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ABSTRACT
Grazing-incidence x-ray diffraction (GIXRD) is a scattering technique that allows one to characterize the structure of fluid interfaces down to
the molecular scale, including the measurement of surface tension and interface roughness. However, the corresponding standard data analy-
sis at nonzero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering
from the bulk. Here, we overcome this ambiguity by proposing a physically consistent model of the bulk contribution based on a minimal
set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can
be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpreta-
tion of GIXRD data inferred from computer simulations, we extend the model to account also for the finite sizes of the bulk phases, which
are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is
revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the x-ray penetration depth in
the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid–vapor interface of
Lennard-Jones fluids with truncated pair interactions via extensive, high-precision computer simulations. The reported data cover interfacial
and bulk properties of fluid states along the whole liquid–vapor coexistence line. A sensitivity analysis shows that our findings are robust
with respect to the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at
mesoscopic scales are amenable to unambiguous tests via scattering experiments.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0186955

I. INTRODUCTION

The liquid–vapor interface is a ubiquitous confining boundary
of fluids and has been the subject of enduring experimental, theo-
retical, and simulational interest. These efforts focus on the prop-
erties of adsorbed liquid films,1–4 droplets,5–10 and interfaces out
of equilibrium,11–16 as well as on applications such as wetting,17–20

solvation,21–25 and the presence of surfactants.26–32 A considerable
number of investigations is motivated by the long-standing issue
concerning the influence of van der Waals or dispersion forces on
the structure and behavior of the interface.33–48 Not only due to
this issue, the liquid–vapor interface has been an important testing

ground for the theory of inhomogeneous fluids. Recent advances
concerning their theoretical description have been stimulated by
simulation data for a range of temperatures49 and led to accu-
rate predictions of interfacial density correlations by combining
the concept of a position-dependent, local structure factor50–52 and
insight into resonances stemming from the bulk structure.53–55 In
view of these predictions, a fully comprehensive interpretation of
experiments concerning liquid–vapor interfaces still remains to be
formulated.

Experimentally, scattering techniques such as x-ray reflectom-
etry and grazing-incidence x-ray diffraction (GIXRD) provide the
most detailed view of fluid interfaces. Whereas reflectometry allows
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one to infer interfacial density profiles, GIXRD probes density
fluctuations56–58 and surface structures.29,30 Such kind of scatter-
ing experiments under grazing incidence have been carried out
for liquid surfaces of water,36 molecular fluids,37 and liquid met-
als.38 The analysis of the scattered intensities requires accounting for
the inevitable scattering from the fluid bulk phases, which depends
on a suitable background model,59–61 nowadays available within
GIXRD analysis software;62 yet, such a modeling choice can poten-
tially introduce ambiguities in the interpretation of experimental
data.

Focusing on thermal equilibria of coexisting liquid and vapor
phases, an increase in the interfacial area by a macroscopic amount
ΔA incurs a free energy cost of γ0 ΔA, which defines the (macro-
scopic) surface tension γ0. At the molecular scale, the interface is
roughened by thermal fluctuations, which are tamed by an anal-
ogous cost in free energy. This mesoscopic picture leads to the
capillary wave (CW) theory,63–65 which assumes the interface to be
a smooth, membrane-like surface with a tension modulus governed
by an interface Hamiltonian. On the other hand, by adopting the
particle perspective, the theory of inhomogeneous fluids64,66,67 con-
siders (two-point) density fluctuations in order to characterize the
interfacial region. For a free, planar interface, the classical result by
Wertheim68 and Weeks69 states that fluctuations with wavevector
q parallel to the surface lead to a scattering intensity proportional
to kBT/(γ0q2

), which applies for small q = ∣q∣, i.e., for macroscopic
wavelengths 2π/q [cf. Fig. 8 and Eq. (65)]; the thermal energy
scale is denoted by kBT as usual. This asymptotic result (q→ 0)
matches with the free energy cost of the excitation of corresponding
CWs. It has stimulated elaborate derivations of effective interfa-
cial Hamiltonians33–35,70–72 in order to capture also the (anticipated)
structure of the two-point correlation function at higher orders in
q. These extended CW theories include also a bending modulus
κ of the interface43,44 or, more generally, a wave number-dependent
surface tension γ̂(q), which exhibits the relation γ̂(q→ 0) = γ0. The
leading correction to this macroscopic limit is either nonanalytic
[of the form q2 log(q)] or quadratic (κq2

), depending on whether
dispersion forces are present or not. Molecular dynamics (MD) sim-
ulations testing the behavior of γ̂(q) have frequently been analyzed
in line with the CW picture by evaluating the fluctuation spectrum
of the local interface position.20,40–46,73–75 This requires one to adopt
a suitable definition of this position down to the molecular scale.
Common choices are either a local Gibbs dividing surface or an
elaborate algorithm to identify an intrinsic interface separating CWs
from bulk-like density fluctuations. However, in view of the vari-
ous possible choices, the published data for γ̂(q) disagree on even
the sign of the bending coefficient κ (in the absence of dispersion
forces). Moreover, it was shown within density functional theory
(DFT)50 that any effective interface Hamiltonian fails to reproduce
the behavior of interfacial density correlations, which are obtained
from simulations.

As an alternative that bypasses the ambiguities associated with
the definition of a local interface position, we previously introduced
an effective surface tension γ(q) as a proxy for interfacial den-
sity fluctuations that is entirely based on quantities amenable to
scattering experiments49 [see below, Eq. (8)]. Similarly, as for the
interpretation of scattering data, this approach hinges on a con-
sistent model for the background scattering, which is the subject
of the present study. It is based on a hypothetical liquid–vapor

FIG. 1. Top: Cross section of a snapshot of a simulated liquid–vapor interface
configuration for a truncated Lennard-Jones (LJ) fluid at liquid–vapor bulk coex-
istence for the temperature T ≈ 0.8Tc ; Tc is the critical temperature of this fluid.
Bottom: Interface-related fluctuations are switched off in a gedanken experiment
(see the main text). This snapshot depicts the initial configuration of the simulation,
composed of two independent bulk configurations, before further equilibration.

interface with all interface-related correlations switched off (Fig. 1),
for which the scattered intensity can be worked out analytically.
Somewhat unexpectedly, these open boundary conditions at the
interface lead to corrections in the small-wave number density
correlations due to bulk fluctuations,76 which, as it will turn out,
interfere with the small-q behavior of γ(q); a related boundary
effect has been observed for the two-dimensional strip geometry.77,78

Accounting for these corrections removes an inconsistency between
the results for γ(q) obtained from the direct calculation of the den-
sity correlations and obtained from simulated scattering intensities.
Moreover, it renders the bending coefficient in γ(q) positive for all
temperatures at liquid–vapor coexistence, between the triple point
and the critical point of the fluid.

The paper is organized as follows. In Sec. II, we provide a num-
ber of relations that will be useful for the theoretical analysis; in
particular, we discuss the separation of the GIXRD intensity into
interfacial and background parts, provide the definition of γ(q),
and connect with Ref. 76. The background scattering for the above-
mentioned reference system is analyzed in Sec. III with special
emphasis on the non-commuting limits of infinite x-ray penetra-
tion depth and infinite sample width. In Sec. IV, these results are
applied to the analysis of simulation data for scattering intensities
from liquid–vapor interfaces.

II. GENERAL CONSIDERATIONS
A. GIXRD master formula

For diffraction experiments on planar interfaces under grazing
incidence, the scattering intensity is proportional to the two-point
correlation function of the atomic number density. The dependence
of the scattering intensity on the lateral scattering vector q = (qx, qy)

follows the master formula [Eq. (2.68) in Ref. 56]

I(q) =∬
R×R

dz dz′ f (z)∗ f (z′)G(q, z, z′), (1)

J. Chem. Phys. 160, 104107 (2024); doi: 10.1063/5.0186955 160, 104107-2

© Author(s) 2024

 12 April 2024 07:37:47

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

with q = ∣q∣ and the z-axis coinciding with the interface normal.
Here, we have dropped the atomic form factors for reasons of sim-
plicity (i.e., implicitly considering point-like particles) and have
omitted the reflection and transmission coefficients, which are con-
stant amplitudes with respect to the lateral momentum transfer.79

The two-point number density correlation function G(q, z, z′) char-
acterizes the sample and is independent of the experimental setup
probing it.

Within the theory of fluids, this density–density correlation
function is defined as64,67 G(r, r′) = ⟨𝜚(r) 𝜚(r′)⟩ − ⟨𝜚(r)⟩⟨𝜚(r′)⟩,
where 𝜚(r) is the microscopic number density and 𝜚(r) = ⟨𝜚(r)⟩ is
the mean density at point r = (R, z). It is convenient to split off the
singular self-part of G(r, r′) and to introduce the pair correlation
function g(r, r′) by

G(r, r′) = 𝜚(r) 𝜚(r′) [g(r, r′) − 1] + 𝜚(r) δ(r − r′). (2)

In planar geometry, translational invariance parallel to the mean
interface entails 𝜚(r) = 𝜚(z) and G(r, r′) = G(R − R′, z, z′). This
suggests to consider the lateral Fourier transform. Accordingly, for
the two-component vectors q and ΔR = R − R′, one introduces

G(∣q∣, z, z′) ∶= ∫
R2

d2
(ΔR) e−iq⋅ΔR G(ΔR, z, z′), (3)

which enters into Eq. (1). G(q, z, z′) depends only on the modulus
q = ∣q∣ of the wavevector due to isotropy of the sample in the planes
parallel to the interface.

The function f (z) is determined by the scattering geometry
(i.e., the angles αi and α f of incoming and outgoing beams, respec-
tively; see Fig. 2 in Ref. 56) and the mean density profile 𝜚(z).
It describes the decay of the evanescent wave on the liquid side
of the interface, f (z < 0) ∼ exp(−κ∣z∣), with the penetration depth
1/κ(αi,α f ).56,80 For αi and α f approaching the critical angle of total
reflection, the penetration depth diverges, and, in the thermody-
namic limit, I(q) is dominated by scattering from the liquid bulk.
Thus, experimental setups aim at minimizing the penetration depth
1/κ, which in practice can reach down to a few nanometres36,37 or
even below.81,82 On the other hand, one has to ensure that the pen-
etration depth 1/κ is considerably larger than the interfacial width
ζ [cf. Eq. (50)]; otherwise, the observation of interfacial fluctuations
would be incomplete. Therefore, the condition to access interfacial
properties fully is κζ ≪ 1, which is met by the typical experimen-
tal setups; in analytical and simulation work, it implies that the
undamped limit, κ→ 0, is considered.

B. Capillary wave divergence
Concerning the q-dependence of the scattering intensity, clas-

sical capillary wave theory predicts, for the density correlations at
small wave numbers, that asymptotically64,68,69

G(q, z, z′) ≃ kBT
𝜚′(z) 𝜚′(z′)
γ0 (q2

+ ℓ−2
c )

, q→ 0, (4)

where γ0 denotes the macroscopic surface tension and
ℓc =
√

γ0/(mgΔ𝜚) is the capillary length; Δ𝜚 = 𝜚ℓ − 𝜚v is the
number density contrast between the coexisting phases, and mg is
the gravitational weight of a molecule of mass m. Clearly, G(q, z, z′)

diverges as q−2 for large capillary lengths, ℓc ≫ q−1, which is consid-
ered in the following. In combination with Eq. (1), the divergence is
passed on to the scattered intensity:

ICWT(q→ 0) ≃
kBT(Δ𝜚)2

γ0 q2 . (5)

Since the bulk scattering remains finite as q→ 0, the interfacial
contribution dominates the signal for small q. In order to obtain
information about the interface that goes beyond this divergence,
one needs to unambiguously separate interface-related and bulk
contributions to the scattering intensity:

I(q; κ) = Iint(q; κ) + Ib(q; κ). (6)

This leads one to introduce the interfacial structure factor as

H(q) ∶= lim
κ→0
[I(q; κ) − Ib(q; κ)] = Iint(q; κ = 0) (7)

and an effective, wave number-dependent surface tension γ(q) by
generalizing Eq. (5):

H(q) =:
kBT(Δ𝜚)2

γ(q) q2 . (8)

The macroscopic surface tension is recovered as γ0 = γ(q→ 0) and
the q-dependence of γ(q) quantifies the deviations from the diver-
gence H(q→ 0) ∼ q−2, which can be attributed to interface-related
density fluctuations.

The division in Eq. (6) hinges on a consistent model for the
bulk scattering Ib(q; κ) based on clearly formulated assumptions
and on experimentally accessible quantities only. A simple and com-
monly used model is based on the bulk structure factor of the liquid
phase:36,37

Ib(q; κ) ≈
𝜚ℓSℓ(q)

2κ
≃
𝜚2
ℓ kBTχT

2κ
, q→ 0, (9)

where χT is the isothermal compressibility. We shall show below that
this approximation, even in the small-q regime, creates a constant
shift in the interfacial structure factor H(q) and thus a bias of O(q2

)

in γ(q). Moreover, it leads to inconsistencies between experiments
and simulations.

C. Structure factor of an open slab of liquid
In Ref. 76, we investigated the effect of open boundaries of a liq-

uid sample of finite width L <∞. It revealed a finite-size correction
to the structure factor and anticipates the solution strategy followed
in Sec. III. This study is based on virtually excavating a planar slab of
width L from a homogeneous liquid, thereby imposing free bound-
ary conditions on the newly created surfaces (see Fig. 1 of Ref. 76;
the corresponding situation with equilibrated interfaces is depicted
below in Fig. 4). The observable of interest is the slab structure factor

S(q; L) =
1
𝜚L ∬

0⩽z,z′⩽L

dz dz′ G(q, z, z′), (10)

which, up to the prefactor, resembles Eq. (1) for a step function
f (z) = 1[0,L](z), chosen as the indicator function of the interval
[0, L]; the latter emerges in the limit κ→ 0 and for a finite system.
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Using the two-point correlation function of a homogeneous liquid,
G(q, z, z′) = Gℓ(q,Δz = z − z′), yields 𝜚LS(q; L) = Iℓ(q; κ→ 0, L)
[see Eqs. (1) and (6)]. The crucial step in this derivation is the obser-
vation that for a homogeneous fluid, the pair correlation function is
fully determined by the bulk structure factor. This is expressed by
the relation

Gℓ(∣q∣,Δz) = 𝜚ℓ ∫
dkz

2π
eikzΔz Sℓ(∣k∣) − (2π𝜚)2δ(q), (11)

which is obtained by a partial Fourier back transform with
k = (−q, kz) denoting a three-component wave vector. The sub-
scripts ℓ indicate that 𝜚ℓ and Sℓ refer to the number density and the
structure factor of the bulk liquid, respectively. Inserting Gℓ(∣q∣,Δz)
into Eq. (10) and carrying out the integrals over z and z′ yield76

S(∣q∣; L) =
2
πL∫

∞

0
dkz

1 − cos (kzL)
k2

z
Sℓ(
√

∣q∣2 + k2
z)

+ 𝜚L(2π)2δ(q). (12)

For wide slabs, one finds the asymptotic expansion

S(q > 0; L→∞) = Sℓ(q) + 2L−1𝒥0(q) +O(L−1e−L/ξ
), (13)

where 𝒥0(q) is the leading-order correction integral

𝒥0(q) ∶=
1
π∫

∞

0
dkz

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

k2
z

. (14)

Most importantly, the small-wave number limit 𝒥0(q→ 0) is
nonzero and can have either sign, depending on, e.g., the temper-
ature (see below, Fig. 7). We stress that such finite-size corrections
do not appear for periodic boundary conditions at the surfaces
z = 0 and z = L (as commonly used in simulations). In the latter case,
the equation Sper(q; L) = Sℓ(q) holds exactly.

III. BULK REFERENCE WITH OPEN BOUNDARIES
A. Density–density correlation function

The interface-related contributions to the scattering intensity
are unambiguously identified via comparison with a background
reference system in which all interface-induced perturbations are
switched off. This idealized situation can be created by constructing
an ensemble of particle configurations that contain a planar interface
and are characterized solely by bulk correlations. Such configura-
tions are obtained in a gedanken experiment by virtually cutting
a homogeneous liquid sample of macroscopic size along a plane,
denoted as z = 0, and by removing all molecules above the plane
(i.e., with positions z > 0). The empty half-space is then filled by a
correspondingly treated sample of the coexisting vapor phase. This
renders a flat liquid–vapor interface without any structural distor-
tions in the vicinity of the plane z = 0 (Fig. 1). By construction, the
local densities on opposite sides of the interface are independent
of each other and, in particular, uncorrelated. On the other hand,
for z and z′ both being on the same side, the two-point correlation
function of the reference system equals that of the respective bulk
phase, no matter how close to the interface z and z′ are chosen to be.
Thus, we define the two-point correlation function of this “naked
interface” ensemble, which serves as background reference, as

Gb(q, z, z′) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Gℓ(q, z − z′), z, z′ < 0,

Gv(q, z − z′), z, z′ > 0,

0, z ⋅ z′ ⩽ 0.

(15)

It describes an inhomogeneous system of two unperturbed and
uncorrelated, coexisting bulk phases that share a flat, open bound-
ary; due to the spatial homogeneity of the bulk phases, Gℓ and Gv

depend only on z − z′ instead of depending on z and z′ separately.
It is clear that the dynamic evolution of these reference configu-
rations would necessarily lead to the usual equilibrium with fully
developed interfacial fluctuations; however, statistical averages of the
background configurations are understood as ensemble averages,
not time averages.

The bulk scattering follows by inserting this definition of a ref-
erence system [i.e., Eq. (15)] into the master formula [Eq. (1)], which
is carried out in Sec. III B. Concerning simulations of GIXRD exper-
iments, the same model for the bulk correlations can be used with
the only modification that the nonzero width of the liquid film must
be taken into account. Accordingly, the scattering depends on both
the penetration depth 1/κ and the sample width L with the relevant,
non-commuting limits κ→ 0 and L→∞ (see Sec. III C).

We note that Gb(q, z, z′) as defined in Eq. (15) is discon-
tinuous at the interface as the reference system changes abruptly
between the two phases. On the other hand, the physically observed,
full two-point correlation G(q, z, z′) is a continuous function of
z and z′ for all wave numbers q. Any smooth interpolation of the
background between the coexisting phases would necessarily make
assumptions on the correlations in the interfacial region, e.g., it
would introduce an unknown interpolation length.83 A disconti-
nuity of Gb(q, z, z′) implies that the interfacial part Gint(q, z, z′)
∶= G(q, z, z′) −Gb(q, z, z′) is also discontinuous. We emphasize that
this conceptually unavoidable discontinuity of Gb and thus Gint
is not in conflict with theoretical constraints;51 most importantly,
it does not contradict the asymptotically rigorous result for the
CW divergence [Eq. (4) with lc = 0]:

lim
q→0

q2G(q, z, z′) = (kBT/γ0)𝜚′(z)𝜚′(z′), (16)

which is continuous in z and z′ since the mean density profile 𝜚(z)
is a smooth function. The same property carries over to Gint(q, z, z′),
because Gb(q, z, z′) is a bounded function of q:

lim
q→0

q2G(q, z, z′) = lim
q→0

q2
[Gint(q, z, z′) +Gb(q, z, z′)]

= lim
q→0

q2Gint(q, z, z′). (17)

It turns out that the continuity of Gint(q, z, z′) is not needed
for this to hold; it is sufficient that the discontinuity is uniformly
bounded in q (as a function of z and z′). The line of arguments is
as follows: Let us separate Gint = Gc

int +GΔ
int into its continuous part

Gc
int(q, z, z′) and its discontinuous part GΔ

int(q, z, z′), which is piece-
wise constant in z and z′. The latter is also the discontinuous part of
Gb, and, because Gℓ and Gv are bounded, GΔ

int(q, z, z′) is thus
uniformly bounded in q. With this, in the limit q→ 0, the
discontinuous part drops out:

lim
q→0

q2Gint(q, z, z′) = lim
q→0

q2
[Gc

int(q, z, z′) +GΔ
int(q, z, z′)]

= lim
q→0

q2Gc
int(q, z, z′). (18)
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B. Scattering from a macroscopic half-space
of bulk liquid

In this section, we turn to the specific setup of GIXRD experi-
ments, i.e., a macroscopic liquid sample (L→∞) and an evanescent
wave on the liquid side (κ > 0). According to the master formula in
Eq. (1), the GIXRD intensity for the bulk reference model [Eq. (15)]
is the sum of two independent contributions stemming from the
integrals over Gb(q, z, z′) in the domains z, z′ < 0 (bulk liquid) and
z, z′ > 0 (bulk vapor). At low vapor pressure, the scattering from
the latter side of the interface is negligible; alternatively, the result
of Ref. 76 can be used directly because there is no damping of the
propagating beam, i.e., f (z > 0) = 1.

Calculating the bulk scattering from the liquid side (z < 0) is
conceptually similar, albeit the algebraic expressions differ. Due to
the exponential decay of the evanescent wave, i.e., f (z) = exp(−κ∣z∣)
for z < 0, the integrals in Eq. (1) can be formulated explicitly:

Iℓ(q) =∬
z,z′<0

dz dz′ eκ(z+z′) Gℓ(q, z − z′)

=
1
2∫

∞

−∞
du∫

∞

∣u∣
dv e−κv Gℓ(q, u), (19)

upon a change of variables u ∶= z − z′ = Δz and v ∶= −(z + z′)
and by taking into account the absolute value of the Jacobian
∣∂(u, v)/∂(z, z′)∣ = 2. The integral over v is simple, and replacing
the bulk correlation function Gℓ(q, u) by Eq. (11) yields

Iℓ(q) =
1
κ∫

∞

0
du e−κu

{𝜚ℓ ∫
dkz

2π
eikzu Sℓ(

√

q2
+ k2

z)

− 𝜚2
ℓ (2π)

2δ(q)}, κ > 0. (20)

Finally, interchanging the integrations over u and kz leads to

Iℓ(∣q∣) = 𝜚ℓ∫
∞

−∞
dkz

2π

Sℓ(
√

∣q∣2 + k2
z)

κ2
+ k2

z
−
𝜚2
ℓ

κ2 (2π)
2δ(q). (21)

For a given static structure factor Sℓ(k) and wave numbers k < kmax,
the integral can be evaluated numerically as described in Ref. 76. To
this end, we use the identity ∫

∞
0 (1 + x2

)
−1

dx = π/2 and rewrite

Iℓ(q > 0) =
𝜚ℓ
π ∫

∞

0
dkz

Sℓ(
√

q2
+ k2

z) − 1

κ2
+ k2

z
+
𝜚ℓ
2κ

, (22)

which can be truncated safely at large kz , recalling that Sℓ(k→∞)
= 1. As a by-product, one finds Iℓ(q→∞) = 𝜚ℓ/(2κ).

In the limit κ→ 0, i.e., for scattering angles close to the angle of
total reflection, one can identify a part of the integrand in Eq. (21) as
a representation of Dirac’s δ-distribution:

1
π∫

∞

0
φ(x)

κ
κ2
+ x2 dx κ→0

ÐÐ→∫

∞

0
φ(x) δ(x) dx =

1
2
φ(0), (23)

which holds for a continuous and bounded test function φ(x).
Iℓ(∣q∣) resembles the bulk structure factor evaluated at wave vectors
q parallel to the interface:

Iℓ(q) ≃
𝜚ℓ
2κ

Sℓ(q), κ→ 0. (24)

The next-to-leading order term O(κ0
) within the asymptotic

expansion of Iℓ(q) around κ = 0 is given by

lim
κ→0
[Iℓ(q) −

𝜚ℓ
2κ

Sℓ(q)] = lim
κ→0

𝜚ℓ
π ∫

∞

0
dkz

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

κ2
+ k2

z

= 𝜚ℓ 𝒥0(q), (25)

where we have taken the limit κ→ 0 inside of the integral, as permit-
ted by the theorem on monotone convergence, and we have made
use of the definition of 𝒥0(q) [Eq. (14)]. Combining Eqs. (24) and
(25), we arrive at one of our main results:

Iℓ(q) =
𝜚ℓ
2κ

Sℓ(q) + 𝜚ℓ 𝒥0(q) +O(κ), κ→ 0. (26)

The behavior of the bulk contribution Iℓ(q) is illustrated in
Fig. 2 for a Lennard-Jones (LJ) liquid along the liquid–vapor coex-
istence line at two temperatures: T∗ ∶= kBT/ε = 0.70 slightly above
the triple point temperature and T∗ = 1.15 in proximity of the crit-
ical temperature (T∗c ≈ 1.22). The pair potential was truncated at
rc = 3.5σ, and ε and σ refer to the interaction strength and range of
the LJ potential, respectively; the phase diagram is shown in Fig. 3

FIG. 2. Contribution of the bulk liquid to the GIXRD intensity for five penetration depths κ−1 (in units of the LJ diameter σ) as calculated from Eq. (22). As input serve the
simulated bulk structure factors Sℓ(k) of the (truncated) LJ liquids at temperatures T∗ = kBT/ε = 0.70 (a) and T∗ = 1.15 (b) in reduced units with the LJ energy scale ε.
The normalization is taken such that in the limit κ→ 0 the curves stay finite and approach Sℓ(q) [Eq. (24)].
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FIG. 3. The liquid–vapor transition within the phase diagram of the truncated LJ
fluid with interaction cutoff radius rc = 3.5σ. (a) Binodal line with the coexist-
ing densities 𝜚ℓ (dark blue disks) and 𝜚v (cyan blue disks) taken from fits to
the density profile of the inhomogeneous system (Table II). Solid lines represent
the critical law, 𝜚ℓ/v(T) ≃ 𝜚sym(T) ± A𝜚∣t∣β for t ∶= (T − Tc)/Tc ↑ 0 with the
universal critical exponent β = 0.325 of the three-dimensional Ising universality
class. The gray data points indicate the symmetry line of the binodal, i.e., 𝜚sym

= (𝜚ℓ + 𝜚v)/2; its linear extrapolation to Tc (dashed line) yields the critical den-
sity 𝜚c . (b) Rectification of the critical law by plotting (Δ𝜚)1/β

= (𝜚ℓ − 𝜚v)
1/β

vs T for the same data as in (a); a linear regression to the three data points
for T∗ ⩾ 1.0 yields the critical temperature T∗c = 1.215 ± 0.001. (c) Coexistence
line in the pressure–temperature plane; symbols are simulation data with the disk
marking the critical pressure Pc = (0.110 74 ± 0.000 03)εσ−3; the dotted line is a
smooth interpolation of the simulation data.

and further details of the simulations are given in Appendix A. We
calculated Iℓ(q) according to Eq. (22) from the bulk structure fac-
tors Sℓ(k) as input, using the same simulation data for Sℓ(k) as the
ones in Ref. 76. The integration over kz in Eq. (22) was restricted to
0 ⩽ kz ⩽ kmax = 50/σ, and Sℓ(k) was extrapolated to such large wave
numbers as described in Ref. 76. The curves obtained for a range
of penetration depths (0.01 ⩽ κσ ⩽ 1) convincingly corroborate the
convergence of (2κ/𝜚ℓ)Iℓ(q) to Sℓ(q) as κ→ 0. The corrections,
however, are significant for κσ ≳ 0.1: From Fig. 2, one infers that the
value of Iℓ(q→ 0) is increased over the value of Sℓ(q→ 0) by a fac-
tor of up to ≈ 3.5 for T∗ = 0.70, which is close to the triple point,
whereas it is suppressed by a factor of about 1.8 at the higher tem-
perature (T∗ = 1.15). Moreover, the minimum in Iℓ(q) near qσ ≈ 2
becomes more shallow for increasing κ and seems to disappear at
low temperatures.

C. GIXRD intensity from a liquid slab of finite width
For MD simulations of GIXRD intensities, the finite size of the

system and, in particular, the finite width L of the bulk liquid must
be accounted for properly (Fig. 4). One anticipates that the appro-
priate expression for the bulk scattering combines aspects both of
Secs. II C and III B. We start the derivation of the expression for
the bulk scattering by reiterating that the reference system is such
that liquid and vapor regions are independent of each other and
that there are no distortions of the microscopic density close to
z = −Lℓ, 0, Lv , where free boundary conditions are imposed. The
finite widths of liquid and vapor slabs, respectively, are implemented
as cutoffs in the weight function:

f (z) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1, 0 < z ⩽ Lv ,

exp (−κ∣z∣), −Lℓ ⩽ z < 0,

0 otherwise.

(27)

FIG. 4. Snapshot of the simulated LJ liquid–vapor coexistence at T ≈ 0.8Tc , com-
prising 210 000 particles in total; in the vapor phase, only every tenth particle has
been drawn for clarity. The yellow frames indicate the mean positions of the two
planar interfaces, which delimit the liquid slab of width Ls = 25.0σ [see Eq. (B1)];
the area of each of the mean interfaces is (100σ)2. The lateral scattering vector
q lies in the plane parallel to the interfaces (xy-plane). Along the direction normal
to the interfaces (z-axis), the length of the simulation box is Lz = 125σ, but only a
part of it is shown.

Concerning the derivation of a formula for the background scat-
tering, we again specialize to the liquid side (z < 0). The bulk
contribution of the vapor side follows in the limit κ→ 0 as discussed
previously76 (see Sec. II C).

Following the same route as before, we combine the GIXRD
master formula [Eq. (1)] for the two-point correlation function
Gℓ(q,Δz) of the homogeneous bulk with the truncated form of f (z)
[Eq. (27)], which yields the finite-slab (Lℓ <∞) version of Eq. (19):

Iℓ(q) =
1
2∫

Lℓ

−Lℓ

du∫
2Lℓ−∣u∣

∣u∣
dv e−κv Gℓ(q, u)

=
1
κ∫

Lℓ

0
du 2e−κLℓ sinh (κ(Lℓ − u))Gℓ(q, u), (28)

after carrying out the elementary integral over v in the first line. In
the next step, we use Eq. (11) in order to substitute Gℓ(q, u) by the
bulk structure factor Sℓ(k) and interchange the integrations over kz
and u. Based on the integral

1
κ∫

Lℓ

0
du sinh (κ(Lℓ − u)) cos (kzu) =

cosh (κLℓ) − cos (kzLℓ)

κ2
+ k2

z
,

(29)
we arrive at our central result for a finite system:

Iℓ(∣q∣) = 𝜚ℓ∫
∞

−∞
dkz

2π

Sℓ(
√

∣q∣2 + k2
z)

κ2
+ k2

z

× 2e−κLℓ
[cosh (κLℓ) − cos (kzLℓ)]

−
𝜚2
ℓ

κ2 (1 − e−κLℓ
)

2
(2π)2δ(q); (30)
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the last line contains the contribution for q = 0, and its prefactor
stems from the integral

1
κ∫

Lℓ

0
du 2e−κLℓ sinh (κ(Lℓ − u)) =

(1 − e−κLℓ
)

2

κ2 . (31)

In the final step, we make use of the identity

∫

∞

−∞
dkz

2π
cosh (κLℓ) − cos (kzLℓ)

κ2
+ k2

z
=

sinh (κLℓ)

2κ
(32)

and recast Eq. (30) in a form similar to Eq. (22):

Iℓ(q > 0) = 𝜚ℓ∫
∞

−∞
dkz

2π

Sℓ(
√

q2
+ k2

z) − 1

κ2
+ k2

z

× 2e−κLℓ
[cosh (κLℓ) − cos (kzLℓ)]

+
𝜚ℓ
2κ
(1 − e−2κLℓ

), (33)

where the 1 in the numerator of the integrand is balanced by the last
term. With this, the remaining integration over kz is approximated
well by a finite integration domain ∣kz ∣ < kmax, because S(k) ≃ 1 for
k sufficiently large. Thus, Eq. (33) is suitable for a numerical evalu-
ation; in particular, increasing kmax decreases the truncation error.
We have followed the procedure described in Ref. 76, which has
already been used to integrate Eq. (22), choosing kmax = 50/σ as
before.84

It is instructive to discuss certain limiting cases of Eq. (30). For
large wave number q, one reads off the following from Eq. (33), using
the fact that Sℓ(q→∞) = 1:

Iℓ(q→∞) =
𝜚ℓ
2κ
(1 − e−2κLℓ

)→

⎧
⎪⎪
⎨
⎪⎪
⎩

𝜚ℓLℓ, κ→ 0,

𝜚ℓ/(2κ), Lℓ →∞.
(34)

In Eqs. (30) and (33), care is needed when taking the limits κ→ 0
and Lℓ →∞ at finite values of q. For κ fixed, the limit Lℓ →∞ and
the integration over kz may be interchanged due to the dominated
convergence theorem (the numerator is bounded), which allows one
to reproduce the previous results in Eqs. (21) and (24):

lim
Lℓ→∞
κ fixed

Iℓ(q > 0) = 𝜚ℓ∫
∞

−∞
dkz

2π

Sℓ(
√

q2
+ k2

z)

κ2
+ k2

z

≃
𝜚ℓ
2κ

Sℓ(q), κ→ 0. (35)

The limit κ→ 0 for Lℓ fixed is more intricate. The inte-
grand in Eq. (30) is dominated by the integrable function Mk−2

z
[2 − 2 cos (kzLℓ)] for all κ ⩾ 0, where M is the maximum of Sℓ(⋅).
[Proof: Put y = e−κLℓ and a = cos(kzLℓ) and use the fact that the
expression 1 + y2

− 2ya is monotonically increasing for y ⩾ a, i.e., it
is maximal at y = 1.] Therefore, the limit κ→ 0 may be taken inside
the integral so that

lim
κ→0

Lℓ fixed

Iℓ(q > 0) = 2𝜚ℓLℓ∫

∞

0

dx
π

1 − cos (x)
x2 Sℓ(

√

q2
+ (x/Lℓ)

2
),

(36)

where x = kzLℓ. Except for the prefactor 𝜚ℓLℓ, this is precisely the
structure factor of a liquid slab [see Eq. (12)], and only for large Lℓ it
approaches the bulk structure factor:

lim
κ→0

Lℓ fixed

Iℓ(q > 0) = 𝜚ℓLℓS(q; Lℓ)

≃ 𝜚ℓLℓ Sℓ(q), Lℓ →∞. (37)

This result is particularly relevant for simulations, because for them
finite-size effects cannot be avoided, and because a finite value of
Lℓ permits to probe the physically meaningful limit κ→ 0 directly.

In Fig. 5, we test the expression in Eq. (30) for the GIXRD inten-
sity scattered from finite-sized liquid samples at low (T∗ = 0.70) and
high (T∗ = 1.15) temperatures. As for Fig. 2, we have employed
the bulk structure factors Sℓ(q) obtained from MD simulations.
Alternatively, we have calculated Iℓ(q) within the simulations and
via Eq. (1), with the integration domain restricted to 0 ⩽ z, z′ ⩽ Lℓ.
These simulation data are in excellent agreement with the results
from Eq. (30) for all parameter sets. The top row of the panels
[(a), (b)] shows the convergence of Iℓ(q) upon increasing the sam-
ple width L→∞ at a fixed, exemplary penetration depth κσ = 0.01,
whereas in the bottom row [(c), (d)] the limit κ→ 0 is taken at
the fixed sample width Lℓ = 20σ. We note that in the latter case
(κ→ 0, Lℓ fixed), the scattered intensity does not converge to the
bulk structure factor Sℓ(q) (black lines), but rather to the slab struc-
ture factor S(q; Lℓ) (not shown), as expected from Eq. (37); the
difference is O(L−1

ℓ ) and vanishes for macroscopic samples [see
Eq. (13)].

It is noteworthy that the bulk contribution Iℓ(q) to the
scattered intensity, including the case κ = 0, is nonadditive:

Iℓ(q; κ, L1) + Iℓ(q; κ, L2) ≠ Iℓ(q; κ, L1 + L2). (38)

On the other hand, the expression 𝜚ℓLℓSℓ(q) is trivially Lℓ-additive,
implying that it does not contain correlations in the transversal
direction, i.e., between two particles at positions z ≠ z′. However,
such correlations are contained in the scattered intensity. One antic-
ipates an appreciable error in the interfacial structure factor H(q)
[Eq. (7)] at small yet nonzero wave numbers q if the bulk contri-
bution Iℓ(q) is approximated by Iℓ(q) ≈ 𝜚ℓLℓSℓ(q)—which would
correspond to assuming periodic boundary conditions at the inter-
face (see the last paragraph of Sec. II C). A quantification of this error
in H(q) follows directly from the expansion of S(q; Lℓ) for large
Lℓ [Eq. (13)], which yields

lim
Lℓ→∞

lim
κ→0
[Iℓ(q) − 𝜚ℓLℓSℓ(q)] = 2𝜚ℓ𝒥0(q). (39)

An analogous error in H(q) arises in the analysis of experimental
data if only the leading order of the bulk scattering is subtracted from
the scattered intensity [see Eq. (25)]. However, the order of the limits
κ→ 0 and Lℓ →∞ is different in the two cases, which results in the
prefactor 2 on the r.h.s. of Eq. (39) relative to Eq. (25). The latter is
understood by noting that κLℓ in Eq. (30) is sent either to 0 (here) or
to∞ [Eq. (25)].

D. Uniform asymptotic behavior

For the interpretation of both experiments and simulations,
the asymptotic behavior of the bulk scattering for small (albeit
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FIG. 5. Contribution to the GIXRD intensities collected from liquid slabs of finite width Lℓ and with open boundary conditions. Colored solid lines have been obtained from
Eq. (33) using the bulk structure factor Sℓ(q) (black line) as input; symbols are results that follow from the direct evaluation of Eq. (1) within MD simulations for bulk liquids.
The top panels [(a), (b)] show results for liquid slabs of four widths at fixed inverse penetration depth κσ = 0.01. The bottom panels [(c), (d)] show results for a liquid slab of
fixed width Lℓ = 20σ with five penetration depths. The left panels [(a), (c)] refer to a liquid at the temperature T∗ = 0.70, i.e., close to the triple point, and the right panels
[(b), (d)] correspond to T∗ = 1.15 near the liquid–vapor critical point. The thin horizontal lines at large q indicate the limits given in Eq. (34).

nonzero) κ and large (finite or infinite) Lℓ is relevant. Accord-
ingly, the issue arises whether Eq. (30) can be recast such that
the leading asymptotic behavior is apparent from a single expres-
sion for both orders of the limits κ→ 0 and L→∞. Inspired

by Eq. (34) and by the asymptotes of Iℓ(q) [Eqs. (35) and
(37)], we single out a term proportional to Sℓ(q) by using
the identity in Eq. (32) and by rearranging the remaining
integral:

1
𝜚ℓ

Iℓ(q > 0) =
1 − e−2κLℓ

2κ
Sℓ(q)

+ 2e−κLℓ cosh (κLℓ)∫

∞

0

dkz

π

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

k2
z

(1 −
κ2

κ2
+ k2

z
)

− 2e−κLℓ
∫

∞

0

dkz

π

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

κ2
+ k2

z
cos (kzLℓ).

With the definition of 𝒥0(q) in Eq. (14), this reduces to

1
𝜚ℓ

Iℓ(q > 0) =
1 − e−2κLℓ

2κ
Sℓ(q) + (1 + e−2κLℓ

)𝒥0(q)

− (1 + e−2κLℓ
)∫

∞

0

dkz

π
κ2

κ2
+ k2

z

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

k2
z

− 2e−κLℓ
∫

∞

0

dkz

π

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

κ2
+ k2

z
cos (kzLℓ). (40)
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The first term on the r.h.s. is the leading order for κ→ 0
and Lℓ →∞. One recovers both Iℓ(q) ≃ Sℓ(q)/(2κ) and
Iℓ(q) ≃ 𝜚ℓLℓSℓ(q), depending on the order of the limits. The
second term is of O(1) w.r.t. κ→ 0, Lℓ →∞; it contains 𝒥0(q),
which is independent of κ and Lℓ and is given solely by Sℓ(q).

The remaining two terms are higher-order corrections. For the
third term, in the limit κ→ 0 one finds

∫

∞

−∞
dkz

2π
κ2

κ2
+ k2

z

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

k2
z

=
κ
2

lim
kz→0

Sℓ(
√

q2
+ k2

z) − Sℓ(q)

k2
z

+ o(κ)

=
κ

4q
S′ℓ(q) + o(κ). (41)

Here, we have made use of Eq. (23) and of the expansion

Sℓ(
√

q2
+ k2

z) = Sℓ(q) +
k2

z

2q
S′ℓ(q) +O(k4

z). (42)

We note that S′ℓ(q)/q <∞ for all q, including q→ 0. Thus, the
second line of Eq. (40) vanishes for κ→ 0 at Lℓ fixed.

The term in the last line vanishes exponentially if the limit
Lℓ →∞ is taken first at fixed κ. For finite Lℓ, the remaining inte-
gral is bounded for all κ ⩾ 0 [e.g., by 𝒥0(q)] and it is the Fourier
cosine transform of an integrable and continuous function and thus
decays as L−1

ℓ for Lℓ →∞ [see also Eq. (13)]. The limit κ→ 0 can be
interchanged with the integration over kz . Therefore, the last line of
Eq. (40) behaves as e−κLℓO(L−1

ℓ )[1 +O(κ)].
In summary, the asymptotic behavior of Iℓ(q) in the joint limit

Lℓ →∞ and κ→ 0 reads as follows:

1
𝜚ℓ

Iℓ(q > 0) =
1 − e−2κLℓ

2κ
Sℓ(q)

+ (1 + e−2κLℓ
) [𝒥0(q) −

κ
4q

S′ℓ(q) + o(κ)]

+ e−κLℓO(L−1
ℓ )[1 +O(κ)]. (43)

Taking Lℓ →∞ first, one obtains

Iℓ(q > 0) =
𝜚ℓSℓ(q)

2κ
+ 𝜚ℓ𝒥0(q) −

κ𝜚ℓS′ℓ(q)
4q

+ o(κ) (44)

for large penetration depths (i.e., κ→ 0). Conversely, for Lℓ large but
fixed and for κ→ 0, one has

Iℓ(q > 0) = 𝜚ℓLℓSℓ(q) + 2𝜚ℓ𝒥0(q) +O(L−1
ℓ ). (45)

The next-to-leading order terms of both expansions depend neither
on κ nor on Lℓ, but differ by a factor of 2. Approximating the back-
ground intensity by the leading order only, as widely done in the
analysis of experimental or simulation data (and also in theoretical
treatments), leaves a contribution proportional to 𝜚ℓ𝒥0(q), but with
a different prefactor, in the expression for the interface correlations.
This introduces a systematic inconsistency when comparing results
from experiments and simulations. (In the former results, unavoid-
ably one has κ > 0 and an extrapolation κ→ 0 is needed; in the latter

results, one may put κ = 0 from the very beginning.) In particular, we
shall find below [Eq. (55)] that this contribution pollutes the effective
surface tension γ(q) at the order q2 for small q.

IV. GIXRD FROM LIQUID–VAPOR INTERFACES
For GIXRD scattering from liquid–vapor interfaces, we con-

sider the inhomogeneous reference system as described in Sec. III A,
which is composed of two independent bulk phases at the coexist-
ing densities and which exhibits the absence of correlations across
the interface and unperturbed bulk correlations even close to the
interface [see Eq. (15)]. The evanescent wave on the liquid side is
combined with a propagating wave on the vapor side so that

f (z) =
⎧
⎪⎪
⎨
⎪⎪
⎩

1, z > 0,

exp (−κ∣z∣), z ⩽ 0,
(46)

in the master formula for the GIXRD intensity [Eq. (1)]. (Here,
we do not consider the weak absorption of x rays.). Evaluating the
master formula with G(q, z, z′) and f (z) as in Eqs. (15) and (46),
respectively, yields the background intensity due to bulk scattering,

Ib(q) = Iℓ(q) + lim
κ→0

Iv(q), (47)

with the liquid and the vapor contributions given by Eq. (21) and
Eq. (36), respectively. The vapor contribution becomes particularly
relevant at elevated temperatures, i.e., upon approaching the critical
point. We also note that the limit κ→ 0 of Iv(q) is meaningful only
for a finite width Lv <∞ of the vapor phase, as naturally encoun-
tered in simulations. For plotting purposes, we quote the large-q
limit, which follows from Eqs. (34) and (47):

Ib(q→∞) = (𝜚ℓ/2κ)(1 − e−2κLℓ
) + 𝜚vLv. (48)

Moreover, for the CW divergence of G(q, z, z′) in the classical
Wertheim–Weeks theory, the presence of the function f (z) in the
integrand of the GIXRD master formula implies a κ-dependent shift
of the scattering amplitude. This is seen by combining Eqs. (1) and
(4) and then inserting Eq. (46):

ICWT(q→ 0) ≃
kBT
γ0 q2 ∣∫

∞

−∞
dz f (z) 𝜚′(z)∣

2

=
kBT
γ0 q2 [𝜚v − 𝜚(0) + ∫

0

−∞
dz e−κ∣z∣ 𝜚′(z)]

2
, (49)

where 𝜚v = 𝜚(z →∞) and 𝜚ℓ = 𝜚(z → −∞). Assuming a sigmoidal
interface profile of width ζ,

𝜚(z) = 𝜚ℓ + 𝜚v
2

−
Δ𝜚
2

tanh (z/(2ζ)), (50)

the integral can be expressed in terms of the digamma function
ψ0(x) = Γ

′
(x)/Γ(x):

ICWT(q→ 0; κ) ≃
kBT
γ0 q2 (Δ𝜚)

2
{1 −

κζ
2
[ψ0(

κζ
2
+ 1)

− ψ0(
κζ
2
+

1
2
)]}

2

. (51)
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Except in the close vicinity of the liquid–vapor critical point,
1/κ≫ ζ holds and one may approximate the second line by
1 − 1.39κζ +O(κζ)2, which can be a noticeable correction to
Eq. (5) at elevated temperatures; for the last result, we used ψ0(1)
− ψ0(1/2) ≈ 1.39.

A. Wave number-dependent surface tension
For given GIXRD intensities I(q; κ) of liquid–vapor inter-

faces, the q-dependent surface tension follows as the limit γ(q) = γ
(q; κ→ 0), where

γ(q; κ) ∶=
kBT(Δ𝜚)2

q2Iint(q; κ)
, (52)

with, after subtracting the background, Iint(q; κ) = I(q; κ)
− Ib(q; κ). The limit H(q) = Iint(q; κ→ 0) remains regular and is
referred to as the interface structure factor [see Eqs. (6)–(8)].

Let us examine the implications for γ(q) upon replacing the
background intensity by the leading term, i.e., if only the diver-
gent part of the bulk scattering is subtracted as it has been done
in previous experimental studies.36–38 To this end, we introduce an
approximation H̃ for the interface structure factor:

H̃(q) = lim
κ→0
[I(q) −

𝜚ℓ
2κ

Sℓ(q)], (53)

and the corresponding surface tension,

γ̃(q) = kBT(Δ𝜚)2
/[q2H̃(q)]. (54)

Equation (26) implies that H̃(q) = H(q) + 𝜚ℓ𝒥0(q). We empha-
size that this latter q-dependent shift persists after taking the limit
κ→ 0. Thus, including the full expression for the background
scattering results in a relative change of γ̃(q) given by

γ(q)
γ̃(q)

=
H̃(q)
H(q)

= 1 +
q2γ(q)
(Δ𝜚)2kBT

𝜚ℓ𝒥0(q)

≃ 1 +
𝜚ℓγ0𝒥0(q→ 0)
(Δ𝜚)2kBT

q2, q→ 0. (55)

The magnitude of this shift of the contribution O(q2
) to γ(q)

is determined by two lengths: 𝜚ℓγ0/[(Δ𝜚)
2kBT] and 𝒥0(q→ 0),

both of which are amenable to experimental investigations. As an
example, we have estimated these quantities for liquid water at
T = 27 ○C, where Δ𝜚 ≈ 𝜚ℓ, and have obtained γ0/(𝜚ℓkBT) ≈ 5.2 Å
and 𝒥0(q→ 0) ≈ 0.22 Å from evaluating Eq. (14) for available data
of the bulk structure factor.85,86

In the following, we shall elucidate this shift further for simple
theoretical models, which support the simulation results for LJ fluids
reported in Ref. 49 and below in Sec. IV D.

B. Simple DFT models: Square-gradient
approximation

The Ornstein–Zernike form

SOZ(k) =
S0

1 + (kξ)2 (56)

of the structure factor is a common feature of density func-
tional theories based on the square-gradient approximation; here
S0 = 𝜚ℓkBTχT , in terms of the isothermal compressibility χT , and ξ is
the OZ correlation length. SOZ(k) is a useful approximation for the
structure factor of liquids within the range kξ ≪ 1 and at elevated
temperatures. (This is valid for liquids with an appreciable com-
pressibility, but not too close to their critical point.) For the integral
corresponding to the leading-order correction [Eq. (14)], one finds76

𝒥0(q) = −
(ξ/2)S0

[1 + (qξ)2
]

3/2 . (57)

Inserting this into Eq. (26) yields, for the small-angle bulk scattering,

Iℓ(q→ 0) ≃
𝜚ℓ
2κ

S0 − (𝜚ℓ)
2kBTχTξ/2. (58)

This decreases the uncorrected, q-dependent surface tension γ̃(q)
[Eq. (55)]:

γ(q→ 0) ≃ γ̃(q)[1 − (
𝜚ℓ
Δ𝜚)

2 γ0ξχT

2
q2
]. (59)

The prefactor of the contribution O(q2
) has the dimension

of a length squared and, upon approaching the critical point
[t ∶= (T − Tc)/Tc ↑ 0], it diverges as

(Δ𝜚)−2γ0ξχT ∼ ∣t∣
−2β
∣t∣(d−1)ν

∣t∣−ν∣t∣−γ

∼ ∣t∣−2ν (60)

for d bulk dimensions and by using the exponent relation87 2β + γ
= νd. Thus, the correction to γ̃(q) scales as (qξ)2 in square-gradient
models. Noting that the macroscopic surface tension γ0 = γ(q→ 0)
vanishes as88 γ0 ∼ ∣t∣

2ν (see Fig. 6 and Table I), one finds that for
T ↑ Tc at O(q2

) the difference between γ(q) and γ̃(q) becomes
independent of temperature.

FIG. 6. Temperature dependence of the macroscopic surface tension γ0 along the
liquid–vapor coexistence line from the triple point temperature T∗t ≈ 0.65 . . . 0.70
to the critical temperature T∗c . The data points stem from MD simulations for
truncated LJ fluids (rc = 3.5σ, Table I). The solid line depicts the critical scal-
ing law γ0 ≃ Aγ∣t∣2ν for t ∶= (T − Tc)/Tc upon t ↑ 0 with the Ising exponent
ν = 0.630. The inset shows the same data in a rectification plot of the criti-
cal law, yielding the critical temperature T∗c = 1.220 ± 0.001 and the amplitude
Aγ = (2.554 ± 0.008)εσ−2 from a linear regression to the three data points for
T∗ ⩾ 1.0.
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TABLE I. Interfacial properties of truncated LJ fluids (rc = 3.5σ) along the
liquid–vapor coexistence line. The surface tension γ0 was calculated from the
anisotropy of the microscopic stress tensor. The length ℓ quantifies the contribu-
tion O(q2

) to γ(q) and was obtained from fits of Eq. (65) to the data in Fig. 10(a).
The interfacial width ζ was determined from fits of Eq. (B1) to the density profile of
inhomogeneous systems with a mean interfacial area of (100σ)2. The numbers in
parentheses give the statistical uncertainty in the last digit.

kBT/ε γ0/(εσ−2
) ℓ/σ ζ/σ

0.70 0.868(2) 0.23(2) 0.528(2)
0.80 0.664(2) 0.26(2) 0.642(2)
0.90 0.473(1) 0.37(2) 0.802(2)
1.00 0.294(2) 0.53(2) 1.048(3)
1.10 0.137(2) 0.85(2) 1.548(4)
1.15 0.069(2) 1.24(2) 2.123(5)

The relevance of the correction in Eq. (55) can be assessed by
comparison with the small-q behavior of γ(q). To this end, we con-
sider a simplified DFT treatment of the liquid–vapor interface based
on the square-gradient approximation with the symmetric double-
parabola potential.50 By defining γ(q) via the scattered inten-
sity, for κ→ 0 Parry et al.50 obtained γ̃(q→ 0)/γ0 ≃ 1 + 5

4(qξ)
2.

Accounting for the correction of the bulk scattering due to
the open boundary [Eq. (59)] subtracts the contribution 1

4(qξ)
2,

i.e., it decreases the contribution O(q2
) by 20%, leading to

γ(q→ 0)/γ0 ≃ 1 + (qξ)2. We note that adopting a different
definition of the q-dependent surface tension solely based on the
two-point density correlation function G(q, z, z′) would yield a
different prefactor at order O(q2

), and such a definition would
not require as a prerequisite a model for the bulk scattering as
input.50 However, to date, experimentally G(q, z, z′) is not directly
accessible.

C. Hard sphere approximation for the bulk liquid
At temperatures close to the triple point, the liquid phase

is characterized by a low compressibility and a small correlation
length; in particular, the bulk structure is dominated by the inter-
particle repulsion. In order to estimate the value of 𝒥0(q→ 0) in
this regime, we approximate the liquid bulk structure factor by that
of the Ashcroft–Lekner (AL) model for hard spheres;89 for simplic-
ity, we ignore the contribution due to the attractive part of the pair
potential.90 We recall that hard spheres do not form liquid or vapor
phases; accordingly, there is no liquid–vapor interface. Nonetheless,
one can expect that the AL model for Sℓ(k) renders a useful estimate
of the bulk correction 𝒥0(q) for dense and nearly incompressible
liquids.

In terms of the volume packing fraction η and the hard sphere
diameter σ̄, the AL model reads SAL(k) = [1 − ηcAL(k)]−1 with the
direct correlation function

cAL(k) = −24∫
1

0

sin (skσ̄)
skσ̄

(a0 + a1s + a3s3
) s2ds (61)

and the coefficients

a0 =
(1 + 2η)2

(1 − η)4 , a1 = −6η
(1 + η/2)2

(1 − η)4 , a3 =
η
2
(1 + 2η)2

(1 − η)4 . (62)

FIG. 7. Leading-order correction 𝒥0(q) to the bulk background [Eq. (26)] as
obtained from quadratures of Eq. (14) with bulk structure factors Sℓ(k) taken from
(i) the square-gradient DFT [Eq. (57)], (ii) the Ashcroft–Lekner model (Sec. IV C),
and MD simulations of a LJ liquid at the temperatures (iii) T∗ = 1.15 (close to the
critical one, T∗c ) and (iv) T∗ = 0.70 (close to the triple point T∗t ). The parameters
of the theoretical models were chosen to correspond to the simulated liquids:
(i) S0 = 1.18 and ξ = 1.25σ for the DFT model and (ii) σ̄ = σ at packing fraction
η = 0.45 for the hard sphere model. Parts of the figure are reproduced from
Ref. 76.

Numerical integration of Eq. (14) for q = 0 yields the values of
𝒥0(0), which vary smoothly as a function of the packing fraction,
attaining their maximum ≈ 0.087σ̄ near η ≈ 0.2; at high packing
fraction, 𝒥0(0) ≈ 0.070σ̄ for η = 0.45. The latter result should be
compared with 𝒥0(0) ≈ 0.063σ obtained from MD simulations for
a LJ liquid at T∗ = 0.70 (see below for details). Moreover, using
SAL(k) as input to Eq. (14) and numerically computing the full
q-dependence of 𝒥0(q) yields a remarkably accurate approximation
of 𝒥0(q) with Sℓ(k) obtained from the simulations (Fig. 7); for this
comparison, we used η = 0.45 and identified σ̄ with σ. In particular,
our analysis for the OZ and the AL model has revealed that 𝒥0(0)
changes sign due to a subtle competition of excluded volume and
long-ranged correlations.

D. Molecular dynamics simulations
of Lennard-Jones fluids

Within MD simulations, we have numerically determined
GIXRD intensities due to scattering off the liquid–vapor interface,
based on Eq. (1) and a microscopic expression for G(q, z, z′); details
are given in Appendix A. For the calculation of γ(q), one has to
account for the finite width of the liquid and vapor regions; we note
that, close to Tc, the vapor contribution to the bulk scattering must
not be neglected. On the other hand, the finite sizes of the bulk
phases ensure that both I(q; κ) and Ib(q; κ) remain finite as κ→ 0
so that one can put κ = 0 already when calculating I(q; κ). In this
case, the dimensionless quantity

Stot(q) ∶=
A
N

I(q; κ = 0) (63)

is given by the standard microscopic expression for the static struc-
ture factor [cf. Eq. (A2) for f (z) = 1], and the bulk contribution
follows from the simpler expression in Eq. (12), which was derived
in Ref. 76. In Eq. (62), A is the area of the planar mean inter-
face and N is the number of particles in the simulation. We have
followed both routes in order to test their consistency: (i) deter-
mine I(q; κ) and thus γ(q; κ) for a decreasing sequence of values of
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FIG. 8. Simulated GIXRD intensity I(q; κ) = Iint(q; κ) + Ib(q; κ) (red line) from scattering off the corresponding liquid–vapor interface and its decomposition into bulk and
interface contributions Ib(q; κ) and Iint(q; κ), respectively (gray dashed and thick black lines); all quantities shown are normalized by Ib(q→∞) [Eq. (48)]. The two
panels show results at the reduced temperatures (a) T∗ = 0.70 and (b) T∗ = 1.15, both for a penetration depth 1/κ = 10σ. The thin black line indicates the CW divergence
[Eq. (51)], I(q→ 0; κ) ∼ 1/(γ0q2

) [Eq. (51)], with the macroscopic surface tension γ0 obtained independently from the simulated stress tensor (Fig. 6 and Table I); the
deviation of Iint(q; κ) from the CW divergence (thick vs thin black lines), which is well developed in panel (b), gives rise to the wave number-dependent surface tension
γ(q). The bulk contribution Ib(q; κ) (gray dashed line) was calculated according to Eqs. (33) and (47), using the simulated bulk structure factors of the coexisting liquid
(green line) and vapor (blue) phases Sℓ(q) and Sv(q), respectively; the data are extrapolated to small q assuming the Ornstein–Zernike form (green and blue dotted lines).
For the calculation of I(q; κ), only particles within a slab of width (a) Lℓ = 20σ and (b) Lℓ = 40σ, respectively, were considered on the liquid side. For the quantities I(q),
Sℓ(q), and Sv(q), lines connect actual simulation data (symbols, only shown for the five smallest wave numbers). In panel (b), the tiny wiggles in Iint(q) at qσ ≳ 1 reflect
the statistical uncertainty of the simulation data.

κ and take γ(q) = γ(q; κ→ 0), and (ii) calculate Stot(q) and thus
γ(q) directly.

In Fig. 8, the decomposition of the scattered intensity into inter-
facial and background contributions [Eq. (6)] is illustrated (a) for the
temperature T∗ = 0.70 close to the triple point and (b) for the tem-
perature T∗ = 1.15 in proximity of the liquid–vapor critical point
(T∗c ≈ 1.22), both for a penetration depth 1/κ = 10σ. [The analo-
gous decomposition of Stot(q) for T∗ = 1.15 is provided by Fig. 2 in
Ref. 49.] For T∗ = 0.70, a liquid slab of width Ls = 25σ was simulated,
but only particles with positions 0 ⩽ z ⩽ Lℓ = 20σ were admitted for
the calculation of I(q; κ); here, z = 0 denotes the mean position of
the interface. For the higher temperature, these values have been
doubled in order to accommodate the much lower (macroscopic)
surface tension and thus larger fluctuations of the local interface
position. On the vapor side, only particles within slabs of Lv = 50σ
(T∗ = 0.70) and Lv = 75σ (T∗ = 1.15) were taken into account. The
background scattering was calculated according to Eq. (33) using the
bulk structure factors Sℓ(q) and Sv(q) as input, which were obtained
from separate simulations of homogeneous fluids (see Fig. 5). Close
to the triple point [Fig. 8(a)], the CW divergence is clearly visible
in the scattered intensity, I(q→ 0; κ) ∼ q−2, without adjusting any
parameter. To this end, the prefactor of the divergence was taken
from Eq. (51) using the macroscopic surface tension γ0 (Fig. 6 and
Table I) as determined independently from an integral over the
stress tensor profile across the interface;64,91 the interfacial width
ζ was obtained from the simulated mean density profiles 𝜚(z)
[see Eq. (B1)]. For the interfacial part of the scattering Iint(q; κ)
≈ H(q), this behavior of the CW divergence extends to a wide range
of wave numbers qσ ≲ 2. At high temperature [Fig. 8(b)], the CW
divergence is barely visible in I(q; κ) itself, but it can clearly be rec-
ognized in Iint(q; κ) for qσ ≲ 0.2. The slight mismatch between the
predicted and the actual prefactors of the CW divergence (compare
the thin and the thick black lines for qσ ≲ 0.2) disappears for larger

FIG. 9. Convergence of the effective q-dependent surface tension γ(q; κ→ 0) as
function of the inverse penetration depth κ for three, fixed wave numbers q at the
temperature T∗ = 0.70. The data for γ(q; κ) were obtained via Eq. (52) from MD
simulations for the GIXRD intensity, using only a fraction Lℓ = 20σ of the width
Ls of the bulk liquid in order to calculate I(q) and carrying out the decomposition
shown in Fig. 8(a). Thick solid lines indicate the corresponding limits γ(q) calcu-
lated from Stot(q), with setting κ = 0 directly within the simulations. Dashed lines
show γ̂(q) as obtained from Stot(q) when accounting only for the divergent part
of the bulk scattering [see the main text and Eq. (63)]. The thin blue line (qσ/2π
= 0.1) represents the κ-dependence of γ(q→ 0; κ) as implied by Eq. (51).

penetration of the liquid side, e.g., κσ = 0.01. The mismatch is pre-
sumably due to higher-order terms in Eq. (4); the apparently obvious
cause, that large-amplitude CWs are not probed properly for insuf-
ficiently small κ, is already accounted for in Eq. (51). The sizable
deviations of Iint(q; κ) from the asymptotic behavior at large wave
numbers give rise to the q-dependent surface tension.

Figure 9 exhibits, for each wave number q, the convergence
of γ(q; κ) to the physically meaningful limit γ(q) upon systemati-
cally decreasing the inverse penetration depth κ→ 0. In simulations,
γ(q) can be obtained also directly from Stot(q) (thick solid lines).
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FIG. 10. MD simulation results (symbols) for the wave number-dependent surface tension γ(q) of the truncated LJ liquid as obtained from Stot(q) after subtracting (a) the
full background contribution [Eq. (64)] and (b) only its divergent part [Eq. (63)]; the data points in panel (a) are reproduced from Ref. 49. The differences are most apparent
at the two lowest temperatures. In order to facilitate the comparison, the solid lines are the same in both panels: for T∗ ⩾ 0.9, the lines show fits of the small-q behavior as
in Eq. (65) to the data for γ(q) [panel (a)]; for T∗ = 0.7 and 0.8, they represent empirical power law fits to the data for γ̂(q) [panel (b)].

However, if only the leading order of the background scattering is
subtracted,

Ĥ(q) ∶= (N/A)Stot(q) − [𝜚ℓLℓSℓ(q) + 𝜚vLvSv(q)], (64)

the resulting γ̂(q) deviates from γ(q) = γ(q; κ→ 0) as one would
infer from the GIXRD data. In particular, from Eq. (13) one con-
cludes that Ĥ(q) = H(q) + 2𝜚ℓ𝒥0(q), which also differs from H̃(q)
[see Eq. (53) and the following text]. Thus, the discrepancy between
γ̂(q) and γ(q) is larger for larger wave numbers [cf. Eq. (55)]; in
the simulations, e.g., for T∗ = 0.70 and qσ ≈ 2.2, we find that γ̂(q) is
almost 40% smaller than γ(q).

It was this inconsistency between the analysis of scattering
data (as obtained from experiments) and the total structure factor
(as obtained within MD simulations) that gave rise to the refined
treatment of the bulk background as elaborated here. The inconsis-
tency would not be lifted by considering only the divergent part of
the background in the analysis of GIXRD intensities I(q; κ), which
upon κ→ 0 would yield γ̃(q) as introduced after Eq. (53). In ret-
rospect, the issue is well understood by comparing Eqs. (44) and
(45), which imply that γ̂(q) ≠ γ̃(q). This clarifies that the O(1)-term
∝ 𝜚ℓ𝒥0(q) must be included in the background contribution for a
consistent analysis of GIXRD data. This yields γ(q) irrespective of
whether it was calculated along route (i) or route (ii), described at
the end of the first paragraph in Sec. IV D.

The q-dependent surface tension γ(q) of LJ fluids is shown
in Fig. 10(a) for temperatures ranging from T∗ = 0.70 to 1.15. The
data are taken from Ref. 49 and were obtained from the MD sim-
ulation results for Stot(q) [route (ii)] and from the full background
contribution given in Eq. (37) and based on Eq. (12):

(N/A)Sb(q) = 𝜚ℓLℓSℓ(q; Lℓ) + 𝜚vLvSv(q; Lv). (65)

The most notable effect is the enhancement of the effective surface
tension at nonzero wave numbers upon increasing the temperature;
this was discussed in Ref. 49. It can be rationalized by writing

γ(q→ 0; T) ≃ γ0(T)[1 + q2ℓ(T)2
] (66)

with a temperature-dependent length ℓ(T), which increases mono-
tonically as T is increased (Table I). This form of γ(q) is corrobo-
rated within a recent DFT treatment of liquid–vapor interfaces,52–54

with ℓ(T) ≃ ξ(T) at temperatures close to the critical one.
A related observation was made for the curvature-dependence

of the macroscopic surface tension, upon replacing 1/q by the radius
of a spherical droplet.92 The simulation results for ℓ(T) exhibit a
temperature dependence similar to that of the OZ bulk correlation
lengths of the coexisting liquid and vapor phases (Fig. 11). Moreover,
anticipating the same critical scaling exponent as for the corre-
lation length, ℓ(T ↑ Tc) ∼ ∣T − Tc∣

−ν, the product γ0ℓ
2 is expected

to converge to a constant. Interestingly, our data suggest that
γ0ℓ

2
/(kBT)→ (4πω)−1

≈ 0.09, where ω = limT↑Tc kBTc/(4πγ0ξ2
ℓ,v)

is a universal amplitude ratio;92–94 its most reliable estimate stems
from Monte Carlo simulations of the three-dimensional Ising
model:94 ω ≈ 0.87. This would imply that indeed ℓ(T)/ξℓ,v(T)→ 1
as T ↑ Tc.

The right panel of Fig. 10(b) shows the corresponding results
for γ̂(q), which have been obtained from the same input data, but
taking into account only the divergent part of the bulk scattering
[Eq. (63)] (we recall that 𝒥0(0) changes sign as function of tem-

FIG. 11. Temperature dependence of the length ℓ governing the small-wave num-
ber behavior of γ(q→ 0) ≃ γ0[1 + (qℓ)

2
] in comparison to the bulk correlation

lengths, ξℓ and ξv , of the coexisting liquid and vapor phases (Table I). The
inset tests the convergence γ0ℓ

2
/(kBT)→ (4πω)−1

≈ 0.09 as T → Tc , where
ω ≈ 0.87 is a universal amplitude ratio.92–94
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perature, which is seen in Fig. 7). Whereas the data points shift
slightly upward at higher temperatures, as expected from Eq. (55)
due to 𝒥0(0) < 0 at these temperatures [Eq. (57)], the repercus-
sions are more significant at low temperatures (T∗ ≲ 0.80): opposed
to the almost constant behavior of γ(q) up to qσ ≲ 2, γ̂(q) bends
downward, which results from 𝒥0(0) ≈ 0.063σ > 0 in this case and
due to the small value of ℓ. Empirically, the data are described by
γ̂(q) ≈ γ0(1 +𝒦qα) with 𝒦 < 0 and exponents α = 4 for T∗ = 0.80
and α = 2.5 for T∗ = 0.70. In particular, the data for γ̂(q) suggest
that there is a distinguished temperature T0 with 0.80 ≲ T∗0 ≲ 0.90
such that ℓ(T) = 0 for T < T0, which appears to be implausible on
physical grounds. This issue is removed by considering the full back-
ground scattering [Eq. (64)], which includes the correction given by
𝒥0(q) and which leads to γ(q) as shown in Fig. 10(a).

E. Sensitivity to the mean interface position
So far, for the interpretation of simulation data, we have antic-

ipated that the widths Lℓ and Lv of the coexisting phases [Eq. (27)]
are known. Our protocol to construct the equilibrated inhomoge-
neous samples (see Appendix A) suggests a fixed ratio Lv : Lℓ (e.g.,
3:1 or 4:1) of the bulk phases, where we set Lℓ = Ls and have chosen
Ls = 25σ or 50σ for the width of the pre-equilibrated slabs, depend-
ing on temperature. However, due to interface broadening by capil-
lary waves, these nominal values of Lℓ and Lv are in general (slightly)
different from the values that are deduced from the inhomogeneous
sample. For the latter step, various definitions of the mean interface
position were proposed and are used in the literature.40,42,51,64,65,74

A common choice is based on Gibbs’ dividing surface (GDS),
which in integral form is equivalent to 𝜚ℓLℓ + 𝜚vLv = N/A; further,
Lℓ + Lv = Lz is fixed to the extent of the simulation domain along
the interface normal (i.e., the z-axis). Combining these two rela-
tions yields Lℓ for given N, A, 𝜚ℓ, 𝜚v , and Lz . On the other hand,
counting the particles in the inhomogeneous system, which was
assembled from pre-equilibrated bulk slabs (Appendix A), yields the
same expression for N/A as the GDS criterion. Hence, Lℓ according
to the GDS definition agrees with the nominal values for Lℓ.

In the present analysis, we followed a different approach and
exploited the fact that there are two well-separated interfaces in the
simulation setup: We have determined Lℓ from fits to the simulated
mean density profile 𝜚sim(z) using an inflected sigmoidal function

[Eq. (B1)]. The obtained values for Lℓ are very close to the nomi-
nal values according to the GDS definition; the absolute deviations
are less than 0.1σ at all considered temperatures, i.e., a difference
of less than 4‰. In addition to the values for Lℓ, the fits produced
precise values of the coexisting densities, 𝜚ℓ and 𝜚v , and the inter-
facial width ζ (see Tables I and II), which allowed us to obtain an
accurate estimate of the liquid–vapor critical point (see Fig. 3 and
Appendix B), although it is not in our focus here.

The small ambiguity in the mean interface position has conse-
quences for the q-dependent surface tension γ(q): A variation of the
interface position by δL implies changing the bulk slab widths from
Lℓ and Lv to Lℓ + δL and Lv − δL, respectively. (δL can have either
sign.) This modifies the background contribution, given by Eq. (64)
in the context of the simulations, and thus the interfacial struc-
ture factor H(q), which, by virtue of Eq. (13), receives an additive
contribution given by

δH(q) = [𝜚ℓSℓ(q) − 𝜚vSv(q)] δL, (67)

provided that Lℓ ≫ ξℓ. This means that γ(q), given by Eq. (8), is
replaced by the adjusted expression

γadj(q) =
kBT(Δ𝜚)2

q2
[H(q) + δH(q)]

. (68)

For small wave numbers, one has δH(q)≪ H(q) (Fig. 8) so that

γadj(q→ 0) ≃ γ(q)[1 −
q2γ(q)

kBT(Δ𝜚)2 δH(q)]

≃ γ0[1 + q2
(ℓ2
−Λ δL)], (69)

where Λ ∶= γ0(Δ𝜚)−2
[𝜚2

ℓχ
(ℓ)
T − 𝜚2

vχ
(v)
T ] is a certain length. Inserting

the values for these coefficients, as obtained in the simulations
(Table II), yields Λ ≈ 0.074σ for T∗ = 0.70 and Λ ≈ 0.046σ for
T∗ = 1.15. With the corresponding values of ℓ (Table I and Fig. 11)
and assuming a physically meaningful range for δL, we conclude that
the precise definition of the mean interface position has only a minor
effect on the behavior of γ(q) for small q.

For large wave numbers, however, we have δH(q→∞)
= Δ𝜚 δL. Thus, changing H(q) by such an amount has the potential

TABLE II. Bulk properties of truncated LJ fluids (rc = 3.5σ) along the liquid–vapor coexistence line. The densities 𝜚ℓ and
𝜚v of the coexisting liquid and vapor phases were determined from the density profiles obtained in simulations of the inhomo-

geneous system. The corresponding pressures P, the isothermal compressibilities χ(ℓ)T and χ(v)T , and the correlation lengths
ξℓ and ξv stem from separate simulations of the bulk phases; the last four quantities were calculated from OZ fits to the bulk
structure factors [Eq. (56)]. The numbers in parentheses give the measurement uncertainty in the last digit(s).

kBT
ε

P
εσ−3

𝜚ℓ
σ−3

𝜚v
σ−3

χ(ℓ)T
ε−1σ3

χ(v)T
ε−1σ3

ξℓ
σ

ξv
σ

0.70 0.0022(5) 0.8239(1) 0.0032(3) 0.0918(2) 471(1) 0.36(2) 0.17(5)
0.80 0.0063(2) 0.7769(1) 0.0085(2) 0.1343(5) 152(1) 0.49(2) 0.12(10)
0.90 0.0168(1) 0.7253(1) 0.0215(1) 0.208(1) 69.2(2) 0.56(2) 0.39(2)
1.00 0.0342(2) 0.6658(1) 0.0436(1) 0.373(2) 39.5(2) 0.72(3) 0.61(3)
1.10 0.0623(2) 0.5908(3) 0.0842(4) 0.89(2) 29.1(3) 0.95(10) 0.91(7)
1.15 0.0807(1) 0.5403(1) 0.1182(1) 1.92(3) 31.7(2) 1.42(8) 1.51(5)
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to qualitatively modify the behavior of γ(q) for large q. An adjust-
ment of Lℓ implies that a contribution ∝1/q2 is added reciprocally
to γ(q):

1
γadj(q)

≃
1

γ(q)
+

q2δL
kBTΔ𝜚 , q→∞. (70)

At large q, taking δL < 0 leads to an increase of γadj(q) rela-
tive to γ(q) and, for δL sufficiently large in magnitude, this can
induce an upward bending of γadj(q) such that γadj(q→∞)→∞,
which is desirable in the context of CW theory employing effec-
tive surface Hamiltonians.34,35,46,71,74 Recently, Hernández-Muñoz,
Tarazona, and Chacón75 argued that there are no interfacial den-
sity correlations at large wave numbers and they proposed to use
the condition H(q→∞)→ 0 in order to tune certain parameters
of the data analysis. In our case, this amounts to adjusting the
length Lℓ by δL = −H(q→∞)/Δ𝜚, which would remove a putative
1/q2-contribution from γ(q) and one would indeed obtain that
γadj(q→∞)→∞.

For γ(q), we have tested this procedure for the simulation
results for γ(q) shown in Fig. 10(a). The data appear to follow
a decay γ(q) ≃ γ0(bq)−2 for large q, albeit only in a small wave
number window; such a decay for large q would correspond to a
nonzero limit of the interfacial structure factor, H(q→∞) > 0 [see
Eq. (8) and Fig. 8]. From fits to the data for γ(q) in the range 2.6
≲ qσ ≲ 3.8, we have obtained b = 0.41σ and 0.21σ at T∗ = 0.70 and
1.15, respectively. The assumed asymptotic form of γ(q) for large
q is equivalent to H(q→∞) ≃ kBT(Δ𝜚)2b2

/γ0 =: H∞, and setting
δH(q→∞) = −H∞ will remove such a spurious large-q contribu-
tion from H(q). The corresponding shift δL = H∞/Δ𝜚 for the two
temperatures renders δL = 0.11σ and δL = 0.30σ, respectively. How-
ever, shifting the mean interface position by such an amount has
only a marginal influence on γ(q) and does not yield the desired
qualitative change: that γ(q) bends upward (Fig. 12). Instead, γ(q),
over the entire accessible range of wave numbers, is found to be
rather robust against variations of Lℓ within a physically meaningful
range.

The reason that the above choice for δL does not remove the
apparent large-q decay of γ(q) can be understood by noting that

FIG. 12. Robustness of the q-dependent surface tension with respect to a vari-
ation of the width Lℓ of the liquid slab in the background contribution Sb(q) by
an amount δL. Results for this, a posteriori adjusted quantity γadj(q) [Eqs. (66)
and (67)], are shown for seven distinct values of δL and for the temperatures T∗

= 0.70 (disks) and T∗ = 1.15 (diamonds). These results are based on the data
provided for γ(q) in Fig. 10(a).

the wave number window, within which one has γ(q) ≈ γ0(bq)−2,
is still to the left of the first peak of the bulk structure (which is
near qσ ≈ 6.8, see Fig. 8). There, Sℓ(q) ≈ Sv(q) ≈ 1 does not hold
in this regime, which was used to deduce the relation δL = H∞/Δ𝜚.
Therefore, in order to remove an apparent plateau in H(q) around
a certain intermediate wave number q∗, one has to consider the
full q-dependence of δH(q) given in Eq. (66), which suggests to
set δL = −H(q∗)/[𝜚ℓSℓ(q∗) − 𝜚vSv(q∗)]. At T∗ = 0.70, reasonable
estimates of Sv(q∗) and Sℓ(q∗) are given by their values for q→ 0.
Using H(q∗) = H∞, one finds δL = −b2

/Λ in terms of the length Λ
[introduced after Eq. (68)]. This expression leads to δL ≈ 2.3σ, which
is more than four times the interfacial width ζ and thus physically
not plausible.

Based on recent insight into the resonance structure of inter-
facial two-point correlations, Parry and Rascón53–55 have pro-
posed that the full wave number dependence of γ0/γ(q) is well
approximated by a linear combination of the bulk structure fac-
tors Sℓ(q)/Sℓ(q→ 0) and Sv(q)/Sv(q→ 0) with suitable, weakly
q-dependent weights to account for the liquid–vapor asymmetry.
Moreover, these DFT studies reveal that H(q→∞) ∼ q−2 (with
the exception of the overly simplified square-gradient models, for
which S(q→∞) ∼ q−2 and thus H(q→∞) ∼ q−4). Concerning
the present MD simulation data, we conclude that a finding of
H(q→∞) = H∞ > 0 would indeed be in conflict with the above
prediction. However, the observed decrease of γ(q) corresponds
well with the increase of Sℓ(q) in the rising flank of its first peak
(near qσ ≈ 4, see, e.g., Fig. 8). Moreover, the actual behavior of
γ(q) for large wave number, i.e., qσ ≳ 5 cannot be obtained from
the data due to unavoidable statistical noise. Thus, from our data
one cannot rule out that the actual γ(q) has a small, positive limit
γ∞ ∶= γ(q→∞) > 0 or, equivalently, that H(q→∞) ∼ q−2—which
would be consistent with the DFT calculations.

V. SUMMARY AND CONCLUSIONS
In sum, we have discussed the wave number depen-

dence of the GIXRD intensity I(q; κ) due to scattering off
liquid–vapor interfaces. We have proposed an unambiguous sepa-
ration I(q; κ) = Iint(q; κ) + Ib(q; κ) into an interface-related contri-
bution Iint(q; κ) and the bulk background Ib(q; κ), as illustrated in
Fig. 8; κ is the inverse penetration length. The separation is based
on a simple reference system for the coexisting bulk phases that
avoids any assumption concerning the interfacial region. The essen-
tial ingredients are free boundary conditions for the bulk phases
on both sides of the interface. This means that the reference sys-
tem is composed of independent liquid and vapor phases and that
their structures are identical to the respective bulk structures and
are unperturbed by the presence of the interface. (Necessarily, such
an idealized situation cannot occur in thermal equilibrium, but only
on paper, because, capillary waves and other interfacial fluctuations
would render any physical quantity to vary smoothly across the
interface.) Accepting this simple reference model, it turns out that
the background scattering Iℓ(q; κ) from, e.g., the liquid phase is not
simply proportional to the structure factor Sℓ(q) of the bulk liquid
[Eq. (26)]; rather, it is given as an integral over this function [Eq. (21)
and Fig. 2]. This is a consequence of the free boundary conditions
and appears likewise in the static structure factor of a liquid slab of
finite width76 [Eqs. (12) and (13)]. We note that any “continuous”
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model for the background scattering, i.e., one that imposes a contin-
uous interpolation of Gb(q, z, z′) across the interface, would require
knowledge of the microscopic structure of the interfacial region, at
least on the length scale over which the interpolation takes place.
Already at the level of the local mean density, the question how to
switch between the different correlation lengths on the liquid and
the vapor sides has no obvious answer without providing micro-
scopic details. As was shown in Sec. III A, the discontinuity of the
background contribution and thus of the interfacial part of the two-
point correlation function G(q, z, z′) is compatible with the asymp-
totically rigorous Wertheim–Weeks result for the CW divergence
[Eq. (4)].

The interfacial part of the scattering yields the interfacial struc-
tural factor H(q) = Iint(q; κ→ 0) for sufficiently deep sample pene-
tration on the liquid side (κ−1

≫ ζ, which is idealized as κ→ 0). This
expression of H(q) defines an effective, wave number-dependent
surface tension γ(q) that is entirely based on density pair corre-
lations [Eq. (8)]. Only for small wave numbers, qℓ(T)≪ 1, the
classical CW divergence, i.e., H(q) ∼ q−2, is observed in the scat-
tered intensity because in this regime γ(q) ≃ γ0 [see Eq. (65) for
the definition of ℓ(T)]. Here, we have shown that considering
merely the singular part of the background contribution, Iℓ(q; κ)
≈ (𝜚ℓ/2κ)Sℓ(q), as usually done in the analysis of GIXRD data,
results in a different interfacial structure factor H̃(q) and, corre-
spondingly, in a different surface tension γ̃(q). In particular, the
neglected background terms do not drop out in the limit κ→ 0 but
modify the surface tension at order O(q2

) [Eq. (55)]. The magni-
tude of this difference is controlled by the correction integral 𝒥0(q),
which is determined by the bulk structure factors [Eq. (14)] and
which has the dimension of a length. Depending on the temperature,
𝒥0(q→ 0) can have a positive (close to the triple point temperature
Tt) or a negative sign (close to the critical temperature Tc). It turns
out that at low temperatures, γ(q) and γ̃(q) exhibit qualitatively dif-
ferent q-dependences (Fig. 10). At higher temperatures, the relative
difference is diminished due to the emergence of a contribution of
O(q2

) in γ(q), which is characterized by a another length ℓ(T) that
grows as T is increased [Eq. (65)].

Based on MD simulations for the truncated LJ fluid with cut-
off distance rc = 3.5σ, we have presented evidence that ℓ(T) in fact
diverges upon T ↑ Tc and that ℓ(T) approaches the bulk correla-
tion lengths near criticality (Fig. 11). We observed further that the
macroscopic surface tension γ0(T) of this truncated LJ fluid hap-
pens to be described very well by the critical scaling law along the
whole coexistence line, from the triple point to the critical point
(Fig. 6); the same observation was made earlier95,96 for a cutoff of
rc = 2.5σ. Whereas the present study relies on LJ fluids as a generic
test bed, analogous large-scale MD simulations could be performed
for other substances, which would permit the direct comparison
between the existing GIXRD data36–38 and the simulation results; a
similar program was carried out successfully for the bulk structure
of water.97

At large wave number, γ(q) is only mildly affected by a change
in temperature, which together with the increase of ℓ(T) leads to
a maximum in γ(q) at a certain wave number. This phenomenon
was observed first in MD simulations49 and has since been put
on firm theoretical ground by Parry et al.52–55 These theoretical
studies use DFT calculations for exactly solvable models, which

give insight into the structure of the two-point correlation func-
tion of the inhomogeneous fluid and which suggest that G(q, z, z′)
can reliably be approximated using solely the bulk structure fac-
tors and related bulk properties.53,54 The related expressions can,
in principle, be translated into quantitative predictions for the scat-
tered intensity I(q; κ), which could be tested against its small-κ
counterpart Stot(q) in the simulations [Eq. (62)]. The corresponding
expressions, however, are complicated by the liquid–vapor asym-
metry55 and are not yet readily available in an explicit form. Nev-
ertheless, our data for γ(q), covering the full range of the wave
number, are qualitatively consistent with the corresponding expecta-
tions based on the DFT approximations for G(q, z, z′); this includes
the possibility that γ∞ ∶= γ(q→∞) > 0, which cannot be resolved
from the available data. A complementary, first principles route to
G(q, z, z′) has come into reach within a novel Barker–Henderson-
like DFT treatment of inhomogeneous fluids,98 albeit such an
endeavor may be technically challenging.

Experiments with phase-separated colloidal suspensions can,
in principle, render knowledge of the three-dimensional positions
of all colloids, given the tremendous advances in confocal micro-
scopy during the past two decades, and thus provide experimental
data for G(q, z, z′). In previous experiments on polymer–colloid
dispersions,5 single scans of the focal plane perpendicular to the
interface were used to obtain slices of the microscopic local den-
sity 𝜚(r) (compare Fig. 1). On this basis, capillary wave theory
was then tested by assigning local interface positions and by cal-
culating height–height correlation functions, closely resembling the
traditional analysis of simulation data. Yet, the reconstruction of all
three-dimensional particle positions from sequences of such focal
scans appears to be an ambitious task.

Here, differential dynamic microscopy (DDM)99–101 offers an
alternative: It is based on the correlation of intensity images and can
yield similar information as contained in the interfacial structure
factor H(q) discussed in the present study. DDM is also applica-
ble to dense suspensions that scatter multiple times if the confocal
mode of the microscope is used.102 In this case, the observation vol-
ume along the optical axis is restricted by the confocal depth, which
introduces corrections in the obtained correlation functions that are
analogous to the finite-κ and finite width effects discussed here and
for bulk liquids.76 We expect that a refined interpretation of confocal
DDM data, accounting for such corrections, can be developed along
the lines presented here.

DDM is also a suitable tool for the characterization of motile
suspensions, with micro-organisms or synthetic microswimmers
as constituents.102–105 Despite being inherently out of equilibrium,
such suspensions exhibit a motility-induced phase separation which
shares certain universal features of the liquid–vapor transition.106,107

A surface tension and a surface stiffness have been associated with
simulation data for such phenomena,108,109 although a debate about
even the sign of the surface tension shows that active flows and
mechanical contributions must be distinguished carefully in order
to arrive at a consistent physical interpretation (see Ref. 110 and
references therein). Similarly as for the equilibrium situation, a
microscopic theory for the two-point density correlations in inho-
mogeneous active matter would be desirable in order to overcome
the ambiguities associated with the notion of a fluctuating surface
dividing the coexisting phases.
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In a recent contribution, Hernández-Muñoz, Tarazona, and
Chacón75 discuss the predictions of extended CW theory for surface
diffraction at liquid–vapor interfaces with the fluctuating surface
obtained from the intrinsic sampling method (ISM).41,73 The lat-
ter approach considers the many-particle structure in the interfacial
region, which is accessible within simulations, in order to define a
local interface position and, in this sense, goes beyond the mere use
of pair correlations as considered here. Within both approaches to
γ(q) (i.e., via multiparticle and via pair correlations), there is con-
sensus that the “bending” contribution O(q2

) to the q-dependent
surface tension should be positive; in particular, this should also
hold for almost incompressible liquids at temperatures close to the
triple point. Yet, the ISM values for the corresponding length ℓ are
considerably larger than what we have found here. We have tested
whether this difference can be diminished by tuning the slab width
Lℓ of the bulk liquid; Lℓ enters the expression for the background
contribution in the simulations [Eq. (64)]. However, for the inves-
tigated LJ fluid we find that, for all accessible wave numbers, γ(q)
responds only marginally to changes of Lℓ within a physically plau-
sible range (Fig. 12). Thus, we can conclude that our findings for
γ(q)—as obtained from density pair correlations—are robust with
respect to the details of the definition of the mean interface position.
Moreover, the resulting shape of γ(q) is consistent with theoretical
predictions52–55 for G(q, z, z′). We note that a different, ISM-based
definition of γ(q) renders46,74,75 γ(q) divergent for large q. We con-
jecture that this apparent controversy on the large-q behavior of γ(q)
is a consequence of whether the definition of γ(q) contains implicit
information about three- and many-body correlations or not. This
claim is motivated, first, by noting that the ISM approach relies on
this additional information whereas the present analysis of the sim-
ulation data is restricted to the use of two-point density correlations.
Second, we recall the good agreement between the data for γ(q)
as obtained along this route and the above-mentioned DFT calcu-
lations for γ(q), both using essentially the same definition of γ(q)
in terms of G(q, z, z′). Finally, we note that GIXRD experiments on
fluid interfaces merely probe two-point correlations, although con-
fining the fluid in a disordered host lattice provides scope for GIXRD
studies of higher-order correlations.111

In the context of extended CW theory, the physical interpreta-
tion of γ(q) is broader than serving just as a proxy for the interfacial
two-point correlations; rather, γ(q) provides a mesoscopic charac-
terization of liquid interfaces. In this picture,33–35,71 the interface is
thought of as a sharp surface that is locally dressed in an intrinsic
density profile perpendicular to the surface (interpolating between
the coexisting bulk phases as if there are no CWs). The fluctuations
of the local surface position are then governed by a corresponding
surface Hamiltonian such that γ(q)q2 is the free energy cost associ-
ated with surface corrugations of wave number q (“capillary waves”).
Naturally, such a mesoscopic description must break down at short
distances (large wave numbers), for which the molecular discrete-
ness becomes relevant. It has been demonstrated for solvable toy
models50 that one cannot unambiguously single out the naked CW
contribution to the local density fluctuations at O(q2

) due to a non-
local entanglement of the two; however, one can try to push the
frontier as far as possible.72,74 Overall, we can state that the long
and slow-burning controversy on the concept of the wave number-
dependent surface tension has been resolved, but care must be taken
to respect its limitations and to not compare apples with pears.

The nonanalytic contribution O(q2 log(q)) to γ(q) due to
dispersion forces is within the scope of mesoscopic surface Hamilto-
nians and unambiguously identifiable.33,35 This contribution results
in a minimum in γ(q) at mesoscopic wave numbers, correspond-
ing to an enhancement of CW fluctuations. However, the magnitude
of this effect is not well understood yet: The minimum was found
to be surprisingly shallow in simulations of untruncated LJ fluids46

but sizable in experimental data from GIXRD on various liquid
surfaces.36–38 For the latter, the correction discussed here has the
potential to reduce the depth of the minimum to some extent, but
we do not expect that it would qualitatively change the conclusions
drawn from the experiments. For a direct comparison, simula-
tion data for GIXRD on liquid surfaces of other substances than
LJ fluids, e.g., water, would be of great value. It would also be of
interest to highlight the role of dispersion forces in the interfa-
cial density correlations, exploiting recent insight into their analytic
structure.52–55

It is straightforward to extend the concepts developed here to
fluid interfaces in phase-separating binary liquid mixtures,70,112–115

which would lay the basis for probing local changes of the com-
position (and its fluctuations) in the interfacial region. Within
the Gaussian theory, the wave number-dependent surface tension
γ(q) determines not only the fluctuations of the local interface
height but also the fluctuations of the local interface normal.116

Therefore, in addition to GIXRD, the present results for γ(q) are
relevant to a variety of further surface-specific experimental tech-
niques, such as fluorescence spectroscopy, infrared spectroscopy
and linear dichroism, generation of Maxwell displacement current
(MDC), second-harmonic generation (SHG), direct measurement
of the tilt angle distribution, and laser scanning confocal mis-
croscopy.116 Furthermore, it may prove fruitful to investigate the
local density correlations under nonequilibrium conditions such as
liquid–vapor interfaces in a temperature gradient.117–119 Eventually,
the wave number-dependent relaxation dynamics of capillary waves
and interfacial fluctuations16 may be probed within the framework
put forward here. To this end, one merely needs to replace the static
structure factors of the bulk by their corresponding intermediate
scattering functions and to introduce a time lag between the factors
of the two-point density correlation function [see Eq. (A1)].

SUPPLEMENTARY MATERIAL

See the supplementary material for the data needed to generate
the published figures. See the README file within the archive.
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APPENDIX A: MOLECULAR DYNAMICS SIMULATIONS
OF LIQUID–VAPOR INTERFACES

Our present analytic results have been tested against large-
scale MD simulations of LJ fluids with the pair potential U(r)
= 4ε((r/σ)−12

− (r/σ)−6
) truncated at the cutoff radius rc = 3.5σ, so

that U(r > rc) = 0; the parameters ε and σ serve as units of energy
and length, respectively. Two temperatures have been investigated
in detail: T∗ = kBT/ε = 1.15, which is close to the liquid–vapor
critical point (T∗c ≈ 1.22), and T∗ = 0.70, slightly above the triple
point temperature. Periodic boundary conditions were applied at all
faces of the cuboid simulation box with its edge lengths chosen as
Lx = Ly < Lz , so that stable, planar interfaces occur perpendicular
to the z-axis. We used Lx = 100σ in order to obtain a large area
A = L2

x = 104σ2 of the mean interface and in order to access small
wave numbers q, which must be integer multiples of 2π/Lx. The
MD simulations were carried out in the canonical ensemble with the
software “HAL’s MD package,”120 which exploits the massively par-
allel architecture of high-end graphics processors and which is well
suited for the study of long-wavelength and low-frequency phenom-
ena in liquids.49,76,114,121 (Concerning the relationship between the
canonical and the grand canonical description of finite-size systems,
see Ref. 122.) Initial and final particle configurations, time series of
observables, as well as correlation functions such as I(q; κ) were
stored efficiently in the H5MD file format.123 Further details on the
simulations can be found in Ref. 49.

For the simulation of free liquid–vapor interfaces, a sufficiently
thick film of bulk liquid is placed within the simulation domain,
and the remaining space is filled with the coexisting vapor phase
as to form two parallel, planar liquid–vapor interfaces (Fig. 4). The
detailed protocol was as follows:

(i) Determine the coexisting liquid and vapor densities at the
prescribed temperature.

(ii) Equilibrate the bulk phases of liquid and vapor independently,
using slab-like, periodic boxes of width Ls = 25σ (T∗ ⩽ 1.0) or
50σ (T∗ ⩾ 1.1).

(iii) Assemble the two phases, after squeezing the different con-
figurations slightly in order to avoid particle overlaps at
the boundaries between the phases (e.g., by an amount of
0.5σ along the z-direction via rescaling of the positions).

(iv) Equip the assembled system with periodic boundaries and let
it relax to form an inhomogeneous fluid in equilibrium.

For steps (i) and (ii), only relatively short simulation runs are
needed, whereas much longer simulations are required for step (iv)
in order to ensure equilibration of the capillary waves, especially
at small wave numbers. In step (iii), we combined several replicas
of the vapor phase with one slab of liquid so that the overall box
size was Lz = 5 × 25σ at low temperatures and Lz = 4 × 50σ at high

temperatures, yielding a total number of particles of N = 209 300 and
447 000, respectively.

After completing this procedure, a subsequent simulation is
run for data production, in particular in order to calculate GIXRD
intensities according to Eq. (1). To this end, we use the microscopic
expression for the density correlation function in terms of particle
positions rj = (Rj, zj):

G(q, z, z′) = A−1
⟨𝜚(q, z)∗ 𝜚(q, z′)⟩, (A1)

which involves the cross-sectional area A and 𝜚(q, z)
= ∑

N
j=1 δ(z − z j) exp (iq ⋅ R j). With this, Eq. (1) implies

I(∣q∣) = A−1
⟨∣𝜚 f (q)∣

2
⟩ (A2)

in terms of the f -weighted density modes

𝜚 f (q) ∶=
N

∑

j=1
f (zj − z0) exp ( iq ⋅ Rj), (A3)

where z0 is the mean position of the interface and the function f
is given in Eq. (27). In the case κ = 0, we have f (z) = 1 for −Lv ⩽ z
⩽ Lℓ. Exploiting the symmetry of the setup, we consider all z values
within the simulation box, i.e., we extend the computation of 𝜚 f (q)
to all particles. This implies to set Lℓ = Ls and to double the interfa-
cial area such that A needs to be replaced by 2A in expressions for
the surface tension.

APPENDIX B: COEXISTENCE LINE AND LIQUID–VAPOR
CRITICAL POINT

The simulation setup contains two well-separated and indepen-
dent interfaces (Fig. 4). For each investigated temperature, we have
fitted the simulated mean density profile 𝜚sim(z) with an inflected
sigmoidal function:

𝜚sim(z) =
𝜚ℓ + 𝜚v

2
−
Δ𝜚
2

tanh(
∣z − zm∣ − Ls/2

2ζ
); (B1)

zm denotes the symmetry center of the liquid slab and belongs to the
set of fit parameters. This yields precise estimates of the width Ls of
the liquid slab (and thus of the mean interface positions zm ± Ls/2)
and also of the coexisting number densities 𝜚ℓ and 𝜚v , and of
the interfacial width ζ, which are reported in Tables I and II. The
results for 𝜚ℓ and 𝜚v indicate the position of the binodal curve
of the liquid–vapor transition in the temperature–density plane
[Fig. 3(a)]. Anticipating the critical scaling behavior of the density
difference, i.e., Δ𝜚 ∼ (Tc − T)β upon T ↑ Tc, we estimated the crit-
ical temperature Tc = (1.215 ± 0.001)ε/kB from a linear regression
to the rectified data [Fig. 3(b)]; this value is in good agreement
with earlier simulation data.91 In contrast to Ising spin models,
the liquid–vapor binodal is asymmetric. However, the mean den-
sity 𝜚sym(T) = [𝜚ℓ(T) + 𝜚v(T)]/2 serves as a symmetry line of the
binodal, which is found to be almost a straight line [Fig. 3(a)].

The latter observation is phenomenologically known as the
“law of rectilinear diameter.”124,125 From the linear extrapolation
of 𝜚sym(T) to Tc, the critical density was found to be 𝜚c = (0.318
± 0.001)σ−3. In a more refined analysis of the critical behavior of the
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coexisting densities, it is argued that the slope of the curve 𝜚sym(T)
vs T is proportional to the isochoric specific heat cV , so that one
expects a singular dependence:124,126,127 𝜚sym(T) − 𝜚c ∼ (Tc − T)1−α

as T ↑ Tc, where α ≈ 0.110 is the Ising universal exponent of the spe-
cific heat. However, only the two data points for 𝜚sym(T) closest
to Tc (i.e., for T∗ ⩾ 1.10) are compatible with this singular scaling
law—the linear law (i.e., mean-field like with α = 0) provides a bet-
ter description of the data. A similar observation was made before
for other simple fluids (see, e.g., Refs. 124 and 125); yet, it is partic-
ularly surprising here, given that the T-dependences of Δ𝜚 and γ0
were very well captured by their corresponding critical laws over a
wide range of temperatures [Figs. 3(b) and 6]. These findings under-
score that the true scaling behavior sets in only asymptotically for
T ↑ Tc. In particular, the temperature dependence of cV is found to
be non-monotonic along the liquid branch of the coexistence line
and has its minimum near T∗ ≈ 1.05 (data not shown; this calls for
future research).

Along the transition line, we have also computed the pressures
of the coexisting liquid and vapor phases from the bulk simula-
tions [Table II and Fig. 3(c)], which served as a consistency check.
Eventually, the critical pressure was obtained from a separate simu-
lation of the bulk fluid at the quoted critical point (Tc,𝜚c), yielding
Pc = (0.110 74 ± 0.000 03)εσ−3.
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