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1 Introduction

Terahertz (THz) spectral range covers frequencies from 0.1 to 50 THz [1]. Due

to its photon energy, THz radiation is a powerful tool for low-energy exci-

tations. The excitation of spin-waves [2], phonons [3; 4], and ionization of

excitons [5] are possible. Additionally, ultrafast spin dynamics can be investi-

gated by the study of THz emission [6].

There are multiple sources to generate THz radiation. Firstly, photoconductive

antennas, which are used for linear THz spectroscopy with limited bandwidth

<6 THz [7; 8]. Secondly, organic crystals with a bandwidth from 1-10 THz

and a major detriment of having gaps in their emission spectrum [9]. Thirdly,

the lithium niobate crystal (LiNbO3) with a bandwidth of 0.1-2.5 THz creates

high peak amplitudes for non-linear THz spectroscopy [10; 11]. Lastly, the

spintronic terahertz emitter covers a range of 0.3-15 THz [12] and was recently

improved to match its peak amplitude to the commonly used LiNbO3 [13].

With regards to detection, usually electro-optic sampling (EOS) using a pump-

probe scheme is utilized [14]. With this, a multi-shot approach is used by which

the timing between the THz pump and probe is modified to measure the tem-

poral change in the refractive index of the material, which is proportional to

the THz amplitude [15]. This approach has some disadvantages. The shot-

to-shot fluctuations (noise) of the multiple sampling pulses may easily exceed

small signal amplitudes. Therefore, a long averaging time is necessary to ob-

tain an acceptable signal-to-noise ratio. The single-shot EOS (SEOS) could

overcome these drawbacks because it requires only one probe pulse to measure

the time-resolved change in the refractive index of the material over the whole

duration of the THz pulse [17].

This work showcases the successful implementation of a single-shot approach

for broadband THz detection. The efficacy of this approach was ascertained

through a comparison with the established multi-shot EOS (MEOS) method-

ology. Furthermore, in order to gain deeper insights into the underlying dy-

namics at play, theoretical modeling of the SEOS technique was also carried
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out. Collectively, these investigations provide a comprehensive understand-

ing of the advantages and limitations offered by the SEOS approach in THz

detection.
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2 Theory

This chapter provides a thorough theoretical framework for understanding the

EOS method. Beginning with a detailed illustration of the THz generation

process, the chapter proceeds to delve into the derivation of the electric field of

the probe pulse. It is followed by an exploration of the phenomenon of spectral

chirping, and its attendant effect on the broadening of the probe pulse, clarified

via mathematical discourse. Finally, all these preparatory contemplations are

leveraged to provide a theoretical model of the measured signal utilizing the

SEOS methodology.

2.1 Pump-probe scheme

Figure 1 The multi-shot pump-probe can be realized by changing the timing between
the pump and probe pulse. By iterating over different delays, the change of an optical
constant can be measured over time.

Pump-probe spectroscopy represents a highly versatile and valuable tool for

investigating ultrafast dynamics in materials. As its name implies, this tech-

nique involves the application of two distinct pulses, a pump pulse, and a

probe pulse, which interact with a given sample material. Specifically, the

pump pulse serves to initiate a response within the sample, following which

the probe pulse can be deployed to monitor the resultant changes induced by

the pump (Figure 1). Notably, it is crucial that the probe pulse possesses con-

5



siderably lower pulse energy than the pump pulse to prevent any inadvertent

excitation of dynamics in the sample. In particular, the pump-probe response

of the sample is characterized by pump-induced changes ∆n in the refractive

index n. The change ∆n is measured by the probe pulse at a given time differ-

ence τ1 between the pump and probe. By iteration over different time delays

τ1,τ2, etc., the time evolution of the refractive index n(τ) can be recorded. To

acquire the temporal evolution of dynamics, multiple pump-probe pairs are

necessary. Therefore it is a multi-shot approach.

Figure 2 The SSD pump-probe can be realized by chirping the pulse and causing a
frequency-dependent phase shift. The chirped pulse interacts with the pulse, causing
a change in the probe pulse for different frequencies. Since the frequencies correspond
to different timings, the dynamics can be determined with one single shot

A different approach can also be chosen. Instead of measuring the time

evolution with multiple shots, one can determine it with one single shot [16].

The fundamental concept underlying the single-shot detection technique is

the temporal broadening of the probe pulse, which can be achieved through

the phenomenon of dispersion, commonly facilitated by dispersive materials,

gratings, or prisms. The dispersion generates a frequency-dependent phase

shift, wherein the lower frequency components are situated ahead of the pulse

while the higher frequency components are situated at the rear. As a result,

every probe frequency component is related to a distinct temporal delay with

respect to the pump pulse. Therefore by the spectral encoding of the time, the

frequency components can be assigned to time components. This approach has
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a significant advantage as the time information of a pulse can be determined

by acquiring the temporal information in one shot. In comparison to previous

methods, the timing difference is now imprinted in the frequency domain,

where a temporal difference τ1 corresponds to a frequency ω1, τ2 to ω2, and

so on, of the probe pulse. Therefore, with one interaction between the pump

and probe pulse, each frequency component of the probe undergoes a unique

pump-induced current variation in the material.

2.2 Electro-Optic Sampling

In our electro-optic sampling setup, the sample used is a crystal with broken-

inversion symmetry. A distinct feature of this symmetry property is that

the change in birefringence ∆n is directly proportional to the magnitude of

the incoming THz electric field ETHz due to the Pockels effect. This change

can be quantified through second-order polarization, which depends on the

susceptibility tensor χ(2) of the material:

∆n(t) ∝ χ(2)ETHz(t) (1)

In materials that possess broken-inversion symmetry, the susceptibility tensor

χ(2) vanishes, thereby eliminating the other order contributions and leaving

only the sum-frequency generation (SFG) and difference-frequency generation

(DFG) terms. These second-order terms induce a change in the refractive in-

dex through the THz field, which is referred to as the electro-optic or Pockels

effect. Thus, the change in susceptibility results in temporary birefringence

of the crystal. Consequently, when the probe pulse and the THz field propa-

gate collinearly through the crystal, the probe pulse undergoes a change in its

polarization, transforming it from linear polarization to elliptical polarization.

The degree of ellipticity is also proportional to the THz field, and therefore

the magnitude of the THz field can be determined by measuring the degree of

ellipticity.
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2.3 Spintronic Terahertz Emitter

Figure 3 A femtosecond pulse induces heating in the FM layer, which leads to an
ultrafast electron temperature. This excess heat leads to the quenching of magne-
tization and launches a net spin current in the z-direction to the interface between
FM and NM layers. In the NM layer spin-to-charge conversion occurs, which leads
to an electric dipole, that emits THz radiation [19].

The generation of the broadband THz pulse from 0.3 up to 30 THz is realized

by the spintronic THz emitter (STE) [19]. It consists of two parts, a ferromag-

netic (FM) layer, and a nonmagnetic (NM) layer. The FM layer is irradiated

with an optical femtosecond laser, which initiates a sequence of events, begin-

ning with the heating of the electrons in the layer. As the magnetization in a

ferromagnet is temperature-dependent and follows the Bloch-law [18], the tem-

perature change in the layer causes a change in magnetization. Consequently,

this results in a generalized spin voltage ∆µs, a difference between general-

ized chemical potentials of spin-up and spin-down electrons [20]. The system

seeks to dissipate the excess magnetization, leading to two main mechanisms:

an ultrafast demagnetization by spin flips, Ṁ , and a net spin current, js, in

the z-direction towards the interface between the two layers. The NM layer

is made of material with strong spin-orbit coupling, which is responsible for
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the inverse spin-Hall effect (ISHE) resulting in the deflection of spin-up and

spin-down electrons. Since the current is spin-polarized, the ISHE leads to an

imbalance in the proportion of majority and minority spins at the interface,

leading to an imbalance in the proportion of electrons deflected in the positive

and negative x-directions. Resulting in-plane charge current in the x-direction

jc which can be described as jc = γjs with γ being the spin-Hall angle [21].

Finally, the charge current jc serves as a source of the THz radiation [19].

E(t) ∝ jc(t) (2)

2.4 Spectral chirping

As is customary in optics, we will commence our analysis by considering

Maxwell’s equations to gain insight into the nature of our probe pulse. The first

two Maxwell equations are the divergence of the E and B-field while the latter

two describe the curl of the electric and magnetic fields, namely Faraday’s law

and Ampere’s law, respectively. Since both laws have a B-field contribution

we apply a time derivative ∂/∂t to Ampere’s law and the curl of Faraday’s law

to eliminate this magnetic field contribution. In consequence, we arrive at the

Helmholtz equation [23].

∇×∇×E +
1

c2
∂2

∂t2
E = −4π

c2
∂

∂t
j (3)

The current is the time derivative of the polarizability P . It is a functional

that depends on the electric field. The electric fields inside the atoms of solid

materials are of the order of 109 V
cm [24]. In contrast, the electric fields used in

this work are at least three magnitudes smaller around 1MV
cm . On this basis, the

assumption can be made that the electric fields are only a small perturbation

compared to the electric fields inside the atoms. Therefore, we can Taylor

expand the polarizability around E.
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P [E] = χ(1)E(1) + χ(2)E(2) + · · · (4)

If we assume a linear response, where the electric field E is the perturbation,

the susceptibility χ the response, and the polarizability P is the reaction, we

can write the polarizability as a convolution between the susceptibility and the

electric field. This can be more easily evaluated in the frequency domain by

Fourier transformation since it simplifies to a multiplication:

P̃ (ω) = χ̃(ω)Ẽ(ω) (5)

Additionally, we define three quantities:

k(x, ω) =
n(x, ω)ω

c
(6)

n =
√
ϵ (7)

ϵ = 1 + 4πχ (8)

where k is the wavenumber, the n refractive index, and ϵ the dielectric func-

tions. Additionally, we assume that n is constant and consequently homoge-

nous:

(
∇×∇× ·+ k2

)
E =

4πω2

c2
P (9)

On the left next to the electric field E is a linear operator that describes the

evolution E. If we take nonlinear effects into account, we have a non-vanishing

polarizability P and can describe effects like sum- and difference-frequency

generation. These effects are essential for the pump-probe experiment. But

for the description of the chirping, we only regard the linear part. On this

basis, we can simplify the Helmholtz equation for isotropic media as follows:
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[
∇2 + k2(x, ω)

]
E(x, ω) = 0 (10)

Now we can write the electric field as a superposition of plane waves, which are

solutions of the above Helmholtz equation. From that, the angular spectrum

representation or plane wave expansion can be used to describe the electric

field [23].

E(x, y, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
E (kx, ky; z = 0) ei[kxx+kyy]ei[±kzz]dkxdky (11)

This system connects E(x, y, z = 0) to E(x, y, z) by a convolution because

it exhibits translational invariance along the x- and y-directions. In Fourier

space (kx, ky) if the electric field is known at a given position E(kx, ky, z), the

field at a later position E(kx, ky, z+L) can be determined by multiplying with

a transfer function called the propagator ei[±kzz]. The ± sign describes the

propagation in the z >0 direction and in the z <0 direction. In this context,

we are only interested in the fields behind the source, so we only consider

the positive sign. For simplification, we assume kx = ky = 0, i.e. the wave

propagates along the z direction. In addition, the phase ϕ can be introduced

and be described as a multiplication between the wavevector k and the spatial

coordinate z as ϕ = kz. In the time domain, we thus have

E(z, t) =
1

2π

∫
Ẽ(z = 0, ω)eiωteiϕdω (12)

It describes the initial electric field at a position z = 0 in the frequency domain,

which gets multiplied by the propagator eiϕ. Here, the propagator describes

the evolution of the electric field in the frequency domain during its propaga-

tion. This can then be Fourier transformed to obtain the electric field in the

time domain. If there is no attenuation, kz and ϕ are real-valued, and the

propagator is just a phase factor. The phase can be Taylor expanded for small
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frequencies around its center frequency ω0

ϕ(ω) = ϕ0 + (ω − ω0)

(
dϕ(ω)

dω

)
ω0

+
1

2!
(ω − ω0)

2

(
d2ϕ(ω)

dω2

)
ω0

+O
(
ω3
)

(13)

The phase consists of three terms. The first part is the absolute phase ϕ0,

which is the phase accumulated around the center frequency ω0. The second

part is the first derivative ϕ′
0 = ( dϕ

dω
)ω0 , which is the group delay. This causes

a shift in time and can be intuitively understood by inserting ϕ = kz. Then

it describes the inverse of the group velocity (dω
dk
)−1multiplied by a distance z.

The last part of the Taylor expansion is the second derivative ϕ′′
0 = ( d

2ϕ
dω2 )ω0 ,

the group delay dispersion (GDD), and induces the temporal broadening of the

pulse. The GDD is highly important for our purposes, as we intend to chirp

the pulse. This can be achieved using a dispersive medium, a pair of gratings,

or prisms. For a better understanding of the pulse change by introducing a

dispersion, we assume that the initial pulse is a Fourier-limited Gaussian [25].

Ẽ(0, ω) ∝ exp

(
−(ω − ω0)

2

∆ω2

)
(14)

With ∆ω describing the width of the Gaussian pulse. This assumption can be

inserted into the equation of the electric field.

E(z, t) ∝
∫

dω exp

(
−(ω − ω0)

2

∆ω2

)
exp(iϕ− iωt) (15)

By inserting the expression of the Taylor expansion of the phase, the electric

field can be described differently.

E(z, t) ∝
∫

dω exp

(
−(ω − ω0)

2

∆ω2
− (iωt− iω0t)− iω0t+ iϕ0

+iϕ′
0 (ω − ω0) +

1

2
ϕ′′
0 (ω − ω0)

2

)
(16)

In order to solve the integral more easily, the integration variable can be
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changed to u = ω − ω0 With this preparatory work, the following relation-

ship can be used in order to solve the integral [23]:

∫ ∞

−∞
dx exp

(
−ax2 + bx+ c

)
=

√
π

a
exp

(
b2

4a
+ c

)
(17)

From that, we finally can find an expression of the electric field in the time

domain:

E(z, t) ∝
√

π

∆ω−2 − 1
2
ϕ′′ exp

(
− (ϕ′

0 − t)2

4
(
∆ω−2 − 1

2
iϕ′′
)) exp (−iω0t + iϕ0) (18)

This equation has three factors. The first term, which results in a decrease

in the amplitude of the pulse, is attributed to the principle of conservation of

energy. As the pulse broadens, to maintain constant energy, the amplitude

has to decrease. The second term corresponds to the Gaussian envelope of the

beam, which determines the shape and broadness of the pulse. Finally, the

carrier wave describes the temporal and spatial modulation of the wave. The

equation (18) can be rewritten as

E(z, t) ∝
√

π

∆ω−2 − 1
2
ϕ′′ exp

(
− (ϕ′

0 − t)2

(4∆ω−2 −∆ω2ϕ′′2)

)
exp

(
i(ϕ0 − ω0t) + iα (ϕ′

0 − t)
2
)

(19)

Here the α is defined as the laser chirp rate [22]

α =
ϕ′′

8∆ω4 + 2ϕ′′2 (20)

The chirp rate describes the rate at which the frequency of a signal changes

over time and is the time derivate of the instantaneous frequency ωinc.

α =
∂ωinc

∂t
(21)

The instantaneous frequency refers to the frequency of a signal at any given
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point in time, which varies if dispersion is present. The result of equation (19)

shows that in the time domain, the chirp pulse has a slowly varying envelope

and fast oscillating phase eiαt
2 for a sufficiently large α.

2.5 Pulse length

Of all the aspects of the Taylor expansion, the frequency chirping and the

alteration of pulse length through the GDD stand out as the most captivating

for our purposes. The Gaussian assumption in frequency is introduced in the

equation (14). By carrying out a Fourier transform from the frequency domain

to the time domain, the Gaussian pulse in time is determined.

E(z, t) ∝ exp

(
−t2

4∆ω−2

)
(22)

Additionally, the pulse length τ0 of a Gaussian electric field is commonly de-

fined as the full with at half maximum (FWHM) of the intensity in the time

domain.

I(z, t) ∝ |E(t)|2 = exp

[
−4 ln 2

(
t

τ0

)2
]

(23)

Using equation (23), the pulse duration can be computed by ascertaining the

width of the Gaussian pulse in the frequency domain. It should be noted

that the Fourier limited pulse width represents the minimum possible pulse

duration for a given spectral bandwidth.

τ0 =

√
8 ln 2

∆ω2
(24)

An analogous procedure can be applied to the analysis of chirped pulses

by adjusting the pulse duration to τc and utilizing equation (18). This ap-

proach leads to a correlation between the coefficients, which can be determined
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through a comparison process, assuming that the group delay is negligible.

τc = τ0

√
1 +

(
4 ln 2ϕ′′

τ 20

)2

(25)

The equation presented above demonstrates that a pulse undergoes greater

proportional stretching as its duration decreases. Moreover, if it is desirable

to stretch a pulse using a material, a strongly dispersive medium with a sub-

stantial thickness is required. The GDD for dispersive materials can be easily

determined using the phase relationship ϕ = kz = kL, where L denotes the

thickness of the material and can be used as a substitute for the distance z,

which is the distance over which the light beam experiences the change in

phase. The second derivative of this relationship over the frequency ω yields

the following expression.

d2ϕ

dω2
=

λ3L

2πc2
∂2n

∂λ2
(26)

For example, an SF10 glass has the following value for the second derivative

of the refractive index with respect to the wavelength of [26]

∂2n

∂λ2

∣∣∣∣
800 nm

= 0.176
1

µm2
(27)

Consequently, in order to generate a 2 ps pulse starting from an initial 40 fs

pulse, SF10 glass with a thickness of 19 cm would be required. However, this

approach is both impractical and inconvenient to implement in an experimen-

tal setup, and controlling the thickness of the material to regulate the GDD

presents a significant challenge. Therefore, an alternative approach must be

pursued to achieve the desired results.

2.6 Grating principle

By the usage of a pair of grating, an angular dispersion and, thus, frequency

dispersion can be achieved as visible in Figure 4 (a). This can be realized
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through a simple configuration of two opposing gratings, where the longer

wavelength components of the light travel a farther distance than the shorter

wavelength components. Therefore, a pair of gratings induce a negative disper-

sion or negative GDD. In contrast, the utilization of a dispersive medium leads

to a positive dispersion. There the short wavelength components are in front of

their longer counterparts. This can also be accomplished by the insertion of a

lens between two gratings [28]. Based on the shape of the lens in use, the shape

of the beam can be manipulated, and the type of dispersion. In our work, we

focused on the simple and classical setup with two gratings, introduced by

Treacy [27] The phenomenon and the resulting equation of the grating can be

simply described by Huygens’s principle. Assuming a monochromatic plane

wave encountering the grating at normal incidence. Each slit of the grating

acts like a point-like source, propagating in all directions. The resulting spher-

ical waves from each slit interfere constructively or destructively. The intensity

maxima occur if the following relationship is fulfilled [26].

d sin θm = mλ (28)

Whereby d is the distance between two adjacent slits, θm the diffraction angle,

m is the order and lastly, there is the wavelength λ. The order m can only

adopt integer values. In our case, the incident light is not normal to the grating

surface, hence we must incorporate an incident angle θi of the incoming light.

sin θm = m
λ

d
+ sin θi (29)

The gratings are used in the Littrow configuration, which means that the

diffracted beam goes back to where the incoming beam came from. This

allows for higher efficiency of the gratings since generally blazed gratings are

optimized for it. In addition, we also utilized transmission gratings, where we
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have a slightly changed geometry.

sin θm = m
λ

d
− sin θi (30)

Overall, the phase shift originating from the gratings can be separated into

two contributions. The first is determined by the path P the light travels

through the gratings, which is illustrated by Figure 4

Figure 4 (a) The light path in the two gratings can be described by ABCD. (b)
After the two gratings, a phase matching must occur so that the wavefront has the
same phase.

The path of light through the grating pair can be divided into three different

segments.

ABCD = AB +BC + CD (31)

Whereby the path AB and BC can be expressed with the diffraction angle θi

and θm

AB = BP cos (θi + θm) (32)

CD = CP cos (θi + θm) (33)

Figure 4 (a) exemplifies that BP + CP = BC and with that, a condensed

expression can be found.

ABCD = BC (1 + cos (θi + θm)) (34)
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The distance between points B and C can be expressed through the distance

Lg between the two gratings and a final expression for the path length can be

found.

P =
Lg

cos θm
[1 + cos (θm + θi)] (35)

However, it is important to consider another contributing factor - the grating

phase shift, which can be interpreted as a phase correction arising from the

characteristics of the grating. As depicted in Figure 4 (b), a wavefront EE ′

with a constant phase encounters the second grating. The wavefront preserves

its properties following its passage through the grating, as illustrated by its

evolution GG′, where the tilted wavefront is planar again after passing the

second grating. Notably, a significant discrepancy can be observed when com-

paring the paths EFG and E ′F ′G′, which must be compensated for at the

grating surface FF ′. To achieve this, a phase matching process is necessary,

which can be expressed as a correction of 2π multiplied by the number of

rulings in x′[27].

ϕg (x
′) = m

2π

d
x′ (36)

The total wave-dependent can then be described by the addition of the grating

phase matching ϕg and the phase caused by the traveling distance.

ϕ =
ω

c
nAirP + ϕg (x

′) (37)

In the first addend, we insert for the traveling distance the path of light P .

Additionally, we assume that the refractive index of air is nAir ≈ 1 [29]. By

taking the second derivative of the wave-dependent phase shift, the GDD can

be determined.

d2ϕ

dω2
= − λ3Lg

πc2Λ2

[
1−

(
λ

d
− sin θi

)2
]−3/2

(38)
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The analysis of the GDD reveals that the grating configuration always intro-

duces a negative chirp. The reason behind it is due to two factors. Firstly, all

variables in the equation are positive except for the angle θi, resulting in the

left part of the multiplicand being always positive. Secondly, the expression in

the brackets can be reformulated using the relationship between the incoming

light angle θi and the outgoing angle θm in equation (29), along with the fact

that sin2 θi + cos2 θi = 1. We obtain

[
1−

(
λ

d
− sin θi

)2
] 1

2

= cos θm (39)

Since the reflected beam has to lie in the incident half space of the grating,

the possible values for the angles are θm ∈
[
−π

2
, π
2

]
. This leads to the fact,

that the cosine is always positive and therefore to the conclusion that the term

in the brackets in the equation (38) is also positive. As a result, the GDD is

always negative for the pair of gratings. This is the reason, why they are called

compressor because it counteracts the positive dispersion caused by dispersive

media.

All in all, the GDD can be varied by keeping all the variables constant, i.e.

using the same pair of grating and angle of incidence, except the distance Lg

between the gratings which we can change.

If the grating introduces higher-order dispersion, the chirp can not be regarded

as linear anymore. Therefore, it is useful to investigate these terms. The third-

order dispersion term is expected to exhibit the most significant impact. The

calculation of this term requires differentiation of the GDD equation in (38)

with respect to the frequency variable ω, yielding

d3ϕ

dω3
= −d2ϕ

dω2

3λ

πc

1 + λ
d
sin θi − sin2 θi

1−
(
λ
d
− sin θi

)2 (40)

This shows, that the third-order term increases if the second-order, the GDD,

also increases. To put it in another way, the GDD is proportional to the
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grating distance Lg and therefore the third-order term would also increase

proportionally to it as well.

2.7 Single-shot response

In this chapter, we want to describe the response of our system to an incoming

THz field to understand the underlying dynamics. The signal on the spec-

trometer depends on the contribution of the ∆Eprobe and the Eprobe . ∆Eprobe

describes the pump-induced change due to the interaction between the THz

field and the probe field. Eprobe is the electric field of the unperturbed part

of the probe and has a much higher amplitude than ∆Eprobe . Therefore it

is regulated by an analyzer, which is accounted for by a factor C. It has its

maximum at one when the transmission axis is parallel to the Eprobe and its

minimum at zero when parallel to the extinction axis of the polarizer. In the

experiment, the extinction axis of the polarizer deviates slightly from the probe

polarization direction, by a few degrees, and factor C has a magnitude of a

few percent. The signal measured on the spectrometer can be then described

in the following way:

∆S(ω) ∝ |F (∆Eprobe (t) + CEprobe (t))|2 (41)

The spectrometer performs a Fourier transformation of the time-dependent

pump-induced and probe electric field and measures the intensity. This signal

can be then reshaped to

∆S(ω) ∝ 2Re
(
∆Ẽprobe C

∗Ẽ∗
probe

)
+
∣∣∣∆Ẽprobe

∣∣∣2 + C2
∣∣∣Ẽprobe

∣∣∣2 (42)

This result indicates a pronounced dependence of the measured signal on the

electric field of the probe since it has a quadratic contribution in addition to the

linear one. To mitigate the effect of the quadratic Eprobe component, signals

obtained with opposing ETHz polarization can be subtracted. The reversal in

THz polarization can be achieved by switching the direction of the external
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magnets located adjacent to the STE. The subtraction results in:

SSEOS ∝ ∆S (ETHz )−∆S (−ETHz ) ∝ 4Re
(
∆Ẽprobe C

∗Ẽ∗
probe

)
(43)

In the end, only the linear terms remain and therefore the pump-induced

change can be directly measured by the spectrometer. In addition, the SEOS

signal SSEOS also depends on the probe’s electric field. Therefore, the measured

signal always contains the chirp information. The Eprobe component can be

computed by using the derivations used above knowing the GDD.

2.8 The simple model of EOS

The pump-induced change, when the THz and the probe beam propagate

collinearly through the crystal, can be described in a simple model in the time

domain by the following multiplication:

∆Eprobe(t) = ETHz(t+ τ)Eprobe(t) (44)

The timing between the THz pulse and the probe pulse is varied through a

delay τ . When Fourier transforming, it results in

∆Eprobe(ω) =

∫ ∞

−∞
dΩETHz(Ω)Eprobe(ω − Ω)eiΩτ (45)

with ω and Ω describing the optical and THz frequencies, respectively. The

probe pulse contains the phase factor eiϕ in which the dispersion is encoded.

The change in timing between the probe and THz field through the delay τ

is described in the frequency domain by the eiΩτ term. Assuming the probe

pulse to be a δ-like peak, the equation (45) would shift the THz electric field

from the THz frequencies Ω to the optical frequencies ω. However, in practical

scenarios, the probe electric field is not a δ-like peak and has a Gaussian-like

shape, which leads to a frequency-domain windowing of the THz electric field

depending on the width of the Gaussian. Moreover, the probe has an additional

chirp in our SEOS methodology. The presence of a chirp in the probe electric
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Figure 5 (a) Modeled chirped probe pulse for an initial Gaussian-shaped pulse (a) and
with increased GDD by a factor of 2 (b). Modeled signals based on the convolution
assumption for ∆Eprobe (c) and with increased GDD by a factor of 2 (d).

field gives rise to oscillations in the electric field, which become more prominent

with increasing GDD values due to its dependence on ϕ
′′
0(ω−ω0)

2, as discussed

in section (2.4). Specifically, as the GDD increases with the squared frequency,

the phase oscillations become stronger further away from the center frequency

ω0. This phenomenon is illustrated in figures 5(a) and 5 (b), where the GDD is

increased by a factor of 2, resulting in stronger oscillations in the real part of the

electric field. As a result, the frequency-dependent phase shift is larger, causing

a greater time difference between the individual frequencies. Upon evaluation

of the signal for two different values of GDD, as shown in Figure 5 (c) and (d),

two distinct results are observed. These differences are commonly attributed

to distortions of the single-shot technique, which are characterized by a longer

single cycle and additional oscillations with higher amplitude and imply that

the simple mapping of the instantaneous frequencies to time ωinc ↔ t does not

work. Here, we retrieved the THz spectrum from the MEOS measurements,
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the details will be discussed in a later section. The reasoning behind the

longer single cycle can be explained by the fact that in the frequency domain,

different GDD values only slightly affect the convolution between the THz

field and the probe, as the envelope of the probe pulse remains the same.

However, the frequency-dependent phase shift leads to a longer signal in the

time domain, thus a different translation of the signal from the frequency

to the time domain. The stronger oscillation amplitudes are a result of the

convolution with a stronger oscillating probe pulse and increasing amplitude

towards the center frequency. This highlights the importance of the choice of

probe pulse length, as it can lead to signal distortion.

Later in the experimental results, the effect of distortion caused by a longer

probe pulse is showcased. These distortions are not caused by the detection of

the crystal, since the non-linear effects of the crystal are omitted in equation

(45). They originated simply from the technique of encoding a THz pulse on

a broad probe pulse.

Using this simple model, we can determine the theoretical conversion from

frequency to time. Starting from equation (44) , we can write

∆Eprobe =

∫ ∞

−∞
dtETHz(t− τ)Aprobe(t)e

iϕ(t)eiωt (46)

where Aprobe is the envelope of the probe pulse. We can utilize the method of

stationary phase since the term ei(ϕ(t)+ωt) oscillates much more strongly than

the THz pulse and the envelope of the probe pulse [25]. The phase factor gives

a self-canceling oscillation, except where the time derivative of the exponent

is zero. Using the derivation from equation (18), we can write the following

expression for the conversion from to time as

t =
ωinc − ω0

2α
(47)

with ω0 as the center frequency and α as the laser chirp rate. This enables

us to determine theoretically, the time information from the SEOS signal on

the spectrometer. For that, it requires the determination of the GDD and the
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initial pulse width before chirping.

2.9 Detailed modeling of EOS

In reality, the pump-induced change depends on various factors inside the de-

tection crystal, when the THz pulse and the probe beam propagate collinearly

through it. The pump-induced change can be described by the following equa-

tion [30]

∆Eprobe(ω) = 4πi
ω2t23(ω)

c2k(ω)

∫ ∞

−∞
dΩETHz

inc (Ω)Eprobe(ω − Ω)eiΩτ

· χ(2)(ω − Ω,Ω)t12(ω − Ω)t12(Ω)
exp(i∆kd)− 1

∆k
(48)

The χ(2) susceptibility tensor has non-zero elements in crystals with bro-

ken inversion symmetry. The symmetry of the χ(2) tensor sets the THz and

probe polarizations required to observe the linear electro-optic effect [31]. The

difference frequency generation (DFG) of the second-order polarization [32]

is expressed by the difference between the optical ω and THz frequencies Ω.

However, the DFG process is restricted by the ’phase matching’ condition [33],

expressed by the last term in equation (48). It arises from the summation of

the spatially expanding spherical waves and maximizes if the product between

spatial frequency mismatch ∆k and the thickness d is small [34].

|∆kd| ≪ 1 with ∆k = k(Ω) + k(ω − Ω)− k(ω) (49)

If the traveling distance in crystal pulses is short, phase matching should not

have a strong influence. The Fresnel transmission coefficients are defined as

t23(ω) =
2n2(ω)

n2(ω) + n3(ω)
(50)

Where nj is the refractive index of medium 1 (medium of incidence), 2 (electro-

optic material), and 3 (substrate). By identifying all these terms of the detec-

tion crystal, the pump-induced change and therefore the signal measured with
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SEOS can be computed.

2.10 The response function of the system

Our SEOS can be seen as a linear system in which the input power is suffi-

ciently low and acts as a small perturbation, therefore the relationship between

the input and output power can be described as linear. This allows for its char-

acterization by the generalized convolution [35].

Eout(t) =

∫
dt′H(t, t′)Ein(t

′) (51)

It demonstrates that the output functional depends on the time t′ and simul-

taneously the input Ein(t
′). The impulse response function H(t, t′) can be

described as a response to a δ-like kick and depends on the time of output t

and also on the time of input t′.

Figure 6 Schematic picture of an abstract black-box system describes the measured
signal S(t) as a reaction of the incoming THz electric field ETHz(t

′). The response
function H(t, t′) characterizes this linear system which includes the Eprobe.

Identifying the response function is highly desirable since it contains all

the relevant system information. If the system is in addition time-invariant,

it can be described as a simple convolution [36]. This is the case for the

MEOS methodology, but not for the SEOS. The experimental results will

show, that if the timing between the incoming THz ETHz and the probe field

Eprobe is changed, the waveforms also change and therefore the time invariance

is invalid. Figure (6) depicts the situation for the SEOS. In our case, the

incoming electric field is ETHz and the outgoing field is the measured SEOS
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signal S(t). By changing the timing τ of THz electric field, the convolution

can be written in the following way:

S(t, τ) =

∫
dt′H(t, t′)ETHz(t

′ + τ) (52)

The observed signal depends on the delay of the THz electric field, as indi-

cated by its dependence on the variable τ . To obtain the desired frequency

representation, a two-step Fourier transformation process is employed. Firstly,

we Fourier transform with respect to the first variable t, denoted by F1,

F1S(ω, τ) =

∫
dt′F1H(ω, t′)ETHz(t

′ + τ) (53)

Secondly, we perform another Fourier transformation with respect to the delay

τ , denoted by F12 = F1F2.

F12S(ω,Ω) =

∫
dt′F1H(ω, t′)F2ETHz(Ω)e

iΩt′ (54)

where the integral is just a Fourier transformation with respect to t′. We can

rewrite the result as

F12H(ω,Ω) =
F12Eout(ω,Ω)

F2Ein(Ω)
(55)

In essence, the SEOS technique enables the determination of the response func-

tion of a system by measuring the outgoing SEOS signal for different delays

and knowing the incoming THz electric field. This approach can also be uti-

lized to measure the emission of other THz sources to obtain their incoming

electric fields. In our case, the THz source is the STE, and its THz field can

be determined using MEOS. By keeping the probe pulse length and detection

crystal constant, the system response remains unchanged. Therefore, by mea-

suring the outgoing SEOS signal for other THz sources and multiplying it by

the response function of the system, the incoming field can be determined.

The theoretical evaluation of the response can be performed by reformulat-
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ing the convolution in section (2.10) without an additional delay. Since the

response of the system is real-valued, we can formulate the following relation-

ship.

S(ω) =

∫
dt′F1H

∗(−ω, t′)ETHz(t
′) (56)

On this basis, we can evaluate this integral using Parseval’s theorem, leading

to

S̃(ω) =

∫
dΩF12H

∗(−ω,Ω)ẼTHz(Ω) (57)

On the other hand, the measured signal also can be expressed as

S̃(ω) ∝ ∆Eprobe(ω)E
∗
probe(ω)C

∗ (58)

For simplification, we can assume again as in equation (45) that the pump-

induced change can be expressed as a convolution between the THz field and

the probe field:

S̃(ω) ∝ E∗
probe(ω)C

∗
∫

dΩEprobe(ω − Ω)ETHz(Ω) (59)

By the comparison of this equation with equation (57), the response function

can be identified:

F12H(ω,Ω) ∝ C∗E∗
probe(ω)Eprobe(ω + Ω) (60)

This result indicates that the transfer function results in zero if ω+Ω reaches

a value where the electric field of the probe is zero as well.

The response function for the more detailed modeling of the EOS can be
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written as

F12H(ω,Ω) ∝ 4πi
ω2t23(ω)

c2k(ω)
χ(2)(ω − Ω,Ω)t12(ω − Ω)t12(Ω)

exp(i∆kd)− 1

∆k

C∗E∗
probe(ω)Eprobe(ω + Ω) (61)

For the understanding of the SEOS response, we consider the simple model,

since it contains the SEOS dynamics without the crystal response and show-

cases the dynamics of this methodology. For the modelling of the measured

signals, the detailed modeling approach was taken.

2.11 Understanding the SEOS response

To better understand the response of our SEOS system (Figure 7), we assume

that we can generate any THz electric field E(t) by a superposition of δ-peaks

according to the convolution

E(t) =

∫
dτE(τ)δτ (t) (62)

The actual THz electric field in the lab is bandwidth-limited, depending on

the bandwidth of the emitter. This THz electric field can be described as

a convolution between a low-pass filter function HLP and the general THz

electric field:

ETHz(t) = HLP(t) ∗ E(t) (63)

The low-pass filter function determines the bandwidth of the THz electric field

since the emitted bandwidth is limited. With that the equation (62) can be

written as

ETHz(t) =

∫
dτE(τ)HLP(t) ∗ δτ (t) (64)
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The convolution between the low-pass filter and the δ-pulse we define as D

where the width is given by the bandwidth of the THz pulse. Thus, more

narrowband THz pulses allow for longer peaks D. Therefore, to understand

the signals delivered by SEOS, it is sufficient to understand the SEOS response

to the peaks D. By taking the response function of our system F1H(ω, t′), we

can evaluate the system’s reaction to the peaks D for different delays:

F1S(ω, τ) =

∫
dt′F1H(ω, t′)D(t′ − τ) (65)

The response function depends, as presented in Section (2.10), on the chirped

probe pulse. For the modeling, we assume a Gaussian Fourier limited probe

pulse with a pulse length of 50 fs which then gets temporally chirped to a

pulse length of 1.2 ps. If the response function gets convoluted according to

Figure 7 Signal F1S(ω, τ) for Gaussian pulses D shifted by the shown delays with a
pulse width of 0 fs (a), 100 fs (b), and 200 fs (c).

equation (65) by a narrow peak with no pulse width, it acts like a δ-like pulse,

and the resulting signal would reproduce the response function. By increasing
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the pulse width of the incoming pulse to 100 fs, the resulting signal F1S(ω, τ)

depicts a smeared-out version of the response function illustrated in Figure

7 (b). This signal showcases that the incoming Gaussian pulses can only be

mapped onto the optical frequencies for this pulse width with some additional

distortions. However, increasing the pulse width to 200 fs leads to a higher

degree of smearing, which in turn reduces the level of distortions. As evident

from the resulting signal depicted in Figure 7 (c), the incoming Gaussian pulse

is mapped onto the optical frequencies in a clearer manner. This leads to the

conclusion that the shorter the incoming pulse in time which is tantamount to

larger bandwidth, the poorer is the mapping of the incoming signal onto the

optical frequencies.
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3 Experimental details

Over the course of this study, two distinct experimental setups were con-

structed to facilitate the execution of the MEOS and SEOS methodologies.

Notably, each of these setups required a tailored approach to enable their suc-

cessful implementation by the usage of a different character of the probe.

3.1 Multi-shot setup

Figure 8 The setup for the multi-shot electro-optic sampling with a Ti:Sa seed os-
cillator and 1 kHz regenerative amplifier.

For MEOS, two different lasers are used, where one laser acts as a pump and

the other one as a probe. The pump pulse is generated by an amplified Ti:

sapphire laser system (Coherent Legend Elite Duo) with a repetition rate of

1kHz and a center wavelength of 800nm. The energy contained in a single pulse

can go up to approximately 5.7 mJ. The pump pulse goes through a telescope

to increase the beam size. Afterward, it shines on the STE for the purpose

of generating THz fields, which then hits the detection crystal. Two detection

crystals were used, ZnTe and GaP. The ZnTe crystal had a thickness of 8 µm

with a substrate with different crystal orientations afterward and the GaP had

a thickness of 50 µm without a substrate. Inside the crystal, the THz pulse

interacts with the probe pulse. The probe pulse is part of the laser system and

is a seed oscillator with a repetition rate of 80 MHz and a center wavelength
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of 800nm. The energy contained in one single pulse is approximately 0.2 nJ.

Additionally, the probe pulse is connected to a delay stage, which alters the

beam path to change the timing between the THz pulse and the probe pulse.

In detection the p-polarized probe and the s-polarized THz interact with each

other since a 0◦ or 90◦ angle between the polarizations of those two pulses is

optimal [37]. Thereafter the now elliptically polarized probe passes a quarter-

wave plate where its polarization changes into linearly polarized light again but

with a slight tilt away from the initial p-polarization. The Wollaston prism

splits it into two spatially separated components, which are measured by two

balanced photodiodes.

3.2 Single-shot setup

Figure 9 The setup for the single-shot electro-optic sampling with a compressor to
chirp the probe pulse.

In the single-shot detection setup only the kHz laser, the same as in the multi-

shot setup, are used. The laser is split into two components, where the stronger

part goes again into a telescope and then STE to create the THz radiation.

The minority part goes into a compressor, where the chirp pulse is generated.

Afterward, a polarizer is placed to make sure, that the outgoing chirp pulse is

linearly polarized. Then, a half-wave plate rotate the beam to achieve the 90◦
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difference between the probe and the THz. The quarter-wave plate transformes

the ellipticity into a rotation. Afterward, the analyzer blocks the majority of

the chirp pulse and lets the component through, which is generated by the

interaction with the THz pulse. To optimize the signal, we minimized the

signal from the chirp pulse with the QWP and the analyzer when only the

chirp probe is hitting the spectrometer. After the THz induces a change in

polarization, the initially fully minimized probe component gets less blocked

by the analyzer, and therefore the overall signal, the THz on top of the probe

signal, increases.
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4 Experimental results

The current chapter is dedicated to the presentation of the measured signals

obtained via both the MEOS and SEOS methodologies. In the case of the

SEOS signal, the analysis commences with the raw signal acquired via the

spectrometer, which is subsequently subjected to a frequency-to-time encod-

ing process to obtain a time-dependent signal. This is then compared with

the MEOS signal to enable a comprehensive comparative analysis of the two

approaches. Finally, the measured SEOS signal is compared against a model

signal derived from theoretical derivations, thereby giving an assessment of the

efficacy and accuracy of the SEOS methodology in the context of THz detec-

tion. The insights gleaned from this analysis serve to enrich our understanding

of the underlying principles and capabilities of the SEOS technique.

4.1 Multi-shot EOS

The common method to detect THz radiation in our lab is the multi-shot

EOS. In Figure 10 (a) this technique was applied for 8µm ZnTe for two THz

pulses generated by STE magnetized in opposite directions. The waveform

has a duration of approximately 0.5 ps and is shaped like a single-cycle pulse

with a flat beginning before and additional oscillations after the waveform.

The oscillations are caused by resonances in the ZnTe detector crystal. The

set-up was purged by nitrogen to omit absorption by water vapor. The flip of

the external magnets caused a sign flip of the entire waveform. Additionally,

the same procedure was performed for the GaP 50µm which shows the same

behavior, when flipping the external magnetic field. Furthermore, the echoes

of signals can be measured for GaP due to the absence of a substrate layer on

top of it. The echoes for positive delay time with respect to the main waveform

correspond to the probe pulse reflection and the ones for negative delay time

to the THz pulse reflection. By Fourier transforming the MEOS signals in the

time domain, its spectrum can be identified. Figure 10 (b) shows a bandwidth

of approximately up to 10 THz for the 8 µm ZnTe. However, the response
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Figure 10 (MEOS measurement with a flip of external B-field for 8µm ZnTe (a) and
50 µm GaP (b) using the STE of the THz generation. The spectral amplitude of
MEOS signal, Detector response, and retrieved electric field for 8µm ZnTe (c) and
50 µm GaP (d).

of the Pockels crystal influences the measured signal and, it is necessary to

ascertain its frequency-dependent response. This detector response for 8 µm

shows its prominent dip at the Reststrahlengap caused by a transverse optical

phonon mode at 5 THz [38]. The multi-shot signal describes an LTI system

and therefore can be described in the Fourier space as a multiplication between

the THz pulse and the detector response H̃Det(Ω):

S̃EOS(Ω) = H̃Det(Ω)ẼTHz(Ω) (66)

As a consequence, after the characterization and the simulation of the detector

response [30; 33], the incoming THz electric field can be determined by a simple

division in the frequency domain. This resulting retrieved signal can be used

as the incoming field for modeling the single shot signal in the section (4.7).

In the case of the 8 µm ZnTe, the phonon resonance at 5 THz and the non-
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monotonic phase behavior disappear in the retrieval process. For the GaP, only

the signal from 1.2 ps to 3 ps was considered, corresponding to the range for

one single waveform without the echoes. This resulted in the spectrum, which

only goes up to around 7 THz, originating from the thickness of the crystal

since a higher thickness leads to a decrease in higher frequencies because of

the increased velocity mismatch in thicker crystals. The resulting extracted

signals for these two crystals should agree which is not the case.

4.2 Raw data

Figure 11 Measured probe pulse after interaction with two opposing THz directions
for 8µm ZnTe (a) and 50µm GaP (b)

As the first step of our analysis, we subtract the dark noise which is the im-

pact of external influences like the ambient light when neither probe nor pump

pulse is hitting the detector and therefore redundant spectral information. The

probe pulse was directly focused into the spectrometer without using an optical

fiber, to avoid absorption or non-linear effects in the fiber. Figure 11 (a) and

(b) show the measured change in the spectrum when the THz pulse interacts

with the probe pulse. The reversal of the THz pulse polarity was realized by

changing the direction of the external field of the STE. As discussed in section

(2.3) this leads to a change of the electric dipole and at the end a sign flip

of the emitted THz electric field. For both detection crystals, the probe does

not have a Gaussian-shaped signal. It is more of a blending of a smaller peak

around 790 nm and a bigger one around 810 nm. For the 50 µm GaP, some
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additional oscillations are visible. This is caused by echoes in GaP, same as in

the MEOS measurement in figure 10 (c). Interference of a pulse Eprobe(t) with

the same pulse, but a smaller amplitude and a time shift aEprobe(t+∆t), lead

to an oscillation following a cos(ω∆t) in the frequency domain. The variables

a and ∆t describe a factor and a time shift, respectively. The first echo in the

MEOS measurement appears after approximately 1.48 ps. This matches the

period of around 1.4nm of the probe oscillations. For the evaluation of the

single shot signal the following formula was used.

SSEOS =
S+E − S-E

S+E + S-E
(67)

The difference in the nominator was taken to retrieve the part, which increases

linearly with Eprobe and ∆Eprobe. However, the same ellipticity appears smaller

on the edge of the probe signal than at a position where the probe intensity

is high. To compensate for that, the division by the sum of the signals for

opposing THz orientations is taken. This is the quadratic contribution of

Eprobe and ∆Eprobe, hence a normalization by the spectrum. This results in

the following relationship:

SSEOS ∝
4Re(∆EprobeE

∗
probeC

∗)

|Eprobe|2 + |∆Eprobe|2
(68)

4.3 Frequency-to-time encoding

Frequency-to-time encoding represents a crucial step in the signal acquisition

process, enabling the extraction of temporal information from spectrometer

measurements. As discussed, the diffraction gratings generate a frequency-

dependent phase shift, which can be leveraged to derive time-dependent signals

from the raw spectrometer measurements. In the pursuance of the conversion

from frequency to time, the single shot signal was determined for different

timings between THz and probe pulse. The time shift is caused by moving

a mirror and increasing the path of the pump beam before hitting the STE.

Figure 12 (a) shows how through this increase in the path, the waveforms shift
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Figure 12 (a) SEOS signal for different timing between the probe and THz field. (b)
Linear regression of delay change ∆t and change in frequency ∆ω.

their positions in the spectrometer.

S̃0(ω) ⇒ S̃1(ω +∆ω) ⇒ S̃2(ω + 2∆ω) (69)

Unfortunately, the waveform changes when shifting, because the system shown

in Figure 12 (a) is not time-invariant. Therefore, it is inadequate to only

determine how for example the maximum position shifts, when changing the

light path, because it is not precisely assignable if the change of the maximum

position is caused by the timing shift or by a change in the waveform. A better

approach would be to investigate the dynamics in the Fourier domain. The

signals can be described as

S0 = A(τ) exp(iϕ0) (70)

S1 = A(τ) exp(iϕ0) exp(−i∆ωτ) (71)

The ∆ω is then a phase shift in the Fourier domain. These signals can then

be multiplied by each other and yield

h1(τ) = S̃0S̃1
∗
= |A(τ)|2 exp(−i∆ω1τ) (72)
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The result contains the frequency shift ∆ω1 from the signal S0 to S1. The

weighted average of the frequency shift ∆ω is expressed by

∆ω =

∑
τ |hn(τ)|∆ωnτ∑

τ |h(τ)|τ 2
(73)

Here, we define frequency shifts with respect to the first signal S̃0. Figure

12 (b) shows the frequency shift ∆ω in relation to the change in delay ∆t.

The dependence points to a linear relationship, thus a linear regression can be

performed which indicates, that the chirp is linear, and conversion from Hz to

ps can be performed by determining the slope of the fitted line:

∆ω = m∆t (74)

with m being slope. The frequency-to-time encoding was performed for the

8 µm ZnTe crystal and as the probe pulse was kept constant, the encoding

would yield the same result for the 50 µm GaP. The slope of the fitted line

was 9.052·1025 Hz
s .

4.4 Single Shot measurement

After the frequency-to-time encoding, the measured signal on the spectrometer

can be translated to a signal in time. This makes a comparison to multi-shot

EOS possible, as seen in Figure 13. Figure 13 (a) shows that the single cycle

of the SEOS signal is slightly longer than the MEOS one, which is explainable

through the distortions of the single-shot, explained in Section (2.7). Since

in our case, we chose a probe pulse length, which approximately covers the

THz waveform, it leads only to small smearing of the single shot signal. The

bandwidth of the SEOS for ZnTe is slightly smaller than the MEOS method

and we are not able to detect the higher frequencies up to 10 THz. The

achieved single-shot detection bandwidth reaches 7 THz and 8 THz for 8 µm

ZnTe and 50 µm GaP, respectively. This is higher than the published papers

with this methodology [16] [39], reaching only 3 THz. The feature associated
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Figure 13 Comparison between the MEOS and SEOS signal in the time domain
for 8µm ZnTe (a) and 50 µm GaP (b). Comparison between the MEOS and SEOS
signal in the frequency domain for 8µm ZnTe (c) and 50 µm GaP (d).

with the Restrahlengap at 5 THz for ZnTe appears to move its position. It is

important to note that the resolution of the spectrum of SEOS is low. This is

caused by the chosen time window for the Fourier transformation of the signal.

The window is limited by the probe pulse length which is limited by the THz

pulse duration. Thus, we will always have a low resolution in the spectrum

since the dynamics of the probe pulse only goes up to 2.5 ps. The 50 µm GaP

has some additional oscillations caused by the reflection of the echoes. Since

the interference leads to a multiplication of the probe pulse with a cos(ω∆t),

the cosine term remains in the nominator in equation (67) and appears as an

oscillation in the signal. This oscillation measured by the spectrometer will also

be translated into time information. In the spectrometer, they had a period

of roughly 1.4 nm which translates with the frequency-to-time conversion to

a period of 0.05 ps in time. That in turn has a frequency of 20 THz. Since

in our detection method, we only measure up to 8 THz, the oscillations in
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the time domain will not affect the part of the spectrum of interest. The

interference is independent of the chirp and always appears as interference in

the spectrometer. They do not appear for the ZnTe crystal, because there a

substrate is used to avoid a strong change in refractive index and therefore

the echoes. We conclude that the oscillations of the signal in time are only

caused by the usage of a spectrometer, not by the chirp or the THz pulse.

In Figure 13 (c) the distortions in the time domain appear to be stronger in

the case of GaP compared to the ZnTe since it showcases a stronger single-

cycle broadening in the single-shot measurement. Additionally, a strong pre-

oscillation is detectable. In figure 13 (d) the spectrum of the GaP 50 µm is

illustrated. The bandwidth of the SEOS appears to be similar to the MEOS

and goes up to 8 THz. The SEOS spectrum has additional fringes in the

spectrum which are presumably caused by the chirp.

4.5 SEOS for a different pulse length

Figure 14 (a) SEOS signal for different probe pulse lengths in the time domain. (b)
SEOS signal for different probe pulse lengths in the frequency domain.

In SEOS, commonly discussed distortions are evident in Figure 14. The

considerably longer single cycle and higher amplitude in oscillations before

and after the single cycle are vehemently noticeable. The employed increase

in GDD is approximately 3.6-fold, which would translate to a probe pulse

duration that is roughly twice as long. The noisy character in the time domain

is due to a shorter amount of averages taken compared to the signal with
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a shorter probe pulse. The spectrum shows, for the longer probe pulse an

appearance of strong oscillations, particularly for smaller THz frequencies. It

is crucial to note that a longer pulse in time means a shorter coverage of the

signal on the spectrometer, resulting in fewer sample points for the signal in

the time domain and leading to a lower resolution in the spectrum.

4.6 Chirp pulse length

The determination of the pulse length of the chirp pulse is a crucial step for

modeling the signal. Depending on the pulse length, the resulting signal can

change in its dynamics. On the spectrometer, the pulse length can be deter-

mined with the help of the equation (24) and by identifying the width in the

frequency domain. But the phase gets lost due to the fact that the spectrom-

eter takes the absolute square of the incoming electric field. Therefore, with

the frequency-to-time calibration in the section (4.3), we can identify the pulse

length of the chirp probe pulse. In the experiment, the distance between the

Figure 15 Comparison between the pulse length determined by the experimental
and theoretical frequency-to-time conversion.

transmission gratings was chosen to be 9cm with an angle of incidence of a

few degrees. They had a periodicity of 300 lines per mm. Combining all the

variables, the GDD could be calculated, and the laser chirp rate for the the-

oretical frequency to time conversion using equation (47) as well. The initial

pulse length τ0 before going into the compressor was measured using spectral
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Phase Interferometry for direct electric-field reconstruction (SPIDER). The

initial pulse can not be defined by the pulse measured with the spectrome-

ter since it is not fourier-limited due to a large amount of dispersive optics.

Figure 15 shows the comparison between the theoretical and experimental de-

termined pulse length. The theoretical one shows an approximately 1.3 times

longer pulse.

4.7 Single-shot Modelling

For the modeling of the pump-induced change, equation (48) was used. Here,

for the incoming THz electric field, the measured MEOS signal was taken

and deconvoluted according to equation (66), and the retrieved electric field

was taken. For the probe electric field, the measured probe signal on the spec-

Figure 16 Comparison of the MEOS and SEOS signal in the time domain for 8 µm
ZnTe (a) and 50 µm GaP (b). Comparison of the MEOS and SEOS signal in the
frequency domain for 8 µm ZnTe (c) and 50 µm GaP (d).

trometer was chosen, whereby the phase needed to be calculated. The previous

chapter showed us, that there is a slight disagreement between the theoretical
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and experimental chirp calculations. Therefore, the GDD value was retrieved

from the measured frequency-to-time encoding. A good indicator for proper

matching is if the oscillations of the signals in time are matching. Because the

measured signal is proportional to the probe electric field Eprobe, where the

oscillations come from. If the oscillations in the time domain match, the GDD

and therefore the chirp is fitting. Figure 16 (a) shows for the ZnTe a good

agreement between the measured and modeled signal. The overall dynamics

are comparable, but the modeled signal shows stronger features in the oscil-

lations. For example, after the waveform, there are some strong oscillations

in the modeled signal which do not appear in the measured one. The model

for the GaP displays some disparities in the phase of the oscillations, but the

overall waveform could be replicated. For the spectral information, both time

traces were Fourier transformed from 0 to 2.5 ps, identical to the measured

signal. Both spectra exhibit discrepancies in the minima of the oscillations.

In the ZnTe the first minimum shows a slight mismatch in the first minimum

and stronger features afterward. In the GaP the first two oscillations match,

but the third minimum also comes 0.1 THz prematurely, and the maximum

afterward as well.

Moreover, in the modeling, the dynamics after the crystal are not taken into ac-

count. That means the change in pulse shape through the polarizer and QWP

before hitting the spectrometer. Furthermore, the spectrometer response was

not considered. These factors can influence the shape of the modeled signal.
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5 Discussion

The present chapter aims to provide a discussion of the limitations of the SEOS

methodology. To this end, the relative dynamics change of two different detec-

tion crystals used in the SEOS methodology is also evaluated and the reasoning

for a difference in measurement results is presented. Finally, suggestions for

the improvement of the methodology are proposed.

5.1 Limitations of SEOS

In this work, we built a single-shot detection setup to perform an EOS mea-

surement. A comparison with the MEOS method enables us to recognize its

strengths and weaknesses. The MEOS allows us to detect THz frequencies up

to 10 THz and 7 THz for 8µm ZnTe and 50 µm Gap, respectively. Generally,

using the STE, an emission of up to 30 THz can be achieved [19]. The STE

emission is fourier-limited and depends on the pump pulse length [19]. The

detected bandwidth is by a factor of 3 smaller, therefore the incoming pump

pulse could be chirped by the optical elements in usage before generating the

THz field. The SEOS shows frequencies up to 7 THz for the ZnTe and 8 THz

for the GaP. Above 10 THz the spectrum indicates some amplitudes, but this

is presumably produced by the noise. Considering that in the frequency-to-

time conversion from the spectrometer signal, the noise will also be converted.

By making the chirp probe pulse shorter, we should improve the bandwidth.

Certainly, the probe pulse should be longer than the incoming THz signal,

otherwise, the dynamics will not be detected. This showcases the major limit

of single-shot detection. If the duration of the emitted source is unknown,

the chosen probe pulse length could distort the emitted THz signal. This was

shown by the choice of longer probe pulse length, where the distortions are so

profound, that the higher frequencies are not detectable anymore. Therefore,

for an unknown source, the probe pulse has to be changed, to optimize the

bandwidth of the detection.
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5.2 Probe pulse duration

The comparative analysis of the theoretical and experimental calculation of

pulse duration has produced disparate results. One possible explanation for

this disparity is that the measured probe pulse may not adhere to a Gaussian

distribution, causing the application of equation (47) inaccurate in converting

frequency to time using the laser chirp rate. The distortion in the shape of

the probe pulse could arise due to absorption by various mirrors and optical

components. Additionally, post-chirping, a polarizer, HWP, and filters were

employed, which could introduce a positive dispersion effect, and counteract

the negative dispersion introduced by the compressor, thereby causing a slight

reduction in the chirp pulse length and ultimately leading to a shorter mea-

sured pulse, which concurs with the measurement. Furthermore, variables that

impact chirp or GDD may not be accurately determinable, such as the beam’s

angle of incidence and center frequency. Another argument to consider is the

potential non-linearity of the chirp, which could be attributed to a third-order

term in the Taylor expansion of the phase. However, for the distance chosen,

the third-order term with a magnitude of 10−11 fs2 is considerably lower than

the GDD value around -1100 fs2, indicating that assuming linearity in the chirp

is a fitting assumption

5.3 SEOS with GaP and ZnTe

The experimental results obtained from using two different detection crystals

in the SEOS showed significant differences. Notably, the SEOS of GaP demon-

strated a proportionally longer single cycle compared to that of ZnTe, with a

strong pre-oscillation before the single cycle. The measurement of the ZnTe

crystal with a longer probe pulse exhibited similar behavior, indicating that

the GaP crystal interacted with a significantly longer probe pulse. However,

since all variables that could influence the GDD were kept constant, this obser-

vation was unexpected. Consistent with the modeled result, both the change in

waveform and the modulation in the spectrum of GaP could be replicated and
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Figure 17 (a) Modeled single-shot spectrum for ZnTe for a thickness of 8 µm and
50 µm. (b) Modeled single-shot spectrum for GaP for different GDD factor.

therefore have to be induced by the additional substrate, the thickness, or the

detection crystal itself. We can rule out the additional substrate as a poten-

tial source of signal distortion since back reflection inside the GaP only causes

fringes in the time domain. These oscillations only contribute to a frequency

range that is not of our interest. Additionally, the thickness of the substrate

in the order of micrometers is too small to induce additional dispersion. How-

ever, the thickness of the crystal can lead to phase-matching oscillation due

to a mismatch in the wave number, which can result in a strong oscillation in

the electric field component of the pump-induced change. This can lead to a

distortion in the SEOS signal in both time and spectrum domains. Therefore,

the thicker the crystal, the stronger the distortion in the SEOS signal. To

confirm this hypothesis, we could measure the ZnTe crystal with a thickness

of 50 µm and examine the change in dynamics and the influence of the phase-

matching condition. Nevertheless, a change in the thickness in the modeling

did not lead to a drastic change in signal severity at 50 µm between the two

materials. In Figure 17 (a) the spectrum for increased thickness to 50 µm in

the modeling could not replicate the prominent oscillation in the GaP. Finally,

the SEOS signal is highly dependent on the crystal response, which is likely the

most significant origin of differences in the resulting waveform and spectrum.

The observed strong modulation in GaP in the spectrum is likely induced by

the chirp of the probe, as changing the GDD parameter results in a shift in
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the modulation positions. But it is expected that, even if the modulation is

less apparent in ZnTe, the periodicity should remain the same since the probe

pulse length is constant. However, when comparing the two detection crystals

using the MEOS method, they exhibit different frequency-dependent behav-

iors. GaP showed a monotonic falling dependence from around 2.2 THz with

an approximately constant slope. When multiplied by an oscillation, it would

result in an oscillation with a decreasing envelope. Moreover, the ZnTe does

not show this monotonic behavior and is strongly influenced by the Restrahlen-

gap at 5 THz. Multiplying this behavior with an oscillation would lead to a

significantly different result and could explain why this oscillation is not that

apparent in the ZnTe measured with the SEOS method. To investigate the

theory that the fringes are caused by the chirp of the probe pulse, the GaP was

modeled for a different probe pulse length. Upon increasing the GDD factor

in the modeling of the GaP crystal by a factor of 1.2, the minima of the fringes

in the spectrum exhibited a shift, as depicted in Figure 17 (b). The observed

shift in the fringes towards the earlier part of the spectrum is consistent with

the fact that longer probe pulses result in longer single cycles of the signal in

the time domain. In the case of the measurement with a longer probe pulse

with the ZnTe crystal, pronounced modulations were detected even earlier in

the spectrum compared to the model in Figure 17 (b) due to the higher GDD

factor of 3.6. These modulations appeared in the 1-5 THz range as this range

was not affected by the Restrahlen dip, and thus, allowed for their detection in

the ZnTe crystal compared to the measurement with the shorter probe pulse.

To conclude, the measurements indicate that when measuring with SEOS, the

signal will contain a modulation in the spectrum caused by the chirp of the

probe. The slight incongruities between the modeled and measured signals

have to be discussed. The primary root cause for these inconsistencies can be

attributed to the underlying assumptions made regarding the incoming THz

signal. The incoming Thz signal was computed by using the MEOS signal,

deconvoluted by the detector response. The outcomes obtained for both crys-

tals displayed notable deviations from the anticipated THz signal. Figures 18
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Figure 18 Extracted THz signal for 8 µm ZnTe (a) and 50 µm GaP (b).

(a) and (b) illustrate the extracted THz signal for ZnTe thicknesses of 8µm

and 50µm GaP, respectively. These signals display a single-cycle waveform

with additional oscillations, suggesting the presence of residual dynamics aris-

ing from crystal response and water vapor. However, it should be noted that

this behavior is incorrect since the emitted THz beam from the STE does not

contain both. To gain a more accurate description of the incoming THz field,

one would need a better determination of the driving field. Another significant

source of error in the modeling process is the probe’s electric field. Although

the measured probe signal on the spectrometer is utilized in the analysis, its

shape may change after interacting with the detector crystal and subsequently

measured in the spectrometer. A more precise evaluation would involve mea-

suring the probe field immediately after the ZnTe crystal.

5.4 Improvements

Multiple improvements can be utilized to make the SEOS methodology a more

valuable tool. The single-to-noise ratio can be enhanced by using two spec-

trometers. The measurements in this work were performed by switching the

external field and causing a sign flip in the emitted THz field from the STE.

This was done to retrieve the linear component of the probe and the pump-

induced change SSEOS ∝ ∆EprobeE
∗
probeC

∗. On the other hand, this could be

achieved by changing using a Wollaston as seen in Figure 19.
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Figure 19 (a) Projection of Eprobe and ∆Eprobe, when using a Wollaston prism. (b)
Transmission grating setup when using a delay stage.

In this geometry, the x-axis represents the pump-induced change ∆Eprobe

and the y-axis the probe field Eprobe. The Wollaston prism is set up in a

way, that the wx and wy have a 45° and 135° angle to the x-axis, respec-

tively. These are the s- and p- components emitted by the Wollaston prism.

They both have two projections to each axis, whereby E
′

probe = E
′′

probe and

∆E
′

probe = −∆E
′′

probe. This would mean, that with one shot, all the necessary

measurements can be done to obtain the signal since a one-shot measurement

would measure the positive and negative pump-induced components. If you

detect both signals from the Wollaston, you can subtract them and acquire

the linear part as before. In this work, we still require two shots for the detec-

tion of a waveform, while using a Wollaston could improve the signal-to-noise

ratio because only performing one shot would avoid distortion from one to the

next. Additionally, this also would reduce the acquisition time. The down-

side of using this Wollaston is, that in reality, Eprobe is significantly stronger

than ∆Eprobe component. This means a spectrometer with a large dynamic

range is necessary, which handles the probe’s electric field without saturating

and simultaneously measures a small change in intensity caused by ∆Eprobe.

Otherwise, the Eprobe has to be reduced remarkably by the usage of filters or

polarizers.

An additional improvement that could be implemented is the construction of

a stage that facilitates more effortless modification of the distance between the

gratings. In our current configuration, the reflection or transmission gratings

are attached to fixed posts, necessitating the dismounting of components to ad-
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just the distance. Ideally, the second grating along with the mirrors should be

mounted on a movable stage that moves in tandem with the diffraction angle

of the first grating. This would simplify the alteration of the chirp length.
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6 Conclusion and outlook

In this work, the development of an SEOS setup was realized and proved

to be a valuable technique for detecting broadband THz signals. Our SEOS

technique allowed us to successfully measure broadband THz pulses up to a

frequency of approximately 7 THz and 8 THz using the 8 µm ZnTe and 50 µm

GaP, respectively. With that, we outperformed the highest published band-

width of approximately 3 THz. Additionally, our findings demonstrated that

the SEOS methodology induces a modulation in the spectrum of the measured

signal. We also showed that the degree of modulation depends strongly on

the duration of the probe pulse. Finally, we were able to achieve successful

modeling of our measurements through a more detailed approach that involved

accounting for the crystal response and phase-matching condition in the inter-

action between the THz and probe pulse. This approach allowed for a deeper

understanding of the underlying dynamics of the system. By experimentally

determining the response function, we can further extend our ability to eval-

uate the incoming THz field for materials with relatively low THz emission

amplitudes. For that, we have to vary the delay between the THz pulse and

the chirp probe pulse. In this work, we only varied the delay up to 0.3 ps,

thus would lead to a low resolution after Fourier transformation. For future

plans, we can vary the delay further and also determine the two-dimensional

response function experimentally as well, since the method for calculation has

already been demonstrated.
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A Appendix

A.1 Polarizer dependence

Figure 20 Peak-to-peak divided by the noise for different polarizer positions.

By changing the polarizer position, the contribution of the probe field to

the SEOS signal can be changed. When aligning the blocking axis of the

polarizer exactly parallel to the probe’s electric field, it blocks the field fully.

Theoretically, it should result in no SEOS signal because Eprobe is zero. In

reality, there is still some contribution from Eprobe since the polarizer does not

fully block. By increasing the angle from the parallel position, the contribution

of Eprobe increases, and ∆Eprobe decreases. At 90 degrees there should be no

contribution from ∆Eprobe and maximized contribution from Eprobe. The goal

was to find the polarizer position where the signal-to-noise ratio is the highest.

For that, we varied the angle for the polarizer and investigated the signal using

the following formula.

Signal-to-noise ratio =
max(SSEOS)− min(SSEOS)

σ(SSEOS,Noise)
(75)

Here, the peak-to-peak was calculated by subtracting the maximum value from

the minimum, and the noise by calculating the standard deviation σ for the

region where no signal was detected. Figure (20) shows that at already 5

and 6 degrees, the Signal-to-noise ratio maximizes. This means only a small
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contribution to the Eprobe is necessary. The setting at 6 degrees was chosen

for the SEOS measurements.

A.2 Longer probe pulse

The technique of frequency-to-time encoding was applied to the longer probe

pulse using the same methodology as for the shorter one. By analyzing the

measured probe field on the spectrometer, the wavelength was converted into

a time signal which enabled the determination of the probe pulse length in

time. The resulting probe signal for the longer probe pulse exhibited an ap-

proximately two-fold increase in pulse length. However, the signal displayed

different shapes which could be attributed to chirping effects, as well as possi-

ble differences in alignment since the signals were measured months apart.

Figure 21 (a) Linear regression of delay change ∆d and change in wavelength ∆λ
(b) Pulse length comparison of the probe pulse using the frequency-to-time encoding
(c) Modeled signal in the time domain (d) Modeled signal in the frequency domain.

In terms of modeling, good agreement was observed for the longer pulse,
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with the single cycle and two additional oscillations being accurately repli-

cated. The spectrum investigation exhibited a notable modulation in the lower

frequency range, which signifies that the extended pulse duration led to oscil-

lations in the lower frequencies. The underlying reason for this phenomenon

is the temporal spreading of the waveform, which amplifies as the probe pulse

length increases, resulting in a modulation in the spectrum. This observa-

tion confirms the idea that the modulation was not visible for the short pulse

length due to the crystal response, which has a better-behaved crystal response

in the 1-4 THz frequency range. Hence, the modulation can be detected in

this frequency range.

A.3 SPIDER measurement

Figure 22 The measured intensity with SPIDER

The intensity measured using SPIDER is presented in Figure (22), where

the probe pulse was measured before going into the compressor where it got

broadened. The shape is not Gaussian similar to the probe electric field mea-

sured on the spectrometer in the SEOS measurements. But it looks closer to a

Gaussian-shaped beam. This led to the conclusion, that either the compressor

or the optical elements afterward could cause a further change in shape. The

pulse width was measured to be approximately 75 fs, which is longer than the

Fourier-limited pulse width of approximately 40 fs. Thus, the pulse arriving
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at the STE likely contains a pulse that can be shortened to achieve a higher

bandwidth in the emitted THz electric field from the STE. To perform the

theoretical conversion from wavelength to time using equation (47), the initial

pulse length of 75 fs was used.
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B List of abbreviations

DFG Difference-frequency generation

EOS Electro-optic sampling

FM Ferromagnetic

GaP Galium Phosphite

GDD Group delay dispersion

GVD Group velocity dispersion

ISHE Inverse spin Hall effect

LTI Linear time-invariant

MEOS Multi-shot electro-optic sampling

NM Non-magnetic

SEOS Single-shot electro-optic sampling

SFG Sum-frequency generation

STE Sprintonic Terahertz emitter

SPIDER Spectral Phase Interferometry for Direct Electric-field Reconstruc-

tion

THz Terahertz

Ti:sapphire Titanium-doped sapphire crystal

ZnTe Zinc Telluride
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