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S U M M A R Y 

Earthquake forecasting poses significant challenges, especially due to the elusive nature of 
stress states in fault systems. To tackle this problem, we use features derived from seismic 
catalogues obtained from acoustic emission (AE) signals recorded during triaxial stick-slip 

experiments on natural fractures in three Westerly granite samples. We extracted 47 phys- 
ically explainable features from AE data that described spatio-temporal evolution of stress 
and damage in the vicinity of the f ault surf ace. These features are then subjected to unsu- 
pervised clustering using the K-means method, revealing three distinct stages with a proper 
agreement with the temporal evolution of stress. The recovered stages correspond to the me- 
chanical behaviour of the rock, characterized as initial stable (elastic) deformation, followed 

by a transitional stage leading to an unstable deformation prior to failure. Notably, AE rate, 
clustering-localization features, fractal dimension, b -v alue, intere vent time distribution, and 

correlation integral are identified as significant features for the unsupervised clustering. The 
systematicall y e volving stages can provide v aluable insights for characterizing preparatory 

processes preceding earthquake events associated with geothermal activities and w aste-w ater 
injections. In order to address the upscaling issue, we propose to use the most important 
features and, in case of normalization challenge, removing non-universal features, such as AE 

rate. Our findings hold promise for advancing earthquake prediction methodologies based on 

laboratory experiments and catalo gue-dri ven features. 

Key words: Machine learning; Acoustic properties; Earthquake interaction, forecasting and 

prediction. 
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 I N T RO D U C T I O N  

he problem of earthquake forecasting holds significant impor-
ance for society, economy and geoscience. Ho wever , fault consti-
utive properties and stress evolution vary in space and time and
re not directly observable in the field (Ben-Zion et al. 2003 ). This
enders earthquake forecasting a notoriousl y dif ficult challenge.
cross the seismogenic zone of a fault zone, the evolution of stress

nd strength is closely correlated with large earthquakes. Kato &
en-Zion ( 2020 ) proposed that the occurrence of large earthquakes

s associated with the pro gressi ve localization of shear deforma-
ion around a rupture zone, sometimes associated with the increase
n seismicity rates and decrease in the Gutenberg–Richter b -value
Ben-Zion & Lyakhovsky 2002 ; Bowman & Sammis 2004 ; Mignan
t al. 2011 ; Durand et al. 2020 ; Kwiatek et al. 2024 ). Eventually,
his transitions into rapid loading (i.e. foreshocks) within a localized
rustal volume near the hypocentre of an ensuing major dynamic
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
upture. The critical phase usually occurs at some stress satura-
ion level, the intermittent criticality phase (Sammis & Smith 1999 ;
en-Zion et al. 2003 ), where stress fluctuates around a critical peak

tress, and a large earthquake occurs as a triggered, statistical event.
ollowing a stress drop, the seismic loading cycle resumes. Identify-
ng distinct phases of stress evolution may provide a significant step
orward in improving earthquake forecasting and seismic hazard
ssessment. 

Recent advances in machine learning (ML) algorithms helped
mproving time to failure (TTF) prediction (Rouet-Leduc et al.
017 ), shear stress estimation (Shokouhi et al. 2021 ; Shreedharan
t al. 2021 ; Borate et al. 2023 ), preparatory phase identification
Picozzi & Iaccarino 2021 ) and clustering of stress temporal evo-
ution (Bolton et al. 2019 ) using laboratory and field data. In these
tudies, seismic waveforms are the onl y av ailable data. Provided
eismic waveforms contain enough signatures of temporal evolu-
ion of the stress, informative patterns and high-level information,
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 755 

https://orcid.org/0000-0001-7383-635X
mailto:sadegh.karimpouli@gfz-potsdam.de
https://creativecommons.org/licenses/by/4.0/


756 S. Karimpouli et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/237/2/755/7616085 by 130.133.*.* user on 12 April 2024
known as seismic features, may be extracted computationally or 
using ML methods. Seismic features could be broadly categorized 
as: (1) w aveform-dri ven features and (2) catalo gue-dri ven features. 
Wav eform-driv en features are obtained either directly using var- 
ious statistical measures (Rouet-Leduc et al. 2017 ) or indirectly 
by ML networks such as convolutional neural networks (Mousavi 
et al . 2019b ). Some of the statistical features are the mean, variance, 
skewness and kurtosis of signal distribution, time correlation fea- 
tures using integrals of power spectra over narrow frequency bands 
and autocorrelation features. In the context of a double-friction 
shear test, Bolton et al. ( 2019 ) employed w aveform-dri ven statis- 
tical features and demonstrated that the selected features exhibit 
temporal behaviour that allows for the detection of evolutionary 
phases of the stress curve using mean-shift and K-means clustering 
algorithms. 

Catalo gue-dri ven features are typically used to characterize seis- 
mic response to deformation, such as event/seismic moment or 
radiated energy rate, b -value, correlation integral, interevent time 
distribution features, fractal dimension, magnitude correlation, 
Shannon’ s entrop y, clustering and localization features, energy in- 
dex and features based on focal mechanisms and deviatoric stress 
tensor (Kwiatek et al. 2024 ). Picozzi & Iaccarino ( 2021 ) employed a 
Recurrent Neural Network (RNN) to identify the preparatory phase 
of magnitude M ∼4 induced earthquakes, showcasing the potential 
of catalo gue-dri ven features and RNN for forecasting large induced 
seismic events. Similar patterns of damage evolution have been 
observed through the analysis of acoustic emissions (AEs) during 
triaxial tests on rock samples (Dresen et al. 2020 ). Karimpouli 
et al. ( 2023 ) computed catalo gue-dri ven features at v arious time 
windows, and utilized them as inputs for an ensemble of long-short 
ter m memor y (LSTM) networks to predict TTF in three stick-slip 
experiments on rough faults. Using an explainable ML approach, 
they found event rate, correlation integral, event proximity and fo- 
cal mechanism-based features to be the most important features for 
TTF prediction. 

These studies demonstrated that catalo gue-dri ven features pro- 
vide valuable information showing different patterns during each 
phase of stress e volution. Howe ver, the high number of features 
require an unsupervised clustering method for unbiased detection 
of data structures in an n -dimensional space of features (Beroza 
et al. 2021 ). Unsupervised deep-ML algorithms have been used for 
different aspects such as clustering events signals and background 
noises (Seydoux et al. 2020 ; Aden-Antoni ów et al. 2022 ), dis- 
criminate different local and teleseismic seismic events (Mousavi 
et al. 2019a ), repeating earthquake clustering (Huang et al. 2023 ), 
induced seismicity (Yoon et al. 2015 ; Holtzman et al. 2018 ) and vol- 
canic tremor classification (Soubestre et al. 2018 ). To investigate 
preparatory processes, Shi et al. ( 2021 ) used continuous seismic 
data and hierarchical clustering of w aveform-dri ven features. They 
found a systematic temporal evolution during the 2009 L’Aquila 
earthquake. Iaccarino & Picozzi ( 2023 ) used K-means clustering 
for induced seismicity at The Geysers geothermal site and Zali 
et al. ( 2024 ) employed deep-ML for volcanic tremors. Using an 
autoencoder network, they extracted high level features out of the 
wavefor m and unsuper visedly clustered them by K-means method. 
Results show evolutionary phases preceding earthquakes and vol- 
canic eruptions. 

The key moti v ation of this study is to investigate if an ensemble 
of physics-based features calculated from seismic data allows sep- 
arating mechanical loading stages and help to constrain proximity 
to failure. In a laboratory-scale investigation, we employ catalogue- 
dri ven features de veloped in Kwiatek et al. (2024) and used in 
Karimpouli et al. ( 2023 ) to assess the ef fecti veness of unsupervised 
clustering methods in identifying distinct loading phases concealed 
within the seismic features leading to failure. In contrast to previous 
studies, the unsupervised learning is applied to stick-slip experi- 
ments performed on rough faults, that bear more similarity with 
heterogeneous fault structures in nature, but make ML-based clus- 
tering more difficult (Johnson et al. 2021 ). Rough faults are more 
complicated yet closer to the (generally complex) faults observed in 
nature, whereas so far relati vel y simple planar faults were analysed 
in TTF studies, based on a multitude of repetitive stick slip cycles. 
We show that highly correlated features effectively construct the 
main trend of data similar to the stress trend allowing for a mean- 
ingful clustering. By leveraging the most significant features, we 
discuss the potential upscaling of the used features for character- 
ization of preparatory processes before hazard-prone earthquakes 
related to exploitation of geothermal reservoirs. 

2  E X P E R I M E N T  A L  DAT  A  A N D  

C A  TA L O G U E - D R I V E N  F E A  T U R E S  

The input data originate from three triaxial stick-slip experiments 
WgN04, WgN05 and WgN07 performed on Westerly granite sam- 
ples with a diameter of 40 mm and a length of 102–107 mm (Goebel 
et al. 2012 ). All specimens were prepared with a 1.5–2.2 cm deep 
notch inclined at an angle of 30 ◦ to control shear fracture formation. 
The specimens were fractured at a confining pressure of 75 MPa, 
resulting in the generation of rough fault planes. To conduct a se- 
ries of subsequent stick-slip experiments, the confining pressure 
was increased to 150 MPa to lock the fault. The axial load was 
increased at a rate of 0.02 mm min −1 or equi v alentl y an axial strain 
rate of 3 × 10 -6 s −1 . The experiments resulted in a heterogeneous 
and erratic slip pattern of large and small stress drops (see more 
details on experimental procedure and mechanical data overview in 
Goebel et al. ( 2012 ) and Kwiatek et al. ( 2024 ). The AE activity was 
recorded with 16 AE sensors (resonant frequency 2 MHz) glued 
to the sample surface providing optimal coverage and full wave- 
form data at 10 MHz sampling rate and 16-bit resolution. The raw 

waveform data were then processed (see Kwiatek et al. ( 2024 ) and 
supporting text from Karimpouli et al. ( 2023 ) for details) resulting 
in the development of basic AE event catalogues with n = 102 540, 
n = 240 328 and n = 199 255 ev ents abov e the magnitude of com- 
pleteness for WgN04, WgN05 and WgN07 experiments, respec- 
ti vel y. The resulting basic AE catalogues contain information on 
origin times, hypocentral locations, AE magnitude and associated 
quality information. In addition, the full moment tensor inversion 
has been performed for a subset of events using hybridMT package 
(Kwiatek et al. 2016 ). The raw waveform data, AE sensor informa- 
tion and developed basic AE catalogues and seismic moment tensor 
catalo gues are av ailab le in a separate data pub lication (Kwiatek & 

Goebel 2024 ). In the following, input basic AE catalogue and mo- 
ment tensor catalogues were used to develop an ensemble of time 
series of 17 independent features calculated using running time win- 
dows of various lengths (Table 1 ). These features capture local and 
global damage and stress evolution during preparatory processes 
leading up to large slip events. The discussion of physical meaning 
of developed features is shown in Kwiatek et al. (2024 ), while a brief 
overview of them is presented in the Appendix A . For the overview, 
Fig. 1 is a visual representation of a few selected features for the 
WgN04 experiment (for WgN05 and WgN07 see Karimpouli et al. 
2023 and Kwiatek et al. 2024 , respecti vel y). A scatterplot of inde- 
pendent features as well as TTF and stress values are illustrated in 
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Table 1. A summary of all catalo gue-dri ven features used in this study. 

Parameter Notation Time windows (s) Dimension Some references 

AE event rate n 23, 45 90, 180 Time (Scholtz 1968 ; Dresen et al. 
2020 ) 

GR law’s b -value b 10, 30, 90, 180 Time (Gutenberg & Richter 1944 ) 

Correlation integral c 90, 180 (r = 5 mm) ∗
45, 90 (r = 20 mm) 

Space 
Time 

(Kagan & Knopoff 1980 ; 
Henderson et al. 1999 ) 

Interevent time distribution 
features 

Ratio (deviation from uniform 

distribution at edges of the 
empirical distribution) 

r 23, 45, 90, 180 Time (Van Der Elst & Brodsky 2010 ; 
Davidsen et al. 2021 ; Kwiatek 

et al. 2022 ) 

Deviation from uniform 

distribution ( χ2 test) $ 
rx2 

Fractal dimension d2 45, 90, 180 Space 
Time 

(Sadovskiy 1984 ; Hirata et al. 
1987 ) 

Magnitude correlation dm 90 Time 

Clustering and localization 
features 

Product of T and R 

§ trp 25, 50, 100 Space 
Time 

Magnitude 

(Baiesi & Paczuski 2005 ; 
Zaliapin et al. 2008 ; Zaliapin 

& Ben-Zion 2013 ; 
Mart ́ınez-Garz ón et al. 2019 ) 

Quotient of T and R trq 

Proportion of foreshocks pfo 

Proportion of aftershocks paf 

Proportion of mainshocks pma 

Focal mechanisms and 
deviatoric stress tensor based 
features 

Median fault plane variability vm 100, 200 Space 
Time 

(Kwiatek et al. 2014 , 2024 ; 
Mart ́ınez-Garz ón et al. 2014 ; 

Vavry ̌cuk 2014 ) 

Maximum principal stress 
plunge 

s1d 90, 180 

Maximum principal stress 
variance 

svar 

Stress ratio sr 
∗‘r’ is a scale limit for spatial distance between coordination of two events. 
$ ‘ χ2 ’ is the Chi-squared distribution. 
§ ‘T’ and ‘R’ denote the time and space components of the proximity formulation (for more details see the Appendix A ). 
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ig. A1 (in the Appendix A ) to clarify the distribution of full data
et. 

Given that each feature is computed within a specific time win-
ow, the values of features estimated after slips are influenced by
he data from the previous slip event. To ensure consistency and
solate individual labquake cycles, we eliminated a 150 s period
ollowing each slip, resulting in per-cycle features. Additionally,
e treated every small and large slip as an independent labquake

ycle. Subsequently, we normalized all features within each cy-
le using minimum and maximum of each feature indi viduall y
nd scaled between 0 and 1 (min-max normalization Karimpouli
 Fattahi 2016 ). The rationale behind normalization is to address

arying feature scales affecting distance computation between data
oints. 

 U N S U P E RV I S E D  C LU S T E R I N G  

he primary objective of employing unsupervised clustering meth-
ds is to organize data (features) into distinct classes based on

heir inherent characteristics or similarities. While humans excel at r  
lustering data in two or three dimensions, high-dimensional data
eed automated algorithms. The problem becomes more challeng-
ng when the number of clusters is unknown. Numerous algorithms
ave been developed to tackle the problem of clustering with un-
nown number of clusters (Jain 2010 ). To avoid this challenge, we
rbitrarily decided to separate the data into three classes (we refer to
hem later as ‘ stages ’, emphasizing their transient, time-dependent
ccurrence), conceptually following the idea of ‘traffic light sys-
em’. The rationale behind this clustering is that an alert could be
ssued based on the probability of occurrence of a specific stage
nd its temporal persistence before the main rupture, indicating the
igh seismic hazard. 

Commonly used clustering methods with known class numbers
nclude K-means clustering (Jain 2010 ), Gaussian mixture model
GMM; Dempster et al. 1977 ; McLachlan et al. 2019 ), hierarchical
lustering (Ward 1963 ) and spectral clustering (Ng et al. 2001 ).
mong them, K-means clustering has been proposed already more

han 60 yr ago (Jain 2010 ) and remains widely used. Similar to
his study, Bolton et al. ( 2019 ) applied K-means clustering algo-
ithms to identify patterns in the AE activity during the laboratory
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Figure 1. Temporal evolution of stress data of multiple loading cycles for all three specimens (a) following with representation of several features from sample 
WgN04 (b-e). Experiments have been conducted separately, but we put all data together representing here with cumulative time for illustration purposes. From 

top to bottom: (a) axial stress, (b) AE event rate, (c) b -value, (d) clustering features and (e) proportion of mainshocks, foreshocks and aftershocks. Each feature 
is computed taking the past data from a time window of selected length (indicated in s). Vertical dashed lines represent medium to large stress drops. 
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stick-slip cycle and precursors to labquakes. They reported con- 
sistent trends and evolutionary transitions throughout the seismic 
cycle. Thus, we first provide a brief overview of the fundamentals 
of the K-means algorithm and then other clustering methods for 
comparison. 

1. K-means clustering: It is an iterative clustering algorithm de- 
signed to partition data into k clusters, where k is a predetermined 
number based on a priori knowledge. Let X be a set of n data points 
in a d -dimensional space, X ⊂ R 

d . The algorithm aims to select k
centroids, denoted as C , that minimize the inertia or squared error: 

∑ 

x∈ X 
min 
c∈ C 

|| x − c|| 2 . (1) 

The algorithm first calculates randomly initial k class centroids 
and assigns each data point to the nearest centroid. The centroids 
are then updated by computing the mean of the data points as- 
signed to each cluster. This process continues iterati vel y until con- 
vergence, optimizing the within-class sum of squared distances. 
The convergence of the algorithm is heavily influenced by the 
initial selection of class centroids. To address this issue, Arthur 
& Vassilvitskii ( 2007 ) proposed a K-means ++ variation, which 
initializes the centroids to be distant from each other. This ap- 
proach yields improved and faster results compared to random 

initialization. 

2. Gaussian mixture model (GMM) clustering: It is assumed that 
the data points are generated from a combination of k Gaussian 
distributions (Dempster et al. 1977 ). The algorithm estimates the 
parameters of the Gaussians (mean, covariance and mixing coeffi- 
cients) using the Expectation–Maximization (EM) algorithm (Meng 
& Van Dyk 1997 ) and assigns probabilities to each data point be- 
longing to each cluster. 

3. Hierarchical clustering: The method builds a tree-like structure 
of clusters, known as a dendrogram. This can be performed in two 
w ays: agglomerati ve (bottom-up) or di visi ve (top-down). Agglom- 
erative clustering starts with each data point as a separate class and 
iterati vel y merges the closest pair of clusters based on a distance 
measure until all points belong to a single class. Di visi ve clustering 

art/ggae071_f1.eps
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tarts with all points in a single class and recursi vel y splits them
nto smaller clusters. 

. Spectral clustering: This approach treats data points as nodes
n a graph and uses the eigenvalues and eigenvectors of the graph’s
aplacian matrix to partition the data. It first constructs an affin-

ty matrix that captures pairwise similarities between data points.
he eigenvectors corresponding to the smallest eigenvalues of the
aplacian matrix are then used to embed the data into a lower-
imensional space. Finally, traditional clustering algorithms like
-means are applied to the embedded space to obtain the final clus-

ers. Spectral clustering is particularly useful for data with complex
eometric structures and can handle non-conv e x clusters (Ng et al.
001 ). 

 R E S U LT S  

.1 K-means clustering of catalogue-driven features 

e started with the K-means clustering algorithm in a 47-D space
sing data points obtained from 47 catalo gue-dri ven features. In this
tudy, we utilize the scikit-learn library to implement all clustering
lgorithms in Python . For implementing the K-means algorithm, we
sed 3 numbers of clusters, with equal sample weight. To speed up
he convergence, the ‘ k-means ++ ’ method (Arthur & Vassilvitskii
007 ) was selected as the initial class centroids. The algorithms
top when the difference between cluster centres of two consec-
tive iterations reaches 10 −4 . Although the maximum number of
terations is set to 100, the convergence criterion is met at iteration
5–25, depending on the initial cluster centroids. To compute the
robability of features belonging to a specific stage, we employed
he inverse power of distance function with Euclidean distance and
 power of 2. 

In Fig. 2 (a), the clustering results are illustrated overlaid on the
tress curve along time for all three samples. Figs 2 (b), (c) and (d)
how part of the results of each individual sample together with the
orresponding AE event magnitudes and the probability of each data
oint belonging to its respective cluster. From a rock mechanical
oint of view, this figure reveals that these clusters fit very well
ith the temporal stress evolution. This enables us to categorize

hem into three main stress stages, namely stable , transitional and
nstable . 

These stages include an initial stable stage, followed by a transi-
ional stage and terminating with an unstable stage where loading
ycles are finished. This sequence of stages is in excellent agree-
ent with the different stages of the loading cycles as indicated by

he stress–strain curves of the mechanical test and the stress evolu-
ion in earthquake models such as the intermittent criticality model
Ben-Zion et al. 2003 ). Accordingly, the observed stable stage may
orrespond to the initial elastic deformation in each cycle where a
ault is dominantly locked. The transitional stage often corresponds
o a stress level beyond the fault yield stress leading to some small
ut stable events and increasing AE activity . Finally , the unstable
tage terminating each loading cycle corresponds to the final de-
ormation stage around peak stress leading to a cascade of small
nd large slip events, where large AE events are associated with
ailure of asperities. The final slip events typically coincide with
 maximum in AE activity (Figs 2 b, c and d). It is also worth to
e noted that we explored 4 and 5 classes, but no logical patterns
mong various stages were obtained, at least in our dataset. In fact,
he complexity of data distribution in the feature space is much
ore complex than to see similar patterns for a higher number of
lasses. 

Overall, the unstable stage contains 28 per cent of a cycle in
verage for both large and small slips. For the large slips only, the
v erage cov erage of unstable stage is 29.7 per cent of the cycle with
 minimum of 15.6 per cent. This means, for example, for a cycle
ith 1000 s length, the unstable stage is approximately detectable

t least 150 s and in average 300 s before the main slip. 
These results may be compared with other normalization meth-

ds and other clustering algorithms. For example, Lasocki ( 2014 )
roposed an equi v alent dimension (ED) method which is a trans-
ormation of data metric into [0, 1] using a non-parametric kernel-
ased cumulative distribution function. The main concept is that
he lengths of parameter intervals are equi v alent if the probability
or events is the same (Lasocki 2014 ). We normalized all features
ollowing the ED approach and then clustered the data again us-
ng K-means algorithms. Figs 3 (a) and (b) show the results for two
ifferent normalization methods: (a) min-max and (b) ED. As it is
bserved, the results are very similar except for some minor differ-
nces. For comparison among clustering algorithms, we use GMM,
ierarchical and spectral clustering employing three clusters. For
MM, we selected all parameters similar to the K-means param-

ters. The algorithm stops in an epoch from 20 to 40, where the
onvergence tolerance is met before the maximum iteration of 100
s reached. For the hierarchical clustering, the ‘ward’ linkage (Ward
963 ) with Euclidean distance was selected, which minimizes the
ariance of the clusters being merged. Since the number of clus-
ers is known, the algorithm continues to build a full tree covering
ll 3 clusters. In spectral clustering, a radial basis function (RBF)
ernel with Euclidean distance was used to construct the affinity
atrix. Figs 3 (c)–(e) shows the results of these algorithms, where

he results obtained from the GMM and spectral clustering algo-
ithms are not in agreement with the observed loading stages from
tress–strain curves. In contrast, the ‘Ward’ hierarchical cluster-
ng algorithm, similar to K-means, yields the best agreement with
he mechanical loading curves. Since the K-means algorithm is
impler to understand, widely used and computationally efficient,
e use it in the remainder of the paper to investigate the feature

mportance. 

.2 The importance of features 

he resolved stages are in good agreement with the observed me-
hanical stages. Ho wever , the computation of such a large number
f features becomes impractical, especially when applied to field
ata. Hence, it is worthwhile to identify the most significant and
nformative features that capture the main trends within the 47-D
eature space. To accomplish this, we employ a principal component
nalysis (PCA), which involves the eigenvalue decomposition of the
ovariance matrix. The first principal component (PC) accounts for
nly 35 per cent of the total variance in the data, and it requires at
east 14 PCs to capture 85 per cent of the total variance (Fig. 4 a).
ince each PC represents a linear combination of all the features,

he importance of each feature could be e v aluated based on the
eature coefficients constructing the main structure of data. Similar
o regression models where the coefficients are examined to assess
he contribution of each variable, we sort features within PC1 based
n their coefficients (Fig. 4 b). According to this figure, the 12 most
ignificant features in PC1 are related to the AE-rate ( n ) and features
haracterizing clustering and localization ( trp , pma, paf ) computed
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Figure 2. (a) Axial stress evolution of three samples indicated by different grey shading, colour-coded by K-means clustering results for three stages based 
on 47 catalo gue-dri ven features. Temporal e volution of damage is separated into three distinct stages starting with stable (elastic) deformation, followed by a 
transitional stage leading to unstable deformation prior to failure. (b), (c) and (d) show three sections of individual samples, as indicated in (a) overlaid on AE 

magnitudes and colour coded by stage-wise probabilities. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/2/755/7616085 by 130.133.*.* user on 12 April 2024
features (Fig. 4 c) reveals that these important features exhibit the 
highest correlations among themselves (see Fig. A1 for scatterplots 
of independent features). As a result, they construct the primary 
variation or trend within the entire 47-D feature space, which is 
captured by PC1. This implies that it may be possible to replicate 
similar results as shown in Fig. 2 by using only the most important 
features. Therefore, we repeat the same clustering computations, 
but with the 12 most important features (Fig. 5 ). 

Comparing Figs 5 and 2 show that even with reduction in the 
number of features to the 12 most important ones, similar results 
and performance are obtained compared to the use of all features. 
To e v aluate these clustering results with the results obtained by 
all 47-features, we compute the confusion matrix between them 

(Table 2 A). Accordingly, the unstable stage is clustered accurately in 
97 per cent cases even when utilizing only the 12 selected features. 
Ho wever , the stable and transitional stages are clustered almost 
interchangeably, with precisions of 71 and 74 per cent. If the goal 
of clustering is precisely detection of the unstable stage, such as 
forecasting a slip event, then using 12 features may be sufficient. 
Otherwise more features must be used. 

4.3 Clustering using independent features 

In the previous section, we showed that the 12 most important fea- 
tures are primarily derived from 4 independent features ( n , trp , 
pma , paf ), based on different time windows. It is worth noting that 
using small- and long-time windows can result in the generation 
of features with different historical backgrounds (Kwiatek et al. 
2024 ), which could be beneficial for prediction purposes (Karim- 
pouli et al. 2023 ). Ho wever , in the context of clustering, it increases 
the influence of the highly correlated features, decreasing the ef- 
fect of moderate to low correlated features (see Figs 4 and A1 ). 
Based on Fig. A1 , these features are not distributed like as separat 
patches but as continuous trends. This means that using different 
time windows strengthens the role of highly correlated features 
in clustering leading to neglecting the effects of other construc- 
tive features such as b -value and fractal dimension ( b , d2 ). We 
now select 17 independent features according to their importance 
based on the coefficients in PC1, as illustrated in Fig. 4 (b). Ac- 
cording to this figure, regardless of the time window length the 
most important independent features, for example, trp 100, n 90, 
pma 100, paf 100, d2 180, trq 100, b 180 and so on are selected 
among all other features. We put this as the basis of our inde- 
pendent feature selection and, similar to previous section, con- 
duct feature importance and clustering computations, illustrated in 
Fig. 6 . 

The results of the PCA (Fig. 6 a) indicates that the first PC cap- 
tures 36 per cent of the total variance in the data, and it still requires 
at least 7 additional PCs to account for 85 per cent of the vari- 
ances. When sorting the features in PC1 based on their coefficients 
(Fig. 6 b), we observe similar results to those obtained with all 47 
features. Specifically, the AE-rate and clustering-localization fea- 
tures ( n , trp , pma , paf ) remain among the top 4 most important 
features. Fur ther more, we note significant contributions of other 
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Figure 3. A comparison between K-means clustering with (a) min-max and (b) ED normalization methods. Also, these are compared with the results using 
other clustering algorithms such as (c) the GMM, (d) hierarchical clustering (Ward tree) and (e) spectral clustering. 
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eatures such as fractal dimension, b -v alue, intere vent time distri-
ution, and correlation integral ( d2 , b , rx2 , c ), as well as remaining
lustering-localization features ( trq and pfo ). The correlation matrix
f these features (Fig. 6 c) reveals that by removing highly correlated
eatures from different windows, a greater number of independent
eatures emerge as important contributors. Fig. A1 is the counterpart
f the correlation matrix showing the scatterplots of independent
eatures. 

Fig. 7 displays the K-means clustering results based on the 10
ost significant independent features. Comparing these results with

he clustering results obtained using all 47 features (compare Figs 7
nd 2 ), the outcomes exhibit visual similarity, even better than the
lustering outcomes achieved with the 12 most important features
Fig. 5 ). The corresponding confusion matrix (Table 2 B) confirms
hat the first two stages (stable and transitional) are clustered more
ccurately (85 and 86 per cent of cases, respecti vel y) compared
o the previous combination (Table 2 A). The correctly clustered
nstable stage is only slightly reduced to 93 per cent cases. 

 D I S C U S S I O N  

everal studies have revealed that laboratory and natural earth-
uakes may be preceded by a preparatory process reflecting the
tress and damage evolution (McLaskey & Lockner 2014 ; Goebel
t al. 2017 ; Kato & Ben-Zion 2020 ; Picozzi et al. 2023 ). Monitoring
hanges in various parameters associated with natural and induced
ar thquakes is cr ucial to improve forecasting of rupture events, po-
entially estimating TTF and/or the probability of a critical stage
rior to an ev ent. Wav eform-driv en and catalogue-driv en features
rovide a more detailed view into the damage evolution process
eading to dynamic failure, which is still only partly understood
Bolton et al. 2019 ; Kwiatek et al. 2024 ). Recently, ML algorithms
ave of fered ne w insights in seismolo gy and earthquake applications
see Johnson et al. ( 2021 ) and the re vie ws b y Ren et al. ( 2020 ) and

ousavi & Beroza ( 2023 ). In this study, we use unsupervised clus-
ering algorithms to identify evolutionary stages signifying distinct
hases of preparatory processes using 47 catalo gue-dri ven physi-
ally explainable features. Since these features are signatures of the
reparatory process, their combinations show characteristic changes
llowing to relate the extracted stages to physical and mechanical
haracteristics of the evolving deformation process. Hence, our de-
ailed analysis of seismic features may potentially help in upscaling
pplications such as improved traffic light warning systems. 

Our results showed that the separation and clustering of features
aptures the general evolutionary steps in both large and small
lip cycles (Fig. 2 a). For all cycles, the stress increases from a
elative minimum value up to a peak stress level and the data are
ormalized per-slip (see Section 2 ). Ho wever , in some cases the
equence of stages is mixed, and in some other cases the duration
f the final unstable stage is very short relative to the other stages.

art/ggae071_f3.eps


762 S. Karimpouli et al . 

Figure 4. (a) Cumulative eigenvalue percentage versus number of PCs. At least 14 PCs are needed to cover about 85 per cent of the data variance. (b) Ranking 
of features based on their absolute coefficients to form PC1. (c) The correlation matrix of all 47 features. trp as the most important feature, shows the highest 
correlations with n , pma and paf, which are the next most important features. 

Figure 5. Same as Fig. 2 , but based on the 12 most important features of the PCA (Fig. 4 b). 
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Table 2. Confusion matrix between stages using all 47 features and other combinations. For 
each combination (i.e. 3 × 3 matrix), the i th row and j th column indicates the percentage of 
cases with the true label being i th stage and clustered label being j th stage. 

Different combinations of all features Stages Clustering with 47 features 
Stable Transitional Unstable 

A(Fig. 5 ) 12 important features 
different time windows 

Stable 0.71 0.013 0 
Transitional 0.29 0.74 0.028 

Unstable 0 0.24 0.97 
B(Fig. 7 ) 10 important features 

unique time windows 
Stable 0.85 0.039 0 

Transitional 0.15 0.86 0.072 
Unstable 0 0.098 0.93 

Figure 6. Similar to Fig. 4 , but with 17 independent features. W indo ws are selected based on their priority on Fig. 4 b. 
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or example, there is an unstable stage in the middle of a cycle
Fig. 2 b around 2200 and 2500 s, Fig. 2 c around 13 700 s and
ig. 2 d around 18 600 s), a transitional stage in the final unstable
tage (Fig. 2 c around 12 400 s), mixed stable-transitional stages
Fig. 2 b around 3200 s and Fig. 2 d around 18 400 s) and also a
hort-length unstable stage (Fig. 2 b around 2250 s, Fig. 2 c around
2 900 s and Fig. 2 d around 19 300 s). The occurrence of these short-
ime and transient temporal changes in clustering is interpreted as
ollows: 

(i) Kwiatek et al. ( 2024 ) correlated short-lasting AE bursts with
he small-scale slips confined in the sample volume that were mostly
ot reflected in the recorded external stress data due to their local
ppearance. These local Confined Slips Events (CSE) attributed to
ocal asperity failures provide a significant AE footprint with local-
zed AE activity forming distinct foreshock–main shock–aftershock
equences. Regarding the AE magnitude of events ( M AE ), they are
bserv ed, for e xample, in F ig. 2 (b) around 2200 and 2500 s, F ig. 2 (c)
nd 13 700 s, where CSEs with higher magnitude compared to sur-
ounding events happen along a transition stage. To investigate the
elationship between AE magnitudes and stage type, we calculated
he number and proportion of events per second with a magnitude
arger than an arbitrary magnitude ( M AE ), for all stages, as illus-
rated in Fig. 8 . As expected from the Gutenberg–Richter relation,
he number of events with arbitrarily selected M AE > 2.5 is much
maller than low magnitude events (Fig. 8 a) regardless of the stage
ssociation. Ho wever , the proportional number of events among
hree stages (Fig. 8 b) reveal that the stable and transitional stages
re predominantly populated by AE events with small to medium
agnitudes. Events with M AE > 2.7 are dominantly found in stages

ormed during the unstable stage before failure. These stages could
e related to occurrence of CSEs, as for example, in Fig. 2 (d) around
8 350 and 18 600 s that are impossible to be detected even using
tress measurements or by observing the temporal evolution of in-
ividual features. This shows that the proposed clustering method
llows to identify even small footprints of CSEs using the combi-
ation of different features. 
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Figure 7. Same as Fig. 2 , but with 10 most important independent features of the PCA (Fig. 6 b). 

Figure 8. (a) The number of events (per second) with a M > M AE for stable, transitional and unstable stages. (b) Corresponding changes in proportion of 
events with M > M AE for the three stages, showing that large AEs dominate in the ‘unstable’ stage. 
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(ii) Close to the peak stress, the fault surface is in the intermit- 
tent criticality state (Ben-Zion et al. 2003 ). In this stage, long-range 
stress correlations are de veloped b y occurrence of numerous small- 
scale slips (CSE) that lead to local stress drops. At the global scale, 
the sample retreats from failure temporaril y, but ultimatel y the pro- 
gressive smoothing out of the stress field enables a random stress 
perturbation to propagate across the f ault surf ace (see discussion in 
Kwiatek et al. ( 2024 ) for this experiment). The retreat from critical 
state is reflected by AE-features and, thus, temporal changes are 
obtained in clustering occurring at different spatio-temporal scales. 
This is seen in Fig. 2 (c) around 12 400 s and Fig. 2 (b) around 3200 s 
and Fig. 2 (d) around 18 400 s. The criticality could also be respon- 
sible for short-length unstable stages at the end of some small cy- 
cles. Since most of the small cycles are in the intermittent criticality 
state, statistically triggering of some small asperities may not be pre- 
ceded by local foreshocks. A sudden trigger in such asperities could 
lead to a short-length unstable stage as they are found in Fig. 2 (b) 
around 2250 s, Fig. 2 (c) around 12 900 s and Fig. 2 (d) around 
19 300. 

(iii) Note that, in mismatched clustering data, the probability of 
data points belonging to a certain stage (colour codes) is lower 
than the other data. This indicates that certain data points have a 
similar distance to two or more stage centres leading to relati vel y 
low probabilities. 

Unsupervised clustering algorithms have been successfully ap- 
plied for preparatory phase detection (Shi et al. 2021 ; Iaccarino 
& Picozzi 2023 ; Zali et al. 2024 ). In a similar study on double- 
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hear tests performed on smooth faults at low normal stress, Bolton
t al. ( 2019 ) used clustering methods on 43 w aveform-dri ven fea-
ures extracted from AE data. Similar to our results performed on
he rough fault, they identified systematic temporal trends during
he preparatory phase approaching fault slip. Bolton et al. ( 2019 )
emonstrated that 85 per cent of the total variance could be captured
y just the first 2 PCs, while 14 PCs are needed in our data to reach
uch a variance (Fig. 4 a). This difference highlights the highly com-
lex nature of stick-slip processes occurring on naturally fractured
ough faults at high pressures and, potentially, the role of distinct
ypes of features employed (w aveform-dri ven versus catalogue-
riven). 

K-means clustering has also been used in many earthquake-
elated studies for different purposes (Ji et al. 2020 ; Yuan 2021 ; Zali
t al. 2024 ). Ho wever , the best clustering algorithm is not unique and
he algorithm performance depends on the structure of data in the
ata space. For instance, Lasocki ( 2014 ) utilized the ‘Ward’ hierar-
hical clustering algorithm (Ward 1963 ) and successfully identified
emporall y and spatiall y closest earthquake neighbours and e v alu-
ted variations in earthquake clustering over time. Our results also
onfirm the high performance of this method (Figs 3 a and d). Ross
t al. ( 2020 ) used GMM for resolving modes of rupture directivity
n large populations of earthquakes. In our data, this method did not
esult into a separation of stages that compare well with the stress
v olution (F ig. 3 c). Accordingly, all small slip cycles are attributed
o a single unstable stage. 

.1 Applications and upscaling 

ur study shows that catalo gue-dri ven seismic features may serve to
haracterize different stages of the temporal stress evolution leading
o failure. In particular, the approach provides critical stress states of
aults and indicates a potential transition from stable fluid injection
o r un-away r uptures during geother mal reser voir stimulation and
 aste w ater disposal. Similarl y, such a clustering anal ysis may help

o improve earthquake early warning (EEW) systems (Chin et al.
020 ) and volcano monitoring (Retailleau et al. 2022 ) for alerting
igh level risk. To this end, for each online field data, the proba-
ilities of all stages are estimated, which can be used for an alert
ystem. 

Seismic events induced by wellbore stimulation and production
n geothermal reservoirs pose a seismic hazard that has repeatedly
erminated new projects. Mart ́ınez-Garz ón et al. ( 2020 ) classified
ome observations in reservoirs with high potential for unstable
r unaway) ear thquakes as, for example, noticeable drop in b -value,
igh seismic injection efficiency [defined as the ratio of cumulative
eismic radiated energy to hydraulic energy, the time integral of the
umulative injected volume times the average reservoir pore pres-
ure, see Mart ́ınez-Garz ón et al. ( 2020 )], predominance of double-
ouple stress components and abundant triggering and earthquake
nteraction. They suggested that high-frequency seismic monitor-
ng and near-real time analysis of aforementioned parameters is
ssential to identify in due time the transition from stable, pressure-
ontrolled state to the runaway state. Our study attempts to provide
he methodological blueprint and trial set of reliable features that,
oncurrently with hydraulic information, will contribute to assess
otential runaway behaviour. 

There are numerous challenges to upscale the methodology to
eld applications. First, computing such a large number of fea-

ures as used in this study may be impractical due to the increased
ata dimensionality and computational expenses involved. The PCA
dentified the most crucial independent features that form the fun-
amental structure of the data space, including AE event rate ( n ),
lustering-localization features ( pma , paf , trp , trq ), fractal dimen-
ion ( d2 ), b -value ( b ), interevent time distribution ( rx2 ) and correla-
ion integral ( c ). From the results presented in Fig. 7 and Table 2 B,
t is evident that all stages can be detected using just 10 independent
eatures with reasonable accuracy. 

Secondly, at least several earthquake cycles should be involved
n the dataset. In most volcanic monitoring and EEW systems ap-
lications, historical data are available and could be used. Ho wever ,
or geothermal application, for example, in a new project, this may
e problematic. Therefore, it is essential to train a more general
lustering and finetune it on several geothermal fields, which may
e beneficial for new projects. 

Third, all input features have to be available and normalized. The
ormer requires the availability of a high-resolution seismic cata-
ogue. The latter requires careful processing of input data so the
hysical information is not lost. Frequently, preserving the observ-
ble parameter range is a priority from the perspective of physical
nderstanding of processes. For example, in geothermal applica-
ions, seismic injection efficiency is an important parameter po-
entially characterizing the propensity of the reservoir to develop
una way conditions. Ho wever , the injection efficiency may vary over
0 orders of magnitude (Goodfellow et al. 2015 ) posing a challenge
or normalization and training ML models. Likewise, in this study
e use the AE-rate as one of the input parameters. Ho wever , this
arameter varies between the different tectonic settings and is de-
ending on the magnitude of completeness. In Appendix B , we
ropose to either remove this feature or to replace it with exponen-
ially normalized feature. Results show that even with removing of
E rate similar results as Fig. 2 are obtained. 

 C O N C LU S I O N S  

n this study, we applied unsupervised clustering methods to iden-
ify distinct stages of stress evolution leading to failure in labo-
atory experiments on rough faults. We used 47 catalo gue-dri ven
eatures derived from acoustic emission data and found that even
ith an unsupervised clustering feature space is divided into stable,

ransitional and unstable deformation stages. The clustering results
howed a good agreement with the temporal evolution of stress and
he mechanical behaviour of the rock, revealing systematic patterns
f damage accumulation and stress localization before failure. Our
nvestigations demonstrate that: 

(i) The min-max and ED normalization methods, in conjunction
ith K-means and hierarchical clustering algorithms, successfully

dentify different stages of loading in a series of small to large stick-
lip cycles during triaxial compression tests using catalo gue-dri ven
eatures. 

(ii) Although catalo gue-dri ven features are computed over differ-
nt time windows, we observed more compelling clustering results
hen employing independent features. This improvement can be

ttributed to the reduction of data dimensionality and the mitigated
nfluence of highly correlated similar features. 

(iii) The most important features that capture the main trends in
he data are AE event rate, clustering-localization features, frac-
al dimension, b -value, interevent time distribution and correlation
ntegral. These features reflect the physical processes of faulting,
uch as seismicity rate, spatial distribution, magnitude distribution,
emporal clustering and complexity of the rupture process. 
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(iv) These stages allow detection of CSEs even though they are 
not easily observable in the stress curve. 

(v) Even if a normalization problem limits the use of non- 
universal features like AE-rate, omitting such a feature is the sim- 
plest solution with a minor effect on clustering results. This is 
because other highly correlated features could compensate for the 
lack of other features. 
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Ben-Zion , Y. , Ene v a, M. & Liu, Y., 2003. Large earthquake cycles and 
intermittent criticality on heterogeneous faults due to evolving stress and 
seismicity. J. geophys. Res., 108, doi:10.1029/2002JB002121 . 

Beroza , G.C. , Segou, M. & Mostafa Mousavi, S., 2021. Machine learning 
and earthquake forecasting—next steps. Nat. Commun., 12, 1–3. 

Bolton , D.C. , Marone, C., Shokouhi, P., Rivi ère, J., Rouet-Leduc, B., Hulbert, 
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A P P E N D I X  A :  C ATA L O G U E - D R I V E N  

F E AT U R E S  

AE event rate (n): For all events with a magnitude bigger than the 
magnitude of completeness ( M AE > M c ), the AE rate in a time 
window of �T is: 

n = 

N AE 

�T 
(A1) 

where N AE is the number of AE events. 
GR law’s b-value (b): Following to the Gutenberg–Richter law: 

log 10 ( N AE ) = a − bM (A2) 

where N AE is the number of AE events, a and b are productivity and 
relati ve e vent size distribution ( b -value) and M is event magnitude 
( M AE ). In this work, we used the b -positive method (van der Elst 
2021 ). 

Correlation integral (c): The correlation integral computes prob- 
ability of two events with separation distance of r , relative to all 
events as: 

c = lim 

n →∞ 

1 

n 

2 

n ∑ 

i= 0 

n ∑ 

j= 0 
H 

(
r − ∣∣x i − x j 

∣∣) (A3) 

where n indicates the number of data in the analysis time win- 
dow, x the hypocentre coordinates, and H the Heaviside step 
function: 

H = { 1 x> 0 
0 x≤0 (A4) 

Interevent time distribution (r1, rx2): Interevent time ratio is 
computed as: 

R = [ R i ] = 

( T i+ 1 − T i ) / ( T i+ 1 − T i−1 ) , (A5) 

where T i is the origin time of the i t h event of the time-ordered 
sequence of earthquakes above the magnitude of completeness. The 
deviation of distribution of interevent time ratio P ( R) from uniform 

distribution at the distribution edges is calculated as: 

r1 = 

0 . 1 
∫ 

0 
P 

( R 

) dr + 

1 
∫ 

0 . 9 
P 

( R 

) dr − 0 . 2 , (A6) 

The amount of r1 values more than 0 are representatives of 
de viation le vel from the uniform distribution. The de viation of 
P ( R) could also be computed across the whole distribution us- 
ing chi-squared goodness-of-fit measure (Snedecor & Cochran 
1989 ): 

rχ2 = 

1 
∫ 

0 
( P 

( r ) − u 

( r ) ) 2 /u 

( r ) dr (A7) 

where u ( r ) is the uniform distribution. 
Fractal dimension (d2): Using the catalogue data and 3-D loca- 

tion of all events, the fractal dimension could be computed by the 
box-counting method (Hirata et al. 1987 ). Ho wever , it is also com- 
puted using the pair correlation integ ral, c , with separation distance, 
r , as (Lei & Ma 2014 ) as: 

d2 = lim 

r→ 0 

log ( c ) 

log ( r ) 
(A8) 

Magnitude correlation (dm): Following to the method by (David- 
sen et al. 2012 ), for each time window, we start from the vector of 
magnitudes ordered in the time sequence: 

�M = [ � M i ] = [ M i+ 1 − M i ] (A9) 
The magnitudes are correlated (i.e. they do not behave as ran- 
domly drawn from GR distribution) if the PDF is built over the ob- 
served magnitude differences, P ( �M ) is statistically significantly 
different from a distribution P ( � M 

∗) built over the uncorrelated 
vector of magnitudes � M 

∗. Multiple realizations of distribution 
P ( � M 

∗) can be de veloped b y reshuf fling the original catalo gue 
of magnitudes to destroy any potential magnitude correlations. In 
the following, we calculate the deviation between the observed and 
multiple realizations of the reshuffled cumulative distribution func- 
tions: 

δP 

( �m 

) = P ( �M < �m ) − P ( � M 

∗ < �m ) (A10) 

A vector of input magnitudes can be considered uncorrelated 
if the resulting δP ( �m ) is not significantly deviating from 0 for 
all considered magnitude intervals �m at the assumed level of 
significance. 

Clustering and localization features ( trp, trq, pma, pfo, paf ): For 
each event i and j , magnitude-normalized time, T i j and space, R i j , 
components are computed as (Zaliapin et al. 2008 ): 

T i j = t i j 10 −qb m i (A11) 

R i j = ( r i j ) 
d 10 −( 1 −q ) b m i (A12) 

where t i j = t j − t i ( t j > t i ) and r i j are the temporal and spatial 
distances between the events i and j , b is the b -value, d is the 
fractal dimension and m i is the magnitude of the earlier event in 
time. Product (proximity parameter) and ration of normalized time 
and space components are defined as: 

tr p = T i j . R i j (A13) 

trq = T i j / R i j (A14) 

In our study, we identify acoustic emission (AE) clusters that 
display proximity distances smaller than an estimated threshold. 
We classify each AE event that is linked to the parent cluster by 
a distance longer than the threshold as a background event, which 
initiates a new cluster. We define a single cluster as one that contains 
only one background event without any f oreshoc ks or aftershoc ks . 
Clusters with multiple events are referred to as families . The most 
significant event within each cluster is labelled as the main shock , 
while all the events occurring before or after the main shock are 
classified as f oreshoc ks or aftershocks . The temporal evolution of the 
median proximity parameter in a sliding time window is computed 
as: 

ˆ η = median { tr q i } (A15) 

Finally, the fraction of aftershocks (paf), foreshocks (pfo) and 
main shocks (pma) in each examined time window is computed 
from all clusters conditioned that: 

pa f + p f o + pma = 1 (A16) 

Focal mechanisms and deviatoric stress tensor based features 
( vm, s1d, sr, svar ): For each time window, we first calculate median 
Kagan angles (Kagan 1991 ) between each AE focal mechanism and 
20 nearest focal mechanisms (Goebel et al. 2017 ). This provides in- 
formation on local in space variability of the focal mechanism over 
the fault plane, vm, for a particular time window. In the follow- 
ing, vm is calculated as a median from spatially calculated focal 
mechanism variabilities (i.e. it is averaged over the whole fault 
surface). 



Stress evolution by features clustering 769 

Figure A1. Scatter plot of 17 independent features (Table 1 ) in addition to TTF and stress value (Str). For a quantitative comparison see correlation matrix in 
Fig. 6 (c). All axes are scaled into [0, 1]. 
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Stress tensor inversion has been performed using the STRESSIN-
ERSE package (Vavry ̌cuk 2014 ). Local stress tensors have been

stimated from at least 40 AE focal mechanisms using the same
earest-neighbour procedure as employed for the vm parameter. In
he following, from available local stress tensors distributed over
he fault surface, we calculated the median plunge of the maximum
rincipal stress ( s1d ), median stress shape ratio ( sr ) and median
otation between principal stress axes ( svar ). The calculated param-
ters indicate local stress concentrations, and variability in orienta-
ion of the principal stresses, respecti vel y. Since all of these values
re computed per event, the median of locally computed values is
sed. 

All of these features have been computed in different time win-
ows (see the text), w hile F ig. A1 illustrates the distribution of 17
ndependent features as well as TTF and stress. 
P P E N D I X  B :  S T R AT E G I E S  F O R  

H A L L E N G I N G  PA R A M E T E R S  O N  T H E  

LU S T E R I N G  P RO C E S S  

lustering without AE-rate 

lustering operates by capturing the primary patterns within the
ata. In theory, if two features exhibit a strong correlation, the
lustering outcome will remain the same even if one of the features
s removed. The AE-rate n is the first highly correlated feature
elative to trp , indicating that its removal should not significantly
mpact the final clustering outcome. 

We performed K-means clustering using 9 important indepen-
ent features excluding the AE-rate. The resulting confusion matrix
n Table B1 -C compares the clustering results with those obtained
sing all 47 features. The table shows that clustering still performs
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Table B1. Similar to Table 2 . 

Different combinations of all features Stages Clustering with 47 features 
Stable Transitional Unstable 

C 9 important featuresunique 
time windowsremoved 

AE-n 

Stable 0.81 0.046 0.0003 

Transitional 0.19 0.81 0.083 
Unstable 0 0.14 0.92 

D 10 important featuresunique 
time windo wscon verted 

AE-n to EXP(n) 

Stable 0.81 0.044 0.0002 

Transitional 0.19 0.80 0.071 
Unstable 0 0.15 0.93 

D
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well, reaching 81, 81 and 92 per cent of cases for the stable, tran- 
sitional and unstable stages, respecti vel y. The impact of removing 
AE-rate can be observed by comparing the confusion matrices be- 
fore (Table 2 B) and after (Table B1 -C) its removal. As anticipated, 
the correct clustering decreased by 4, 5 and 1 per cent for each 
stage, respecti vel y, re vealing minor ef fect of AE-rate remov al. 

Clustering with a generally nor maliz ed AE-rate 

In order to incorporate the AE-rate in clustering while ensuring 
independence from the data boundaries, a normalization method is 
required that considers the statistical distribution of the data. Such 
methods can be based on either statistical parameter, such as Z- 
score normalization, or exponential functions, such as the softmax 
function (Bridle 1990 ). In this study, we propose a reformulated 
version of the exponential function to define the normalized AE- 
rate ( n norm 

). The most important point is that rather than AE-rate, the 
difference between AE-rate and the background rate or seismicity 
( BS) of the respecti ve geolo gical setting should be considered. 
Therefore, we firstly need a priori information of BS (eq. B1 ), which 
is defined as an average AE-rate of the first part of each labquake 
or earthquake cycle. This is because all features are normalized 
per cycle. The exponent is then defined as a scale to compensate 
difference of the AE-rate and BS as eq. ( B1 ), where a is the scaling 
factor. In our case, we use a = 10 for all three samples assuming 
that BC is a non-zero positive value (eq. B2 ). Accordingly, when 
the AE-rate tends to 0, the n norm 

will be 0 and when the AE-rate 
tends to infinity, the n norm 

will be 1 (eq. B3 ). 

BS = 

1 

N 

N ∑ 

n i , N = first part of each cycle (B1) 

i= 1 
n norm 

= e −( a×BS 
n −BS ) (B2) 

n norm 

= 

{
1 , n → ∞ 

0 , n → 0 
(B3) 

Fig. B1 illustrates both AE-rate n from our experiments and the 
normalized rate n norm 

(scaled-up for visual comparison). For sample 
WgN04, both rates are computed for different time windows (23, 
45, 90 and 180 s). For samples WgN05, and WgN07, the rates are 
shown just for the 180 s time window. The normalized rates n norm 

follow the same trend as n except for the beginning and the end of 
the cycles. 

By substituting the original AE-rates with the corresponding 
normalized rates, we recalculated the clustering results using the 
K-means algorithm. The resulting confusion matrix is presented 
in Table B1 -D. A comparison between these results (Table B1 -D) 
and the results by using original AE-rates (Table 2 B) shows that 
the correct clustering cases of the first two stages has decreased by 
approximately 4 and 6 per cent, while for the unstable stage remains 
unchanged. This reduction may be attributed to using an exponen- 
tial function at the boundaries of the data. Specifically, during the 
initial and final portions of each cycle, the n norm 

values fluctuate 
at a slower rate compared to the original v alues. Consequentl y, 
this leads to a different distribution of the n norm 

relative to the 
primary distribution established by the highly correlated features. 
Note that the correlation coefficient between trq and n , decreased 
from 77 to 39 per cent for trq and n norm 

, confirming a different 
distribution. 
 April 2024
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Figure B1. Comparison between original AE-rate (black) and the proposed normalized version (eq. B2 , blue) for (a–d) different time windows in sample 
WgN04 and for (e–f) the longest time window for the samples WgN05 and WgN07. The normalized values are re-scaled for comparison purpose. 
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