
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Tensor-SqRA: Modeling the transition rates
of interacting molecular systems in terms
of potential energies

Cite as: J. Chem. Phys. 160, 104112 (2024); doi: 10.1063/5.0187792
Submitted: 16 November 2023 • Accepted: 19 February 2024 •
Published Online: 14 March 2024

Alexander Sikorski,1 ,2,a) Amir Niknejad,3,b) Marcus Weber,2,c) and Luca Donati1 ,2,d)

AFFILIATIONS
1 Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
2Department Modeling and Simulation of Complex Processes, Zuse Institute Berlin, 14195 Berlin, Germany
3Department of Mathematics, College of Mount Saint Vincent, New York, New York 10471, USA

a)Author to whom correspondence should be addressed: sikorski@zib.de
b)amir.niknejad@mountsaintvincent.edu
c)weber@zib.de
d)donati@zib.de

ABSTRACT
Estimating the rate of rare conformational changes in molecular systems is one of the goals of molecular dynamics simulations. In the past few
decades, a lot of progress has been done in data-based approaches toward this problem. In contrast, model-based methods, such as the Square
Root Approximation (SqRA), directly derive these quantities from the potential energy functions. In this article, we demonstrate how the
SqRA formalism naturally blends with the tensor structure obtained by coupling multiple systems, resulting in the tensor-based Square Root
Approximation (tSqRA). It enables efficient treatment of high-dimensional systems using the SqRA and provides an algebraic expression
of the impact of coupling energies between molecular subsystems. Based on the tSqRA, we also develop the projected rate estimation, a
hybrid data-model-based algorithm that efficiently estimates the slowest rates for coupled systems. In addition, we investigate the possibility
of integrating low-rank approximations within this framework to maximize the potential of the tSqRA.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187792

I. INTRODUCTION
Classical molecular systems are modeled by a function Ṽ(x),

which provides the potential energy of the system as a function of
the D-dimensional coordinate vector x of the atoms of the system.
The potential energy function Ṽ is calculated as a sum of interaction
energies, and each summand depends on a small subset of the coor-
dinates only. If we assume that parts of the molecular system are
spatially far enough apart from each other, then these parts of the
system move almost independently. According to this assumption,
let the potential energy of the system, e.g., be written as

Ṽ(x) ∶= Ṽ(x1, x2) = V1(x1) + V2(x2) + Vc(x1, x2)
= V(x1, x2) + Vc(x1, x2), (1)

where x1 is a d-dimensional vector and x2 is a (D − d)-dimensional
vector of disjoint subsets of coordinates of the entire D-dimensional
system. The potential defined in Eq. (1) can be investigated from
three different points of view: (i) V1 and V2 are analyzed indi-
vidually as isolated subsystems; (ii) V1 and V2 are analyzed as a
non-interacting combined system; and (iii) V1 and V2 interact by
means of the potential Vc giving rise to a coupled system. In real
applications, it is interesting to understand how the term Vc of the
coupled system changes the rate of rare transitions of the combined
system.

In order to answer this fundamental question, the typical
approach (known as Markov state modeling1) is to produce clas-
sical Molecular Dynamics (MD) simulations at the atomistic level;
then, the simulation data are used to construct transition probability
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matrices, whose spectral analysis allows for the determination of the
time scales of the “macroscopic movements.”

As an alternative to the data-based approach of Markov state
modeling, which is widely known and applied, the model-based
Square Root Approximation (SqRA)2–5 can directly derive transition
rate matrices from the potential energy function of the molecular
system without taking the detour of generating molecular simulation
data.

In this article, we review the fundamentals of SqRA and show
how its algebraic structure can be leveraged to calculate the rare
event rates of molecular systems with potentials defined as in Eq. (1).
In particular, we show how SqRA allows us to directly represent the
kinetic properties of the non-interacting system V(x1, x2) in terms
of the rate matrices of the isolated subsystems V1(x1) and V2(x2)
using the Kronecker formalism,6 thereby circumventing the curse
of dimensionality. Clearly, this simple decomposition breaks down
when introducing the coupling term Vc(x1, x2).

To alleviate this problem, we developed a tensor formulation of
SqRA (tSqRA), which allows us to represent the coupling terms by
Hadamard products. Since these act on the interacting particles only,
this enables to inherit as much of the underlying decoupled struc-
ture as possible. This reduces the complexity while still providing
exact results, avoiding the (computationally expensive) production
of molecular simulation data to obtain transition rate matrices of the
entire molecular system. Using a tensor algebra to analyze coupled
Markov processes is not a new idea; there exist introductory texts to
these kinds of approaches; see the work of Dayar7 or Ludyk.8 In addi-
tion, analytical and linear algebraic methods are well-established and
widely known; see the work of Pollock9 and Jokar and Mehrmann.10

Not only in theory, but also in applications, these methods
have been used intensively; see the work of Fernández11 and
Ching et al.12

However, our article goes one step further than the existing the-
ory and methods by combining the algebraic form of SqRA, which
provides an explicit link between transition rates and potential
energy with the tensor algebra approach. This offers an interpre-
tation of the kinetics of the coupled system as a perturbation of
isolated subsystems and allows us to apply perturbation methods. In
order to illustrate this idea, we introduce the Projected Rate Estima-
tion (PRE), a hybrid data-model-based method to obtain the global
transition rates of coupled systems as perturbation of the transition
rates of non-interacting subsystems by carrying out only a few local
simulations.

The presented methods do not exploit any low-rank struc-
tures in the problem yet and therefore cannot be applied directly to
larger systems. However, we demonstrate how the provided formal-
ism lends itself to future low-rank approximations via tensor-trains
or tensor-networks, thereby facilitating computations on larger
scales.13–16

II. THEORY
Originally, SqRA2,17 was invented to solve the problem of find-

ing a transition rate matrix Q ∈ RN×N of a molecular system with
an Euclidean state space discretized into N subsets such that this
matrix is reversible and has a predefined stationary distribution
π ∈ RN . It turned out that a regular grid discretization of the state
space guarantees a simple algebraic form of the matrix Q and that

increasing the size of the grid M →∞ leads to a convergence of Q
toward the Fokker–Planck operator of the underlying overdamped
Langevin dynamics of the system.18 Note that for the application
of SqRA, a regular grid can be constructed by a hypercubic grid,
which can be seen as a Voronoi tessellation with equidistant cen-
ter points in each direction. In many applications of SqRA, it is
assumed that the discretization of the state space is fine enough to
approximate the continuous stationary distribution by the point-
wise evaluation of the Boltzmann distribution at the centers of the
cells. In Secs. II A–II D, we will show how the algebraic structure
of the SqRA lends itself to the application to combined and even
coupled systems.

In Sec. II A, we start by introducing the necessary foundations
of the SqRA. Section II B then shows how the SqRA matrices for the
combined system can be composed of the SqRA matrices of the iso-
lated systems using Kronecker products and sums. In Sec. II C, we
show how these matrices are changed by the introduction of a cou-
pling between the subsystems. Section II D provides the most general
formulation in terms of tensors and Hadamard products paving the
way for future low-rank developments.

A. Linear algebraic form of SqRA
Consider a D-dimensional dynamical system governed by the

potential energy function V(x) : RD → R, where the state space
x is discretized by a hypercubic grid with N center points xi
with i = 1, 2, . . . , N. The stationary distribution π is given by the
Boltzmann distribution with entries

πi ∶= π(xi) = exp(− 1
kBT

V(xi)), (2)

where kB is the Boltzmann constant and T is the temperature. The
SqRA defines the sparse rate matrix Q ∈ RN×N as

Qij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
πj/πi if xi is adjacent to xj ,

−∑M
i=1
i≠ j,

Qij if xi = xj

0 otherwise

(3)

or alternatively in the matrix form

Q ∶= D−1AD − diag (D−1AD e)
= D−1AD − E

= Qout − E. (4)

Here, D is a diagonal matrix with the square roots of the vector π
on the diagonal, i.e., D = diag (

√
π), A is the adjacency matrix of the

grid, and eM = (1, 1, . . . , 1)T is a column vector with N entries. We
denote the off-diagonal part of Q by Qout = D−1AD, and the diagonal
part E = diag(D−1ADeM) is chosen in such a way that Q has row sum
zero. Note that the stationary distribution in Eq. (2) does not need
to be normalized since the quotient in the SqRA’s formula cancels
out the normalization constant. When defining Q this way, it has
unit-less entries. To obtain a proper rate matrix, it is necessary to
multiply each entry Qij by a flux term Φij that depends on the grid
geometry and the diffusion.4 For simplicity, we assume a regular grid
and constant diffusion such that we can omit Φ∝ 1 (time units)−1.
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With this assumption, the matrix Q is a transition rate matrix.
The rows of Qout comprise the outgoing rates from one given state
(subset) of the system to the adjacent states, and the diagonal entries
of Q are negative and represent the “total exit rate” from a given
state. Since these are also the entries of E, we will also refer to E as the
“exit rate matrix.” Note that Q can be seen as a similarity transform
of A − E,

Q = D−1(A − E)D. (5)

Thus, eigenvalues of Q and A − E coincide. As a consequence, the
implied time-scales of molecular systems, which are derived from
these eigenvalues, only depend on the “total exit rates” and on the
adjacency of the discretized states of the system.

In this regard, A − E is like a decomposition of the process into
a “entropical” part (adjacency matrix A) and a “energetic” part (exit
rate matrix E). The eigenvectors (or their sign structure) of Q on
the other hand can be used to identify macro-states in the form
of conformations or metastabilities by algorithms such as PCCA19

or PCCA+.20 If v is an eigenvector of A − E, then D−1v is the cor-
responding eigenvector of Q (sharing the same sign structure with
v).

Describing transitions in terms of rate matrices is only one pos-
sible notation. A very common way of analyzing Markov processes
is the use of transition probability matrices instead of rate matri-
ces. Our approach can be transferred to the framework of transition
matrices. A Markov chain that is observed for a specific lag time τ
[the time unit is defined by the flux in Eq. (5)] is represented by a
conditional probability matrix

Kτ = exp (τQ), (6)

where exp(⋅) denotes the matrix exponential. Equation (6) defines
the discrete version of the Koopman operator that transports observ-
able functions f ∈ L∞ forward in time. Correspondingly, its trans-
pose is a discretization of the propagator Pτ , which transports
probability densities ρ ∈ L1. The entries of the ith row of Kτ quan-
tify the conditional probability for a system that starts in this state i
to end up in the respective states in the time span τ. In contrast to Q,
the matrix Kτ is usually a dense matrix. However, Kτ has the same
eigenvectors, such as Q, and if λ is an eigenvalue of Q, then exp(τλ)
is an eigenvalue of Kτ . In this regard, many results and methods
developed for Kτ or Pτ directly carry over to Q.

B. The Kronecker formalism of SqRA for combined
subsystems

When considering two isolated systems consisting of N1 and
N2 possible states, respectively, the combined system can be in one
of N = N1 ×N2 possible states and the corresponding Q matrix is
of size N1 ⋅ N2 ×N1 ⋅ N2. However, since they do not interact, they
should still be described by the two individual system’s rates matri-
ces Q1, Q2, which are of sizes N1 ×N1 and N2 ×N2 only, therefore
providing a way more compact representation. In this section, we
will show how the SqRA allows for such a compact representation in
the form of Kronecker products and sums.

We first consider the case of n = 2 combined subsystems,
respectively, of dimensions D1 and D2 such that D1 +D2 = D, before

stating the more general result for arbitrary n. The combined poten-
tial energy is the sum of the subsystems potentials V1 : RD1 → R and
V2 : RD2 → R,

V(x) ∶= V(x1, x2) = V1(x1) + V2(x2), (7)

where x1 ∈ RD1 and x2 ∈ RD2 are the state vectors of the subsystems.
Similarly, due to its exponential form, the overall stationary distri-
bution defined in Eq. (2) factors into the product of the marginal
distributions of the subsystems

π(x) ∶= π(x1, x2) = π1(x1)π2(x2). (8)

The hyper-cubic grid discretizing the Euclidean state space is
given by the combination of the grids along the two system’s sets of
coordinates, each consisting of N1 and N2 cells, respectively, for a
total number of N = N1 ⋅ N2 cells. Let us now see how the matrices
A, D, E, Qout, and Q introduced in Eq. (4) are rewritten in terms of
the smaller matrices associated with the two subsystems.

1. Adjacency matrix
The matrix A of the coupled system is given by the Kronecker

sum of the corresponding adjacency matrices of the subsystems,

A = A1 ⊕ A2

= A1 ⊗ I2 + I1 ⊗ A2, (9)

where I1 and I2 are, respectively, two identity matrices of sizes
(N1 ×N1) and (N2 ×N2).

2. Diagonal matrix
The stationary distributions π1 and π2 of the subsystems

are used to build the diagonal matrices D1 = diag (
√

π1) and D2
= diag (

√
π2), and the matrix D is given by Kronecker product of

the corresponding subsystems matrices,

D = D1 ⊗D2. (10)

3. Off-diagonal matrix
Inserting Eqs. (9) and (10) into the off-diagonal part of the

SqRA [Eq. (4)], we obtain

Qout = D−1AD = (D−1
1 ⊗D−1

2 )(A1 ⊗ I2 + I1 ⊗ A2)(D1 ⊗D2)
= (D−1

1 ⊗D−1
2 )(A1 ⊗ I2)(D1 ⊗D2)

+ (D−1
1 ⊗D−1

2 )(I1 ⊗ A2)(D1 ⊗D2)
= (D−1

1 A1 ⊗D−1
2 I2)(D1 ⊗D2)

+ (D−1
1 I1 ⊗D−1

2 A2)(D1 ⊗D2)
= D−1

1 A1D1 ⊗ I2 + I1 ⊗D−1
2 A2D2,

and we see that the off-diagonal part indeed decomposes into the
Kronecker sum of the individual systems,

Qout = Qout
1 ⊕Qout

2 . (11)
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4. Rate matrix
Since transition probabilities are given by the product prob-

abilities for the respective transitions of the subsystems, the dis-
cretization of the Koopman operator of the full system can be
decomposed as7

Kτ = Kτ
1 ⊗ Kτ

2

= exp (τQ1)⊗ exp (τQ2)
= exp (τ(Q1 ⊕Q2)), (12)

where we applied the Kronecker sum rule for exponential matrices
in the last line. This implies

Q = Q1 ⊕Q2. (13)

5. Exit rate matrix
Applying Eqs. (11) and (13) yields

Q = Q1 ⊕Q2

= (Qout
1 − E1)⊕ (Qout

2 − E2)
= (Qout

1 − E1)⊗ I2 + I1 ⊗ (Qout
2 − E2)

= Qout
1 ⊕Qout

2 − E1 ⊕ E2,

from which one derives

E = E1 ⊕ E2. (14)

For an arbitrary number n of subsystems, we summarize this
finding in the following proposition:

Proposition 1. Consider a D-dimensional system with poten-
tial V : RD → R and stationary distribution π : RD → R defined on
a state space that can be discretized by a D-dimensional hypercubic
grid.

Assume that the coordinates can be partitioned into n subsets of
sizes D1, D2, . . . , Dn each, with ∑n

i=1 Di = D, such that the potential
V is written as

V(x) =
n

∑
i=1

Vi(xi),

where each potential Vi : RDi → R is a Di-dimensional function that
depends only on the ith subset of coordinates.

Correspondingly, the stationary distribution is rewritten as

π(x) =
n

∏
i=1

πi(xi).

For each subsystem i, we define the adjacency matrix Ai, the
diagonal matrix Di = diag (π1/2

i ), the off-diagonal rate matrix Qout
i

= D−1
i AiDi, the exit rate matrix Ei = diag (Qout

i eMi), as well as the

rate matrix Qi = Qout
i − Ei. Then, the SqRA matrices for the entire

system are given in terms of the subsystem matrices,

A =
n
⊕
i=1

Ai,

D =
n
⊗
i=1

Di,

Qout =
n
⊕
i=1

Qout
i = D−1AD,

E =
n
⊕
i=1

Ei,

Q =
n
⊕
i=1

Qi = Qout − E.

C. Matrix representation of the SqRA with a global
coupling term

Section II B showed that the structure of the SqRA naturally
leads to a low-rank representation for the coupled case. We will now
study how the results change when adding a coupling between the
systems.

As in Sec. II B, we start with the case of n = 2 subsystems first.
Given the coupling potential Vc, the total potential energy of the
coupled system is

Ṽ(x1, x2) = V1(x1) + V2(x2) + VC(x1, x2). (15)

The unnormalized stationary distribution is decomposed as

π̃(x1, x2) = π1(x1)π2(x2) πC(x1, x2), (16)

where πC(x1, x2) = exp (−1/kBTVC(x1, x2)). The adjacency rela-
tions are not affected by the coupling term, so the adjacency matrix
A is the same as in Eq. (9). On the other hand, each entry of the
diagonal matrix D is reweighted by the coupling, leading to

D̃ = DC (D1 ⊗D2), (17)

where DC = diag (π1/2
C ) is the (N ×N) diagonal matrix built with

the stationary distribution of the coupling potential VC, while D1
and D2 are defined as for the combined system. Similarly, the inverse
satisfies

D̃−1 = D−1
C (D−1

1 ⊗D−1
2 ). (18)

Note that, given that DC is a diagonal matrix, the calculation in
Eq. (17) can be interpreted as either a matrix–matrix multiplication
or an elementwise multiplication. This section focuses on the matrix
formalism, but the elementwise interpretation will play a central role
in Sec. II D.

The off-diagonal matrix Q̃ out of the coupled system is written
as

Q̃ out = D̃−1AD̃

= D−1
C (D−1

1 ⊗D−1
2 )(A1 ⊕ A2)DC (D1 ⊗D2)

= D−1
C (Qout

1 ⊕Qout
2 )DC

= D−1
C QoutDC, (19)
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and thus also Ẽ = diag (D−1
C QoutDC eM). According to Eq. (4), the

SqRA rate matrix for the coupled system then reads

Q̃ = D̃−1AD̃ − Ẽ

= D−1
C QoutDC − Ẽ. (20)

In the general case for n subsystems coupled by a single
coupling term, results of Proposition 1 are modified as follows.

Proposition 2. Consider the situation of Proposition 1 but with a
global coupling potential VC : Rn → R. The potential thus decomposes
into

Ṽ(x1, x2, . . . , xn) =
n

∑
i=1

Vi(xi) + VC(x1, x2, . . . , xn), (21)

with additional coupling term VC : Rn → R, and the stationary
distribution factorizes as

π̃(x1, x2, . . . , xn) =
n

∏
i=1

πi(xi) ⋅ πC(x1, x2, . . . , xn). (22)

The SqRA matrices for the coupled system are then given by

DC = diag [√πC],
Q̃ out = D−1

C QoutDC,

Ẽ = diag [D−1
C QoutDC eM],

Q̃ = Q̃ out − Ẽ.

(23)

D. Generalization to the tensor formulation
for arbitrary interactions

Using the tensor formalism, previous results can be easily gen-
eralized to the case where the potential Ṽ is given by a sum of lower
order potentials, i.e., potentials that act only on a subset of coor-
dinates, leading to a flexible decomposition in terms of Hadamard
products and paving the way for low-rank tensor computations.

To this end, let us consider each coordinate as an individ-
ual subsystem, i.e., n = D, and introduce the space of tensors of
order D, T(D) = RN1×⋅⋅⋅×ND . Each individual state of the (dis-
cretized) system can be understood as a single entry of this tensor;
then, elements x ∈ T(D) represent distributions or functions over
all states. We furthermore introduce the symbolic multi-indices
I ∈ ℐ ⊂ 𝒫 ({1, . . . , N}), where 𝒫 denotes the power set, i.e., the
set of all possible subsets of indices that can appear. We use
these multi-indices in subscript to denote the coordinates (modes)
upon which the individual lower-order potential contributions
V I depend,

Ṽ =∑
I∈ℐ

VI(xI). (24)

Furthermore, we use Greek superscript letters to denote the indi-
vidual grid positions (indices) of those respective coordinates. For
example, the tensor V1,2 ∈ RN2×N3 of order 2 with components Vαβ

1,2

= V1,2(xαβ), α = 1, . . . , N1, β = 1, . . . , N2, holds the evaluation of all
potential contributions of the combinations of first and second coor-
dinates at the respective product grid. To each set of indices I

corresponds a tensor DI of order ∣I∣ consisting of the square roots of
the stationary distribution [Eq. (2)] of the corresponding potential

Dαβγ...
I = exp(−1

2
1

kBT
Vαβγ...

I ). (25)

This tensor holds all the information about the interaction between
the indices I. We combine the individual interactions to the
whole interaction tensor D of order D by means of the (widened)
Hadamard product, which is composed of the elements selected by
their shared indices along their shared modes, for example, for two
three-tensors sharing two modes, we obtain the four-tensor,

(aijk ⊙ bjkl)αβγδ ∶= aαβγ
ijk ⋅ b

βγδ
jkl , (26)

where we “broadcast” or “widen” the elementwise multiplication
along all dimensions appearing only on one side. It can also be
understood as the element-wise product of the two tensors after
padding them to the same shape, essentially by replicating/copying
them along their non-shared modes. The SqRA tensor D ∈ T(D)
then decomposes into the Hadamard factors corresponding to the
respective lower order potentials,

Dijkl... = Di ⊙Dj ⊙ ⋅ ⋅ ⋅ ⊙Dij ⊙ ⋅ ⋅ ⋅ ⊙Dijkl..., (27)

or shortly

D =⊙
I∈ℐ

DI. (28)

In Secs. II A and II B, we introduced the adjacency matrix A.
In the case of a one-dimensional system, it consists of a sparse
matrix with two off-diagonals. For the flattened representation of
higher-dimensional systems, it is a multibanded-matrix with 2D
bands. However, the Kronecker sum representation defined in Eq. (9)
directly translates to a tensor representation with entries

Aαβγ...,α′β′γ′... = Aαα′
1 ⊕ Aββ′

2 ⊕ . . .

= Aαα′
1 δββ′δγγ′ . . . + δαα′Aββ′

2 δγγ′ . . . + ⋅ ⋅ ⋅ , (29)

with δ being the usual Kronecker delta: δαα′ = 1 if α = α′ and 0 oth-
erwise. In this regard, we will think of A as a linear map, mapping
tensors of order D to tensors of order D. The action of the SqRA
tensor Q : T(D)→ T(D) on a state x ∈ T(D) can then be computed
via

Qx = D−1 ⊙ A(D⊙ x) − E⊙ x, (30)

where E = D−1A(D) ∈ T(D).
Let us now discuss the practical implications of this formula-

tion in terms of computational complexity. Let N denote the size of
a state vector in T(D). The action of the adjacency operator A on a
tensor state x ∈ T(D) can be computed by 2DN floating point oper-
ations. The regular grid leads to a banded matrix-representation for
flattened states, which allows for a very cache-efficient implemen-
tation (cf. Appendix B). Since D ∈ T(D), it requires just as much
memory as we need to hold the state x in memory. Note here that
when computing D according to Eq. (28), we evaluate the potential
functions only on grids up to the order of the interaction.
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For example, consider a system of D particles in 1D space with
pairwise interactions and a grid of m cells for each particle. Using
the tensor representation [Eq. (28)], each of the D ⋅ (D − 1) pair-
wise potentials gets evaluated on a grid of the size m2, resulting in
O(D2m2) potential evaluations, compared to O(D2mD) evaluations
for a naïve application on the whole grid. Similarly, a system of p
= D/3 particles in three-dimensional space with bond (pair-wise)
and angle (triplet-wise) interactions, discretized to m cells in each
of the D = 3p coordinates, requires O(p3m3) evaluations instead of
O(p3mD).

Put differently, let d denote the order of the highest order inter-
actions and assume that the number of these interactions is fixed.
The computational effort for computing the D tensor then scales
with O(md) compared to O(mD) for the classical evaluation on
the whole grid, i.e., it does not depend on the full system dimen-
sion. Note, however, that the number of cells N = mD still grows
exponentially in the dimension. Therefore, when using a dense state
representation, the application of D still scales badly.

However, since each DI acts only on a few modes, low-rank rep-
resentations of the state, in conjunction with approximate low-rank
computations of the Hadamard product, allow for a closed low-
rank representation of Q. In cases where the dynamics do indeed
permit low-rank representations, as would be expected for weakly
interacting systems, this method promises to break the curse of
dimensionality (see also the discussion in Sec. V).

Finally, note that for the iterated application, just as with the
similarity transform in the matrix case, we have

Qn(x) = D−1 ⊙ (A − E)n(D⊙ x). (31)

Thus, in order to compute the spectrum of Q by an iter-
ative solver, we merely need the repeated evaluation of A − E,
resulting in O((2D + 1)N) floating point operations. Considering
that A is inherently low-rank [cf. Eq. (9)], using a low-rank state
representation promises an exponential speedup.

To summarize, using the tensor SqRA (denoted as tSqRA)
allows us to alleviate the (explicit) exponential dependence of the
computation cost for Q in the system dimension, replacing it by the
maximal order of interactions. Even though the scalability is still
influenced by the state-size (implying an exponential relationship
for dense representation), the tensor formalism should naturally
facilitate the integration of low-rank techniques to manage this
aspect.

E. Coupling of the eigenvalues and the eigenvectors
We noted previously that the eigenvalues and eigenvectors of Q

are of special interest to understand the slow time-scale dynamics of
the process. Let us therefore investigate what we can say about the
spectrum of the composed and coupled system. Since Q is similar to
A − E, which in turn is symmetric, it follows that all eigenvalues are
real numbers. Furthermore, the leading eigenvalue of Q matrices is 0
(with a constant eigenvector) and all other eigenvalues are negative.

Let 0 = λ(1)i > λ(2)i ≥ ⋅ ⋅ ⋅ ≥ λ(Ni)
i denote the eigenvalues with

respective eigenfunctions X(1)i , . . . , X(Ni)
i of the rate matrix Qi of the

ith isolated subsystem. Defining Λi = diag(λi) such that QiXi = ΛiXi,
for the combined system Q, we have

QX = (⊕
i

Qi)(⊗
i

Xi) = (⊕
i

Λi)(⊗
i

Xi) = ΛX, (32)

where Λ ∶=⊕iΛi is a diagonal matrix with eigenvalues as diagonal
entries and X ∶=⊗iXi is a matrix with the eigenvectors of the com-
bined system. In terms of individual eigenvalues λ( j), indexed by the
multi-index j ∈ {1, . . . , N1} × ⋅ ⋅ ⋅ × {1, . . . , Nn}, this comes down to
the eigenvalues being a sum of one of each of the isolated system’s
eigenvalues,

λ( j) =
n

∑
i=1

λ j(i)
i , (33)

where j(i) is the corresponding index to the eigenvalue of subsystem
i. The corresponding eigenvector X( j) is then given by the product
of the respective subsystem’s eigenvectors,

X( j) =
n
⊗
i=1

X j(i)
(i) . (34)

When introducing a coupling term, VC, the spectrum is perturbed
from λ( j) to λ̃ ( j) as well as from X( j) to X̃ ( j).

The easiest case is the coupling of two subsystems. One can
observe a repeating algebraic pattern comparing the construction
of the rate matrix Q, from the adjacency matrix A, with the con-
struction of coupled systems from uncoupled systems. In Eq. (4),
we have a conversion from A, which represents transition rates with
regard to a constant potential energy function into a matrix Q of exit
rates with regard to a non-constant potential V . Interestingly, this
is the same kind of linear algebra like the transition from the posi-
tive exit rates of the combined system (matrix Qout) with a constant
coupling energy to the rate matrix of the coupled system Q̃ with a
non-constant V I . It is given by a similarity transform of a positive
rate matrix using a diagonal matrix followed by subtracting the diag-
onal matrix of row sums. Although this is a simple linear algebraic
correspondence between the matrices, it also shows that a transition
from Q to Q̃ can change the solution of the eigenproblem largely,
as the transition from a pure adjacency A to a molecular system (by
regarding the potential V) does. However, by the structure of the
equation

Q̃ = D−1
C (Q − ΔE)DC, (35)

where ΔE = Ẽ − E is the difference of “total leaving rates,” one can
see that the eigenvalues of Q̃ are identical to the eigenvalues of
(Q − ΔE). Furthermore, the eigenvectors of Q̃ are the eigenvec-
tors of (Q − ΔE) except for a componentwise rescaling using the
diagonal matrix D−1

C . This rescaling does not have an effect on the
sign structure of the eigenvectors.

Lemma 1. The matrix Q̃ is a similarity transform of (Q −∇E);
the whole change of the timescales is therefore driven by a perturbation
of the diagonal only.

In conclusion, for a PCCA-based analysis of the influence of
a coupling energy term on the slowest processes, one has to ana-
lyze how changing the diagonal of Q influences the result of the
eigenproblem.
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III. METHODS
We applied our theoretical framework to two illustrative exam-

ples in Sec. IV. Here, we provide the corresponding algorithmic and
implementation details. First, we show how we can use the tSqRA to
compute the application of Q̃ and thereby also its spectrum without
the large memory overhead of the representations of Q in a dense or
sparse format, leading to exponential, respectively, linear, memory
savings in the number of dimensions. Then, we introduce the Pro-
jected Rate Estimation (PRE), an efficient algorithm to estimate the
macroscopical transition rates of a coupled system from compara-
tively few simulations using the tSqRA of the combined system as a
prior.

A. Exploiting the tensor formulation to solve the
eigenvalue problem of the coupled system

The use of the tensor formulation does not offer any particular
advantage in solving, e.g., the eigenvalue problem of the combined
matrix Q, where it is more convenient to compose the individual
eigenvalues, Eq. (33) and eigenvectors (34). However, in the case of
the coupled system Q̃, it permits us to avoid the explicit construction
of a matrix for the application of Q̃ to a vector, thus enabling the use
of matrix-free methods.

Using the results for a global coupling (Sec. II C), we write the
rate matrix applied to a column vector v of size (M × 1) as

Q̃v = D−1
C QoutDCv − diag [D−1

C QoutDC e]v. (36)

Making use of the definition DC = diag [√πC] (23) and the fact
that multiplying a diagonal matrix from the left is equivalent to the
element-wise product ○ : Rn ×Rn → Rn,

(x ○ y)i ∶= xiyi = (diag [x]y)i, (37)

the left hand term of the matrix-vector product (36) becomes

[D−1
C QoutDC]v = π−1/2

C ○Qout(π1/2
C ○ v) . (38)

Likewise, for the second term, we can write

diag [D−1
C QoutDC e]v = (π−1/2

C ○Qoutπ1/2
C ) ○ v. (39)

In this way, we have transformed the application of Q̃ (36) to a series
of element-wise operations as well as the application of Qout,

Q̃v = π−1/2
C ○Qout(π1/2

C ○ v) − (π−1/2
C ○Qoutπ1/2

C ) ○ v. (40)

Note that Qout is the result of the Kronecker sum of the matrices
Qi and as such can be efficiently stored and computed by applying
the individual Qi to the relevant components of the respective input.

In Appendix A 1, we illustrate how this can be achieved
by a series of rearrangements of the input followed by a
batched matrix-vector product and provide a corresponding python
implementation.

Alternatively to this approach of pulling back the computa-
tion to matrix algebra, the banded structure of the Kronecker sum

can be used to devise a direct cache efficient implementation of its
action. We provide a self-contained Julia implementation of this
approach, together with an implementation of the tensor formalism
from Sec. II D in Appendix B.

In any case, both approaches allow us to calculate the eigenval-
ues of Q̃ using matrix-free solvers, such as the ARPACK algorithm21

without ever creating the whole matrix Q̃. It follows that we can write
the vectors v and e as tensors of order n and shape (N1, N2, . . . , Nn)
and the two matrix-vector multiplications as a sum of tensor dot
products as in Sec. II D.

This has strong implications in terms of memory consumption.
Consider a system with n dimensions, discretized into m bins each:
A state vector in that case has a size of 8 ⋅ mn bytes, and a dense
representation of Q̃ would need 8 ×m2n bytes, but even when using
a sparse representation, it would have ∼8 × 2 nmn bytes. For a system
in n = 9 dimensions with m = 10 bins each, we would need ∼8 GB for
the state, 8 × 109 GB for a dense, and 134 GB for a sparse Q̃ matrix.
Using the tensor decomposition of coupled systems, the biggest part
of storing Q̃ is the storage of DC, which has the same size as a single
state vector.

B. The projected rate estimation
When analyzing a coupled system, one is not necessarily inter-

ested in the whole matrix Q̃. In practice, it may be sufficient to study
the impact of the coupling on the characteristic time-scales, such as
the rates between metastable macrostates.

We therefore propose an algorithm that can be understood
as hybrid between the formal SqRA and the data-based Koop-
man estimation by trajectory simulation. We use the SqRA on the
isolated systems to compute their spectrum and obtain the eigen-
functions of the combined systems by means of Eq. (34). Using
the PCCA+ algorithm,22,23 we transform these into membership
functions that characterize the slow-scale dynamics and span an
invariant subspace of the combined system. These membership
functions inform us about the location of the transition regions
and provide the basis for a projection to obtain the macroscopic
rates of the combined system.24 By projecting simulated trajectories
of the coupled system onto these combined membership func-
tions, we then estimate the slowest rates of the interacting coupled
system.

To this end, let us quickly introduce PCCA+, an algorithm
to compute the characteristic time-scales, a process also known
as “coarse-graining.” The fundamental object of PCCA+ are the
membership functions χ ∈ RN×nC obtained by a linear combina-
tion of the nC dominant eigenfunctions X of Q via the matrix
A ∈ RnC×nC ,

χ = XA. (41)

PCCA+ finds a matrix A such that χ is non-negative and all its
row sums equal to one. The projection of Q onto this subspace
leads to the coarse-grained generator Qc = A−1ΛA ∈ RnC×nC that
provides the rates between the macroscopic states characterized by
χ. One defining property of Qc and χ is that time propagation of the
system (via Q or Qc) and the projection onto the subspace χ com-
mute, i.e., Qχ = χQc or using the (Moore–Penrose) pseudoinverse Qc
= χ+Qχ. Analogous results hold for the Koopman operator K = Kτ

= exp(τQ) with lag time τ ∈ R (and the coarse grained Kc), which
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has the advantage that it allows for a Monte Carlo approximation
via simulations of the system,

Kτχ(x) ≈ 1
NR

NR

∑
i=1

χ(xτ
i ), (42)

where xτ
i are the end points of NR sampled trajectories of length τ

started in x. The guiding idea of this algorithm is that

Kχ = χKc, (43)

and similarly, for the coupled system, K̃χ̃ = χ̃K̃c if χ̃ was computed
with respect to K̃, which in practice is not known.

However, for small coupling terms, the dominant eigenspace
and therefore the membership functions are perturbed only slightly
(see Sec. II E), i.e., χ ≈ χ̃. We therefore have

K̃χ ≈ χK̃c, (44)

which in turn allows us to approximate the coarse grained coupled
dynamics via

K̂c = χ+K̃χ ≈ K̃c (45)

and the Monte Carlo approximation (42) of K̃χ using the coupled
dynamics. Taking the matrix logarithm then allows us to recover the
approximated rates of the coupled system Q̂c = logm K̂c.

In other words, we estimate the rates of the interacting
system using a few simulations projected onto memberships or
metastabilities obtained from the tSqRA for the coupled systems.

In this regard, the algorithm to estimate Q̃c is summarized as
follows:

1. Solve the eigenproblems for the isolated sub-systems,

QiXi = λiXi, (46)

where Xi are the matrices containing the eigenvectors of
the ith subsystem and λi are the vectors containing the
corresponding eigenvalues.

2. Identify the number ci of metastabilities for each ith subsys-
tem from the analysis of the eigenspectrum and compute the
membership functions χi via PCCA+.

3. Compute the membership functions of the combined system

χ =
n
⊗
i=1

χi. (47)

Note that χi is a matrix of size N i × ci, while χ is a matrix of
size∏iN i ×∏ici.

4. Compute the (partial) K̃χ ∈ Rn×N . This can be done by matrix
exponentiation, classical trajectory simulation, or Gillespie’s
algorithm on the SqRA rates.

5. Compute the pseudoinverse to estimate K̂c = χ+K̃χ.
6. Normalize the rows of K̂c.
7. Estimate the approximated coarse-grained rate matrix as

Q̂c =
1
τ

logm K̂c. (48)

Let us furthermore add the following remarks to the respective
steps:

2. Consider, for example, a receptor–ligand system. Typically,
one is interested in the metastabilities of the receptor, which
would correspond to choosing the number of metastabilities
for the ligand as one, obtaining the constant-one function for
the ligand.

3. Similar to Eq. (32), the tensor product of membership func-
tions is the membership function for the product system. This
allows us to compute the membership functions on the indi-
vidual subsystems to obtain the membership function of the
combined system.

4. Concerning the computation of K̃χ, we propose three dis-
tinct approaches. If the system’s size permits, we can explicitly
compute the matrix exponential K̃ and apply it to the mem-
berships χ or employ a matrix-free implementation of the
matrix-exponential vector product to obtain the precise result
of K̃χ. Interestingly, it is not required to compute all entries
of K̃χ to determine the macroscopic transition rates, as pre-
viously observed in Refs. 25 and 26. Given that nC < N, the
problem of solving for K̂C is inherently overdetermined. This
situation can be leveraged by estimating only a few rows of Kχ
(and multiplying with the corresponding columns of χ+). To
this end, we can employ the Monte Carlo approximation of
K̃χ (42). The individual rows of K̃χ correspond to initial con-
ditions for simulating trajectories of the entire system. These
trajectories can be computed using classical methods, such
as Euler–Maruyama integration or molecular dynamics sim-
ulations. Alternatively, we can stay within the discrete tSqRA
regime by employing the Gillespie algorithm on Q̃. Since we
only need to compute a subset of rows of K̃χ, there is no need
to precompute the entire Q̃; instead, we can compute the nec-
essary rows along the trajectory on demand. The crucial ques-
tion remains as to which rows of K̃χ, i.e., which initial states,
are essential for accurately estimating the change in macro-
scopic rates. We posit that samples should ideally be taken
from transition regions, where 0≪ χi ≪ 1, while also ensur-
ing their physical relevance, characterized by a low potential
energy. However, addressing the intricate question of whether
and how χ can effectively guide the sampling process—of
interest in various approaches, e.g., the stratified-χ sampling
in Ref. 27—poses a substantial challenge. Acknowledging the
depth of this issue, we have postponed a thorough investiga-
tion to the future. For our illustrative experiments, we opted
for a pragmatically chosen randomly uniform sampling strat-
egy, recognizing its inherent limitation to lower-dimensional
systems.

6. We obtained better results by re-normalizing the rows of
K̂c to have row sum one, corresponding to the inter-
pretation of a probability matrix. We expect that the
results could be even further improved by directly restrict-
ing the solution of the linear system (45) to the unit
simplex using constrained optimization [with optimization
objective (58)].

7. The computation of the matrix-logarithms [logm(⋅)] can be
rather involved in general. However, since all eigenvalues of
Kc are positive, 0≪ λi ≤ 1, we expect this as well for the
estimated K̂c, resulting in a unique solution. Moreover, the
coarse-grained matrix is of small size, alleviating concerns
about stability.

J. Chem. Phys. 160, 104112 (2024); doi: 10.1063/5.0187792 160, 104112-8

© Author(s) 2024

 11 April 2024 11:11:28

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

IV. RESULTS
A. Two-dimensional example

This two-dimensional example illustrates our theoretical elabo-
rations. No special increases in efficiency are required to recalculate
these examples in a comprehensible manner.

1. Numerical experiment parameters
As an illustrative example, we considered the overdamped

Langevin dynamics of a particle of mass m = 1 amu and friction
ξ = 1 ps−1, which moves in a two-dimensional space (D = 2) under
the action of the potential energy function,

Ṽ(x1, x2) = V1(x1) + V2(x2) + cV12(x1, x2)
= (x2

1 − 1)2 + x1 + 2x2
2 + c x1x2 (kJ mol−1). (49)

The function is made of two potentials V1 and V2 describing the
dynamics of two non-interacting subsystems along the coordinates
x1 and x2, respectively. Additionally, a coupling term V12 can be
activated (c ≠ 0) or deactivated (c = 0) by the parameter c. The
two-dimensional function, illustrated in Fig. 1(a) for c = 0 and c = 1,
describes a surface with two wells of different heights separated by a
barrier.

For our numerical experiments, we assumed standard thermo-
dynamic parameters: the temperature of the system was T = 300 K;
the molar Boltzmann constant was kB = 8.31 × 10−3 kJ mol−1 K−1

such that the diffusion constant is 2.49 nm2 ps−1 in each direction.
Note that the use of units here is optional, but we include them
for reference when computing a physical system. When perform-
ing these computations without units, one obtains the same results
up to a scaling of the eigenvalues by the diffusion constant (see
also Ref. 4).

2. The rate matrix
In order to build the rate matrix by SqRA, we discretized the

x1-range [−3.4, 3.4] nm and x2-range [−3.4, 3.4] nm, respectively, in
N1 = N2 = 50 subsets of the same length Δx1 = Δx2 = 0.13 nm for a
total of M = N1 ⋅ N2 = 2500 square subsets of the two-dimensional
space.

For the combined system (c = 0), we built, respectively, the rate
matrices Q1 and Q2 (size 50 × 50); then, we estimated the first four
eigenvalues and right eigenvectors solving the eigenvalue problems

Q1X1 = λ1X1 (50)

and

Q2X2 = λ2X2, (51)

where X1 and X2 are matrices of size 50 × 4 containing the first four
eigenvectors and λ1 and λ2 are four-dimensional vectors containing
the corresponding eigenvalues. For the combined system (c = 0), the
rate matrix Q of the entire system can be estimated from the Kro-
necker sum of the rate matrices Q1 and Q2. Exploiting this property
(see Ref. 6 for more details), we estimated sixteen eigenvalues λ of Q
as the sum of the eigenvalues of Q1 and Q2 [Eq. (33)],

λk = λ1,i + λ2,j ∀i, j = 0, 1, 2, 3, (52)

and the corresponding eigenvectors X as the Kronecker product
[Eq. (34)],

Xk = X1,i ⊗ X2,j ∀i, j = 0, 1, 2, 3. (53)

In Eqs. (52) and (53), we introduce the index k = i + 4j. Note that the
eigenvectors X1 and X2 have size N1 = N2 = 50, while X has size M
= 2500.

The eigenvalues and the corresponding eigenvectors are
reported, respectively, in Figs. 1(b) and 1(c). The first eigenvector
is constant and is associated with the eigenvalue λ = 0. This eigen-
vector represents the stationary state of the system when the other
eigenmodes have decayed. The other eigenvectors Xk, with k > 0,
represent the dominant kinetic processes between regions of the
space with negative (blue color) and positive values (red color). The
associated eigenvalues λk are negative and represent the timescales
−1/λk at which the dominant processes decay. We conclude that
the slowest process is a transition between the regions of the space
with x1 < 0 and x1 > 0, the second slowest process is a transition
between the regions of the space with x2 < 0 and x2 > 0, and the
third slowest process is a mix transition between the quadrants
of the plane.

For the coupled system (c ≠ 1), the relations in Eqs. (52) and
(53) do not hold, i.e., the eigenvectors and eigenvalues of the full
system are not directly derived from those of the individual subsys-
tems. In this example, we built the full matrix Q̃ applying Eq. (20),
which requires to provide the diagonal matrix D12 with 50 × 50
= 2500 entries. The main effect of the coupling term is to distort
the eigenvectors and to break the symmetries of the combined sys-
tem. With regard to the eigenvalues, we observe a rise in the second
eigenvalue λ1 and a decrease in the third eigenvalue λ2. From a phys-
ical perspective, this corresponds to an acceleration of the transition
along the x2 coordinate and a slowdown along the x1 coordinate. In
Fig. 1(b), we also plot the eigenvalues of the off-diagonal matrices
Qout and D−1

12 QoutD12. The eigenvalues of the two matrices perfectly
match due to a similarity transform. Thus, it is the matrix Ẽ of the
total leaving rates defined in Eq. (23) that affects the timescales of
the system.

3. Coarse-grained rate matrix
The analysis of the system’s eigenvectors and eigenvalues indi-

cates that the system oscillates between two metastable states, i.e.,
two regions of the state space where the system resides for most
of the time, with the transition from one state to the other occur-
ring rarely. It is therefore convenient to reduce the matrices Q
and Q̃ to matrices Qc and Q̃c of size 2 × 2, containing the rates
k12 and k21 between the two metastable regions. For this pur-
pose, we used PCCA+, which provides the membership functions
χ containing the probabilities that a state belongs to the identified
metastable states. The membership functions can then be used to
build the coarse-grained matrix Qc by projecting the fine-grained
matrix Q,

Qc = (χ⊺ diag (π)χ)−1χ⊺ diag (π)Qχ. (54)

With regard to the combined system (c = 0), in practice, it is more
convenient to exploit the algebraic structure of the rate matrix Q and
to apply PCCA+ to Q1 and Q2 to obtain the membership functions
χ1 (size 50 × 2) and χ2 (size 50 × 1) and the rate matrices Qc,1 (size
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FIG. 1. 2D model. (a) Potential energy function for the combined (left) and coupled system with c = 1 (right). (b) Eigenvalues of the matrix Qout (left) and Q (right) for the
combined (blue) and coupled system (red). (c) First four eigenvectors for combined (top) and coupled system (bottom); the red and blue colors denote positive and negative
values, respectively, and the white lines represent the zero-values.

2 × 2) and Qc,2 (size 1). Note that χ2 = 1 (size 50) because the sys-
tem has one metastability along the x2 direction and Qc,2 = 0. Then,
the membership functions of the coupled system are obtained by the
Kronecker product,

χ = χ1 ⊗ χ2, (55)

while the rate matrix is given by the Kronecker sum,

Qc = Qc,1 ⊕Qc,2 = Qc,1 =
⎛
⎜
⎝
−1.45 1.45

0.74 −0.74

⎞
⎟
⎠

. (56)

Because the system has two metastabilities, the Kronecker product
simply results in an increase in the size of χ1 from 50 entries to
50 × 50 = 2500 entries since χ2 is a constant function, and the rate
matrix Qc is equal to Qc,1. However, if the second subsystem has
two metastabilities as well, then the coupled system would have four
metastabilities and the corresponding Qc matrix would have the size
4 × 4.

4. Coupled system
For the coupled system (c = 1), we applied the PRE algorithm

derived in Sec. III B. The algorithm is based on the assumption that
the Koopman operator K̃ τ of the coupled system applied to mem-
bership functions χ of the combined system well approximates the
resultant of the coarse-grained Koopman operator K̃τ

c applied to χ
[see Eq. (44)]. First of all, we verified the validity of this assumption
by constructing the discretized coupled Koopman operator as

K̃ τ = expm(τQ̃), (57)

where Q̃ is the rate matrix of the coupled system built by SqRA and
expm(⋅) denotes a matrix exponential. The matrix K̃ τ has been mul-
tiplied to the membership functions χ of the combined system, and
we solved the linear regression problem

min
K̂c

∥K̃ τχ − χK̂τ
c∥, (58)

i.e., we looked for the matrix K̂τ
c (size 2 × 2) that minimizes the two-

norm ∥K̃ τχ − χK̂τ
c∥. The matrix K̂τ

c approximates the exact coarse-
grained Koopman operator K̃τ

c for the coupled system and yields the
approximated coarse-grained rate matrix as

Q̂c =
1
τ

logm K̂τ
c. (59)

In Fig. 2(b), we plotted the off-diagonal entries of Q̂c (dashed lines)
for several τ values in the range [0,1.5] ps and compared with the
exact values of Q̃c (solid lines) obtained by applying PCCA+ to Q̃.
We observe that while the exact results do not depend on the choice
of lag time τ, the approximate results tend to converge only for large
values of τ. However, the approximate rates do not reach the exact
values.

If building the matrix K̃ τ is not feasible due to the high dimen-
sionality, the action of the Koopman operator on the membership
functions χ can only be approximated for some points x in the state
space. Provided NR trajectories of length τ, starting in x and reaching
the points xτ

i , with i = 1, 2, . . . , NR, yield

K̃ τχ(x) ≈ 1
NR

NR

∑
i

χ(xτ
i ). (60)

The trajectories could be generated by solving the underlying equa-
tions of motion of the coupled system, for example, by using
the Euler–Maruyama integration scheme. Instead, we exploited
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FIG. 2. 2D model. Transition rates k12 (blue) and k21 (red) of the coarse-grained
model as functions of the number of starting points (a) and the lag time τ (b).
The solid lines represent the exact results using Q̃, the dashed lines represent the
projected rate estimation (PRE) using the exact K̃ τ = exp (Qτ), and the squares
represent the PRE using Gillespie’s algorithm to estimate K̃ τ .

the knowledge of the transition rates between adjacent subsets of
the state space, approximated by SqRA, and applied the Gillespie
algorithm.

In order to explain the procedure, consider the following exam-
ple. Let us assume that we know the matrices Q1 and Q2 of the
one-dimensional individual subsystems and that the system is in a
state x = (x1, x2) belonging to a subset of the state space with indices
(i1, i2). The system, in an infinitesimal interval of time, can evolve
its state in five ways: two transitions along the x1 direction, two
along the x2 direction, or no transition. The four transition rates are
contained in the Q1 and Q2 matrices, but these must be reweighted
according to the coupling term V12 in Eq. (49). For example, the
forward transition rate along the x1 direction becomes

Q̃i1 ,i1+1
1 = Qi1 ,i1+1

1 ⋅

√
πi1+1,i2

12√
πi1 ,i2

12

. (61)

Likewise, we obtain the rates Q̃i1 ,i1−1
1 , Q̃i2 ,i2+1

2 , and Q̃i2 ,i2−1
2 and the

total leaving rate given by minus the sum of the former. Thus, we
have estimated only a row of the matrix Q̃, which can be used
within a standard Gillespie algorithm to estimate (i) the infinitesi-
mal time interval at which the next transition occurs and (ii) which
of the five possible events (four transitions and no transition) takes
place. The reweighting of rates for the coupled system occurs at
each simulation step; however, for highly dimensional systems, this
is the only solution since it is not possible to estimate the entire
matrix Q̃.

Since the Gillespie algorithm provides the solution in terms of
jumps between the subsets of the state space, it provides the indices
(j1, j2) of the arrival subset of xτ and the calculation of the member-
ship functions can be approximated by calculating the value that χ
assumes in the target subsets,

χ(xτ) ≈ χj1 ,j2. (62)

Repeating this calculation for NR trajectories, one can approxi-
mate the Koopman operator according to Eq. (60) and solve the
linear regression problem in Eq. (58). However, unlike the situ-
ation where we have the entire matrix K̃ τ , after solving the lin-
ear regression problem, it is necessary to normalize the rows of
the matrix K̃τ

c .
We studied the sensitivity of the method to the initial points

and the lag time τ of the Koopman operator and reported the results
in Fig. 2. First of all, we studied the dependence of the method on the
number of initial points x, randomly drawn from a uniform distri-
bution that covers the state space, setting a lag time equal to τ = 0.5
ps and a number of replicas per point NR = 100. We do not observe
any particular improvement in the results by increasing the number
of initial points, so for the next analysis, we considered ten initial
points and increased the number of replicas to 500 to reduce the
stochastic error. Excluding the first point, which corresponds to a
lag time of 0.1 ps, the agreement with the expected results (dashed
line) is excellent.

B. n -dimensional example
Without special mathematical tricks, one could not calculate

the SqRA for high-dimensional examples. In this example, we heav-
ily use the algebraic structure of tSqRA to rigorously calculate the
eigenvalues of a large rate “matrix.” That this becomes possible is
shown in Fig. 3.

1. Numerical experiment parameters
As a second example, we studied a “metastable chain” made

of n bimetastable systems interacting via harmonic oscillators. The
potential energy function describing the dynamics of this system is
written as

Ṽ(x1, x2, . . . , xn) = V1(x1) + V2(x2) + ⋅ ⋅ ⋅ + Vn(xn)
+ c ⋅ [V12(x1, x2) + V23(x2, x3) + ⋅ ⋅ ⋅
+ Vn−1,n(xn−1, xn)]

=
n

∑
i=1

Vi(xi) + c ⋅
n−1

∑
i=1

Vi,i+1(xi, xi+1), (63)

where

Vi(xi) = (x2
i − 1)2 (64)

and

Vi,i+1(xi, xi+1) =
1
2
∣xi − xi+1∣2. (65)

The combined system (c = 0) is characterized by n2 metastable
states, while the coupled system (c = 1) has only two metastable
states, as illustrated in Fig. 3(a) for n = 2 and n = 3, respectively.
For the numerical experiments, we used the same thermody-
namic parameters as in the previous examples. To build the rate
matrix Qi of each bimetastable system by SqRA, we discretized
the range [−2.5, 2.5] nm of each coordinate xi into N i = 5 subsets
of length Δxi = 1.0 nm; then, the total number of subsets of the
system is 5n.

Differently from the previous example, constructing the rate
matrices Q and Q̃ of the coupled system (combined and coupled)
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FIG. 3. Metastable chain. (a) Combined and coupled potential energy function for n = 2 and n = 3; dark and bright colors represent, respectively, low and high energy values.
(b) First eight eigenvalues for n = 2, 3, . . . , 10 of the combined and coupled system. (c) Second eigenvectors for n = 2 and n = 3 of the combined and coupled system.

is not feasible for high values of n. Thus, we used the approach
described in Sec. III A to calculate the eigenvalues and eigenvec-
tors without building the full rate matrices but providing to the
eigensolver a function that represents their action on a vector of
size (N × 1). Figure 3(b) shows the first eight eigenvalues of the
rate matrix Q and Q̃. For the combined case (a), we observe that
the number of eigenvalues associated with the slowest processes
is equal to n; then, the slowest transitions occur along the coor-
dinates xi. On the contrary, the effect of the coupling term is to
change the symmetry of the system and to create a hierarchy of
sub-processes arising at different time scales. Thus, we observe a
decreasing scale of eigenvalues for each n-dimensional system. The
first non-zero eigenvalue corresponds to the slowest process occur-
ring along the diagonal of the n-dimensional circle, as shown in
the Fig. 3(c) by the corresponding eigenvectors for the case with
n = 2 and n = 3.

V. CONCLUSION AND OUTLOOK
This article shows how the algebraic structure of SqRA can

be exploited in order to systematically analyze the macroscopic
timescales of slow processes in coupled molecular systems from first
principles. Our article is a step toward understanding the origins of
these timescales and the influence of interaction energies between
subsystems.

Using the tensor approach (tSqRA), we can describe the direct
relation between energies and rates of coupled systems, which allows
for its mathematical analysis based on first-principles models of
molecular processes. We demonstrate how this allows us to treat
an high-dimensional system as a set of interacting subsystems of
lower dimensions. Potentially, this offers a method to calculate the
transition rates of complex systems without the need for simula-
tions. We have shown this in the second example where we studied
a ten-dimensional system.

Going beyond the pure formal tensor-computations by exploit-
ing the interpretation of a coupled system as a perturbed combined
system, we bring together tensor methods with classical simula-
tion. In combining the tSqRA with PCCA+, we suggest a new
hybrid method, the projected rate estimation (PRE), which uses
the combined non-interacting subsystems (model-based) as prior
for an effective estimation of the macroscopical rates of a coupled
system by a comparatively small number of simulations (data-
based). So far, its efficacy is limited to low-dimensions due to the
yet open question of the choice of initial states for the simula-
tions. We, nevertheless, believe that the algorithm shows in how
far the developed tensor view enables new approaches to classical
problems.

On the computational side, the tSqRA improves the applica-
bility and efficacy of the SqRA for coupled systems even without
the use of low-rank approximations. However, we also explain how
tSqRA can be extended to incorporate low-rank approximations.
Currently, the limiting factor for an efficient tensor-based calcu-
lation is the dense representation of the system’s state, which is
succumbed to the curse of dimensionality. However, a low rank
representation, e.g., in the form of tensor networks, could alleviate
that problem.28 The lacking piece so far is the support for truncated
Hadamard-products.

Note in this regard that the adjacency matrix A, being a Kro-
necker sum, is inherently low rank. Similarly, the matrix D is
composed of Hadamard products, such as in Eq. (28). Assuming
that the system under consideration admits a low-rank representa-
tion, as to be expected for two weakly coupled systems, we expect the
exploitation of these low-rank structures to dramatically improve
both memory and compute costs.

From our perspective, it is worthwhile to better comprehend
the computational advantage of tensor-based complexity reduction
methods for the future analysis of molecular systems without the
need for molecular simulation.

J. Chem. Phys. 160, 104112 (2024); doi: 10.1063/5.0187792 160, 104112-12

© Author(s) 2024

 11 April 2024 11:11:28

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

ACKNOWLEDGMENTS
This research was funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) through the Cluster
of Excellence MATH+, Project No. AA1-15 “Math-powered drug-
design,” DFG Project No. 390685689, as well as by Project Nos.
B03 “Multilevel coarse graining of multiscale problems” and B05
“Origin of scaling cascades in protein dynamics” of the Collaborative
Research Center CRC 1114 “Scaling Cascades in Complex Systems,”
DFG Project No. 235221301.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Alexander Sikorski and Luca Donati contributed equally to this
paper.

Alexander Sikorski: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Method-
ology (equal); Software (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Amir Niknejad: Conceptualization (supporting); Project
administration (supporting); Resources (supporting); Supervision
(supporting); Writing – original draft (supporting). Marcus Weber:
Conceptualization (equal); Formal analysis (equal); Funding acqui-
sition (equal); Investigation (equal); Methodology (equal); Project
administration (equal); Supervision (equal); Writing – original draft
(equal); Writing – review & editing (equal). Luca Donati: Concep-
tualization (supporting); Data curation (supporting); Formal anal-
ysis (equal); Investigation (equal); Methodology (equal); Software
(equal); Validation (lead); Visualization (lead); Writing – original
draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The scripts for recreating the experiments as well as from

the appendices can be found at https://github.com/zib-cmd/article-
tsqra.

APPENDIX A: PYTHON IMPLEMENTATION
OF A GLOBAL COUPLING TERM
1. From matrix-vector multiplication to sum
of tensor dot products

When computing with tensors, one difficulty is how to actu-
ally represent them for computations, either as n-dimensional arrays
or in their “flattened” representation, where states are vectors and
operator matrices. In this section, we describe how we can com-
pute the action of a direct sum of matrices, interpreted as a flattened
matrix, as the sum of matrix products along the individual ten-
sor modes. We will then use this approach in the following Python
implementation.

Consider n matrices Qi each of same size (N i ×N i) and the
matrix Q of size (Ni

n ×Ni
n) obtained as the Kronecker sum of Qi

as in Eq. (13). Given an arbitrary column vector v of size (Ni
n

× 1), the result of the matrix-vector multiplication is the column
vector,

u = Qv = (
n
⊕
i=1

Qi)v, (A1)

of size (Ni
n × 1). This operation requires the explicit construction

of the matrix Q. Instead, we now reformulate the same oper-
ation as a sum of tensor dot products applied to the smaller
matrices Qi.

First, we reshape the vector v into a tensor of order n with shape
(N1, N2, . . . , Nn) and entries vγ1 ,γ2 ,...,γn , where each index γi specifies
the ith dimension of the tensor. Next, we perform the following two
operations on v to build n tensors ui of order n:

1. Tensor contraction between the matrix Qi and the tensor v,

uα,γ1 ,γ2 ,...,γn
i =

Ni

∑
κi=1

Qακi
i vγ1 ,γ2 ,...,κi ,...,γn , (A2)

where κi is the contraction index, that is, the index on which
to sum the products between the entries of the matrix Qi and
the entries of the tensor v. In other words, the entries of the
resulting tensor ui are the dot products between the kith col-
umn of Qi and the kith dimension of v. Here, we added the
subscript i to κi to remark that it replaces the ith index of v
in Eq. (A2). It follows that ui is a tensor of order n, which
contains all the indexes of Qi and v but the second index of
Qi and the ith index of v. The operation in Eq. (A2) is repeated
∀i = 1, 2, . . . , n.

2. Index swapping,

uα,γ1 ,γ2 ,...,γn
i → uγ1 ,γ2 ,...,α(i) ,...γn

i , (A3)

where the notation α(i) remarks that the tensor must be
reordered such that α occupies the ith position.

Once we computed the n tensors ui, one for each matrix Qi, the ten-
sor u representing the matrix multiplication between Q and v is the
sum of tensors ui with entries

uγ1 ,γ2 ,...,γn =
n

∑
i=1

uγ1 ,γ2 ,...,α(i) ,...γn
i . (A4)

The final result is a tensor of order n, which can be flattened into a
one-dimensional vector equal to the result of the matrix-vector mul-
tiplication defined in Eq. (A1). We implement this approach in the
following Python code.

2. Python codes for computations of Qv
and eigenvalues of Q̃ based on matrices

Listing 1. The code defines the function sum_tensor_dots()
that calculates the matrix-vector multiplication Qv as a sum of ten-
sor dot products; then, it solves the eigenvalue problem. In this
example, the matrix Qi and the vector v are randomly generated,
and it is assumed that each dimension is discretized into the same
number of subsets. The function np.tensordot() applies the tensor
contraction to axis 1 of the matrix and the index i of the vector
in its tensor formulation. Similar solutions can also be found with
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the function np.einsum(). Note that in Python the indexing starts
from 0.

Listing 2. The code calculates the eigenvalues of the coupled
matrix Q̃ exploiting the tensor formulation of its action on a vector v.
The array p, of shape (N1, N2, . . . , Nn), contains the entries of π1/2

12...n.

APPENDIX B: JULIA IMPLEMENTATION FOR MULTIPLE
LOW-ORDER INTERACTIONS

The following code illustrates how to compute the application
of Q using the tensor approach developed in Sec. II D. apply_A
exploits the fact that A is banded (with entries 1) to copy and add the
specific bands of the input x to the output y (see Fig. 4). compute_D
then loops over a given list of potential functions, evaluates them at
the grids of the specified dimensions, and multiplies them according
to Eq. (28) along the corresponding modes using Julia’s broadcast-
ing capabilities. We finally compute D and E for the example system
with potential V(x, y) = x2 + (xy)2 on a square grid of size 10 × 10.
The last two functions implement the application of A − E and Q,
respectively.

Using this, we were able to compute a simplified nine-
dimensional pentane molecule with ten cells in each dimension,
resulting in a memory demand of 109 × 64 bit = 8 Gb per state.
While the computation of D is a matter of minutes, the computa-
tion of the spectrum using an Arnoldi method requires computation
time on the order of 1 day due to the dense state representation.

Listing 3. Julia implementation of the tSqRA for multiple low-
order interactions as in Sec. II D.

FIG. 4. Schematic illustration of the cache efficient application of y = Ax exploiting
the banded structure for linear memory accesses without storage of A. For sim-
plicity, we only show the computations for the upper diagonal; the lower follows
analogously.

APPENDIX C: TABLE OF SYMBOLS

Table I shows the key variables and their symbols used in this
article.
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TABLE I. Table of symbols.

Symbol Size

Number of Cartesian coordinates D Scalar constant
Number of grouped coordinates/subsystems n Scalar constant
Number of coordinates of the ith subsystem Di Scalar constant
Cartesian coordinates of the full system x N-dimensional vector
Indices of the subsystems i, j, k, . . . Scalar index
Grouped coordinates of ith subsystem xi Scalar variable
Observable function of the combined system f (x) N-dimensional function
Observable function of the coupled system f̃ (x) N-dimensional function
Observable function of the ith subsystem fi(xi) Li-dimensional function
Observable function of the i ∼ j coupled system fij(xi, xj) (Di +Dj)-dimensional function
Number of subsets in which xi is discretized N i Scalar constant
Total number of subsets in which x is discretized N Scalar constant
Indices of the subsets of a discretized coordinate α, β, γ, . . . Scalar index
Center of the αth subset of the discretized coordinate xi xα

i Scalar variable
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