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ABSTRACT: Memory effects emerge as a fundamental consequence of dimensionality reduction when low-dimensional
observables are used to describe the dynamics of complex many-body systems. In the context of molecular dynamics (MD) data
analysis, accounting for memory effects using the framework of the generalized Langevin equation (GLE) has proven efficient,
accurate, and insightful, particularly when working with high-resolution time series data. However, in experimental systems, high-
resolution data are often unavailable, raising questions about the impact of the data resolution on the estimated GLE parameters.
This study demonstrates that direct memory extraction from time series data remains accurate when the discretization time is below
the memory time. To obtain memory functions reliably, even when the discretization time exceeds the memory time, we introduce a
Gaussian Process Optimization (GPO) scheme. This scheme minimizes the deviation of discretized two-point correlation functions
between time series data and GLE simulations and is able to estimate accurate memory kernels as long as the discretization time
stays below the longest time scale in the data, typically the barrier crossing time.

■ INTRODUCTION

A fundamental challenge in natural sciences involves the
creation of a simplified, yet accurate, representation of complex
system dynamics using a low-dimensional coordinate. For
instance, in spectroscopy, atomic motions are investigated
solely through the polarization induced by an electromagnetic
field, resulting in spectra.1 In the case of molecules in fluids,
the myriad of interactions with the solvent is often reduced to
a one-dimensional diffusion process.2,3 In numerous stud-
ies,4−8 the folding of a protein is described by a one-
dimensional reaction coordinate. These diverse fields all share
the common approach of projecting the complete many-body
dynamics of 6N atomic positions and momenta onto a few or
even a single reaction coordinate. Starting from the
deterministic kinetics of a Hamiltonian system, the projection
procedure yields a stochastic description based on the
generalized Langevin equation (GLE),9−11 which, in the case
of a one-dimensional coordinate x(t) and its corresponding
velocity v(t), reads
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where m is the effective mass of the coordinate x. The potential
of mean force U(x) is directly available from the equilibrium
probability distribution ρ(x) via U(x) = −kBT ln ρ(x), where
kB is the Boltzmann constant, and T is the absolute
temperature. Non-Markovian effects arise as a direct
consequence of the dimensionality reduction.12 In the GLE,
the memory kernel Γ(t) weights the effect of past velocities on
the current acceleration. Stochastic effects, represented by the
random force FR(t), are linked to the memory function via the
fluctuation−dissipation theorem in equilibrium, ⟨FR(0)FR(t)⟩
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= kBTΓ(t). When the relaxation of the environment governing
Γ(t) is sufficiently fast, Γ(t) approaches a delta kernel, and the
Langevin equation emerges from the GLE. Considerable
efforts have been dedicated to identifying suitable reaction
coordinates to minimize memory effects and enable a
Markovian description of protein folding.4−6,8,12

In recent works, the memory function Γ(t) was extracted
from time series data of proteins of biological relevance,
allowing the non-Markovian description of a protein’s folding
kinetics in a nonlinear folding landscape. Memory effects were
found to be highly relevant, both in model systems13 and real
proteins.14,15 Multiple methods exist to extract memory
functions from MD data. A much-used method is based on
Volterra equations, which are deterministic, integro-differential
equations that derive from the GLE and allow for the
extraction of the memory kernel from time correlation
functions.16−19 While Volterra equations offer good accuracy
when high-quality time-series data are available, it is unclear if
they remain efficient when the observations of the system are
sampled with long discretization times. A recent research
endeavor used an iterative scheme to approximate the memory
kernel by adapting a trial kernel with a heuristic update based
on the velocity autocorrelation function.20 Another work
parametrized memory kernels by fitting correlation functions
to an analytical solution of the GLE.21 In order to include the
short and long time scales of the system dynamics, the fit
included both the two-point correlation and its running
integral. Both methods share the limitation of not being
applicable to a nonlinear potential energy function U(x). A
recent paper not suffering from such a limitation used a
maximum-likelihood model to estimate the GLE parameters
that best fit the given MD data.22 In a different work on
polymer solutions, star polymers were coarse-grained to single
beads interacting via a nonlinear U(x). A GLE system was set
up to mimic the star polymers’ kinetics. The simulation
parameters of the GLE system were iteratively changed using
Gaussian Process Optimization (GPO) such that the coarse-
grained and MD velocity autocorrelations were most similar.23

The same idea was used to estimate a joint memory kernel
over multiple temperatures.24

Here, we consider the effects of temporal discretization,
motivated by the fact that data are always discretized. For MD
simulations, archived data often only contains the atomic

positions at time intervals of hundreds of picoseconds to
nanoseconds, as in the case of the data from the Anton
supercomputer.25 When considering experimental data, meas-
urement devices limit the time step of the observations,
typically at the microsecond scale.26,27 In a prior publication,
discretization effects were examined within the framework of
data-driven GLE analysis. The GLE, without a potential, was
solved analytically. To deal with discretization effects, the
discretized mean-squared displacement and velocity autocor-
relation functions were computed, allowing for the direct
fitting of the memory kernel.28 The present work investigates
how a GLE with a nonharmonic potential can be parametrized
given discretized data by considering a highly nonlinear
molecular dynamics test system. The Volterra-based approach
is shown to be remarkably resilient to time discretizations.
Where the Volterra approach ceases to function, we
demonstrate that Gaussian Process Optimization is a suitable
method to obtain memory kernels from discrete time series
data. In matching correlation functions computed from
subsampled data, we present a method to deal with the
discretization effects and extend the GLE analysis to nonlinear
data at higher discretizations. The choice of correlation
functions involves some flexibility, demonstrating the broad
applicability of our approach. For a small alanine homopeptide
used as a test system, the Volterra method is suitable for
discretization times that reach the memory time of about 1 ns.
In comparison, the GPO method extends the range to
discretization times up to the folding time of 58 ns.

■ RESULTS AND DISCUSSION
We investigate the effect of data discretization starting from a
10-μs-long MD trajectory of alanine nonapeptide (Ala9) in
water, which was established as a sensitive test system for non-
Markovian effects in our previous work.14 As in our original
analysis, the formation of the α-helix in Ala9 is measured by the
mean distance between the H-bond acceptor oxygen of residue
n and the donor nitrogen of residue n + 4
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In the α-helical state, x has a value of approximately 0.3 nm,
the mean H-bond length between nitrogen and oxygen. The

Figure 1. I-III Representative snapshots for different values of the mean hydrogen-bond distance reaction coordinate of Ala9, x, defined in eq 2. A
Multiple folding and unfolding events occur within a 450 ns trajectory segment. B A single folding event. The orange circles indicate the time series
discretized at Δt = 1 ns. C The potential landscape U(x) for Ala9, computed from the trajectory at full resolution. The folded state (I) forms a sharp
minimum at x = 0.32 nm. A local minimum is found at x = 0.62 nm (II). The unfolded state forms a broad minimum around x = 1.0 nm (III).
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potential of mean force U(x) in Figure 1C displays several
metastable states along the folding landscape; Ala9, therefore, is
a suitable and nontrivial test system for numerical methods.
Figure 1A shows a 450 ns long trajectory. To test how time
discretization affects memory extraction, frames of the
trajectory are left out to achieve an effective discretization
time step Δt. Such a discretized trajectory (orange data points
for Δt = 1 ns) is compared in Figure 1B to the time series at
full resolution. The potential U(x) is always estimated from a
histogram of the entire data set to separate time discretization
from effects arising due to the undersampling of the potential
(see section I in the Supporting Information).

Volterra Equations. To extract memory kernels from
time-series data, the GLE in eq 1 is multiplied by v(0) and
averaged over time. By using the relation ⟨FR(t)v(0)⟩ = 0,9,10

one obtains the Volterra equation14,19

=m
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where Cvv(t) is the velocity autocorrelation function, and
C∇Uv(t) is the correlation between the gradient of the potential
and the velocity. By integrating eq 3 from 0 to t, we derive a
Volterra equation involving the running integral over the
kernel G(t) = ∫ 0

t dsΓ(s) and insert mCvv(0) = C∇Ux(0)14 to
obtain
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with C∇Ux(t) being the correlation between the gradient of the
potential and the position. Computing the memory kernel
directly from eq 3 is possible29,30 but prone to instabilities.17

Extracting G(t) using eq 4 and computing Γ(t) via a numerical
derivative improves the numerical stability.17,31 The discretiza-
tion and solution of eq 4 are discussed in section II of the
Supporting Information. A recent study proposed an
alternative technique for extracting memory kernels by Taylor
expansion of the convolution integral32 (we discuss the
potential applicability of this Ansatz to our specific problem
in section III in the Supporting Information). We fit Γ(t)
extracted from the full-resolution data at Δt = 1 fs using least-
squares to a multiexponential of the form
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The fitted memory times τi and friction coefficients γi are
presented in Table 1. The fitting involves both Γ(t) and G(t),
as elaborated in the Methods section, and accurately captures
the MD kinetics, similar to our previous work.14

In order to estimate the impact of the non-Markovian effects
on the kinetics, we turn to a heuristic formula for the mean
first-passage time τMFP of a particle in a double-well potential in
the presence of exponentially decaying memory.13,33,34

Validated by extensive simulations, the heuristic formula
accurately described the non-Markovian effects occurring in
the folding of various proteins.15 For a single exponential
memory function, the heuristic formula identifies three
different regimes by comparing the single memory time τ to
the diffusion time scale τD = γtotL2/kBT, which is the time it
takes for a free Brownian particle to diffuse over a length of L
in reaction coordinate space. The first regime is the Markovian
limit, where τ ≪ τD and non-Markovian effects are negligible.
The second regime is a non-Markovian regime where τD/100

≲ τ ≲ 10τD, in which a speed-up of τMFP compared to the
Markovian description is observed. The third regime occurs
when τ ≳ 10τD, where τMFP is slowed down compared to the
Markovian description due to non-Markovian memory effects.

To compute τD, we take L = 0.22 nm, the distance between
the folded state at x = 0.32 nm and the barrier at x = 0.54 nm,
the total friction γtot = ∑i=1

5 γi and obtain τD = 6.8 ns. The τi
values in Table 1 span times from τ1 = 7 fs ≪ τD up to τ5 = 5.7
ns ≈ τD. In a previous work,15 τmem = ∫ 0

∞ds sΓ(s)/∫ 0
∞ds Γ(s),

the first moment of the memory kernel, was proposed as the
characteristic time scale for a multiscale memory kernel. For
the memory kernel in Table 1, we find τmem = 1 ns, correctly
predicting the non-Markovian speed-up of τMFP that a previous
study demonstrated for Ala9.14 In this work, we will establish
τmem as the limit for the discretization time Δt, beyond which
the Volterra method ceases to produce accurate results.

In the following, the full-resolution kernel obtained for a
time step of Δt = 1 fs will serve as a reference for results using a
higher Δt. Comparing the extracted G(t) with the correspond-
ing fit according to eq 5 (red line) in Figure 2F shows no
significant differences in the long time limit. Figure 2C shows
oscillations of the extracted Γ(t) for t < 1 ps, which are
discarded by the exponential fit. As we will show later, they do
not play a role in the kinetics. For both Γ(t) in Figure 2B and
Cvv(t) in Figure 2A, the oscillations disappear for Δt ≥ 0.1 ps,
indicating that they are caused by subpicosecond molecular
vibrations. Moreover, the value of Γ(t) for t < 1 ps is
consistently attenuated as Δt increases, mirroring the same
trend observed in Cvv(0), as illustrated in the inset of Figure
2A. In contrast, Γ(t) for t > 1 ps in the inset of Figure 2B
shows an exponential decay that is well preserved for all Δt < 1
ns. The running integral G(t) in Figure 2D stays mostly
unchanged for discretizations smaller than Δt < 1 ns. This
demonstrates that the Volterra extraction scheme is accurate
for discretization times below the mean memory time, i.e. for
Δt < τmem = 1 ns.

The multiexponential kernel in eq 5 allows for the efficient
numerical simulation of the GLE by setting up a Langevin
equation where the reaction coordinate x is coupled
harmonically to one overdamped, auxiliary variable per
exponential component10,35 (see section V in the Supporting
Information). Utilizing this simulation technique, Figure 2G
compares profiles for the mean first-passage times τMFP
originating from both the folded and unfolded states. For Δt
≤ 10 ps, the τMFP values obtained from the GLE simulations
(colored lines) closely align with those derived from MD
simulations (black broken lines), thereby manifesting the
precise correspondence between the non-Markovian GLE

Table 1. Fitted Memory Function Parameters for Δt = 1 fs
According to Eq 5a

i γi [u/ps] τi [ps]

1 2.2 · 103 0.007
2 4.4 · 104 18
3 2.4 · 105 370
4 6.0 · 104 4100
5 4.6 · 103 5700
γtot = ∑i=1

5 γi 3.5 · 105

= ( )
( )

s s s

s s
mem

d

d

0

0

1000

aThe fits for Δt > 1 fs are shown in section IV in the Supporting
Information.
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description and the kinetics observed in the MD simulation. In
Figure 2E, we present the asymptotic limit limt→∞G(t),
representing the total friction coefficient γtot of the system,
estimated by summing the individual γi values obtained from
the exponential fits. When Δt ≥ 1 ns, we find that G(t) does
not show a plateau value in the long-time limit. Consequently,
this leads to a notable discrepancy between the τMFP profiles
presented in Figure 2G and their MD counterparts for Δt ≥ 1
ns. Combining the information provided in Figure 2D, E, and
G, it becomes evident that the extracted profile of G(t), the
total friction γtot, and folding times τMFP all deviate significantly
from the MD reference data when the discretization time
approaches the memory time τmem. As a result, we assert that
Volterra extraction becomes inadequate when the discretiza-
tion time exceeds the memory time τmem. In Section VI of the
Supporting Information, we demonstrate that the failure of the
Volterra extraction scheme for large Δt is mostly due to
discretization effects in the potential gradient-position
correlation function C∇Ux(t).

Gaussian Process Optimization. So far, we have
demonstrated that the Volterra equation can be used to
extract a consistent memory kernel for a wide range of
discretization times up to Δt ≈ τmem. The resulting GLE
faithfully captures the underlying kinetics when judged by τMFP

for discretizations below the memory time scale τmem but fails
when exceeding it. Given that the discretization time may
exceed the dominant memory time scale in typical
experimental settings, an improved method is clearly desirable.
In the following, we describe a scheme that is not based on the
Volterra equation and allows the extraction of Γ(t) for Δt that
significantly exceeds τmem. For this, we use a matching scheme
between the discretized time correlation functions of the MD
reference system CMD(nΔt) and of the GLE CGLE(nΔt, θ) via
the mean-squared loss

=
=N

C n t C n t1
( ( ) ( , ))

n

N

1

MD GLE 2

(6)

The type of correlation function will be specified later. The loss
is evaluated over N samples, where N is determined based on
the decay time of the correlation (see Table S3). In an iterative
optimization, the friction and memory time parameters in eq 5
that serve as the GLE parameters θ = (γ1, τ1, ..., γ5, τ5) are
updated, and the GLE is integrated using a simulation time
step δt chosen small enough that discretization effects in the
GLE simulations are negligible. For the sake of comparability,
we maintain a constant mass value of m = 31.4 u, derived using
the equipartition theorem according to m = kBT/⟨v2⟩, from the

Figure 2. Memory extraction by the inversion of the Volterra eq 4 for different discretization times Δt, using data from MD simulations of Ala9. A
Velocity autocorrelation Cvv(t). B Memory kernel Γ(t), from numerical differentiation of G(t). C Multiexponential fit of Γ(t) computed for Δt = 1
fs (gray) compared to the corresponding numerical data (dark red). The fitted parameters are shown in Tables 1 and S1. D Running integral over
the memory kernel G(t). E Total friction γtot, computed from the exponential fits of the kernels. The vertical broken gray line indicates τmem = ∫ 0

∞ds
sΓ(s)/∫ 0

∞ds Γ(s) = 1 ns. F Fit of G(t) (gray) computed at Δt = 1 fs compared to corresponding numerical data (dark red). G Comparison of the
mean first-passage times τMFP computed from the MD data (black broken lines) to τMFP obtained from GLE simulations using kernels extracted at
different Δts (colored lines).
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MD data. In fact, the precise value of m has no significant
influence on the method’s outcome since it can be
accommodated within the kernel. Furthermore, the system’s
inertial time τm = m/γtot = 0.09 fs is markedly shorter than all
other relevant time scales, leading to an overdamped system in
which the mass value is irrelevant. To find the best parameter
set, θ, the choice of the optimizer is crucial. The loss ,
defined in eq 6, is inherently noisy due to the stochastic
integration of the GLE and possesses, in general, many local
minima in a high-dimensional space. Faced with such a task,
common gradient-based or simplex methods fail.36,37 Genetic
algorithms present a powerful alternative but require many
sample evaluations.38−40 Given the computational cost of a
converged GLE simulation, we choose Gaussian Process
Optimization (GPO)41−43 as a method to minimize . GPO
builds a surrogate model of the real loss that incorporates
noise44−46 and allows for nonlocal search47,48 (see section VII
in the Supporting Information). As an active learning
technique, it guides the sampling of new parameters, improving
optimization efficiency.49−51

In principle, any correlation function can serve as an
optimization target. Figure 2A shows that the velocity
autocorrelation function Cvv(t) decays to zero after about 1
ps, while Figure 3B,G shows that C t( )xx , the autocorrelation of
the position x̅(t) = x(t) − ⟨x⟩, decays much more slowly over
about 50 ns. With such a difference in the decay times of the
two correlations, we define two losses based on eq 6, v, using
Cvv(t), and x, using C t( )xx , anticipating that the two
correlations probe different scales of the dynamics. Further-
more, we define = +vx v x, a linear combination of v
and x, to test if including both correlations in the loss
function improves the quality of the GLE parameters. The

parameter α is selected for each Δt to achieve a balanced
weighting between the two losses and is tabulated in Table S3
in the Supporting Information. For every GP optimization, 300
different θ values are evaluated via 18-μs-long GLE simulations
each. The 10 θ samples with the lowest loss form the basis for
the following analysis. When optimizing the loss function with
a discretization of Δt = 2 ps, Figure 3A illustrates that v
(blue) accurately replicates the MD reference for Cvv(t),
whereas x (orange) exhibits discrepancies. Conversely, in
Figure 3B, x perfectly reproduces C t( )xx , while v struggles
to do so. Remarkably, the combined loss function vx (green)
successfully aligns with both reference correlations simulta-
neously. To evaluate the quality of the GLE parameters, Figure
3C provides a comparison of the mean first-passage times τMFP
between GLE results from the GPO solutions and the MD
reference. We calculate τMFP for GPO-based GLE simulations
and the MD reference using identical discretizations Δt.
Notably, we observe that v fails to align with the MD
reference, whereas both x and vx exhibit consistency with it.
This outcome underscores the insufficiency of Cvv(t) in
capturing the slow kinetics of barrier crossing. A comparison
of τMFP between vx and x reveals a slightly better
correspondence to the MD reference for vx, signifying that
the inclusion of Cvv(t) improves the optimization. Examining
the obtained memory kernels in Figure 3D-E, all loss functions
yield kernels that largely conform to the exponential fit of the
MD reference but exclude the first memory component with a
decay time of approximately τ1 ≈ 7 fs. Both x and vx
correctly identify the plateau of G(t), while v underestimates
it, which we identify as the origin for the failure to correctly
predict τMFP. Next, we evaluated the performance of the GPO

Figure 3. To visualize the Gaussian Process Optimization (GPO), we plot the mean of observables over the 10 best optimization runs. We compare
GPO results using the loss v (blue), based on Cvv(t), x (orange), based on the autocorrelation of the position x̅(t) = x(t) − ⟨x⟩ and vx, a linear
combination of v and x (green). For Δt = 2 ps, we compare the observables A Cvv(t), B C t( )xx , C τMFP, D Γ̃(t) = Γ(t)/Γ(0), and E G̃(t) =
G(t)/G(0) to the MD reference (black broken line). Equally, for Δt = 10 ns, we show F Cvv(t), G C t( )xx , H τMFP, I Γ̃(t), and J G̃(t). The kernels in
D, E, I, and J, parametrized by eq 5, are plotted as time-continuous functions.
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for discretization times exceeding τmem. In Figure 3F-J, we
show the results for Δt = 10 ns, demonstrating that the GPO
approach yields similar results for all differently defined loss
functions. The discretized Cvv(t), C t( )xx , and τMFP are in
perfect agreement with the MD reference. The kernels agree
for all but the lowest times. To confirm that the increased
discretization used for the τMFP computation does not
introduce any bias into the results, we perform an additional
comparison of τMFP computed at the full-time resolution of Δt
= 2 fs (see Figure S4 in the Supporting Information). Figure 4
provides a comparison of the performance of the Volterra and
GPO approaches across various discretizations. This compar-
ison focuses on the overall friction, folding, and unfolding
mean first-passage times, as these observables are not included
in the GPO optimization process. As shown in the previous
section, the applicability of the Volterra method is limited to
discretizations below memory time τmem = 1 ns. Extraordi-
narily, the GPO approach can surpass the boundary set by the
memory time and estimates folding times with good accuracy
for discretizations up to Δt = 40 ns. This limit roughly
corresponds to the mean time it takes the system to fold, τfold

MD =
58 ns, which is given by the mean first-passage time from the
unfolded state at x = 0.98 nm to the folded state at x = 0.32
nm. For the highest discretization time tested, Δt = 240 ns, the
GP optimization still finds meaningful folding times, while
underestimating the total friction.

■ CONCLUSIONS
We investigate the effect that time discretization of the input
data has on memory extraction. As a specific example, we
consider MD time-series data of the polypeptide Ala9.
Computing a memory kernel via the inversion of the Volterra
eq 4 requires the velocity autocorrelation and potential
gradient-position correlation function. These autocorrelations
change significantly as a result of increasing time discretization,
and with it a surrogate kernel is obtained that differs from the
full-resolution kernel. Our key finding is that given a
discretization time lower than the characteristic memory
time, the Volterra approach can compute a kernel that
reproduces the kinetics of the MD system. Here, we define
the characteristic memory time τmem via the first moment of

the memory kernel, taking into account all decay times of the
kernel, and find τmem = 1 ns for Ala9. By extracting the memory
kernel from MD trajectories at different discretizations, we
show that the Volterra approach is able to reproduce the
kinetics when the discretization time Δt is below τmem.

To also cover the important regime when Δt > τmem, we
introduce a Gaussian Process Optimization (GPO) scheme
based on matching discretized time correlation functions of the
reference and the GLE system. We test losses based on the
velocity and position autocorrelation functions, for which GPO
yields memory kernels very similar to the Volterra scheme and
is able to reproduce the reaction-coordinate dynamics and the
folding times.

We demonstrate the effectiveness of GPO for discretization
times up to the folding time of τfold

MD = 58 ns, about 50 times
higher than the highest discretization for which the Volterra
approach is applicable. As elaborated in previous works,13−15

memory can affect the kinetics of protein barrier crossing on
time scales far exceeding the memory time, up to the longest
time scale of the system. Therefore, the presented GPO
approach is expected to extend the applicability of non-
Markovian analysis to a wide range of discretized systems not
suitable for the Volterra method.

In fact, the GPO analysis is not limited to data from MD
simulations but can be used whenever encountering highly
discrete experimental data. The application to data from single-
molecule experiments52−54 is a promising venue for future
research.

■ METHODS
The MD simulation data is taken from our previous
publication, see14 for details. The MD simulation has a
simulation time step of δt = 1 fs, while all GLE simulations use
a time step of δt = 2 fs. In the computation of the hb4
coordinate (eq 2), the distances are computed between the
oxygens of Ala2, Ala3, and Ala4 and the nitrogens of Ala6,
Ala7, and Ala8, where Ala1 is the alanine residue at the N-
terminus of the polypeptide of Ala9.

All analysis code is written in Python55 or Rust.56 Table S3
shows the weights α for the loss vx, which includes Cvv(t) and
C t( )xx . The memory kernels are fitted using the differential

Figure 4. A The total friction γtot = ∑i=1
5 γi obtained via the Volterra scheme (orange) is constant for discretizations of Δt < 1 ns. For Δt higher than

the memory time τmem = 1 ns, it decreases until the extraction fails. Gaussian process optimization (GPO, blue) estimates the correct friction for
much higher Δt. The horizontal gray line shows γtot

MD, the total friction extracted directly from the MD data. B The folding and unfolding mean first-
passage times from GLE simulations with kernels extracted at different discretizations, given by the mean time it takes the system to first reach from
x = 0.32 nm to x = 0.98 nm (unfolding) and reverse (folding). The MD folding times, τfold

MD = 58 ns and τunfold
MD = 26 ns, are indicated as horizontal

gray lines τmem = 1 ns and τfold
MD as vertical gray lines. The GPO estimates the correct folding and unfolding times up to Δt ≈ τfold

MD, significantly higher
than the Volterra scheme.
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evolution algorithm implemented in the Python package
’scipy’57 by minimizing a mean-squared loss, including both
the kernel and the running integral over the kernel,

= +mem mem G, where is the mean-squared loss
of the kernel and G is the mean-squared loss of the running
integral of the kernel. The resulting kernels and values for αmem
are shown in Table S1.

The GPO is performed using the ‘GaussianProcessRegres-
sor’ implemented in the Python package ‘scikit-learn’,58 using
10 optimizer restarts. When computing the loss , the
correlation functions are evaluated over a finite number of
sample points, N, always beginning with t = 0. The number of
sample points N is given in Table S3. To minimize the
expected improvement in eq S16 or maximize the standard
deviation in eq S17, we use the ‘L-BFGS-B’ method
implemented in ‘scipy’,57 starting from 200 random samples
drawn uniformly over the space of the parameters θ (see Table
S2). When performing the analysis of the GPO on the basis of
the 10 best runs, the integrations are repeated with a different
seed for the random number generator used in the GLE
integration, ensuring that the observables are reproduced by
different integration runs with the same GLE parameters θ.
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