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Introduction

Urgency of the theme. Many problems of mechanics, physics, geophysics are reduced
to solutions of partial differential equations, which do not belong to known classes of elliptic,
parabolic or hyperbolic equations. As a rule, these equations are called non-classic equations of
mathematical physics.

Apparently, for the first time non-classic equations of mathematical physic
have appeared in S.A.Chapligin’s works [9] at investigating transonic current, where they were
introduced as so-called mixed type equations.

Equations are called mixed type equations, which in the one part of the domain of definition,
they are of elliptic type, in the other of hyperbolic type. The investigation of boundary value
problems for mixed type equations were started in F.Tricomi’s [41] and S. Hellerstedt’s [13]
works, in 20-30s of the twentieth century, where for the first time there were stated boundary

value problems for the model mixed type equations
YUz + Uyy = 0,

signy|y| " gy + tyy =0, m > 0.

Nowadays these boundary value problems are called Tricomi and Hellerstedt problems. In a
new stage of the development of boundary value problems for mixed type equations they appeared
in the works of M.A. Lavrent’ev, I.A. Vekua, S.A. Xristianovich, F.I. Frankl, K.G. Guderle
and so on. In these works the importance of study problems for mixed type equations were
indicated, in particular, the Tricomi problem, which is connected with transonic gas dynamics,
magnetohydrodynamic currents with passage by the speed of sound, with theory of infinitesimal
bending surfaces, and also with many other questions of mechanics.

Nowadays many considered problems for mixed type equations are widened significantly and
also denoted by "mixed type equations". Boundary value problems for mixed type equations were
studied intensively from 1970s. It can be explained, that non-local problems contain a wide class
of local boundary value problems and during their study different questions of applied nature
appear, for example, questions of mathematical biology 25|, mathematical simulation processes,
study of laser [8], problems of plasma physics [4], [26], [17] and so on.

In previous years many works are devoted to studying boundary value problems with non-

local conditions, among them we can note works of A.V. Bitsadze [6], M.S. Salakhitdinov [33],



[36], [34], T.D. Djurayev [10], [11], A.M. Naxushyev |24-26| and their students.

In 1969, A.V. Bitsadze and A.A. Samarskiy [5] have formulated and investigated a new prob-
lem for uniformly elliptic equations, which differ from other problem. These boundary conditions
connect values of the desired solution on the boundary with inner points of the domain.

After this works, many works have appeared in different formulation, which are devoted to
problems of Bitsadze-Samarskiy type for partial differential equations. Among them we can note
works of V.A. Ilin and E.I. Moiseev [14], M..S. Salakhitdinov and A.K. Urinov [36], M.M. Smirnov
[38] and so on.

Boundary-value problems for mixed type equations with spectral parameter were studied
intensively from the second half of the seventies of the last century. It can be explained, on
the one hand, that some multivariate analogues of basic boundary value problems for mixed
type equations can be studied by their reduction (by the help of the Fourier transformation) to
problems for equations with spectral parameter. On the other hand, commonly known methods,
which are powerful tools for studying elliptic operators, were found a little adjusted for applying
to boundary value problems for mixed type equation, as a spectral theory of mixed type equations
is relative in principal, to a spectral theory of non self-conjugate operators. Therefore, not only
the problem of full description of the spectrum of these problems is very interesting, but also
the characterization of eigenvalues, i.e. those values of the spectral parameter for which the
uniqueness theorem is not valid.

Many works are devoted to study these questions. In connection with this we note a work
by T.S.Kal'menov |15] in which he proved the existence of even one eigenvalue of the Tricomi
problem for the Lavrent’ev - Bitsadze equation, a work by E.I. Moiseev [21], [20] in which sectors
are found where there is no eigenvalue of the Tricomi problem for series of mixed type equations
and a work by S.M.Ponomarev [27] where eigenfunctions and eigenvalues of the Tricomi problem
are found for the equation U,, + signyU,, — AU in a special domain.

Many non-local problems for two equations of mixed elliptic-hyperbolic type with spectral
parameter, from which, in part, follows no spectrums of this problems exists in some sectors of
the complex plane, were investigated in the works of M.S. Salakhitdinov and A.K.Urinov [36].

That is why the natural question appears: can one investigate principal classic and non-local
problems for mixed type equations with two lines of changing type of the equations with spectral
parameter and questions on the spectrum of these problems.

The aim of the work. The principal aim of this dissertation is to investigate non-local



boundary value problems for mixed type equations with two lines of changing type with spectral
parameter.

For achievement of the formulated aim:

1. Many problems are were formulated and investigated for equations of elliptic-hyperbolic
type with spectral parameter with two lines of changing type with non-local condition in the
hyperbolic part of the mixed domain, and in the elliptic part, when the boundary is a quarter
circle, with the Dirichlet conditions and the third boundary condition.

2. Non-local problem is formulated with conditions as Bitsadze-Samarskiy type in the ellip-
tic part and non-local conditions in the hyperbolic part of the mixed domain for the elliptic-
hyperbolic type equation with spectral parameter with two lines of changing type and it’s unique
solvability is proved.

3. In the case, when the boundary of the elliptic part is a quarter ring two non-local problems
are formulated for the elliptic-hyperbolic type equation with spectral parameter with two lines
of changing type and their unique solvability are proved.

4. In the class Ly spectral properties of solution of a non-local problem is investigated, in
particular, completeness is proved and a basis system of eigenfunctions is given.

Method of investigation. Investigating problems equivalently reduced to the system of
integral and sometimes integro-differential equation. In solving the obtained systems a method
from the theory of partial differential equations, a spectral theory of linear operators, the theory
of singular integral equations, a method of complex analysis, the energy integral, and also the
extremum principle are applied. For finding a system of eigenfunctions the method of separation
of variables is used.

Scientific news of the dissertation. In this work the following new results are obtained:

1. Conditions are found for the complex parameter A, ensuring uniqueness of the solution of
considered problems. Further, in the plane of the complex parameter a domain of the values A is
given, outside of which the considered non-local problems can have eigenvalues.

2. Sufficient conditions are found for uniqueness and existence of solutions of the formulated
problems.

3. At first eigenvalues and corresponding to them eigenfunctions are found for one of the most
general mixed problem, in which is given the third boundary condition on the boundary of the
elliptic part of the mixed domain and in the hyperbolic part a non-local condition is given by

some integral operator, and the completeness of eigenfunctions are proved in the class Lo.



4. A new method is developed to prove the existence of the solution of the considering problem,
i.e. by applying eigenfunctions in evident form as solutions of the formulated problem in the case,
when the Theorem of uniqueness of the solution of the considering problem is given.

Approbation of the dissertation. Results of the dissertation were discussed in the re-
publican seminar “Modern problems of the theory of partial differential equations” (Institute
of mathematics, Uzbek Academy of Sciences, heads are academicians M.S.Salakhitdinov and
T.D.Djuraev). The main results were also discussed in the republican seminars “Modern problems
of computational mathematics and mathematical physics” (National University of Uzbekistan,
head is academician Sh.A. Alimov), "Differential equations and spectral analysis"(National Uni-
versity of Uzbekistan, heads is academician of Academy of Science of Republic of Uzbekistan
M.S.Salakhitdinov and doctor of physic-mathematical science R.R.Ashurov) and in the seminar
"Real and complex analysis"of Professor H.Begehr (Freie Universitaet Berlin). Some parts of
the dissertation were reported in international scientific conferences on the theme "Mixed type
equations and contiguous problems of analysis and informatics"in 2004, city Nal’chik, Russia,
"Differential equations with partial derivative and contiguous problems of analysis and informat-
ics"in 2004 city Tashkent and also in the republican conference of young mathematics scholars
in Uzbekistan, which was devoted to 125 years of academician V.[.Romanovskiy.

Publication. Principal results of the dissertation where published in the works [48-55].

Structure of the work. The dissertation consist of introduction, three chapters and refer-
ences. Numbering of formulas are double: the first number indicate on the number of chapter,
the second number is the number of the formula in this chapter. Numbering of statements are
threefold: the first number indicate on the number of chapter, the second number is the number
of the paragraph, the third number is the number of the statement in this paragraph.

We pass to describe the substance of the dissertation.

The first chapter consist of two paragraphs. In the first paragraph is formulated and inves-

tigated one non-local problem for the equation
Sighyt,, + signzu,, — \u = 0, (L.B)

in mixed domain, in which on the boundary of the elliptic part is given a Dirichlet condition,
and in the hyperbolic part a non-local condition with a determined integral operator for this
equation, where A is a given complex number, moreover A = Ay at z > 0,y >0, A = Ay at x > 0,

y<0and z <0,y >0.



Let €2 be a finite simply-connected domain in the plane of the variables z and y, bounded at
x>0,y >0 by the line g : 22 + 3% = 1, at > 0, y < 0 by the characteristics OD : z +y = 0,
AD :x—y=1and at z < 0, y > 0 by the characteristics OC : x +y =0, BC : x —y = —1 of
the equation (L.B), and let

Q=0N(x>0,y>0), Q1 =0N(x>0,y<0), Qo=0N(x<0,y>0),

OA={(z,y):0<zx<1l,y=0}, OB={(z,y):x=0,0<y<1}.

Further, let 0,9, 0,1 and 0y, 01, be points of intersection of the characteristics of the equation
(L.B), outgoing from points (z,0) € OA and (0,y) € OB with characteristics OD, AD and OC,

BC, respectively, i.e.

T T z+1 -1 Yy y—1 y+1
9:}00:(27—2),9331:( 5 0 9 )and 00y:<_272>;‘91y:<2 Ty )

We call a function u(x,y) a regular solution of the equation (L.B) in the domain Q if: u(x,y)
€ C(Q) NCH) N C?*Q U O UNy) satisfies the equation (L.B) in Q\(OA U OB); derivatives
uy(x,y) and uy(z,y) can become infinity of the order less than one in points A(1,0), B(0,1) and
0(0,0).

Problem A,. Find a regular solution of the equation (L.B) in the domain € satistying the
conditions

u(w,y) = p(z,y), (z,y) € 7o, (1.1)

ar (2) AY? [u(0z0)] + b1 (2) AT [w(01)]
ter(z)ulz, 0) = di (), (2,0) € O4, (1.2))
ax(y) Aty [u(0oy)] + ba(y) AT [u(6y,)]

+ea(y)u(0,y) = da(y), (0,y) € OB. (1.25)

Here a;(t), b(t), c;(t) are given real-valued functions, moreover aj(t) + b3(t) # O,
t €10,1], j = 1,2, and ¢(x,y), d;(t) are in general, complex-valued functions, A%} an oper-

max

ator witch has been introduced and studied in the monographs [36],



t—m

AN = 1@ - [0 (S20) S —me o)

r—m

For the given functions we require that a;(t), b;(t), ¢;(t), d;(t) € C|[0,1], ¢(x,y) € C (),
where 0 < r = const < 1.

A uniqueness theorem for the solution of the problem A, is proved. Conditions are found
for the complex parameter A, ensuring uniqueness of the solution of the considered problem.
Further, a domain for the parameter value X\ is indicated, outside of witch the problem A, can
have eigenvalues.

Principal results of this paragraph are the following theorems:

Theorem 1.1.1. Let a;(t) =0, (j = 1,2), ReA} > 0 and one of the following conditions: a)
bj(t) = 0; b) a;(t) = 0; ¢) a;(t) # 0, bj(t) # 0, a;(t) # b;(t) and

11
[ 1Ktz 00)P dtaz <1, (G =1,2)
0 0

be fulfilled, where

x, iof J=1,
a;(t) = a;(t) + b;(t) + 2¢; (1), t= { L
y? Zf J = 27

0
o 1ai(t)Jo [Pa(t = 2)1} /a;(t) = b;(0)] =2,

O (b0 Dotz — 0} /[y~ by(0)] . =21

Kj(ta 2, AQ) =

Then if a solution of the problem Ay exists, then it is unique.

Theorem 1.1.2. If conditions

_ c;(t) 1 ()Y
a;(t) £ 0, bi(t)=0, O] (aj(t)> >0, telo,1], (1.3)
ReX? > (Im\,)?, (1.4)

are fulfilled, then the problem A, cannot have more than one solution.

Theorem 1.1.3. If conditions (1.4) and
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W) £0, amy=0, 2B _1 (Cj(t)>/ <0, telo1], (1.5)

are fulfilled, then the problem A, cannot have more than one solution.

Theorem 1.1.4. If conditions ReA? > 0, Im)\, = 0 and

(%‘(ﬂ)l <0, (bﬂ(t)>/ >0, telo1]; aj.m $ 10 5

a;(t) a;(t)

are fulfilled, then the problem A, cannot have more than one solution.

Proposition. If \; = Ay = X and one of the conditions (1.3) or (1.5) is fulfilled, then the prob-
lem Ax can have eigenvalues only outside the domain
Dy ={\: [Re\| > VZ[Im\|} .

As usually, we call eigenvalues of the problem those values A, for which non-trivial solutions of
the corresponding homogenous problem exist. This non-trivial solutions are called eigenfunctions.

Existence of the solution of the problem A, is installed by the method of integral equations,
as this investigated problem becomes a system of singular integral equations and this system
in equivalent form is brought to a system of Fredholm integral equations of the second kind.
Unconditional solvability of the system follows from the uniqueness of the solution of the problem.

In the second paragraph for the convenience we introduce the following notation —\? = u?,

Ao = i in equation (L.B). Then equation (L.B) becomes

Ku = signx ug, + signy u,, + pru = 0. (L.By)

For equation (L.Bj) one most general mixed problem is formulated and investigated in a
finite simply connected mixed domain {2, which is described in paragraph 1. In the boundary of
the elliptic part of the mixed domain the condition awu + ﬁgz = 0, and in the hyperbolic part
non-local conditions with definite integral operators are given.

A uniqueness theorem for the solution of the formulated problem is proved. When a domain
of the ellipticity equation is the sector /2 with the center in the beginning of the coordinate, by
the method of separation of variables eigenvalues ji,, ,,, are found and in evident form correspond-

ing to them eigenfunctions are constructed. The question about completeness of the system of
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eigenfunctions is studied in elliptic, hyperbolic and on the whole of the mixed domains, and also
for the structure of solution of the given problem is shown by applying a system of eigenfunctions.
Problem A. Find a regular solution u(z,y) € C'(Q2 U gg) of the equation (L.B), in the

domain 2 satisfying the conditions:

ou(w,y)
on

At [ulBr0)] +mu(z,0) =0, (2,0) € OA,

OéU(.T,y)—i-ﬁ :¢($,y), (.Clj,y) € 0o,

AR Tu(0oy)] + 72u(0,y) =0, (0,y) € OB,

where o, 3, V1, 72 are given real numbers, moreover o® 4 3% # 0; n is the outer normal to oy and
Y(z,y) is a given, in general, complex-valued function.

The validity of the following theorem is proved.

Theorem 1.2.1. If conditions -3 >0, o+ 3* #0, v; > —1/2 (j = 1,2) and Reu = 0 are
fulfilled, then the homogeneous problem Ag has only the trivial solution.

Further, we assume that the condition of the Theorem 1.2.1 is fulfilled and
we go over to polar coordinates r = 2?+9y% o = arctg%, o < r < 1,
0 < p< g), the eigenvalues f,,,, = al’") (m,n = 1,2,...) of the problem Aj are found by
the method of separation of variables, where a{**) is the m-th root of the equation a.J,, (i) +
pud, (1) =0 (at 3 =0o0r 3 #0, a/B+1v, >0, 1, >0, n € N this equation has only real

roots), where

on —1, if 7 +7+2n7 =0,
2
U, =<¢ 2n— ;arctg% if M+ +2mr#0, v=>0,

2
2(n—1) — ;6””0759% if y+7+2nr#0, v<0,

v= 14+ +%)/(n+ 7 +277), n € N. The corresponding system of eigenfunctions are
determined by
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Cnm o, [afﬁ”)\/ﬁ + yz} sin(vne + ¢o), (z,y) € Qo,

Vn/2 I/n/2
Tr+y Tr—y
1 — X
( +71)<$_y> 71<x+y> ]

umm(x’ y) = Xjun [ar(zn) T2 — yQ} , (x’ y) = le (16)

Un /2 Un /2
y+x Yy—
1 — X
( +72)<y_x> 72<y+a:> ]
X‘]Vn [agn) V y2 - IE2:| ) (xvy) S Q27

where ¢y = arcctg(l +2v) and ¢, k{2, k3), # 0 are arbitrary real constants.

k,l

)
n,m

(=1)" k2

If we go over to polar coordinates r = /2 + 92, o1 = arctgf, 0<r<1,0<p; < g), then
Y

we obtain the second form of the system of eigenfunctions

(_1)ncn,m<]1/n {a%n) \/ x2 + y2] Sin(l/n@pl + 90(1))7 (23, y) € QOa

vn /2 vn /2
r+vy r—y
1 — X
( +%)<x—y> %<x+y> ]

Un’m<I,y) = XJVn |:a£rl:n) V 7?2 — y2:| ) (l’,y) € Qh (17)

Un /2 Un /2
Y+ x Yy—x
1 - X
( —i—’Yz)(y_x) 72<y—|—x> ]

9 (a:,y) GQQ'

(~1)

)
n,m

S
3[\')

Let

Go={(v,7): n>-1, 2>-1, n+r>-1},
Grs={(v1,7): m>-1, v<—-1, m+rn<-1}, ks=12 k#s.

Then the following theorems are valid.

Theorem 1.2.2. If (71, 72) € GoUG12 ((71,72) € Go U Ga1), then the system of eigenfunctions
(1.6) ((1.7)) of the problem A, is complete in Ly ().

Theorem 1.2.3. If 3 = 72 = 0, then the system of eigenfunctions (1.6) ((1.7)) of the
problem A, is complete in Ly(Qy) and Ly(Sy).
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Theorem 1.2.4. If vy = 72 = 0, then the system of eigenfunctions (1.6) ((1.7)) of the
problem Ag is not complete in Ly(£2).

At the end of this paragraph we assume, that the conditions of the Theorem 1.2.1 are fulfilled.
Then, taking the propositions of the Theorems 1.2.2-1.2.4 for those values of the parameter

1 # o) into account, the solution of the problem Ag is found in the evident form

- o, (NT> .
e AT MG

vn /2 vn /2
r+y rT—y
1 —_— — X
( +71)<$_y> 71<:B—l—y> ]

(z,y) € N, (1.8)

Un /2 Un /2
T+ T —
(1‘|‘72)< y) —72< y) X
n:l\/2+4’}/2+4’}/3 r—=y 5U+y

y ‘]I/n [,u\/ y2—$2}
ady, (1) + By, (1)’

i fn
n=11/2 + 4y1 + 4~}

u(z,y, 1) =

One essential result of this paragraph is the following theorem.

Theorem 1.2.5. If af > 0, a®> + %> # 0, v, > —1/2 (j = 1,2), Reu = 0, f(p) €
C°0,7/2]), 6 € (0,1], then the problem Ag has a unique solution and it is presented in the
form (1.8), where () = F(r, @)l = ¥(z,9)],,.

The second chapter consists of four paragraphs and in it the Bitsadze-Samarskiy type
problem is investigated for the equation (L.B). Here it is also assumed, that \ is a given complex
number, moreover A = Mg at x >0, y >0, A= atx >0, y<Oand A= X at x <0, y > 0.
In this chapter those notations are used which we were used in the first chapter.

§ 2.1 of the second chapter is devoted to preliminary information, which is needed for proving
the theorem of uniqueness of the solution of the studied problem.

In § 2.2 of the second chapter the formulation of the problem for equation (L.B) is given.

Problem BS,. Find a regular solution of the equation (L.B), in the domain {2 satisfying the

following conditions
U(SL’,y) = Zak(x,y)u(’r’kx,rky)—I—g(l‘,y), <x7y) S 5-07
k=1

AN [u(040)] + c1(@)u(z, 0) = dy(z), (z,0) € OA,
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Ay [ulBoy)] + ea(y)u(0, y) = da(y), (0,y) € OB
where ¢;(t) (j = 1,2) are given a real-valued functions, and a(z,y)
(k =1,...,n), g(z,y), d;(t) are given, in general, complex-valued functions, rq,...,r, are giv-

en real numbers, moreover 0 < ry < ry < ... <r, < 1. From the given functions we require, that
c;(t), d;(t) € C%M[0,1], where 0 < r = const < 1, ay.(,y), g(x,y) € C(5o), k=1,...,n.

In § 2.3 of the second chapter the theorem of uniqueness of the solution of the problem BS) is
proved. Conditions for the complex parameter A\ are found, ensuring uniqueness of the solution of
the considering problem. Further, the domain of the values of the parameter A is shown, outside
of this domain the problem BS), can have eigenvalues.

Principal result of § 2.3 is the following theorem.

Theorem 2.3.1. Let

Reg > dg = maz(|A{], [Xs]), (2.1)
1, .

and for some & € [03, ReAd] the inequality

n Srex y or

> fas(z, o) [eeéi;yy] <1, (xy) € (2.3)
15 fulfilled.

Then, if the solution of the problem BS) exists, then it is unique.

Proposition. If \j = A\; = Ay = X and suppose the conditions (2.2), (2.3) are fulfilled. Then
the problem BS) can have eigenvalues only outside of ImA = 0.

In § 2.4 of the second chapter sufficient conditions for the given functions are determined,
under which the existence of a solution of the problem BS) is investigated by the help of integral
equations. The investigated problem becomes a system of three Fredholm equation of second
kind, the solvability at which follows from the uniqueness of the solution.

The third chapter consist of three paragraphs, and in it two non-local problems for equation
(L.B) in a mixed domain are investigated, the boundary of the elliptic part of which is a quarter
ring.

§ 3.1 of the third chapter is devoted to the formulation of the problems I'y and I'y.
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Let A be a finite simply-connected domain of the plane of variables Oy, bounded at = > 0,
y > 0 by the lines o¢; : 22> +y*> =1, 002 : 22 + 9> = p?, (0 < p < 1) and for zy < 0 by the
characteristics * +y = p, * —y = %1 of the equation (L.B).

Let us introduce the notations:
No=AN(z>0,y>0), Ay=AN(z>0,y<0), As=AN(zx<0,y>0),
L={(z,y):p<z<ly=0}, L={(z,y):2=0p<y<l},
Ope() = (P +2)/2; (p—2)/2),  Opy(y) = ((0—9)/2 (P+¥)/2),

Oor (2) = (( +1)/2; (2 =1)/2),  On(y) = ((v—1)/2 (y+1)/2).

We call a function u(z,y) a regular solution of the equation (L.B) in the domain A\ (/; U l5),
and the derivatives u,(x,y), uy(x,y) can become infinity of order less than one in the points
A(p,0), B(1,0), C(0,1) and D(0, p).

Problem I'). Find a regular solution of the equation (L.B), in the domain A satisfying the

conditions

u(z,y) € C(A)NCHA) N C*A\L\L);
u(@,y) =¢(x,y),  (2,y) €005, (5 =1,2); (3.1)
a1 (2) AP? [u(Bye)] + b (2) AT [u(B,1)]
+c1(z)u(x,0) = di (), (2,0) € I;; (3.21)
as(y) Ay [u(Bpy)] + 2(y) ATy [u(6h,)]

+ea(y)u(0,y) = daly), (0,y) € L. (3.22)

Problem I'}. Find a regular solution of the equation (L.B), in the domain A satisfying the

boundary condition (3.1) and the conditions

U,(l’,y) - C(Z) N Cl(Z\O'Oj) N CQ<A\[1\IQ), (j = 1, 2),

ay(z) AL Licu(em)] + by (z) A} [;ﬁcu(eﬂ)]

+C1($)§yu($, 0) = dq(z), (x,0) € I; (3.31)
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[d [ d
AR | 0| + 0045 | £ucon)
0
+ea(y) 5 -u(0,y) = da(y), (0,y) € L. (3-32)
Here  a;(?), b;(t), ci(t) are  given  real-valued  functions, moreover

ai(t) + b5(t) # 0, t € [p,1], 5 = 1,2, and @;(z,y) and d;(t) are given, in general, complex-
valued functions.

For the given functions we require that a;(t), b;(t), ¢;(t), d;(t) € C* (T]) N CO+RD (1),
vi(z,y) € C(5gj), where 0 < r = const < 1 and k =1 in problem Iy and k& = 0 in problem I'}.

In the second paragraph of the third chapter the problem T is investigated. A theorem
of uniqueness of the solution is proved. Conditions for the complex parameter \ are found,
ensuring uniqueness of the solution of the considered problem. Further, the domain of the values
of parameter A\ is show, so that outside of this domain the non-local problem can have eigenvalues.

The principal results of this paragraph are the following theorems.

Theorem 3.2.1. Let a;(t) = 0, ReA? > 0 and one of the following group of conditions is
fulfilled: a) b;j(t) =0; b) a;(t) =0; ¢) a;(t) #0, bj(t) 0, a;(t) # b;(t) and

1 1
//|K]tz)\2\ dtdz <1, j=1,2,
p p

where
T, if g =1,

a;j(t) = a;(t) +b;(t) +2¢;(t), t= {

Y, if  J=2

0
o7 1ai()Jo [Pt = 2)1} /a;(t) = b;(0)], =2,

o i ol — O a0~ b,0] . =2t

Kj(t7 2, AQ) =

Then, the solution of the problem T} exists and is unique.

Theorem 3.2.2. Let one of the following group of conditions is fulfilled

1) ReA? > (Im\y)?;
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2) ReA? > (Im)y)?;
a;(t) #£0, a;(t) =0, ng; > —;, (ng) <0, telp1]; (3.5)
3) ReA? >0, Im\, = 0;
aj(t) # 0, aj<t> 5—& 0, bj<t> 5—& 0, (36)

a;(1)

Then the problem Ty cannot have more than one solution.

Proposition. If A\; = Ay = A and one of the conditions (3.4) or (3.5) are fulfilled, then the
problem I'} (consequently, the Tricomi problem) can have eigenvalues only outside of the domain
Dy = {\:|Re)| > v2|ImA[}.

Under the determined sufficient conditions for the given functions, the existence of the solution
of the problem T} is proved.

In the third paragraph of the third chapter problem I'} is investigated. The theorem for
uniqueness of the solution is proved. And here conditions for the parameter A also found, ensuring
uniqueness of the solution of the problem I'}. Further, the domain of the values of the parameter
A is shown, outside of which problem I'} can have eigenvalues.

Principal results of this paragraph are the following theorems.

Theorem 3.3.1. Let 8;(t) =0, j = 1,2. Then if ReA? > 0 and one of the following group of
conditions: a) b;(t) = 0, j = 1,2, b) a1 = 0, j = 1,2,
c) aj(t) = 0, bp(t) # 0, j, k = 1,2, j # k is fulfilled, then the solution of the problem T}
exists and is unique, where 3;(t) = a;(t) — b;(t) — 2¢;(t).

Theorem 3.3.2. Let one of the following group of conditions be fulfilled

1) ReA? > (Im),)?,

<;, (Zg) <0, telp1); (3.8)

, 1 !
bi(t) ~ 2’ <bj(t)> <0 telpdl (39)
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3) ReA? >0, Imh, =0,

ﬁ](ﬂ 7& 07 aj(t) §é 07 b](t) §é 07 (310)

a;(t)’ bi(t) Ca) b
(@'(t)) =0 (@-(t)) <0, telp1); , > 0. (3.11)

Then for the problem T'} there cannot exist more than one solution.

Proposition. If A\; = A; = X and one conditions of group (3.8) or (3.9) is fulfilled, then the
problem I'? (consequently the Tricomi problem) can have eigenvalues only outside of the domain
Dy = {\:[Re\| > V2 [Im)\|}.

Under the determined sufficient conditions for the given functions the existence of the solution
of the problem I'} is proved.
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Chapter 1

NON-LOCAL PROBLEMS AND THEIR SPECTRAL PROPERTIES FOR
MIXED TYPE EQUATION, WHEN THE DOMAIN OF ELLIPTICITY IS A
QUARTER CIRCLE

In this chapter, the existence and uniqueness of the solution to the boundary value problems
with displacement for the elliptic-hyperbolic equation with spectral parameter with two perpen-
dicular lines of changing type of the equation in a finite simply connected mixed domain are

studied, i.e. for the following equation

Mu = signy Uy, + signz u,, — \?u = 0. (L.B)

In the case when the uniqueness theorem does not hold eigenvalues and corresponding eigenfunc-

tions are found for one most general mixed problem for the equation

Ku = signa Uy, + signy u,, + p*u = 0. (L.By)

Completeness of the system of eigenfunctions is investigated in the class Lo, where A, p are given

complex numbers, moreover A =X at t >0,y >0, A= atz >0, y<0and x <0,y > 0.
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§ 1.1. Non-local problem with Dirichlet condition on the boundary of the elliptic

part of the domain
1.1.1. Formulation of the problem A,

Let €2 be a finite simply-connected domain in the plane of the variables x and y, bounded at
x >0,y > 0 by the line ¢ : 22 +y?> = 1, at x > 0, y < 0 by the characteristics OD : x +y = 0,
AD :x—y=1and at z < 0, y > 0 by the characteristics OC : x +y =0, BC' : x —y = —1 of
the equation (L.B), and let

Q=0N(x>0,y>0), Q1 =0N(x>0,y<0), B=0N(x<0,y>0),

OA={(z,y):0<z<1l,y=0}, OB={(z,y):2=0,0<y<1}.

Further, let 0,9, 0,1 and 6o, 01, be the points of intersection of the characteristics of the
equation (L.B), outgoing from the points (z,0) € OA and (0,y) € OB with characteristics
OD, AD and OC, BC, respectively, i.e.

xr x r+1 x—1 yy> <y—1 y—l—l)
z0 (27 2> s Uzl ( 9 ) 2 > and Oy ( 2a 9 s Vly 9 ) 9

We call a function u(z,y) a regular solution of the equation (L.B) in the domain € if:

a) u(x,y) € C(Q) NCHO) NC?(Q U N UNy) satisfies the equation (L.B) in Q\(OAUOB);

b) the derivatives u,(z,y) and u,(x,y) can become infinite of order less than one of the points
A(1,0), B(0,1) and O(0,0).
Problem A,. Find a regular solution of the equation (L.B) in the domain € satisfying the
conditions
u(@,y) =¢(z,y),  (z,y) €0, (1.1)
a1(2) Ao [u(8e0)] + 1 (2) ATZ? [u(B:1)]
+ec1(z)u(x,0) = dy(x), (z,0) € OA, (1.2)

as(y) Agy” [ul(Boy)] + b2(y) ATy [u(b,)]

+ea(y)u(0,y) = da(y), (0,y) € OB. (1.29)
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Here a;(t), bj(t), c;(t) are given real-valued functions, moreover a3(t) + b3(t) # 0,
t €10,1], 5 =1,2,and p(z,y), d;(t) are, in general, complex-valued functions, A™? is an operator

which has been introduced and studied in the monograph [36],

N ECIE=

From given functions we require that a;(t), b;(t), ¢;(t), d;(t) € CH[0,1], o(x,y) € C(F0),

An)\[f

L JO[)\\/x— )z — 1) dt.

where 0 < r = const < 1.

Besides, at a;(t) # 0 we require that

even for one value of k£ (k = 1,2) and the compatibility condition

d1(0) [a2(0) + c2(0)] = d2(0) [a1(0) + ¢1(0)] (1.4)
is fulfilled, if (1.3) takes place for k = 1, 2.
1.1.2. Uniqueness of the solution of the problem A,

The main functional relation in 2; and (5.

We consider the equation (L.B) in the domains €, and .

As in [39], it is not difficult to prove, that, if 7 (x) = u(x,0), v1(x) = uy(x,0), (y) =
u(0,y), v2(y) = u:(0,y) and 7;(z) € C[0,1] N C*(0,1), v;(x) € C*(0,1), moreover 7;(t), v;(t) €
L[0,1], j = 1,2, then any twice continuously differentiable solution of equation (L.B) in the

domain Q; (j = 1,2) can be represented as

u(e,y) = 5 I +9) + 7500 — )] +
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+; 7yyj<t>°]0 {)‘2\/(55—’5)—2—3/2} dt + );y 7yTj(t) h [)\2 Skl s dt. (1.55)

z—y z—y (.2? - t)2 - y2

Using formulas (1.5;) and conditions (1.2;), after some calculations we have the following

equality

(t)75(t) = 2d;(t) — 75(0)a;(t)Jo [Aat] — 75(1)b;(t) Jo [A2(1 — )] +

[vie o Dot = 2] dz + 50 [vi()hoDalz = 0] dz, j=1.2,  (16)

t

o
+a;(t)

where 0 <t <1,

e, it j=1
a;(t) = a;(t) +bi(t) +2¢(t), t=
g, if =2

Equalities (1.6;) provide a basic functional relation between 7;(¢) and v;(t) on the segments
OA and OB attained from the hyperbolic part of the mixed domain 2.

By virtue of conditions (1.3) and (1.4) the constant 71(0) = 7(0) = u(0,0) is identically
defined from conditions (1.2;) j =1, 2.

As one can see from the relations (1.6;) there are the following cases: «;(t) = 0, j = 1,2;
a(t) £ 0,5 = 1,2 a;(t) =0, alt) # 0. jik = 1,2, j # k.

Note, that in [40] the uniqueness of the solution to the Tricomi problem for the equation (L.B)
is proved by the method of energy integral by using the Laplace transformation. But this method
is inapplicable for the non-local problems on the hyperbolic part of the domain of equation (L.B).
The problem Ay was considered in |44] for the case, when A is a real number. We shall prove the
uniqueness and existence of the solution to the problem Ay, when A\ is a complex number, using
the method which is described in [36].

The following Lemma plays the essential role in proving the uniqueness theorem.

Lemma 1.1.1. Let u(x,y) be a reqular solution of the equation (L.B) in the domain Qo which

15 equal to zero on To. Then the equality

(ReA? — 62) //|19|2dxdy+//|w|2dazdy +//|V19|2dxdy+//|Vw|2dxdy+
) o a o
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1 1
+Re/625x7'1(:1:)1/1(x)d3;+Re/625y7'2(y)u2(y)dy =0, (1.7)

0 0
is walid, where V(x,y) = u(z,y) in Q) = QN (@ > y); way = eVu(r,y) in
Q = N < y), VW € R V = %7 + £ is the nabla operator.

B
Moreover ¥(x,y) = w(z,y) on OK :y = x; T1(z) = u(x,0), v1(x) = uy(x,0), T2(y) = u(0,y),
vo(y) = u.(0,y), where W(x,y) denotes the complex conjugation to u(x,y).

Proof. Let u(z,y) be a function satisfying the conditions of Lemma 1.1.1. We divide the
domain () into two parts by drawing the straight line y = x from the origin of the coordinates
to the point of intersection with the curve og. Denote this point by K. Assume that €2 is the
domain adjacent to the axis Ox, and €2 is the domain adjacent to the axis Oy. Consider the

5z

function 9¥(z,y) = e**u(z,y) and w(x,y) = e®Yu(x,y) in domains ) and Qf, respectively, where

0 € R. Then, equation (L.B) becomes the forms

LY =00 + 0y — 200, + (02 = A9 =0 in

Lw = wey + wyy — 20w, + (2 = M)w=0 in €.

Multiplying LY = 0 and Lw = 0 with the functions J(x,y) and ©(z, y), which are the complex

conjugate to ¥(x,y) and w(x,y) respectively, then we rewrite them in this forms

D0y)s 4 (09,), — 2600, — V0, — 0,9, — (N2 =) [9°=0 in Q)
Y’y yry 0

(@we )z + (@wy )y — 200w, — Wews — Tywy — (A2 =0 w]>=0 in Q.

Let o0f = {(zy:22+2=01-2)2}, U and Q" be the domains
restricted by curves o5, y = 6, y = x and o5, v = 01, y = x respectively
(¢ and §; are sufficiently small positive numbers). If we integrate the last equalities on the do-
mains Q0" and Q. then using the Green formula and taking the real part of the obtained

equalities, we obtain

(ReA2 — 6?) / / 0|2 dwdy + / / VO ddy+
Q/(5,51) Q/(s,él)
0 0

+Re / I(I,dy — V,dz) + S Re / 92 dy = 0,

1(,61) /(e,81)
00,1 09y
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(ReX? — / / w[2dzdy + / / Vw|2dedy+
H(s é1) N(s 61)
+Re / U(wydy — wydz) + dRe / |w|” dz = 0.
896’(5:61) 896’(5151)

If we take the limit when 6; — 0, ¢ — 0 and combine the obtained equalities taking into
account that u|;, =0 and ¥ =w on OK : x =y, we get the equality (1.7).

Now we investigate the uniqueness of the solution of the problem A,.

Case 1. Let «;(t) =0, j=1,2.

Theorem 1.1.1. Let a;(t) =0, (j = 1,2), ReA} > 0 and one of the following group condi-
tions: a) bj(t) =0; b) a;(t) =0; ¢) a;(t) #0, bj(t) 0, a;(t) # b;(t) and

11
//\Kj(t,z,AQ)\thdz <1, (j=1,2) (1.8)
00

be fulfilled, where

x, Zf J= 17
(1) = ay(t) + by(1) + 20,(0), 1= { o
Y, I]’f J= 27

0
o7 1ai(t)Jo ot = 2)1} /a;(t) = b;(0)], =2,

i{b () Jo Moz — )} / a;(t) — (1)), 2>t

Kj(t7 2, AQ) =

Then if a solution of the problem Ay exists, then it is unique.
Proof. Let u(x,y) be a solution of the homogeneous problem Ay and «;(t) =0 (j = 1,2).
Then, the relation (1.6;) becomes

1

/VJ )Jo Da(t — 2)] dz + by /u] ) o Palz — £)] dz = (1), (1.9;)

t

where %(t) = Tj(O)CLj(t)JO [)\Qt] + T](l)b](t)Jo [/\2(1 - t)] s j = 1, 2.
a) Let b;j(t) = 0. If we substitute ¢t = 0 in (1.9;) and taking into account the condition
a;j(t) # 0, we find that 7;(0) = 0. Then, (1.9,) has the form

t)/yj(z)Jg Do(t — 2)]dz=0, j=1,2



25

From these integral equations, by virtue of a;(t) # 0 it follows, that v;(t) =0, j = 1,2.
b) Let a;(t) = 0. Then, by the same way as in a), from (1.9,) we have

1
/y] Vo (2 — 1)] dz = 0,
t

by virtue of b;(t) # 0, we obtain v;(t) =0, j =1, 2.
¢) Let now a;(t) # 0, b;(t) # 0, a;(t) # b,;(t). Taking into account 7;(0) = 0, 7,(1) =0, and
differentiate the equality (1.9;) with respect to ¢, we obtain the Fredholm integral equation of

the second kind

1
—l—/uj it 2, M)dz =0, j=1,2.
0

By virtue of the condition (1.8) this equation has the unique solution v;(t) = 0 [19].

From above follows that the functions v;(t) = 0 (j = 1,2 ) are uniquely determined in the
case, when the functions a,(z), bi(x) satisfy one of the conditions a), b), ¢), and the functions
as(y), ba(y) satisty the rest of these conditions (for example a;(z), by(z) satisfy b) and ay(y),
ba(y) satisfy a) or ¢)).

Consequently, at fulfilling each of the group conditions of Theorem 1.1.1 we have v;(t) = 0
j = 1,2. On the other hand, by virtue of u|; = 0 the equality (1.7) is valid. If we put § = 0 in
(1.7), with regard to ReA? > 0 and v;(t) = 0, j = 1,2, we obtain ¥(z,y) = 0, in Qp, w(z,y) =0
in Q) i.e. u(z,y) = 0 in Q. From here the statement of Theorem 1.1.1 follows.

Case 2. Let «a;(t) #0, j=1,2.

We consider the following cases a) b;(t) = 0,7 = 1,2, b) a;(t) = 0,5 = 1,2 and c¢) a;(t) # 0,
bi(t) £ 0, =1,2.

a) Let b;(t) =0, j =1,2.

Theorem 1.1.2. If the conditions

(1) £0, bty=0, 91 (Cﬁ(t)>/zo, te0,1], (1.10)

ReA? > (Im)y)°, (1.11)
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are fulfilled, then the problem A, cannot have more than one solution.

To prove Theorem 1.1.2, we shall use

Lemma 1.1.2. Let (—§) > |ImAq| and the condition (1.10) be fulfilled. Then the inequality

Re/ e (£) vy (t)dt > 0. (1.12)

is valid for d;(t) = 0.

Lemma 1.1.2 can be proved by a similar method as it was used in [36].

Proof of Theorem 1.1.2. Let u(z, y) be a solution of the homogeneous problem A,. Then the
inequality (1.12) is true for § = — [ImAs| by (1.10) according to Lemma 1.1.2. On the other hand
the equality (1.7) is valid because of u|, = 0 according to Lemma 1.1.1. If we set § = — [Im ;|
in (1.7) and taking into account the inequality (1.12) we have

(ReX? — (ImAo)?) //w|2da:dy+// w[2dzdy| +

+//|V19| dﬂ?dy—l—//!VM dxdy—l—ZRe/e%tT] t)w;(t)dt = 0.

QII

From here and by virtue of the condition (1.11) we obtain that ¥(z,y) = 0 in Qp, w(x,y) =0
in ﬁg, i. e. u(z,y) = 0 in Qp, from which the statement of Theorem 1.1.2 follows.

b) Let a;(t) =0, j =1,2.

Theorem 1.1.3. If condition (1.11) and

a;(t) £0, a;(t) =0, C{(t)>—1, (Cj(t)>/go, te[0,1], (1.13)

are fulfilled, then the problem A, can not have more than one solution.
The proposition of this theorem follows from Lemma 1.1.1 and from the following lemma.
Lemma 1.1.3. [36] Let 6 > |ImAs| and the conditions (1.13) be fulfilled. Then (1.12) is true
for d;(t) = 0.
The proof of Theorem 1.1.3 is similar to the proof of Theorem 1.1.2.
c¢) Now let a;(t) # 0, b;(t) # 0.
Lemma 1.1.4. Let 7;(0) = 0, 73(1) = 0, |§] > [ImAs};
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ai(t) 20, a;(t) 0, bi(t) £0; (1.14)
ajl(]-) Z O, 5aj1(t) S 0, a;l(t) S 0, t e [0, ].], (115)
b;(0) =0, Sbu(t) >0, W, (t)>0, tel0,1], (1.16)

where aj1(t) = a;(t)/a;(t), bj(t) = bj(t)/a;(t), 7 = 1,2. Then the inequality (1.12) is valid for
d;(t)=0,j=1,2.

The proof of this lemma is similar to the proof of Lemmas 1.1.2 and 1.1.3.

Remark 1.1. The conditions (1.14)-(1.16) and || > |ImAs| are fulfilled simultaneously only
at 6 = ImM, = 0.

Indeed, if § > 0, then by the second condition from (1.15) the inequality a;1(t) < 0 is valid.
Hence, by virtue of a;y(1) > 0 follows that a;;(1) = 0. Thus, a;:(1) = 0, a;:(t) <0, aj,(t) <0,
t € [0,1]. Tt is easy to see that the function possessing these conditions is identically equal to
zero, i.e. aji(t) = 0, which is impossible.

If § < 0, then by conditions (1.16) the relation b;i(t) < 0 is valid. From here, taking into
account b, (t) > 0, Vt € [0,1], we have bj;(t) = 0, which contradicts the condition bj;(t) # 0.
Consequently, 6 = 0, but then ImA; = 0.

Thus, it is necessary to set d = 0 in order to obtain the inequality (1.12). Then the following
lemma is valid

Lemma 1.1.4y. Let 7;(0) = 0, 7;(1) =0, ImAy =0 and the conditions

a;(t) bi(t)\ . a;(1)  b;(0)
(Oéj(ﬂ) =0 (aj(t)> 20, tel01); T >0 (1.17)

are fulfilled. Then the inequality

M/y@wwﬁzo (1.18)

is valid for d;(t) =0, j =1,2.
From Lemmas 1.1.1 and 1.1.4; follows the following result.
Theorem 1.1.4. If conditions (1.14), (1.17) and ImAy = 0, ReX? > 0 are fulfilled, then the

problem Ay cannot have more than one solution.
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The proposition of this theorem generalizing the results of [44], which has been obtained for
Al =X =M)ER.

Case 3. Now let a;(t) =0, ap(t) #0, 5 # k, j, k=1,2.

Let aj(x) = 0, as(y) # 0 and the functions a1(x), bi(x), ¢1(z) satisfy one of the conditions
a), b), ¢) in the case 1 for j = 1, and the functions as(y), ba(y), c2(y) satisty one of the conditions
a), b), ¢) in the case 2 for j = 2. Then from Theorems 1.1.1, 1.1.2, 1.1.3 and 1.1.4, we have
v1(z) = 0 and Rejl’e%yﬂ(y)yg(y)dy > 0 for the homogeneous problem A,. Consequently, in this
case when fulﬁllilfg the condition (1.11) from (1.7) follows u(z,y) = 0, (z,y) € Qo. From here
follows uniqueness of the solution of the problem A, for ay(z) = 0, as(y) # 0.

Remark 1.2. The uniqueness of the solution of the Tricomi problem follows from Theorem
1.1.2 (1.1.3) for ¢;(t) = 0, (j = 1,2) for the equation (L.B). When ¢;(t) = 0, (j = 1,2),
A1 = Ay = X the theorem about uniqueness of the solution of the Tricomi problem for the
equation (L.B) was obtained in [40] by using the Laplace transformation.

Remark 1.3. For \; = Xy = A condition (1.11) is equivalent to the inequality

IReA| > V2 |Tm)| . (1.19)

From this remark and Theorems 1.1.2 and 1.1.3 follows the following result.
Proposition. If \; = Ay = A and one of the conditions (1.10) or (1.13) is fulfilled, then the
problem A, can have eigenvalues only outside the domain D; = {)\ : |ReA| > V2 ]ImA\} :

1.1.3. Existence of the solution of the problem A,

We consider five cases for the investigation of the existence of the solution of the problem A,

in correspondence to Theorems 1.1.1 - 1.1.4 and supposing that
p(x,y) = (xy) e’ (z,y), ¢ (z,y) €C@0), e>1 (1.20)

1. Let the conditions of Theorem 1.1.1. be fulfill. Then the relation (1.6;) becomes to
form (1.9;).
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a) Let b;(t) =0, j = 1,2. We require in addition that d;(0) = 0. Then by virtue of a;(t) # 0

we have the integral equation

From here we find

a0 | 4(0)
vi(t) = —20% [aj(t)l , (1.21)
where [36]

CO2 [ f(x)] = sign(x —m) {dcif(x) + ;/\2 / f)Jy [Ma —t)] dt} ) (1.22)

b) Let a;(t) = 0, j = 1, 2. If we require in addition d;(1) = 0 and taking into account b;(t) # 0,

we obtain the integral equation

/yj(z)JO Do(z — )] dz = —2

Then, we have

v;(t) = =207 ldi (ﬂ . (1.23)

¢) Let conditions of ¢) of Theorem 1.1.1. be fulfilled. Then if we proceed similarly as in the

proof of Theorem 1.1.1, we obtain the Fredholm integral equation of the second kind

vilh) + [ Kt 2, da)v;(2)dz = g;(0)

where g;(t) = 1;(t)/[b;(t) — a;(t)]. By virtue of the condition (1.8) the last equation has a unique

solution [19]. It can be represented as

vil) = g5(t) = [ Ry(t, 2, 0a)g;(2)dz, (1.24)
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where R;(t,z,A2) is the resolvent of the kernel Kj(t,z, A\2). Consequently, if the conditions of
Theorem 1.1.1 are fulfilled, then unknown functions v;(z) j = 1,2, are uniquely found by the
corresponding additional conditions from the equation (1.9;) and it has determined one of the
formulas (1.21), (1.23), (1.24). Therefore in this case the problem A, is equivalent to the problem
N for finding a regular solution of the equation (L.B) in the domain €, satisfying boundary
condition (1.1), and wu,(x,0) = v1(x), u,(0,y) = wa(y), 0 < x,y < 1, where v;(t) € C*(0,1) is a
known function.

It is easy to prove, that the solution of this problem exists, is unique and can be represented

as

u(w,y) = wow,y) + [ [ Rigmw.p)uo(€,m)dedn, (1.25)

where [33]
0
uo(z,y) = /@(ﬁ,n)%G(é,n;x,y)dS

1 1
— [ OG0, y)dt — [ 120G (0,62, y)dt,
0 0

1 1— (222
G“”:%O“@ﬂ; ez

Laplace equation in Qg; R(&,m;z,y) is the resolvent of the kernel (—A?)G((, 2); n is the inner

—In

> is the Green function of the problem N for the

normal to g, and s is the length of the arc counted from the point A in the positive direction;
(=&+1in, z=x +1y.
The solution of the problem A, is determined in the domains €2; and 5 by the formulas

(1.5;), moreover, here 7 (z) = u(z,0), 72(y) = w(0,y) is determined from (1.25).

2. Let the conditions of Theorem 1.1.4 be fulfilled. We assume in addition that a;(t) #
b;(t), vt € [0,1], 7 = 1,2. Considering the problem N for the equation (L.B) in the domain ),
we obtain formula (1.25), from which we get the basic relations between 7;(t) and v;(t), j = 1,2,
got from the elliptic part of the mixed domain 2y, setting first y = 0 and then z = 0:

1 — 222
22 _ t2

1+ 22t?

22 42 :

1
1
dz + —/Vk(z) In
i

n+ 2 [um
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1
+ [ nz) Jltzdz+/V2 Hi(t, 2)dz = f,(0),
0

where 0 <t <1, j,k=1,2, 7 #k,

Hun(r,2) = / / R(E,m: 2, 0)G (=, 05 €, m) €
Hi(a,2) / R(E.1::2,0)G(0, 2:€, m)dEn
Han(y, » / / R(E,1:0.9)G (=, 0: € n)ddn

Haaly, 2 / R(E.1:0,9) G0, 2 €, m)ded:

_ )
=/s@(€,77 G(&,m;2,0) +//R §1,m; o, O>a G(&,m; &, m)dédm | ds;

9,
- [eten e n o)+ [2 [ R(&m:0.) 5 -GIE i1, m)dEad | ds.

(1.26)

(1.27)

Elimination 7;(¢) from (1.6;) and (1.26), and differentiating them with respect to ¢, we obtain

1 — 22¢2

A ()s(t) + ff/uj(z) <22it2 R )dz

where

(1.28)

(1.29)
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frj () = f3(8) + {75(0)a; () Jo[Aat] + 75(1)b;(t) Jo[A2 (1 — )] — 2d(t) } /v (F)

For simplicity we additionally assume, that A;(t) = Ay(t) = A(?).

If we introduce the notations

vi(t) +wa(t) = (t), vi(t) = va(t) = pa(t), (1.30)

we can rewrite the system (1.28) as

’ (1.31)
at pf 2 22
AlDpa(t) + / S T | re(2)dz =Fa(0),
where
Fi(t) = fu() + fiz(t)
1 1
—/yl(z) [M:1(t, 2) + Moy (t, 2)] dz — /VQ(Z) [Mia(t, z) + Mao(t, 2)] dz,
0 0
Fy(t) = fu(t) — fia(t)
1 1
/ M11 t Z Mgl(t, Z)] dz — /VQ(Z) [Mlg(t, Z) — M22<t, Z)] dz.
0 0
Taking the identities
=241+ 257, y = 2t1(1 4 %) (1.32)
or
1/4 e 1/4 ~l/
Z:’/‘/(l—l— 1—7‘2) , t:y/<1_|_ 1_y2>
we can rewrite the system of equation (1.31) as
-
W4t [P0 — ), =12 (1.33)
"0
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where

p1(y) =t A+ %) ua(t), paly) =t (1 + 1) 711+ t%)pa(t) (1.34)

Oy (y) =t 31+ (L), Oo(y) =t (1 + Y711+ 3 Fy(t). (1.35)

Taking (1.27), (1.29), (1.32), (1.35) and properties of the given functions into account, it is
not difficult to verify, that ®;(y) € C*(0 <y < 1), 0 <r < 1, (j = 1,2) and it can have
singularities of order less than 1 and 1/2 at j = 1, less 1/2 and 1/2 at j = 2, when y — 0 and
y — 1, respectively.

By virtue of A%(t) + 1 # 0, Vt € [0,1] (1.33) is a singular integral equation of normal kind.

From the formulation of the problem A, and the equalities (1.30), (1.34), by virtue of (1.32)
follows, that the solution of the system of equations (1.33) is to be found in the class of functions,
which are differentiable for 0 < y < 1 and can be infinity of order less than 1 and of the order 1/2
for j =1, as y — 0, when A(t) > 0, less than 1/2 and 1/2 for j =2, as y — 1, when A(t) <0 (as
in this case the index of the equation is equal to zero). The solution of the system of equations

(1.33) exists in this class in both cases and it is given by the formula [23|

where

If we return to the variables ¢, z and the function v;(t), we obtain a system of Fredholm
integral equations of the second kind with continuous kernels, moreover the right part of this
system belongs to the class C"")(0,1) and it can have singularities of the order less than 1 as
t — 0 and ¢ — 1. Unconditional solvability of this system follows (absolutely) from the uniqueness
of the solution of the problem A,.

3 (4). Let the conditions of Theorem 1.1.2 (1.1.3) be fulfilled. We require additionally
that the condition d;(0) = 0 (d;(1) = 0) is fulfilled. Then analogously to the previous point, we
obtain a singular integral equation in the form (1.33). Solving the obtained equation we determine
the function v;(t), moreover it can have singularities of the order less than 1 as t — 0 and ¢t — 1,

as by virtue of the conditions (1.10) ((1.13)) A(t) = a;(t)/c;(t) > 0 (A(t) = —b;(t)/;(t) < 0).
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5. Let ay(z) = 0, as(y) # 0. The functions ay(z), bi(x), ¢1(x) satisfy one of the group
conditions of Theorem 1.1.1 at 7 = 1, and the functions as(y), ba(y), ca(y) satisfy the conditions
of the Theorems 1.1.2 or 1.1.3 at j = 2. Then, as in the case 3 (4), for determination of the

function v5(y) we have the singular integral equation

2

Aly ?y /1 ( e _z22y2> dz + /1 vo(2) Mo (y, 2)dz =go(y),  (1.36)

where

2

1 1
92(y) = fla (y / (22 oy - +222y2> dz — /l/l(z)Mm(y, z)dz,
0 0

ﬁ‘@

and the function v (x) is determined by one of the formulas (1.21), (1.23), (1.24). After changing
variables 7 = 22%(1 + 2z*)™, y = 2t%(1 + ¢*)~! the equation (1.36) becomes the form (1.33) and
it is investigated as the last one.

Consequently, the functions v;(t) (7 = 1,2) are uniquely determined in all cases. If we know
vj(t), we determine 7;(¢) by formula (1.26). After determination of 7;(¢) and v;(t), the solution
of the problem A, is defined as the solution of the problem N and the Cauchy problem for the
equation (L.B) in the domains € and €, 25 and it is given by the formulas (1.25) and (1.5;),
respectively.

Remark 1.4. Existence of the solution of the problem A, can be proved by the method
which was proposed in paragraph 1.2.

With this the proof of the existence and uniqueness of the solution of the problem A, is

completed.

§ 1.2. Non-local problem with third boundary condition on the boundary of the
elliptic part of the domain

In this paragraph for convenience we introduce the following notation

— A2 = 1%, it = X\y. Then equation (L.B) becomes the form

Ku = signa u,, + signy uy, + p*u = 0, (L.By)
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and for this equation we consider the most general mixed problem in a finite simply connected
mixed domain (2, which was described in paragraph 1.

Uniqueness of the solution is proved, the condition to the complex parameter p ensuring
uniqueness of the solution to the problem under consideration is found. Further, eigenvalues and
corresponding to them eigenfunctions are found, the question about completeness of the system
of eigenfunctions in the elliptic, hyperbolic and in the whole of the mixed domain are studied. A
new method for proving the existence of the solution of the considering problem is proposed, i.e.
in the case, when a theorem of uniqueness of the solution of the problem is valid, the structure

of the solutions in evident form of the problem is shows by using a system of eigenfunctions.
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1.2.1. Formulation of the problem Ag

Problem A. Find a regular solution u(z,y) € C'(Q U g) of the equation (L.B), in the

domain 2 satisfying the conditions

au(x,y) + 5(‘91;((93;,3/) =Y(z,y), (x,y) € oy, (1.37)
AgF [u(020)] + mu(z,0) =0, (x,0) € OA, (1.38))
Aoy Tu(Boy)] + 72u(0,y) =0, (0,y) € OB, (1.38,)

where o, 3, 71, 72 are given real numbers, moreover o + 3% # 0; n is the outer normal to oy and
¥(x,y) is a given, in general, complex-valued function.

Note that in [27], [31], eigenvalues and eigenfunctions of the Tricomi problem are found by a
different method and it is investigated with respect to completeness. In [31] applying a system of
eigenfunctions for the structure of the solution of the Tricomi problem is show, for those values

of the parameter p, when uniqueness of the theorem holds.
1.2.2. Uniqueness of the solution of the problem Ag

Let u(z,y) be a solution of the problem A, and 71(x) = u(x,0), vi(z) = uy(z,0), T(y) =
u(0,y), v2(y) = uy(0,y). Then, using the formulas (1.51), (1.52), which gives the solutions of the
Cauchy problem for the equation (L.Bj) in the domains €2, €5, and conditions (1.38;), (1.38s),

respectively, we obtain
t
(14 29,)7,(t) = /l/j(z)JO[,u(t ~)dz, 0<t<1. (1.39,)
0

Equalities (1.39,), (j = 1,2), are basic functional relations between 7;(¢) and v;(t) on the
segments OA and OB got from hyperbolic parts of the mixed domain €.

So, we reduce the problem Ag to the following equivalent elliptic problem in €2 :

Problem Cﬁ. Find values of the complex parameter 4 and corresponding to them nontrivial
functions u(z,y) € C(Q,) N CH(Q) N C%(p) in Qo, satisfying the equation (L.B;) and the
conditions (1.37), (1.391), (1.392).
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Theorem 1.2.1. If the conditions a- 3 >0, a® + % #0, v; > —1/2 (j =1,2) and Reu = 0
are fulfilled, then the homogeneous problem C’g (Az) has only the trivial solution.
Proposition of the Theorem 1.2.1 follows from the following lemmas.

Lemma 1.2.1. Let u(x,y) be a solution of the homogeneous problem Cg. Then the equality

(—Rep? — 6?) //|79|2dxdy+//|w|2dxdy +//\W|2dxdy+//|w|2dxdy+
o, % o

"
QO

1 1
+/w(x,y)ds + Re/e%‘”ﬁ(m)ul(:c)dx + Re/e%yTQ(y)I/g(y)dy =0
00 0 0

holds, where w(z,y) = 0, if a8 = 0 and w(x,y) = (a/f) (|19]2 + \w\2), if
a- B # 0; Iz,y) = ulz,y), (r,y) € Q = QN (z > y); wxy = Vu(r,y),
(z,y) € Q) = QN (x <vy); 7(zr) =7(x,0), vi(z) = uy(z,0), (y) =7(0,y), aly) = us(0,y).
Lemma 1.2.2. Let (—9) > |Imy| and the conditions v; > —1/2, j = 1,2 are fulfilled. Then
the inequalities (1.12) are valid.
From Theorem 1.2.1 we have the following corollary: if the conditions of the Theorem 1.2.1

are fulfilled, then the problem Ag can have eigenvalues only outside of Reu = 0.

1.2.3. Determination of the system of eigenfunctions and

investigation on completeness

Consider the homogeneous problem C’g (Ag). Then we go over to polar coordinates r =
VT2, o = arctg%, 0<r<1,0<p< g) and find the solution of the problem in the form
u(zx,y) = R(r)®(y). It is not difficult to prove that the eigenvalues of the problem C}) (A7) are
[ = ™) (m,n = 1,2,...), where a{%") is the m-th root of the equation aJ,, () +BuJ,, (1) =0
(for 6] = 0 or
B#0, a/B+v, >0, v, >0,nec N, this equation has only real roots [46]), where

2n —1, if 7 +7+2n7 =0,
2
U, =< 2n— ;arctg% if m+7n+2nr#0, v=>0,

2
2(n—1) — ;arctg’y, if v+ v+ 277 #0, v<0,
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v= 047 +7)/(n+ 7 +2772), n € N, and corresponding to them the eigenfunctions in
)y are determined by the equality

Unm (2, Y) = Cnmdu, (a%")r) sin(Vpp + @o), mym=1,2,..., (1.40)

where @ = arcctg(l + 2v1), and ¢, # 0 are constants.
To find out eigenfunctions of the problem A, in the domain €y, we find from (1.40)

Upm(2,0) = kg,)nj,,n [afﬂ,’;”)x} , (1.41)
0
lim —uy, (2, y) = kgzn(l + 2y ) vpr T, [afﬁ")x} : (1.42)

y~>0 ay

where /{:f}}n = Cpan/\/2 41 + 47

It is known [32], that the family of solutions of the equation (L.Bj) in the domain €, has the

form

Tty

. p/2 T p/2
u(z,y) = {)ﬁ (x y) + X2 (a: + z> ] Jp [u\/ﬁ — yQ] , (1.43)

where Rep > 0, x; and x» are arbitrary constants.
If we require for the function (1.43) to fulfill the conditions (1.41) and (1.42) we find that

eigenfunctions of the problem Ag in the domain €2; are determined by the formulas

T+ Un/2 r— vn/2
(1+%)< y) —%( y) ]Jyn [a%") 372—3/2}, (1.44)

Unm (2, y) = k)

where n,m =1,2, ...
To obtain the general solution of the equation (L.B;) in €, we change x to y, y to « by virtue

of the symmetry of the coefficients of the equation (L.B):

y— p/2 Y+ p/2
u(z,y) = | X3 <y+x> + x4 (y_x> Jp [u\/y2—x2],

where Rep > 0, x3 and x4 are arbitrary constants.
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We obtain from (1.40)

U (0,) = (1)K, T, [aly] (1.45)
: 8 n - v
Hm ——thnn (2, ) = (= 1)k (14 292) vy ™" o, [ (1.46)

where k@) = cm/\/2 + 472 + 493.

Here we require the conditions (1.45) and (1.46) to be satisfied. In the domain §2» we obtain

eigenfunctions of the problem Ag determined by:

(1+ 72) (y - x>yn/2 — 7 (y — x>yn/2} I {aﬁ,’{")\/ﬂ} (1.47)

y— yt+w

where n,m = 1,2, ....
It is not difficult to prove that the functions (1.44) ((1.47)) satisfy the conditions (1.38;)
((1.38,)).

Indeed, we rewrite the functions (1.44) in the form

kS, alvm)\ "
- e ()

X () (@ 9)" = @ = )] T, [l a2 = 2]

where J,(2) = T(a+1)(2/2)"Ju(2).
We found wy, ,(00) and substituting this in (1.38;), we obtain

m

r o0
VUn __ Vn, (Vn) _ — Un (Vn)
T O/t 5 Jo {a z(z t)] dt = x" J o (ay™x). (1.48)

By the help of the expansion of the Bessel function into a power series, it is not difficult to

verify the identity

T

/taaat*][) {Iu 17($—t):|dt:l'a [1_7(1(#1')] , OSCYGR.
0

Taking this into account, then at once the correctness of equality (1.48) follows.
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Composing the formulas (1.40), (1.44) and (1.47), we obtain a system of eigenfunctions of the

problem Ag in the mixed domain (2

Crnm oy, [affl’")\/ﬁ + yQ} sin(vpp + ¢o), (x,y) € Qo,
Un /2 Un /2
+vy xr—Yy
ED (1 v — X
n,m ( +71)<x_ 71 Tty
o (2,9) = <y, ol fa? =] (w.9) € %, (149
Un/2 Un/2
+x Yy—x
—1)k@ | (14 7) (2 - X
(0 |+ (D) - (A
XJVn [047(7,;”) y2 - .’113'2:| 3 ($7y) € QQ'

x

If we go over to polar coordinates by the formulas r = /2?2 + y?, ¢1 = arctg—, (0 < r <1,
Y

T

5)

0<¢ < 5) then it is not difficult to verify, that sin(v,p + ¢y) = (—=1)"sin(vap1 + ¢g), where

g = arcctg(1 + 27,). Then we obtain the second form of the system of eigenfunctions.

(_1)ncn,m<]vn {a%n) V r? + yz} sin(vpp1 + 90(1))7 (z,y) € Qo,
Un /2 Un /2
+y r—=y
—1)k® (1 v — X
1k, () (ZE2) 7 (22
Unm(T,y) = x.J, |:Oé7(7';n) 22— yz} : (z,y) € (1.50)
vn /2 vn /2
+x y—x
k@ (1 y — X
n,m ( +’72)<y_$ V2 Y+
XJVn |:Oé£;l”:n) y2 - ZE2:| ) (I,y) € Q2-

In the plane ;072 we introduce the notation

Go={(v,72): m>-1, 72>—-1 n+vy>-1}

Grs={(v,7): %>-1, vs<—-1, m+y<-1}, ks=1,2, k#s.
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Lemma 1.2.3. The system of  sines {sin (1,0/2 + o) },25 and
{sin (vnb1/2+ 08} are forms the Riesz basis if (y1,72) € Go U Gip and
(71,72) € Go U Gy, respectively.

This lemma can be proved by Theorem 1 from [22].

We recall, that a Riesz basis ¢, in Ls(a, b) is called complete in this space if for each function

f c LQ(CL, b)

Z < 400

/ 2)dz

(0.0
. 2 .
and for each sequence of numbers ¢, ¢, ... with > |c,|" < oo, such function
n=1

f(x) € Ly(a,b) exists such that

b

/f( Jen(@)dr = co,  n=1,2,...

a

If {(pn 2 is a Riesz basis, then a unique sequence {wn}n 1 exists, which generates together

with {©,}/>% a biorthogonal system

b

i
() = [t ={ T
) 1 if =]

Then sequence {¢,}'> is also a Riesz basis and for each functions

f € La(a,b) the equality

- Z an‘zpn(l‘% Qp = (fa @Zjn), n = 1,2, e
n=1

is valid, where the series is converge it in the mean quadratically. Besides, substituting the Per-

seval inequality the following two-sided estimate
b

mﬂmw@sithM/wm%a (1.51)

a

is valid, where m and M are positive numbers, independent from the function f(x).
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Lemma 1.2.4. If one of the conditions y1+72+27172 =0, v > 0 and v < —1 are satisfied, the
system of functions {x”"’l};rz is complete in Lo [0,1], where v = (14+791+72)/ (71 + 72 + 27172)-

This lemma follows from the Munts theorem about completeness of the system of functions
{2™ 1} in L,[a,b], 0<a<b, p>1,ie. the condition

+o00 1 1
Zf:%—oo, ——<mp <mg < ...
k= my y4

is necessary and sufficiently for the completeness of the system of functions {z™}*% in L, [a, 8],
a>0,p>1.

Theorem 1.2.2. If (71, 72) € GoUG12 ((71,72) € Go U Ga1), then the system of eigenfunctions
(1.49) ((1.50)) of the problem A, is complete in Ly ().

We prove the Theorem 1.2.2 for the system (1.49). We assume that a function Fy(z,y) exists
in Ly(€2) such that

// Fo(x,y)unm(x, y)dedy =0 (1.52)

Qo

for all n,m € N. Let us show, that the function Fy(z,y) = 0 almost everywhere in €.
If we go over to polar coordinates x = rcosp, y = rsing and taking (1.49) into account, from

(1.52) we have

1
= /Fn(T)Jyn {afﬁ”)r] rdr, (1.53)
0

where
/2

Jo(r,p) = Fo(rcosp,rsing),  F,(r) = /fo(?", ©) sin (Vnp + wo) dep.
0

Using the Cauchy-Bunyakovskiy inequality, it is not difficult to prove, that the integral
1
[ /7 |Fn(r)| dr exists and converges absolutely. Then from (1.53) follows, that for the functions
0
F,(r) all coefficients of the Fourier-Bessel series are equal to zero. Therefore, from the Young

theorem [46] follows, that F,(r) =0 (n = 1,2,...), i.e.
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w/2
/ fo(r,@)sin (Ve + o) dp =0 (1.54)
0

for all n = 1,2, ... and at any r € (0, 1).

If we replacing the variables 6 = 2¢ in the integral (1.54), then when fulfilling the conditions
of Lemma 1.2.3, the system of sines {sin (1,0/2 + )} is complete in Ly(0, 7). So from (1.54)
follows, that for any r, the set of ¢, where fo(r, ) # 0, has the measure zero. By virtue of the
Fubini Theorem follows, that f(r,¢) = 0 almost everywhere in €. From here the statement of
the theorem follows.

Theorem 1.2.2 for the system (1.50) one can check analogously.

Theorem 1.2.3. If v; = v, = 0, then the system of eigenfunctions (1.49) ((1.50)) of the
problem A, is complete in Ly(Qy) and Ly(Sy).

We give the proof for the domain €2;. One can analogously prove the statement for the domain
Q.

Let 71 = 72 = 0 and suppose, that there exists a function F(z,y) € La(€);) such that

// Fi(z,9)upm(z,y)dzdy =0, n,m € N. (1.55)
971

Let us show, that Fj(x,y) = 0 almost everywhere in . Replacing the variables

£ =x+y, n=x—y and taking (1.49) into account, from (1.55) we have

1 Vn /2
[an [ iem (f}) T, (a,g’;w@) Q=0 nom=12 .
0 0

where f1(&,n) = Fi(z,y).
Setting & = t7 in the inner integral, changing the order of integration and then replacing the

variables ns = r, t = 52, we obtain

1 1
/Jl,n (aﬁg”)r) rdr/s”"’lfl (7"3, T) ds = 0.
0 r 5

It follows from here, that for function
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1
Fn(r> - /Synilfl (TS’ Z) d87 0<r< 1’ ne N’

all coefficients of the Fourier-Bessel series are equal to zero, therefore from the Young Theorem fol-
lows that F,(r) = 0 for al n € N for any r € [0,1]. Then by
Lemma 1.2.4 at any r the set of those s, where fi(rs,r/s) # 0, has measure zero. Therefore, ac-
cording to the Fubini Theorem fi(rs,r/s) = 0 almost everywhere in Qf = {(s,r) : r <s < 1,0 <r < 1},
consequently also in €2;. The Theorem is proved.

Theorem 1.2.4. If 1 = 72 = 0, then the system of eigenfunctions (1.49) ((1.50)) of the
problem A3 is not complete in Ly(Q).

Proof. In the domain €2 consider the function

F()(l’,y), (l’,y) € QOy
F(x’y): Fl(xvy)v (I’,y) EQl?
F2(£>y)v (-’B,y) € QZ

from Lo (2) and the integral
P = // F(z, y)unm(z,y)drdy = // Fo(, y)tnm (v, y)dedy+
Q Qo
[ P inm(@,y)dedy + [ [ Fa(e,y)unm(@, y)dedy.
Q1 QQ

Taking (1.49) into account and making replacements as in the proofs of Theorems 1.2.2 and

1.2.3, respectively, we obtain

1 s
c;,_zn /J,,n {a%n)r} r [/ fo (T, g) sin (Vng + Z) do+
0 0

-|—/13”"_1f1 <Ts, 2) ds + (—1)”/13”"_1f2 (Ts, Z) ds] dr. (1.56)

P=

Following [27], we consider the functions
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AN 1 (=1)k
Jo (r’ 2) B k; [21@(21@* ) @kt 2)@ke3)
7'2k 7“2k+1 . 7,.21@—}—2 7“2k+3
- <2k 2%k + 1) - (=) <2k+2 - 2k+3>] (),

fi (7"3, Z) = —s(1—s), fo (rs, Z) = —s3(1—s),

where  {h(9)};2 is  biorthogonal  associated to  the  system  of

{sin[(v,0/2 + /4] :(Xi

2 (2cos6/2)71

ha(0) = x (tgb/2 2 i (sink0) By,

k=1

(I—1) - (—n+1)

n!

201/2 1/2 )l_ma Cr =

Since hg(#) is uniformly bounded a constant [22], the series (1.57)

0 <r <1,0 <6 < uniformly converges, and the function fy is continuous in 2.

(1.57)

sines

any

Substituting the functions fy, fi, fo in (1.56), we obtain that there exists a function F' €

Ly(2) and F(z,y) # 0 in Q such, that P = 0. The theorem is proved.

1.2.4. Existence of the solution of the problem Ag

Existence of the solution of the problem Ag can be proved as for the problem A, by the

method of integral equations with potentials. But here when proving existence of the solution we

use another method, i.e. by applying eigenfunctions of studying problem Ag.

Let the conditions of Theorem 1.2.1 be fulfill. Then p # a¥»). For these values of u, we find

the solution of the problem Ag in the domain () in the form of the series

Vn<ﬂr) .
u(z, y, 1) an ROET A )szn(vnsﬁﬂao)-

(1.58)
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We suppose that the series (1.58) admits term by term repeated differentiation with respect
to the variables 7 and ¢ on the set 0 <7 <1, 0 < ¢ < 7/2. Then it’s sum satisfies the equation
(L.By) and conditions (1.391), (1.392). The coefficients f,,, n € N can be found and that the
function (1.58) satisfies the condition (1.37).

Satisfying (1.58), for the boundary condition (1.37) at r = 1 we obtain

+00
F(@) =" fasin(vap + ¢0), 0< ¢ <7/2, (1.59)

n=1

where f(p) = f(r,@)l,.1 = ¥(2,9),-
If the function f € C°[0,7/2], § € (0,1], then by virtue of the result of [22], the series (1.58)

converges uniformly on [0, 7/2] and the coefficients are determined by the equalities

fn:/f@) ha(0)d6, n=1,2, ... (1.60)
0
As h,(0) are uniformly bounded by some constant, then |[f,] < M, n = 1,2, ..

M = const > 0. By virtue of the asymptotic formulas [42]

Jn(2) = ! <2)2, n— +oo and xJ,(x)=vJ,(x) —xJ,41(x)

the series (1.58) converges uniformly for any r < ry < 1, since for large n the following estimation

1, D T)8I0Vn + o)

<ri"M,, M;=const>0
ady, (1) + Bud, (1) o '

is true.

One can analogously show, that the series (1.58), for which the coefficients are determined
by the formula (1.60), allows repeated differentiation on €y with respect to the variables r and
¢, and u € C1(Qp).

Using the series (1.58), for finding eigenfunctions in the domains €2; and €, we find the
solutions of the problem Ag in the domains €2; and €2 in evident form:

oo Un/2 Un /2
Jr (1+’Yl)<ii—§> —’Yl<i;z> ]X

u(:c,y,,u) = Z
n=1 /2 + 4y, + 4~}
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y Jl/n [MV 1’2 - yﬂ
ady, (1) + B}, (1)

in Qi (1.61)

(9] n Un /2 Un/2
- n x + T —
u(z,y, p) Sl (14 72) iy -2 Y X
Z
n=1 /2 + 4y, + 43 Ty Tty

y Jun {,LL\/ y2_x2:|
ady, (1) + Bud;, (1)

in Q. (1.62)

It is not difficult to prove, that the series (1.61) in ©; and the series (1.62) in )y converge
uniformly, allow term by term repeated differentiation with respect to the variables x, y in the
domains 4, 5 and satisfy the conditions (1.38;) and (1.382) respectively.

Thus, here we proved the following result.

Theorem 1.2.5. If -3 > 0, o> + 3> # 0, v; > —1/2 (j = 1,2), Reu = 0, f(p) €
C°0,7/2], & € (0,1], then the problem A% has a unique solution presented in the form

an ( )Vf_b{—(’lg;j ( )SZ-TL(VnQO—F(,OO), (x,y) € Qo,
00 vn /2 vn /2
r+y Tr—y
1 1 — - n
Zm ( *”(x—y> 7(x+y> ]
‘]Vn [p2 __ 9,2
u(x,y,u) = [Iu ’ ) } (Jf,y) c Ql,

9) Un /2 Un/2
n T+ T —
LRy (5 (22

n:l\/2+4’}/2+472 r—y r+y

y Jun [,u\/ y2_x2:|
ady, (1) + By, (1)’

(Ihy) S QQ-

With this existence and uniqueness of the solution of the problem Ag is proved.
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Chapter 2

Boundary value problem of Bitsadze-Samarskiy type

for the equation (L.B)

A non-local boundary value problem for elliptic type equations was offered and investigated
in the paper of A.B.Bitsadze and A.A.Samarskiy [5]. This problem appeared to generalize the
well-known Dirichlet problem and is called the Bitsadze-Samarskiy problem. In this problem
non-local conditions express the connection between the values of the unknown function on the
boundary with those in inner points of the considered domain. Problems with such type of
non-local conditions have been investigated in [34, 35| for some mixed type equations, where
the elliptic part of the considered domain is a rectangle. Later many works are devoted to the
problems of Bitsadze-Samarskiy type for partial differential equations in various formulations,
e.g. in [38], [1], [11], [14], [43], [36].

The investigation of problems for elliptic-hyperbolic type of equations with spectral parame-
ter, two lines of changing type, and non-local conditions, in which the border of the elliptic part
of the considering domain is a quarter circle is far from being complete.

In this chapter in a finite simply connected mixed domain €2, which is described in Chapter
1, we investigate the problem of Bitsadze-Samarskiy type for the equation (L.B), and we also
assume, that )\ is a given complex number, moreover A = A\g at x > 0, y > 0, A = A\ at x > 0,

y<0and A = Ay at x <0, y > 0. Besides, we use those notation from Chapter 1.
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§ 2.1. Preliminary information

Firstly we formulate several statements, which will be useful in proving a theorem of unique-
ness of the solution of the studied problem.

Consider the function

chéx + chdy in o,
w(z,y) = chéx + cosdy in €,
ch 0y + cosdx in

in the domain 2, where § € R. It is not difficult to verify, that w(zx,y) is positive in €2 and belongs
to C? (ﬁ)
Let u(x,y) € C* () be a function, satisfying the equation (L.B) in the domain Q. Then if

we introduce a new function ¥(z,y) = w™!(z, y)u(x,y) in the domain Qq, we obtain the equation

w. w
AD+ 2209, + 289, + (82— X2)9 =0 in Q 2.1
+2-70; + 2 g+ ( D=0 in O (2.1)

for the function ¥(z,y).
If 9(xo,y0) # 0, where (xq,yo) is a point of g, then there exists a neighborhood S C €y of
this point, in which 9(z,y) # 0. Multiplying the equation (2.1) with 9/ |J| in S and taking the

real part of the obtained equality, we have
— N2
AL +222 ), + 22219, - lRe)\Q i {(Imw )"+ (v, ) }] 0 =0. (2.2)

From here we have the following proposition: if the function 9J(x, y) satisfies the equation (2.1)
in S, then |J(z,y)| satisfies the equation (2.2).

Using this proposition, one can prove the theorems below in the same way as it was done in
3], [30].

Theorem 2.1.1. Let u(x,y) € C*(Q) be a function, which satisfies the equation (L.B) in
the domain Q. Then the positive mazimum |9(z,y)| of the function ¥(x,y) = w™ (x,y)u(z,y) is
not reached in any point of the domain Q, if only 9(x,y) # const in the domain .

Theorem 2.1.2. Let u(x,y) be a regular solution of the equation (L.B), in the domain g
and 9(z,y) = w (z,y)u(z,y) in Q. Then, if
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sup [J(z, y)| = [9(£,0)| > sup_[J(z,y)]

OA ooUOB

(sup\ﬁ<x,y>r=:\ﬁ<o,n>|>> sup rﬁ<x,yn)

OB GoUOA

then

.0
yhrgrloa—h?(g y) <0, 0<é<1 (Jirﬁoag;lﬁ(:”’”)' <0, 0<n< 1) : (2.3)

9,
We can prove the existence of hr?o 8—y|19(§, y)| < 0,0 < & < 1 using the following lemma.
y‘)
Lemma 2.1.1. If ¥(x,y) € C(Q) N CHQ UOA) and |9(£,0)| >0, 0 < £ < 1, then there
exist hIEo |V(&,y)|, and the equality
y—)

J(¢,0)
[9(&, 0)] it dy

y—+0 O

mlawwynzm{ @yﬁ n o Q (2.4)

18 valid.

Proof. By virtue of |9(£,0)| > 0 and 9(&,0) € C(Q) some neighborhood S C (2o U OA)
exists of points (,0), in which |J(z,y)| > 0. In this neighborhood the equality

g x = Re I(z,y) 2 x in
sl =ref G0 Doyl o

is valid.

Substituting x = &, and taking a limit in the previous equality as y — 40 and taking
I(z,y) € C(Q) NCHQ U OA) into account the statement of Lemma 2.1.1 is obtained.

In a similar way the existence of th |19(a: n)| <0, 0<n<1,is proved.

Remark 2.1. If ReA2 > 0 then the statement of Theorems 2.1.1 and 2.1.2 remain true for
the function u(z,y).

Consider the equation (L.B) in € and 5. In a similar way as in Lemma 2.1.1 the following
lemmas can be proved.

Lemma 2.1.2,. If ¥ € C(Q;) N CYQ UOA) and [9(€,0)] > 0, 0 < £ < 1, then there exists

limo |9(&,y)|y and the equality
y——

R TE0) o |
i, 2 jo(e ) = Re{ SED tm Docb w0 25)

18 valid.
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Lemma 2.1.2, is formulated, as Lemma 2.1.2y, for the function ¥(x,y) € C(Q)NC(Q UOB)
in the domain €25.

§ 2.2. Formulation of the problem BS)

Consider the equation (L.B) in the domain €.
Problem BS,. Find a regular solution of the equation (L.B), in the domain (2 satisfying the

conditions

e y) = 3wl y)ulrie riy) +9(ep), (2,0) €7 (2.6)
AP [u(B40)] + c1(@)u(z, 0) = dy(z), (2,0) € OA; (2.7,)
AR [u(0y0)] + c2(y)u(0,y) = do(y), (0,y) € OB. (2.79)

Here ¢;(t) (j = 1,2) are given a real-valued functions, and oy (z,y) (k = 1,n), g(x,y), d;(t)
are, in general, complex-valued functions, r,...,r, is are given real numbers, moreover 0 < r; <

ry < ... <r, <1 For the given functions we require

¢;(t), d;(t) € C*[0,1], where 0<7r = const < 1.

ak(l‘7y)a g(:L“,y) € 0(50)7 k= 17”7

and assume, that
> lo(z,y)| #0,  (z,y) €70
k=1

Further, it is not difficult to verify, that if the point (xg, o) is moving along &g, then the

points (rrro, TxY0), k = 1,n, will be moving along concentric semicircles 7y = {(z,y) : 2% +y* =

r3, x>0, y > 0}, k = 1,n, lying in Q. Consequently, (2.6) is a condition, which connects the
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values of an unknown function on the boundary with inner points of the domain €2y. Therefore
the problem BSY is concerned to belong to the class of problems as offered in [5].

It should be noted, that problems with a condition of type (2.6) for uniformly elliptic equations
are studied in [29], [36].

§ 2.3. Uniqueness of the solution of the problem BS)

Let u(z, y) be a solution of the problem BSY. Then the basic functional relations between 7 (¢)
and v;(t) on the segments OA and OB, defined from conditions (2.7;), (2.7;) for the function

u(z,y), are expressed by the formulas
t
Py(t)7(t) = 2d;(t) — 7;(0)Jo [A;t] + /Vj(Z)Jo (At — 2)] dz, (2.95)
0
where 0 <t <1, j=1,2,

Pi(t) = 1+2¢,(t), ¢ =
v, it  j=2.
The following lemma play an essential role in proving the uniqueness theorem.
Lemma 2.3.1;. Let u(z,y) be a regqular solution of the equation (L.B) in the domain €,
satisfying the condition (2.7,) with di(z) = 0 and 9(x,y) = w™(z, y)u(z,y), 6 > |\1|, and let the

conditions

P(z) >0, P(x)>0, 0<z<1. (2.104)

Pi(z) + Pi(x) >0 (2.11;)

§sh oz LMz — 1))
ch5x+1_|)\1|0/ x—t dt

be fulfilled. Then, if sup |9(z,y)| = [9(£,0)] > 0, 0 < & < 1, the inequality
OA

lim g

Jim S 0E ) 20, 0<g< (212))

18 valid.
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Proof. By virtue of di(z) = 0 and taking P;(xz) > 0 in (2.91) into account, for = = 0 follows,
that 71(0) = 0. Then relation (2.91) becomes

xT

P ()1 (x) = /I/l(Z)Jo Mz —2)]dz, 0<2<1.

From this relation, we find the function v;(z) and rewrite the obtained equality as [36]

ylgno(%u(:c y) = [Py(2)u(z, 0)], + A2 / Pi(2)u(z,0)

where J; [-] is the first order Bessel function.
Taking J(z,y) = w™ (2, y)u(z,y) and (2.5) into account, and observing that P;(z) is a real-

valued function, we have

i, 21060 = PO + [ PO+ st A6 176

ot 41 2 o 718 AN —1)]

where 71 (z) = 9¥(z,0).
We rewrite the equality (2.13) in the form

9,
Jim, 2 10(€.0) = RO

& —Z
o [serineme (o g A0

+P1(£)|Af|!?1(f)‘w£_2)]] =

Al (€ = 2)

+

3
PIE) + Pi€) {ﬁgf_ﬂ - | WCZH AEL e

From the condition (2.10;) it is not difficult to verify the inequality
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chdz+1
chdéé +1

71§ Si[M(E = 2)]
7] M€ —2)

11[|>\1|(€—Z)]‘

NE— - @9

a@mﬁﬁa@ }sa@mmm@

Now we return to equality (2.14). The first term on the right-hand side of (2.14) is equal to
zero, as © = £ is a point of a positive maximum to the function |7(§)|. By the inequality (2.15),
the second term on the right-hand side of (2.14) is non-negative. Using (2.10;), (2.111), § > |A4],
171(€)| > 0, one can easily verify, that the third term on the right-hand side of (2.14) is also
non-negative.

Consequently, the right-hand side of (2.14) is non-negative, i.e. the inequality (2.12;) is true
and Lemma 2.3.1; is proved.

In the same way, the following lemma can be proved.

Lemma 2.3.15. Let u(x,y) be a regular solution of the equation (L.B) in the domain S
satisfying the condition (2.75) with do(y) = 0, and Iz, y) = w™(z,y)u(z,y), § > |Xao|, and the

conditions

Pyy) >0, Pjy) >0, 0<y<L. (2.10,)

Py(y) + Pa(y) >0 (2.115)

oshdy | [l =0,
chdoy +1 ! y—t
0

be fulfilled. Then, if sup |¥(x,y)| = [9(0,n)] > 0, 0 <n < 1, so the inequality
OB

.0
xli)rgoalﬁ(x,n)] > 0, 0<n<l1 (2.125)

is valid.

When A; and A\, are a real numbers, we have more simple conditions on A, Ao. In this case
in the domain ) we substitute v(z,y) = w ! (z,y)u(z,y) where w(x,y) = exp(dz) + exp(dy).
Then (2.13) becomes

(£)e* —1

o P
i, 2 ol = RO + |10 + 60 QT o)

+i e {Af%j(z)‘M}dz, (2.13,)
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where 71 (z) = v(x,0).

We rewrite the equality (2.131) in the form

lim g

y—-0 Oy (& y)l = P

+ i e [sham@n©l+ e a2

P& =1 1[N

3
PO + 0 S = 5 O/(e‘”ﬂ)dz 17 (€)]. (2.14,)

Counsider

13
o Pe* =1 1INIAE) [, s
lo = Pi(§) + 05— — 5 5 O/(e +1)de.

It is not difficult to verify, that if P;(§) > 1, P{(§) >0, 0 > |\], then I >0 .

Now we prove the inequality

Ji[A(€ = 2)]

b<r@me! 215)

Indeed, if we take into account, that 0 < P(z) < Pi(§) (while P/(z) > 0, and consequently

J
Py(z) is a non-decreasing function), +X? < |\, 11

< — and |7(2)] < |71(€)|, we include,

1
2

that the inequality (2.15;) is valid.

Now we return to equality (2.141). The first term on the right-hand side of (2.14;) is equal
to zero, because x = £ is a point of a positive maximum to the function |7;(£)|. From inequality
(2.151) we obtain, that the second term of (2.14;) is non-negative. Using (2.101), 6 > |\,
171(€)| > 0, the third term is also non-negativity.

Consequently, the right-hand side of (2.14;) is non-negative, i.e. the inequality (2.12;) is valid.

In the same way one can prove (2.12;1), when ), is a real number.

Using Lemmas 2.3.1; and 2.3.15 the following theorem is proved.

Theorem 2.3.1. Let
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Rex > 82 = max(]\3], |\3). (216)
I .
¢;(t) = g dt)>0, 0<t<1; j=1,2 (2.17)

and even for one § € [63, ReA3] the inequality

n 65Tk1‘ +€6rky B
Z lag(z,y) [M] <1, (z,y) €y (2.18)

be fulfilled. Then, if the solution of the problem BS) exists, it is unique.
Proof. Let u(z,y) be a solution of the homogenous problem BS). We assume, that J(x,y) #

const in the domain Qy. Then from the Theorem 2.1.1 follows, that

sup [(z,y)| = [9(&,n)] >0, V({,n) € ODAUOB UG,
Qo

Let (£,n) € OA or (£,n) € OB, i.e. sup|19(x y)| = sup|d(z,0)] = [9(£,0)] > 0,0 < & <1,
or sup [J(z,y)| = sup|9(0,y)| = [9(0,n)] > 0,0<n< lo%hen taking propositions of Theorem
2.1.gointo account,ovjje have inequality (2.3). Assuming in the Lemmas 2.3.1; and 2.3.15 § = |
and § = |X2|, we obtain the inequalities (2.12;) and (2.12y), what is impossible by virtue of
continuity of [J(&, y)|,, [¥(x, n)], on the linesy = 0 and x = 0 respectively (this proposition follows
from the characteristics of the functions w(z,y) and u(x,y)). Consequently, (£,7) ¢ OAUOB.

Now let (£,7n) € 7. Then |9(z, y)| < [I(&,n)], V(x,y) € QUOAUOB. Taking this into account
and the condition (2.18), from (2.6), and observing g(z,y) = 0, we obtain |J(&,n)| < [9(&,n)|,
which is impossible.

The obtained contradiction shows, that ¥(z,y) = const in €. Taking into account 9(0,0) = 0
(this  fact follows from 9(z,y) = w(z,y)u(r,y) and by virtue of
u(0,0) = 0, which is noted in Lemma 2.3.1;). From here, we conclude, that J(z,y) = 0 in
Qo, and consequently, u(z,y) = 0 in Q. The Theorem is proved.

Remark 2.2. In the case, when \g € R, and A; (j = 1,2) are real or pure imaginary number,

then Theorem 2.3.1 can be proved by the extremal principle for the elliptic equations and the
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Zaremba-Giro principle [7], when the solution u(x,y) can be looked for in the class of real-valued
function.

Remark 2.3. In the special case, when ax(z,y) =0, k = 1, ..., n, follows uniqueness of the so-
lution of  the problem A, when b;(z) = 0, and when
ap(z,y) =0, (k =1,...,n), ¢;(x) =0 (j = 1,2), the uniqueness of the solution of the Trico-
mi problem, which was obtained in [40] by the help of a Laplace transformation, which follows
from Theorem 2.3.1.

Remark 2.4. At \j = \; = Ay = A the condition (2.16) is equivalent to the equality ImA = 0.

From here and by the Theorem 2.3.1 we have the following proposition

Proposition. If \j = A\; = A3 = X and the conditions (2.17), (2.18) are fulfilled. Then the

problem BS) can have eigenvalues only outside of ImA = 0.
§ 2.4. Existence of a solution of the problem BS)

Let the function ¢(x,y) be the value of the unknown solution u(z,y) of the problem BS) on
7 and denote vy (z) = yli@o uy(z,y), a(y) = mlin}o uz(x,y). If we find by the help of the given
functions identically functions ¢(x,y), vi(z), v2(y) fulfilling the condition (1.20) and v;(t) €
C*(0,1), j = 1,2 (moreover v;(t) could have a singularity of order less than one at t — 0, ¢t — 1),
then in the domain € the solution of the problem BS) is determined by the formula (1.25).

Therefore in the following we are engaged in finding the functions ¢(x,y), vi(x) and vy(y).

In addition, we assume that

ap(z,y) = (zy)og(z,y), k=1Ln; g(x,y) = (xy)°g (x,y) (2.19)

Conditions (2.19) provide the fulfilling of (1.20).

Let the condition of Theorem 2.3.1 be fulfilled. By virtue of ¢;(t) > —1/2 from (2.9;) (j = 1,2)
at t = 0 it follows, that 7;(0) = 0. Then functions v;(t) are identically found from (2.9;), moreover
we require in addition that d;(0) = 0.

Further, substituting (1.25) in (2.6) and taking into account the notation
u(r,y)|5, = »(x,y), we obtain
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oe,y) = [@EmNEmz,y)ds = Fla,y),  (2,y) €50, (2:20)
oo
where
N(£77]ax7y> - Zak(x7y)
k=1
A e ) + [ [ REmin ) o GlEm & m)déd
871 YT TR, TRY g 1, N3 TeX, TRY an y 1561, T 1an ¢,
F(z,y) = g(x,y)
n 1
—Zak(l‘,y)/m(ﬂ G(t,0; e, 71Yy) +// R(& msrew, miy) G(t, 0:€, m)dEdn ¢ dt
k=1 0 Qo
n 1
=S an(@y) [va(t){ GOt ny) + [ [ REmma ny) GO, b, m)dedn b d.
k=1 0 Qo
By virtue of (§n) # (rex,miy) o, V), (vy) € G , kK = TIn, the

function N(§,m;x,y) continuously on @5 X . Besides, it is not difficult to
verify, that F(x,y) € C(dy). Then, by changing the variables * = cosf, y = sinf,
€ =cosbth,n=sinb, 0<6,0; <7/2, from (2.20) we get a Fredholm integral equation of second
kind for p(cos b, sinb). Regarding the function o(z,y) is
temporarily known and for the equation (L.B) solving the problem BS), we obtain a singu-
lar integral equation in the form (1.33).

By solving the obtained equation, identically we find the functions v;(t), (j = 1,2) by ¢(z,y),
which is the first and the second functional relation between v;(z), ¢(x,y) and va(y), ¢(x,y)
respectively. On the other hand, equality (2.20) is the third functional relation between v4(x),
vs(y) and ¢(x,y), which is determined by the condition, that the solution u(z,y) of the problem
BSY should satisfy (2.6).

Consequently, for the functions v;(z), v5(y) and ¢(z,y) we have a system of three Fredholm
equations of second kind, unique solvability of this system follows from the uniqueness of the
solution of the considered problems.

This ends existence and uniqueness of the solution of the problem B.S).
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Chapter 3

NON-LOCAL PROBLEMS FOR MIXED TYPE EQUATION WITH SPECTRAL
PARAMETER, WHEN THE DOMAIN OF ELLIPTICITY IS A QUARTER
RING

The third chapter of this dissertation consists of four paragraphs and in it non-local problems
for the mixed elliptic-hyperbolic equation (L.B) with two lines of changing type with spectral
parameter investigated. Moreover, here we assume that A = Ay for x > 0, vy > 0, A = Ay at

x>0, y<0and z <0, y > 0, where \; and Ay are given complex parameters.

§ 3.1. Formulation of problems

Let A be a finite simply-connected mixed domain of the plane of the variables xOy, bounded
for > 0, y > 0 by the lines 0o; : 2> + 3> =1, 002 : 2> + 9> = p*, (0 <p < 1) and for z -y < 0
by the characteristics x + y = p, © — y = £1 of the equation (L.B).

Let us introduce the notations:

Ag=AN(z>0,y>0), Ay=AN(z>0,y<0), Ay=AN(zx<0,y>0),
L={(x,y):p<z<l,y=0}, L={(z,y):x=0,p<y<l1},
Opa(x) = ((P+2)/2; (P—2)/2),  Op(y) =(0—¥)/2 (P+y)/2),

Oor (2) = (( +1)/2; (2 =1)/2),  Ou(y) = (v —=1)/2 (W+1)/2).

We call a function u(z,y) a regular solution of the equation (L.B) in the domain A\ (I; U l5),
the derivatives of u,(z,y), uy(x,y) which can become infinite of order less than one in the points
A(p,0), B(1,0), C(0,1) and D(0, p).

Problem I'). Find a regular solution of the equation (L.B), in the domain A satisfying the

conditions

u(z,y) € C(A)NCHA) N C*A\L\L);
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u(r,y) = ¢i(z,y),  (v,y) €705, (j=1,2.); (3.1)

ai (17)1425?2 [u(epa:)] + b1 (x)A(l);C)‘Q [u(0:1)]
+e1(z)u(x,0) = dy(x), (2,0) € I;; (3.21)
a2(y)142;f2 [u(‘gpy)] + b2(y)A(1);’y)\2 [u(ely)]

+ea(y)u(0, y) = da(y), (0,y) € I. (3.22)

Problem I'}. Find a regular solution of the equation (L.B), in the domain A satisfying the

boundary condition (3.1) and the conditions

u(x,y) - C(Z) N OI(Z\O'OJ‘> N 02(A\]1\12)7 (] = 17 2),

d d
@42 | Fu(0,) | + 0042 | o)
0
+cl(x)6—yu(a:, 0) = dy(z), (x,0) € I; (3.31)
1 /\2 d 17>\2 d
az(ZJ)Ap’y @U(pr) + ba(y) Ay, @u(ely)
0
+C2(y)87xu<07 y) = d2(y)7 <07 y) S 127 (332>
Here  a;(?), b;(t), ci(t) are  given  real-valued  functions, moreover

a(t) + b5(t) # 0, t € [p,1], j = 1,2, and @;(z,y), d;(t) are given, in general complex-valued
functions.

From the given functions we require that a;(t), b;(t), ¢;(t), d;(t) € C* (I?) N CUFkn) (1),
vj(z,y) € C(59;), where 0 < 7 = const < 1. k =1 in the problem I’} and k = 0 in the problem

I'} and assume, that

wi(r,y) = (xy)°wi(z,y),  @jlr,y) € C(@y), &>1. (3.4)
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§ 3.2. Investigation of the problem I')

In the domains €2;, j = 1,2, using the formulas (1.5;) and conditions (3.2;), after some

calculation, we have

a;(t)7;(t) = 2d;(t) — 75(p)a; () Jo [Ao(t = p)] — 7(1)b; (1) Jo [Aa(1 — #)]
‘l‘(lj /V] JO )\2 t— Z dZ+b /VJ J() )\2 Z —t)] d (353)

where p <t <1, j7=1,2.

z, it j=1,
a;(t) = a;(t) + b;(F) +2¢;(¢) ¢t =
Y, it j=2.

Equalities (3.5;) , (7 = 1,2), provide a basic functional relation between 7;(t) and v;(t) on
the segments I; and I respectively, attained from the hyperbolic part of the mixed domain A.

We consider by analysis of the relation (3.5;) (j = 1,2) the following three cases: «;(t) = 0,
=12 0;() 20,5 =1,2 a;(t) =0, ay(t) £0, j.k =1,2, j £ k.

The following lemma plays the essential role in the proof of the uniqueness theorem.

Lemma 3.2.1. If u(z,y) is a reqular solution of the equation (L.B) in the domain Ao and is

equal to zero on 7y; (j = 1,2.), then the equality

(ReAZ — §?) //|19]2dxdy—|—//|w|2dxdy +//]V19|2dxdy+//|Vw|2dxdy+
N A N A

1 1

+Re / 22 (), (2)de + Re / 2 () (y)dy = 0 (3.6)

p p
is valid, where V(z,y) = e*u(z,y), 7i(z) = a(z,0), vi(z) = uy(z,0) in Ay = Ay N (z > y);
w(z,y) = eu(z,y), 7(y) = @(0,y), 12(y) = ue(0,y) in A7 = Ao N (z < y); Vo] > [ImAs].

Moreover 9(z,y) = w(z,y) on K1 K5 : y = z.

This lemma is proved analogously as Lemma 1.1.1.
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§ 3.2.1. Investigation of the problem I'} for o (z) =0, j=1,2

Theorem 3.2.1. Let o(t) = 0, ReA} > 0 and one of the following group of conditions is
fulfilled: a) b;j(t) =0; b) a;(t) =0; ¢) a;(t) £0, bj(t) 0, a;(t) # b;(t) and

1 1
//|K]tz)\2| dtdz <1, j=1,2, (3.7)
p p

where 9
57 100 Aot = 2)]} /a; (1) = b5(0)] . t =2,
Kj (ta 2, >\2) =
0
5 Wil ez = 1)]} /as(t) = 0;(0)], 2=t
Then, the solution of the problem T} exists and is unique.

Fulfilling the conditions of Theorem 3.2.1 we obtain from (3.5,),j = 1, 2, the equations

t 1
/y] ) o ot — 2)] dz + by /y] Vo ez — )] dz = —24d,(t). (3.8;)
p t

As in Theorem 1.1.1, fulfilling the conditions a), b) and ¢) identically from equation (3.8;) we
find the function v;(¢) by the formulas

o [ 4(1)]
v(t) = —2C; ExGIR (3.9)
v;(t) = =207 zj((g , (3.10)
/RJ (t, 2, M) g (2)dz, (3.11)

respectively, here g;(t) = —2d;(t)/[b;(t)—a;(t)], R;(t, z, A2) is the resolvent of the kernel K (t, z, A2),
C%% is the operator, determined by the formula (1.22).

It follows from the above, that the functions v;(t) (7 = 1,2) are identically determined in the
case when the functions a;(z), bi(z) satisfy one of the conditions a), b), ¢), and the functions

as(y), be(y) satisfy the other of these conditions.
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Consequently, at a;(t) = 0, j = 1,2, the problem I'j is equivalent to the problem N for
the equation (L.B) in the domain A, with boundary conditions (3.1) and wu,(z,0) = v(z),
u:(0,y) = wa(y), p < &,y < 1, where v;(t) € C'(p,1) is a well-known functions, determined by
one of the formulas (3.9), (3.10) and (3.11).

Let u(x,y) be a solution of the problem N for the equation (L.B) in Ay. Then using the
Green formula, it is not difficult to prove that the problem N for the equation (L.B) in Ay is

equivalent (in the meaning of solvability) to the integral equation

ulw,y) + N [ [ (& ms .yl mdedy = uo(w,y),
Ap

where [43]
2
0
) = J\&s —G y 15 s d
uo(, ) Z/s@(é ) -G(E i, y)ds

1 1
—/Vl(t)G(t,O;x,y)dt— /Vg(t>G(O,t;ZE,y)dt, (3.12)
P p
G(ﬁﬂ?,%y) = P((“JVZ) + P(wv Z) + P<_w72) + P(_wa Z)a (313)
1 Inw+1Inz Inw—1Inz

Here n is the inner normal to oy; relative to Ag, s is the arc length; w = £ + 11, 2 = x + 1y,
w=&—in, z=x—1iy; V1 () = <C| - i) is the theta function [2|, 7 = l:f, i =+/—1is the
imaginary unit.

To the obtained integral equation we adapt the Fredholm theorems. Then its solvability
follows from the uniqueness of the solution of problem N. Therefore its solution, consequently,

and the solution of the problem N exists, is unique and determined by
ula,y) = uolw,y) + [ [ R i, y)uol¢. mdedn, (3.14)
Ao

Here R(&,n;x,y) is the resolvent of the kernel (—=\?) G(&,n;z,y).
In the domains A; and A, the solution of the problem I'y is determined by the formulas (1.5;)
and (1.53), moreover 71 (x) = u(z,0), 2(y) = u(0,y) are found from (3.14).
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§ 3.2.2. Investigation of the problem I'} for a;(z) #0, j=1,2

Theorem 3.2.2. Let one of the following group of conditions be fulfilled:

1) ReA? > (TmAg)*;
ay(t) £ 0, bi(t) =0, ZE?)>—; (Zﬁg)zo te[p 1 (3.15)
2) ReA? > (Im);)”;
a;(t) 20, a;(t) =0, Z((g>—; (Zg)m te[p1l: (3.16)
3) ReA2>0, Imhy = 0;
a;() 20, () £0, by(t) 20, (3.17)

() <o (80 e 2 o

Then the problem Ty cannot have more than one solution.

The preposition of the theorem follows from the equality (3.6) and from the following lemma.

Lemma 3.2.2. Let 7j(p) = 0, (=6) > |ImAs| and the condition (3.15) be fulfilled. Then for
d;(t) = 0 the inequality

1
P; = Re / U (), (t)dt > 0 (3.19)
p

15 valid.

Proof. Let d;(t) = 0. Then by virtue of the second and the third from the conditions (3.15),
from (3.5;) for ¢ = 0 it follows that 7;(p) = 0. Taking into account d;(t) = b;(t) = 0 and
7;(p) = 0, from (3.5;) we find the functions 7;(¢) and with regard of Re[7;(t)v;(t)] = Re[r;(t)7;(t)]

we substitute it in (3.19); changing the function Jy[] by the formula [16]

2(2) 1 1
Js(2) = \/E(;%—é)o/(l - 52) cos z€d¢, Res > ~3 (3.20)
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and taking into account the fact, that a;i(t) = a;(t)/a;(t) is a real function, we have
1

P = i / (1—¢2) e / eta (t)dt / Re [7;(t)v;(2) cos Mol (t — 2)]dz.  (3.21)

p

Let )\2 = )\21 + i)\gg and Vj (t) =V (t) + iVjQ(lf).
It is not difficult to set |36], that

Re [7;(t)vj(z) cos Ao (t — 2)¢]

= ; e Z D (L, )0 (2, 6) + 5P Z Djn(t,€)Pjn(2,€), (3.22)
where
PO (4,6) £ vl ] €,
Dj3(t,€)
220 o (t,€) F vjm (1, €)] 2,
Dj4(t,€)

ijl (t, g) = ij(t) COS )\gltg, I/jkg(t, f) = ij(t) sin )\Qltf, k? = 1, 2

Taking (3.22) into account, after some calculations we have

/Re [7j(t)v;(2) cos Ao (t — 2)E] dz

72/\22615 2/\22£t
Zdt ]nl Zdt ]nl (323)

where

Il
\t—‘
=~

t
JTLI t 5 /(I)]n n
p

Substituting (3.23) in (3.21) and integrating by parts, we obtain
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1
1 —1/2 22
35%0/(1—52) dg{aj “fzéml

+/ — 2a;(t)(6 — A2 5} 2O A8 [Z (I)jnl ]
+CL] 2(04+A228) Z (I)jnl
+ / —2a;1 (1) (6 + A 5)} 2t(6+228) [Z 2 (t 5)1 dt}. (3.24)
P n=3

From here, taking a;1(¢) > 0, a’;(¢t) <0, Vt € [0,1] and (—d £ X228) > 0 at —0 > |Ag2, [€] <1

s @y
into account, we conclude that P; > 0.

Lemma 3.2.3. Let 7;(1) = 0, 6 > |[ImXy| and the condition (3.16) be fulfilled. Then for
d;(t) = 0 inequality (5.19) is valid.

Proof. Let d;(t) = 0. Then, by virtue of the second and the third from the condition (3.16),
from (3.5;) at t = 1 it follows, that 7;(1) = 0. Taking into account 7;(1) = 0 and d,(t) = a;(t) =0,
from (3.5;), we find the function 7;(¢) and with regard to Re[7;(t)v;(t)] = Re[r;(t)7;(t)] we
substitute it in (3.19); changing the function .Jy[-] by formula (3.20) and taking into account the

fact, that bj1(t) = b;(t)/c;(t) is a real function, we have

1
= i/ 1 _52 ~1/2 df/ e (t) dt/Re Uj(t)vj(z) cos \a&(z — t)] dz. (3.25)

0

Using the equality (3.22), after some calculations we find

/ Re [7;(t)v;(2) cos No(t — 2)€] dz

,2)\22§t Z yr ]n2 2)\22525 Z dt jn2 ’ (326)

where

1
©(t,€) = /cpjn(z,g)dz, n=T4
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Substituting (3.26) in (3.25) and integrating by parts we find

1

1 — 22
JET/ 1_ df{ 2§A£Zq)]n2p7

0

1
+/ ) 4201 (1) (0 — )\225)} 2H{0-dzat) [Z <I>]n2 (t f)} dt

+b]1(p) _2(6+>\22£ Z q)]n2 b, 5)
n=3

n=3

+/ t) + 261 (1) (8 + Ao 5)] 26(3+22) [Z P2 ,(t 5)] dt}. (3.27)

From here, taking b;1(t) > 0, b}, (t) > 0, Vt € [0,1] and (§ & X22€) > 0 at § > [N, |§] < 1
into account, we conclude that P; > 0.
Lemma 3.2.4. Let 7;(p) =0, 7;(1) =0, 6 = ImAy = 0 and the conditions (3.17) and (3.18)

be fulfilled. Then for d;(t) = 0 the inequality

is valid.

The correctness of the proposition of this lemma follows from Lemmas 3.2.2 and 3.2.3 by
using formulas (3.23), (3.26) and the condition ImAs = 0.

Remark 3.1. From Theorem 3.2.2 for b;(t) =0, ¢j(t) =0 or a;(t) =0, ¢;(t) =0, j = 1,2
the uniqueness of the solution of the Tricomi problem for the equation (L.B) in the domain A
follows.

From Remark 1.3 and Theorem 3.2.2 follows

Proposition. If \; = Ay = A and one of the conditions (3.15) or (3.16) are fulfilled, then the
problem I'} (consequently, the Tricomi problem) con have eigenvalues only outside of the domain
Dy = {\:[Re\| > V2 [Im)|}.

We go over to proving existence of the solution of the problem T'j. We assume that the
conditions of group 3) of Theorem 3.2.2 are fulfilled, and for simplicity in addition we assume

that

[a1(t) = b1(0)] Jan(t) = [az(t) — ba(8)] fa(t) = A(t) # 0.
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Considering problem N for the equation (L.B) in the domain Ay, we obtain formula (3.14),
from which assuming at first y = 0, and in the next x = 0, we obtain the functional relation

between 7;(t) and v;(t) on the segments I; and I, attained from A,

t) +/Vj(z)G(z,O;t,O)dz+/Vk(z)G(0,z;t,O)dz

1
—|—/V1 JltZdZ—f-/l/Q VHjo(t, 2)dz = f; (1), p<t<1, (3.28)
P
where j,k=1,2, j #k,

Hyy(z,2) =/ R(&,n;2,0)G(2,0; €, n)dEdn;
His(z, 2) =/ R(&,n;2,0)G(0, z; £, n)dEdn;
Hox(y, 2 / R(&,m:0,9)G(z,0: €, n)ded

Haaly, = / R(E150,9) G0, %, m)dEd:

Z/%%n[ G(&m;2,0)

J 1croj

+//R€ 2,0 -G, m: € n)dédn]

ZZ/%fnl G(&1;0,y)

(3.29)

+//R€n0y (fnfn)dfdn]

By finding formula (3.28) takin into account that G(z,0;t,0) = G(0, 2;0,¢) and G(z,0;0,t) =
G(0, z;,0).
If we eliminate 7;(t) from (3.28) and (3.5;), and in the next differentiate them with respect

to t, we obtain

1
—l—/uj zOtOdz—l—/Vk aG(OztO)d
p
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+/V1( YMju(t, = dz+/z/2 Mjs(t, 2)dz = f,(1), (3.30)

where

f15(t) = £5(t)

+{7i(p)a;(t) Jo (Mot — p)] + 7;(1)b; () Jo Ao (1 — 1)] — 2d;(1)} /ev; (1)

Introducing the notation vy (x) —va(x) = py(z), vi(z)+ra(x)
(3.30) in the form

= po(x), we rewrite the system

1
1
)+ f/K (t,2)p(2
s
p
1
+ / Lir(t, 2)n(2)dz + / Liot, 2)pa(2)dz = Fy(t), p<t<1, (3.31)
P
where
+00 2% 2%
p Pz
K(t, z) = — 3.32
(t:2) g_:oo L‘ —p?t 1 —katz]’ (3:32)
O [2lnxInt 1. |1+ at T2 (1 + p*at)(xt + p*)
L.t - G(0,t; 2,0
3@ 1) = 09:[ mlnp o T+t kl;[l (t + p*z)(z + pkt) FG(0.2,0)

1
+3 [My1(t, z) + May(t, 2) F Mia(t, 2) F M2 (t, )],
1
ij(t, Z) = 5 [Mn(t, Z) — Mgg(t, Z) + Mlg(t, Z) + Mgl(t, Z)] R

Fi(t) = fu(t) F fis(t), 5,k=1,2, j#k
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From the form of the functions L;x(t,2) follows, that this functions are continuous in the
rectangle {p <t,z <1} and gtij(t,z) exists for t # z, and have logarithmic singularities at
t=z.

Further, using (3.4) and the condition on a;(t), b;(t), ¢;(t), and d;(t), it is not difficult to
verify, that F;(t) € C[p, 1] N C3(p, 1), j = 1,2. From here and from the formulation of the
problem I'y follows, that the solution of the equation (3.31) must be found in the class of functions
p;(t) € C(p, 1), which con have a singularity of order less than one as t — p, if A(t) < 0 and
at t — 1, if A(t) > 0.

In this class the solution of the equation (3.31) exists and is determined by the formulas [23]

where

k=1

9 1
Q%) :Fj(t)—Z/ij (t, ) u(2)dz, gk =1,2,
V4

1 1
+00 (an—l — 1) (p2n+l - t)} ;ar(jgm

b~ | i

n=—00 (an - t>2

If we return to the functions v;(t), we obtain a system of Fredholm integral equations of the
second kind. Unconditional solvability of the system follows from the uniqueness of the solution
of the problem T}.

After having found 7;(¢) and v;(t), the solution of the problem I’y in the domains A¢ and Ay,
A, is defined as the solution of the problem N and the Cauchy problem for the equation (L.B)
and it is given by the formulas (3.14) and (1.5;) respectively.

Let the conditions of group 1) ( 2) ) of the Theorem 3.2.2 be fulfilled. We require in
addition that the condition d;(p) = 0 (d;(1) = 0) is fulfilled. Then analogously to the previous, we
obtain a singular integral equation in the form (3.31). Solving the obtained equation we determine
the function v;(t), moreover it can have a singularities of order less than one at t — p and ¢t — 1,
as by virtue of the conditions (3.15) ((3.16)) A(t) = a;(t)/c;(t) > 0 (A(t) = —b;(t)/;(t) < 0).

With this ended our investigation of the problem Ty for a;(t) #0, j=1,2.
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3.2.3. Investigation of the problem I'j for «;(t) =0, ax(t) #0, j,k=1,2, j#k

Let ay(z) = 0, as(y) # 0 and the functions a,(z), bi(x), ¢1(z) satisty one of the conditions
a), b), ¢) of Theorem 3.2.1 for j = 1, and the functions as(y), b2(y), ca(y) satisfy one of the
conditions 1), 2), 3) of Theorem 3.2.2 for j = 2. Then for the homogenous problem I'y we have

1
vi(z)=0 and Re/e%yfg(y)l/g(y)dy >0,
0

that correspond to one of the cases of Theorems 3.2.1 and 3.2.2, respectively.

Consequently, and in this case fulfilling the condition ReA? > (Im\;)” from (3.6) follows that
D(x,y) =0, (x,y) € Ny, w(z,y) =0, (x,y) € Ay, i.e. u(z,y) = 0 in Ag. From here follows the
uniqueness of the solution of the problem I'y.

We go over to proving existence of the solution of the problem I'j. For this by virtue of
ai(z) = 0, from Theorem 3.2.1, the function vi(z) is determined by one of the formulas (3.9)-

(3.11), and for determination of v5(y) we have a singular integral equation analogously to (3.31):

1
1
) + —/K Y, 2)va(z dz+/K1 y, 2)va(2)dz = F(y), (3.34)
T p
where K (y, z) is a kernel, determined by the formula (3.32) and

0 [2lnylnz 1 2+ p*ky
Ki(y,2) = [

oy | wlnp 7w 2 In 1—|—p2"3yz

k=—o00

] +M22(y,2)
F(y) = faly / (0, 2;9,0) + My (y, 2)] v1(2)dz=.

Turning to (3.34), by the formula (3.33) and using the uniqueness of the solution of the
problem I'), we find analogously the function v, (y).

Further, solution of the problem I'j in Ag is determined by the formula (3.14), and in A,
(j =1,2) by the formulas (1.5;),7 = 1,2.

With this ended our investigation of the problem I') for a;(x) =0, ay(y) # 0.
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§ 3.3. Investigation of the problem I'}

Using the formula (1.5;), (j = 1,2) in A; and the conditions (3.3;), (j = 1,2), after some

operations we have

Bi()vi(t) = =2d;(t) + a; ()0 [13()] = b; (O™ [7(2)] (3.35;)

T

where 3;(t) = a;(t)—b;(t)—2¢;(t),p <t < 1, j = 1,2, and C%? is an integro-differential operator,
determined by the formula (1.22).

Equalities (3.35;),7 = 1,2, provide a basic functional relation between 7;(¢) and v;(t) on the
segments I; and I, respectively, attained from the hyperbolic part of the mixed domain A.

At proving uniqueness and existence of the solution of the problem I'} we consider the cases,

when ;(t) =0, j = 1,2 and when 3;(t) #0, j = 1,2.
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3.3.1. Investigation of the problem I'} for 3;(t) =0, j=1,2

Theorem 3.3.1. Let 5;(t) =0, j = 1,2. Then, if ReA? > 0 and one of the following group of
conditions a) b;(t) = 0, J = 1,2, b) a;t) = 0, J = 1,2,
c) aj(t) = 0, bp(t) # 0, 4,k = 1,2, j # k is fulfilled, then the solution of the problem T'}
erists and is unique.

Proof. Let u(x,y) be a solution of the homogenous problem I'! and 3;(t) = 0. Then the

relation (3.35;) becomes

a; ()0 [ (D] = b (O [;(D] =0, p<t<l.

From here fulfilling one group of conditions a), b), ¢) we obtain an integro-differential equation
for the unknown functions 7;(¢). Further, taking 7;(p) = 0, 7;(1) = 0 into account, respectively,
from the obtained equation we find that 7;(t) =0, p <t < 1.

On the other hand, by virtue of u(a:,y)|50]_ = 0, according to Lemma 3.2.1, the equality
(3.6) is valid. Assuming 6 = 0 and taking into account ReA] > 0, 7;(¢) = 0, from (3.6) we obtain
D(x,y) = 0in Ay, w(z,y) = 0in Ay, consequently u(x,y) = 0 in Ay, from here follows uniqueness
of the solution of the problem I'7.

We go over to proving existence of the solution of the problem I'!. We assume that the
conditions of Theorem 3.3.1 are fulfill. Then relation (3.35;) becomes

a; (™ [ ()] = b (O™ [1;()] = 2d,(1), p<t<1. (3.365)

p
a) Let b;(t) =0, j = 1,2. We assume in addition that

/ 1) /a; ()] Joha(l — t)dt =0, j=1,2. (3.37)

Then from (3.36,) we obtain the equation
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Taking into account 7;(p) = 0, from the last equation we find the function
t
7i(t) =2 [ [di(=) /s ()] JoDalt = 2z, j=1,2. (3.38)
p

The condition (3.37) is an agreement condition in the point ¢ = 1.

b) Let a;(t) =0, j = 1,2. Then, analogous to the case a), assuming in addition

1
/ O] JoDalt — p)ydt =0, j=1,2, (3.39)
p

and taking 7;(1) =0, 7 = 1,2 into account, from (3.36;), we find the function
1
7i(t) = =2 [ () /by () ooz — )z, j = 1,2 (3.40)
t

(3.39) is an agreement condition in the point t = p.

c) Let a;(t) =0, bg(t) #0, j,k = 1,2, j # k. Then the function 7;(¢) is found by one of the
formulas (3.38) or (3.40), and 7 (t) by the other of these formulas with the additional conditions
(3.37) or (3.39), respectively.

Consequently, for §;(t) =0, j = 1,2, and fulfilling one of the group of conditions a), b), c)
the problem I'} is equivalently reduced to the Direchlet problem for the equation (L.B) in Ag. It
is known that the solution of this problem exists, is unique and determined by the form (3.14),

moreover [43|
2
= Z / (&) 5 - G(& m 2, y)ds
1
+/7'1 2(t, 02,y dt+/7'g )Ge(0,t; 2, y)dt, (j=1,2.), (3.41)
G(fﬂ%x,y) = P(W,Z) + P(_waz) - P(wa Z) - P(_w7 Z)

Here n is the inner normal to oy; relative to Ay, s is the arc length.
In the domains A; and A, the solution of the problem I'} is determined by the formulas (1.5;)
and (1.52), moreover vy (x) = uy(x,0) and 15(y) = u,(0,y) are found from (3.14).
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§ 3.3.2. Investigation of the problem I} for 3;(t) #0, j = 1,2

Theorem 3.3.2. Let one of the following group of conditions be fulfilled

1) ReA? > (Im\y)?,
Bi(t) £ 0, b;(t)=0 4 1 (Cj(t)) <0, telp1]; (3.42)
! Y L) 20 \e(t)) T o
2) ReA? > (Im),)?,
Bi(t) £ 0, a;(t) =0, Zgg > —;, (Zﬁi) <0, telp1]; (3.43)
3) ReA? >0, Im)\, =0,
ﬁj(t) 7& O’ aj(t) 7_é O? bj(t) 7_é 07 (344)

(1) (1) 4 b
(ﬂj(ﬂ) =0 (@(t)) <0, telpl); , > 0. (3.45)

Then for the problem T} cannot exist more than one solution.

The proposition of the Theorem follows from equality (3.6) and from the following lemma.

Lemma 3.3.1. Let 7j(p) = 0, (=6) > |ImA;| and the condition (3.42) be fulfilled. Then for
d;(t) = 0 inequality (3.19) is valid.

Proof. Taking b;(z) = d;(xz) = 0, and a;j(x) # 0 into account, from the equalities (3.35;) we
obtain the integro-differential equations

10433 [ () 02 s = )

where a;2(t) = a;(t)/5;(1).
Turning into the last equation, with regard to 7;(p) = 0, we obtain 7;(¢) and substituting it in
the integral (3.19), observing, that a;(t) is a real valued function, as in Lemma 3.2.2, we reduce

P; to the form (3.24), moreover the function a;;(¢) will change to a;2(t), and v;(t) to v;(t)/a;a(t),
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j = 1,2. From here taking the condition a(t) > 0, aj,(t) < 0, V¢ € [p,1] and the inequality
(=0 £ A28) > 0 (as (=) > |Aagl, |€] < 1) into account, we conclude that the inequality (3.19) is
valid.

Lemma 3.3.2. Let 7;(1) = 0, § > |ImXy| and the condition (3.43) be fulfilled. Then for
d;(t) = 0 the inequality (3.19) is true.

Proof. By virtue of a;(z) = d;(z) = 0 and b;(z) # 0 we can rewrite the equality (3.35;) in

the form
1
Ji[Aa(z — 1)) v;(t)
(1) + A2 / ()2 EZ Y] Y
T]()+ 2t T](z) )\Q(Z_t) z bjz(t)v
where bjo(t) = —b;(t)/F;(t). Taking 7,(1) = 0 into account, from the last integro-differential

equation we find the function 7;(¢). Substituting it in the integral (3.19) and taking into account
the fact, that bjs(t) is a real valued function, as in Lemma 3.2.3, we reduce it to the form (3.27),
only here bj;(t) will change to bj(t), and v;(t) to v;(t)/bj2(t), j = 1,2. Taking into account this
and the conditions of lemma, we conclude that inequality (3.19) is valid.

Lemma 3.3.3. Let 7;(p) =0, 7;(1) =0, 6 = ImAy = 0 and the conditions (3.44) and (3.45)
be fulfilled. Then for d;(t) = 0 the inequality

Re / 75(0v;(t) > 0

is valid.

For proving this lemma simultaneously use the proof of Lemmas 3.3.1 and 3.3.2.

Remark 3.1. From the Theorem 3.3.2 for b;(t) = 0, ¢;(t) = 0, (j = 1,2) or q;(t) = 0,
¢j(t) =0, (j = 1,2) the uniqueness of the solution of the Tricomi problem for the equation (L.B)
follows.

From Remark 1.3 and Theorem 3.3.2 follows the following

Proposition. If A\; = A2 = A and one of the conditions (3.42) or (3.43) is fulfilled, then the
problem T} (consequently the Tricomi problem) con have eigenvalues only outside of the domain
Dy ={\:[ReX| > v2|Im\|} .

We go over to prove existence of the solution of the problem I'}. We assume that the condition

3) of Theorem 3.3.2 is fulfilled, and in addition we assume that the condition



7

a;(t) +b;j(t) £0, j=1,2, e = = B(t) £0 (3.46)

or a;(t) +b;(t) =0, j=1,2is fulfilled.

Let the condition (3.46) be fulfilled.

Consider problem N in the domain A for the equation (L.B) and obtain relation (3.28)
between 7,(t) and v;(t) (j = 1,2), attained from the elliptic part of the mixed domain A.
Substituting (3.28) in (3.35,), after some operations we obtain a system of integral equation for

w;(t) = vi(t) + (—1)1a(t), which is equivalent to problem I'y:

1
1
+—/Ktng
T
p
1 1
+/T]1(tzu1 dz+/ Tjo(t, 2)pao(2)dz = T'(1), (3.47)
p P

where

F](t) = Vl(t) + <_1>j72(t)7 j = 172a le [ ’1]a

5l8) = £+ / O
9 j t Jl )\2 Z — t)] Zdj<t)
IR /ff G- T oW b0

the functions fi(x), f2(y) and K (t, z) are determined by the formulas (3.29) and (3.32) respective-
ly. Tj(t,2) are expressed by the well-known function a;(t), ©b;(t), c¢;(?),
Ji[Xe(t — 2)], G(&,m;x,y) and R(E,m; x,y), moreover they are continuous in the rectangle p < t,
z < 1, continuously differentiable for ¢ if ¢ # z and gt T, (t, z) have logarithmic singularities at
t==z.

Using (3.4) and the condition on a;(t), b;(t), ¢;(t) and d;(t), we can prove that I';(t) €
Clp,1]nCE(p,1), 0<r<1, j=1,2.

From the formulation of the problem I'} and the properties of the function I';(¢) follows that we

must find the solution of the equation (3.47) in the class of functions
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p;i(t) € CU(p,1), j = 1,2, which can have singularities of order less than one at ¢t — p
and ¢t — 1.

Turning to equation (3.47) ( analogously to (3.31)) by the formula (3.33) and if we return to
the functions v (x) and v5(y), we obtain a system of Fredholm integral equations of the second
kind, solvability of which follows from Theorem 3.3.2. The found v;(z) and v5(y) depending on
B(t) > 0 or B(t) < 0 can have singularities of order less than one as t — p or t — 1, respectively.

In this case, when a;(t) + b;(t) = 0 (j = 1,2), substituting (3.28) in (3.35;) respectively,
we obtain a system of Fredholm integral equations of the second kind for v;(t) (j = 1,2), the
solvability of which follows from Theorem 3.3.2.

Remark 3.2. Analogously to the previous paragraph, solvability of the problem I'? can be
investigated in that case, when (;(t) =0, Gi(t) # 0, j, k = 1,2, j # k.
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Zusammenfassung

Wesentliche nichtlokale Randwertprobleme werden fiir elliptisch-hyperbolische Gleichungen
mit Spektralparameter im Viertelkreis und Viertelring untersucht, wobei der Gleichungstyp sich
auf einer nicht glatten Kurve dndert. Die Probleme werden auf dquivalente Systeme von Integral-
und gelegentlich Integrodifferentialgleichungen iiberfiihrt. Methoden fiir partielle Differentialgle-
ichungen, aus der Spektraltheorie linearer Operatoren, der Theorie der singuldren Integralgle-
ichungen, der komplexen Analysis, das Energieintegral und auch das Extremalprinzip werden
zur Losung des erhaltenen Systems angewandt. Zum Auffinden eines Systems von Eigenfunktio-
nen wird die Methode der Trennung der Variablen verwandt. Folgende neue Ergebnise werden
erzielt:

1. Fiir den komplexen Parameter A\ werden Bedingungen angegeben, die die Eindeutigkeit
der Losung sichern. Ausserdem wird in der komplexen Ebene ein Gebiet fiir den Parameter A
angegeben, ausserhalb dessen die untersuchten nichtlokalen Probleme Eigenwerte haben kénnen.

2. Fiir Eindeutigkeit und Exsistenz der Losungen werden hinreichende Bedingungen for-
muliert.

3. FEigenwerte und zugehorige Eigenfunktionen werden fiir eines der allgemeinen gemischten
Probleme gefunden, in dem auf dem Rand des elliptischen Teilgebiets die dritte Randbedingung
und fiir den hyperbolischen Teil mittels Integraloperatoren ausgedriickte nichtlokale Bedingungen
gegeben sind. Ausserdem wird die Vollstdndigkeit des Systems der Eigenfunktionen im Raum Lo
bewiesen.

4. Eine neue Methode zum Existenzbeweis fiir die Losungen des betrachteten Problems wird
entwickelt, indem Eigenfunktionen in offensichtlicher Form als Losungen des formulierten Prob-
lems in dem Fall angewandt werden, in dem die Eindeutigkeit der Losung des Problems gegeben

ist.
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