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A B S T R A C T

Agent-based models (ABMs) provide an intuitive and powerful framework for studying social dynamics by
modeling the interactions of individuals from the perspective of each individual. In addition to simulating
and forecasting the dynamics of ABMs, the demand to solve optimization problems to support, for example,
decision-making processes naturally arises. Most ABMs, however, are non-deterministic, high-dimensional
dynamical systems, so objectives defined in terms of their behavior are computationally expensive. In
particular, if the number of agents is large, evaluating the objective functions often becomes prohibitively time-
consuming. We consider data-driven reduced models based on the Koopman generator to enable the efficient
solution of multi-objective optimization problems involving ABMs. In a first step, we show how to obtain
data-driven reduced models of non-deterministic dynamical systems (such as ABMs) that depend potentially
nonlinearly on control inputs. We then use them in the second step as surrogate models to solve multi-objective
optimal control problems. We first illustrate our approach using the example of a voter model, where we
compute optimal controls to steer the agents to a predetermined majority, and then using the example of an
epidemic ABM, where we compute optimal containment strategies in a prototypical situation. We demonstrate
that the surrogate models effectively approximate the Pareto-optimal points of the ABM dynamics by comparing
the surrogate-based results with test points, where the objectives are evaluated using the ABM. Our results
show that when objectives are defined by the dynamic behavior of ABMs, data-driven surrogate models support
or even enable the solution of multi-objective optimization problems.
1. Introduction

Modeling social dynamics and studying the resulting collective phe-
nomena is an important research problem, for instance, in the field of
epidemic modeling, opinion dynamics, mobility, or innovation spread-
ing in ancient times [1–4]. Agent-based models (ABMs) provide an
intuitive yet powerful framework for modeling the interactions of
individuals, small groups, or entire populations. The high level of
modeling flexibility allows users to gain important insights into the
complex dynamic patterns that emerge from the interactions of dis-
crete entities called agents. These agents often follow simple rules that
describe their behavior, making ABMs accessible to both experts and
non-experts without extensive mathematical knowledge. Agent-based
modeling is particularly useful in modeling complex systems where
interactions and environmental factors play a significant role, where
heterogeneity among agents is desired or required, or where agents
can learn and adapt to new situations. In addition to simulating and
forecasting the dynamics of complex ABMs, optimization problems such

∗ Corresponding author at: Department of Mathematics and Computer Science, Freie Universität Berlin, Germany.
E-mail address: niemann@zib.de (J.-H. Niemann).

as optimal control need to be solved. One important use case is to
support decision-making processes.

Optimal control is the process of determining the best set of actions
or inputs to a dynamical system over a given time horizon in order
to achieve a desired objective while satisfying given constraints. There
exist well-established numerical methods to solve complex, nonlinear
optimization problems such as line search, conjugate gradient, or trust
region methods [5,6]. The optimization of ABMs, however, leads to
significant challenges since basic concepts such as derivatives are not
well-defined due to the fact that most ABMs are inherently stochas-
tic and discontinuous. Additionally, most ABMs are high-dimensional
systems comprising thousands of agents, which is often not only de-
sirable but also necessary, e.g., to be able to correctly represent even
small fractions of the total population. Furthermore, many independent
simulations are often required to compute statistical properties such as
means and variances. This renders the simulation of ABMs expensive
vailable online 12 January 2024
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and time-consuming and a more thorough analysis including optimiza-
tion and also sensitivity analysis or uncertainty quantification nearly
impossible.

In this work, we will focus on so-called multi-objective optimization
roblems involving ABMs. These problems arise naturally whenever
ultiple objectives are to be optimized simultaneously, without any
redetermined prioritization. There exist various methods and tech-
iques to solve multi-objective optimization problems, such as scalar-
zation, 𝜀-constraint methods, evolutionary algorithms, particle swarm,
gent-based and multi-agent methods, or set-oriented methods, see [7–
4].

In the setting of ABMs, one way to solve multi-objective opti-
ization problems is to use heuristic methods such as evolutionary

lgorithms. These methods do not rely on derivatives and are simple
o use, see, e.g., [15] and references therein, and are commonly used
or an automatic or guided calibration of ABMs, for example, to fit the
odel against real-world financial market data [16] or biological ob-

ervations [17,18]. Multi-objective calibration can also provide insights
nto parameters or initial conditions that may not be evident through
imulations alone, see [19–24] for recent studies focusing on multi-
bjective calibration of ABMs using heuristic methods. We refer the
eader to [25] for a comprehensive review of calibration techniques.
owever, the lack of (mathematical) convergence properties and the of-

en costly simulation requirements are drawbacks of heuristic methods
or solving multi-objective optimization problems involving ABMs.

Surrogates, either for individual objectives or for the complete
odel, provide a way to reduce the computational effort when opti-
izing ABMs. In this sense, a surrogate refers to a viable substitute

or the original model that has a sufficient level of accuracy and can
e evaluated significantly faster, often by several orders of magnitude.
nterpolation, regression, or machine learning can be used to quickly
btain a surrogate for expensive objectives [10,26]. However, when
odel parameters are changed, these surrogates need to be recalcu-

ated. Instead of replacing expensive objective functions, the entire
odel itself can be replaced by a surrogate model. In [27], a surrogate
odel that approximates the mapping between ABM inputs and the

orresponding response in the output is learned using non-parametric
achine learning for simulation, calibration, and exploration of the
arameter space. Further approaches include, e.g., surrogate mod-
ls based on difference equations [28–30], partial differential equa-
ions [31], or ordinary differential equations (ODEs) [32] to solve
ulti-objective optimization problems involving ABMs. See also [10]

or a recent review on surrogate modeling.
In this work, we use a data-driven method to find suitable surrogate

odels. Data-driven methods prove to be particularly advantageous
or this task as they can extract valuable insights about the behav-
or of dynamical systems solely from data, without relying on prior
nowledge about the system. This makes these methods particularly
ell-suited to address problems where a closed description of the

ystem is not available. Various methods have been developed in recent
ears, e.g., for approximating transfer operators associated with the
ystem [33], for detecting metastable and coherent sets [34], or for
erforming stability analyses [35], as well as for deriving the governing
quations of the underlying dynamics [36–38], model reduction, opti-
ization, and control [39–43]. Following [44], we use the infinitesimal

enerator of the Koopman operator, which is the adjoint of the Perron–
robenius operator associated with the dynamical system and describes
he evolution of observable functions representing any kind of measure-
ent, to obtain a reduced model from ABM simulation data, which is

hen used as a surrogate model to solve a multi-objective optimization
roblem. The reduction of the numerical effort is achieved in two ways:
irst, a data-driven method allows us to obtain a dynamical system
hat models only the required quantities. In our particular case these
re the aggregated dynamics of an ABM, i.e., the collective behavior
f the agents. This corresponds to a dimension reduction. Second, the
educed dynamical model, which serves as a surrogate model, is given
n terms of differential equations, which can in general be simulated
2

ore efficiently than ABMs. The main contributions of this work are:
• We show how generator extended dynamic mode decomposition
(gEDMD) [38], a data-driven method that approximates the in-
finitesimal generator of the Koopman operator, can be extended
to identify the governing equations of non-deterministic dynami-
cal systems with potentially nonlinear dependence on the control
inputs.

• We demonstrate how these reduced models, obtained from ABM
simulation data, can be used as surrogate models to enable the
efficient solution of multi-objective optimal control problems.

• We consider two different use cases, namely linear and nonlinear
dependence on the control inputs for two ABMs, and show for
both ABMs that the Pareto sets computed using the data-driven
surrogate models indeed approximate the Pareto sets of the ABMs.

n this study, we showcase the potential of data-driven surrogate mod-
ls to efficiently address the challenges posed by multi-objective opti-
ization problems associated with the dynamical behavior of ABMs. In
articular when limit models for large numbers of agents are unknown
r non-existent, data-driven surrogate models offer a viable solution
or tackling optimization problems that would otherwise be computa-
ionally infeasible due to the high computational cost of evaluating the
bjectives. Our method requires a significant amount of data, but in
imulation studies where a surrogate model is needed for optimization
r control, data availability is typically not an issue.

The remainder of this paper is organized as follows. In Section 2 we
ntroduce the stochastic Koopman operator and its generator as well as
ulti-objective optimization problems. We then show in Section 3 how

EDMD can be used to obtain data-driven reduced models with linear
nd nonlinear dependence on the control inputs. We demonstrate in
ection 4 how both approaches can be used to find surrogate models
o solve multi-objective optimal control problems for high-dimensional
BMs. We consider the voter model and an ABM modeling the trans-
ission dynamics of SARS-CoV-2. Open questions and future work will

e discussed in Section 5.

. Preliminaries

We will first introduce the required mathematical tools and provide
brief overview of the stochastic Koopman operator and its generator

s well as multi-objective optimization problems.

.1. The Koopman operator and its generator

Let X ⊂ R𝑑 be the state space. We consider stochastic differential
quations (SDEs) with (time-varying) control input 𝑢∶R≥0 → R𝑑𝑢 of
he form

𝑋𝑡 = 𝑏(𝑋𝑡, 𝑢) d𝑡 + 𝜎(𝑋𝑡, 𝑢) d𝑊𝑡, (1)

here {𝑋𝑡}𝑡≥0 ∈ X is a time-homogeneous stochastic process and
∶ R𝑑 × R𝑑𝑢 → R𝑑 denotes the drift term, 𝜎 ∶ R𝑑 × R𝑑𝑢 → R𝑑×𝑠 the
iffusion term, and 𝑊𝑡 an 𝑠-dimensional Wiener process. Let 𝛷𝑡 denote
he associated flow map and 𝑓 ∈ 𝐿∞(X) a real-valued observable of
he system representing any kind of measurement. Assuming that 𝑢 is
onstant, the semigroup {𝑡

𝑢 }𝑡≥0 of Koopman operators 𝑡
𝑢 ∶𝐿

∞(X) →
∞(X) is defined by

𝑡
𝑢𝑓 )(𝑥) = E[𝑓 (𝛷𝑡(𝑥, 𝑢)) ∣ 𝑋𝑡 = 𝑥],

.e., the conditional expectation of 𝑓 (𝛷𝑡(𝑥, 𝑢)) given 𝑋𝑡 = 𝑥. The
oopman operator is an infinite-dimensional, linear and non-expansive
perator forming a contraction semigroup. Provided that 𝑓 is twice con-
inuously differentiable, it can be shown using Itô’s lemma that the in-
initesimal generator 𝑢 of the Koopman operator can be characterized
y

𝑢𝑓 )(𝑥) =
𝑑
∑

𝑏𝑖(𝑥, 𝑢)
𝜕𝑓
𝜕𝑥

+ 1
2

𝑑
∑

𝑑
∑

𝑎𝑖𝑗 (𝑥, 𝑢)
𝜕2𝑓

𝜕𝑥 𝜕𝑥
,

𝑖=1 𝑖 𝑖=1 𝑗=1 𝑖 𝑗
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where 𝑎 = 𝜎 𝜎⊤. We refer to it as the Koopman generator , see [45] for
details. The function 𝑣(𝑡, 𝑥) ∶= (𝑡

𝑢𝑓 )(𝑥) satisfies 𝜕𝑣
𝜕𝑡 = 𝑢𝑣, which is

second-order partial differential equation commonly known as the
olmogorov backward equation, see [46]. For deterministic dynamical
ystems, i.e., 𝜎 ≡ 0, we obtain a first-order partial differential equation,
he Liouville equation. See [38] for details.

emark 2.1. We denote the Koopman operator and its generator for
n uncontrolled system of the form (1), i.e., 𝑢 ≡ 0, by 𝑡

0 and 0,
espectively.

.1.1. Generator extended dynamic mode decomposition
Due to the infinite-dimensional nature of the Koopman operator,

t is common practice to consider projections onto finite-dimensional
ubspaces. We briefly introduce generator extended dynamic mode de-
omposition (gEDMD), a method which approximates the Koopman
enerator. For details, see [38]. We will assume for now that 𝑢 ≡ 0 and
mit any subscripts to simplify the notation. Given 𝑚 measurements of
he system’s state { 𝑥𝑙 }𝑚𝑙=1, its drift { 𝑏(𝑥𝑙) }𝑚𝑙=1, and diffusion { 𝜎(𝑥𝑙) }𝑚𝑙=1,

as well as a set of basis functions {𝜓𝑘 }𝓁𝑘=1, which can be written in
vector form as 𝜓(𝑥) = [𝜓1(𝑥),… , 𝜓𝓁(𝑥)]⊤, we define

d𝜓𝑘(𝑥) = (𝜓𝑘)(𝑥) =
𝑑
∑

𝑖=1
𝑏𝑖(𝑥)

𝜕𝜓𝑘
𝜕𝑥𝑖

(𝑥) + 1
2

𝑑
∑

𝑖=1

𝑑
∑

𝑗=1
𝑎𝑖𝑗 (𝑥)

𝜕2𝜓𝑘
𝜕𝑥𝑖 𝜕𝑥𝑗

(𝑥)

for 𝑘 = 1,… ,𝓁. We then construct the matrices 𝛹𝑋 , d𝛹𝑋 ∈ R𝓁×𝑚 for all
measurements and basis functions, i.e.,

𝛹𝑋 =
⎡

⎢

⎢

⎣

𝜓1(𝑥1) … 𝜓1(𝑥𝑚)
⋮ ⋱ ⋮

𝜓𝓁(𝑥1) … 𝜓𝓁(𝑥𝑚)

⎤

⎥

⎥

⎦

and d𝛹𝑋 =
⎡

⎢

⎢

⎣

d𝜓1(𝑥1) … d𝜓1(𝑥𝑚)
⋮ ⋱ ⋮

d𝜓𝓁(𝑥1) … d𝜓𝓁(𝑥𝑚)

⎤

⎥

⎥

⎦

,

(2)

and assume that d𝛹𝑋 =𝑀𝛹𝑋 . In general, this problem cannot be solved
exactly such that we solve it in the least-square sense by minimizing
‖d𝛹𝑋 −𝑀𝛹𝑋‖𝐹 , where ‖ ⋅‖𝐹 denotes the Frobenius norm. The solution
is given by 𝑀 = d𝛹𝑋𝛹+

𝑋 , where 𝛹+
𝑋 denotes the Moore–Penrose pseu-

doinverse of 𝛹𝑋 . The matrix 𝐿 = 𝑀⊤ is an empirical estimate of the
matrix representation of the infinitesimal generator . The convergence
of gEDMD in the infinite data limit to a Galerkin approximation of
the generator, i.e., a projection onto the space spanned by the basis
functions, was shown in [38].

2.1.2. System identification
Assuming that X is bounded so that the full-state observable 𝑔(𝑥) = 𝑥

s contained component-wise in 𝐿∞(X), we can use the observable
to reconstruct the governing equations of the underlying dynamical
system. We make the assumption that 𝑔(𝑥) = 𝑥 can be represented
by the basis functions 𝜓 , which can easily be accomplished by adding
the observables { 𝑥𝑖 }𝑑𝑖=1 to the set of basis functions. The system can
irectly be represented in terms of the basis functions,

𝑔)(𝑥) = 𝑏(𝑥) ≈ (𝐿𝐵)⊤ 𝜓(𝑥),

here we define 𝐵 ∈ R𝓁×𝑑 such that 𝑔(𝑥) = 𝐵⊤ 𝜓(𝑥). For determin-
stic dynamical systems, this is equivalent to SINDy [47]. For non-
eterministic systems and for 𝜓𝑘(𝑥) = 𝑥𝑖𝑥𝑗 , we identify the diffusion

term using

𝑎𝑖𝑗 (𝑥) ≈ (𝜓𝑘)(𝑥) − 𝑏𝑖(𝑥)𝑥𝑗 − 𝑏𝑗 (𝑥)𝑥𝑖,

where we assume that 𝑏𝑖 and 𝑏𝑗 as well as 𝑏𝑖(𝑥)𝑥𝑗 and 𝑏𝑗 (𝑥)𝑥𝑖 are
contained in the space spanned by the basis functions. If it is necessary
to obtain the drift term 𝜎, it can be obtained by computing a Cholesky
3

decomposition of 𝑎. For details, see [38].
2.2. Multi-objective optimization

Multi-objective optimization concerns the simultaneous optimization
f 𝑘 – often contradictory – objective functions 𝑓1,… , 𝑓𝑘 ∶ R𝑛 → R.

For example, one might want to minimize the spread of an infectious
disease with curfews while at the same time also trying to minimize
the socioeconomic cost of this intervention. A decision maker must find
a compromise, i.e., an agreement reached through mutual concessions
that often alter or combine the original goals. An optimal compromise
cannot be further improved without worsening at least one of the other
goals. This is called Pareto-optimal. In contrast to single-objective opti-
mization, where conflicting objectives are prioritized a priori, e.g., by a
weighted sum of the objectives, multi-objective optimization prioritizes
a posteriori. This means that if we know Pareto-optimal points, we can
select a solution according to the preference of each objective.

We consider multi-objective optimization problems of the form

min
∈R𝑛

𝐹 (𝑦) =
[

𝑓1(𝑦),… , 𝑓𝑘(𝑦)
]⊤ ,

.t. 𝑔𝑖(𝑦) ≤ 0, 𝑖 = 1,… , 𝑞,

ℎ𝑗 (𝑦) = 0, 𝑗 = 1,… , 𝑝,

(3)

here 𝐹 ∶R𝑛 → R𝑘, 𝑔∶R𝑛 → R𝑞 and ℎ∶R𝑛 → R𝑝 for 𝑔 ∶= [𝑔1,… , 𝑔𝑞]⊤
nd ℎ ∶= [𝑔1,… , 𝑔𝑝]⊤. The space of all feasible decisions is called the
easible decision space  and is given by the constraints in (3), i.e.,

= {𝑦 ∈ R𝑛 ∣ 𝑔(𝑦) ≤ 0, ℎ(𝑦) = 0},

here ≤ is defined component-wise. A decision 𝑦⋆ ∈  is called
(globally) Pareto-optimal or (global) Pareto point if there is no 𝑦 ∈ 
that dominates 𝑦⋆, i.e., 𝐹 (𝑦) ≠ 𝐹 (𝑦⋆) and 𝐹 (𝑦) ≤ 𝐹 (𝑦⋆) hold component-
wise. A decision 𝑦⋆ is called locally Pareto-optimal or local Pareto point if
there exists 𝜖 > 0 such that 𝑦⋆ is Pareto-optimal in a neighborhood 𝑦 ∈
𝑈𝜖(𝑦⋆) ⊂ . The set of all Pareto-optimal points is called Pareto set and
its image under the map of the objective functions Pareto front [8,14].

Example 2.2. Consider the multi-objective optimization problem (3)
from [13] with objective functions 𝑓𝑖 ∶ → R given by

𝑓1(𝑦) = (𝑦 − 1.5)2,

𝑓2(𝑦) = 𝑦4 − 4 𝑦3 + 4 𝑦2

and feasible decision space  = [−0.5, 2.5]. Fig. 1(a) shows both
objective functions. The set of locally Pareto-optimal points is given by
[0, 1] ∪ [1.5, 2]. Fig. 1(b) shows not only the Pareto front as dotted and
dashed line segments, but also that only the interval [1.5, 2] is globally
Pareto-optimal, as every point in [1.5, 2] clearly dominates all points in
the other interval. ▵

We will use a set-oriented method known as sampling algorithm [13],
which computes a box-covering of the Pareto set. The sampling algo-
rithm is an iterative two-step process, which in a first step subdivides
a collection of boxes with respect to one coordinate and then discards
every box that does not pass a set-wise non-dominance test, i.e., boxes
that only contain dominated points. Fig. 2 shows how the boxes and the
Pareto front covering evolve using the optimization problem introduced
in Example 2.2. A complete description of the sampling algorithm can
be found in Appendix A. For further details, see also [8,13,14,48].

Each box can be efficiently represented by a center and a radius,
so that all collections can be stored in a binary tree whose memory
consumption grows linearly with 𝑛, see [49] for the MATLAB toolbox
GAIO, which contains binary tree data structures and the algorithms
for set-oriented calculations.

3. Koopman-based surrogate models with control

For the following discussion, we consider non-deterministic dynam-
ical systems with control of the form (1). The aim of this section
is to learn the Koopman generator associated with such systems. We
consider two cases: (i) we assume that the control 𝑢 acts linearly on (1),
and (ii) we will consider the more general case, i.e., 𝑢 acts nonlinearly

on (1).
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t

Fig. 1. (a) Objective functions 𝑓1 and 𝑓2 on the interval  = [−0.5, 2.5] with Pareto set (gray shaded) and (b) Pareto front (dotted and dashed). The dotted line segment shows
hat only points in [1.5, 2] are globally Pareto-optimal since they clearly dominate all points in [0, 1].
Fig. 2. First four iterations of the sampling algorithm demonstrated using Example 2.2. The dashed lines represent the boundaries of each box. In this example, each box is
split in half before a non-dominance test is performed. The plots on the right show the images of the current box collections (gray/shaded) covering the true global Pareto front
(black/solid).
3.1. Linear case: Generator interpolation

We extend the recent result in [43] for deterministic control-affine
dynamical systems to non-deterministic control-affine dynamical sys-
tems.
4

Definition 3.1. A non-deterministic dynamical system of the from (1)

is called control-affine if

𝑏(𝑋𝑡, 𝑢) = 𝑏0(𝑋𝑡) +
𝑑𝑢
∑

𝑏𝑖(𝑋𝑡) 𝑢𝑖, (4)

𝑖=1
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𝑎(𝑋𝑡, 𝑢) = 𝑎0(𝑋𝑡) +
𝑑𝑢
∑

𝑖=1
𝑎𝑖(𝑋𝑡) 𝑢𝑖, (5)

here 𝑢𝑖 ∶R≥0 → R and 𝑎 = 𝜎 𝜎⊤.

heorem 3.2. Given a space of twice continuously differentiable functions
nd controls 𝑢1, 𝑢2, if the dynamics (1) are control-affine, then the Koopman
enerators are control-affine, i.e.,

𝛼1𝑢1+𝛼2𝑢2 = 0 + 𝛼1𝑢1 + 𝛼2𝑢2 ,

here 𝑢 = 𝑢 − 0 and 𝛼1, 𝛼2 ∈ R.

The proof of Theorem 3.2 is analogous to the proof for deterministic
ontrol-affine systems, which can be found in, e.g., [43]. For the sake
f completeness it is included in Appendix B.

xample 3.3. Consider the nonlinear control-affine system

d
d𝑡

[

𝑥1
𝑥2

]

=
[

(𝛾 + 𝑔(𝑢)) 𝑥1
𝛿 (𝑥2 − 𝑥21)

]

, (6)

where in this example 𝑢 ≡ 𝑐𝑜𝑛𝑠𝑡 and 𝑔 is a function. Defining 𝑓1 ∶= 𝑥1,
𝑓2 ∶= 𝑥2, and 𝑓3 ∶= 𝑥21, the system has a finite-dimensional, linear
representation

d
d𝑡

⎡

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝛾 + 𝑔(𝑢) 0 0
0 𝛿 −𝛿
0 0 2 (𝛾 + 𝑔(𝑢))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐿𝑢

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑓1
𝑓2
𝑓3

⎤

⎥

⎥

⎦

, (7)

where 𝐿𝑢 is a finite-dimensional representation of the generator 𝑢.
Following Theorem 3.2, if 𝑔 is linear, 𝐿𝑢 can be split into

𝐿𝑢 =
⎡

⎢

⎢

⎣

𝛾 0 0
0 𝛿 −𝛿
0 0 2 𝛾
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝐿0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑢) 0 0
0 0 0
0 0 2 𝑔(𝑢)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐴𝑢

⎤

⎥

⎥

⎦

,

where 𝐴𝑢 is a finite-dimensional representation of 𝑢 and linear with
respect to 𝑢. Thus, 𝐿𝑢 is control-affine. ▵

3.2. Nonlinear case: State augmentation

To motivate what follows, take again a look at Example 3.3 and
assume that 𝑔 is nonlinear. The system (6) can still be represented as
in (7), however, nonlinearity of 𝑔 prohibits to use Theorem 3.2 as the
operator 𝐴𝑢 is not linear with respect to 𝑢. A workaround is to augment
the system so that the control 𝑢 is represented as an additional state,
i.e., the augmented system is given by

d
d𝑡

⎡

⎢

⎢

⎣

𝑥1
𝑥2
𝑢

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(𝛾 + 𝑔(𝑢)) 𝑥1
𝛿 (𝑥2 − 𝑥21)

0

⎤

⎥

⎥

⎦

.

A closed representation of the augmented system as in (7) for the non-
augmented system (6), however, is not possible any longer. We will
now show how gEDMD can be extended to control inputs. The idea
of augmenting the state space has also been used in other data-driven
methods such as DMDc [50] or EDMDc [39], both of which provide
approximations of the Koopman operator using linear and nonlinear
basis functions, respectively, or SINDYc [51], which can be used to find
the governing equations of a dynamical system with control.

For a general system (1), we assume that we have a set of 𝑚
measurements of the augmented system state { [𝑥𝑙 , 𝑢𝑙] }𝑚𝑙=1 as well
as { �̇�𝑙 }𝑚𝑙=1, which is trivial as we have full access to 𝑢, i.e., we
can choose its values and thus know its derivative. Let [𝑥𝑙 , 𝑢𝑙] =
[𝑥𝑙1 ,… , 𝑥𝑙𝑑 , 𝑢𝑙1 ,… , 𝑢𝑙𝑑𝑢 ] ∈ R𝑑+𝑑𝑢 . To simplify the notation, let �̄�𝑙 ∶=
5

[𝑥𝑙 , 𝑢𝑙]. Additionally, assume that we have a set of the augmented drift a
{ [𝑏(�̄�𝑙), �̇�𝑙] }𝑚𝑙=1 as well as the augmented diffusion { 𝜎(�̄�𝑙 , 𝑢𝑙) }𝑚𝑙=1, which
is defined as

𝜎(�̄�𝑙 , 𝑢𝑙) ∶=
[

𝜎(�̄�𝑙) 𝜎12(𝑢𝑙)
𝜎21(𝑢𝑙) 𝜎22(𝑢𝑙)

]

∈ R(𝑑+𝑑𝑢)×(𝑑+𝑑𝑢),

where 𝜎12(𝑢𝑙) ∈ R𝑑×𝑑𝑢 , 𝜎21(𝑢𝑙) ∈ R𝑑𝑢×𝑑 and 𝜎22(𝑢𝑙) ∈ R𝑑𝑢×𝑑𝑢 denote
the diffusion terms of the control 𝑢 (typically zero). We assume that
either both drift 𝑏(�̄�𝑙) and diffusion 𝜎(�̄�𝑙) are known or that they can be
estimated pointwise. Let {𝜓𝑘 }𝓁𝑘=1 denote the set of basis functions and
define

d𝜓𝑘(�̄�) ∶= (𝜓𝑘)(�̄�) =
𝑑+𝑑𝑢
∑

𝑖=1
𝑏𝑖(�̄�)

𝜕𝜓𝑘
𝜕�̄�𝑖

(�̄�) + 1
2

𝑑+𝑑𝑢
∑

𝑖=1

𝑑+𝑑𝑢
∑

𝑗=1
𝑎𝑖𝑗 (�̄�)

𝜕2𝜓𝑘
𝜕�̄�𝑖 𝜕�̄�𝑗

(�̄�),

where 𝑎 = 𝜎(�̄�𝑙 , 𝑢𝑙) 𝜎(�̄�𝑙 , 𝑢𝑙)⊤. The partial derivatives of the basis func-
tions can be precomputed analytically. We can then compute the
gEDMD matrices 𝛹𝑋 and d𝛹𝑋 in (2) for �̄�1,… , �̄�𝑚 and solve the min-
imization problem min ‖d𝛹𝑋 −𝑀𝛹𝑋‖𝐹 to obtain a finite-dimensional
empirical estimate of the generator 𝐿 =𝑀⊤.

Note that we make three important restrictions on the feasible
controls: (i) the controls are given by families of solutions of ODEs,
(ii) the controls act on long time scales only (e.g., bang–bang controls
are not allowed), and (iii) the controls are representable in terms of the
basis functions. However, these constraints do not limit our approach
for the following reasons: (i) in most scenarios, controls are typically
given in such a form, (ii) rapidly changing controls are unrealistic in
the context of ABMs, and (iii) insufficient and inappropriately chosen
basis functions lead to inaccurate results.

Example 3.4. To illustrate how the state augmentation works, con-
sider a stochastic SIR model to simulate an infectious disease and its
containment with non-pharmaceutical interventions. For simplicity, we
consider a population of size 𝑁 and assume that an infection occurs
at rate 𝛽(𝑢), which depends on the disease itself and the containment
strategy 𝑢(𝑡). Once infected, individuals recover at rate 𝛾 and cannot
be re-infected. Defining the system state 𝑋𝑡 ∶= [𝑆𝑡, 𝐼𝑡]⊤, where 𝑆𝑡
and 𝐼𝑡 denote the numbers of susceptible and infected individuals,
respectively, the stochastic SIR model is given by

d𝑆𝑡 = −𝛽(𝑢)
𝑆𝑡𝐼𝑡
𝑁

d𝑡 − 1
𝑁

√

𝛽(𝑢)𝑆𝑡𝐼𝑡 d𝑊1(𝑡),

d𝐼𝑡 =
[

𝛽(𝑢)
𝑆𝑡𝐼𝑡
𝑁

− 𝛾 𝐼𝑡

]

d𝑡 + 1
𝑁

√

𝛽(𝑢)𝑆𝑡𝐼𝑡 d𝑊2(𝑡) −
√

𝛾 𝑁−1 𝐼𝑡 d𝑊3(𝑡).

he number of recovered individuals is given by 𝑅𝑡 = 𝑁 −𝑆𝑡 − 𝐼𝑡 since
he size of the population is assumed to be constant.

It has been known – not only since the COVID-19 pandemic – that
on-pharmaceutical interventions such as social distancing, wearing
ace masks, or lockdowns can slow or prevent the spread of infectious
iseases. Such interventions can be expected to have a nonlinear effect
n the dynamics because the probability of infection changes nonlin-
arly with the viral load in the air to which a person is exposed [52].
or this toy model we assume that 𝑢 acts quadratically via 𝛽(𝑢) =
̃(1 − 𝑢(𝑡))2 for time 𝑡 ≥ 0. The system is not control-affine. Thus,
heorem 3.2 cannot be applied. State augmentation, on the other hand,
an be applied. We assume that the control 𝑢 is a continuously relaxed
ntervention of the form 𝑢(𝑡) = 𝐴𝑄∕(1 + 𝑒𝐵 𝑡). We set 𝛽 = 0.5, 𝛾 = 0.05,

= 0.5, 𝑄 = 1 000, and 𝐵 = 0.1. Fig. 3(a) shows the trajectories
or susceptible and infected individuals as a fraction of the population
ithout (solid) and with control 𝑢 (dashed). The control 𝑢(𝑡) is shown

n Fig. 3(b).
To compute a representation of the Koopman generator, we aug-

ent the system state by the control 𝑢 and generate 𝑚 = 1 000 uniformly
istributed training points { [𝑥𝑙 , 𝑢𝑙] }, where 𝑥𝑙 ∶= [𝑆𝑡∕𝑁, 𝐼𝑡∕𝑁]⊤𝑙 . We
se exact values for the augmented drift { [𝑏(𝑥𝑙 , 𝑢𝑙), �̇�𝑙] }𝑚𝑙=1 as well as the

𝑚
ugmented diffusion { 𝜎(𝑥𝑙 , 𝑢𝑙) }𝑙=1. For the basis functions we choose
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Fig. 3. (a) Trajectories of susceptible and infected agents as a fraction of the population for the SIR model with (dashed) and without (solid) control 𝑢 and (b) control 𝑢(𝑡) applied
to SIR model.
monomials up to degree 5. The system is correctly identified with drift
and diffusion terms given by

𝑏(𝑥, 𝑢) =
⎡

⎢

⎢

⎣

−𝛽 𝑥1𝑥2(1 − 𝑢)2

𝛽 𝑥1𝑥2(1 − 𝑢)2 − 𝛾 𝑥2
𝐵 𝑢 + 𝐵

𝐴 𝑢
2

⎤

⎥

⎥

⎦

and

𝑎(𝑥, 𝑢) = 1
𝑁

⎡

⎢

⎢

⎣

𝛽 𝑥1𝑥2(1 − 𝑢)2 −𝛽 𝑥1𝑥2(1 − 𝑢)2 0
−𝛽 𝑥1𝑥2(1 − 𝑢)2 𝛽 𝑥1𝑥2(1 − 𝑢)2 + 𝛾 𝑥2 0

0 0 0

⎤

⎥

⎥

⎦

.

Since in general we are only interested in identifying the dynamics
of 𝑋𝑡 = [𝑆𝑡, 𝐼𝑡]⊤ and not the dynamics of the control 𝑢 (which is
actually known), we could relax the third restriction concerning the
representation in terms of the basis function and neglect the columns
in 𝐿 corresponding to 𝑢. For further details on system identification and
model reduction using gEDMD, see [38]. ▵

4. A multi-objective optimization approach for ABMs

The aim in this section is to find the Pareto set of 𝑛 controls 𝑢𝑖 that
optimize 𝑘 objective functions 𝑓𝑖 ∶ → R in (3) depending on the state
of an ABM. We assume that each function 𝑓𝑖 can be written as

𝑓𝑖(𝑋, 𝑢) = E

[

∫

𝑡1

𝑡0
𝑟𝑖(𝑋(𝑡; 𝑢), 𝑢(𝑡)) d𝑡 + 𝑠𝑖(𝑋(𝑡1, (𝑢(𝑡1))))

]

, 𝑡0 < 𝑡1,

where 𝑟𝑖 and 𝑠𝑖 are the running and terminal cost functions depending
on state 𝑋(𝑡; 𝑢) of an ABM and 𝑢 is the control. An optimal control 𝑢⋆
is given by a solution of the multi-objective optimization problem

min
𝑢∈𝑈

𝐹 (𝑋, 𝑢),

where 𝐹 (𝑋, 𝑢) =
[

𝑓1(𝑋, 𝑢),… , 𝑓𝑘(𝑋, 𝑢)
]⊤ and 𝑈 = {𝑢∶ R≥0 → R𝑑𝑢 ∣

𝑢(⋅) measureable} the space of admissible controls. Three major issues
occur when optimizing ABMs:

(i) Computational complexity: Most ABMs involve thousands of
agents and simulate complex interactions between agents, of-
ten at high time resolution, making the calculation of single
trajectories computationally expensive.

(ii) Stochasticity: Most ABMs are inherently stochastic so that
many independent simulations are required to compute statis-
tical properties such as E[ ⋅ ].

(iii) Discontinuity: Most ABMs are inherently discontinuous since
agents make discrete decisions, and thus single trajectories are
6

not differentiable with respect to 𝑢.
By replacing the ABM with a surrogate model that is less expensive
to evaluate and directly approximates expectations, we address the
problems of computational complexity and stochasticity. It has recently
been shown in [53] that under certain conditions it is possible to obtain
reduced models, given by differential equations, from ABM data that
accurately approximate the aggregated dynamics of ABMs, i.e., the
collective behavior of the agents. That is, instead of dealing with the
ABM state space whose size grows combinatorially as 𝑑𝑁 , where 𝑁
denotes the number of agents and 𝑑 the number of states each agent
can have, the space of the surrogate model is at most 𝑑-dimensional
(with 𝑑 ≪ 𝑁). Together with the results presented in Section 3, we
now construct computationally cheap surrogate models that preserve
features relevant for optimizing ABMs.

The sampling algorithm introduced in Section 2.2 avoids the prob-
lem of discontinuity and the resulting nonexistence of derivatives since
it is derivative-free, i.e., it relies only on function evaluations. We will
demonstrate in Sections 4.1 and 4.2 how data-driven reduced models
of ABMs can be effectively used as surrogate models in multi-objective
optimization problems.

Remark 4.1. For the sake of illustration, we will only consider constant
controls. Nevertheless, the approach can also be applied to time-varying
controls such as different levels of curfews that change, e.g., every
week. Additionally, having a reduced dynamical model based on the
Koopman formalism opens up the possibility to use existing methods
for controlling linear problems.

We will now introduce two ABMs which will be used as examples
to demonstrate the different approaches described in Section 3.

The voter model. The voter model was first introduced in [54] and
has since not only been used in the social context but also in many
other contexts, such as chemical systems or ant colonies [55–57]. In
its basic definition, 𝑁 identical agents interact with each other at any
time in a given network and change their opinions based on (stochastic)
transition rules. In this work, we consider the model with two opinions
and two transition rules. Given two agents with opinions 𝑆𝑖 ≠ 𝑆𝑗 , the
first transition rule is given by

𝑅𝑖𝑗 ∶ 𝑆𝑖 + 𝑆𝑗
𝛾𝑖𝑗
←←←←←←←←←←←→ 2𝑆𝑗 ,

which is a second-order transition, meaning that an agent with opinion
𝑆𝑖 adopts another agent’s opinion 𝑆𝑗 at rate 𝛾𝑖𝑗 . The second transition
rule is a first-order transition of the form

′
𝛾′𝑖𝑗
𝑅𝑖𝑗 ∶ 𝑆𝑖 ←←←←←←←←←←←→ 𝑆𝑗 ,
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Fig. 4. Aggregated trajectories of (a) the voter model and (b) the GERDA model for the parameters given in Table 2.
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here an agent changes its opinion independently of all other agents
t rate 𝛾 ′𝑖𝑗 . Gillespie’s stochastic simulation algorithm [58], which con-
tructs exact realizations in continuous time, can be used to simulate
he ABM. We choose 𝑁 = 500 agents and set 𝛾12 = 1, 𝛾21 = 2, and
′
12 = 𝛾 ′21 = 0.1. A single aggregated simulation is shown in Fig. 4(a).
hat is, we visualize the number of agents with opinion 𝑆1 at time 𝑡. The
rajectory for 𝑆2 is omitted due to conservation of 𝑁 , i.e., 𝑆2 = 𝑁 −𝑆1.
or further details, especially with respect to convergence to ordinary
r stochastic differential equations, we refer the reader to [59].

he Georeferenced Demographic Agent-based model. The second example
s the individualized GEoReferenced Demographic Agent-based model
GERDA) for the transmission of SARS-CoV-2 and the disease dynamics
f COVID-19 [1]. Using detailed location data, a demographically
atched population, and realistic, hourly schedules for each agent, this
odel simulates contacts between people in the given locations and the

esulting infection events. Data from multiple towns, e.g., Tepoztlán
Mexico), Zikhron Ya’akov (Israel), or Gangelt (Germany) have been
sed to calibrate the GERDA model and analyze the respective infection
ynamics. In this paper, the calibrated data of the German municipality
f Gangelt is used. For more information, see the authors’ original
ublication. The model is implemented in Python and is available at
ttps://ford.biologie.hu-berlin.de/jwodke/corona_model.

To simplify the disease dynamics, which originally distinguishes be-
ween agents that are susceptible, diagnosed, hospitalized, in intensive
are, and recovered or deceased, we summarize and consider only the
lassical three compartments 𝑆 (susceptible), 𝐼 (infected), and 𝑅 (re-
overed) for the aggregated dynamics. Since in the subsequent analysis
e consider homeschooling and working from home as controls, and

ince a separation by age is also justified by different infection rates
see, e.g., [60]), we group the agents by children (age 0 to 18 years)
nd adults (19+) and use the subscripts c and a, respectively. Fig. 4(b)
hows an aggregated trajectory of a single simulation of GERDA in
erms of numbers of susceptible, infected, and recovered adults and
hildren for the parameters given in Table 2. The trajectories for 𝑅a
nd 𝑅c are omitted due to the conservation of the number of adults 𝑁a
nd children 𝑁c.

.1. Multi-objective optimization of the voter model

In order to win over as many voters as possible to opinion 𝑆2, we
ant to find combinations of push and pull arguments that simultane-
usly move voters away from opinion 𝑆1 and towards opinion 𝑆2. We
epresent this behavior in terms of the control 𝑢 = [𝑢push, 𝑢pull]⊤ ∈ ,
here 𝑢push acts on the transition rate 𝛾12 from 𝑆1 to 𝑆2 and 𝑢pull acts
nalogously on 𝛾 . We assume that 𝑢 acts linearly on the dynamics
7

21
iven by the ABM, i.e., 𝛾12(𝑢) = �̃�12+𝑢push and 𝛾21(𝑢) = �̃�21+𝑢pull, and set
up a multi-objective optimization problem of the form (3) with feasible
decision space  ∶= [−1, 5] × [−2, 5] and objective function 𝐹 ∶ → R2

with

𝑓1(𝑢) = E[𝑋1(𝑡; 𝑢)∕𝑁], (8)

2(𝑢) = 𝑢2push + 𝑢2pull, (9)

here 𝑋1(𝑡; 𝑢) denotes the number of agents believing in opinion 𝑆1 at
ime 𝑡 depending on control 𝑢 ∈ . The second objective is chosen such
hat any effort to influence the agent’s opinion is costly. We evaluate
he objective (8) at time 𝑡 = 10. Figs. 5(a) and (b) show the objective
unctions (8) and (9), respectively.

Even though this ABM is computationally inexpensive in compari-
on to other ABMs, it is still inefficient to optimize it directly. Therefore,
e first construct a surrogate model using gEDMD, and then solve the
ulti-objective optimization problem. As the control 𝑢 acts linearly on

he dynamics, Theorem 3.2 guarantees that we can obtain a surrogate
odel for varying control 𝑢 using interpolated Koopman generators.

n fact, for sufficiently large 𝑁 and due to conservation of 𝑁 , the drift
and diffusion terms identified by gEDMD correspond to the well-known
SDE approximation by Kurtz [59] (also known as the chemical Langevin
equation [61]) satisfying

d𝐶𝑡 =
[

((𝛾21 + 𝑢pull) − (𝛾12 + 𝑢push))𝐶𝑡 (1 − 𝐶𝑡) − 𝛾 ′12 𝐶𝑡 + 𝛾
′
21(1 − 𝐶𝑡)

]

d𝑡

+ 1
√

𝑁

[

−
√

(𝛾12 + 𝑢push)𝐶𝑡 (1 − 𝐶𝑡) d𝑊1(𝑡)

+
√

(𝛾21 + 𝑢pull)𝐶𝑡 (1 − 𝐶𝑡) d𝑊2(𝑡)
]

+ 1
√

𝑁

[

−
√

𝛾 ′12 𝐶𝑡 d𝑊3(𝑡) +
√

𝛾 ′21(1 − 𝐶𝑡) d𝑊4(𝑡)
]

,

here 𝐶0 = lim𝑁→∞𝑋1(0; 𝑢)∕𝑁 . Drift and diffusion terms can be writ-
ten as (4) and (5). Thus, Theorem 3.2 holds and we learn four generator
approximations to cover the feasible decision space . We use the four
controls marking the vertices of  to construct the surrogate model.
The matrix representation of the Koopman generator approximation for
the surrogate is then given by 𝐿𝑢 =

∑4
𝑖=1 𝛼𝑖 𝐿(𝑢𝑖), where ∑4

𝑖=1 𝛼𝑖 = 1
with 𝛼𝑖 ∈ [0, 1] and 𝐿(𝑢1) = 𝐿([0, 0]), 𝐿(𝑢2) = 𝐿([1, 0]), 𝐿(𝑢3) = 𝐿([0, 1])
and 𝐿(𝑢4) = 𝐿([1, 1]) denote the matrix representations of the Koopman
generator approximation for the dynamics with control 𝑢𝑖. To train the
reduced models at the vertices, i.e., learn the matrix representations
𝐿(𝑢𝑖), we sample the ABM at 100 uniformly distributed points, each
having 100 Monte Carlo simulations to calculate pointwise drift and
diffusion estimates using the Kramers–Moyal formulae. For details on

Kramers–Moyal expansions, see [62].

https://ford.biologie.hu-berlin.de/jwodke/corona_model
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Fig. 5. Pareto set covering (light blue boxes) after 12 iterations plotted on (a) objective function (8) and (b) objective function (9) at time 𝑡 = 10 depending on the control
[𝑢push , 𝑢pull]⊤ ∈ . The yellow line in (a) marks the area of interest where the majority switches from 𝑆1 to 𝑆2.
Fig. 5 shows the Pareto set covering obtained after 12 iterations for
the feasible decision space  together with the objectives (8) and (9).
In order to achieve an absolute majority for opinion 𝑆2, we refine the
decision space to ⋆ = [0.25, 0.75] × [−0.75,−0.25]. Fig. 6 shows in (a)
the computed covering of the Pareto set for ⋆ and in (b) the image
of ⋆ under objective function 𝐹 as a light blue area as well as the
approximated Pareto front (red/solid), which is obtained by mapping
the center of each box covering the Pareto set in (a). To verify that
the surrogate model approximates the dynamics of the ABM sufficiently
well and consequently is also capable of approximating the Pareto set,
we randomly choose some test points (blue/dots) for which we evaluate
the objective (8) from 100 Monte Carlo simulations using the ABM.
Fig. 6(c) shows close-ups of these test points. We observe that the test
points that are covered by the boxes in Fig. 6(a) (and are therefore
not visible) are non-dominated points. These points are mapped to
the Pareto front computed via the surrogate model. The visible (blue
marked) test points (in general, points that are not covered by boxes in
Fig. 6(a)) are on the right side of the Pareto front and thus dominated.
Thus, the box covering computed via the data-driven surrogate model
actually approximates the Pareto-optimal set of the ABM as it captures
the dynamical behavior of the ABM under control 𝑢 sufficiently well.
The error bars indicate a confidence level of 99.9%.

4.2. Multi-objective optimization of the GERDA model

The design of optimal containment strategies for a complex model
like GERDA has recently been discussed in [63]. Although the con-
sidered objective functions are only prototypical, they show that the
design of optimal containment strategies using ABMs crucially depends
on the level of detail of the model. However, even though the main
objective in [63] consists of three sub-objectives (i.e., health, society,
and economy), multi-objective optimization is not considered. We now
show how a multi-objective optimal containment strategy can be found
using a suitable reduced model of GERDA.

Following [63], we consider constant controls 𝑢 = [𝑢s, 𝑢w]⊤ ∈ 
and set the feasible decision space for our multi-objective optimization
problem (3) to  = [0, 1]× [0, 0.8] and, for better comparability, choose
the same objectives and parameters as in [63], i.e., 𝐹 ∶ → R2 with

𝑓1(𝑢) = E
[

∫

𝑇

0
(𝐼(𝑡; 𝑢)∕𝑁 + exp(10(𝐼(𝑡; 𝑢) − 𝐼max)∕𝑁)) d𝑡

]

, (10)

𝑓2(𝑢) = ∫

𝑇

0

[

𝑢s(𝑡)2 − log(𝑢max
w − 𝑢w(𝑡))

]

d𝑡, (11)
8

where 𝑓1 and 𝑓2 denote the objectives related to health and soci-
ety/economy, respectively. Further, let 𝐼(𝑡; 𝑢) denote the number of
infected agents, 𝐼max and 𝑢max

w threshold values, 𝑢s and 𝑢w the controls
representing the fraction of school and work closures (where 𝑢s = 0 is
interpreted as no schools being closed and 𝑢s = 1 as all being closed;
analogously for 𝑢w). Note that we do not consider the objectives for
society and economy individually as this would result in a trivial multi-
objective optimization problem. In fact, the whole domain  would be
Pareto-optimal since in this case each objective increases in a different
direction.

Remark 4.2. Eq. (10) accounts for the direct negative consequences
of infections, which is assumed to exhibit an approximate linear re-
lationship with the number of infected individuals, as well as for the
social impact, which increases significantly when the capacity of the
health care system to treat severely ill individuals is exceeded. This
is quantified by a threshold of infected individuals, denoted as 𝐼max.
Eq. (11) represents the direct costs of both controls 𝑢s and 𝑢w. The
economic costs become +∞ when the homeworking rate approaches
an upper bound 𝑢max

w < 1 in case that too many workplaces are closed
or employees are working from home.

Since even for smaller geographic regions such as Gangelt, which
has roughly 13 000 inhabitants (December 2021), solving the multi-
objective optimization problem directly for GERDA is not feasible due
to the enormous computational effort and inherent stochasticity of the
model. Thus, we construct a surrogate model. Following the arguments
in Example 3.4, interpolation between Koopman generators should not
be used. In fact, it can be verified easily that gEDMD with control
leads to better results (see Table 1). To train the reduced model, which
serves as the surrogate model later on, we sample GERDA (for a fixed
world) at 49 points and 225 different control inputs along 7-week
trajectories for 24 hourly time steps, i.e., one data point every 24
steps is added to the training data set. The space of feasible controls
 is discretized using an equidistant grid with 15 × 15 grid points.
This results in a total of 11 025 training data points, each having
1 000 Monte Carlo simulations to calculate pointwise drift and diffusion
estimates using the Kramers–Moyal formulae. We define the augmented
state as 𝑥 ∶= [𝑆a, 𝑆c, 𝐼a, 𝐼c, 𝑢s, 𝑢w]⊤, where we distinguish between
susceptible and infected adults and children. Note that 𝑅a and 𝑅c are
omitted due to conservation of 𝑁a and 𝑁c. The set of basis functions
consists of monomials up to degree 4 following the same arguments
as in Example 3.4. Fig. 7 shows the expected aggregated trajectories
(dashed) and its standard deviation (shaded) of GERDA as well as the
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Fig. 6. (a) Pareto set covering (light blue boxes) and test points (blue/dots) for refined feasible decision space ⋆. (b) Pareto front (red/solid), image of ⋆ (light blue area) and
test points under the objective function 𝐹 . (c) Close-ups of randomly chosen test points, evaluated via the ABM. While the non-dominated test points are covered by the boxes in
(a) and thus are Pareto-optimal points, the dominated test points are not. Error bars indicate a 99.9% confidence level.
solution of the reduced model (solid) in terms of an ODE for different
controls. Table 1 compares the true expected trajectories of GERDA
with the reduced model in terms of the root mean squared error for
the 6-dimensional state 𝑥 as well as a further reduced 4-dimensional
state 𝑥 ∶= [𝑆, 𝐼, 𝑢s, 𝑢w]⊤. We also include a comparison between the
true expected trajectories of GERDA and the generator interpolation
9

method whose use is invalid for the GERDA model. Even on the training
data set, state augmentation yields better results. The 6-dimensional
reduced model yields the best approximation. Although all models can
be sparsified (e.g., using iterative thresholding [47]), a meaningful
relation of the non-zero terms to the classical SIR structure cannot be
made. This is, however, also expected as GERDA implicitly contains a
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(
1

Fig. 7. Mean aggregated trajectories for GERDA (dotted) and the reduced model (solid) of the fraction of susceptible (blue for adults, orange for children) and infected agents
green for adults, red for children) under different controls 𝑢 = [𝑢s , 𝑢w]⊤. The shaded areas indicate the standard deviations of the GERDA model. The ABM data is estimated from
000 independent simulations using a fixed world and the parameters in Table 2.
Table 1
Root mean square errors of the trajectories for the reduced models obtained by state
augmentation and generator interpolation. The ground truth is a Monte Carlo estimate
of GERDA with 1 000 simulations for each control 𝑢. The complete parameterization
can be found in Table 2.

Control [𝑢s , 𝑢w]⊤

Dimension [0, 0]⊤ [0, 1]⊤ [1, 0]⊤ [1, 1]⊤

State augmentation 6 0.0325 0.0186 0.0448 0.0023
4 0.0551 0.0325 0.0617 0.0177

Generator interpolation 6 0.1869 0.1109 0.1172 0.4122
4 0.0167 0.0347 0.0714 0.0716

network in which agents change locations according to their schedule
and interact only with certain agents, i.e., agents present at those
locations at the same time. Nevertheless, the reduced model is suitable
to solve the multi-objective optimization problem efficiently. Fig. 8
shows the computed Pareto set and front coverings after 14 iterations.
In both figures the green cross marks the optimal control 𝑢⋆ = [0, 0.63]⊤

and the corresponding objective values computed in [63], which was
computed without using a surrogate model. We see that this point is
included in the Pareto set covering. This finding further highlights the
effectiveness of the data-driven surrogate model in approximating the
Pareto-optimal set of the ABM. Moreover, solving the multi-objective
optimization problem reveals further optimal control inputs belonging
to different combinations of weights in [63].

Remark 4.3. Note that our primary goal is not to solve multi-objective
10

optimization problems efficiently, but rather to show that surrogate
Table 2
Parameters used for the simulations of GERDA.

Parameter

Time 𝑇 [hours] 1176
Number of agents 𝑁 1045
Initially infected 𝐼a 3
Initially infected 𝐼c 2
World Gangelt (reduced)
General infectivity 0.175
General interaction frequency 1
Health care system’s capacity threshold 𝐼max 0.005 N
Threshold economic impact 𝑢max

w 0.81

models based on the Koopman generator are well-suited for this pur-
pose. Especially in the case of the voter model, it is more efficient to
use the well-known ODE or SDE approximations as surrogate models.
However, such approximations are not always known or, in the case of
GERDA, might not exist. Thus, constructing surrogate models using the
Koopman generator offers a viable approach to solving multi-objective
optimization problems involving complex ABMs.

5. Conclusions

The construction of data-driven surrogate models to speed up or
even enable the solution of multi-objective optimization problems,
where objectives are defined by the dynamical behavior of ABMs, is
of great importance as ABMs become more widely used. Especially in
the case when limit models are unknown or non-existent, data-driven
reduced models and surrogate models allow to solve optimization

problems that would otherwise be computationally infeasible due to
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Fig. 8. (a) Pareto set covering for feasible decision space  after 14 subdivision steps obtained with the 6-dimensional reduced model for GERDA. (b) Pareto front (red) and
dominated points (blue). The green cross indicates the optimal control found in [63].
the very expensive evaluation of the objectives. In this work, we
demonstrated how data-driven reduced models based on the Koopman
generator enable the efficient solution of multi-objective optimization
problems associated with ABMs. For this purpose we constructed sur-
rogate models with varying decision variables, which in this work are
controls applied to a non-deterministic dynamical system. We intro-
duced two different methods of constructing these surrogate models.
The first one is applicable if the control acts linearly on the sys-
tem. In this case, linear interpolation between Koopman generators
for different control inputs is feasible and can be used to construct
surrogate models. This method was illustrated using the voter model,
where the goal was to achieve an absolute majority in one opinion
with a linear control affecting the second-order transitions. This can
be interpreted as repulsion and attraction arguments in an election
campaign. The second method overcomes the restriction to linearly
acting controls. We showed that a straightforward extension of gEDMD
that considers the control as an additional state allows for nonlinear
dependence on the controls. The method was demonstrated first using
a simple and analytical model. We then used this method to compute
the Pareto set of optimal containment strategies for the GERDA model
in a prototypical situation and compared it with the solution computed
in [63]. We showed that the solution computed for the single-objective
optimization problem is contained in our Pareto set.

In this work, we considered multi-objective optimization problems
with 𝑘 ≪ 𝑁 globally defined objectives, i.e., objectives defined by the
collective behavior of the agents, and 𝑛 ≪ 𝑁 decision variables. An
extension is to consider both objectives defined by the individual and
collective behavior of agents, which allows for more general problems
without considering aggregated trajectories. An important question
then is how to deal with the large computational costs when 𝑘 ≈ 𝑁
or 𝑛 ≈ 𝑁 or both. Future research will address these questions.
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Appendix A. Sampling algorithm

For 𝑠 = 0, let 0 denote a collection of finitely many subsets of
 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑛, 𝑏𝑛] ⊂ R𝑛, 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖 for 𝑖 = 1,⋯ , 𝑛, such that
⋃

𝐵∈0 𝐵 = . Then, in each iteration, each box 𝐵 ∈ 𝑠, 𝑠 ≥ 0, is first
subdivided with respect to one coordinate, resulting in a new collection
of boxes ̂𝑠+1. In the second step, a set-wise non-dominance test, which
can be carried out heuristically by a finite number of test points, is
performed on each box 𝐵 ∈ ̂𝑠+1, discarding all boxes containing only
dominated points. This process is repeated with the new collection of
boxes 𝑠+1 and the next coordinate. For more details see [8,13,14,48].
The sampling algorithm is summarized in Algorithm 1.

Appendix B. Proof of Theorem 3.2

Given a space of twice continuously differentiable functions and
controls 𝑢1, 𝑢2, if the dynamics (1) are control-affine, then the Koopman
generators are control-affine, i.e.,

𝛼1𝑢1+𝛼2𝑢2 = 0 + 𝛼1𝑢1 + 𝛼2𝑢2 ,

where 𝑢 = 𝑢 − 0 and 𝛼1, 𝛼2 ∈ R.

Proof. Consider a control-affine system of the form (1) and let 𝑢 be any
linear combination of controls, i.e., 𝑢 = ∑𝑑𝑢

𝑖=1 𝛼𝑖 𝑢𝑖 for 𝛼𝑖 ∈ R. Given some
twice differentiable function 𝑓 , the Koopman generator 𝑢 depending
on 𝑢 applied to 𝑓 yields

𝑢𝑓 = 𝑏 ⋅ ∇𝑥𝑓 + 1
2
𝑎 ∶∇2

𝑥𝑓

= 𝑏0 ⋅ ∇𝑥𝑓 +
𝑑𝑢
∑

𝑏𝑖 𝑢𝑖 ⋅ ∇𝑥𝑓 + 1 𝑎0 ∶∇2
𝑥𝑓 + 1

𝑑𝑢
∑

𝑎𝑖 𝑢𝑖 ∶∇2
𝑥𝑓,
𝑖=1 2 2 𝑖=1
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Algorithm 1: [13,48]
Let 0 be a collection of finitely many subsets of  such that ⋃𝐵∈0 𝐵 = . Then, obtain the new collection 𝑠+1, 𝑠 ≥ 0, iteratively from
𝑠 in two steps:

1. Construct a new collection ̂𝑠+1 from 𝑠 by subdividing each subset 𝐵 ∈ 𝑠
such that

⋃

𝐵∈̂𝑠+1
𝐵 =

⋃

𝐵∈𝑠
𝐵,

diam(̂𝑠+1) = 𝜃𝑠+1diam(𝑠)

for 0 < 𝜃min ≤ 𝜃𝑠+1 ≤ 𝜃max < 1.
2. Define the new collection 𝑠+1 by

𝑠+1 ∶=
{

𝐵 ∈ ̂𝑠+1 ∣ ∄ �̂� ∈ ̂𝑠+1 such that �̂� dominates 𝐵
}

.

where ∇2
𝑥 denotes the Hessian. Defining 𝑢 ∶= 𝑢 − 0, we obtain

𝑢𝑓 =
𝑑𝑢
∑

𝑖=1
𝑢𝑖
[

𝑏𝑖 ⋅ ∇𝑥𝑓 + 1
2
𝑎𝑖 ∶∇2

𝑥𝑓
]

.

The operators 𝑢 are linear with respect to the control 𝑢. Moreover, the
generators of the Koopman operators are control-affine, that is,

𝑢𝑓 =

(

0 +
𝑑𝑢
∑

𝑖=1
𝛼𝑖𝑢𝑖

)

𝑓. □
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