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Introduction

Urgency of the theme. Many problems of mechanics, physics, geophysics are reduced
to solutions of partial di�erential equations, which do not belong to known classes of elliptic,
parabolic or hyperbolic equations. As a rule, these equations are called non-classic equations of
mathematical physics.

Apparently, for the �rst time non-classic equations of mathematical physic
have appeared in S.A.Chapligin's works [9] at investigating transonic current, where they were
introduced as so-called mixed type equations.

Equations are called mixed type equations, which in the one part of the domain of de�nition,
they are of elliptic type, in the other of hyperbolic type. The investigation of boundary value
problems for mixed type equations were started in F.Tricomi's [41] and S. Hellerstedt's [13]
works, in 20-30s of the twentieth century, where for the �rst time there were stated boundary
value problems for the model mixed type equations

yuxx + uyy = 0,

signy|y|muxx + uyy = 0, m > 0.

Nowadays these boundary value problems are called Tricomi and Hellerstedt problems. In a
new stage of the development of boundary value problems for mixed type equations they appeared
in the works of M.A. Lavrent'ev, I.A. Vekua, S.A. Xristianovich, F.I. Frankl, K.G. Guderle
and so on. In these works the importance of study problems for mixed type equations were
indicated, in particular, the Tricomi problem, which is connected with transonic gas dynamics,
magnetohydrodynamic currents with passage by the speed of sound, with theory of in�nitesimal
bending surfaces, and also with many other questions of mechanics.

Nowadays many considered problems for mixed type equations are widened signi�cantly and
also denoted by "mixed type equations". Boundary value problems for mixed type equations were
studied intensively from 1970s. It can be explained, that non-local problems contain a wide class
of local boundary value problems and during their study di�erent questions of applied nature
appear, for example, questions of mathematical biology [25], mathematical simulation processes,
study of laser [8], problems of plasma physics [4], [26], [17] and so on.

In previous years many works are devoted to studying boundary value problems with non-
local conditions, among them we can note works of A.V. Bitsadze [6], M.S. Salakhitdinov [33],
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[36], [34], T.D. Djurayev [10], [11], A.M. Naxushyev [24-26] and their students.
In 1969, A.V. Bitsadze and A.A. Samarskiy [5] have formulated and investigated a new prob-

lem for uniformly elliptic equations, which di�er from other problem. These boundary conditions
connect values of the desired solution on the boundary with inner points of the domain.

After this works, many works have appeared in di�erent formulation, which are devoted to
problems of Bitsadze-Samarskiy type for partial di�erential equations. Among them we can note
works of V.A. Ilin and E.I. Moiseev [14], M.S. Salakhitdinov and A.K. Urinov [36], M.M. Smirnov
[38] and so on.

Boundary-value problems for mixed type equations with spectral parameter were studied
intensively from the second half of the seventies of the last century. It can be explained, on
the one hand, that some multivariate analogues of basic boundary value problems for mixed
type equations can be studied by their reduction (by the help of the Fourier transformation) to
problems for equations with spectral parameter. On the other hand, commonly known methods,
which are powerful tools for studying elliptic operators, were found a little adjusted for applying
to boundary value problems for mixed type equation, as a spectral theory of mixed type equations
is relative in principal, to a spectral theory of non self-conjugate operators. Therefore, not only
the problem of full description of the spectrum of these problems is very interesting, but also
the characterization of eigenvalues, i.e. those values of the spectral parameter for which the
uniqueness theorem is not valid.

Many works are devoted to study these questions. In connection with this we note a work
by T.S.Kal'menov [15] in which he proved the existence of even one eigenvalue of the Tricomi
problem for the Lavrent'ev - Bitsadze equation, a work by E.I. Moiseev [21], [20] in which sectors
are found where there is no eigenvalue of the Tricomi problem for series of mixed type equations
and a work by S.M.Ponomarev [27] where eigenfunctions and eigenvalues of the Tricomi problem
are found for the equation Uxx + signyUyy − λU in a special domain.

Many non-local problems for two equations of mixed elliptic-hyperbolic type with spectral
parameter, from which, in part, follows no spectrums of this problems exists in some sectors of
the complex plane, were investigated in the works of M.S. Salakhitdinov and A.K.Urinov [36].

That is why the natural question appears: can one investigate principal classic and non-local
problems for mixed type equations with two lines of changing type of the equations with spectral
parameter and questions on the spectrum of these problems.

The aim of the work. The principal aim of this dissertation is to investigate non-local
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boundary value problems for mixed type equations with two lines of changing type with spectral
parameter.

For achievement of the formulated aim:
1. Many problems are were formulated and investigated for equations of elliptic-hyperbolic

type with spectral parameter with two lines of changing type with non-local condition in the
hyperbolic part of the mixed domain, and in the elliptic part, when the boundary is a quarter
circle, with the Dirichlet conditions and the third boundary condition.

2. Non-local problem is formulated with conditions as Bitsadze-Samarskiy type in the ellip-
tic part and non-local conditions in the hyperbolic part of the mixed domain for the elliptic-
hyperbolic type equation with spectral parameter with two lines of changing type and it's unique
solvability is proved.

3. In the case, when the boundary of the elliptic part is a quarter ring two non-local problems
are formulated for the elliptic-hyperbolic type equation with spectral parameter with two lines
of changing type and their unique solvability are proved.

4. In the class L2 spectral properties of solution of a non-local problem is investigated, in
particular, completeness is proved and a basis system of eigenfunctions is given.

Method of investigation. Investigating problems equivalently reduced to the system of
integral and sometimes integro-di�erential equation. In solving the obtained systems a method
from the theory of partial di�erential equations, a spectral theory of linear operators, the theory
of singular integral equations, a method of complex analysis, the energy integral, and also the
extremum principle are applied. For �nding a system of eigenfunctions the method of separation
of variables is used.

Scienti�c news of the dissertation. In this work the following new results are obtained:
1. Conditions are found for the complex parameter λ, ensuring uniqueness of the solution of

considered problems. Further, in the plane of the complex parameter a domain of the values λ is
given, outside of which the considered non-local problems can have eigenvalues.

2. Su�cient conditions are found for uniqueness and existence of solutions of the formulated
problems.

3. At �rst eigenvalues and corresponding to them eigenfunctions are found for one of the most
general mixed problem, in which is given the third boundary condition on the boundary of the
elliptic part of the mixed domain and in the hyperbolic part a non-local condition is given by
some integral operator, and the completeness of eigenfunctions are proved in the class L2.



7

4. A new method is developed to prove the existence of the solution of the considering problem,
i.e. by applying eigenfunctions in evident form as solutions of the formulated problem in the case,
when the Theorem of uniqueness of the solution of the considering problem is given.

Approbation of the dissertation. Results of the dissertation were discussed in the re-
publican seminar �Modern problems of the theory of partial di�erential equations� (Institute
of mathematics, Uzbek Academy of Sciences, heads are academicians M.S.Salakhitdinov and
T.D.Djuraev). The main results were also discussed in the republican seminars �Modern problems
of computational mathematics and mathematical physics� (National University of Uzbekistan,
head is academician Sh.A. Alimov), "Di�erential equations and spectral analysis"(National Uni-
versity of Uzbekistan, heads is academician of Academy of Science of Republic of Uzbekistan
M.S.Salakhitdinov and doctor of physic-mathematical science R.R.Ashurov) and in the seminar
"Real and complex analysis"of Professor H.Begehr (Freie Universitaet Berlin). Some parts of
the dissertation were reported in international scienti�c conferences on the theme "Mixed type
equations and contiguous problems of analysis and informatics"in 2004, city Nal'chik, Russia,
"Di�erential equations with partial derivative and contiguous problems of analysis and informat-
ics"in 2004 city Tashkent and also in the republican conference of young mathematics scholars
in Uzbekistan, which was devoted to 125 years of academician V.I.Romanovskiy.

Publication. Principal results of the dissertation where published in the works [48-55].
Structure of the work. The dissertation consist of introduction, three chapters and refer-

ences. Numbering of formulas are double: the �rst number indicate on the number of chapter,
the second number is the number of the formula in this chapter. Numbering of statements are
threefold: the �rst number indicate on the number of chapter, the second number is the number
of the paragraph, the third number is the number of the statement in this paragraph.

We pass to describe the substance of the dissertation.
The �rst chapter consist of two paragraphs. In the �rst paragraph is formulated and inves-

tigated one non-local problem for the equation

signyuxx + signxuyy − λ2u = 0, (L.B)

in mixed domain, in which on the boundary of the elliptic part is given a Dirichlet condition,
and in the hyperbolic part a non-local condition with a determined integral operator for this
equation, where λ is a given complex number, moreover λ = λ1 at x > 0, y > 0 , λ = λ2 at x > 0,

y < 0 and x < 0, y > 0.
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Let Ω be a �nite simply-connected domain in the plane of the variables x and y, bounded at
x > 0, y > 0 by the line σ0 : x2 + y2 = 1, at x > 0, y < 0 by the characteristics OD : x + y = 0,
AD : x− y = 1 and at x < 0, y > 0 by the characteristics OC : x + y = 0, BC : x− y = −1 of
the equation (L.B), and let

Ω0 = Ω ∩ (x > 0, y > 0), Ω1 = Ω ∩ (x > 0, y < 0), Ω2 = Ω ∩ (x < 0, y > 0),

OA = {(x, y) : 0 < x < 1, y = 0} , OB = {(x, y) : x = 0, 0 < y < 1} .

Further, let θx0, θx1 and θ0y, θ1y be points of intersection of the characteristics of the equation
(L.B), outgoing from points (x, 0) ∈ OA and (0, y) ∈ OB with characteristics OD, AD and OC,

BC, respectively, i.e.

θx0 =
(

x

2
,−x

2

)
, θx1 =

(
x + 1

2
,
x− 1

2

)
and θ0y =

(
−y

2
,
y

2

)
, θ1y =

(
y − 1

2
,
y + 1

2

)
.

We call a function u(x, y) a regular solution of the equation (L.B) in the domain Ω if: u(x, y)

∈ C(Ω) ∩ C1(Ω) ∩ C2(Ω0 ∪ Ω1 ∪ Ω2) satis�es the equation (L.B) in Ω\(OA ∪ OB); derivatives
ux(x, y) and uy(x, y) can become in�nity of the order less than one in points A(1, 0), B(0, 1) and
O(0, 0).

Problem Aλ. Find a regular solution of the equation (L.B) in the domain Ω satisfying the
conditions

u(x, y) = ϕ(x, y), (x, y) ∈ σ0, (1.1)

a1(x)A0,λ2
0x [u(θx0)] + b1(x)A0,λ2

1x [u(θx1)]

+c1(x)u(x, 0) = d1(x), (x, 0) ∈ OA, (1.21)

a2(y)A0,λ2
0y [u(θ0y)] + b2(y)A0,λ2

1y [u(θ1y)]

+c2(y)u(0, y) = d2(y), (0, y) ∈ OB. (1.22)

Here aj(t), bj(t), cj(t) are given real-valued functions, moreover a2
j(t) + b2

j(t) 6= 0,
t ∈ [0, 1], j = 1, 2, and ϕ(x, y), dj(t) are in general, complex-valued functions, An,λ

mx an oper-
ator witch has been introduced and studied in the monographs [36],
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An,λ
mx [f(x)] ≡ f(x)−

x∫

m

f(t)
(

t−m

x−m

)n ∂

∂t
J0

[
λ

√
(x−m)(x− t)

]
dt.

For the given functions we require that aj(t), bj(t), cj(t), dj(t) ∈ C(1,r)[0, 1], ϕ(x, y) ∈ C(σ0),
where 0 < r = const < 1.

A uniqueness theorem for the solution of the problem Aλ is proved. Conditions are found
for the complex parameter λ, ensuring uniqueness of the solution of the considered problem.
Further, a domain for the parameter value λ is indicated, outside of witch the problem Aλ can
have eigenvalues.

Principal results of this paragraph are the following theorems:
Theorem 1.1.1. Let αj(t) ≡ 0, (j = 1, 2), Reλ2

1 ≥ 0 and one of the following conditions: a)
bj(t) ≡ 0; b) aj(t) ≡ 0; c) aj(t) 6≡ 0, bj(t) 6≡ 0, aj(t) 6= bj(t) and

1∫

0

1∫

0

|Kj(t, z, λ2)|2 dtdz < 1, (j = 1, 2)

be ful�lled, where

αj(t) = aj(t) + bj(t) + 2cj(t), t =





x, if j = 1,

y, if j = 2,

Kj(t, z, λ2) =





∂

∂t
{aj(t)J0 [λ2(t− z)]} / [aj(t)− bj(t)] , t ≥ z,

∂

∂t
{bj(t)J0 [λ2(z − t)]} / [aj(t)− bj(t)] , z ≥ t.

Then if a solution of the problem Aλ exists, then it is unique.
Theorem 1.1.2. If conditions

αj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
> −1

2
,

(
cj(t)

aj(t)

)′
≥ 0, t ∈ [0, 1], (1.3)

Reλ2
1 ≥ (Imλ2)

2 , (1.4)

are ful�lled, then the problem Aλ cannot have more than one solution.
Theorem 1.1.3. If conditions (1.4) and
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αj(t) 6= 0, aj(t) ≡ 0,
cj(t)

bj(t)
> −1

2
,

(
cj(t)

bj(t)

)′
≤ 0, t ∈ [0, 1], (1.5)

are ful�lled, then the problem Aλ cannot have more than one solution.
Theorem 1.1.4. If conditions Reλ2

1 ≥ 0, Imλ2 = 0 and

(
aj(t)

αj(t)

)′
≤ 0,

(
bj(t)

αj(t)

)′
≥ 0, t ∈ [0, 1];

aj(1)

αj(1)
+

bj(0)

αj(0)
≥ 0,

are ful�lled, then the problem Aλ cannot have more than one solution.
Proposition. If λ1 = λ2 = λ and one of the conditions (1.3) or (1.5) is ful�lled, then the prob-

lem Aλ can have eigenvalues only outside the domain
D1 =

{
λ : |Reλ| ≥ √

2 |Imλ|
}

.

As usually, we call eigenvalues of the problem those values λ, for which non-trivial solutions of
the corresponding homogenous problem exist. This non-trivial solutions are called eigenfunctions.

Existence of the solution of the problem Aλ is installed by the method of integral equations,
as this investigated problem becomes a system of singular integral equations and this system
in equivalent form is brought to a system of Fredholm integral equations of the second kind.
Unconditional solvability of the system follows from the uniqueness of the solution of the problem.

In the second paragraph for the convenience we introduce the following notation −λ2
1 = µ2,

λ2 = µ in equation (L.B). Then equation (L.B) becomes

Ku ≡ signxuxx + signy uyy + µ2u = 0. (L.B1)

For equation (L.B1) one most general mixed problem is formulated and investigated in a
�nite simply connected mixed domain Ω, which is described in paragraph 1. In the boundary of
the elliptic part of the mixed domain the condition αu + β

∂u

∂n
= 0, and in the hyperbolic part

non-local conditions with de�nite integral operators are given.
A uniqueness theorem for the solution of the formulated problem is proved. When a domain

of the ellipticity equation is the sector π/2 with the center in the beginning of the coordinate, by
the method of separation of variables eigenvalues µn,m are found and in evident form correspond-
ing to them eigenfunctions are constructed. The question about completeness of the system of
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eigenfunctions is studied in elliptic, hyperbolic and on the whole of the mixed domains, and also
for the structure of solution of the given problem is shown by applying a system of eigenfunctions.

Problem A0
µ. Find a regular solution u(x, y) ∈ C1(Ω ∪ σ0) of the equation (L.B1), in the

domain Ω satisfying the conditions:

αu(x, y) + β
∂u(x, y)

∂n
= ψ(x, y), (x, y) ∈ σ0,

A0,µ
0x [u(θx0)] + γ1u(x, 0) = 0, (x, 0) ∈ OA,

A0,µ
0y [u(θ0y)] + γ2u(0, y) = 0, (0, y) ∈ OB,

where α, β, γ1, γ2 are given real numbers, moreover α2 +β2 6= 0; n is the outer normal to σ0 and
ψ(x, y) is a given, in general, complex-valued function.

The validity of the following theorem is proved.
Theorem 1.2.1. If conditions α · β ≥ 0, α2 + β2 6= 0, γj ≥ −1/2 (j = 1, 2) and Reµ = 0 are

ful�lled, then the homogeneous problem A0
µ has only the trivial solution.

Further, we assume that the condition of the Theorem 1.2.1 is ful�lled and
we go over to polar coordinates r =

√
x2 + y2, ϕ = arctg

y

x
, (0 ≤ r ≤ 1,

0 ≤ ϕ ≤ π

2
), the eigenvalues µn,m = α(νn)

m (m,n = 1, 2, ...) of the problem A0
µ are found by

the method of separation of variables, where α(νn)
m is the m-th root of the equation αJνn(µ) +

βµJ ′νn
(µ) = 0 (at β = 0 or β 6= 0, α/β + νn ≥ 0, νn > 0, n ∈ N this equation has only real

roots), where

νn =





2n− 1, if γ1 + γ2 + 2γ1γ2 = 0,

2n− 2

π
arctgγ, if γ1 + γ2 + 2γ1γ2 6= 0, γ ≥ 0,

2(n− 1)− 2

π
arctgγ, if γ1 + γ2 + 2γ1γ2 6= 0, γ < 0,

γ = (1 + γ1 + γ2)/(γ1 + γ2 + 2γ1γ2), n ∈ N . The corresponding system of eigenfunctions are
determined by
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un,m(x, y) =





cn,mJνn

[
α(νn)

m

√
x2 + y2

]
sin(νnϕ + ϕ0), (x, y) ∈ Ω0,

k(1)
n,m


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×Jνn

[
α(νn)

m

√
x2 − y2

]
, (x, y) ∈ Ω1,

(−1)nk(2)
n,m


(1 + γ2)

(
y + x

y − x

)νn/2

− γ2

(
y − x

y + x

)νn/2

×

×Jνn

[
α(νn)

m

√
y2 − x2

]
, (x, y) ∈ Ω2,

(1.6)

where ϕ0 = arcctg(1 + 2γ1) and cn,m, k(1)
n,m, k(2)

n,m 6= 0 are arbitrary real constants.
If we go over to polar coordinates r =

√
x2 + y2, ϕ1 = arctg

x

y
, (0 ≤ r ≤ 1, 0 ≤ ϕ1 ≤ π

2
), then

we obtain the second form of the system of eigenfunctions

un,m(x, y) =





(−1)ncn,mJνn

[
α(νn)

m

√
x2 + y2

]
sin(νnϕ1 + ϕ1

0), (x, y) ∈ Ω0,

(−1)nk(1)
n,m


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×Jνn

[
α(νn)

m

√
x2 − y2

]
, (x, y) ∈ Ω1,

k(2)
n,m


(1 + γ2)

(
y + x

y − x

)νn/2

− γ2

(
y − x

y + x

)νn/2

×

×Jνn

[
α(νn)

m

√
y2 − x2

]
, (x, y) ∈ Ω2.

(1.7)

Let
G0 = {(γ1, γ2) : γ1 > −1, γ2 > −1, γ1 + γ2 > −1} ,

Gks = {(γ1, γ2) : γk > −1, γs < −1, γ1 + γ2 < −1} , k, s = 1, 2, k 6= s.

Then the following theorems are valid.
Theorem 1.2.2. If (γ1, γ2) ∈ G0∪G12 ((γ1, γ2) ∈ G0 ∪G21), then the system of eigenfunctions

(1.6) ((1.7)) of the problem A0
µ is complete in L2(Ω0).

Theorem 1.2.3. If γ1 = γ2 = 0, then the system of eigenfunctions (1.6) ((1.7)) of the
problem A0

µ is complete in L2(Ω1) and L2(Ω2).
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Theorem 1.2.4. If γ1 = γ2 = 0, then the system of eigenfunctions (1.6) ((1.7)) of the
problem A0

µ is not complete in L2(Ω).
At the end of this paragraph we assume, that the conditions of the Theorem 1.2.1 are ful�lled.

Then, taking the propositions of the Theorems 1.2.2-1.2.4 for those values of the parameter
µ 6= α(νn)

m into account, the solution of the problem A0
µ is found in the evident form

u(x, y, µ) =





∞∑

n=1

fn
Jνn(µr)

αJνn(µ) + βµJ ′νn
(µ)

sin(νnϕ + ϕ0), (x, y) ∈ Ω0,

∞∑

n=1

fn√
2 + 4γ1 + 4γ2

1


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×
Jνn

[
µ
√

x2 − y2
]

αJνn(µ) + βµJ ′νn
(µ)

, (x, y) ∈ Ω1,

∞∑

n=1

(−1)nfn√
2 + 4γ2 + 4γ2

2


(1 + γ2)

(
x + y

x− y

)νn/2

− γ2

(
x− y

x + y

)νn/2

×

×
Jνn

[
µ
√

y2 − x2
]

αJνn(µ) + βµJ ′νn
(µ)

, (x, y) ∈ Ω2.

(1.8)

One essential result of this paragraph is the following theorem.
Theorem 1.2.5. If αβ ≥ 0, α2 + β2 6= 0, γj ≥ −1/2 (j = 1, 2), Reµ = 0, f(ϕ) ∈

Cδ[0, π/2], δ ∈ (0, 1], then the problem A0
µ has a unique solution and it is presented in the

form (1.8), where f(ϕ) = f(r, ϕ)|r=1 = ψ(x, y)|σ0
.

The second chapter consists of four paragraphs and in it the Bitsadze-Samarskiy type
problem is investigated for the equation (L.B). Here it is also assumed, that λ is a given complex
number, moreover λ = λ0 at x > 0, y > 0, λ = λ1 at x > 0, y < 0 and λ = λ2 at x < 0, y > 0.
In this chapter those notations are used which we were used in the �rst chapter.

� 2.1 of the second chapter is devoted to preliminary information, which is needed for proving
the theorem of uniqueness of the solution of the studied problem.

In � 2.2 of the second chapter the formulation of the problem for equation (L.B) is given.
Problem BSλ. Find a regular solution of the equation (L.B), in the domain Ω satisfying the

following conditions

u(x, y) =
n∑

k=1

αk(x, y)u(rkx, rky) + g(x, y), (x, y) ∈ σ̄0,

A0,λ2
0x [u(θx0)] + c1(x)u(x, 0) = d1(x), (x, 0) ∈ OA,
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A0,λ2
0y [u(θ0y)] + c2(y)u(0, y) = d2(y), (0, y) ∈ OB,

where cj(t) (j = 1, 2) are given a real-valued functions, and αk(x, y)

(k = 1, ..., n), g(x, y), dj(t) are given, in general, complex-valued functions, r1, . . . , rn are giv-
en real numbers, moreover 0 < r1 < r2 < . . . < rn < 1. From the given functions we require, that
cj(t), dj(t) ∈ C(2,r)[0, 1], where 0 < r = const < 1, αk(x, y), g(x, y) ∈ C(σ̄0), k = 1, ..., n.

In � 2.3 of the second chapter the theorem of uniqueness of the solution of the problem BSλ is
proved. Conditions for the complex parameter λ are found, ensuring uniqueness of the solution of
the considering problem. Further, the domain of the values of the parameter λ is shown, outside
of this domain the problem BSλ can have eigenvalues.

Principal result of � 2.3 is the following theorem.
Theorem 2.3.1. Let

Reλ2
0 ≥ δ2

0 = max(|λ2
1|, |λ2

2|), (2.1)

cj(t) ≥ −1

2
, c′j(t) ≥ 0, 0 ≤ t ≤ 1; j = 1, 2 (2.2)

and for some δ ∈ [δ2
0, Reλ2

0] the inequality

n∑

k=1

|αk(x, y)|
[
eδrkx + eδrky

eδx + eδy

]
≤ 1, (x, y) ∈ σ0 (2.3)

is ful�lled.
Then, if the solution of the problem BSλ exists, then it is unique.
Proposition. If λ0 = λ1 = λ2 = λ and suppose the conditions (2.2), (2.3) are ful�lled. Then

the problem BSλ can have eigenvalues only outside of Imλ = 0.

In � 2.4 of the second chapter su�cient conditions for the given functions are determined,
under which the existence of a solution of the problem BSλ is investigated by the help of integral
equations. The investigated problem becomes a system of three Fredholm equation of second
kind, the solvability at which follows from the uniqueness of the solution.

The third chapter consist of three paragraphs, and in it two non-local problems for equation
(L.B) in a mixed domain are investigated, the boundary of the elliptic part of which is a quarter
ring.

� 3.1 of the third chapter is devoted to the formulation of the problems Γλ
0 and Γλ

1 .
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Let ∆ be a �nite simply-connected domain of the plane of variables xOy, bounded at x > 0,
y > 0 by the lines σ01 : x2 + y2 = 1, σ02 : x2 + y2 = p2, (0 < p < 1) and for xy < 0 by the
characteristics x + y = p, x− y = ±1 of the equation (L.B).

Let us introduce the notations:

∆0 = ∆ ∩ (x > 0, y > 0), ∆1 = ∆ ∩ (x > 0, y < 0), ∆2 = ∆ ∩ (x < 0, y > 0),

I1 = {(x, y) : p < x < 1, y = 0} , I2 = {(x, y) : x = 0, p < y < 1} ,

θpx(x) = ((p + x)/2; (p− x)/2) , θpy(y) = ((p− y)/2; (p + y)/2) ,

θx1(x) = ((x + 1)/2; (x− 1)/2) , θ1y(y) = ((y − 1)/2; (y + 1)/2) .

We call a function u(x, y) a regular solution of the equation (L.B) in the domain ∆\ (I1∪I2),
and the derivatives ux(x, y), uy(x, y) can become in�nity of order less than one in the points
A(p, 0), B(1, 0), C(0, 1) and D(0, p).

Problem Γλ
0 . Find a regular solution of the equation (L.B), in the domain ∆ satisfying the

conditions

u(x, y) ∈ C(∆) ∩ C1(∆) ∩ C2(∆\I1\I2);

u(x, y) = ϕj(x, y), (x, y) ∈ σ̄0j, (j = 1, 2.); (3.1)

a1(x)A0,λ2
px [u(θpx)] + b1(x)A0,λ2

1x [u(θx1)]

+c1(x)u(x, 0) = d1(x), (x, 0) ∈ I1; (3.21)

a2(y)A0,λ2
py [u(θpy)] + b2(y)A0,λ2

1y [u(θ1y)]

+c2(y)u(0, y) = d2(y), (0, y) ∈ I2. (3.22)

Problem Γλ
1 . Find a regular solution of the equation (L.B), in the domain ∆ satisfying the

boundary condition (3.1) and the conditions

u(x, y) ∈ C(∆) ∩ C1(∆\σ0j) ∩ C2(∆\I1\I2), (j = 1, 2.);

a1(x)A1,λ2
px

[
d

dx
u(θpx)

]
+ b1(x)A1,λ2

1x

[
d

dx
u(θx1)

]

+c1(x)
∂

∂y
u(x, 0) = d1(x), (x, 0) ∈ I1; (3.31)
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a2(y)A1,λ2
py

[
d

dy
u(θpy)

]
+ b2(y)A1,λ2

1y

[
d

dy
u(θ1y)

]

+c2(y)
∂

∂x
u(0, y) = d2(y), (0, y) ∈ I2. (3.32)

Here aj(t), bj(t), cj(t) are given real-valued functions, moreover
a2

j(t) + b2
j(t) 6= 0, t ∈ [p, 1], j = 1, 2, and ϕj(x, y) and dj(t) are given, in general, complex-

valued functions.
For the given functions we require that aj(t), bj(t), cj(t), dj(t) ∈ C1

(
Ij

)
∩ C(1+k,r) (Ij),

ϕj(x, y) ∈ C(σ̄0j), where 0 < r = const < 1 and k = 1 in problem Γλ
0 and k = 0 in problem Γλ

1 .
In the second paragraph of the third chapter the problem Γλ

0 is investigated. A theorem
of uniqueness of the solution is proved. Conditions for the complex parameter λ are found,
ensuring uniqueness of the solution of the considered problem. Further, the domain of the values
of parameter λ is show, so that outside of this domain the non-local problem can have eigenvalues.

The principal results of this paragraph are the following theorems.
Theorem 3.2.1. Let αj(t) ≡ 0, Reλ2

1 ≥ 0 and one of the following group of conditions is
ful�lled: à) bj(t) ≡ 0; b) aj(t) ≡ 0; c) aj(t) 6≡ 0, bj(t) 6≡ 0, aj(t) 6= bj(t) and

1∫

p

1∫

p

|Kj(t, z, λ2)|2 dtdz < 1, j = 1, 2,

where

αj(t) = aj(t) + bj(t) + 2cj(t), t =





x, if j = 1,

y, if j = 2,

Kj(t, z, λ2) =





∂

∂t
{aj(t)J0 [λ2(t− z)]} / [aj(t)− bj(t)] , t ≥ z,

∂

∂t
{bj(t)J0 [λ2(z − t)]} / [aj(t)− bj(t)] , z ≥ t.

Then, the solution of the problem Γλ
0 exists and is unique.

Theorem 3.2.2. Let one of the following group of conditions is ful�lled

1) Reλ2
1 ≥ (Imλ2)

2 ;

αj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
> −1

2
,

(
cj(t)

aj(t)

)′
≥ 0, t ∈ [p, 1]; (3.4)
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2) Reλ2
1 ≥ (Imλ2)

2 ;

αj(t) 6= 0, aj(t) ≡ 0,
cj(t)

bj(t)
> −1

2
,

(
cj(t)

bj(t)

)′
≤ 0, t ∈ [p, 1]; (3.5)

3) Reλ2
1 ≥ 0, Imλ2 = 0;

αj(t) 6= 0, aj(t) 6≡ 0, bj(t) 6≡ 0, (3.6)

(
aj(t)

αj(t)

)′
≤ 0,

(
bj(t)

αj(t)

)′
≥ 0, t ∈ [p, 1];

aj(1)

αj(1)
+

bj(p)

αj(p)
≥ 0. (3.7)

Then the problem Γλ
0 cannot have more than one solution.

Proposition. If λ1 = λ2 = λ and one of the conditions (3.4) or (3.5) are ful�lled, then the
problem Γλ

0 (consequently, the Tricomi problem) can have eigenvalues only outside of the domain
D1 =

{
λ : |Reλ| ≥ √

2 |Imλ|
}
.

Under the determined su�cient conditions for the given functions, the existence of the solution
of the problem Γλ

0 is proved.
In the third paragraph of the third chapter problem Γλ

1 is investigated. The theorem for
uniqueness of the solution is proved. And here conditions for the parameter λ also found, ensuring
uniqueness of the solution of the problem Γλ

1 . Further, the domain of the values of the parameter
λ is shown, outside of which problem Γλ

1 can have eigenvalues.
Principal results of this paragraph are the following theorems.
Theorem 3.3.1. Let βj(t) ≡ 0, j = 1, 2. Then if Reλ2

1 ≥ 0 and one of the following group of
conditions: a) bj(t) ≡ 0, j = 1, 2, b) aj(t) ≡ 0, j = 1, 2,
c) aj(t) ≡ 0, bk(t) 6= 0, j, k = 1, 2, j 6= k is ful�lled, then the solution of the problem Γλ

1

exists and is unique, where βj(t) = aj(t)− bj(t)− 2cj(t).
Theorem 3.3.2. Let one of the following group of conditions be ful�lled

1) Reλ2
1 ≥ (Imλ2)

2 ,

βj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
<

1

2
,

(
cj(t)

aj(t)

)′
≤ 0, t ∈ [p, 1]; (3.8)

2) Reλ2
1 ≥ (Imλ2)

2 ,

βj(t) 6= 0, aj(t) ≡ 0,
cj(t)

bj(t)
>

1

2
,

(
cj(t)

bj(t)

)′
≤ 0, t ∈ [p, 1]; (3.9)
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3) Reλ2
1 ≥ 0, Imλ2 = 0,

βj(t) 6= 0, aj(t) 6≡ 0, bj(t) 6≡ 0, (3.10)

(
aj(t)

βj(t)

)′
≤ 0,

(
bj(t)

βj(t)

)′
≤ 0, t ∈ [p, 1];

aj(1)

βj(1)
− bj(p)

βj(p)
≥ 0. (3.11)

Then for the problem Γλ
1 there cannot exist more than one solution.

Proposition. If λ1 = λ2 = λ and one conditions of group (3.8) or (3.9) is ful�lled, then the
problem Γλ

1 (consequently the Tricomi problem) can have eigenvalues only outside of the domain
D1 =

{
λ : |Reλ| ≥ √

2 |Imλ|
}
.

Under the determined su�cient conditions for the given functions the existence of the solution
of the problem Γλ

1 is proved.
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Chapter 1

NON-LOCAL PROBLEMS AND THEIR SPECTRAL PROPERTIES FOR
MIXED TYPE EQUATION, WHEN THE DOMAIN OF ELLIPTICITY IS A

QUARTER CIRCLE

In this chapter, the existence and uniqueness of the solution to the boundary value problems
with displacement for the elliptic-hyperbolic equation with spectral parameter with two perpen-
dicular lines of changing type of the equation in a �nite simply connected mixed domain are
studied, i.e. for the following equation

Mu ≡ signy uxx + signxuyy − λ2u = 0. (L.B)

In the case when the uniqueness theorem does not hold eigenvalues and corresponding eigenfunc-
tions are found for one most general mixed problem for the equation

Ku ≡ signxuxx + signy uyy + µ2u = 0. (L.B1)

Completeness of the system of eigenfunctions is investigated in the class L2, where λ, µ are given
complex numbers, moreover λ = λ1 at x > 0, y > 0 , λ = λ2 at x > 0, y < 0 and x < 0, y > 0.
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� 1.1. Non-local problem with Dirichlet condition on the boundary of the elliptic
part of the domain

1.1.1. Formulation of the problem Aλ

Let Ω be a �nite simply-connected domain in the plane of the variables x and y, bounded at
x > 0, y > 0 by the line σ0 : x2 + y2 = 1, at x > 0, y < 0 by the characteristics OD : x + y = 0,
AD : x− y = 1 and at x < 0, y > 0 by the characteristics OC : x + y = 0, BC : x− y = −1 of
the equation (L.B), and let

Ω0 = Ω ∩ (x > 0, y > 0), Ω1 = Ω ∩ (x > 0, y < 0), Ω2 = Ω ∩ (x < 0, y > 0),

OA = {(x, y) : 0 < x < 1, y = 0} , OB = {(x, y) : x = 0, 0 < y < 1} .

Further, let θx0, θx1 and θ0y, θ1y be the points of intersection of the characteristics of the
equation (L.B), outgoing from the points (x, 0) ∈ OA and (0, y) ∈ OB with characteristics
OD, AD and OC, BC, respectively, i.e.

θx0 =
(

x

2
,−x

2

)
, θx1 =

(
x + 1

2
,
x− 1

2

)
and θ0y =

(
−y

2
,
y

2

)
, θ1y =

(
y − 1

2
,
y + 1

2

)
.

We call a function u(x, y) a regular solution of the equation (L.B) in the domain Ω if:
a) u(x, y) ∈ C(Ω)∩C1(Ω)∩C2(Ω0 ∪Ω1 ∪Ω2) satis�es the equation (L.B) in Ω\(OA ∪OB);
b) the derivatives ux(x, y) and uy(x, y) can become in�nite of order less than one of the points

A(1, 0), B(0, 1) and O(0, 0).
Problem Aλ. Find a regular solution of the equation (L.B) in the domain Ω satisfying the

conditions
u(x, y) = ϕ(x, y), (x, y) ∈ σ0, (1.1)

a1(x)A0,λ2
0x [u(θx0)] + b1(x)A0,λ2

1x [u(θx1)]

+c1(x)u(x, 0) = d1(x), (x, 0) ∈ OA, (1.21)

a2(y)A0,λ2
0y [u(θ0y)] + b2(y)A0,λ2

1y [u(θ1y)]

+c2(y)u(0, y) = d2(y), (0, y) ∈ OB. (1.22)
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Here aj(t), bj(t), cj(t) are given real-valued functions, moreover a2
j(t) + b2

j(t) 6= 0,
t ∈ [0, 1], j = 1, 2, and ϕ(x, y), dj(t) are, in general, complex-valued functions, An,λ

mx is an operator
which has been introduced and studied in the monograph [36],

An,λ
mx [f(x)] ≡ f(x)−

x∫

m

f(x)
(

t−m

x−m

)n ∂

∂t
J0

[
λ

√
(x−m)(x− t)

]
dt.

From given functions we require that aj(t), bj(t), cj(t), dj(t) ∈ C(1,r)[0, 1], ϕ(x, y) ∈ C(σ0),
where 0 < r = const < 1.

Besides, at aj(t) 6= 0 we require that

bk(0) = 0, ak(0) + ck(0) 6= 0, (1.3)

even for one value of k (k = 1, 2) and the compatibility condition

d1(0) [ a2(0) + c2(0)] = d2(0) [ a1(0) + c1(0)] (1.4)

is ful�lled, if (1.3) takes place for k = 1, 2.

1.1.2. Uniqueness of the solution of the problem Aλ

The main functional relation in Ω1 and Ω2.
We consider the equation (L.B) in the domains Ω1 and Ω2.
As in [39], it is not di�cult to prove, that, if τ1(x) = u(x, 0), ν1(x) = uy(x, 0), τ2(y) =

u(0, y), ν2(y) = ux(0, y) and τj(x) ∈ C[0, 1] ∩ C2(0, 1), νj(x) ∈ C1(0, 1), moreover τ ′j(t), νj(t) ∈
L[0, 1], j = 1, 2, then any twice continuously di�erentiable solution of equation (L.B) in the
domain Ωj (j = 1, 2) can be represented as

u(x, y) =
1

2
[τj(x + y) + τj(x− y)] +



22

+
1

2

x+y∫

x−y

νj(t)J0

[
λ2

√
(x− t)2 − y2

]
dt +

λ2

2
y

x+y∫

x−y

τj(t)
J1

[
λ2

√
(x− t)2 − y2

]
√

(x− t)2 − y2
dt. (1.5j)

Using formulas (1.5j) and conditions (1.2j), after some calculations we have the following
equality

αj(t)τj(t) = 2dj(t)− τj(0)aj(t)J0 [λ2t]− τj(1)bj(t)J0 [λ2(1− t)] +

+aj(t)

t∫

0

νj(z)J0 [λ2(t− z)] dz + bj(t)

1∫

t

νj(z)J0 [λ2(z − t)] dz, j = 1, 2, (1.6j)

where 0 ≤ t ≤ 1,

αj(t) = aj(t) + bj(t) + 2cj(t), t =





x, if j = 1,

y, if j = 2.

Equalities (1.6j) provide a basic functional relation between τj(t) and νj(t) on the segments
OA and OB attained from the hyperbolic part of the mixed domain Ω.

By virtue of conditions (1.3) and (1.4) the constant τ1(0) = τ2(0) = u(0, 0) is identically
de�ned from conditions (1.2j) j = 1, 2.

As one can see from the relations (1.6j) there are the following cases: αj(t) ≡ 0, j = 1, 2;
αj(t) 6= 0, j = 1, 2; αj(t) ≡ 0, αk(t) 6= 0, j, k = 1, 2, j 6= k.

Note, that in [40] the uniqueness of the solution to the Tricomi problem for the equation (L.B)

is proved by the method of energy integral by using the Laplace transformation. But this method
is inapplicable for the non-local problems on the hyperbolic part of the domain of equation (L.B).

The problem Aλ was considered in [44] for the case, when λ is a real number. We shall prove the
uniqueness and existence of the solution to the problem Aλ, when λ is a complex number, using
the method which is described in [36].

The following Lemma plays the essential role in proving the uniqueness theorem.
Lemma 1.1.1. Let u(x, y) be a regular solution of the equation (L.B) in the domain Ω0 which

is equal to zero on σ0. Then the equality

(Reλ2
1 − δ2)




∫ ∫

Ω′0

|ϑ|2dxdy +
∫ ∫

Ω′′0

|ω|2dxdy


 +

∫ ∫

Ω′0

|∇ϑ|2dxdy +
∫ ∫

Ω′′0

|∇ω|2dxdy+
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+Re

1∫

0

e2δxτ1(x)ν1(x)dx + Re

1∫

0

e2δyτ2(y)ν2(y)dy = 0, (1.7)

is valid, where ϑ(x, y) = eδxu(x, y) in Ω′
0 = Ω0 ∩ (x > y); ω(x, y) = eδyu(x, y) in

Ω′′
0 = Ω0 ∩ (x < y), ∀δ ∈ R, ∇ ≡ ∂

∂x

−→
i + ∂

∂y

−→
j is the nabla operator.

Moreover ϑ(x, y) = ω(x, y) on OK : y = x; τ 1(x) = u(x, 0), ν1(x) = uy(x, 0), τ 2(y) = u(0, y),
ν2(y) = ux(0, y), where u(x, y) denotes the complex conjugation to u(x, y).

Proof. Let u(x, y) be a function satisfying the conditions of Lemma 1.1.1. We divide the
domain Ω0 into two parts by drawing the straight line y = x from the origin of the coordinates
to the point of intersection with the curve σ0. Denote this point by K. Assume that Ω′

0 is the
domain adjacent to the axis Ox, and Ω′′

0 is the domain adjacent to the axis Oy. Consider the
function ϑ(x, y) = eδxu(x, y) and ω(x, y) = eδyu(x, y) in domains Ω′

0 and Ω′′
0, respectively, where

δ ∈ R. Then, equation (L.B) becomes the forms

Lϑ ≡ ϑxx + ϑyy − 2δϑx + (δ2 − λ2
1)ϑ = 0 in Ω′

0

Lω ≡ ωxx + ωyy − 2δωy + (δ2 − λ2
1)ω = 0 in Ω′′

0.

Multiplying Lϑ = 0 and Lω = 0 with the functions ϑ(x, y) and ω(x, y), which are the complex
conjugate to ϑ(x, y) and ω(x, y) respectively, then we rewrite them in this forms

(ϑϑx)x + (ϑϑy)y − 2δϑϑx − ϑxϑx − ϑyϑy − (λ2
1 − δ2) |ϑ|2 = 0 in Ω′

0,

(ωωx)x + (ωωy)y − 2δωωy − ωxωx − ωyωy − (λ2
1 − δ2) |ω|2 = 0 in Ω′′

0.

Let σε
0 = {(x, y) : x2 + y2 = (1− ε)2}, Ω

′(ε,δ1)
0 and Ω

′′(ε,δ1)
0 be the domains

restricted by curves σε
0, y = δ1, y = x and σε

0, x = δ1, y = x respectively
(ε and δ1 are su�ciently small positive numbers). If we integrate the last equalities on the do-
mains Ω

′(ε,δ1)
0 and Ω

′′(ε,δ1)
0 , then using the Green formula and taking the real part of the obtained

equalities, we obtain

(Reλ2
1 − δ2)

∫ ∫

Ω
′(ε,δ1)
0

|ϑ|2dxdy +
∫ ∫

Ω
′(ε,δ1)
0

|∇ϑ|2dxdy+

+Re
∫

∂Ω
′(ε,δ1)
0

ϑ(ϑxdy − ϑydx) + δRe
∫

∂Ω
′(ε,δ1)
0

|ϑ|2 dy = 0,
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(Reλ2
1 − δ2) +

∫ ∫

Ω
′′(ε,δ1)
0

|ω|2dxdy +
∫ ∫

Ω
′′(ε,δ1)
0

|∇ω|2dxdy+

+Re
∫

∂Ω
′′(ε,δ1)
0

ω(ωxdy − ωydx) + δRe
∫

∂Ω
′′(ε,δ1)
0

|ω|2 dx = 0.

If we take the limit when δ1 → 0, ε → 0 and combine the obtained equalities taking into
account that u|σ̄o

= 0 and ϑ = ω on OK : x = y, we get the equality (1.7).
Now we investigate the uniqueness of the solution of the problem Aλ.
Case 1. Let αj(t) ≡ 0, j = 1, 2.

Theorem 1.1.1. Let αj(t) ≡ 0, (j = 1, 2), Reλ2
1 ≥ 0 and one of the following group condi-

tions: a) bj(t) ≡ 0; b) aj(t) ≡ 0; c) aj(t) 6≡ 0, bj(t) 6≡ 0, aj(t) 6= bj(t) and

1∫

0

1∫

0

|Kj(t, z, λ2)|2 dtdz < 1, (j = 1, 2) (1.8)

be ful�lled, where

αj(t) = aj(t) + bj(t) + 2cj(t), t =





x, if j = 1,

y, if j = 2,

Kj(t, z, λ2) =





∂

∂t
{aj(t)J0 [λ2(t− z)]} / [aj(t)− bj(t)] , t ≥ z,

∂

∂t
{bj(t)J0 [λ2(z − t)]} / [aj(t)− bj(t)] , z ≥ t.

Then if a solution of the problem Aλ exists, then it is unique.
Proof. Let u(x, y) be a solution of the homogeneous problem Aλ and αj(t) ≡ 0 (j = 1, 2).

Then, the relation (1.6j) becomes

aj(t)

t∫

0

νj(z)J0 [λ2(t− z)] dz + bj(t)

1∫

t

νj(z)J0 [λ2(z − t)] dz = ψj(t), (1.9j)

where ψj(t) = τj(0)aj(t)J0 [λ2t] + τj(1)bj(t)J0 [λ2(1− t)] , j = 1, 2.

a) Let bj(t) ≡ 0. If we substitute t = 0 in (1.9j) and taking into account the condition
aj(t) 6= 0, we �nd that τj(0) = 0. Then, (1.9j) has the form

aj(t)

t∫

0

νj(z)J0 [λ2(t− z)] dz = 0, j = 1, 2.
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From these integral equations, by virtue of aj(t) 6= 0 it follows, that νj(t) ≡ 0, j = 1, 2.
b) Let aj(t) ≡ 0. Then, by the same way as in a), from (1.9j) we have

bj(t)

1∫

t

νj(z)J0 [λ2(z − t)] dz = 0,

by virtue of bj(t) 6= 0, we obtain νj(t) ≡ 0, j = 1, 2.
c) Let now aj(t) 6≡ 0, bj(t) 6≡ 0, aj(t) 6= bj(t). Taking into account τj(0) = 0, τj(1) = 0, and

di�erentiate the equality (1.9j) with respect to t, we obtain the Fredholm integral equation of
the second kind

νj(t) +

1∫

0

νj(z)Kj(t, z, λ2)dz =0, j = 1, 2.

By virtue of the condition (1.8) this equation has the unique solution νj(t) ≡ 0 [19].
From above follows that the functions νj(t) ≡ 0 (j = 1, 2 ) are uniquely determined in the

case, when the functions a1(x), b1(x) satisfy one of the conditions a), b), c), and the functions
a2(y), b2(y) satisfy the rest of these conditions (for example a1(x), b1(x) satisfy b) and a2(y),

b2(y) satisfy a) or c)).
Consequently, at ful�lling each of the group conditions of Theorem 1.1.1 we have νj(t) ≡ 0

j = 1, 2. On the other hand, by virtue of u|σo
= 0 the equality (1.7) is valid. If we put δ = 0 in

(1.7), with regard to Reλ2
1 ≥ 0 and νj(t) ≡ 0, j = 1, 2, we obtain ϑ(x, y) ≡ 0, in Ω

′
0, ω(x, y) ≡ 0

in Ω
′′
0, i.e. u(x, y) ≡ 0 in Ω0. From here the statement of Theorem 1.1.1 follows.
Case 2. Let αj(t) 6= 0, j = 1, 2.

We consider the following cases a) bj(t) ≡ 0, j = 1, 2, b) aj(t) ≡ 0, j = 1, 2 and c) aj(t) 6≡ 0,
bj(t) 6≡ 0, j = 1, 2.

a) Let bj(t) ≡ 0, j = 1, 2.
Theorem 1.1.2. If the conditions

αj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
> −1

2
,

(
cj(t)

aj(t)

)′
≥ 0, t ∈ [0, 1], (1.10)

Reλ2
1 ≥ (Imλ2)

2 , (1.11)
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are ful�lled, then the problem Aλ cannot have more than one solution.
To prove Theorem 1.1.2, we shall use
Lemma 1.1.2. Let (−δ) ≥ |Imλ2| and the condition (1.10) be ful�lled. Then the inequality

Re

1∫

0

e2δtτ j(t) νj(t)dt ≥ 0. (1.12)

is valid for dj(t) ≡ 0.
Lemma 1.1.2 can be proved by a similar method as it was used in [36].
Proof of Theorem 1.1.2. Let u(x, y) be a solution of the homogeneous problem Aλ. Then the

inequality (1.12) is true for δ = − |Imλ2| by (1.10) according to Lemma 1.1.2. On the other hand
the equality (1.7) is valid because of u|σo

= 0 according to Lemma 1.1.1. If we set δ = − |Imλ2|
in (1.7) and taking into account the inequality (1.12) we have

(
Reλ2

1 − (Imλ2)
2
)




∫ ∫

Ω′0

|ϑ|2dxdy +
∫ ∫

Ω′′0

|ω|2dxdy


 +

+
∫ ∫

Ω′0

|∇ϑ|2dxdy +
∫ ∫

Ω′′0

|∇ω|2dxdy +
2∑

j=1

Re

1∫

0

e2δtτ j(t)νj(t)dt = 0.

From here and by virtue of the condition (1.11) we obtain that ϑ(x, y) ≡ 0 in Ω
′
0, ω(x, y) ≡ 0

in Ω
′′
0, i. e. u(x, y) ≡ 0 in Ω0, from which the statement of Theorem 1.1.2 follows.
b) Let aj(t) ≡ 0, j = 1, 2.
Theorem 1.1.3. If condition (1.11) and

αj(t) 6= 0, aj(t) ≡ 0,
cj(t)

bj(t)
> −1

2
,

(
cj(t)

bj(t)

)′
≤ 0, t ∈ [0, 1], (1.13)

are ful�lled, then the problem Aλ can not have more than one solution.
The proposition of this theorem follows from Lemma 1.1.1 and from the following lemma.
Lemma 1.1.3. [36] Let δ ≥ |Imλ2| and the conditions (1.13) be ful�lled. Then (1.12) is true

for dj(t) ≡ 0.
The proof of Theorem 1.1.3 is similar to the proof of Theorem 1.1.2.
c) Now let aj(t) 6≡ 0, bj(t) 6≡ 0.
Lemma 1.1.4. Let τj(0) = 0, τj(1) = 0, |δ| ≥ |Imλ2|;
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αj(t) 6= 0, aj(t) 6≡ 0, bj(t) 6≡ 0; (1.14)

aj1(1) ≥ 0, δaj1(t) ≤ 0, a′j1(t) ≤ 0, t ∈ [0, 1]; (1.15)

bj(0) = 0, δbj1(t) ≥ 0, b′j1(t) ≥ 0, t ∈ [0, 1], (1.16)

where aj1(t) = aj(t)/αj(t), bj1(t) = bj(t)/αj(t), j = 1, 2. Then the inequality (1.12) is valid for
dj(t) ≡ 0, j = 1, 2.

The proof of this lemma is similar to the proof of Lemmas 1.1.2 and 1.1.3.
Remark 1.1. The conditions (1.14)-(1.16) and |δ| ≥ |Imλ2| are ful�lled simultaneously only

at δ = Imλ2 = 0.
Indeed, if δ > 0, then by the second condition from (1.15) the inequality aj1(t) ≤ 0 is valid.

Hence, by virtue of aj1(1) ≥ 0 follows that aj1(1) = 0. Thus, aj1(1) = 0, aj1(t) ≤ 0, a′j1(t) ≤ 0,
t ∈ [0, 1]. It is easy to see that the function possessing these conditions is identically equal to
zero, i.e. aj1(t) ≡ 0, which is impossible.

If δ < 0, then by conditions (1.16) the relation bj1(t) ≤ 0 is valid. From here, taking into
account b′j1(t) ≥ 0, ∀t ∈ [0, 1], we have bj1(t) ≡ 0, which contradicts the condition bj1(t) 6≡ 0.
Consequently, δ = 0, but then Imλ2 = 0.

Thus, it is necessary to set δ = 0 in order to obtain the inequality (1.12). Then the following
lemma is valid

Lemma 1.1.41. Let τj(0) = 0, τj(1) = 0, Imλ2 = 0 and the conditions

(
aj(t)

αj(t)

)′
≤ 0,

(
bj(t)

αj(t)

)′
≥ 0, t ∈ [0, 1];

aj(1)

αj(1)
+

bj(0)

αj(0)
≥ 0 (1.17)

are ful�lled. Then the inequality

Re

1∫

0

τ̄j(t)νj(t)dt ≥ 0 (1.18)

is valid for dj(t) ≡ 0, j = 1, 2.

From Lemmas 1.1.1 and 1.1.41 follows the following result.
Theorem 1.1.4. If conditions (1.14), (1.17) and Imλ2 = 0, Reλ2

1 ≥ 0 are ful�lled, then the
problem Aλ cannot have more than one solution.
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The proposition of this theorem generalizing the results of [44], which has been obtained for
λ1 = λ2 = λ ∈ R.

Case 3. Now let αj(t) ≡ 0, αk(t) 6= 0, j 6= k, j, k = 1, 2.
Let α1(x) ≡ 0, α2(y) 6= 0 and the functions a1(x), b1(x), c1(x) satisfy one of the conditions

à), b), c) in the case 1 for j = 1, and the functions a2(y), b2(y), c2(y) satisfy one of the conditions
à), b), c) in the case 2 for j = 2. Then from Theorems 1.1.1, 1.1.2, 1.1.3 and 1.1.4, we have
ν1(x) = 0 and Re

1∫
0

e2δyτ 2(y)ν2(y)dy ≥ 0 for the homogeneous problem Aλ. Consequently, in this
case when ful�lling the condition (1.11) from (1.7) follows u(x, y) ≡ 0, (x, y) ∈ Ω0. From here
follows uniqueness of the solution of the problem Aλ for α1(x) ≡ 0, α2(y) 6= 0.

Remark 1.2. The uniqueness of the solution of the Tricomi problem follows from Theorem
1.1.2 (1.1.3) for cj(t) ≡ 0, (j = 1, 2) for the equation (L.B). When cj(t) ≡ 0, (j = 1, 2),
λ1 = λ2 = λ the theorem about uniqueness of the solution of the Tricomi problem for the
equation (L.B) was obtained in [40] by using the Laplace transformation.

Remark 1.3. For λ1 = λ2 = λ condition (1.11) is equivalent to the inequality

|Reλ| ≥
√

2 |Imλ| . (1.19)

From this remark and Theorems 1.1.2 and 1.1.3 follows the following result.
Proposition. If λ1 = λ2 = λ and one of the conditions (1.10) or (1.13) is ful�lled, then the

problem Aλ can have eigenvalues only outside the domain D1 =
{
λ : |Reλ| ≥ √

2 |Imλ|
}

.

1.1.3. Existence of the solution of the problem Aλ

We consider �ve cases for the investigation of the existence of the solution of the problem Aλ

in correspondence to Theorems 1.1.1 - 1.1.4 and supposing that

ϕ(x, y) = (xy)εϕ∗(x, y), ϕ∗(x, y) ∈ C(σ0), ε > 1. (1.20)

1. Let the conditions of Theorem 1.1.1. be ful�ll. Then the relation (1.6j) becomes to
form (1.9j).
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a) Let bj(t) ≡ 0, j = 1, 2. We require in addition that dj(0) = 0. Then by virtue of aj(t) 6= 0

we have the integral equation

t∫

0

νj(z)J0 [λ2(t− z)] dz = −2
dj(t)

aj(t)
.

From here we �nd

νj(t) = −2C0,λ2
0t

[
dj(t)

aj(t)

]
, (1.21)

where [36]

C0,λ
mx [f(x)] = sign(x−m)





d

dx
f(x) +

1

2
λ2

x∫

m

f(t)J1 [λ(x− t)] dt



 . (1.22)

b) Let aj(t) ≡ 0, j = 1, 2. If we require in addition dj(1) = 0 and taking into account bj(t) 6= 0,
we obtain the integral equation

1∫

t

νj(z)J0 [λ2(z − t)] dz = −2
dj(t)

bj(t)
.

Then, we have

νj(t) = −2C0,λ2
1t

[
dj(t)

bj(t)

]
. (1.23)

c) Let conditions of c) of Theorem 1.1.1. be ful�lled. Then if we proceed similarly as in the
proof of Theorem 1.1.1, we obtain the Fredholm integral equation of the second kind

νj(t) +

1∫

0

Kj(t, z, λ2)νj(z)dz = gj(t),

where gj(t) = ψj(t)/[bj(t)−aj(t)]. By virtue of the condition (1.8) the last equation has a unique
solution [19]. It can be represented as

νj(t) = gj(t)−
1∫

0

Rj(t, z, λ2)gj(z)dz, (1.24)
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where Rj(t, z, λ2) is the resolvent of the kernel Kj(t, z, λ2). Consequently, if the conditions of
Theorem 1.1.1 are ful�lled, then unknown functions νj(x) j = 1, 2, are uniquely found by the
corresponding additional conditions from the equation (1.9j) and it has determined one of the
formulas (1.21), (1.23), (1.24). Therefore in this case the problem Aλ is equivalent to the problem
N for �nding a regular solution of the equation (L.B) in the domain Ω0, satisfying boundary
condition (1.1), and uy(x, 0) = ν1(x), ux(0, y) = ν2(y), 0 < x, y < 1, where νj(t) ∈ C1(0, 1) is a
known function.

It is easy to prove, that the solution of this problem exists, is unique and can be represented
as

u(x, y) = u0(x, y) +
∫ ∫

Ω0

R(ξ, η; x, y)u0(ξ, η)dξdη, (1.25)

where [33]
u0(x, y) =

∫

σo

ϕ(ξ, η)
∂

∂n
G(ξ, η; x, y)ds

−
1∫

0

ν1(t)G(t, 0; x, y)dt−
1∫

0

ν2(t)G(0, t; x, y)dt,

G(ζ, z) =
1

2π

(
ln

∣∣∣∣∣
1− ζ2z2

ζ2 − z2

∣∣∣∣∣− ln

∣∣∣∣∣
1− ζ2z̄2

ζ2 − z̄2

∣∣∣∣∣

)
is the Green function of the problem N for the

Laplace equation in Ω0; R(ξ, η; x, y) is the resolvent of the kernel (−λ2
1)G(ζ, z); n is the inner

normal to σ0, and s is the length of the arc counted from the point A in the positive direction;
ζ = ξ + iη, z = x + iy.

The solution of the problem Aλ is determined in the domains Ω1 and Ω2 by the formulas
(1.5j), moreover, here τ1(x) = u(x, 0), τ2(y) = u(0, y) is determined from (1.25).

2. Let the conditions of Theorem 1.1.4 be ful�lled. We assume in addition that aj(t) 6=
bj(t), ∀t ∈ [0, 1], j = 1, 2. Considering the problem N for the equation (L.B) in the domain Ω0,
we obtain formula (1.25), from which we get the basic relations between τj(t) and νj(t), j = 1, 2,
got from the elliptic part of the mixed domain Ω0, setting �rst y = 0 and then x = 0:

τj(t) +
1

π

1∫

0

νj(z) ln

∣∣∣∣∣
1− z2t2

z2 − t2

∣∣∣∣∣ dz +
1

π

1∫

0

νk(z) ln

∣∣∣∣∣
1 + z2t2

z2 + t2

∣∣∣∣∣ dz
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+

1∫

0

ν1(z)Hj1(t, z)dz +

1∫

0

ν2(z)Hj2(t, z)dz = fj(t), (1.26)

where 0 ≤ t ≤ 1, j, k = 1, 2, j 6= k,

H11(x, z) =
∫ ∫

Ω0

R(ξ, η; x, 0)G(z, 0; ξ, η)dξdη;

H12(x, z) =
∫ ∫

Ω0

R(ξ, η; x, 0)G(0, z; ξ, η)dξdη;

H21(y, z) =
∫ ∫

Ω0

R(ξ, η; 0, y)G(z, 0; ξ, η)dξdη;

H22(y, z) =
∫ ∫

Ω0

R(ξ, η; 0, y)G(0, z; ξ, η)dξdη;

f1(x) =
∫

σo

ϕ(ξ, η)




∂

∂n
G(ξ, η; x, 0) +

∫ ∫

Ω0

R(ξ1, η1; x, 0)
∂

∂n
G(ξ, η; ξ1, η1)dξ1dη1


ds;

f2(y) =
∫

σo

ϕ(ξ, η)




∂

∂n
G(ξ, η; 0, y) +

∫ ∫

Ω0

R(ξ1, η1; 0, y)
∂

∂n
G(ξ, η; ξ1, η1)dξ1dη1


ds.





(1.27)

Elimination τj(t) from (1.6j) and (1.26), and di�erentiating them with respect to t, we obtain

Aj(t)νj(t) +
2t

π

1∫

0

νj(z)

(
1

z2 − t2
− z2

1− z2t2

)
dz

−2t

π

1∫

0

νk(z)

(
1

z2 + t2
− z2

1 + z2t2

)
dz

+

1∫

0

ν1(z)Mj1(t, z)dz +

1∫

0

ν2(z)Mj2(t, z)dz = f ′1j(t), (1.28)

where

Mjj(t, z) =





∂

∂t

[
Hjj(t, z) +

aj(t)

αj(t)
J0[λ2(t− z)]

]
z ≤ t,

∂

∂t

[
Hjj(t, z) +

bj(t)

αj(t)
J0[λ2(z − t)]

]
z ≥ t,

Mjk(t, z) =
∂

∂t
Hjk(t, z), j, k = 1, 2, j 6= k,





(1.29)

Aj(t) = {aj(t)− bj(t)} /αj(t),
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f1j(t) = fj(t) + {τj(0)aj(t)J0[λ2t] + τj(1)bj(t)J0[λ2(1− t)]− 2dj(t)} /αj(t)

For simplicity we additionally assume, that A1(t) = A2(t) = A(t).
If we introduce the notations

ν1(t) + ν2(t) = µ1(t), ν1(t)− ν2(t) = µ2(t), (1.30)

we can rewrite the system (1.28) as





A(t)µ1(t) +
4t3

π

1∫

0

(
1

z4 − t4
− z4

1− z4t4

)
µ1(z)dz =F1(t),

A(t)µ2(t) +
4t

π

1∫

0

(
z2

z4 − t4
− z2

1− z4t4

)
µ2(z)dz =F2(t),

(1.31)

where
F1(t) = f11(t) + f12(t)

−
1∫

0

ν1(z) [M11(t, z) + M21(t, z)] dz −
1∫

0

ν2(z) [M12(t, z) + M22(t, z)] dz,

F2(t) = f11(t)− f12(t)

−
1∫

0

ν1(z) [M11(t, z)−M21(t, z)] dz −
1∫

0

ν2(z) [M12(t, z)−M22(t, z)] dz.

Taking the identities

τ = 2z4(1 + z8)−1, y = 2t4(1 + t8)−1 (1.32)

or
z = τ 1/4

(
1 +

√
1− τ 2

)−1/4
, t = y1/4

(
1 +

√
1− y2

)−1/4

we can rewrite the system of equation (1.31) as

A(t)ρj(y) +
1

π

1∫

0

ρj(τ)

τ − y
dτ = Φj(y), j = 1, 2, (1.33)
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where
ρ1(y) = t−3(1 + t8)µ1(t), ρ2(y) = t−1(1 + t4)−1(1 + t8)µ2(t) (1.34)

Φ1(y) = t−3(1 + t8)F1(t), Φ2(y) = t−1(1 + t4)−1(1 + t8)F2(t). (1.35)

Taking (1.27), (1.29), (1.32), (1.35) and properties of the given functions into account, it is
not di�cult to verify, that Φj(y) ∈ C(1,r)(0 < y < 1), 0 < r < 1, (j = 1, 2) and it can have
singularities of order less than 1 and 1/2 at j = 1, less 1/2 and 1/2 at j = 2, when y → 0 and
y → 1, respectively.

By virtue of A2(t) + 1 6= 0, ∀t ∈ [0, 1] (1.33) is a singular integral equation of normal kind.
From the formulation of the problem Aλ and the equalities (1.30), (1.34), by virtue of (1.32)

follows, that the solution of the system of equations (1.33) is to be found in the class of functions,
which are di�erentiable for 0 < y < 1 and can be in�nity of order less than 1 and of the order 1/2

for j = 1, as y → 0, when A(t) > 0, less than 1/2 and 1/2 for j = 2, as y → 1, when A(t) < 0 (as
in this case the index of the equation is equal to zero). The solution of the system of equations
(1.33) exists in this class in both cases and it is given by the formula [23]

ρj(y) =
1

1 + A2(t)


A(t)Φj(y)− z(y)

π

1∫

0

Φj(η)

z(η)(η − y)
dη


 , j = 1, 2,

where

z(y) =
√

1 + A2(t) exp


− 1

π

1∫

0

arctg1/A(η)

η − y
dη


 .

If we return to the variables t, z and the function νj(t), we obtain a system of Fredholm
integral equations of the second kind with continuous kernels, moreover the right part of this
system belongs to the class C(1,r)(0, 1) and it can have singularities of the order less than 1 as
t → 0 and t → 1. Unconditional solvability of this system follows (absolutely) from the uniqueness
of the solution of the problem Aλ.

3 (4). Let the conditions of Theorem 1.1.2 (1.1.3) be ful�lled.We require additionally
that the condition dj(0) ≡ 0 (dj(1) ≡ 0) is ful�lled. Then analogously to the previous point, we
obtain a singular integral equation in the form (1.33). Solving the obtained equation we determine
the function νj(t), moreover it can have singularities of the order less than 1 as t → 0 and t → 1,
as by virtue of the conditions (1.10) ((1.13)) A(t) = aj(t)/αj(t) > 0 (A(t) = −bj(t)/αj(t) < 0).
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5. Let α1(x) ≡ 0, α2(y) 6= 0. The functions a1(x), b1(x), c1(x) satisfy one of the group
conditions of Theorem 1.1.1 at j = 1, and the functions a2(y), b2(y), c2(y) satisfy the conditions
of the Theorems 1.1.2 or 1.1.3 at j = 2. Then, as in the case 3 (4), for determination of the
function ν2(y) we have the singular integral equation

A(y)ν2(y) +
2y

π

1∫

0

ν2(z)

(
1

z2 − y2
− z2

1− z2y2

)
dz +

1∫

0

ν2(z)M22(y, z)dz =g2(y), (1.36)

where

g2(y) = f ′12 (y) +
2y

π

1∫

0

ν1(z)

(
1

z2 + y2
− z2

1 + z2y2

)
dz −

1∫

0

ν1(z)M21(y, z)dz,

and the function ν1(x) is determined by one of the formulas (1.21), (1.23), (1.24). After changing
variables τ = 2z2(1 + z4)−1, y = 2t2(1 + t4)−1 the equation (1.36) becomes the form (1.33) and
it is investigated as the last one.

Consequently, the functions νj(t) (j = 1, 2) are uniquely determined in all cases. If we know
νj(t), we determine τj(t) by formula (1.26). After determination of τj(t) and νj(t), the solution
of the problem Aλ is de�ned as the solution of the problem N and the Cauchy problem for the
equation (L.B) in the domains Ω0 and Ω1, Ω2 and it is given by the formulas (1.25) and (1.5j),
respectively.

Remark 1.4. Existence of the solution of the problem Aλ can be proved by the method
which was proposed in paragraph 1.2.

With this the proof of the existence and uniqueness of the solution of the problem Aλ is
completed.

� 1.2. Non-local problem with third boundary condition on the boundary of the
elliptic part of the domain

In this paragraph for convenience we introduce the following notation
−λ2

1 = µ2, µ = λ2. Then equation (L.B) becomes the form

Ku ≡ signxuxx + signy uyy + µ2u = 0, (L.B1)
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and for this equation we consider the most general mixed problem in a �nite simply connected
mixed domain Ω, which was described in paragraph 1.

Uniqueness of the solution is proved, the condition to the complex parameter µ ensuring
uniqueness of the solution to the problem under consideration is found. Further, eigenvalues and
corresponding to them eigenfunctions are found, the question about completeness of the system
of eigenfunctions in the elliptic, hyperbolic and in the whole of the mixed domain are studied. A
new method for proving the existence of the solution of the considering problem is proposed, i.e.
in the case, when a theorem of uniqueness of the solution of the problem is valid, the structure
of the solutions in evident form of the problem is shows by using a system of eigenfunctions.
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1.2.1. Formulation of the problem A0
µ

Problem A0
µ. Find a regular solution u(x, y) ∈ C1(Ω ∪ σ0) of the equation (L.B1), in the

domain Ω satisfying the conditions

αu(x, y) + β
∂u(x, y)

∂n
= ψ(x, y), (x, y) ∈ σ0, (1.37)

A0,µ
0x [u(θx0)] + γ1u(x, 0) = 0, (x, 0) ∈ OA, (1.381)

A0,µ
0y [u(θ0y)] + γ2u(0, y) = 0, (0, y) ∈ OB, (1.382)

where α, β, γ1, γ2 are given real numbers, moreover α2 +β2 6= 0; n is the outer normal to σ0 and
ψ(x, y) is a given, in general, complex-valued function.

Note that in [27], [31], eigenvalues and eigenfunctions of the Tricomi problem are found by a
di�erent method and it is investigated with respect to completeness. In [31] applying a system of
eigenfunctions for the structure of the solution of the Tricomi problem is show, for those values
of the parameter µ, when uniqueness of the theorem holds.

1.2.2. Uniqueness of the solution of the problem A0
µ

Let u(x, y) be a solution of the problem A0
µ and τ1(x) = u(x, 0), ν1(x) = uy(x, 0), τ2(y) =

u(0, y), ν2(y) = ux(0, y). Then, using the formulas (1.51), (1.52), which gives the solutions of the
Cauchy problem for the equation (L.B1) in the domains Ω1, Ω2, and conditions (1.381), (1.382),

respectively, we obtain

(1 + 2γj)τj(t) =

t∫

0

νj(z)J0[µ(t− z)]dz, 0 ≤ t ≤ 1. (1.39j)

Equalities (1.39j), (j = 1, 2), are basic functional relations between τj(t) and νj(t) on the
segments OA and OB got from hyperbolic parts of the mixed domain Ω.

So, we reduce the problem A0
µ to the following equivalent elliptic problem in Ω0 :

Problem C0
µ. Find values of the complex parameter µ and corresponding to them nontrivial

functions u(x, y) ∈ C(Ωo) ∩ C1(Ω0) ∩ C2(Ω0) in Ω0, satisfying the equation (L.B1) and the
conditions (1.37), (1.391), (1.392).
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Theorem 1.2.1. If the conditions α · β ≥ 0, α2 + β2 6= 0, γj ≥ −1/2 (j = 1, 2) and Reµ = 0

are ful�lled, then the homogeneous problem C0
µ (A0

µ) has only the trivial solution.
Proposition of the Theorem 1.2.1 follows from the following lemmas.
Lemma 1.2.1. Let u(x, y) be a solution of the homogeneous problem C0

µ. Then the equality

(−Reµ2 − δ2)




∫ ∫

Ω′0

|ϑ|2dxdy +
∫ ∫

Ω′′0

|ω|2dxdy


 +

∫ ∫

Ω′0

|∇ϑ|2dxdy +
∫ ∫

Ω′′0

|∇ω|2dxdy+

+
∫

σ0

w(x, y)ds + Re

1∫

0

e2δxτ1(x)ν1(x)dx + Re

1∫

0

e2δyτ2(y)ν2(y)dy = 0

holds, where w(x, y) ≡ 0, if αβ = 0 and w(x, y) = (α/β)
(
|ϑ|2 + |ω|2

)
, if

α · β 6= 0; ϑ(x, y) = eδxu(x, y), (x, y) ∈ Ω′
0 = Ω0 ∩ (x ≥ y); ω(x, y) = eδyu(x, y),

(x, y) ∈ Ω′′
0 = Ω0 ∩ (x ≤ y); τ̄1(x) = u(x, 0), ν1(x) = uy(x, 0), τ̄2(y) = u(0, y), ν2(y) = ux(0, y).

Lemma 1.2.2. Let (−δ) ≥ |Imµ| and the conditions γj ≥ −1/2, j = 1, 2 are ful�lled. Then
the inequalities (1.12) are valid.

From Theorem 1.2.1 we have the following corollary: if the conditions of the Theorem 1.2.1
are ful�lled, then the problem A0

µ can have eigenvalues only outside of Reµ = 0.

1.2.3. Determination of the system of eigenfunctions and
investigation on completeness

Consider the homogeneous problem C0
µ (A0

µ). Then we go over to polar coordinates r =
√

x2 + y2, ϕ = arctg
y

x
, (0 ≤ r ≤ 1, 0 ≤ ϕ ≤ π

2
) and �nd the solution of the problem in the form

u(x, y) = R(r)Φ(ϕ). It is not di�cult to prove that the eigenvalues of the problem C0
µ (A0

µ) are
µn,m = α(νn)

m (m,n = 1, 2, ...), where α(νn)
m is the m-th root of the equation αJνn(µ)+βµJ ′νn

(µ) = 0

(for β = 0 or
β 6= 0, α/β + νn ≥ 0, νn > 0, n ∈ N , this equation has only real roots [46]), where

νn =





2n− 1, if γ1 + γ2 + 2γ1γ2 = 0,

2n− 2

π
arctgγ, if γ1 + γ2 + 2γ1γ2 6= 0, γ ≥ 0,

2(n− 1)− 2

π
arctgγ, if γ1 + γ2 + 2γ1γ2 6= 0, γ < 0,
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γ = (1 + γ1 + γ2)/(γ1 + γ2 + 2γ1γ2), n ∈ N , and corresponding to them the eigenfunctions in
Ω0 are determined by the equality

un,m(x, y) = cn,mJνn

(
α(νn)

m r
)

sin(νnϕ + ϕ0), n, m = 1, 2, ..., (1.40)

where ϕ0 = arcctg(1 + 2γ1), and cn,m 6= 0 are constants.
To �nd out eigenfunctions of the problem A0

µ in the domain Ω1, we �nd from (1.40)

un,m(x, 0) = k(1)
n,mJνn

[
α(νn)

m x
]
, (1.41)

lim
y→0

∂

∂y
un,m(x, y) = k(1)

n,m(1 + 2γ1)νnx
−1Jνn

[
α(νn)

m x
]
, (1.42)

where k(1)
n,m = cn,m/

√
2 + 4γ1 + 4γ2

1 .
It is known [32], that the family of solutions of the equation (L.B1) in the domain Ω1 has the

form

u(x, y) =


χ1

(
x− y

x + y

)ρ/2

+ χ2

(
x + y

x− y

)ρ/2

 Jρ

[
µ

√
x2 − y2

]
, (1.43)

where Reρ ≥ 0, χ1 and χ2 are arbitrary constants.
If we require for the function (1.43) to ful�ll the conditions (1.41) and (1.42) we �nd that

eigenfunctions of the problem A0
µ in the domain Ω1 are determined by the formulas

un,m(x, y) = k(1)
n,m


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

 Jνn

[
α(νn)

m

√
x2 − y2

]
, (1.44)

where n,m = 1, 2, ....
To obtain the general solution of the equation (L.B1) in Ω2, we change x to y, y to x by virtue

of the symmetry of the coe�cients of the equation (L.B1):

u(x, y) =


χ3

(
y − x

y + x

)ρ/2

+ χ4

(
y + x

y − x

)ρ/2

 Jρ

[
µ

√
y2 − x2

]
,

where Reρ ≥ 0, χ3 and χ4 are arbitrary constants.
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We obtain from (1.40)
un,m(0, y) = (−1)nk(2)

n,mJνn

[
α(νn)

m y
]
, (1.45)

lim
x→0

∂

∂x
un,m(x, y) = (−1)nk(2)

n,m(1 + 2γ2)νny−1Jνn

[
α(νn)

m y
]
, (1.46)

where k(2)
n,m = cn,m/

√
2 + 4γ2 + 4γ2

2 .
Here we require the conditions (1.45) and (1.46) to be satis�ed. In the domain Ω2 we obtain

eigenfunctions of the problem A0
µ determined by:

un,m(x, y) = (−1)nk(2)
n,m


(1 + γ2)

(
y + x

y − x

)νn/2

− γ2

(
y − x

y + x

)νn/2

 Jνn

[
α(νn)

m

√
y2 − x2

]
(1.47)

where n,m = 1, 2, ....
It is not di�cult to prove that the functions (1.44) ((1.47)) satisfy the conditions (1.381)

((1.382)).

Indeed, we rewrite the functions (1.44) in the form

un,m(x, y) =
k(1)

n,m

Γ(νn + 1)

(
α(νn)

m

2

)νn

× [(1 + γ1) (x + y)νn − γ1 (x− y)νn ] Jνn

[
α(νn)

m

√
x2 − y2

]
,

where Jα(z) = Γ(α + 1)(z/2)−αJα(z).
We found un,m(θx0) and substituting this in (1.381), we obtain

xνn −
x∫

0

tνn
∂

∂t
J0

[
α(νn)

m

√
x(x− t)

]
dt = xνnJα(α(νn)

m x). (1.48)

By the help of the expansion of the Bessel function into a power series, it is not di�cult to
verify the identity

x∫

0

tα
∂

∂t
J0

[
µ

√
x(x− t)

]
dt = xα

[
1− Jα(µx)

]
, 0 ≤ α ∈ R.

Taking this into account, then at once the correctness of equality (1.48) follows.
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Composing the formulas (1.40), (1.44) and (1.47), we obtain a system of eigenfunctions of the
problem A0

µ in the mixed domain Ω

un,m(x, y) =





cn,mJνn

[
α(νn)

m

√
x2 + y2

]
sin(νnϕ + ϕ0), (x, y) ∈ Ω0,

k(1)
n,m


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×Jνn

[
α(νn)

m

√
x2 − y2

]
, (x, y) ∈ Ω1,

(−1)nk(2)
n,m


(1 + γ2)

(
y + x

y − x

)νn/2

− γ2

(
y − x

y + x

)νn/2

×

×Jνn

[
α(νn)

m

√
y2 − x2

]
, (x, y) ∈ Ω2.

(1.49)

If we go over to polar coordinates by the formulas r =
√

x2 + y2, ϕ1 = arctg
x

y
, (0 ≤ r ≤ 1,

0 ≤ ϕ1 ≤ π

2
), then it is not di�cult to verify, that sin(νnϕ + ϕ0) = (−1)nsin(νnϕ1 + ϕ1

0), where
ϕ1

0 = arcctg(1 + 2γ2). Then we obtain the second form of the system of eigenfunctions.

un,m(x, y) =





(−1)ncn,mJνn

[
α(νn)

m

√
x2 + y2

]
sin(νnϕ1 + ϕ1

0), (x, y) ∈ Ω0,

(−1)nk(1)
n,m


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×Jνn

[
α(νn)

m

√
x2 − y2

]
, (x, y) ∈ Ω1,

k(2)
n,m


(1 + γ2)

(
y + x

y − x

)νn/2

− γ2

(
y − x

y + x

)νn/2

×

×Jνn

[
α(νn)

m

√
y2 − x2

]
, (x, y) ∈ Ω2.

(1.50)

In the plane γ1Oγ2 we introduce the notation

G0 = {(γ1, γ2) : γ1 > −1, γ2 > −1, γ1 + γ2 > −1}

Gks = {(γ1, γ2) : γk > −1, γs < −1, γ1 + γ2 < −1} , k, s = 1, 2, k 6= s.
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Lemma 1.2.3. The system of sines {sin (νnθ/2 + ϕ0)}+∞
n=1 and

{sin (νnθ1/2 + ϕ1
0)}+∞

n=1 are forms the Riesz basis if (γ1, γ2) ∈ G0 ∪ G12 and
(γ1, γ2) ∈ G0 ∪G21, respectively.

This lemma can be proved by Theorem 1 from [22].
We recall, that a Riesz basis ϕn in L2(a, b) is called complete in this space if for each function

f ∈ L2(a, b)

∞∑

n=1

∣∣∣∣∣∣

b∫

a

f(x)ϕn(x)dx

∣∣∣∣∣∣

2

< +∞

and for each sequence of numbers c1, c2, ... with
∞∑

n=1
|cn|2 < ∞, such function

f(x) ∈ L2(a, b) exists such that

b∫

a

f(x)ϕn(x)dx = cn, n = 1, 2, ....

If {ϕn}+∞
n=1 is a Riesz basis, then a unique sequence {ψn}+∞

n=1 exists, which generates together
with {ϕn}+∞

n=1 a biorthogonal system

(ϕi, ψj) =

b∫

a

ϕi(x)ψj(x)dx =





0, if i 6= j,

1, if i = j.

Then sequence {ψn}+∞
n=1 is also a Riesz basis and for each functions

f ∈ L2(a, b) the equality

f(x) =
∞∑

n=1

αnϕn(x), αn = (f, ψn), n = 1, 2, ... ,

is valid, where the series is converge it in the mean quadratically. Besides, substituting the Per-
seval inequality the following two-sided estimate

m

b∫

a

|f(x)|2dx ≤
∞∑

n=1

|αn|2 ≤ M

b∫

a

|f(x)|2dx, (1.51)

is valid, where m and M are positive numbers, independent from the function f(x).
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Lemma 1.2.4. If one of the conditions γ1+γ2+2γ1γ2 = 0, γ ≥ 0 and γ < −1 are satis�ed, the
system of functions {xνn−1}+∞

n=1 is complete in L2 [0, 1], where γ = (1+ γ1 + γ2)/(γ1 + γ2 +2γ1γ2).

This lemma follows from the Munts theorem about completeness of the system of functions
{xmn}+∞

n=1 in Lp [a, b] , 0 ≤ a < b, p > 1, i.e. the condition

+∞∑

k=1

1

mk

= +∞, −1

p
< m1 < m2 < ...

is necessary and su�ciently for the completeness of the system of functions {xmn}+∞
n=1 in Lp [a, b] ,

a ≥ 0, p > 1.
Theorem 1.2.2. If (γ1, γ2) ∈ G0∪G12 ((γ1, γ2) ∈ G0 ∪G21), then the system of eigenfunctions

(1.49) ((1.50)) of the problem A0
µ is complete in L2(Ω0).

We prove the Theorem 1.2.2 for the system (1.49). We assume that a function F0(x, y) exists
in L2(Ω0) such that

∫ ∫

Ω0

F0(x, y)un,m(x, y)dxdy = 0 (1.52)

for all n,m ∈ N . Let us show, that the function F0(x, y) = 0 almost everywhere in Ω0.
If we go over to polar coordinates x = rcosϕ, y = rsinϕ and taking (1.49) into account, from

(1.52) we have

0 =

1∫

0

π/2∫

0

f0(r, ϕ)Jνn

[
α(νn)

m r
]

[sin (νnϕ + ϕ0)] rdϕdr

=

1∫

0

Fn(r)Jνn

[
α(νn)

m r
]
rdr, (1.53)

where

f0(r, ϕ) = F0(r cos ϕ, r sin ϕ), Fn(r) =

π/2∫

0

f0(r, ϕ) sin (νnϕ + ϕ0) dϕ.

Using the Cauchy-Bunyakovskiy inequality, it is not di�cult to prove, that the integral
1∫
0

√
r |Fn(r)| dr exists and converges absolutely. Then from (1.53) follows, that for the functions

Fn(r) all coe�cients of the Fourier-Bessel series are equal to zero. Therefore, from the Young
theorem [46] follows, that Fn(r) ≡ 0 (n = 1, 2, ...), i.e.
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π/2∫

0

f0(r, ϕ)sin (νnϕ + ϕ0) dϕ = 0 (1.54)

for all n = 1, 2, ... and at any r ∈ (0, 1).
If we replacing the variables θ = 2ϕ in the integral (1.54), then when ful�lling the conditions

of Lemma 1.2.3, the system of sines {sin (νnθ/2 + ϕ0)}+∞
n=1 is complete in L2(0, π). So from (1.54)

follows, that for any r, the set of ϕ, where f0(r, ϕ) 6= 0, has the measure zero. By virtue of the
Fubini Theorem follows, that f(r, ϕ) = 0 almost everywhere in Ω0. From here the statement of
the theorem follows.

Theorem 1.2.2 for the system (1.50) one can check analogously.
Theorem 1.2.3. If γ1 = γ2 = 0, then the system of eigenfunctions (1.49) ((1.50)) of the

problem A0
µ is complete in L2(Ω1) and L2(Ω2).

We give the proof for the domain Ω1. One can analogously prove the statement for the domain
Ω2.

Let γ1 = γ2 = 0 and suppose, that there exists a function F1(x, y) ∈ L2(Ω1) such that
∫ ∫

Ω1

F1(x, y)un,m(x, y)dxdy = 0, n, m ∈ N. (1.55)

Let us show, that F1(x, y) = 0 almost everywhere in Ω1. Replacing the variables
ξ = x + y, η = x− y and taking (1.49) into account, from (1.55) we have

1∫

0

dη

η∫

0

f1 (ξ, η)

(
ξ

η

)νn/2

Jνn

(
α(νn)

m

√
ξη

)
dξ = 0, n, m = 1, 2, ...,

where f1(ξ, η) = F1(x, y).
Setting ξ = tη in the inner integral, changing the order of integration and then replacing the

variables ηs = r, t = s2, we obtain

1∫

0

Jνn

(
α(νn)

m r
)
rdr

1∫

r

sνn−1f1

(
rs,

r

s

)
ds = 0.

It follows from here, that for function
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Fn(r) =

1∫

r

sνn−1f1

(
rs,

r

s

)
ds, 0 ≤ r ≤ 1, n ∈ N,

all coe�cients of the Fourier-Bessel series are equal to zero, therefore from the Young Theorem fol-
lows that Fn(r) = 0 for all n ∈ N for any r ∈ [0, 1]. Then by
Lemma 1.2.4 at any r the set of those s, where f1(rs, r/s) 6= 0, has measure zero. Therefore, ac-
cording to the Fubini Theorem f1(rs, r/s) = 0 almost everywhere in Ω∗

1 = {(s, r) : r < s < 1, 0 < r < 1},
consequently also in Ω1. The Theorem is proved.

Theorem 1.2.4. If γ1 = γ2 = 0 , then the system of eigenfunctions (1.49) ((1.50)) of the
problem A0

µ is not complete in L2(Ω).
Proof. In the domain Ω consider the function

F (x, y) =





F0(x, y), (x, y) ∈ Ω0,

F1(x, y), (x, y) ∈ Ω1,

F2(x, y), (x, y) ∈ Ω2

from L2(Ω) and the integral

P =
∫ ∫

Ω

F (x, y)un,m(x, y)dxdy =
∫ ∫

Ω0

F0(x, y)un,m(x, y)dxdy+

+
∫ ∫

Ω1

F1(x, y)un,m(x, y)dxdy +
∫ ∫

Ω2

F2(x, y)un,m(x, y)dxdy.

Taking (1.49) into account and making replacements as in the proofs of Theorems 1.2.2 and
1.2.3, respectively, we obtain

P =
cm,n√

2

1∫

0

Jνn

[
α(νn)

m r
]
r




π∫

0

f0

(
r,

θ

2

)
sin

(
νn

θ

2
+

π

4

)
dθ+

+

1∫

r

sνn−1f1

(
rs,

r

s

)
ds + (−1)n

1∫

r

sνn−1f2

(
rs,

r

s

)
ds


 dr. (1.56)

Following [27], we consider the functions
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f0

(
r,

θ

2

)
=

∞∑

k=1

[
1

2k(2k + 1)
+

(−1)k

(2k + 2)(2k + 3)
−

−
(

r2k

2k
− r2k+1

2k + 1

)
− (−1)k

(
r2k+2

2k + 2
− r2k+3

2k + 3

)]
hk(θ), (1.57)

f1

(
rs,

r

s

)
= −s(1− s), f2

(
rs,

r

s

)
= −s3(1− s),

where {hk(θ)}+∞
k=1 is biorthogonal associated to the system of sines

{sin [(νnθ/2 + π/4]}+∞
n=1:

hn(θ) =
2

π

(2 cos θ/2)−1

(tgθ/2)1/2

n∑

k=1

(sin kθ)Bn−k,

Bl =
l∑

m=0

C l−m
1/2 Cm

1/2(−1)l−m, Cn
l =

l(l − 1) · · · (l − n + 1)

n!
.

Since hk(θ) is uniformly bounded a constant [22], the series (1.57) at any
0 ≤ r ≤ 1, 0 ≤ θ ≤ π uniformly converges, and the function f0 is continuous in Ω0.

Substituting the functions f0, f1, f2 in (1.56), we obtain that there exists a function F ∈
L2(Ω) and F (x, y) 6= 0 in Ω such, that P = 0. The theorem is proved.

1.2.4. Existence of the solution of the problem A0
µ

Existence of the solution of the problem A0
µ can be proved as for the problem Aλ by the

method of integral equations with potentials. But here when proving existence of the solution we
use another method, i.e. by applying eigenfunctions of studying problem A0

µ.
Let the conditions of Theorem 1.2.1 be ful�ll. Then µ 6= α(νn)

m . For these values of µ, we �nd
the solution of the problem A0

µ in the domain Ω0 in the form of the series

u(x, y, µ) =
+∞∑

n=1

fn
Jνn(µr)

αJνn(µ) + βµJ ′νn
(µ)

sin(νnϕ + ϕ0). (1.58)
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We suppose that the series (1.58) admits term by term repeated di�erentiation with respect
to the variables r and ϕ on the set 0 < r ≤ 1, 0 < ϕ < π/2. Then it's sum satis�es the equation
(L.B1) and conditions (1.391), (1.392). The coe�cients fn, n ∈ N can be found and that the
function (1.58) satis�es the condition (1.37).

Satisfying (1.58), for the boundary condition (1.37) at r = 1 we obtain

f(ϕ) =
+∞∑

n=1

fnsin(νnϕ + ϕ0), 0 ≤ ϕ ≤ π/2, (1.59)

where f(ϕ) = f(r, ϕ)|r=1 = ψ(x, y)|σ0
.

If the function f ∈ Cδ[0, π/2], δ ∈ (0, 1], then by virtue of the result of [22], the series (1.58)
converges uniformly on [0, π/2] and the coe�cients are determined by the equalities

fn =

π∫

0

f

(
θ

2

)
hn(θ)dθ, n = 1, 2, ... . (1.60)

As hn(θ) are uniformly bounded by some constant, then |fn| ≤ M , n = 1, 2, ...,
M = const > 0. By virtue of the asymptotic formulas [42]

Jn(z) =
1

n!

(
z

2

)2

, n → +∞ and xJ ′ν(x) = νJν(x)− xJν+1(x)

the series (1.58) converges uniformly for any r ≤ r0 < 1, since for large n the following estimation

∣∣∣∣∣fn
Jνn(µr)sin(νnϕ + ϕ0)

αJνn(µ) + βµJ ′νn
(µ)

∣∣∣∣∣ ≤ rνn
0 M1, M1 = const > 0

is true.
One can analogously show, that the series (1.58), for which the coe�cients are determined

by the formula (1.60), allows repeated di�erentiation on Ω0 with respect to the variables r and
ϕ, and u ∈ C1(Ω0).

Using the series (1.58), for �nding eigenfunctions in the domains Ω1 and Ω2, we �nd the
solutions of the problem A0

µ in the domains Ω1 and Ω2 in evident form:

u(x, y, µ) =
∞∑

n=1

fn√
2 + 4γ1 + 4γ2

1


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×
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×
Jνn

[
µ
√

x2 − y2
]

αJνn(µ) + βµJ ′νn
(µ)

in Ω1, (1.61)

u(x, y, µ) =
∞∑

n=1

(−1)nfn√
2 + 4γ2 + 4γ2

2


(1 + γ2)

(
x + y

x− y

)νn/2

− γ2

(
x− y

x + y

)νn/2

×

×
Jνn

[
µ
√

y2 − x2
]

αJνn(µ) + βµJ ′νn
(µ)

in Ω2. (1.62)

It is not di�cult to prove, that the series (1.61) in Ω1 and the series (1.62) in Ω2 converge
uniformly, allow term by term repeated di�erentiation with respect to the variables x, y in the
domains Ω1, Ω2 and satisfy the conditions (1.381) and (1.382) respectively.

Thus, here we proved the following result.
Theorem 1.2.5. If α · β ≥ 0, α2 + β2 6= 0, γj ≥ −1/2 (j = 1, 2), Reµ = 0, f(ϕ) ∈

Cδ[0, π/2], δ ∈ (0, 1], then the problem A0
µ has a unique solution presented in the form

u(x, y, µ) =





∞∑

n=1

fn
Jνn(µr)

αJνn(µ) + βµJ ′νn
(µ)

sin(νnϕ + ϕ0), (x, y) ∈ Ω0,

∞∑

n=1

fn√
2 + 4γ1 + 4γ2

1


(1 + γ1)

(
x + y

x− y

)νn/2

− γ1

(
x− y

x + y

)νn/2

×

×
Jνn

[
µ
√

x2 − y2
]

αJνn(µ) + βµJ ′νn
(µ)

, (x, y) ∈ Ω1,

∞∑

n=1

(−1)nfn√
2 + 4γ2 + 4γ2

2


(1 + γ2)

(
x + y

x− y

)νn/2

− γ2

(
x− y

x + y

)νn/2

×

×
Jνn

[
µ
√

y2 − x2
]

αJνn(µ) + βµJ ′νn
(µ)

, (x, y) ∈ Ω2.

With this existence and uniqueness of the solution of the problem A0
µ is proved.
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Chapter 2

Boundary value problem of Bitsadze-Samarskiy type
for the equation (L.B)

A non-local boundary value problem for elliptic type equations was o�ered and investigated
in the paper of A.B.Bitsadze and A.A.Samarskiy [5]. This problem appeared to generalize the
well-known Dirichlet problem and is called the Bitsadze-Samarskiy problem. In this problem
non-local conditions express the connection between the values of the unknown function on the
boundary with those in inner points of the considered domain. Problems with such type of
non-local conditions have been investigated in [34, 35] for some mixed type equations, where
the elliptic part of the considered domain is a rectangle. Later many works are devoted to the
problems of Bitsadze-Samarskiy type for partial di�erential equations in various formulations,
e.g. in [38], [1], [11], [14], [43], [36].

The investigation of problems for elliptic-hyperbolic type of equations with spectral parame-
ter, two lines of changing type, and non-local conditions, in which the border of the elliptic part
of the considering domain is a quarter circle is far from being complete.

In this chapter in a �nite simply connected mixed domain Ω, which is described in Chapter
1, we investigate the problem of Bitsadze-Samarskiy type for the equation (L.B), and we also
assume, that λ is a given complex number, moreover λ = λ0 at x > 0, y > 0, λ = λ1 at x > 0,

y < 0 and λ = λ2 at x < 0, y > 0. Besides, we use those notation from Chapter 1.
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� 2.1. Preliminary information

Firstly we formulate several statements, which will be useful in proving a theorem of unique-
ness of the solution of the studied problem.

Consider the function

ω(x, y) =





ch δx + ch δy in Ω0,

ch δx + cos δy in Ω1,

ch δy + cos δx in Ω2,

in the domain Ω, where δ ∈ R. It is not di�cult to verify, that ω(x, y) is positive in Ω and belongs
to C2

(
Ω

)
.

Let u(x, y) ∈ C2 (Ω0) be a function, satisfying the equation (L.B) in the domain Ω0. Then if
we introduce a new function ϑ(x, y) = ω−1(x, y)u(x, y) in the domain Ω0, we obtain the equation

∆ϑ + 2
ωx

ω
ϑx + 2

ωy

ω
ϑy +

(
δ2 − λ2

0

)
ϑ = 0 in Ω0 (2.1)

for the function ϑ(x, y).
If ϑ(x0, y0) 6= 0, where (x0, y0) is a point of Ω0, then there exists a neighborhood S ⊂ Ω0 of

this point, in which ϑ(x, y) 6= 0. Multiplying the equation (2.1) with ϑ/ |ϑ| in S and taking the
real part of the obtained equality, we have

∆ |ϑ|+ 2
ωx

ω
|ϑ|x + 2

ωy

ω
|ϑ|y −

[
Reλ2

0 − δ2 +
1

|ϑ|4
{(

Imϑϑx

)2
+

(
Imϑϑy

)2
}]
|ϑ| = 0. (2.2)

From here we have the following proposition: if the function ϑ(x, y) satis�es the equation (2.1)
in S, then |ϑ(x, y)| satis�es the equation (2.2).

Using this proposition, one can prove the theorems below in the same way as it was done in
[3], [30].

Theorem 2.1.1. Let u(x, y) ∈ C2(Ω0) be a function, which satis�es the equation (L.B) in
the domain Ω0. Then the positive maximum |ϑ(x, y)| of the function ϑ(x, y) = ω−1(x, y)u(x, y) is
not reached in any point of the domain Ω0, if only ϑ(x, y) 6≡ const in the domain Ω0.

Theorem 2.1.2. Let u(x, y) be a regular solution of the equation (L.B), in the domain Ω0

and ϑ(x, y) = ω−1(x, y)u(x, y) in Ω0. Then, if
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sup
OA

|ϑ(x, y)| = |ϑ(ξ, 0)| > sup
σ0∪OB

|ϑ(x, y)|

(
sup
OB

|ϑ(x, y)| = |ϑ(0, η)| > sup
σ0∪OA

|ϑ(x, y)|
)

,

then
lim

y→+0

∂

∂y
|ϑ(ξ, y)| < 0, 0 < ξ < 1

(
lim

x→+0

∂

∂x
|ϑ(x, η)| < 0, 0 < η < 1

)
. (2.3)

We can prove the existence of lim
y→+0

∂

∂y
|ϑ(ξ, y)| < 0, 0 < ξ < 1 using the following lemma.

Lemma 2.1.1. If ϑ(x, y) ∈ C(Ω0) ∩ C1(Ω0 ∪ OA) and |ϑ(ξ, 0)| > 0, 0 < ξ < 1, then there
exist lim

y→+0
|ϑ(ξ, y)|y and the equality

lim
y→+0

∂

∂y
|ϑ(ξ, y)| = Re

{
ϑ(ξ, 0)

|ϑ(ξ, 0)| lim
y→+0

∂

∂y
ϑ(ξ, y)

}
in Ω0 (2.4)

is valid.
Proof. By virtue of |ϑ(ξ, 0)| > 0 and ϑ(ξ, 0) ∈ C(Ω0) some neighborhood S ⊂ (Ω0 ∪ OA)

exists of points (ξ, 0), in which |ϑ(x, y)| > 0. In this neighborhood the equality

∂

∂y
|ϑ(x, y)| = Re

{
ϑ(x, y)

|ϑ(x, y)|
∂

∂y
ϑ(x, y)

}
in Ω0

is valid.
Substituting x = ξ, and taking a limit in the previous equality as y → +0 and taking

ϑ(x, y) ∈ C(Ω0) ∩ C1(Ω0 ∪OA) into account, the statement of Lemma 2.1.1 is obtained.
In a similar way the existence of lim

x→+0

∂

∂x
|ϑ(x, η)| < 0, 0 < η < 1, is proved.

Remark 2.1. If Reλ2
0 ≥ 0 then the statement of Theorems 2.1.1 and 2.1.2 remain true for

the function u(x, y).
Consider the equation (L.B) in Ω1 and Ω2. In a similar way as in Lemma 2.1.1 the following

lemmas can be proved.
Lemma 2.1.21. If ϑ ∈ C(Ω1) ∩ C1(Ω1 ∪ OA) and |ϑ(ξ, 0)| > 0, 0 < ξ < 1, then there exists

lim
y→−0

|ϑ(ξ, y)|y and the equality

lim
y→−0

∂

∂y
|ϑ(ξ, y)| = Re

{
ϑ(ξ, 0)

|ϑ(ξ, 0)| lim
y→−0

∂

∂y
ϑ(ξ, y)

}
in Ω1 (2.5)

is valid.
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Lemma 2.1.22 is formulated, as Lemma 2.1.21, for the function ϑ(x, y) ∈ C(Ω)∩C1(Ω2∪OB)

in the domain Ω2.

� 2.2. Formulation of the problem BSλ

Consider the equation (L.B) in the domain Ω.

Problem BSλ. Find a regular solution of the equation (L.B), in the domain Ω satisfying the
conditions

u(x, y) =
n∑

k=1

αk(x, y)u(rkx, rky) + g(x, y), (x, y) ∈ σ0; (2.6)

A0,λ1
0x [u(θx0)] + c1(x)u(x, 0) = d1(x), (x, 0) ∈ OA; (2.71)

A0,λ2
0y [u(θy0)] + c2(y)u(0, y) = d2(y), (0, y) ∈ OB. (2.72)

Here cj(t) (j = 1, 2) are given a real-valued functions, and αk(x, y) (k = 1, n), g(x, y), dj(t)

are, in general, complex-valued functions, r1, . . . , rn is are given real numbers, moreover 0 < r1 <

r2 < . . . < rn < 1. For the given functions we require

cj(t), dj(t) ∈ C(2,r)[0, 1], where 0 < r = const < 1.

αk(x, y), g(x, y) ∈ C(σ0), k = 1, n,

and assume, that

n∑

k=1

|αk(x, y)| 6= 0, (x, y) ∈ σ0.

Further, it is not di�cult to verify, that if the point (x0, y0) is moving along σ0, then the
points (rkx0, rky0), k = 1, n, will be moving along concentric semicircles σ0 = {(x, y) : x2 + y2 =

r2
k, x ≥ 0, y ≥ 0}, k = 1, n, lying in Ω0. Consequently, (2.6) is a condition, which connects the
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values of an unknown function on the boundary with inner points of the domain Ω0. Therefore
the problem BS0

λ is concerned to belong to the class of problems as o�ered in [5].
It should be noted, that problems with a condition of type (2.6) for uniformly elliptic equations

are studied in [29], [36].

� 2.3. Uniqueness of the solution of the problem BSλ

Let u(x, y) be a solution of the problem BS0
λ. Then the basic functional relations between τj(t)

and νj(t) on the segments OA and OB, de�ned from conditions (2.71), (2.72) for the function
u(x, y), are expressed by the formulas

Pj(t)τj(t) = 2dj(t)− τj(0)J0 [λjt] +

t∫

0

νj(z)J0 [λj(t− z)] dz, (2.9j)

where 0 ≤ t ≤ 1, j = 1, 2,

Pj(t) = 1 + 2cj(t), t =





x, if j = 1,

y, if j = 2.

The following lemma play an essential role in proving the uniqueness theorem.
Lemma 2.3.11. Let u(x, y) be a regular solution of the equation (L.B) in the domain Ω1,

satisfying the condition (2.71) with d1(x) ≡ 0 and ϑ(x, y) = ω−1(x, y)u(x, y), δ ≥ |λ1|, and let the
conditions

P1(x) ≥ 0, P ′
1(x) ≥ 0, 0 ≤ x ≤ 1. (2.101)

P ′
1(x) + P1(x)


 δ sh δx

ch δx + 1
− |λ1|

x∫

0

I1[|λ1|(x− t)]

x− t
dt


 ≥ 0 (2.111)

be ful�lled. Then, if sup
OA

|ϑ(x, y)| = |ϑ(ξ, 0)| > 0, 0 < ξ < 1, the inequality

lim
y→−0

∂

∂y
|ϑ(ξ, y)| ≥ 0, 0 < ξ < 1 (2.121)

is valid.
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Proof. By virtue of d1(x) ≡ 0 and taking P1(x) ≥ 0 in (2.91) into account, for x = 0 follows,
that τ1(0) = 0. Then relation (2.91) becomes

P1(x)τ1(x) =

x∫

0

ν1(z)J0 [λ1(x− z)] dz, 0 ≤ x ≤ 1.

From this relation, we �nd the function ν1(x) and rewrite the obtained equality as [36]

lim
y→−0

∂

∂y
u(x, y) = [P1(x)u(x, 0)]′x + λ2

1

x∫

0

P1(z)u(z, 0)
J1 [λ1(x− z)]

λ1(x− z)
dz, 0 ≤ x ≤ 1,

where J1 [·] is the �rst order Bessel function.
Taking ϑ(x, y) = ω−1(x, y)u(x, y) and (2.5) into account, and observing that P1(x) is a real-

valued function, we have

lim
y→−0

∂

∂y
|ϑ(ξ, y)| = P1(ξ)|τ̃1(ξ)|′ +

[
P ′

1(ξ) +
δ sh δξ

ch δξ + 1
P1(ξ)

]
|τ̃1(ξ)|

+

ξ∫

0

ch δt + 1

ch δξ + 1
P1(t)Re

{
λ2

1τ̃j(t)
τ̃1(ξ)

|τ̃1(ξ)|
J1[λ1(ξ − t)]

λ1(ξ − t)

}
dt, (2.13)

where τ̃1(x) = ϑ(x, 0).
We rewrite the equality (2.13) in the form

lim
y→−0

∂

∂y
|ϑ(ξ, y)| = P1(ξ)|τ̃1(ξ)|′

+

ξ∫

0

[
ch δz + 1

ch δξ + 1
P1(z)Re

{
λ2

1τ̃1(z)
τ̃1(ξ)

|τ̃1(ξ)|
J1[λ1(ξ − z)]

λ1(ξ − z)

}

+P1(ξ)|λ2
1||τ̃1(ξ)|I1[|λ1|(ξ − z)]

|λ1|(ξ − z)

]
dz

+


P ′

1(ξ) + P1(ξ)





δ sh δξ

ch δξ + 1
− |λ2

1|
ξ∫

0

I1[|λ1|(ξ − z)]

|λ1|(ξ − z)
dz






 |τ̃1(ξ)|. (2.14)

From the condition (2.101) it is not di�cult to verify the inequality
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ch δz + 1

ch δξ + 1
P1(z)Re

{
λ2

1τ̃1(z)
τ̃1(ξ)

|τ̃1(ξ)|
J1[λ1(ξ − z)]

λ1(ξ − z)

}
≤ P1(ξ)|λ2

1||τ̃1(ξ)|I1[|λ1|(ξ − z)]

|λ1|(ξ − z)
. (2.15)

Now we return to equality (2.14). The �rst term on the right-hand side of (2.14) is equal to
zero, as x = ξ is a point of a positive maximum to the function |τ̃1(ξ)|. By the inequality (2.15),
the second term on the right-hand side of (2.14) is non-negative. Using (2.101), (2.111), δ ≥ |λ1|,
|τ̃1(ξ)| > 0, one can easily verify, that the third term on the right-hand side of (2.14) is also
non-negative.

Consequently, the right-hand side of (2.14) is non-negative, i.e. the inequality (2.121) is true
and Lemma 2.3.11 is proved.

In the same way, the following lemma can be proved.
Lemma 2.3.12. Let u(x, y) be a regular solution of the equation (L.B) in the domain Ω2

satisfying the condition (2.72) with d2(y) ≡ 0, and ϑ(x, y) = ω−1(x, y)u(x, y), δ ≥ |λ2|, and the
conditions

P2(y) ≥ 0, P ′
2(y) ≥ 0, 0 ≤ y ≤ 1. (2.102)

P ′
2(y) + P2(y)


 δ sh δy

ch δy + 1
− |λ1|

y∫

0

I1[|λ1|(y − t)]

y − t
dt


 ≥ 0 (2.112)

be ful�lled. Then, if sup
OB

|ϑ(x, y)| = |ϑ(0, η)| > 0, 0 < η < 1, so the inequality

lim
x→−0

∂

∂x
|ϑ(x, η)| ≥ 0, 0 < η < 1 (2.122)

is valid.
When λ1 and λ2 are a real numbers, we have more simple conditions on λ1, λ2. In this case

in the domain Ω we substitute υ(x, y) = $−1(x, y)u(x, y) where $(x, y) = exp(δx) + exp(δy).
Then (2.13) becomes

lim
y→−0

∂

∂y
|υ(ξ, y)| = P1(ξ)|τ̃1(ξ)|′ +

[
P ′

1(ξ) + δ
P1(ξ)e

δξ − 1

eδξ + 1

]
|τ̃1(ξ)|

+

ξ∫

0

eδz + 1

eδξ + 1
P1(z)

{
λ2

1τ̃j(z)
J1[λ1(ξ − z)]

λ1(ξ − z)

}
dz, (2.131)
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where τ̃1(x) = υ(x, 0).
We rewrite the equality (2.131) in the form

lim
y→−0

∂

∂y
|υ(ξ, y)| = P1(ξ)|τ̃1(ξ)|′

+

ξ∫

0

eδz + 1

eδξ + 1

[
1

2
|λ2

1|P1(ξ)|τ̃1(ξ)|+ P1(z)

{
λ2

1τ̃1(z)
J1[λ1(ξ − z)]

λ1(ξ − z)

}]
dz

+


P ′

1(ξ) + δ
P1(ξ)e

δξ − 1

eδξ + 1
− 1

2

|λ2
1|P1(ξ)

eδξ + 1

ξ∫

0

(eδz + 1)dz


 |τ̃1(ξ)|. (2.141)

Consider

l0 = P ′
1(ξ) + δ

P1(ξ)e
δξ − 1

eδξ + 1
− 1

2

|λ2
1|P1(ξ)

eδξ + 1

ξ∫

0

(eδz + 1)dz.

It is not di�cult to verify, that if P1(ξ) ≥ 1, P ′
1(ξ) ≥ 0, δ ≥ |λ1|, then l0 ≥ 0 .

Now we prove the inequality

±P1(z)

{
λ2

1τ̃1(z)
J1[λ1(ξ − z)]

λ1(ξ − z)

}
≤ 1

2
|λ2

1|P1(ξ)|τ̃1(ξ)|. (2.151)

Indeed, if we take into account, that 0 ≤ P1(z) ≤ P1(ξ) (while P ′
1(z) ≥ 0, and consequently

P1(z) is a non-decreasing function), ±λ2
1 ≤ |λ2

1|,
∣∣∣∣∣
J1[x]

x

∣∣∣∣∣ ≤
1

2
and |τ̃1(z)| ≤ |τ̃1(ξ)|, we include,

that the inequality (2.151) is valid.
Now we return to equality (2.141). The �rst term on the right-hand side of (2.141) is equal

to zero, because x = ξ is a point of a positive maximum to the function |τ̃1(ξ)|. From inequality
(2.151) we obtain, that the second term of (2.141) is non-negative. Using (2.101), δ ≥ |λ1|,
|τ̃1(ξ)| > 0, the third term is also non-negativity.

Consequently, the right-hand side of (2.141) is non-negative, i.e. the inequality (2.121) is valid.
In the same way one can prove (2.121), when λ2 is a real number.
Using Lemmas 2.3.11 and 2.3.12 the following theorem is proved.
Theorem 2.3.1. Let
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Reλ2
0 ≥ δ2

0 = max(|λ2
1|, |λ2

2|), (2.16)

cj(t) ≥ −1

2
, c′j(t) ≥ 0, 0 ≤ t ≤ 1; j = 1, 2 (2.17)

and even for one δ ∈ [δ2
0, Reλ2

0] the inequality

n∑

k=1

|αk(x, y)|
[
eδrkx + eδrky

eδx + eδy

]
≤ 1, (x, y) ∈ σ0 (2.18)

be ful�lled. Then, if the solution of the problem BSλ exists, it is unique.
Proof. Let u(x, y) be a solution of the homogenous problem BSλ. We assume, that ϑ(x, y) 6≡

const in the domain Ω0. Then from the Theorem 2.1.1 follows, that

sup
Ω0

|ϑ(x, y)| = |ϑ(ξ, η)| > 0, ∀(ξ, η) ∈ OA ∪OB ∪ σ0.

Let (ξ, η) ∈ OA or (ξ, η) ∈ OB, i.e. sup
Ω0

|ϑ(x, y)| = sup
OA

|ϑ(x, 0)| = |ϑ(ξ, 0)| > 0, 0 < ξ < 1,

or sup
Ω0

|ϑ(x, y)| = sup
OB

|ϑ(0, y)| = |ϑ(0, η)| > 0, 0 < η < 1. Then, taking propositions of Theorem

2.1.2 into account, we have inequality (2.3). Assuming in the Lemmas 2.3.11 and 2.3.12 δ = |λ1|
and δ = |λ2|, we obtain the inequalities (2.121) and (2.122), what is impossible by virtue of
continuity of |ϑ(ξ, y)|y, |ϑ(x, η)|x on the lines y = 0 and x = 0 respectively (this proposition follows
from the characteristics of the functions ω(x, y) and u(x, y)). Consequently, (ξ, η) /∈ OA ∪OB.

Now let (ξ, η) ∈ σ0. Then |ϑ(x, y)| < |ϑ(ξ, η)|, ∀(x, y) ∈ Ω0∪OA∪OB. Taking this into account
and the condition (2.18), from (2.6), and observing g(x, y) ≡ 0, we obtain |ϑ(ξ, η)| < |ϑ(ξ, η)|,
which is impossible.

The obtained contradiction shows, that ϑ(x, y) ≡ const in Ω0. Taking into account ϑ(0, 0) = 0

(this fact follows from ϑ(x, y) = ω−1(x, y)u(x, y) and by virtue of
u(0, 0) = 0, which is noted in Lemma 2.3.11). From here, we conclude, that ϑ(x, y) ≡ 0 in
Ω0, and consequently, u(x, y) ≡ 0 in Ω0. The Theorem is proved.

Remark 2.2. In the case, when λ0 ∈ R, and λj (j = 1, 2) are real or pure imaginary number,
then Theorem 2.3.1 can be proved by the extremal principle for the elliptic equations and the
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Zaremba-Giro principle [7], when the solution u(x, y) can be looked for in the class of real-valued
function.

Remark 2.3. In the special case, when αk(x, y) ≡ 0, k = 1, ..., n, follows uniqueness of the so-
lution of the problem Aλ, when bj(x) ≡ 0, and when
αk(x, y) ≡ 0, (k = 1, ..., n), cj(x) ≡ 0 (j = 1, 2), the uniqueness of the solution of the Trico-
mi problem, which was obtained in [40] by the help of a Laplace transformation, which follows
from Theorem 2.3.1.

Remark 2.4. At λ0 = λ1 = λ2 = λ the condition (2.16) is equivalent to the equality Imλ = 0.

From here and by the Theorem 2.3.1 we have the following proposition
Proposition. If λ0 = λ1 = λ2 = λ and the conditions (2.17), (2.18) are ful�lled. Then the

problem BSλ can have eigenvalues only outside of Imλ = 0.

� 2.4. Existence of a solution of the problem BSλ

Let the function ϕ(x, y) be the value of the unknown solution u(x, y) of the problem BSλ on
σ0 and denote ν1(x) = lim

y→−0
uy(x, y), ν2(y) = lim

x→−0
ux(x, y). If we �nd by the help of the given

functions identically functions ϕ(x, y), ν1(x), ν2(y) ful�lling the condition (1.20) and νj(t) ∈
C1(0, 1), j = 1, 2 (moreover νj(t) could have a singularity of order less than one at t → 0, t → 1),
then in the domain Ω0 the solution of the problem BSλ is determined by the formula (1.25).

Therefore in the following we are engaged in �nding the functions ϕ(x, y), ν1(x) and ν2(y).
In addition, we assume that

αk(x, y) = (xy)εα∗k(x, y), k = 1, n; g(x, y) = (xy)εg∗(x, y) (2.19)

α∗k(x, y), g∗(x, y) ∈ C(σ0), ε > 1.

Conditions (2.19) provide the ful�lling of (1.20).
Let the condition of Theorem 2.3.1 be ful�lled. By virtue of cj(t) ≥ −1/2 from (2.9j) (j = 1, 2)

at t = 0 it follows, that τj(0) = 0. Then functions νj(t) are identically found from (2.9j), moreover
we require in addition that dj(0) = 0.

Further, substituting (1.25) in (2.6) and taking into account the notation
u(x, y)|σ0

= ϕ(x, y), we obtain
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ϕ(x, y)−
∫

σ0

ϕ(ξ, η)N(ξ, η; x, y)ds = F (x, y), (x, y) ∈ σ0, (2.20)

where
N(ξ, η; x, y) =

n∑

k=1

αk(x, y)

×




∂

∂n
G(ξ, η; rkx, rky) +

∫ ∫

Ω0

R(ξ1, η1; rkx, rky)
∂

∂n
G(ξ, η; ξ1, η1)dξ1dη1





,

F (x, y) = g(x, y)

−
n∑

k=1

αk(x, y)

1∫

0

ν1(t)





G(t, 0; rkx, rky) +
∫ ∫

Ω0

R(ξ, η; rkx, rky)G(t, 0; ξ, η)dξdη





dt

−
n∑

k=1

αk(x, y)

1∫

0

ν2(t)





G(0, t; rkx, rky) +
∫ ∫

Ω0

R(ξ, η; rkx, rky)G(0, t; ξ, η)dξdη





dt.

By virtue of (ξ, η) 6= (rkx, rky) , ∀(ξ, η), (x, y) ∈ σ0 , k = 1, n, the
function N(ξ, η; x, y) continuously on σ0 × σ0. Besides, it is not di�cult to
verify, that F (x, y) ∈ C (σ0). Then, by changing the variables x = cos θ, y = sin θ,
ξ = cos θ1, η = sin θ1, 0 ≤ θ, θ1 ≤ π/2, from (2.20) we get a Fredholm integral equation of second
kind for ϕ(cos θ, sin θ). Regarding the function ϕ(x, y) is
temporarily known and for the equation (L.B) solving the problem BSλ, we obtain a singu-
lar integral equation in the form (1.33).

By solving the obtained equation, identically we �nd the functions νj(t), (j = 1, 2) by ϕ(x, y),
which is the �rst and the second functional relation between ν1(x), ϕ(x, y) and ν2(y), ϕ(x, y)

respectively. On the other hand, equality (2.20) is the third functional relation between ν1(x),
ν2(y) and ϕ(x, y), which is determined by the condition, that the solution u(x, y) of the problem
BS0

λ should satisfy (2.6).
Consequently, for the functions ν1(x), ν2(y) and ϕ(x, y) we have a system of three Fredholm

equations of second kind, unique solvability of this system follows from the uniqueness of the
solution of the considered problems.

This ends existence and uniqueness of the solution of the problem BSλ.
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Chapter 3

NON-LOCAL PROBLEMS FOR MIXED TYPE EQUATION WITH SPECTRAL
PARAMETER, WHEN THE DOMAIN OF ELLIPTICITY IS A QUARTER

RING

The third chapter of this dissertation consists of four paragraphs and in it non-local problems
for the mixed elliptic-hyperbolic equation (L.B) with two lines of changing type with spectral
parameter investigated. Moreover, here we assume that λ = λ1 for x > 0, y > 0, λ = λ2 at
x > 0, y < 0 and x < 0, y > 0, where λ1 and λ2 are given complex parameters.

� 3.1. Formulation of problems

Let ∆ be a �nite simply-connected mixed domain of the plane of the variables xOy, bounded
for x > 0, y > 0 by the lines σ01 : x2 + y2 = 1, σ02 : x2 + y2 = p2, (0 < p < 1) and for x · y < 0

by the characteristics x + y = p, x− y = ±1 of the equation (L.B).

Let us introduce the notations:

∆0 = ∆ ∩ (x > 0, y > 0), ∆1 = ∆ ∩ (x > 0, y < 0), ∆2 = ∆ ∩ (x < 0, y > 0),

I1 = {(x, y) : p < x < 1, y = 0} , I2 = {(x, y) : x = 0, p < y < 1} ,

θpx(x) = ((p + x)/2; (p− x)/2) , θpy(y) = ((p− y)/2; (p + y)/2) ,

θx1(x) = ((x + 1)/2; (x− 1)/2) , θ1y(y) = ((y − 1)/2; (y + 1)/2) .

We call a function u(x, y) a regular solution of the equation (L.B) in the domain ∆\ (I1∪I2),
the derivatives of ux(x, y), uy(x, y) which can become in�nite of order less than one in the points
A(p, 0), B(1, 0), C(0, 1) and D(0, p).

Problem Γλ
0 . Find a regular solution of the equation (L.B), in the domain ∆ satisfying the

conditions

u(x, y) ∈ C(∆) ∩ C1(∆) ∩ C2(∆\I1\I2);
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u(x, y) = ϕj(x, y), (x, y) ∈ σ0j, (j = 1, 2.); (3.1)

a1(x)A0,λ2
px [u(θpx)] + b1(x)A0,λ2

1x [u(θx1)]

+c1(x)u(x, 0) = d1(x), (x, 0) ∈ I1; (3.21)

a2(y)A0,λ2
py [u(θpy)] + b2(y)A0,λ2

1y [u(θ1y)]

+c2(y)u(0, y) = d2(y), (0, y) ∈ I2. (3.22)

Problem Γλ
1 . Find a regular solution of the equation (L.B), in the domain ∆ satisfying the

boundary condition (3.1) and the conditions

u(x, y) ∈ C(∆) ∩ C1(∆\σ0j) ∩ C2(∆\I1\I2), (j = 1, 2.);

a1(x)A1,λ2
px

[
d

dx
u(θpx)

]
+ b1(x)A1,λ2

1x

[
d

dx
u(θx1)

]

+c1(x)
∂

∂y
u(x, 0) = d1(x), (x, 0) ∈ I1; (3.31)

a2(y)A1,λ2
py

[
d

dy
u(θpy)

]
+ b2(y)A1,λ2

1y

[
d

dy
u(θ1y)

]

+c2(y)
∂

∂x
u(0, y) = d2(y), (0, y) ∈ I2, (3.32)

Here aj(t), bj(t), cj(t) are given real-valued functions, moreover
a2

j(t) + b2
j(t) 6= 0, t ∈ [p, 1], j = 1, 2, and ϕj(x, y), dj(t) are given, in general complex-valued

functions.
From the given functions we require that aj(t), bj(t), cj(t), dj(t) ∈ C1

(
Ij

)
∩ C(1+k,r) (Ij),

ϕj(x, y) ∈ C(σ̄0j), where 0 < r = const < 1. k = 1 in the problem Γλ
0 and k = 0 in the problem

Γλ
1 and assume, that

ϕj(x, y) = (xy)εϕ∗j(x, y), ϕ∗j(x, y) ∈ C(σ0j), ε > 1. (3.4)
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� 3.2. Investigation of the problem Γλ
0

In the domains Ωj, j = 1, 2, using the formulas (1.5j) and conditions (3.2j), after some
calculation, we have

αj(t)τj(t) = 2dj(t)− τj(p)aj(t)J0 [λ2(t− p)]− τj(1)bj(t)J0 [λ2(1− t)]

+aj(t)

t∫

p

νj(z)J0 [λ2(t− z)] dz + bj(t)

1∫

t

νj(z)J0 [λ2(z − t)] dz, (3.5j)

where p ≤ t ≤ 1, j = 1, 2.

αj(t) = aj(t) + bj(t) + 2cj(t) t =





x, if j = 1,

y, if j = 2.

Equalities (3.5j) , (j = 1, 2), provide a basic functional relation between τj(t) and νj(t) on
the segments I1 and I2 respectively, attained from the hyperbolic part of the mixed domain ∆.

We consider by analysis of the relation (3.5j) (j = 1, 2) the following three cases: αj(t) ≡ 0,
j = 1, 2; αj(t) 6≡ 0, j = 1, 2; αj(t) ≡ 0, αk(t) 6= 0, j, k = 1, 2, j 6= k.

The following lemma plays the essential role in the proof of the uniqueness theorem.
Lemma 3.2.1. If u(x, y) is a regular solution of the equation (L.B) in the domain ∆0 and is

equal to zero on σ0j (j = 1, 2.), then the equality

(Reλ2
1 − δ2)




∫ ∫

∆′0

|ϑ|2dxdy +
∫ ∫

∆′′0

|ω|2dxdy


 +

∫ ∫

∆′0

|∇ϑ|2dxdy +
∫ ∫

∆′′0

|∇ω|2dxdy+

+Re

1∫

p

e2δxτ1(x)ν1(x)dx + Re

1∫

p

e2δyτ2(y)ν2(y)dy = 0 (3.6)

is valid, where ϑ(x, y) = eδxu(x, y), τ̄1(x) = ū(x, 0), ν1(x) = uy(x, 0) in ∆′
0 = ∆0 ∩ (x > y);

ω(x, y) = eδyu(x, y), τ̄2(y) = ū(0, y), ν2(y) = ux(0, y) in ∆′′
0 = ∆0 ∩ (x < y); ∀|δ| ≥ |Imλ2|.

Moreover ϑ(x, y) = ω(x, y) on K1K2 : y = x.

This lemma is proved analogously as Lemma 1.1.1.
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� 3.2.1. Investigation of the problem Γλ
0 for αj(x) ≡ 0, j = 1, 2

Theorem 3.2.1. Let αj(t) ≡ 0, Reλ2
1 ≥ 0 and one of the following group of conditions is

ful�lled: à) bj(t) ≡ 0; b) aj(t) ≡ 0; c) aj(t) 6≡ 0, bj(t) 6≡ 0, aj(t) 6= bj(t) and

1∫

p

1∫

p

|Kj(t, z, λ2)|2 dtdz < 1, j = 1, 2, (3.7)

where

Kj(t, z, λ2) =





∂

∂t
{aj(t)J0 [λ2(t− z)]} / [aj(t)− bj(t)] , t ≥ z,

∂

∂t
{bj(t)J0 [λ2(z − t)]} / [aj(t)− bj(t)] , z ≥ t.

Then, the solution of the problem Γλ
0 exists and is unique.

Ful�lling the conditions of Theorem 3.2.1 we obtain from (3.5j), j = 1, 2, the equations

aj(t)

t∫

p

νj(z)J0 [λ2(t− z)] dz + bj(t)

1∫

t

νj(z)J0 [λ2(z − t)] dz = −2dj(t). (3.8j)

As in Theorem 1.1.1, ful�lling the conditions a), b) and c) identically from equation (3.8j) we
�nd the function νj(t) by the formulas

νj(t) = −2C0,λ2
pt

[
dj(t)

aj(t)

]
, (3.9)

νj(t) = −2C0,λ2
1t

[
dj(t)

bj(t)

]
, (3.10)

νj(t) = gj(t)−
1∫

p

Rj(t, z, λ2)gj(z)dz, (3.11)

respectively, here gj(t) = −2dj(t)/[bj(t)−aj(t)], Rj(t, z, λ2) is the resolvent of the kernel Kj(t, z, λ2),
C0,λ

mx is the operator, determined by the formula (1.22).
It follows from the above, that the functions νj(t) (j = 1, 2) are identically determined in the

case when the functions a1(x), b1(x) satisfy one of the conditions a), b), c), and the functions
a2(y), b2(y) satisfy the other of these conditions.



63

Consequently, at αj(t) ≡ 0, j = 1, 2, the problem Γλ
0 is equivalent to the problem N for

the equation (L.B) in the domain ∆0 with boundary conditions (3.1) and uy(x, 0) = ν1(x),
ux(0, y) = ν2(y), p < x, y < 1, where νj(t) ∈ C1(p, 1) is a well-known functions, determined by
one of the formulas (3.9), (3.10) and (3.11).

Let u(x, y) be a solution of the problem N for the equation (L.B) in ∆0. Then using the
Green formula, it is not di�cult to prove that the problem N for the equation (L.B) in ∆0 is
equivalent (in the meaning of solvability) to the integral equation

u(x, y) + λ2
1

∫ ∫

∆0

G(ξ, η; x, y)u(ξ, η)dξdη = u0(x, y),

where [43]
u0(x, y) =

2∑

j=1

∫

σoj

ϕj(ξ, η)
∂

∂n
G(ξ, η; x, y)ds

−
1∫

p

ν1(t)G(t, 0; x, y)dt−
1∫

p

ν2(t)G(0, t; x, y)dt, (3.12)

G(ξ, η; x, y) = P (ω, z) + P (ω, z) + P (−ω, z) + P (−ω, z), (3.13)

P (ω, z) =
1

2π
ln

∣∣∣∣∣ϑ1

(
ln ω + ln z

2πiτ

)
/ϑ1

(
ln ω − ln z

2πiτ

)∣∣∣∣∣ .

Here n is the inner normal to σ0j relative to ∆0, s is the arc length; ω = ξ + iη, z = x + iy,
ω = ξ − iη, z = x− iy; ϑ1 (ζ) = ϑ1

(
ζ| − 1

τ

)
is the theta function [2], τ =

ln p

πi
, i =

√−1 is the
imaginary unit.

To the obtained integral equation we adapt the Fredholm theorems. Then its solvability
follows from the uniqueness of the solution of problem N . Therefore its solution, consequently,
and the solution of the problem N exists, is unique and determined by

u(x, y) = u0(x, y) +
∫ ∫

∆0

R(ξ, η; x, y)u0(ξ, η)dξdη. (3.14)

Here R(ξ, η; x, y) is the resolvent of the kernel (−λ2
1) G(ξ, η; x, y).

In the domains ∆1 and ∆2 the solution of the problem Γλ
0 is determined by the formulas (1.51)

and (1.52), moreover τ1(x) = u(x, 0), τ2(y) = u(0, y) are found from (3.14).
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� 3.2.2. Investigation of the problem Γλ
0 for αj(x) 6= 0, j = 1, 2

Theorem 3.2.2. Let one of the following group of conditions be ful�lled:

1) Reλ2
1 ≥ (Imλ2)

2 ;

αj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
> −1

2
,

(
cj(t)

aj(t)

)′
≥ 0, t ∈ [p, 1]; (3.15)

2) Reλ2
1 ≥ (Imλ2)

2 ;

αj(t) 6= 0, aj(t) ≡ 0,
cj(t)

aj(t)
> −1

2
,

(
cj(t)

aj(t)

)′
≤ 0, t ∈ [p, 1]; (3.16)

3) Reλ2
1 ≥ 0, Imλ2 = 0;

αj(t) 6= 0, aj(t) 6≡ 0, bj(t) 6≡ 0, (3.17)

(
aj(t)

αj(t)

)′
≤ 0,

(
bj(t)

αj(t)

)′
≥ 0, t ∈ [p, 1];

aj(1)

αj(1)
+

bj(p)

αj(p)
≥ 0. (3.18)

Then the problem Γλ
0 cannot have more than one solution.

The preposition of the theorem follows from the equality (3.6) and from the following lemma.
Lemma 3.2.2. Let τj(p) = 0, (−δ) ≥ |Imλ2| and the condition (3.15) be ful�lled. Then for

dj(t) ≡ 0 the inequality

Pj ≡ Re
1∫

p

e2δtτ̄j(t)νj(t)dt ≥ 0 (3.19)

is valid.
Proof. Let dj(t) ≡ 0. Then by virtue of the second and the third from the conditions (3.15),

from (3.5j) for t = 0 it follows that τj(p) = 0. Taking into account dj(t) ≡ bj(t) ≡ 0 and
τj(p) = 0, from (3.5j) we �nd the functions τj(t) and with regard of Re[τ̄j(t)νj(t)] = Re[τj(t)ν̄j(t)]

we substitute it in (3.19); changing the function J0[·] by the formula [16]

Js(z) =
2

(
z
2

)s

√
π

(
s + 1

2

)
1∫

0

(
1− ξ2

)s− 1
2 cos zξdξ, Res > −1

2
, (3.20)
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and taking into account the fact, that aj1(t) = aj(t)/αj(t) is a real function, we have

Pj ≡ 2

π

1∫

0

(
1− ξ2

)−1/2
dξ

1∫

p

e2δtaj1(t)dt

t∫

p

Re [ν̄j(t)νj(z) cos λ2ξ(t− z)] dz. (3.21)

Let λ2 = λ21 + iλ22 and νj(t) = νj1(t) + iνj2(t).

It is not di�cult to set [36], that

Re [ν̄j(t)νj(z) cos λ2(t− z)ξ]

=
1

2
e−2λ22ξt

2∑

n=1

Φjn(t, ξ)Φjn(z, ξ) +
1

2
e2λ22ξt

4∑

n=3

Φjn(t, ξ)Φjn(z, ξ), (3.22)

where
Φj1(t, ξ)

Φj3(t, ξ)





= [νj11(t, ξ)± νj22(t, ξ)] e
±λ2ξt,

Φj2(t, ξ)

Φj4(t, ξ)





= [νj12(t, ξ)∓ νj21(t, ξ)] e
±λ2ξt,

νjk1(t, ξ) = νjk(t) cos λ21tξ, νjk2(t, ξ) = νjk(t) sin λ21tξ, k = 1, 2.

Taking (3.22) into account, after some calculations we have

t∫

p

Re [ν̄j(t)νj(z) cos λ2(t− z)ξ] dz

=
1

4
e−2λ22ξ t

2∑

n=1

d

dt
Φ2

jn1(t, ξ) +
1

4
e2λ22ξ t

4∑

n=3

d

dt
Φ2

jn1(t, ξ), (3.23)

where
Φjn1(t, ξ) =

t∫

p

Φjn(z, ξ)dz, n = 1, 4.

Substituting (3.23) in (3.21) and integrating by parts, we obtain
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Pj ≡ 1

2π

1∫

0

(
1− ξ2

)−1/2
dξ

{
aj1(1)e2(δ−λ22ξ)

2∑

n=1

Φ2
jn1(1, ξ)

+

1∫

p

[
−a′j1(t)− 2aj1(t)(δ − λ22ξ)

]
e2t(δ−λ22ξ)

[
2∑

n=1

Φ2
jn1(t, ξ)

]
dt

+aj1(1)e2(δ+λ22ξ)
4∑

n=3

Φ2
jn1(1, ξ)

+

1∫

p

[
−a′j1(t)− 2aj1(t)(δ + λ22ξ)

]
e2t(δ+λ22ξ)

[
4∑

n=3

Φ2
jn1(t, ξ)

]
dt



 . (3.24)

From here, taking aj1(t) > 0, a′j1(t) ≤ 0, ∀t ∈ [0, 1] and (−δ±λ22ξ) ≥ 0 at −δ ≥ |λ22|, |ξ| ≤ 1

into account, we conclude that Pj ≥ 0.
Lemma 3.2.3. Let τj(1) = 0, δ ≥ |Imλ2| and the condition (3.16) be ful�lled. Then for

dj(t) ≡ 0 inequality (3.19) is valid.
Proof. Let dj(t) ≡ 0. Then, by virtue of the second and the third from the condition (3.16),

from (3.5j) at t = 1 it follows, that τj(1) = 0. Taking into account τj(1) = 0 and dj(t) ≡ aj(t) ≡ 0,
from (3.5j), we �nd the function τj(t) and with regard to Re[τ̄j(t)νj(t)] = Re[τj(t)ν̄j(t)] we
substitute it in (3.19); changing the function J0[·] by formula (3.20) and taking into account the
fact, that bj1(t) = bj(t)/αj(t) is a real function, we have

Pj ≡ 2

π

1∫

0

(
1− ξ2

)−1/2
dξ

1∫

p

e2δtbj1(t)dt

1∫

t

Re [ν̄j(t)νj(z) cos λ2ξ(z − t)] dz. (3.25)

Using the equality (3.22), after some calculations we �nd

1∫

t

Re [ν̄j(t)νj(z) cos λ2(t− z)ξ] dz

= −1

4
e−2λ22ξt

2∑

n=1

d

dt
Φ2

jn2(t, ξ)−
1

4
e2λ22ξt

4∑

n=3

d

dt
Φ2

jn2(t, ξ), (3.26)

where

Φjn2(t, ξ) =

1∫

t

Φjn(z, ξ)dz, n = 1, 4.
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Substituting (3.26) in (3.25) and integrating by parts we �nd

Pj ≡ 1

2π

1∫

0

(
1− ξ2

)−1/2
dξ

{
bj1(p)e−2(δ−λ22ξ)

2∑

n=1

Φ2
jn2(p, ξ)

+

1∫

p

[
b′j1(t) + 2bj1(t)(δ − λ22ξ)

]
e2t(δ−λ22ξ)

[
2∑

n=1

Φ2
jn2(t, ξ)

]
dt

+bj1(p)e−2(δ+λ22ξ)
4∑

n=3

Φ2
jn2(p, ξ)

+

1∫

p

[
b′j1(t) + 2bj1(t)(δ + λ22ξ)

]
e2t(δ+λ22ξ)

[
4∑

n=3

Φ2
jn2(t, ξ)

]
dt



 . (3.27)

From here, taking bj1(t) > 0, b′j1(t) ≥ 0, ∀t ∈ [0, 1] and (δ ± λ22ξ) ≥ 0 at δ ≥ |λ22|, |ξ| ≤ 1

into account, we conclude that Pj ≥ 0.
Lemma 3.2.4. Let τj(p) = 0, τj(1) = 0, δ = Imλ2 = 0 and the conditions (3.17) and (3.18)

be ful�lled. Then for dj(t) ≡ 0 the inequality

Re
1∫

p

τ̄j(t)νj(t)dt ≥ 0

is valid.
The correctness of the proposition of this lemma follows from Lemmas 3.2.2 and 3.2.3 by

using formulas (3.23), (3.26) and the condition Imλ2 = 0.
Remark 3.1. From Theorem 3.2.2 for bj(t) ≡ 0, cj(t) ≡ 0 or aj(t) ≡ 0, cj(t) ≡ 0, j = 1, 2

the uniqueness of the solution of the Tricomi problem for the equation (L.B) in the domain ∆

follows.
From Remark 1.3 and Theorem 3.2.2 follows
Proposition. If λ1 = λ2 = λ and one of the conditions (3.15) or (3.16) are ful�lled, then the

problem Γλ
0 (consequently, the Tricomi problem) con have eigenvalues only outside of the domain

D1 =
{
λ : |Reλ| ≥ √

2 |Imλ|
}
.

We go over to proving existence of the solution of the problem Γλ
0 . We assume that the

conditions of group 3) of Theorem 3.2.2 are ful�lled, and for simplicity in addition we assume
that

[a1(t)− b1(t)] /α1(t) = [a2(t)− b2(t)] /α2(t) = A(t) 6= 0.
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Considering problem N for the equation (L.B) in the domain ∆0, we obtain formula (3.14),
from which assuming at �rst y = 0, and in the next x = 0, we obtain the functional relation
between τj(t) and νj(t) on the segments I1 and I2, attained from ∆0

τj(t) +

1∫

p

νj(z)G(z, 0; t, 0)dz +

1∫

p

νk(z)G(0, z; t, 0)dz

+

1∫

p

ν1(z)Hj1(t, z)dz +

1∫

p

ν2(z)Hj2(t, z)dz = fj (t), p ≤ t ≤ 1, (3.28)

where j, k = 1, 2, j 6= k,

H11(x, z) =
∫ ∫

∆0

R(ξ, η; x, 0)G(z, 0; ξ, η)dξdη;

H12(x, z) =
∫ ∫

∆0

R(ξ, η; x, 0)G(0, z; ξ, η)dξdη;

H21(y, z) =
∫ ∫

∆0

R(ξ, η; 0, y)G(z, 0; ξ, η)dξdη;

H22(y, z) =
∫ ∫

∆0

R(ξ, η; 0, y)G(0, z; ξ, η)dξdη;

f1(x) =
2∑

j=1

∫

σoj

ϕj(ξ, η)

[
∂

∂n
G(ξ, η; x, 0)

+
∫ ∫

∆0

R(ξ′, η′; x, 0)
∂

∂n
G(ξ, η; ξ′, η′)dξ′dη′


 ds;

f2(y) =
2∑

j=1

∫

σoj

ϕj(ξ, η)

[
∂

∂n
G(ξ, η; 0, y)

+
∫ ∫

∆0

R(ξ′, η′; 0, y)
∂

∂n
G(ξ, η; ξ′, η′)dξ′dη′


 ds.





(3.29)

By �nding formula (3.28) takin into account that G(z, 0; t, 0) = G(0, z; 0, t) and G(z, 0; 0, t) =

G(0, z; t, 0).
If we eliminate τj(t) from (3.28) and (3.5j), and in the next di�erentiate them with respect

to t, we obtain

A(t)νj(t) +

1∫

p

νj(z)
∂

∂t
G(z, 0; t, 0)dz +

1∫

p

νk(z)
∂

∂t
G(0, z; t, 0)dz
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+

1∫

p

ν1(z)Mj1(t, z)dz +

1∫

p

ν2(z)Mj2(t, z)dz = f ′1j(t), (3.30)

where

Mjj(t, z) =





∂

∂t

[
Hjj(t, z) +

aj(t)

αj(t)
J0[λ2(t− z)]

]
at z ≤ t,

∂

∂t

[
Hjj(t, z) +

bj(t)

αj(t)
J0[λ2(z − t)]

]
at z ≥ t,

Mjk(t, z) =
∂

∂t
Hjk(t, z), j 6= k, j, k = 1, 2,

f1j(t) = fj(t)

+ {τj(p)aj(t)J0 [λ2(t− p)] + τj(1)bj(t)J0 [λ2(1− t)]− 2dj(t)} /αj(t).

Introducing the notation ν1(x)−ν2(x) = µ1(x), ν1(x)+ν2(x) = µ2(x), we rewrite the system
(3.30) in the form

A(t)µj(t) +
1

π

1∫

p

K(t, z)µj(z)dz

+

1∫

p

Lj1(t, z)µ1(z)dz +

1∫

p

Lj2(t, z)µ2(z)dz = Fj(t), p < t < 1, (3.31)

where
K(t, z) =

+∞∑

k=−∞

[
p2k

z − p2kt
− p2kz

1− p2ktz

]
, (3.32)

Ljj(x, t) =
∂

∂x

[
2 ln x ln t

π ln p
+

1

π
ln

∣∣∣∣∣
1 + xt

x + t

+∞∏

k=1

(1 + p2kxt)(xt + p2k)

(t + p2kx)(x + p2kt)

∣∣∣∣∣∓G(0, t; x, 0)

]

+
1

2
[M11(t, z) + M22(t, z)∓M12(t, z)∓M21(t, z)] ,

Ljk(t, z) =
1

2
[M11(t, z)−M22(t, z)±M12(t, z)∓M21(t, z)] ,

Fj(t) = f11(t)∓ f12(t), j, k = 1, 2, j 6= k.
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From the form of the functions Ljk(t, z) follows, that this functions are continuous in the
rectangle {p ≤ t, z ≤ 1} and ∂

∂t
Ljk(t, z) exists for t 6= z, and have logarithmic singularities at

t = z.
Further, using (3.4) and the condition on aj(t), bj(t), cj(t), and dj(t), it is not di�cult to

verify, that Fj(t) ∈ C[p, 1] ∩ C(1,r)(p, 1), j = 1, 2. From here and from the formulation of the
problem Γλ

0 follows, that the solution of the equation (3.31) must be found in the class of functions
µj(t) ∈ C(1,r)(p, 1), which con have a singularity of order less than one as t → p, if A(t) < 0 and
at t → 1, if A(t) > 0.

In this class the solution of the equation (3.31) exists and is determined by the formulas [23]

µj(t) =
A(t)Qj(t)

1 + A2(t)
− D(t)

[1 + A2(t)] π

1∫

p

Qj(z)

D(z)
K(t, z)dz, t ∈ (p, 1), (3.33)

where

Qj(t) = Fj(t)−
2∑

k=1

1∫

p

Ljk(t, z)µk(z)dz, j, k = 1, 2,

D(t) =

[
+∞∏

n=−∞

(p2n−1 − t)(p2n+1 − t)

(p2n − t)2

] 1

π
arctg

1

A(t)
.

If we return to the functions νj(t), we obtain a system of Fredholm integral equations of the
second kind. Unconditional solvability of the system follows from the uniqueness of the solution
of the problem Γλ

0 .
After having found τj(t) and νj(t), the solution of the problem Γλ

0 in the domains ∆0 and ∆1,
∆2 is de�ned as the solution of the problem N and the Cauchy problem for the equation (L.B)

and it is given by the formulas (3.14) and (1.5j) respectively.
Let the conditions of group 1) ( 2) ) of the Theorem 3.2.2 be ful�lled. We require in

addition that the condition dj(p) = 0 (dj(1) = 0) is ful�lled. Then analogously to the previous, we
obtain a singular integral equation in the form (3.31). Solving the obtained equation we determine
the function νj(t), moreover it can have a singularities of order less than one at t → p and t → 1,
as by virtue of the conditions (3.15) ((3.16)) A(t) = aj(t)/αj(t) > 0 (A(t) = −bj(t)/αj(t) < 0).

With this ended our investigation of the problem Γλ
0 for αj(t) 6= 0, j = 1, 2.
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3.2.3. Investigation of the problem Γλ
0 for αj(t) ≡ 0, αk(t) 6= 0, j, k = 1, 2, j 6= k

Let α1(x) ≡ 0, α2(y) 6= 0 and the functions a1(x), b1(x), c1(x) satisfy one of the conditions
a), b), c) of Theorem 3.2.1 for j = 1, and the functions a2(y), b2(y), c2(y) satisfy one of the
conditions 1), 2), 3) of Theorem 3.2.2 for j = 2. Then for the homogenous problem Γλ

0 we have

ν1(x) ≡ 0 and Re

1∫

0

e2δy τ̄2(y)ν2(y)dy ≥ 0,

that correspond to one of the cases of Theorems 3.2.1 and 3.2.2, respectively.
Consequently, and in this case ful�lling the condition Reλ2

1 ≥ (Imλ2)
2 from (3.6) follows that

ϑ(x, y) ≡ 0, (x, y) ∈ ∆
′
0, ω(x, y) ≡ 0, (x, y) ∈ ∆

′′
0, i.e. u(x, y) ≡ 0 in ∆0. From here follows the

uniqueness of the solution of the problem Γλ
0 .

We go over to proving existence of the solution of the problem Γλ
0 . For this by virtue of

α1(x) ≡ 0, from Theorem 3.2.1, the function ν1(x) is determined by one of the formulas (3.9)�
(3.11), and for determination of ν2(y) we have a singular integral equation analogously to (3.31):

A(y)ν2(y) +
1

π

1∫

p

K(y, z)ν2(z)dz +

1∫

p

K1(y, z)ν2(z)dz = F̃ (y), (3.34)

where K(y, z) is a kernel, determined by the formula (3.32) and

K1(y, z) =
∂

∂y


2 ln y ln z

π ln p
− 1

π

+∞∑

k=−∞
ln

z + p2ky

1 + p2kyz


 + M22(y, z)

F̃ (y) = f22(y)−
1∫

p

[Gx(0, z; y, 0) + M21(y, z)] ν1(z)dz.

Turning to (3.34), by the formula (3.33) and using the uniqueness of the solution of the
problem Γλ

0 , we �nd analogously the function ν2(y).
Further, solution of the problem Γλ

0 in ∆0 is determined by the formula (3.14), and in ∆j

(j = 1, 2) by the formulas (1.5j), j = 1, 2.
With this ended our investigation of the problem Γλ

0 for α1(x) ≡ 0, α2(y) 6= 0.
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� 3.3. Investigation of the problem Γλ
1

Using the formula (1.5j), (j = 1, 2) in ∆j and the conditions (3.3j), (j = 1, 2), after some
operations we have

βj(t)νj(t) = −2dj(t) + aj(t)C
0,λ2
pt [τj(t)]− bj(t)C

0,λ2
1t [τj(t)] , (3.35j)

where βj(t) = aj(t)−bj(t)−2cj(t), p < t < 1, j = 1, 2, and C0,λ
mx is an integro-di�erential operator,

determined by the formula (1.22).
Equalities (3.35j), j = 1, 2, provide a basic functional relation between τj(t) and νj(t) on the

segments I1 and I2 respectively, attained from the hyperbolic part of the mixed domain ∆.
At proving uniqueness and existence of the solution of the problem Γλ

1 we consider the cases,
when βj(t) ≡ 0, j = 1, 2 and when βj(t) 6= 0, j = 1, 2.
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3.3.1. Investigation of the problem Γλ
1 for βj(t) ≡ 0, j = 1, 2

Theorem 3.3.1. Let βj(t) ≡ 0, j = 1, 2. Then, if Reλ2
1 ≥ 0 and one of the following group of

conditions a) bj(t) ≡ 0, j = 1, 2, b) aj(t) ≡ 0, j = 1, 2,
c) aj(t) ≡ 0, bk(t) 6= 0, j, k = 1, 2, j 6= k is ful�lled, then the solution of the problem Γλ

1

exists and is unique.
Proof. Let u(x, y) be a solution of the homogenous problem Γλ

1 and βj(t) ≡ 0. Then the
relation (3.35j) becomes

aj(t)C
0,λ2
pt [τj(t)]− bj(t)C

0,λ2
1t [τj(t)] = 0, p < t < 1.

From here ful�lling one group of conditions a), b), c) we obtain an integro-di�erential equation
for the unknown functions τj(t). Further, taking τj(p) = 0, τj(1) = 0 into account, respectively,
from the obtained equation we �nd that τj(t) ≡ 0, p < t < 1.

On the other hand, by virtue of u(x, y)|σ0j
= 0, according to Lemma 3.2.1, the equality

(3.6) is valid. Assuming δ = 0 and taking into account Reλ2
1 ≥ 0, τj(t) ≡ 0, from (3.6) we obtain

ϑ(x, y) ≡ 0 in ∆
′
0, ω(x, y) ≡ 0 in ∆

′′
0, consequently u(x, y) ≡ 0 in ∆0, from here follows uniqueness

of the solution of the problem Γλ
1 .

We go over to proving existence of the solution of the problem Γλ
1 . We assume that the

conditions of Theorem 3.3.1 are ful�ll. Then relation (3.35j) becomes

aj(t)C
0,λ2
pt [τj(t)]− bj(t)C

0,λ2
1t [τj(t)] = 2dj(t), p < t < 1. (3.36j)

a) Let bj(t) ≡ 0, j = 1, 2. We assume in addition that

1∫

p

[dj(t)/aj(t)] J0[λ2(1− t)dt = 0, j = 1, 2. (3.37)

Then from (3.36j) we obtain the equation

τj(t) + λ2
2

t∫

p

τj(z)
J0[λ2(t− z)]

λ2(t− z)
dz = 2

dj(t)

aj(t)
, j = 1, 2.
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Taking into account τj(p) = 0, from the last equation we �nd the function

τj(t) = 2

t∫

p

[dj(z)/aj(z)] J0[λ2(t− z)]dz, j = 1, 2. (3.38)

The condition (3.37) is an agreement condition in the point t = 1.
b) Let aj(t) ≡ 0, j = 1, 2. Then, analogous to the case a), assuming in addition

1∫

p

[dj(t)/bj(t)] J0[λ2(t− p)dt = 0, j = 1, 2, (3.39)

and taking τj(1) = 0, j = 1, 2 into account, from (3.36j), we �nd the function

τj(t) = −2

1∫

t

[dj(z)/bj(z)] J0[λ2(z − t)]dz, j = 1, 2. (3.40)

(3.39) is an agreement condition in the point t = p.
c) Let aj(t) ≡ 0, bk(t) 6= 0, j, k = 1, 2, j 6= k. Then the function τj(t) is found by one of the

formulas (3.38) or (3.40), and τk(t) by the other of these formulas with the additional conditions
(3.37) or (3.39), respectively.

Consequently, for βj(t) ≡ 0, j = 1, 2, and ful�lling one of the group of conditions a), b), c)
the problem Γλ

1 is equivalently reduced to the Direchlet problem for the equation (L.B) in ∆0. It
is known that the solution of this problem exists, is unique and determined by the form (3.14),
moreover [43]

u0(x, y) =
2∑

j=1

∫

σoj

ϕj(ξ, η)
∂

∂n
G(ξ, η; x, y)ds

+

1∫

p

τ1(t)Gη(t, 0; x, y)dt +

1∫

p

τ2(t)Gξ(0, t; x, y)dt, (j = 1, 2.), (3.41)

G(ξ, η; x, y) = P (ω, z) + P (−ω, z)− P (ω, z)− P (−ω, z).

Here n is the inner normal to σ0j relative to ∆0, s is the arc length.
In the domains ∆1 and ∆2 the solution of the problem Γλ

1 is determined by the formulas (1.51)

and (1.52), moreover ν1(x) = uy(x, 0) and ν2(y) = ux(0, y) are found from (3.14).
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� 3.3.2. Investigation of the problem Γλ
1 for βj(t) 6= 0, j = 1, 2

Theorem 3.3.2. Let one of the following group of conditions be ful�lled

1) Reλ2
1 ≥ (Imλ2)

2 ,

βj(t) 6= 0, bj(t) ≡ 0,
cj(t)

aj(t)
<

1

2
,

(
cj(t)

aj(t)

)′
≤ 0, t ∈ [p, 1]; (3.42)

2) Reλ2
1 ≥ (Imλ2)

2 ,

βj(t) 6= 0, aj(t) ≡ 0,
cj(t)

bj(t)
> −1

2
,

(
cj(t)

bj(t)

)′
≤ 0, t ∈ [p, 1]; (3.43)

3) Reλ2
1 ≥ 0, Imλ2 = 0,

βj(t) 6= 0, aj(t) 6≡ 0, bj(t) 6≡ 0, (3.44)

(
aj(t)

βj(t)

)′
≤ 0,

(
bj(t)

βj(t)

)′
≤ 0, t ∈ [p, 1];

aj(1)

βj(1)
− bj(p)

βj(p)
≥ 0. (3.45)

Then for the problem Γλ
1 cannot exist more than one solution.

The proposition of the Theorem follows from equality (3.6) and from the following lemma.
Lemma 3.3.1. Let τj(p) = 0, (−δ) ≥ |Imλ2| and the condition (3.42) be ful�lled. Then for

dj(t) ≡ 0 inequality (3.19) is valid.
Proof. Taking bj(x) ≡ dj(x) ≡ 0, and aj(x) 6= 0 into account, from the equalities (3.35j) we

obtain the integro-di�erential equations

τ ′j(t) + λ2
2

t∫

p

τj(z)
J1[λ2(t− z)]

λ2(t− z)
dz =

νj(t)

aj2(t)
,

where aj2(t) = aj(t)/βj(t).
Turning into the last equation, with regard to τj(p) = 0, we obtain τj(t) and substituting it in

the integral (3.19), observing, that a1j(t) is a real valued function, as in Lemma 3.2.2, we reduce
Pj to the form (3.24), moreover the function aj1(t) will change to aj2(t), and νj(t) to νj(t)/aj2(t),



76

j = 1, 2. From here taking the condition aj2(t) > 0, a′j2(t) ≤ 0, ∀t ∈ [p, 1] and the inequality
(−δ± λ22ξ) ≥ 0 (as (−δ) ≥ |λ22|, |ξ| ≤ 1) into account, we conclude that the inequality (3.19) is
valid.

Lemma 3.3.2. Let τj(1) = 0, δ ≥ |Imλ2| and the condition (3.43) be ful�lled. Then for
dj(t) ≡ 0 the inequality (3.19) is true.

Proof. By virtue of aj(x) ≡ dj(x) ≡ 0 and bj(x) 6= 0 we can rewrite the equality (3.35j) in
the form

−τ ′j(t) + λ2
2

1∫

t

τj(z)
J1[λ2(z − t)]

λ2(z − t)
dz =

νj(t)

bj2(t)
,

where bj2(t) = −bj(t)/βj(t). Taking τj(1) = 0 into account, from the last integro-di�erential
equation we �nd the function τj(t). Substituting it in the integral (3.19) and taking into account
the fact, that bj2(t) is a real valued function, as in Lemma 3.2.3, we reduce it to the form (3.27),
only here bj1(t) will change to bj2(t), and νj(t) to νj(t)/bj2(t), j = 1, 2. Taking into account this
and the conditions of lemma, we conclude that inequality (3.19) is valid.

Lemma 3.3.3. Let τj(p) = 0, τj(1) = 0, δ = Imλ2 = 0 and the conditions (3.44) and (3.45)
be ful�lled. Then for dj(t) ≡ 0 the inequality

Re

1∫

p

τ j(t)νj(t) ≥ 0

is valid.
For proving this lemma simultaneously use the proof of Lemmas 3.3.1 and 3.3.2.
Remark 3.1. From the Theorem 3.3.2 for bj(t) ≡ 0, cj(t) ≡ 0, (j = 1, 2) or aj(t) ≡ 0,

cj(t) ≡ 0, (j = 1, 2) the uniqueness of the solution of the Tricomi problem for the equation (L.B)

follows.
From Remark 1.3 and Theorem 3.3.2 follows the following
Proposition. If λ1 = λ2 = λ and one of the conditions (3.42) or (3.43) is ful�lled, then the

problem Γλ
0 (consequently the Tricomi problem) con have eigenvalues only outside of the domain

D1 =
{
λ : |Reλ| ≥ √

2 |Imλ|
}

.

We go over to prove existence of the solution of the problem Γλ
1 . We assume that the condition

3) of Theorem 3.3.2 is ful�lled, and in addition we assume that the condition
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aj(t) + bj(t) 6= 0, j = 1, 2,
β1(t)

a1(t) + b1(t)
=

β2(t)

a2(t) + b2(t)
= B(t) 6= 0 (3.46)

or aj(t) + bj(t) ≡ 0, j = 1, 2 is ful�lled.
Let the condition (3.46) be ful�lled.
Consider problem N in the domain ∆0 for the equation (L.B) and obtain relation (3.28)

between τj(t) and νj(t) (j = 1, 2), attained from the elliptic part of the mixed domain ∆.
Substituting (3.28) in (3.35j), after some operations we obtain a system of integral equation for
µj(t) = ν1(t) + (−1)jν2(t), which is equivalent to problem Γλ

1 :

B(t)µj(t) +
1

π

1∫

p

K(t, z)µj(z)dz

+

1∫

p

Tj1(t, z)µ1(z)dz +

1∫

p

Tj2(t, z)µ2(z)dz = Γj(t), (3.47)

where
Γj(t) = γ1(t) + (−1)jγ2(t), j = 1, 2, t ∈ [p, 1],

γj(t) = f ′j(t) + λ2
2

aj(t)

aj(t) + bj(t)

t∫

p

fj(z)
J1 [λ2(t− z)]

λ2(t− z)
dz

−λ2
2

bj(t)

aj(t) + bj(t)

1∫

t

fj(z)
J1 [λ2(z − t)]

λ2(z − t)
dz − 2dj(t)

aj(t) + bj(t)
,

the functions f1(x), f2(y) and K(t, z) are determined by the formulas (3.29) and (3.32) respective-
ly. Tjk(t, z) are expressed by the well-known function aj(t), bj(t), cj(t),
J1[λ2(t− z)], G(ξ, η; x, y) and R(ξ, η; x, y), moreover they are continuous in the rectangle p ≤ t,

z ≤ 1, continuously di�erentiable for t if t 6= z and ∂

∂t
Tjk(t, z) have logarithmic singularities at

t = z.
Using (3.4) and the condition on aj(t), bj(t), cj(t) and dj(t), we can prove that Γj(t) ∈

C[p, 1] ∩ C(1,r)(p, 1), 0 < r ≤ 1, j = 1, 2.

From the formulation of the problem Γλ
1 and the properties of the function Γj(t) follows that we

must �nd the solution of the equation (3.47) in the class of functions
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µj(t) ∈ C(1,r)(p, 1), j = 1, 2, which can have singularities of order less than one at t → p

and t → 1.
Turning to equation (3.47) ( analogously to (3.31)) by the formula (3.33) and if we return to

the functions ν1(x) and ν2(y), we obtain a system of Fredholm integral equations of the second
kind, solvability of which follows from Theorem 3.3.2. The found ν1(x) and ν2(y) depending on
B(t) > 0 or B(t) < 0 can have singularities of order less than one as t → p or t → 1, respectively.

In this case, when aj(t) + bj(t) ≡ 0 (j = 1, 2), substituting (3.28) in (3.35j) respectively,
we obtain a system of Fredholm integral equations of the second kind for νj(t) (j = 1, 2), the
solvability of which follows from Theorem 3.3.2.

Remark 3.2. Analogously to the previous paragraph, solvability of the problem Γλ
1 can be

investigated in that case, when βj(t) ≡ 0, βk(t) 6= 0, j, k = 1, 2, j 6= k.
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Zusammenfassung

Wesentliche nichtlokale Randwertprobleme werden f�ur elliptisch-hyperbolische Gleichungen
mit Spektralparameter im Viertelkreis und Viertelring untersucht, wobei der Gleichungstyp sich
auf einer nicht glatten Kurve �andert. Die Probleme werden auf �aquivalente Systeme von Integral-
und gelegentlich Integrodi�erentialgleichungen �uberf�uhrt. Methoden f�ur partielle Di�erentialgle-
ichungen, aus der Spektraltheorie linearer Operatoren, der Theorie der singul�aren Integralgle-
ichungen, der komplexen Analysis, das Energieintegral und auch das Extremalprinzip werden
zur L�osung des erhaltenen Systems angewandt. Zum Au�nden eines Systems von Eigenfunktio-
nen wird die Methode der Trennung der Variablen verwandt. Folgende neue Ergebnise werden
erzielt:

1. F�ur den komplexen Parameter λ werden Bedingungen angegeben, die die Eindeutigkeit
der L�osung sichern. Ausserdem wird in der komplexen Ebene ein Gebiet f�ur den Parameter λ

angegeben, ausserhalb dessen die untersuchten nichtlokalen Probleme Eigenwerte haben k�onnen.
2. F�ur Eindeutigkeit und Exsistenz der L�osungen werden hinreichende Bedingungen for-

muliert.
3. Eigenwerte und zugeh�orige Eigenfunktionen werden f�ur eines der allgemeinen gemischten

Probleme gefunden, in dem auf dem Rand des elliptischen Teilgebiets die dritte Randbedingung
und f�ur den hyperbolischen Teil mittels Integraloperatoren ausgedr�uckte nichtlokale Bedingungen
gegeben sind. Ausserdem wird die Vollst�andigkeit des Systems der Eigenfunktionen im Raum L2

bewiesen.
4. Eine neue Methode zum Existenzbeweis f�ur die L�osungen des betrachteten Problems wird

entwickelt, indem Eigenfunktionen in o�ensichtlicher Form als L�osungen des formulierten Prob-
lems in dem Fall angewandt werden, in dem die Eindeutigkeit der L�osung des Problems gegeben
ist.
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