
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Shokoufeh Mahmoodzadeh,
Max Delbrück Center for Molecular
Medicine (HZ), Germany

REVIEWED BY

Jacques Couet,
Laval University, Canada
Renée Ventura-Clapier,
Centre National de la Recherche
Scientifique (CNRS), France

*CORRESPONDENCE

Sarah Nordmeyer

sarah.nordmeyer@dhzc-charite.de

SPECIALTY SECTION

This article was submitted to
Cellular Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 30 November 2022
ACCEPTED 06 January 2023

PUBLISHED 01 February 2023

CITATION

Schafstedde M and Nordmeyer S (2023)
The role of androgens in pressure overload
myocardial hypertrophy.
Front. Endocrinol. 14:1112892.
doi: 10.3389/fendo.2023.1112892

COPYRIGHT

© 2023 Schafstedde and Nordmeyer. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 01 February 2023

DOI 10.3389/fendo.2023.1112892
The role of androgens in pressure
overload myocardial hypertrophy

Marie Schafstedde1,2,3,4 and Sarah Nordmeyer1,2,3*

1Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité –
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Pressure overload hypertrophy of the left ventricle is a common result of many

cardiovascular diseases. Androgens show anabolic effects in skeletal muscles, but

also in myocardial hypertrophy. We carefully reviewed literature regarding possible

effects of androgens on specific left ventricular hypertrophy in pressure overload

conditions excluding volume overload conditions or generel sex differences.
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Introduction

Pressure overload hypertrophy (POH) of the left ventricle is a common result of diseases

like arterial hypertension, aortic valve stenosis, hypertrophic obstructive cardiomyopathy or

aortic coarctation and is associated with increased morbidity and mortality (1–4). Thus,

many patients of any age and sex are affected and interventions and medical treatment aim to

reduce or prevent POH. Common believe that cardiac hypertrophy is a compensatory

mechanism still exists. As a short-term response it minimizes wall stress and reduces oxygen

consumption, but when persisting for a long time, maladaptive remodeling with

proarrhythmic properties and ultimately heart failure occurs. There is increasing literature

arguing that hypertrophic response is not specifically needed. In line with these findings

Schiattarella et al. suggest that inhibition of ventricular hypertrophy might be a good

therapeutic strategy in the treatment of POH (5, 6). Testosterone and its most active

metabol-ite Dihydrotestosterone (DHT) are well known for their anabolic effects in skeletal

muscles (7–10), however, much less is known about specific effects of both androgens onto

the human myocardium, especially in pressure overload conditions. However, in the

literature, there is increasing evidence that androgens also contribute to the development

and progression of myocardial hypertrophy (11–14) and that reduction of serum androgen

levels reduce or prevent myocardial hypertrophy (15–18). This review focusses on the specific

question of the possible role of Testosterone and/or DHT in cardiac pressure induced

hypertrophy and discusses the topic of anti-androgenic medication as a possible treatment

option to prevent or reduce POH and thus improve patient outcome. This short review does

not aim to highlight all sex differences in cardiac diseases or other kinds of hypertrophy like

volume induced hypertrophy, for example.
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Androgens and cardiac hypertrophy

Testosterone in the human body is mainly produced by the

gonads (by the Leydig cells in testes in men and by the ovaries in

women) and in smaller amounts by the adrenal glands in both

sexes. Conversion to DHT takes place via the enzyme 5 alpha

reductase (19). Both hormones act via androgen receptors (AR),

but DHT shows twice the affinity for the AR and a ten-fold more

potent effect on signalling pathways when compared to

Testosterone (20). Both hormones are present in pre- and

postmenopausal women and men (13). In humans and animals,

reduction of DHT levels can be achieved by blocking the enzyme 5

alpha reductase (e.g. by Finasteride), for example (15, 16). Total

Testosterone and, thus, also DHT can be reduced by blocking

central molecules of the endocrine system, namely luteinizing

hormone (LH) and Follicle-stimulating hormone (FSH), through

Gonadotropin-releasing hormone (GnRH) agonists and/or

antagonists (21). A third mechanism to reduce androgen actions

is the use of androgen receptor antagonists like used in patients

with prostate cancer (22).
Experimental evidence

In cells, it was shown, that Testosterone and also DHT mediate

their effects via androgen receptors (AR) and induce myocardial

hypertrophy via two different ways: 1) in a DNA binding-

dependent manner (genomic pathway) where androgens bind to

the AR, translocate into the nucleus and act like a transcription

factor or 2) in a non-DNA binding-dependent manner (non-

genomical pathway) where androgens bind to the AR and activate

rapid 2nd messenger signalling cascades, for example (23–27). In

neonatal rat cardiac myocytes, for example, Testosterone

stimulation lead to GSK-3b inhibition and activation of

calcineurin and NFAT, thus, resulting in cardiomyocyte

hypertrophy (28, 29). On the other hand, Testosterone

stimulation in neonatal and adult cultured rat cardiomyocytes in

another study has also been shown to induce a rapid intracellular

calcium increase by a non-genomical pathway, which influenced

contractility (30).

Several animal models exist, that highlight the AR-mediated

influence of Testosterone and DHT on cardiac hypertrophy (14,

31–34). In mice with angiotensin II induced hypertrophy, knockout

of AR leads to a significant reduction in cardiac hypertrophy and

fibrosis (35), and in a rat model of myocardial infarction, low levels of

DHT were described to be protective against cardiac hypertrophy

(36). In mice undergoing transverse aortic constriction (TAC) in

order to induce left ventricular pressure overload hypertrophy, the

reduction of DHT levels by finasteride treatment led to significant

reduction in hypertrophy (16). Comparably, anti-androgenic

treatment with an AR antagonist Flutamide lead to reduction in

cardiac hypertrophy in a rat model of hypertension (18). Additionally,

it was shown that treatment with finasteride improved cardiac

function, attenuated remodeling and reverted pathologic gene-

expression after myocardial infarction in mice (15).
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Clinical evidence

In human myocardium, androgen receptor genes are expressed in

female and male cardiac myocytes and Testosterone and also DHT

produce an hypertrophic response by acting directly on cardiac muscle

cells in non-pressure overload condition (11). There are multiple studies

in other non-pressure overload conditions in humans describing a pro-

hypertrophic mechanism of androgens. In a large prospective study of

2810 men and postmenopausal women, higher serum levels of

Testosterone were associated with a greater increase in left ventricular

muscle mass over the course of 9 years in otherwise healthy individuals

all with physiological levels of Testosterone (13). Amongmen with type 1

diabetes and physiological levels of Testosterone there was an association

of higher (but still normal) serum levels of Testosterone and higher left

ventricular muscle mass (37). Furthermore, women with polycystic ovary

syndrome, who suffer from hyperandrogenism, are known to have an

increased risk for left ventricular hypertrophy (38). If Testosterone or

DHT levels might be responsible for that has not been studied.

Additional evidence exists in human athletes, in whom the use of

anabolic steroids (as synthetic derivatives of the male sex hormones

Testosterone), was also associated with cardiac hypertrophy (39).
Androgens in human pressure overload
hypertrophy and anti-androgen therapy
as a possible treatment option

In patients with pressure overload hypertrophy caused by severe

aortic valve stenosis for instance, cardiac hypertrophy is associated

with increased morbidity and mortality (1–4) and treatment aims to

reduce the hypertrophic response to the pro-hypertrophic

hemodynamic stimuli. In a recent publication, we have described

an association of higher serum DHT levels and increased left

ventricular muscle mass in female and male patients with POH due

to severe aortic valve stenosis (all patients showed physiological DHT

levels) (40). Furthermore, serum DHT levels were also associated with

higher left ventricular myocardial protein expression levels of moesin,

which is part of the ezrin/radixin/moesin (ERM) complex and

activates the cardiac sarcolemmal Na+/H+ exchanger. Na+/H+

exchanger, in turn, is described to be associated with increased left

ventricular hypertrophy in animal studies (41–43).

Acknowledging that Testosterone and DHT are associated with

cardiac hypertrophy, it seems tempting to think about the use of anti-

androgenic therapy to prevent cardiac remodeling in patients with AS

to improve outcome in these patients.

In our study cohort, a very small number of four male patients

happened to be on anti-androgenic therapy due to concomitant

prostate disease (two patients were treated with GnRH analogues

showing low levels of Testosterone and DHT and two patients with

finasteride treatment, where one patient showed normal DHT levels

and one reduced DHT levels compared to the other patients). Next to

low serum levels of DHT these patients showed low degree of left

ventricular muscle mass despite severe aortic valve stenosis and

pressure overload (40). Our findings certainly do not prove any

causal relationship, however, they suggest an association between
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higher serum levels of DHT, increased moesin expression levels and

higher degree of cardiac hypertrophy in patients with severe AS. In

future studies, mechanistic effects of DHT on cardiac hypertrophy in

human patients with POH are needed. Another retrospective,

observational study in patients with heart failure has described an

association between anti-androgenic therapy with finasteride (in

patients with heart failure and prostate disease) and attenuated

cardiac hypertrophy (17).

Data from animal studies and the few existing human data suggest

that anti-androgenic therapy has the potential to improve cardiac

function and remodelling in heart failure and to reduce or prevent

cardiac hypertrophy in pressure overload conditions. Next to the

detrimental pro-hypertrophic cardiac effects, Testosterone replacement

therapy has been associated with prostate cancer, polycythemia and

obstructive sleep apnea andmany long-term effects are still unknown (44,

45). Thus, anti-androgenic therapy might also have additional positive

side effects next to anti-hypertrophic action.

On the other hand, excessive reduction of serum androgen levels

should be prohibited, especially in male patients. Very low levels of

Testosterone in elderly men with Testosterone deficiency have been

associated with increased cardiovascular risk and mortality and

positive cardiovascular effects have been described for Testosterone

replacement therapy in these patients (46–49). Testosterone

replacement therapy was shown to alleviate myocardial ischemia in

elderly men with coronary artery disease and Testosterone deficiency

(50, 51) and to increase exercise capacity in male patients with heart

failure with and without Testosterone deficiency (47, 52, 53), or

improve serum glucose levels and hemoglobin A1c values in male

hypogonadal patients with diabetes (54, 55). Although these positive

effects of Testosterone replacement therapy only aim to achieve

normal ranges of serum Testosterone levels and are most likely

independent of the hypertrophic effect and rely more on vascular

and metabolic effects, they should, however, be considered when

thinking of possible anti-androgenic therapy in patients with POH. At

the same time we want to mention, that studies about possible

positive or negative cardiovascular effects of serum androgen levels

rarely exist in women and female and male children, which should be

considered in future clinical studies.

The study situation currently remains controversial and future

studies are required to determine, whether and if yes what kind of
Frontiers in Endocrinology 03
anti-androgenic therapy might be a treatment option at least for time-

restricted therapy in patients with severe AS waiting for surgical or

interventional relieve of pressure overload.
Conclusion

Testosterone and/or its active metabolite DHT increase the

hypertrophic response of left ventricular myocardium to pressure

overload in animal models and associations were seen in human

subjects. Anti-androgenic treatment to lower Testosterone and/or

DHT levels should be discussed as a possible treatment option to

reduce cardiac hypertrophy; however, possible negative effects of low

serum levels of Testosterone onto vascular and metabolic health have

to be taken into consideration. Future studies should focus on

cardiac-specific anti-androgenic therapy in order to prevent

myocardial hypertrophy in pressure overload conditions without

negatively affecting general patient health in women and men.
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