ risk score. These results
indicate that comorbidity with MDD does not explain the genetic
overlap between BOR and BIP, SCZ and MDD. However, the
training sets differ in terms of their power to detect underlying risk
variants, and therefore the derived PRS differ in terms of the
variance they can explain.

It must be noted, that in the PGC-BIP, -SCZ and -MDD samples,
controls are partly overlapping. However, it is unlikely that this
drives the genetic correlation of BOR with those disorders as the
overlap of controls in these samples is rather small (under 10%).>*
Also, the joint logistic regression analysis demonstrated that
polygenic risk for SCZ and MDD contributed independently to the
BOR risk (see above).

The present study had several limitations. First, despite being
one of the largest BOR samples available worldwide, the sample
size was small in terms of the estimation of heritability. Replication
of the present results is warranted in larger, independent cohorts.
This should include the investigation of non-European samples.
Second, no information was available on the presence of common
clinical features such as psychotic symptoms and affect instability.
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This precluded detailed analysis of the identified genetic overlap.
Future studies in larger cohorts should also investigate more
detailed phenotypes, including comorbid axis | and axis I
disorders, such as addiction and personality disorders, respec-
tively. Third, the observation that psychiatric patients often
establish non-random relationships with Jersons affected by the
same or another psychiatric disorder,>® and therefore have
offspring with a higher genetic risk for psychiatric disorders,
might contribute to the observed genetic correlation of BOR with
BIP, SCZ and MDD. However, the LD-score method does not
investigate the impact of assortative mating.>? Therefore, assess-
ment of the degree to which this phenomenon may have
influenced the genetic correlation estimates was beyond the
scope of the present study.

Despite these limitations, the results indicate that neither
comorbidity with MDD nor risk variants that are exclusive to MDD
explain the genetic overlap between BOR and BIP, SCZ and MDD.
Future investigations of larger data sets for BOR and other
psychiatric disorders are warranted to refine the analysis of shared
and specific genetic risk.

Future studies are warranted to delineate the communalities
and specificities of the respective disorders.

CONCLUSION

In summary, the present study is the first GWAS of patients
diagnosed with BOR. The results suggest promising novel genes
and a novel pathway for BOR, and demonstrate that, rather than
being a discrete entity, BOR has an etiological overlap with the
major psychoses. The genetic overlap with BIP is consistent with
the observation that some diagnostic criteria for BOR overlap with
those for BIP. The overlap between BOR and SCZ and MDD is
consistent with previous observations of genetic overlap of other
psychiatric disorders.*® Given that BOR patients display specific
clinical symptoms not observed in patients with other psychiatric
disorders, knowledge of shared and non-shared genetic and
clinical features will be important for the development of
personalized treatment approaches.
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Abstract

Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average
intelligence test results in the second half of the previous century within one generation is unlikely to be explained by
genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that
environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand
the recent observations of an association between dopamine-dependent encoding of reward prediction errors and
cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers
contributing to variance in cognitive test performance, and thus possibly contributing to the “missing heritability”
between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475
healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (glQ) is associated with (1)
polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4)
functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative
importance for the prediction of glQ in an overlapping subsample, our results demonstrate neurobiological correlates
of the malleability of glQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor
gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic
markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings

L specifically assessing individual and environmental factors that modify epigenetic structure.

Introduction

Genetic variance is known to explain a substantial part
of variability in cognitive capacity’ . The largest available
study describes that polygenic scores (i.e., those common
genetic variants that are most strongly associated with test
performance in previous studies) explain up to 4.8%* of
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the variance of general intelligence quotient IQ (gIQ). A
more recent larger but not yet peer reviewed study, shows
up to 5.4% of variance explained®. On the other hand,
environmental factors have a significant impact on gen-
eral cognitive capacity, as indicated by the strong rise in
average IQ performance following the decades after
World War 117, According to Flynn et al.’” the change
ranged from 5 to 25 IQ points (eg. 0.3 to 1.7 standard
deviation (SD)) within one generation. This change
appears to be too strong to be explained by genetic
changes. While various environmental factors
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permission directly from the copyright holder. To view a copy of this license, visit http/creativecommons.org/licenses/by/4.0/.
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(e.g. changes in the educational system, overall stress
experience, nutrition, etc.) might contribute to this so-
called Flynn effect, those factors should act via changes in
neurobiological systems relevant for cognition. Possible
neurobiological factors that mediate this effect and link
genotype with complex traits like cognition are (1) epi-
genetic markers including methylation count, (2) cortical
architecture of the brain evaluated using magnetic reso-
nance imaging (MRI), and (3) the functioning of the brain
explored in vivo with functional MRI (fMRI). Those
malleable markers might as well contribute to the
“missing heritability” that is present between variance
explained by accumulating single-nucleotide polymorph-
isms (SNPs; 4.8% based on polygenic scoring®), estimates
of genomic similarities between individuals (~20% SNP
heritability®), and based on heritability estimates from
twin studies (50-70%2%). Here we aim to explore indivi-
dual variance in gIQ that can be accounted for by neu-
robiological markers of cognitive performance and
describe the interplay of mechanisms, including epige-
netic variance that may contribute to individual malle-
ability in cognitive capacity.

Several lines of evidence suggest that gIQ is associated
with the architecture of the brain measured as cortical
volume and thickness® explaining up to 16% of the var-
iance in right insula. Beyond cortical findings, the archi-
tecture’ and volume of subcortical structures have been
associated with cognitive capacity explaining between
2.4% in striatum'® and up to 4.2% in caudate volume!’.
The importance of subcortical structures is further
underpinned by the finding that training in reasoning
alters resting state connectivity between subcortical and
cortical brain areas, including striatum, parietal, and
prefrontal areas'”. This is highly plausible given the
relevance of cortico-striatal networks implicated in
executive function and goal-directed behavior'*'*, In line
with this, dopamine synthesis capacity in the ventral
striatum has been associated with frontal cortical and
striatal functional activation during goal-directed vs.
habitual decision-making as well as Ile'”, in accordance
with the well-known role of dopamine in cognition and
decision-making'®*’. A readily available proxy for
dopaminergic neurotransmission is the well-known
reward anticipation signal that can be measured with
fMRI>"?%, Dopaminergic neurotransmission is partly
heritable, but also substantially modulated by environ-
mental factors® *’. An emerging field that could poten-
tially link the abovementioned environmental factors and
dopaminergic neurotransmission is epigenetic modula-
tion, which can help to explain individual malleability.
Finding possible links between epigenetic changes, reward
signaling, and cognitive capacity in adolescents might
contribute further evidence for long-lasting neurobiolo-
gical correlates of environmental effects, including stress
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exposure, as already observed in rodents (for a review see
Meaney et al.*®).

The aforementioned candidate markers for neurobio-
logical underpinnings of cognitive capacity have been
assessed before?’, however, their relative importance has
not been tested in a cumulative fashion. Moreover, the
interplay between genetic variance and possible neuro-
biological underpinnings of individual difference in cog-
nitive capacity, including epigenetic markers is not known
in detail. Data from the IMaging and GENetics (IMA-
GEN) consortium, offer a well-characterized sample to
study these topics. With experts from a variety of fields,
we aimed at contributing a broader insight into that
research question.

Therefore, we measured associations between cognitive
capacity (gIQ) and polygenic scores, epigenetic markers of
the dopaminergic system, gray matter density in striatum,
and striatal activation during reward processing, in a large
sample of healthy adolescents, and we quantified their
relative contribution to interindividual differences in IQ.
We addressed the following research questions:

1. Do two different polygenic scores, which have
previously been associated with cognitive
capacity®®, replicate in our sample?

2. Are there epigenetic markers (ie., methylation
count) of the dopaminergic system that show
associations with gIQ?

3. Can we replicate previous findings’™'* of a
correlation between gray matter density in bilateral
striatum and gIQ?

4. Can the previously observed association between
functional activation of the ventral striatum (BOLD-
signal) and IQ'”?" be replicated in a large sample of
adolescents?

In a subset of individuals for whom we have complete
data, we evaluated the relative contribution of each of the
aforementioned predictors for gIQ, assessed possible
interactions of genetic variance with our other predictors,
and performed model comparison for combinations of
predictors.

Materials and methods
Participants

We used a sample of 1475 adolescents (mean age =
14.43 years; SD = 0.45, 765 female participants) from the
large multicenter imaging and genetics study (IMA-
GEN??) with available data from neuropsychological
assessment, functional imaging, and genetic data. The
study is intended to investigate the genetic and neuro-
biological basis of individual variability in psychological
traits, and their relation to the development of frequent
neuropsychiatric disorders. Recruiting took place at eight
different sites (Germany, United Kingdom, France, and
Ireland). We therefore included site as a covariate in all
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analysis in order to account for variance introduced by
center-specific variations. We excluded subjects with
contraindication for MRI scans as well as serious medical
conditions. Each local ethics committee approved the
study. Subjects and their parents provided informed
assent and consent, respectively.

Intelligence measure

In previous work we started out with a focus on the fluid
and crystallized IQ and stress exposure'”*!. An abundant
body of work on cognitive capacity and neurobiological
correlates is based on a general factor derived from
principal component analysis (PCA)*. On the other hand
there is considerable criticism of constructing general
factors®® regarding cognitive test performance and the
authors have voiced similar concerns elsewhere*!. PCA
gains general information at the expense of specific
information associated with the Wechsler’s intelligence
scale (WISC) IV subscales. Calculating a general factor
based on PCA (for a review see Deary et al.>) does not
necessarily invalidate the nature of the original scales;
instead, dimensionality reduction allows for capturing
variance that is common to a variety of subscales. In this
study, we therefore performed PCA in order to derive a
measure of general cognitive ability from WISC IV subt-
ests, comprising matrix reasoning, block design, digitspan
backward and forward, similarities, and vocabulary. The
first principal component (gIQ) explained a large pro-
portion of the variance (variance explained = 0.49) and
was used for further analyses as a marker for gIQ (see
Table 1 in the supplement). For a more fine-grained view
we explored WISC IV subscales associations with biolo-
gical markers calculating a correlation matrix in an
overlapping subsample (see supplementary Table 7).

Genetics

For building a polygenic score, we obtained summary
statistics from two large genome-wide association studies:
Benyamin et al®® report associations with childhood
intelligencem on 17989 individuals and 1 380 159 SNPs;
Sniekers et al.* provide a meta-analysis and report asso-
ciations of common variants with intelligence in a max-
imum of 78 308 adults and children and included 10 499
625 SNPs.

We performed linkage disequilibrium (LD) pruning and
“clumped” the summary statistics, discarding variants
within 500 kb of, and in 7*> 0.1 with, another (more sig-
nificant) marker. After pruning we had 70568 LD-
independent SNPs for the score by Benyamin et al*
and 86 330 for the score according to Sniekers et al.*. For
both scores we performed risk profile scores (RPS) of our
sample described for a range of p-value thresholds (5 x
107%,1x107%, 1x 107%, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and
1.0), multiplying the logistic regression (i.e., the natural
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log of the odds ratio) of each variant by the imputation
probability for the “risk” allele in each individual. The
resulting values were summed over each individual, so
that each individual had a whole-genome RPS for further
analysis. We aimed at replicating the association of the
polygenic score with gIQ in a sample of 1388 subjects
with sufficient data quality.

Epigenetics

Global blood DNA methylation levels were assessed by
hybridizing DNA samples to the Infinium Human
Methylation 450 Bead Chip (Illumina: http://www.
illumina.com/products/methylation_450_beadchip_Kkits.
html), following the manufacturer’s protocol. Unlike
polygenic scores based on multiple SNPs, no epigenetic
score exists for intelligence. With respect to epigenome-
wide data, our sample size is far too small to find effects
on an epigenome-wide association study (EWAS) level.
Therefore, we focused on epigenetic markers potentially
affecting dopamine-dependent neural encoding of reward
anticipation in the striatum and planned Bonferroni cor-
rection for multiple testing.

The FDb.InfiniumMethylation.hgl9 package for R
(https://bioconductor.org/packages/release/data/annotati
on/manuals/FDb.InfiniumMethylation.hg19/man/FDb.
InfiniumMethylation.hg19.pdf) was used to tag candidate
gene to its nearest CG site. We extracted the start coor-
dinate for our candidate probes from this package. This
start coordinate was then used to go up and down 50 kb
to create a region file. We assessed methylation count in
CG site from the following genes involved in dopamine
metabolism and neurotransmission: tyrosine hydroxylase
(TH); DOPA decarboxylase (DDC); catechol-O-methyl
transferase (COMT); dopamine transporter 1 (SLC6A3);
dopamine receptor D1 (DRDI); and dopamine receptor
D2 (DRD2) resulting in 24 CG sites. We focused on D1
and D2 receptors because they are the most abundant
dopamine receptors in the brain with expression in
regions relevant for motor, limbic, and neuroendocrine
functioning%. D3, D4, and D5 mRNAs are one to two
orders of magnitude lower than that of the D1 or D2%.
We think that in addition to D1 and D2, D3, 4, or 5 only
provide limited further insight for possible markers of
gIQ. Nonetheless, for a more comprehensive view, we
include an exploratory search for D3, D4, and D5 receptor
gene and tested for association with gIQ in the Supple-
ment. Epigenetic data with sufficient quality and corre-
sponding data on gIQ was available for 817 subjects.

Magnetic resonance imaging
Structural MRI

Subjects were scanned in 3T-MRI-Scanners from dif-
ferent manufacturers (Bruker, General Electric, Philips
and Siemens>?). We controlled for variance accounted for
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by scanning site using dummy coded variables®®. We used
high resolution T1-weighted three-dimensional magneti-
zation prepared rapid gradient echo sequence based on
the ADNI protocol (http://www.loni.ucla.edu/ADNI/
Cores/index.shtml). Gray matter density was estimated,
including age, gender, and total intracranial volume as
covariates of no interest. Mean striatal gray matter density
was extracted from anatomical masks using the WFU-
Pick atlas®® comprising bilateral striatum (http://fmri.
wfubmec.edu/software/pickatlas) as an anatomic voxel
mask with the individual Brain Atlases tool in SPM
(IBASPM 71). Structural imaging data with sufficient
quality and corresponding data on gIQ were available for
1401 subjects.

Task details

During fMRI subjects performed a modified version of
the well-known monetary incentive delay (MID) task?2%0,
The MID assesses how quickly the subject can react to a
reward-indicating vs. neutral cues and pull a trigger to hit
a target (with the left or right index finger). The cue was
followed by a variable anticipation interval. Then the
subjects were asked to push a button with their left or
right index finger in order to hit an appearing target. If the
subject is able to hit the target, following a reward-
indicating (but not a neutral) cue, he or she scores points
(Fig. 1 in SI).

Functional MRI

Due to our a priori hypotheses of an association
between intelligence measures with activation of the
ventral striatum during reward anticipation in the MID
task?, we tested our research question in a region of
interest (ROI). For this a literature-based mask*' of the
bilateral ventral striatum was used in order to test for
effects of individual signal change. We extracted the mean
beta-values from the main effect in the abovementioned
volume of interest of the ventral striatum from contrast
images estimating the BOLD-signal change during
anticipation of big and small vs. no reward (Table 5 in SI).
This signal is considered as an estimate of temporal dif-
ference errors elicited by temporarily surprising reward-
predicting cues, which are related to phasic dopaminergic
neurotransmission (Fig. 1 in SI)?242, For further details
concerning scanning parameters, preprocessing, and sin-
gle subject statistics please refer to the Supplement.

Statistical analysis

We assumed that for a sufficient power of 1 — 8 =80%
(¢=5%) and a small effect sizes ranging from 2.4%'° in
previous structural imaging studies and 4.8%” for previous
polygenic scores, according to Hulley et al.** we would
need a total sample size of 161-324 subjects. To estimate
the variance explained by two different polygenic scores in

Page 4 of 11

our sample, we were able to calculate linear regression
models with gIQ as dependent variable and polygenic
scores as predictors in n=1388 subjects. Additional
covariates included age, gender, and principal compo-
nents from our prior PCA, which account for population
stratification and tested two different polygenic scores,
therefore we chose a significance level of p = 0.025.

For epigenetic markers, linear regression models were
fitted for each marker in a combined sample of 817 sub-
jects. Age, gender, and site as well as first two principle
components of estimated differential cell counts and wave
information were included into linear regression models
as variables of no interest. We plotted a correlation matrix
for all candidate markers in order to explore associations
between methylation count in each CG site. Correlations
between candidate CG sites revealed that most regions
were independent markers (Fig. 1b). As candidate markers
appeared to be rather independent, we decided to apply
Bonferroni correction to rigorously correct our results for
multiple comparisons resulting in a significance level of
p=2x1073

We applied linear regression to estimate the correlation
between gIQ and bilateral gray matter density in striatum
of 1401 subjects with sufficient imaging quality. We
accounted for variance from the following variables of no
interest: age, gender, site, and total brain volume.

To statistically evaluate associations between bilateral
ventral striatal reward anticipation signal (BOLD-signal)
and gIQ, we used multiple linear regression controlling
for age, gender, and site in a sample of 1475 subjects. For
imaging parameters, we used split-half cross-validation on
two subsets. A significance level of p = 0.05 was chosen.

For explorative analysis of gIQ and whole-brain asso-
ciations with BOLD-signal during reward anticipation, we
computed linear regression models at each voxel, using
ordinary least squares. Due to spatial auto-correlation we
used whole-brain family-wise error correction (p = 0.05)
applying random field theory as implemented in statistical
parametric mapping software (SPM 8)
1475 subjects.

For our best predictors, we estimated variance explained
and obtained 95% bootstrapped confidence intervals from
1000 randomly drawn samples to evaluate reliability of
our results.

For further analysis, we choose to partial out variance
from variables of no interest by calculating separate
regression models of our nuisance variables on our pre-
dictors. For the polygenic scores we regressed out var-
iance accounted for by age, gender, and principal
component from our prior PCA. For epigenetic markers,
we accounted for age, gender, site, first two principle
components of estimated cell count, and wave informa-
tion. For structural MRI, we regressed out variance from
age, gender, site, and total brain volume. For fMRI, we

in n=
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- 2
Fig. 1 Association between methylation count in dopaminergic candidate markers and general IQ in n =817 subjects. a Plot of negative
decadic logarithm of p-values for association of methylation count in CG site 50 kb pairs up- and downstream from dopaminergic candidate markers.
Candidate markers were tyrosine hydroxylase (TH), DOPA decarboxylase (DDQ), catechol-O-methyl transferase (COMT), dopamine transporter 1
(SLC6A3), dopamine receptor 1 (DRD1), and dopamine receptor 2 (DRD2). Among 24 identified CG sites we found significant associations of
epigenetic candidate markers for dopamine D2 receptor (cg26132809) involved in dopamine neurotransmission with general IQ correcting for age,
gender, study site, wave information, and variability in cell type. The red line marks p-value threshold for multiple comparison correction for each CG
site (p < 2x 107) and the dashed line for p <0.05. b Correlation matrix of epigenetic candidate markers involved in dopaminergic
neurotransmission. Only correlation indices are displayed at a significance level of p <001 (i.e, R >0.2). Correlation coefficients are color-coded
(positive correlation blue, negative correlation red)
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Fig. 2 Variance explained (%Exp) of two different polygenic scores predicting general 1Q. Each bar represents variance explained for a given
set of multi-SNP predictors at a given p-value threshold that is color-coded. The color code is described in the legend within the plot and represents
p-value thresholds for inclusion of SNPs. On top of the bars p-values for association with glQ for each polygenic score are reported. a The left panel
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shows the polygenic score derived from Benyamin et al.™. b The right panel shows the polygenic score derived from Sniekers et al.*

accounted for age, gender, and site. To explore possible
interrelatedness between residuals of our variables, we
calculated a correlation matrix.

We calculated one multiple linear regression model on
residuals of our predictors in an overlapping subsample of
755 subjects with gIQ as independent variable and BOLD-
signal, gray matter density, polygenic score, and epige-
netic candidate marker as predictors. In order to estimate
the effect size, we calculated standardized parameter
estimates (beta) in a multiple regression model, which
assumes standardized predictors and dependent variables
(variance equals one). The standardized parameter esti-
mate (beta) indicates how many SDs gIQ will change, per
SD change in the predictor variable. We used the lavaan
package* in combination with the SemPlot package® in
R 3.2.4 for illustration purposes.

Although we did not primarily hypothesize interaction
effects, we calculated interaction terms in order to explore
the interplay between our variables. We focused on pos-
sible interactions of genetic effects on epigenetic, struc-
tural MRI and BOLD-signal resulting in three interaction
terms (gene x epigenetic marker, gene x structural MRI,
and gene x BOLD-signal). Correcting for multiple com-
parisons, we considered a significance level of p =0.017
(i.e., p = 0.05 divided by the number of interaction terms).

Finally, we formally described and compared different
combinations of our predictors using model comparison.
With an exhaustive search for all combinations between
our predictors we wanted to find the best model
explaining gIQ. We choose to compare a set of all com-
binations, resulting in 15 models. We performed model
comparison based on difference in Bayesian information
criterion (BIC), which is known to penalize for models
with larger numbers of parameters more strongly,
resulting in a parsimonious model.

All probability values for the abovementioned tests are
reported non-directional (two-tailed).

If not stated differently statistical tests were performed
using R version 3.2.4

Results
Association between IQ and polygenic scores
With respect to our first research question regarding
the influence of genetics on gIQ, we observed that the
polygenic score by Benyamin et al.* at a p-threshold of
0.1 comprising 16 972 SNPs was significantly associated
with gIQ (0.33% variance explained, degrees of freedom
(df) = 1376, p = 1.7 x 10~ Fig. 2a, and Table 2 in SI).
With respect to the score provided by Sniekers et al., we
found the maximal proportion of variance explained with
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Fig. 3 Candidate markers predicting general Q. For display purpose, we grouped individuals into septiles of the candidate markers and plotted
the mean phenotypic value (here general IQ) for each quantile on the y-axis*”. Error bars indicate standard error of the mean. a General IQ can be
predicted using polygenic score from Sniekers et al* at a p-threshold of 0.01 comprising 5636 SNPs explaining 3.2% of variance (df = 1376; p =73 x
10~% correcting for age, gender, study site, principal components from imputation, and genetic strata). b Here we display association with the marker
with the lowest p-value (methylation count in dopamine D2-receptor gene, DRD2 cg26132809) among our candidate markers. We grouped
individuals into septiles of their methylation level (higher septile rank indicating higher probability of methylation) and plotted those septiles against
mean general IQ score on the y-axis. General IQ is negatively correlated with candidate marker for dopamine neurotransmission in our regression
model (2.7% of variance explained, df =803, p=3.18 x 10~ correcting for age, gender, study site, wave information, and variability in cell type)
indicating that higher methylation count, which is considered as downregulation of transcription of DRD2 receptor, is related to lower 1Q scores.
¢ Gray matter density in bilateral striatum was used to group individuals into septiles. We plotted gray matter density against general IQ and found
0.71% variance explained (df = 1399, p=17x 1073), correcting for age, gender, site, and total brain volume. d Here we plot general IQ by reward
anticipation signal (BOLD-signal) in region of interest (ROI). We grouped individuals into septiles of beta parameter estimates (BOLD-signal) and
plotted mean general IQ for each quantile on the y-axis for display purposes. General IQ is positively correlated with functional activation of the
ventral striatum (1.4% of variance explained, df = 1463, p=4.11 x 10~%; correcting for gender, age, and study site). e Regression model illustrating
neurobiological correlates of general IQ in an overlapping sample of n = 755. A multiple linear regression model with general IQ (glQ) as outcome
variable was estimated with the residuals of the following predictors: polygenic score (from Sniekers et al), methylation in DRD2 gene, gray matter in
striatum, and functional activation during reward anticipation. The whole model was significant with an adjusted R> = 0.04 (df = 750, p =33 x 107).
On the edges, we display the standardized parameter estimates for each predictor (beta) describing how many standard deviations the dependent
variable (glQ) will change, per standard deviation increase in the predictor variable. With respect to the different predictors, we could replicate
previous findings that the established polygenic score (including 5636 SNPs significant at a p-threshold of 0.01) shows an association with general IQ
(beta=0.13, p=2.8x10""). We find variance in methylation count in our candidate CG site (DRD2 cg26132809) that is negatively associated with
general IQ (beta = —0.10, p = 6.2 x 1077), indicating that higher methylation (lower gene activity) being associated with lower gIQ. In this subsample
gray matter density in striatum was not associated with glQ (beta =0.02, p = 0.5). BOLD-signal change during reward anticipation significantly
predicts cognitive capacity (beta=0.14, p =94 x 10™%)

3.2% (p=7.3x10%, df = 1376, bootstrapped confidence
interval (CI): 1.64—5.43%) using a score comprising 5636
SNPs significant at a p-threshold of 0.01 (Figs. 2b and 3a,
and Table 2 in SI).

Association between 1Q and epigenetic markers of
dopaminergic neurotransmission

Regarding our second research question, we found
significant effects of methylation on gIQ in a CG site in
the DRD2 gene (cg26132809), which survived Bonferroni
correction for multiple testing (2.7% variance explained,
df =803, p=3.18 x 10*, bootstrapped CI: 0.01-2.94%;
Figs. 1a and 3b, and Table 3 in SI).

Association between IQ and gray matter density in
striatum (MRI)

We found a positive correlation between gray matter
density in bilateral striatum with gIQ (0.71% variance
explained, df=1399, p=17x 1072, bootstrapped CI:
0.09-1.87%; Fig. 3c). Using split-half cross-validation, we
could confirm this finding (do: 0.81%, df =698, p = 2.2 x
107% dy: 0.64%, df =699, p=32x1072).

Association between IQ and ventral striatal BOLD-signal
(fMRI)

In accordance with our third research question, we
found that in our ROI, the ventral striatum, beta para-
meter estimates of reward anticipation (BOLD-signal)
showed a significant positive association with gIQ (1.4%
variance explained, df=1463, p=41x10"°5

bootstrapped CI: 0.49-3.24%; Fig. 3d). This finding was
confirmed using split-half cross-validation (do: 1.4%, df =
726, p =1.1x107% dy: 1.7%, df =725, p=4.4x107%).

In an exploratory analysis we also observed that gIQ was
positively correlated with functional activation during
reward anticipation (BOLD-signal) in a large network
outside of the ventral striatum as well in frontal and
temporal regions (see Fig. 2 and Table 6 both in SI).

Influence of genetics, epigenetics, gray matter, and striatal
activation on IQ

Calculating one regression model with residuals of our
candidate markers, including the polygenic score (by Snie-
kers et al.), epigenetic finding (DRD2 cg26132809), gray
matter in striatum, and striatal activation, we observed that
an increase in the polygenic score of one SD leads to a beta
=0.13 change in gIQ (p =2.8 x 10~% Fig. 3b). Increase in
methylation count in candidate CG site (DRD2
¢g26132809) was associated with a decrease in gIQ (beta =
—0.1, p=62x 1073). There is a positive effect of BOLD-
signal change during reward anticipation predicting gIQ
(beta = 0.14, p = 9.4 x 10~°). In this additional analysis gray
matter density in striatum showed no significant association
with gIQ (beta =0.02, p = 0.5; Fig. 3b). Calculating a cor-
relation matrix, we found no significant association between
the neurobiological predictors (Table 1). Exploring possible
non-additive effects, we found no significant interaction
between the polygenic scores (Snieker et al. and Benyamin
et al.) and our candidate markers (epigenetics, gray matter,
and striatal activation). We conducted an exhaustive search
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Table 1 Correlation matrix for predictors of overlapping
sample of n =755

glQ BOLD Epigenetic  Polygenic score
BOLD 0.14%%
Epigenetic -010% 0

Polygenic score  0.13****  —003 —003

Gray matter 003 0 -0.03 0.01

The correlation coefficients are based on linear regressions on residuals
partialling out variance from variables of no interest

g/Q general IQ

BOLD, functional activation during reward anticipation; epigenetic, methylation
in CG site DRD2 cg26132809; polygenic score, polygenic score including 5636
SNPs significant at a p-threshold of 0.01 from Sniekers et al,; gray matter, gray
matter density in striatum

Significant levels (two-tailed) ****p < 0.0001; ***p <0.001; **p < 0.01, *p <0.05

Table 2 Top six models of model comparison, among all
possible combinations of 15 models

Model ABIC  df

glQ ~ polygenic score + epigenetic + BOLD 0 751
glQ ~ polygenic score + BOLD 102 752
glQ ~ polygenic score + epigenetic + BOLD + gray matter 6.16 750
glQ ~ epigenetic + BOLD 673 752
glQ ~ polygenic score + BOLD + gray matter 708 751
glQ ~BOLD 824 753

From top to bottom we display the models starting with the lowest Bayesian
information criterion (BIC). We used the overlapping sample of n =755 and
residuals of our predictors (partialling out variance from variables of no interest)
df degrees of freedom, g/Q general IQ

ABIC, difference in Bayesian Information Criterion compared to the best model:
ABIC = 0; BOLD, functional activation during reward anticipation in striatum;
epigenetic, methylation in CG site of DRD2 gene cg26132809; polygenic score,
polygenic score including 5636 SNPs significant at a p-threshold of 0.01 from
Sniekers et al,; gray matter, gray matter density in striatum

for possible combinations of predictors and found the
lowest BIC for a model comprising polygenic score by
Sniekers et al, methylation count in the DRD2 gene
(cg26132809) and BOLD-signal during reward anticipation
in the ventral striatum (Table 2). This model explained
4.81% of variance (p = 1.05 x 1077, df = 751, bootstrapped
CL: 2.22-9.04%). We calculated an additional correlation
matrix in order to explore our candidate markers associa-
tion with WISC IV subscales (see supplementary Table 7).

Discussion

Individual differences in intelligence have a substantial
heritable background, while strong increases in test per-
formance across the world in the last decades also point to
strong environmental effects”*. Using a polygenic score
previously associated with cognitive capacity in children®
and a novel score® tested in children and adults, we were
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able to replicate significant associations with gIQ, with the
score based on 78 308 adults* performing better than the
one based on a sample of 17 989 children®. The striking
difference between heritability estimates derived from
twin and adoption studies (around 50-70%>%) and var-
iance explained by common genetic polymorphisms
(around 5%°) for many traits has been labeled “the case of
the missing heritability”. For example, regarding the par-
tially heritable and polygenic human trait “body height”,
polygenic scores account for 10% of the variance®”, much
below the high heritability estimates derived from
monozygotic twin studies (heritability estimates around
85%°). So the discrepancy between variance explained by
polygenic risk scores and twin studies may simply be due
to the fact that polygenic risk scores only include com-
mon genetic polymorphisms and do not assess effects of
rare gene variants. On the other hand, if epigenetic var-
iation is transmitted to the offspring, as has been shown
for some stress-related epigenetic effects®®, a more or less
substantial part of the presumably genetic background
regarding IQ test results may indeed be due to epigenetic
factors (and hence environmental effects including social
exclusion or discrimination stress).

Searching for neurobiological markers associated with
dopaminergic neurotransmission in light of studies link-
ing this system to cognitive capacity'"'”"'® we found sig-
nificant associations between methylation of DRD2 gene
(cg26132809) and gIQ. Epigenetic control of gene
expression is modulated by environmental factors such as
stress exposure to the individual or in some cases parental
generation®®. Stress exposure and further environmental
factors also strongly modulate dopaminergic neuro-
transmission, with relations to epigenetic modification
unexplored. In line with previous findings'' we found gIQ
to be related to gray matter density in striatum. These
observations suggest a striatal contribution to the malle-
ability of cognitive capacity®.

The association between ventral striatal activation and
gIQ was found to be robust using split-half cross-valida-
tion as well as estimation of bootstrapped confidence
intervals. In the MID task, temporarily unpredicted pre-
sentation of reward-associated stimuli elicit functional
activation of the ventral striatum (BOLD-signal), which
was previously associated with dopamine release mea-
sured indirectly by displacement of radio ligands of
dopamine D2 receptors in this brain area®’. Unlike in
studies directly quantifying the size of the reward pre-
diction error using computational modeling®*’, in the
MID task, the size of the temporal error in the prediction
of reward-anticipatory cues cannot be individually com-
puted. Although not limited to the ventral striatum,
finding the strongest effect in this region suggests that
dopamine-dependent encoding of reward-anticipatory
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cues and prediction errors contribute to cognitive flex-
ibility and rapid decision-making.

Calculating a regression model in a subsample of
755 subjects with fully available data for all predictors we
found polygenic score of Sniekers et al.*, epigenetic
markers of the DRD2 gene and the ventral striatal BOLD-
signal were significantly associated with gIQ with a similar
effect size. In combined assessment in this subsample,
gray matter density in striatum did not show a significant
effect. Exploring the interrelatedness of our candidate
markers, we found no significant association, thus point-
ing to rather independent sources of variance for gIQ. The
abovementioned polygenic scores (Sniekers et al. and
Benyamin et al.) did not show a significant interaction
effect with our candidate markers (epigenetics, gray
matter and striatal activation) in our sample. In order to
formally describe and compare possible models that
predict gIQ, comparison of all possible combinations of
our predictors resulted in a model comprising BOLD-
signal during reward anticipation in the ventral striatum,
methylation count in the DRD2 gene and the polygenic
score. Altogether, the winning model points to a rather
independent contribution of variance of dopaminergic
neurotransmission to variance in gIQ on the one hand
and genetic differences on the other hand.

Limitations of our study include the sample size, which
is rather large for neuroimaging studies but exceedingly
small for explorative genetic and epigenetic studies. This
is reflected in rather large CIs when applying bootstrap
procedures in epigenetic markers. Furthermore, our
sample size is too small for the detection of epigenome-
wide markers. Therefore, the DNA methylation score was
limited to CG sites in selected dopaminergic genes, with
only a single CG site emerging as significant. It is highly
likely that a more comprehensive DNA methylation
analysis would have identified more epigenetic loci, which
are associated with IQ score. Despite the relatively small
sample size, we were able to replicate effects of polygenic
score on gIQ derived from large samples™’. Further
limitations include that our epigenetic markers are
assessed in peripheral blood. They may not reflect var-
iance in brain tissue and have to be validated in studies
with methods directly accessing tissue in the central
nervous system®', The cross-sectional design of the study
does not allow any statement concerning causality. Fur-
ther studies with a longitudinal design in possible quasi
experimental settings are warranted.

Taken together, our findings suggest that both func-
tional activation of the reward system, epigenetic control
of dopaminergic neurotransmission, and genetic markers
contribute to gIQ. Of note, the effect sizes studied are
small but in the same range as previous studies (2.4%'® in
previous structural imaging studies and up to 4.8%" for
previous polygenic scores). Eventually, it is fundamental
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for the understanding of cognitive capacity that we find
variable neurobiological correlates of gIQ. Variance of
methylation count in our epigenetic candidate marker and
individual differences in ventral striatal activation during
reward anticipation seem to be independent predictors
and do not show a relation with genetic correlates.
Observing an association between epigenetic markers and
neural signatures of gIQ should encourage further studies
exploring mechanisms that mediate genetic and envir-
onmental effects on the neurobiological correlates of
cognitive functions.
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