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Abstract

y-aminobutyric acid A receptor (GABAAR) and N-methyl-D-aspartate receptor (NMDAR)
encephalitis are both autoimmune disorders characterized by autoantibodies against
receptors in the brain. Due to the relatively new discovery of these disorders, much is
still unknown. Some studies have explored the cerebral spinal fluid (CSF) of patients to
see how these antibodies could influence receptor function, however due to the large
mixture of antibodies often observed in patient's CSF, linking antibodies to their
mechanistic properties has proven to be challenging. Due to this, this thesis investigates
four patient derived monoclonal antibodies to study how they individually contribute to
these disorders. First, two autoantibodies against the GABAAR, one targeting the a1-
subunit and one requiring both a a1 and y2-subunit of the receptor, were investigated
with the help of immunocytochemistry, electrophysiology and calcium imaging
experiments. Interestingly, these antibodies seem to work through distinct mechanisms.
For example, the a1-antibody influenced receptor distribution at longer time points
(>24hrs), driving the receptors away from the synapse by internalization. In addition, at
shorter time points (<4min) the a1-antibody could directly facilitate an antagonistic effect
on the receptor. In contrast, the a1y2-antibody did not have any impact on these recep-
tors, neither influencing signal transduction of the receptor, nor causing receptor
redistribution. However, once microglia were added to the cultures, the a1y2-antibody
was able to engage microglia leading to removal of synaptic receptors. Second, two
antibodies against NMDAR, one germline and one maturated, were investigated
through electrophysiological experiments. Germline antibodies have not been
investigated before in the context of autoimmune encephalitis and are generally not
thought to cause autoimmunity. Interestingly, this germline antibody did disrupt receptor
functionality, similar to the maturated antibody, albeit at a five-fold higher dose. These
findings imply that everyone could be at risk of developing autoimmune encephalitis and
not only individuals that have an initial tumor/infection as previously postulated. All in all,
these findings highlight the tremendous antibody diversity underlying autoimmune
encephalitis, complicating the development of new treatment strategies for patients, ne-

cessitating a more holistic approach to these disorders.
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Zusammenfassung

y-Aminobuttersaure-A-Rezeptor- (GABAAR) und  N-Methyl-D-Aspartat-Rezeptor-
(NMDAR) Enzephalitis sind beides Autoimmunerkrankungen, die durch Autoantikorper
gegen Rezeptoren im Gehirn gekennzeichnet sind. Da diese Erkrankungen erst vor
kurzem entdeckt wurden, ist noch vieles unbekannt. In einigen Studien wurde die
zerebrale Ruckenmarksflissigkeit (CSF) von Patienten untersucht, um herauszufinden,
wie diese Antikorper die Rezeptorfunktion beeinflussen kdnnten. Aufgrund der grof3en
Mischung von Antikérpern, die haufig in der CSF von Patienten beobachtet wird, hat
sich die Zuordnung von Antikdrpern zu ihren mechanistischen Eigenschaften jedoch als
schwierig erwiesen. Aus diesem Grund werden in dieser Arbeit vier von Patienten
stammende monoklonale Antikorper untersucht, um herauszufinden, wie sie individuell
zu diesen Stbrungen beitragen. Zunachst wurden zwei Autoantikbrper gegen den
GABAAR, einer gegen die al-Untereinheit und einer, der sowohl eine al- als auch eine
y2-Untereinheit des Rezeptors benotigt, mit Hilfe wvon Immunozytochemie,
Elektrophysiologie und Calcium-Imaging-Experimenten untersucht. Interessanterweise
scheinen diese Antikorper Uber unterschiedliche Mechanismen zu wirken. Zum Beispiel
beeinflusste der al-Antikdrper die Rezeptorverteilung zu langeren Zeitpunkten (>24
Stunden), indem er die Rezeptoren durch Internalisierung von der Synapse wegtrieb.
Daruiber hinaus konnte der al-AntikGrper zu kirzeren Zeitpunkten (<4min) direkt eine
antagonistische Wirkung auf den Rezeptor ausuben. Im Gegensatz dazu zeigte der
aly2-Antikorper keine intrinsische Wirkung auf diese Rezeptoren und beeinflusste
weder die Signaltransduktion des Rezeptors noch bewirkte er eine Umverteilung des
Rezeptors. Sobald jedoch Mikroglia zu den Kulturen hinzugeftigt wurden, war der aly2-
Antikdrper in der Lage, die Mikroglia zu aktivieren, was zur Entfernung der synaptischen
Rezeptoren fuhrte. Zweitens wurden zwei Antikérper gegen NMDAR, ein Keimbahn-
Antikdrper und ein reifer Antikorper, in elektrophysiologischen Experimenten untersucht.
Keimbahn-Antikdrper wurden bisher noch nicht im Zusammenhang mit
Autoimmunenzephalitis untersucht, und es wird allgemein nicht angenommen, dass sie
Autoimmunitat verursachen. Interessanterweise hat dieser Keimbahn-Antikérper die
Rezeptorfunktionalitdt &hnlich wie der reife Antikorper gestort, wenn auch in einer
funffach hoheren Dosis. Diese Ergebnisse deuten darauf hin, dass jeder Mensch ein
Risiko fur die Entwicklung einer Autoimmunenzephalitis haben kénnte und nicht nur

Personen, die einen Tumor oder eine Infektion haben, wie bisher angenommen wurde.
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Alles in allem verdeutlichen diese Ergebnisse die enorme Vielfalt der Antikorper, die der
Autoimmunenzephalitis ~ zugrunde  liegen, was die  Entwicklung  neuer
Behandlungsstrategien fur Patienten erschwert und einen ganzheitlicheren Ansatz fur
diese Erkrankungen erforderlich macht.



Introduction 4

1 Introduction

1.1 Autoimmune encephalitis as a global health burden

Autoimmune encephalitis is an umbrella term for a clusterof disorders in which the
immune system generates antibodies against the body’s own neuronal proteins in the
brain (1). The nature of these proteins varies wildly from Aquaporin-4 (AQP4),
Contactin-associated protein-like 2 (CASPRZ2), Leucine-rich glioma inactivated-1 (LGI1),
, N-methyl-D-aspartate receptor (NMDAR), to y-aminobutyric acid A and B receptors
(GABAAR/GABAGBR) (2-4). The incidence and prevalence of this disease is currently dif-
ficult to estimate due to its relatively recent discovery (5), yet a population-based study
published in 2018 found an incidence of 0.8/100,000 and a prevalence of 13.7/100,000
person-years, numbers that are similar to the incidence and prevalence of infectious
encephalitis. It is not clear why people develop autoimmune encephalitis, but some sub-
types are believed to be associated with certain cancers (30-60%) (6), whereas others
are believed to be a cross-reactivity to a previous infection (7, 8). Even though the initial
cause remains unknown, treatment plans are in place. The first line of treatment in-
volves steroids, intravenous immune globulin, plasma exchange or a combination of all.
When this treatment is not sufficient, immunosuppressants like rituximab can be given
as well (9, 10). All treatments need to be administered chronically, which dramatically

affects patient’s quality of life.

1.2 Challenges in the field

As can be deducted from the wide variety of targets in the brain, autoimmune en-
cephalitis is a very heterogeneous disease. Not only are there distinct differences be-
tween subtypes of the disease, e.g. NMDAR and GABAAR encephalitis, but there are
also distinct differences within one subtype due to the many different varieties these
autoantibodies can come in. Early studies of patients with auto-immune encephalitis
utilized the cerebral spinal fluid (CSF) from patients to investigate how their associated
antibodies affect neuronal function (11-14). One major drawback of this approach is that
patient’'s CSF often contains a varietyof numerous autoantibodies, making it difficult to
determine causal effects between specific antibodies and the etiology of a patient’s
phenotype. A major break-through in this emerging field was the molecular cloning of
monoclonal antibodies from patient derived B-cells isolated from CSF (15-17). These
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studies revealed while there are often dominant antibodies against one antigen, an ar-
ray of antibodies of different types against different proteins and epitopes are also pre-
sent within the same patient. With the isolation of monoclonal antibodies, it is now pos-
sible to study whether the ethology and pathophysiology of a patient’s disease is de-
fined by the repertoire of antibodies expressed and how mechanistically they alter re-

ceptor and/or neuronal function.

1.3 The aim of this work

This work sets out to answer two questions. The first is to understand how the varia-
tion in a patient’s antibody repertoire contributes to auto-immune encephalitis. At pre-
sent, antibodies are known to have three main mechanisms by which they can exert
their effect. First, they can act directly on a given receptor, exerting agonistic, modulato-
ry, or antagonistic effects (Fig. 1.1). Second, they can alter surface protein expression
by influencing their rate of internalization, e.g. via receptor crosslinking (Fig. 1.2). Third-
ly, antibodies might exert their effects by activating other actors within the immune sys-
tem, e.g., via complement or Fc gamma receptors on immune cells (Fig.1.3). To gain a
better understanding of which of these mechanisms contribute to autoimmune encepha-
litis, this thesis project focused on defining the modes of actions of two distinct GABAAR
autoantibodies: one recognizing epitopes on an a1 subunit and the second recognizing

an epitope shared between the a1 and y2 subunit of these receptors.

1 Direct effect on receptor 2 Internalization 3 Activation of Immune system
a complement b Activation of
activation Fc receptor

a Agonistic b Antagonistic ¢ Modelatory
effect effect effect

A o
4

receptor signal

Figure 1: mechanisms by which antibodies exert their function. Adopted from (8).
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The second aim of this work is to investigate if germline antibodies can influence
signal transduction, in and of themselves, before they undergo somatic hypermutation
and maturation. B-cells undergo negative selection in the bone marrow to prevent self-
reactivity (18). It is therefore thought that autoimmunity is often a result of cross-reactive
epitopes from a pathogen to self after somatic hypermutation. A hint that germline anti-
bodies are not necessarily harmless, arose when we isolated an unmutated antibody
from a patient that was diagnosed with NMDAR encephalitis along with several matu-
rated NMDAR autoantibodies in their CSF (15). In this thesis, we have compared the
impact of two of these NMDAR autoantibodies, one germline and one maturated, to ex-
plore whether both equally negatively influence signal transduction of the NMDAR and

thus potentially cause disease.

1.4 GABAAR encephalitis

GABAAR encephalitis is a subtype of autoimmune encephalitis in which the body
generates autoantibodies against the GABAAR, first described by Petit-Pedrol et al.
(13). GABAAR encephalitis affects both children and adults, all genders equally, and is
associated with tumors in 40% of the cases (19, 20). Unlike other autoimmune en-
cephalitis subtypes, GABAAR encephalitis often presents with a distinctive MRI pattern
with multifocal cortical and subcortical lesions (20, 21) and symptoms include, but are
not limited to, epilepsy, hallucinations, abnormal movement, and alterations in cognition,
behavior, and levels of consciousness (12-14).

GABAARs are ionotropic chloride channels that facilitate both fast inhibitory neuro-
transmission between neurons as well as tonic inhibitory tone. Each receptor is com-
prised of five different subunits, from an array of different subunit types; a (1-6), B (1-3),
vy (1-3), p (1-3), 9, €, 6, and 11 (22-24) with certain subunits having different expression
patterns throughout the brain (25). Nonetheless, the most frequently expressed receptor
isoform is a1y2B2a1B2, arranged counterclockwise as seen from outside the cell (26).
Intriguingly, these receptors also have many modulatory sites, of which the benzodiaze-
pine site is one. Benzodiazepine acts as a positive modulator on the receptor, increas-
ing its affinity for GABA, leading to increased receptor opening times (26). Benzodiaze-
pine does not interact with all receptor types equally, but has a higher affinity for recep-
tors that express a combination of a1 and y2 subunits, or a combination of y2 with an

a2, a3, or a5, all with a higher sensitivity to benzodiazepine (26).
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Previous research into GABAAR encephalitis has shown that cells treated with CSF
for 24 hours or longer leads to internalization of the GABAAR at synapses, but not along
dendrites (13). In addition, whole-cell patch-clamp experiments show a decrease in the
amplitude and frequency of miniature postsynaptic currents (mIPSCs) after exposure to
patient’'s CSF, hinting towards a possible removal of the receptors from the synapse
(12). This idea is consistent with Western blot experiments showing reductions in sur-
face expression of GABAARSs (14). To date, several antibodies against different subunits
of the GABAAR have been discovered, with the predominant targets being the a1, B3,
and y2 subunits of the receptor (12-14). However as mentioned before, CSF of affected
patients often contains a mixture of several autoantibodies with targets against several
subunits of the GABAaR. It is estimated from the literature that the mammalian central
nervous system expresses as many as 11 distinct and functional receptor isotypes with
varying modulatory sites, indicating that CSF with autoantibodies could set in motion
several inactivation mechanisms at once, depending on the receptor epitope. This work
sets out to elucidate whether indeed variation in antibody-driven mechanisms contrib-

utes to auto-immune encephalitis.

1.5 NMDAR encephalitis

NMDAR encephalitis was one of the first subtypes of autoimmune encephalitis to be
discovered and it's therefore one of the most commonly studied and diagnosed sub-
types of autoimmune encephalitis (15). This disease is often associated with ovarian
teratomas, making the patients affected by NMDAR encephalitis more likely to be fe-
male. Symptoms often include psychiatric or memory problems, epileptic seizures, am-
nesia, and autonomic instability (27).

The NMDAR is an ionotropic glutamate receptor that is important for synaptic plas-
ticity, memory and learning (28). It is a hetero-tetramer that can be formed by a combi-
nation of GIuN1-3 subunits (29). Every NMDAR consists of two GIuN1 subunits and re-
guires either another pair of GIuN2 or GluN3 subunits to form a functional receptor (29).
However, the receptor is often composed of two GluN1 and two GIuN2 subunits (30),
making this receptor less variable compared to GABAARS.

Since its discovery in 2007, many studies have looked into how these autoantibodies
contribute to disease pathology. To date, research has shown that the presence of au-
toantibodies leads to a decrease in NMDARSs in the brain. This mechanism is believed

to work through cross-linking receptors by these antibodies, triggering their internaliza-
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tion (11). This theory seems to be confirmed by Fab-fragment experiments, which ren-
ders the antibody incapable of cross-linking, in which no such internalization is observed
(31, 32) . Experiments outlined in this thesis have focused on assessing the impact of
both germline and maturated NMDAR-autoantibodies, that bind to the GIuN1 subunit of
the NMDAR, on receptor function. Germline in this case refers to naive autoimmune
antibodies with few or no mutations. Due to the lack of hypermutations, such autoanti-
bodies are predicted to bind weaker to the NMDAR than maturated autoantibodies (33).
This thesis explores whether such germline antibodies can nonetheless adversely affect

NMDAR function, a situation that alone could contribute to disease progression.

1.6 Objectives and aims

Autoimmune encephalitis is a complex disorder that is characterized by autoantibod-
ies against many different targets in the brain. This dissertation aimed to highlight how
variations in antibody driven mechanisms contribute to auto-immune encephalitis. To
this end, we characterized in detail several patient derived monoclonal antibodies
against ionotropic receptors, including antibodies against the a1-subunit or aly2-
subunits of the GABAAR as well as against GIuN1 subunits of the NMDAR. Our experi-
ments examined possible direct effects of these antibodies on receptor function, distri-
bution and impact on neuronal network, using immunocytochemical, electrophysiologi-
cal, and calcium imaging techniques. The overall aim of this thesis was accomplished
with help of the following objectives:

1. Characterize whether the cloned GABAAR autoantibodies not only bind to these

receptors, but also induce functional changes to GABAARS.

2. Characterize how both a1-and a1y2-GABAAR autoantibodies differ in the mecha-

nism by which these antibodies affect GABAARS.

3. Assess whether germline as maturated NMDAR autoantibodies can alter recep-

tor signal transduction.
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2 Supplementary methods

All methods are described in their corresponding paper 1 (34) 2 (35) and 3 (33). This

section will only describe the methodology of unpublished data.

Animals

Animal material was collected conform the Charité Medical University animal welfare
committee’s and the Berlin state government’s regulations. Brain material was collected
from male and female wildtype mice (RRID:IMSR_JAX:000664).

Microglia cultures

Microglia were isolated from the cortices of WT P0-2 mouse pups. For this purpose cor-
tices were dissected out and digested in 0.05% Trypsin-EDTA (Gibco) for 20 min at
37°C. Digestion was stopped by replacing the trypsin-EDTA with DMEM-complete (10%
FBS, 5% PenStrep) and cortices were subsequently triturated by pipetting them up and
down 10x with a 1000puL pipet tip. Afterwards one cortex per T75 flask was cultured for
14 days in DMEM-complete media. Microglia were isolated just before addition to neu-
rons by slapping the flask multiple times over 5 minutes followed by collecting the me-
dia.

Microglia staining experiments

Cortical-striatal co-cultures, prepared as described in (35), were incubated with
5ug/mL of the aly2-antibody for 1 hour at 37°C. Afterwards the cells were washed once
with media to remove any unbound antibody. Immediately after washing, microglia were
added to the cultures, in a ratio of 1 microglia per 3 neurons, and incubated for 6 hours
at 37°C. At 6 hours, the cells were fixed for 4 min in 4% PFA and quenched in 25mM
Glycine in PBS for 20 minutes. Blocking serum was used in all following steps (2% BSA,
and 5% normal goat serum in PBS) unless described otherwise. Cells were permea-
bilized in 0.2% triton for 1 hour and incubated with a secondary alexafluor-594-anti-
human antibody (1:1000, Jackson #109-585-003). After a washing step, a primary
MAP2 antibody was added to the neurons for 1 hour (1:2000, Millipore Cat# AB5543,
RRID:AB_571049). Cells were washed again and incubated for 1 hour with a secondary
alexafluor-405-anti-chicken (Abcam Cat# ab175674, RRID:AB_2890171) or alexafluor-
488-anti-chicken (Thermo Fisher Scientific Cat# A-11039, RRID:AB_2534096). Finally,
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coverslips were washed one last time and mounted in Mowiol (10 mM Mowiol 4-88, roth
#0713.2; 3.6 M glycerol; 0.2 M Tris in distilled water, pH 8.5).

Cells were imaged using a Nikon Spinning Disk Confocal CSU-X microscope that
was under control of the NIS-Elements software (Nikon) at the Charité AMBIO facility.
For image acquisition neurons were visualized with a 40X objective and z-stacks of 10 x
5 um thick stacks were taken with a 561 and a 488/ 405 laser. Exposure time and gain
were selected for each experiment individually but were kept consistent across all con-
ditions per experiment. Per condition, 8 neurons were selected for imaging based on
their MAP2 signal alone. To determine the number of aly2-puncta per dendrite length,
images were analyzed in ImageJ. First, a secondary dendrite was selected via the
MAP2 channel in each quadrant of the Image. Second, the segmented line tool was
used to trace the dendrite in question to measure the length in um. Third, the plugin
‘Time Series Analyzer V3’ was used to select all antibody puncta. For this, the auto ROI
properties were set to 6 pixels and each puncta was manually selected. The plugin au-
tomatically stores all selected ROIs in the ROI manager. When all puncta are selected
the Measure option of the ROl manager gave the number of puncta and the intensity of
those ROIs across all channels. All data was collected in Excel (Microsoft) where the
number of puncta per dendrite length could be calculated and subsequently plotted in

Prism V7 to visualize and statistically test the data.
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3. Results

Study 1 ‘Encephalitis patient-derived monoclonal GABAa receptor antibodies

cause epileptic seizures’ (34)

Initially after isolation of GABAAR autoantibodies from a patient by my collaborators,
my first objective was to assess whether they influenced GABAAR functionality. For this,
| selected two out of five autoantibodies isolated from an eight-year-old girl, one target-
ing the al-subunit and the second targeting both an al and a y2 subunit of these recep-
tors (34). To assess whether these antibodies could influence the functionality of
GABAARs, whole-cell patch-clamp experiments were performed. For this, striatal au-
tapse cultures were incubated for 24-hours with 1ug/mL of the al-antibody, the aly2-
antibody, or a control-antibody (alemtuzumab). Autapses are special neuronal cultures
where one neuron is grown on an astrocyte micro-island (36, 37), forcing the neuron to
make synapses with itself.

My recordings showed that the al-antibody leads to a strong reduction in all GABA-
mediated currents as can be seen in the ~70% reduction in evoked inhibitory postsyn-
aptic currents (IPSC) (P=0.0001, Kruskal-Wallis; untreated 1 + 0.12, control-antibody
0.9 + 0.17, al-antibody 0.3 + 0.10) (Fig. 2B, D) and causes the post-synaptic response
to last longer by increasing the decay time (P=0.0205, Kruskal-Wallis; untreated 118 + 6
ms, control-antibody 135 £ 15 ms, and a1-antibody 186 = 18 ms) (Fig. 2E). The al-
antibody also caused a ~50% reduction in total GABA-mediated currents, which in-
cludes both synaptic and extrasynaptic receptors (P=0.0003, Kruskal-Wallis; untreated
1 + 0.09, control-antibody 1 + 0.07, al-antibody 0.5 + 0.06) (Fig 2C, F). In contrast, the
aly2-antibody did not have any significant effect on any of the GABA-mediated cur-
rents, following a 24-hour antibody incubation period (Fig. 2B-F). Additionally, both anti-
bodies had no effect on glutamatergic receptors, as illustrated by the lack of change in
NMDA and Kainate-mediated currents (Fig. 2G-H).

Interestingly, in animal experiments, performed by my collaborators, both the al and
aly2-autoantibodies induced seizures in rats when infused into the ventricular space for
more than 24 hours (34). Together with my results, these data suggest the al and
aly2-autoantibodies influence the GABAAR function but possibly via different mecha-

nisms.
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Figure 2: striatal autaptic whole-cell patch clamp recordings after 24-hour incubation with GABAAR encepha-
litis antibodies. A) MAP2 staining of a striatal autapse on an astrocyte micro-island. B) Example traces of IPSCs
and C) GABA-mediated currents. Analysis of IPSC amplitude (D) (H(3)=20.51, P=0.0001, K-W; untreated 1 + 0.12 vs.
al-antibody 0.3 + 0.10 p=0.0001, al- vs. control-antibody 0.9 + 0.17 p=0.0076, al- vs. aly2-antibody 0.9 = 0.19
p=0.0116), IPSC decay-time (E) (H(3)=9.79, P=0.0205, K-W; untreated 118.4 + 5.93 ms vs. a1-antibody 186.3 *
17.68 ms, p=0.0202), GABA-mediated currents (F) (H(3)=18.8, P=0.0003, K-W; untreated 1 + 0.09 vs. al-antibody
0.5 + 0.06 p=0.0023, al- vs. control-antibody 1 + 0.07 p=0.0010, a1- vs. aly2-antibody 1 + 0.13 p=0.0075), Kainate-
mediated currents (G) (H(3)=0.45, P=0.9288, K-W), and NMDA-mediated currents (H) (H(3)=0.75, P=0.8610, K-W).
K-W=Kruskal-Wallis. Averages + S.E.M. Each data point represents one neuron. Figures adjusted from (34) figure
3A-F and (35) Fig 3A, D.

Study 2 ‘Differential effect of al- and aly?2- patient derived GABAAR encephalitis
associated autoantibodies’ (35)

Although the al- and aly2-antibodies promote epileptic activity in animals (34), it
remains unclear whether they operated via similar or distinct mechanisms. Based on
previous research detailing the mechanisms by which antibodies can cause disease (8),
it is expected that there are three main pathways thought to contribute to autoimmune
encephalitis: 1) direct actions on the receptor, 2) receptor internalization 3) immune cell
engagement (Fig. 1), though the importance of each is not well understood. To provide
clarity to these issues, my second objective was to get a better understanding of how
the a1-and a1y2-GABAAR autoantibodies differ in their mechanism by which these anti-
bodies affect GABAARs. My initial data (Study 1) suggests that these antibodies might
indeed increase network excitability via different mechanisms, as the al-antibody was
found to have dramatic effects on the GABA-mediated currents following a 24-hours
incubation, whereas little or no effect on GABA-mediated currents were detected with
the aly2-antibody. To explore whether this was due to weaker binding, | performed ad-
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ditional experiments at both low and high concentrations of the aly2-antibody in a neu-

ronal network.

This was accomplished by incubating cortical-striatal co-cultures with 1pug/mL of the
al- or control-antibody, and with 1ug/mL or 5ug/mL of the aly2-antibody for 24 hours.
When looking at calcium currents in the network with the use of a calcium indicator
jRCamP1b (under the synapsin promoter) (38), it became immediately apparent that in
the presence of the al antibody the frequency of spiking activity of the cells in the net-
work increases (Fig. 3A). After analysis of a 2-minute-long recording of the network, |
observed that the frequency almost doubled for the al-antibody compared to control.
However, the aly2-antibody did not affect spiking activity at 1ug/mL nor at 5pg/mL (Fig.
3H) (P<0.0001, Kruskal-Wallis; untreated 9.58 + 0.47 Hz, control 9.68 = 0.53 Hz, a1-
antibody 14.03 = 0.66 Hz p<0.0001, a1y2-antibody 10.68 + 0.79 Hz, a1y2-antibody 5ug
9.79 + 0.54). To assess the degree of network inhibition, bicuculline was added to these
networks to block most of the remaining GABA-mediated inhibition. For all conditions, |
saw that the spiking activity became very synchronized and that most cells spiked at the
same time (Fig. 3B). When | compared the spiking activity of each individual cell, before
and after the addition of bicuculline, neurons increased their spiking activity when bicu-
culline was present in the untreated, control-antibody and at both high and low aly2-
antibody concentrations (Fig. 3C-D, F-G). However, in the presence of the al-antibody,
individual neurons sometimes increased their spiking activity, while other either did not
change their activity or decreased their activity (Fig. 3E) (p=0.0024, paired t-test; a1-
antibody 13.76 = 0.58 Hz, bicuculline 17.05 + 0.69 Hz). When the average spiking fre-
guency between conditions were compared, the addition of bicuculine was found to in-
crease the average frequency for all conditions, though that increase was much smaller
in the presence of the al-antibody (Fig. 3I) (p<0.0001, ANOVA; untreated 123.5 *
15.01%, control 136.6 + 16.16%, al-antibody 42.7 + 9.66%, aly2-antibody 155 +
16.01%, a1y2-antibody 5ug 160.8 + 20.02%). This suggests that the al-antibody effec-

tively blocks most GABA-mediated currents, with fewer functional GABAAR remaining in

+

that network, while the aly2-antibody has little direct impact on these receptors.

These data strongly suggest that these antibodies elicit changes in network activity
in vivo, by different mechanisms. To explore these, two strategies were taken. The first
involved examining how the al-antibody directly affects GABAAR function. The second
focused on possible indirect effects of the aly2-antibody such as its impact on modula-
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tors of the GABAaARs and/or engagement of the immune system to clear anti-

body/receptor complexes.
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Figure 3: network spiking activity after 24-hour incubation with al-antibody and a high and low concentration
of aly2-antibody. A) Example spike plots of neuronal networks treated with autoantibodies for 24 hours. B) Exam-
ple spike plots of neuronal networks after addition of bicuculine. Spike frequency of individual neurons before and
after addition of bicuculine for all conditions (C-G) (untreated 9.30 + 0.47 Hz vs. bicuculline 18.86 + 1.22 Hz,
t(32)=7.64, p<0.0001 control-antibody 9.17 + 0.55 Hz vs. bicuculline 20.18 + 0.99 Hz, 1(26)=10.34, p<0.0001; a1-
antibody 13.76 + 0.58 Hz vs. bicuculline 17.05 + 0.69, Hz 1(32)=3.29, p=0.0024; a1y2-antibody 9.30 + 7.61 Hz vs.
bicuculline 21.91 + 1.08 Hz, t(26)=11.04, p<0.0001; aly2-antibody 5ug 9.79 + 0.54 Hz vs. bicuculline 23.9 + 1.31 Hz,
t(20)=9.80, p<0.0001; all paired t-tests. Average spiking frequency per condition before (H) (H(4)=29.62, P<0.0001,
Kruskal-Wallis; untreated 9.58 + 0.47 Hz vs. al-antibody 14.03 £+ 0.66 Hz p<0.0001, control 9.68 + 0.53 Hz vs. al-
antibody p<0.0001, al-antibody vs. aly2-antibody 10.68 + 0.79 Hz p=0.0010, al-antibody vs. aly2-antibody 5ug
9.79 £ 0.54 p=0.0026) and after bicuculine addition (I)( F(4, 127)=9.46, p<0.0001, ANOVA; untreated 123.5 + 15.01%
vs. al-antibody 42.7 + 9.66% p=0.0017, control 136.6 + 16.16% vs. a1-antibody p=0.0002, a1-antibody vs. a1y2-
antibody 155 + 16.01% p<0.0001, a1-antibody vs. a1y2-antibody 5ug 160.8 + 20.02% p<0.0001). Example image of
a neuronal network in a low spike state (J) and a high spike state (K), scale bar 40um. Averages + S.E.M. Each data
point in A-B represents one spike in calcium currents in one neuron. Each data point in C-I represents the average
spiking activity of one ROI. Figure taken from (35) figure 4.
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Exploring al-antibody mediated mechanisms.

The dramatic decrease in GABA-mediated currents in striatal autaptic neurons fol-
lowing 24-hour incubation with the al-antibody suggests possible direct effects and/or
internalization of the receptors. To rule out any changes at the pre-synapse, | recorded
mIPSCs and sucrose responses in striatal autaptic neurons. The former allows direct
measurement of synaptic GABAAR responses to the release of neurotransmitter from a
single synaptic vesicle (SV), while the sucrose response is a measure of both presynap-
tic release probability and synaptic vesical number per synapse. When mIPSCs were
recorded, | observed a significant reduction in the frequency of these events (P=0.0149,
Kruskal-Wallis; untreated 0.89 + 0.20 Hz, al-antibody 0.46 + 0.14 Hz, control-antibody
1.42 £ 0.32 Hz) (Fig. 4A). Moreover, the amplitude of the post-synaptic current showed
a trend towards decrease in the presence of the al-antibody (untreated 34 + 3 pA, con-
trol-antibody 36 + 3 pA, al-antibody 25 + 3 pA) (Fig. 4B). These results suggest (1)
fewer synaptic vesicles, reducing the probability that one is spontaneously released, (2)

fewer synapses, (3) the amplitude of the mIPSCs fell under detectable
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Figure 4: miniature post-synaptic currents after 24 hour of GABAAR incubation. Analysis of mIPSC frequency
(A) (H(3)=10.49, P=0.0149, K-W; control 1.42 + 0.32 Hz vs. al-antibody 0.46 + 0.14 Hz p=0.0151) and amplitude (B)
(H(3)=6.94, P=0.0737, K-W). C) Example traces of mIPSCs per condition. D) Analysis of ready releasable pool
(H(3)=16.2, P=0.0003, K-W; untreated 1 + 0.15 vs. al-antibody 0.40 + 0.08 p=0.0025, control 1.21 + 0.22 vs. al-
antibody p=0.0009) and (E) release probability (H(3)=1.59, P=0.4506, K-W) with accompanying example sucrose
traces (F). K-W=Kruskal-Wallis. Averages + S.E.M. Each data point represents one neuron. Figure adjusted from
(35) figure 3H-M.
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levels due to fewer receptors at the post-synapse. To assess whether the decline in
mIPSC frequency is due to lower release probability of presynaptic vesicles or fewer
post-synaptic receptors, | triggered the release of all docked synaptic vesicles with
0.5mM sucrose. Here, it became clear that neurons treated with the al-antibody have
smaller post-synaptic current (P=0.0003, Kruskal-Wallis; untreated 1 + 0.15, al-
antibody 0.40 + 0.08, and control-antibody 1.21 + 0.22) (Fig. 4D, F), but that the release
probability is not changed (Fig. 4E), arguing that the al-antibody has primarily a post-
synaptic effect on the GABAARS.

One possible mechanism underlying the reduction of GABA-mediated currents is
that the antibody triggers receptor internalization. To explore this hypothesis, | per-
formed immunocytochemical experiments to monitor the redistribution of receptors due
to the presence of this antibody. This was accomplished by incubating cortical-striatal
co-cultures with the al-antibody for 1 hour at 15°C and 24 hours at 37°C. Labeling ex-
periments performed for shorter times at reduced temperature permit antibody binding,
while slowing down their internalization, providing an estimation of receptor internaliza-
tion/redistribution due to the antibody over a 24-hour window. To monitor synaptic loss,
cells were stained, post fixation, for the vesicular GABA transporter (VGAT), an inhibito-
ry pre-synapse marker as well as for the al-antibody (Fig. 5A, B).

An analysis of the fraction of al-antibody positive puncta co-localizing with VGAT
puncta revealed that initially ~80% of all VGAT puncta were positive for al-antibody
puncta. However after 24 hours, this degree of colocalization dropped to ~50% (Fig. 5C)
(p<0.0001, Welch’s corrected t-test, 81 + 2%, 51 + 4%). Additionally, of all the al-
antibody puncta ~65% were initially located at synaptic sites, whereas ~35% were
located at non-synaptic sites (Fig. 5D). These data indicate that the al-antibody
promotes the redistribution of receptors away from synapses. This concept was
supported by analysis of puncta intensity. Here, | observed that the average intensity of
the al-antibody decreased over time (Fig. 5E) (p<0.0001, Welch’s t-test; 1-hour 1 +
0.04, 24-hour 0.73 £ 0.05) at both synaptic (Fig. 5F) (p=0.0003, Welch’s t-test; 1-hour 1
+ 0.04, 24-hour 0.74 = 0.06) and extrasynaptic sites (Fig. 5G) (p=0.0214, Welch’s t-test,
1-hour 1 + 0.04, 24-hour 0.84 + 0.05). Interestingly, VGAT puncta intensity was also
decreased over time (Fig. 5H) (p=0.0142, Welch’s t-test; 1-hour 1 + 0.03, 24-hour 0.82
+ 0.049) which could hint at a reduction in synapse size due to receptor removal from

the post-synapse.
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Figure 5: Immunocytochemical staining of cortical-striatal co-cultures with al-antibody at 1 and 24 hours. A)
Example images of a neuron stained with MAP2, the al-antibody, and vGAT, scale bar 20um. B) zoom in showing
the overlay of vGAT (green) and al-antibody (magenta), scale bar 10 um. C) the percentage of synapses that are
decorated with the al-antibody over time (t(146.4)=6.664, p<0.0001, Welch’s t-test). D) the percentage of al-
antibody puncta that are located at synapses over time (t(121)=0.691, p=0.4907, Welch'’s t-test). E) Difference in al-
antibody intensity over time (t(148.5)=4.11, p<0.0001, Welch’s t-test). Intensity of the a1-antibody at synapses (F)
(t(136.4)=3.701, p=0.0003, Welch’s t-test ) and at extra-synaptic sites (G) (1(129.8)=2.329, p=0.0214, Welch’s t-test).
Intensity of vGAT puncta at 1 hour and 24 hour of a1-antibody treatment (H) (t(156.1)=2.479, p=0.0142, Welch’s t-
test). Averages + S.E.M. Each data point represents one ROI. Figure adjusted from (35) Figure 1.

Mechanistically, these data suggest that the al-antibody could reduce GABA-
mediated currents, during 24-hour incubation, through the redistribution/internalization
of these receptors. However, it is also possible that it could have faster direct effects on
these receptors. To investigate this possibility, | incubated cortical-striatal co-cultures
with 1pg/mL of the al-antibody for 1 hour and looked at the effect on mIPSCs. This
analysis showed that the al-antibody not only reduced the frequency (Fig. 6A, C)
(p=0.0004, ANOVA,; untreated 4.62 + 0.41 Hz, control 3.90 = 0.50 Hz, a1-antibody 2.10
+ 0.41 Hz), but also the amplitude of mIPSC responses compared to controls (Fig.
6B,D) (p=0.0010, ANOVA,; untreated 42.97 + 3.24 pA, control-antibody 44.03 £+ 3.87 pA,
al-antibody 27.45 £ 2.71 pA). No change in the kinetics of these responses was de-
tected (Fig. 6F-H). These data imply that the al-antibody may indeed act directly on

GABAARS on a faster time scale. The reduction in GABA-mediated currents was
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(H(2)=31.18, P<0.0001, Kruskal-Wallis; untreated 13.98 + 1.21 Hz vs. al-antibody 32.46 + 2.58 Hz p<0.0001, control
17.64 £ 1.93 Hz vs. al-antibody p<0.0001). Averages * S.E.M. Figure adjusted from (35) figure 5 and 6.

sufficient to increase network spiking activity in cortical-striatal co-cultures following a
1lhr addition of the al-antibody. Here, | detected a ~2-fold increase in spiking activity
with the al-antibody compared to control groups (Fig. 61, J) (P<0.0001, Kruskal-Wallis;
untreated 13.98 + 1.21 Hz, control-antibody 17.64 + 1.93 Hz, al-antibody 32.46 + 2.58
Hz).

The dramatic change in neuronal spiking activity and GABA-mediated currents after
only 1 hour suggests that the al-antibody might have a direct antagonistic effect on
these receptors. However, this time scale cannot rule out indirect mechanisms such as
the rapid redistribution or internalization of these receptors. | thus used calcium imaging

and the rapid addition of antibody to gain clues to the speed of this inhibition. This was
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Figure 7: Calcium imaging experiments of acute addition of a1-antibody. A) Example spike plots of networks
before and directly after addition of full-length a1-antibody where one dot represents one cell. B) Average spiking
frequency of all cells in a field of view before and after antibody addition (F(1, 29)=10.82, p=0.0026, repeated
measures two-way ANOVA). C) Example spike plots of a field of view before and after addition of the a1-antibody
fab-fragment where one dot represents one cell. D) Average spiking frequency of all cells in a field of view before and
after the addition of the fab-fragment (F(1, 33)=18.27, p=0.0002, repeated measures two-way ANOVA). Averages +
S.E.M. Each data point in A and C represents one calcium current in one neuron. Line in B and D represents the
average spiking activity of all fields of view. Figure adjusted from (35) figure 6.
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accomplished by monitory spiking activity before and immediately after the addition of
the al-antibody for an additional 12 minutes. Here, it was observed that spiking activity
of the network increased in frequency immediately after addition of the al-antibody, be-
coming significantly different from the control group after only 2 minutes (Fig. 7 A, B)
(p=0.0026, repeated measures two-way ANOVA), which support direct real-time effects
of this antibody on these receptors. To rule out antibody-induced internalization as a
mechanism, the experiment was repeated with a Fab-fragment of the al-antibody. Im-
portantly, Fab-antibodies consist only of the antigen binding region of IgG-antibodies
that operate as a monomer due to the absence of their Fc-regions. As such, they retain
antigen binding, but cannot induce receptor cross-linking-mediated internalization (31,
39). When | added the Fab fragment of the al-antibody to these cortical-striatal co-
cultures, | observed an immediate increase in spiking activity that became significantly
compared to control after 1.5 minutes (Fig. 7 C,D) (p=0.0002, repeated measures two-
way ANOVA). These data indicate that the al-antibody can rapidly alter GABA-
mediated currents in a manner that does not rely on redistribution of the receptor away
from the synapse.

The aly2-antibody

Surprisingly, the aly2-antibody elicited no effects on GABAAR functionality, in either
my electrophysiological or calcium imaging experiments, yet was capable of inducing
seizures when delivered cerebroventricular in a rodent model. This led me to hypothe-
size that this antibody might mechanistically work via mechanisms that are not readily
present in my cortical-striatal co-culture system. Two such mechanisms include actions
of these antibodies to physically block binding of modulators of GABAaARSs and/or re-
cruitment of cellular components of the immune system, such as microglia. A third yet
less likely mechanism is one that involves an antibody-induced redistribution of aly2-
containing receptors. The impact of the latter could depend on the abundance and dis-
tribution of this GABAAR subtype.

Addressing this latter mechanism first, | used immunocytochemistry to monitor the
distribution of receptors bound by the aly2-antibody in my cortical-striatal culture mod-
el. Here again, | used antibodies against VGAT to identify inhibitory synapses in culture
treated with 1pug/mL of the aly2-antibody for 1 hour at 15°C or 24 hours at 37°C (Fig. 8
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A, B). When comparing how many of the VGAT puncta colocalize with aly2-antibody
puncta over time, there was no significant difference (Fig. 8C). Interestingly, the aly2-
antibody primarily decorated receptors situated at synaptic (~70%), compared to extra-
synaptic sites. This proportion did not change over time (Fig. 8D). Instead, | observed
that aly2-antibody puncta intensity, both at synaptic (Fig. 8F) (1-hour 1 £ 0.05, 24-hour
1.58 + 0.12, p<0.0001, Welch’s t-test) and extrasynaptic sites (Fig. 8G) (1-hour 1 *
0.05, 24-hour 1.57 £ 0.17, p=0.0017, Welch’s t-test), increased over time (Fig. 8E) (1-
hour 1 + 0.40, 24-hour 1.45 + 0.12, p=0.0003, Welch's t-test). Why this occurs is un-
clear but could be due to a low affinity of this antibody, slowing its accumulation on syn-
aptic receptors. Resolving these possibilities will require further investigation. Interest-

ingly, VGAT intensity remained stable over time (Fig. 8H).
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Figure 8: Immunocytochemical staining of cortical-striatal mass-cultures with aly2-antibody. A) Example
images of neurons incubated for 1 hour at 15°C and for 24 hours at 37°C with the aly2-antibody and co-stained with
anti-MAP2 and anti-vGAT antibodies, scale bar 20um. B) Zoom in of the area marked with a box in A that shows the
antibody and vGAT puncta in more detail, scale bar 10 um. C) The percentage of synapses that are decorated with
the aly2-antibody over time (t(163)=1.62, p=0.1072, unpaired t-test). D) The percentage of aly2-antibody puncta that
are located at synapses over time (t(161)=0.9327 p=0.3524, unpaired t-test). E) Difference in aly2-antibody intensity
over time (£(109.8)=3.702, p=0.0003, Welch’s t-test). (F) Intensity of the a1y2-antibody at synapses (1(100.7)=4.442,
p<0.0001, Welch’s t-test) (G) and at extra-synaptic sites (t(81.46)=3.243, p=0.0017, Welch’'s t-test). (H) Intensity of
VGAT puncta at 1 hour and 24 hour of a1y2-antibody treatment (t(158.4)=0.4497, p=0.6535, Welch’s t-test). Averag-
es = S.E.M. Each data point represents one ROI. Figure adjusted from (35) figure 2.
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The ability of the aly2-antibody to decorate inhibitory synapses indicates that its
lack of efficacy is not due to its inability to bind receptors. This is consistent with im-
munocytochemical experiments in which these antibodies readily decorated HEK293
cells expressing aly2, but not a3y2 containing receptors (data not shown). These initial
data also rule out a redistribution mechanism, as this antibody failed to promote the
synaptic loss of these receptors over time.

Intriguingly, it is notable that aly2-antibody binding requires the presence of two
subunits: al and y2, which are known to constitute the binding site of benzodiazepine, a
modulator of GABAAR function that enhances the agonist effects of GABA (40). Im-
portantly, the brain contains naturally occurring benzo-like compounds called “endoz-
epines”, which could in principle be antagonized by this antibody in vivo but not in vitro
(41). This logic led me to hypothesize that mechanistically the aly2-antibody could op-
erate by antagonizing the potentiating effect of endozepines in vivo.

To test this hypothesis, | performed electrophysiology experiments to examine
whether the aly2-antibody could block the potentiating effect of the benzodiazepine,
diazepam. In these experiments, cortical-striatal co-cultures were incubated with the

aly2-antibody for 1 hour. After which mIPSCs were recorded before and after the addi-

Figure 9: recoding of

increase in mIPSC half width time after
A untreated aly2-antibody B width time 1-hour cxlv2-antibody incu-
A p 5 5. bation in the presence and
_E absence of diazepam. A)
8 841 Example traces of mIPSC half
;ga_ width in the presence and
Se absence of diazepam. B)
_Jom 3 S 24 Quantification of the increase
10ms 2.4 ° __e in half width in the presence
Baseline EE 1. PP of diazepam compared to
DZP (1uM) 2 5 W!thout ((_:alculat_ed as half
> © .o width  with  diazepam/half

& F NS . .
&@" & o width baseline)
C D E ANOVA, uniréated 115 ¢
untreated width _ ctrl-ab width a1y2-ab 5ug width 0.02, control-antibody 1.25 +
2 - 2 30- 2 30- 0.02, aly2-antibody 1.22 +*
= <0.0001 © <0.0001 1 ——o 0.02). Graphs showing the
3 3 2 <0.0001 average half width time of
5 20 T 20- 3 20- mIPSCs for each individual
g E g neuron. The lines connect the
310 - 310 half width time before and
S ] ) S ] . _——8 after addition of diazepam for
3 3 E each cell for untreated neu-
g o i i E o0 . . 2, ' . rons ©) (t(29)=7.991,
= & © = 2 & = ® © p<0.0001, paired t-test; un-
¥ o & < & & treated base 12.27 £ 0.49ms,

untreated benzo 14.46 =+
0.57ms), neurons with control-antibody (D) (t(28)=10.32, p<0.0001, paired t-test; control-antibody base 12.77 +
0.57ms, control-antibody benzo 15.74 + 0.66ms), and neurons with the aly2-antibody (E) (t(29)=8.73, p<0.0001,
paired t-test; a1y2-antibody base 13.14 + 0.67ms, a1y2-antibody benzo 15.8 + 0.61ms). Averages + S.E.M. Each
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tion of 1uM diazepam. The data were subsequently analyzed for half-width time of each
response, which increases in the presence of diazepam (26). When looking at the trac-
es (Fig. 9A), one can see that the presence of diazepam increased the half-width time
of mIPSCs for untreated neurons (Fig. 9C) (p<0.0001, paired t-test; untreated base
12.27 + 0.49ms, untreated benzo 14.46 + 0.57ms), neurons treated with control-
antibody (Fig. 9D) (p<0.0001, paired t-test; control-antibody base 12.77 £ 0.57ms, con-
trol-antibody benzo 15.74 + 0.66ms), as well as neurons incubated with the aly2-
antibody (Fig. 9E) (p<0.0001, paired t-test; a1y2-antibody base 13.14 £ 0.67ms, aly2-
antibody benzo 15.8 + 0.61ms). When the half-width time after diazepam was divided
by the half-width time before diazepam (Fig. 9B), there was no detectable difference
between groups in their response to diazepam, indicating that the aly2-antibody has no
pronounced effect on receptor modulation by diazepam. One caveat of these mIPSC
experiments is that cortical-striatal neurons also express other benzo-sensitive subunits
(42), which could mask the effect of the aly2-antibody in these assays. To over-come
this limitation, | also examined the effect of the aly2-antibody and diazepam at the net-
work level using calcium imaging to determine the frequency of neuronal spiking (Fig.
10A). Here, | observed in untreated cultures that diazepam triggers a dramatic reduction
in spiking activity (Fig. 10B), which increases after bicuculline is added (Fig. 10C-F) (un-
treated (D): p<0.0001, repeated measures ANOVA,; base 13.94 + 1.22 Hz, benzo 2.03 +
0.53 Hz, bic 38.93 + 3.04 Hz; control-antibody (E): p<0.0001 repeated measures ANO-
VA; base 17.64 + 1.93 Hz, benzo 5.78 * 1.44 Hz, bic 43.08 + 3.70 Hz; aly2-antibody
5ug (F): p<0.0001, repeated measures ANOVA; base 12.87 + 1.16 Hz, benzo 4.64 +
1.06 Hz, bic 39.38 + 3.34 Hz). When | calculate the decrease in spiking activity caused

by diazepam compared to spiking activity in baseline conditions, | saw that all networks,
including those treated with the aly2-antibody, reduced their activity by ~80% (Fig.
10H). When we compare the activity of baseline networks to activity after the addition of
bicuculline, 1 observed a 200% increase in activity even in cultures treated with aly2-
antibody (Fig. 10I). Together with the electrophysiological data, these network data indi-
cate that the aly2-antibody does not alter neuronal excitability by altering the function of
the benzodiazepine site, a conclusion that will need to be confirmed by more detailed

biophysical recordings.
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Figure 10: effect of diazepam on network spiking activity not affected by aly2-antibody. A) Example spike
plots of network spiking after 1-hour of antibody incubation. (B) Example spike plots of network spiking activity after
1puM diazepam was added to the network. (C) Example spike plots of network spiking activity after the addition of
30uM bicuculline to the network. (D) Average spiking activity per field of view of untreated neurons in baseline, diaz-
epam, and bicuculline conditions (F(2, 52)=129.8, p<0.0001, rmA; base 13.94 + 1.22 Hz vs. benzo 2.03 + 0.53 Hz
p<0.0001, base vs. bic 38.93 + 3.04 Hz p<0.0001, benzo vs. bic <0.0001). (E) Average spiking activity per field of
view in the presence of control-antibody in baseline, diazepam, and bicuculline conditions (F(2, 52)=91.27, p<0.0001
rmA; base 17.64 + 1.93 Hz vs. benzo 5.78 + 1.44 Hz p=0.0003, base vs. bic 43.08 + 3.70 Hz p<0.0001, benzo vs. bic
p<0.0001). (F) Average spiking activity per field of view in the presence of aly2-antibody in baseline, diazepam, and
bicuculline conditions (F(2, 52)=94.32, p<0.0001, rmA; base 12.87 + 1.16 Hz vs. benzo 4.64 + 1.06 Hz p=0.0084,
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base vs. bic 39.38 + 3.34 Hz p<0.0001, benzo vs. bic p<0.0001). (H) Average decrease in spiking activity per field of
view from baseline to diazepam conditions (H(2)=2.554, P=0.2789, K-W). (I) Average increase in spiking activity per
field of view from baseline to bicuculline conditions (H(2)=2.302, P=0.3164, K-W). K-W=Kruskal-Wallis,
rmA=repeated measures ANOVA. Averages + S.E.M. Figure adjusted from (35) figure 8.

Another hypothesis that | wanted to test was whether the apparent silent binding of
the aly2-antibody could promote disease-causing phenotypes via the engagement of
microglia, which could actively strip antibody/GABAAR complexes from neurons, reduc-
ing inhibitory drive. Initial staining experiments showed that when the aly2-antibody is
added for one hour to cortical-striatal mass-cultures, and the unbound antibody is re-
moved by a media exchange before adding microglia for 6 hours, the presence of mi-
croglia led to fewer antibody puncta on the neuron compared to neurons only treated
with the antibody (Fig. 10A, B) (p=0.0017, Welch’s t-test; without microglia 21 + 1.25
puncta per 100 um dendrite, with microglia 16 + 0.93 puncta per 100 um dendrite).
These data indicate that microglia could indeed facilitate the removal of the anti-
body/receptor complexes from neurons and synapses, a condition that could lead to

increased network excitability.
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Figure 11 : Microglia-mediated aly2-antibody eating. A) Example images of neurons stained with the aly2 anti-
body in the absence and presence of microglia. B) Quantification of the number of aly2-antibody puncta per unit
length of dendrite (t(161)=3.184, p=0.0017, Welch’s t-test; without microglia 21 + 1.25 puncta per 100 pm dendrite,
with microglia 16 = 0.93 puncta per 100 um dendrite) . Averages + S.E.M. Each data point represents one dendrite.
Unpublished data.
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Study 3 ‘N-methyl-D-aspartate receptor dysfunction by unmutated human anti-
bodies against the NR1 subunit’ (33)
In addition to studying how autoantibody epitopes influence the mechanisms in-

volved in autoimmune encephalitis, this work also wanted to examine whether autoanti-
body maturation plays a role in autoimmune encephalitis. More specifically, | wanted to
address whether germline antibodies against NMDARSs could in and of themselves alter
NMDAR function. As discussed above, it has previously been reported that mature
NMDAR-antibodies can decrease NMDA-mediated receptor currents after 24-hour in-
cubation (15). Intriguingly, during the search for patient autoantibodies against the
NMDAR, my collaborators isolated from the same patient a germline autoantibody (33),
raising the question whether this immature antibody can also contribute to the etiology
of this patient’s symptoms. To test this concept, | performed whole cell patch recording
of hippocampal autapses incubated with 5ug/mL of the germline antibody and 1ug/mL
of a maturated antibody for 24 hours. When excitatory post-synaptic currents (EPSCs)
were recorded there was no apparent difference between the germline, maturated, and
control antibody (Fig. 12C). However, as the majority of the EPSC response is mediated
by the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), EP-
SCs were next recorded in the presence of NBQX, an AMPAR blocker to isolate the
NMDAR-mediated component of the EPSC (Fig. 12A, D). These experiments revealed
that the germline antibody as well as the maturated-ab could indeed decrease evoked
NMDA-mediated currents (Fig. 12A,D) (P=0.0002, Kruskal-Wallis; mGO ctrl-ab 1 + 0.10,
germline-ab 0.5 £ 0.09, maturated-ab 0.5 £+ 0.10) as well as postsynaptic currents after
bath application of NMDA (Fig. 12B, E) (P<0.0001, Kruskal-Wallis; mGO ctrl-ab 1 +
0.07, germline-ab 0.6 + 0.07, maturated-ab 0.6 £ 0.05). The antibodies were highly spe-
cific as they did not influence kainate and GABA currents (Fig. 12F-G). However when
the germline antibody was added to the neurons at 1ug/mL the antibody did not have
any effect (See Fig. 3F-J in (33)) indicating that the germline antibody can influence sig-
nal transduction, but needs a 5-fold higher concentration than the maturated antibody to

cause a similar effect.



Results 27

A Evoked NMDA B NMDA

mGo ctrl-ab germline-ab  maturated-ab mGo ctrl-ab germline-ab  maturated-ab

— V4

05s

C D Evoked NMDA E NMDA F Kainate G GABA
4 0,0004 3 0.0003 3 25
3 3 8 00012 3 " 8 .
£ £ E *e® £ ¢ £ 20 "
@ o @ . @ e @ .
Ef § 3 % 3 g 1 ooee E g : °..' . st 3 E 15 .:l. . 'n:
= = = . = =
w = s a4l w1 ®
d:E ctE <E !-Fih <E 'E:_:ﬁ: qEn.s ad ] "
S Lt et 1 M
2 2 c 2 i 2 oo uls *
hal ] hal
2 2 0,6
& ©
& & &

Figure 12: whole-cell patch-clamp recordings from hippocampal neurons incubated with a germline or matu-
rated NMDA antibody for 24 hours. A) Example traces of synaptic NMDA responses. B) Example traces of the
average postsynaptic response after bath application of NMDA. C) EPSC Amplitude normalized to mGO condition
(H(2)=0.805, P=0.6687, K-W; mGO ctrl-ab 1 + 0.09, germline-ab 1.14 + 0.32, maturated-ab 0.99 + 0.14). D) Average
decrease in synaptic NMDA responses (H(2)=17.37, P=0.0002, K-W; mGO ctrl-ab 1 + 0.10 vs. germline-ab 0.5 + 0.09
p=0.0139, mGO ctrl-ab vs. maturated-ab 0.5 + 0.10 p=0.0004). E) Average decrease after bath application of NMDA
(H(2)=20.79, P<0.0001, K-W; mGO ctrl-ab 1 + 0.07 vs. germline-ab 0.6 + 0.07 p=0.0012, mGO cltr-ab vs. maturated-
ab 0.6 + 0.05 p=0.0003). F) Response after bath application of Kainate (F(2,83)=0.6151, p=0.5430, ANOVA; mGO
ctrl-ab 1 + 0.08, germline-ab 1 + 0.18, maturated-ab 0.8 + 0.11). G) Response after bath application of GABA
(F(2,79)=1.041 p=0.3578, ANOVA; mGO ctrl-ab 1 + 0.07, germline-ab 0.8 + 0.13, maturated-ab 0.9 + 0.09). K-
W=Kruskal-Wallis. Averages + S.E.M. Each data point represents the response of one neuron. Unpublished data.

Literature shows that NMDA-antibodies trigger internalization that occurs between 4-
6 hours after incubation (11). To explore whether the germline antibody could work via
direct effects as seen with the GABAAR antibody or via internalization as seen with the
maturated NMDAR antibodies, | repeated the patch-clamp experiments after 3-hour an-
tibody incubation. This time-point is predicted to fall before the internalization becomes
apparent. As before, EPSCs were not affected by either antibody (Fig. 13C). However,
neither evoked-NMDA (Fig. 13A,D) nor bath applied NMDA currents (Fig. 13B,E) were
affected by the antibodies contrary to the effects | saw after 24-hour incubation. In addi-
tion, kainate (Fig. 13F) and GABA currents (Fig. 13G) were also not affected. These
data indicate that both the mature and germline antibody do not seem to have any direct
effects on the receptor and might be working through internalization as reported in the

literature.
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Figure 13: whole-cell patch-clamp recordings from hippocampal neurons incubated with a germline or matu-
rated NMDA antibody for 3 hours. A) Example traces of synaptic NMDA responses. B) Example traces of the aver-
age postsynaptic response after bath application of NMDA. C) EPSC Amplitude normalized to mGO condition (F(2,
61)=1.428, p=0.2476, ANOVA; mGO ctrl-ab 1 + 0.13, germline-ab 0.7 + 0.12, maturated-ab 0.9 + 0.12). D) Average
decrease in synaptic NMDA responses (F(2, 59)=1.916, p=0.1563, ANOVA; mGO ctrl-ab 1 + 0.12, germline-ab 0.9 +
0.29, maturated-ab 0.5 + 0.08). E) Average decrease after bath application of NMDA (H(2)=5.722, P=0.0572, K-W,
mGO ctrl-ab 1 £ 0.10, germline-ab 1 + 0.22, maturated-ab 0.7 + 0.12). F) Response after bath application of Kainate
(H(2)=5.667, P=0.0588, K-W; mGO ctrl-ab 1 + 0.09, germline-ab 0.8 + 0.07, maturated-ab 1.1 + 0.13). G) Response
after bath application of GABA (F(2,62)=0.3603, p=0.6989, ANOVA; mGO ctrl-ab 1 + 0.08, germline-ab 1 + 0.11,
maturated-ab 0.9 + 0.12). K-W=Kruskal-Wallis. Averages + S.E.M. Each data point represents the response of one
neuron. Figure adjusted from (33) figure 3K-O expanded with unpublished maturated-antibody data.
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4. Discussion

Autoimmune encephalitis is a relatively new and devastating disorder. A better un-
derstanding of the mechanisms underlying autoimmune encephalitis could improve
treatment outcomes for patients. Therefore, in this thesis, | have used a collection of
patient-derived monoclonal antibodies to explore whether these disease-associated au-
toantibodies could contribute to symptom progression by promoting direct effects on
receptor function, dampen receptor function by promoting their internalization, and/or
promote receptor removal by engaging phagocytic immune cells. My studies reveal that
autoimmune antibodies can disrupt receptor function through all three of these mecha-
nisms. The al-GABAaAR and NMDAR-antibodies can disrupt receptor function by trig-
gering their internalization, however the al-antibody can also directly inhibit GABAergic
receptor function. Surprisingly, | found that neutral/silent autoantibodies (a1y2) can con-
tribute to the loss of GABAAR function by engaging microglia. Furthermore, my work
revealed that germline antibodies can also engage receptors, altering their function, lay-
ing the foundation for the expansion and maturation of these antibodies during disease

progression.

4.1 Mechanism underlying the al-antibody

The al-antibody showed both short and long-term effects on the GABAAR. Short
term, the al-antibody had a strong antagonistic effect on mIPSCs frequency, amplitude,
and current (~ 1hr following antibody addition), with no effects on mIPSC kinetics (Fig.
6). In addition, calcium imaging revealed that neuronal spiking activity was increased
following the 1-hour addition of the al-antibody (Fig. 6). Intriguingly, increased spiking
could be induced in as little as 2 minutes after the acute addition of the al-antibody
(Fig. 7). This rapid increase was also observed following the addition of a Fab-fragment
of the al-antibody (Fig. 7). As the Fc region of IgGs is known to promote receptor
cross-linking and internalization (31, 39), the Fab data indicate that these increases in
neuronal spiking activity occur independent of antibody-mediated cross-linking of the
receptors and may be due to direct antagonistic effects of the al-antibody on GABAAR
function. Furthermore, the lack of changes in mIPSC kinetics implies that the antibody
does not directly modify receptor opening properties nor necessarily cause postsynaptic
receptor isotype switching. Of note, the time scale of the reduction in signal transduction
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indicates that the al-antibody can possibly directly blocks receptor conductance. Of
course, other direct effects like conformational changes to the receptor that trigger fast
internalization cannot be ruled out without more in-depth biophysical studies.

Long-term, the al-antibody reduced GABA-mediated receptor currents during
whole-cell patch-clamp experiments (Fig. 2) that were due to changes at the post-
synapse (Fig. 4). This effect was very specific and did not affect any excitatory signal
transduction (Fig. 2). Consistent with the reduction in GABA-mediated currents, the al-
antibody induced increases in calcium-spiking activity in neuronal mass-cultures (Fig.
3). When the location of the al-antibody puncta was compared to VGAT-labeled inhibi-
tory presynaptic boutons, | found that the al-antibody puncta co-localized less frequent-
ly with this pre-synaptic marker overtime (Fig. 5), indicating that the al-antibody labeled
GABAAaRSs were either redistributed to the extra-synaptic space or internalized.

Taken together, these data suggest that the al-antibody can operate via at least two
molecular mechanisms: one that disrupts GABA-mediated signaling through a direct
antagonistic effect on the receptor, and the second that causes the loss of synaptic re-
ceptors via their redistribution or internalization. It is not clear if the antibody actively
contributes to both mechanisms or whether the long-term effects are merely caused by
compensatory mechanisms in response to the short-term effects. In terms of autoanti-
bodies, importantly, direct effects of autoantibodies on receptors have been reported
before for both glycine and GABAs receptors (43, 44), yet are otherwise uncommon,
whereas autoantibody cross-linking and receptor redistribution have been described as
a common mechanism underlying autoimmune encephalitis (45) including antibodies
present in the CSF of GABAARE patients (12-14).

4.2 Mechanism underlying the aly2-antibody

The aly2-antibody, unlike the al-antibody, had little or no effect on GABA-mediated
currents. This result was very surprising since animal studies showed that the aly2-
antibody can induce seizures in rats (34). My immunocytochemical staining ruled out
that the lack of effect was due to a lack of receptor binding, as ~40% of all inhibitory
synapses were decorated by the aly2-antibody (Fig. 8). Interestingly, ~80% of the
aly2-antibody puncta co-localized with synapses, which is expected, as the y2-subunit
functions as an anchoring subunit for the GABAARS to the membrane-associated cyto-
skeletal scaffolding assembled at the post-synapse (46). The observed lack of effect
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was also not mitigated by increasing the aly2-antibody concentration 5-fold, as illus-
trated by the unaffected network activity in our 24-hour calcium imaging experiments
(Fig. 3). These observations led me to wonder what could possibly explain the discrep-
ancy between the results in dissociated cell-culture and in vivo animal studies.

One hypothesis | developed was that the aly2-antibody could be interfering with the
benzodiazepine site of the GABAAR, blocking the actions of endozepines in animals.
Endozepines are known to regulate GABA transmission and play and important role in
the inhibitory/excitatory (I/E) balance (40, 41). Interference in this regulatory mechanism
by the aly2-antibody could thus promote seizures. This hypothesis is supported by re-
search that shows that decreased endozepine levels are associated with epilepsy in
patients (47). During our experiments, diazepam increased, as expected, the half-width
time of mIPSCs in untreated cultures. Surprisingly, the presence of the aly2-antibody
did not interfere with the ability of diazepam to modulate the GABA response, making it
unlikely that this antibody influences the accessibility and functionality of the benzodiaz-
epine binding site (Fig 9,10).

An alternative hypothesis whereby the aly2-antibody could affect neuronal excitabil-
ity in vivo, but not in culture, is through its engagement of central nervous system (CNS)
localized immune cells via the Fc region of the antibody. Consistent with this hypothe-
sis, when microglia were added to my cultures, they were able to strip synaptic aly2-
antibody puncta along the length of the neuronal dendrites (Fig. 11), indicating that the
aly2-antibody can engage immune cells via their Fc region. These results give the first
indication that cellular immunity might play a bigger role in autoimmune encephalitis
than previously thought. Only a few studies have looked at this issue. For example, in
neuromyelitis optica complement activation can lead to microglia activation (48, 49)
(50), while maternal transfer of autoimmune antibodies can lead to activated microglia
and reductions in synapse number in their offspring (51). However, while relatively new
in autoimmune encephalitis, the role of microglia has been extensively studied in other
diseases, such as Alzheimer’s disease (52) and rheumatoid arthritis (53). It is therefore
not surprising that microglia could be important in autoimmune encephalitis (AE).

Together, these data indicate that the aly2-antibody might bind silently to aly2-
containing GABAARS, where it facilitates receptor removal via activation of microglia.
Mechanistically, this could lead to a loss of neuronal GABAARS, a shift in the E/I balance
(54), increasing seizure activity seen in vivo in animal experiments and individuals with

GABAAR encephalitis. In parallel, the activation of microglia might lead to the secretion
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of cytokines leading to B and T-cell activation further down the line. The involvement of
these latter players is likely since T-cell activation often results in lesions, an observa-
tion often seen in GABAAR encephalitis patients (10, 55). However, many open ques-
tions remain regarding the involvement of cellular immunity in AE. For example, are mi-
croglia a universal player in all AE? Do the antibodies come first, or does the cellular
immune system? Does one drive the other? Exploring such questions should lead to a
better mechanistic understanding of AE.

It is important to recognize that possible direct effects of the aly2-antibody on
GABA=AR could have been missed in my assays, as aly2 subunits are only present in a
subset of receptors in a cell-type/region-specific manner (56), necessitating experiments
with defined subunit compositions in heterologous cells. My assays would also fail to
detect antibody mediated disruption of aly2-receptor complexes with for example post-
synaptic anchoring proteins including the tetraspanin superfamily of transmembrane
proteins also called Lipoma HMGIC fusion partner-like 4 (LHFPL-4). These are known
to promote the synaptic clustering of y2-containing GABAARS through its interaction with
Neuroligin-2 (46, 57). Of note, LHFPL-4 only clusters these receptors at inhibitory syn-
apses on excitatory neurons primarily in the hippocampus and cerebellum (46, 57).
Such action of the aly2-antibody could cause seizures in animals, but not increase
network excitability in our cortical-striatal cultures, which consist solely of inhibitory neu-
rons. Similar results have also been observed for NMDAR encephalitis, where the same

antibody had different effects in different brain regions (58).

4.3 Mechanism underlying the NMDAR antibodies

This study also investigated the actions of two NMDAR autoantibodies, one germline
and one maturated via whole-cell patch-clamp recordings. Interestingly, the naturally
occurring germline antibody was able to selectively inhibit NMDAR-mediated currents
only when delivered at a 5-fold higher concentration than a maturated NMDAR-
antibody. These findings suggest that germline antibodies can affect NMDAR function,
albeit to a lesser extent than fully maturated antibodies, possibly due to their lower af-
finity. Interestingly, even germline antibodies seem rather specific as illustrated by the
lack of any effect on inhibitory and even excitatory, kainate-mediated, currents (Fig. 12
and 13).

Mechanistically, several NMDAR-antibodies, in other studies, were found to reduce
NMDAR currents by triggering internalization ~4-6 hours after antibody incubation (11).
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To explore whether germline antibodies utilize internalization and/or can illicit direct ef-
fects, patch-clamp experiments were repeated after a 3-hour antibody incubation, which
is predicted to predate the internalization timeframe. During these experiments no ef-
fects on NMDAR mediated currents were observed for either germline or maturated an-
tibodies (Fig 13). These data confirm previous observations that maturated NMDAR-
antibodies require longer timeframes to illicit their effects (11). They also hint that
germline antibodies might work via a similar internalization mechanism, which should be
confirmed with cellular internalization assays. Of interest is whether, as observed for the
aly2-antibody, microglia recognize and mediate clearance of germline NMDAR antibod-
ies. One important issue for consideration is that in these experiments the variable re-
gion of the germline antibody was recombinantly fused to the Fc region of the 1gG1
class before purification. However, germline antibodies normally exist as IgM isotypes in
vivo. This could have profound consequences for future in depth research into the
mechanisms underlying this antibody, as complement activation favors IgM-mediated
activation and Fc-gamma receptors on microglia primarily recognize specific sequences
in IgG1 and IgG3 (59-62). It would thus make sense to repeat electrophysiological and
microglia experiments with the germline NMDAR-antibody’s variable sequences incor-
porated as both IgG1 and IgM isotype antibodies.

With regards to the effect of the germline antibody, their role in healthy people has
always been a conundrum. Some research has shown that germline antibodies might
be beneficial for the regulation of immune responses by reducing inflammation and
promoting the clearance of debris (63). Our own results not only verify the presence of
such antibodies in patients, but also that they can functionally affect receptor function,
perhaps even in the context of autoimmune encephalitis (63). This fact could have
widespread consequences, as the literature shows that ~10% of the population might
have germline antibodies against the NMDAR (64, 65). Fortunately, most healthy indi-
viduals have an intact blood brain barrier (BBB) that will keep these antibodies outside
the brain. However, in people with compromised BBB, i.e., due to viral or bacterial infec-
tion (66, 67), such germline antibodies might cause disease or could contribute to dis-

ease progression. Future research should help to resolve these issues.
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5. Conclusions

A growing number of studies have sought to understand the mechanisms whereby
pathogenic antibodies cause disease. These include direct effects on receptor function,
promotion of receptor internalization, and/or the recruitment of other immune actors. For
some types of autoimmune encephalitis, such as NMDAR encephalitis, antibody in-
duced receptor internalization appears to be the preferred mechanism (11, 27, 31, 68).
Others such as AQP4 encephalitis engage a complement cascade (49, 69), whereas
others seem to be a mixture of several mechanisms e.g., GABAAR encephalitis (34, 35,
70, 71), and/or eliciting distinct effects in different brain regions (56, 58, 72). The loca-
tion of each antibody epitope appears to be a primary determinant of which mechanism
is used. For example, if the epitope is on a ligand binding site, direct effects might oc-
cur, while others can promote receptor cross-linking and their internalization. The least
understood mechanism involves the activation and recruitment of immune cells that ei-
ther strip receptors or kill cells. This diversity creates both opportunities and challenges
when trying to develop better therapeutic strategies for patients with these devastating

disorders.

Implications for future research

Due to the tremendous variability in how antibodies mechanistically drive autoim-
mune encephalitis, developing effective therapies will remain a major challenge, with
trade-offs between broad non-specific immune suppressive drugs and biologics with
great specificity, but which cannot address complex antibody repertoires. Some emerg-
ing therapies, based on cellular therapies hold some promise, but could be costly.
These include a new generation of Chimeric AutoAntibody Receptor T-cell (CAAR-TS)
used to eliminate specific antibody producing B-cells (73, 74). However, this strategy
might only be feasible when a patient’'s antibodies are acting on a relatively limited
number of receptors/epitopes (75, 76). Alternatively, drugs or biologics that could
dampen antibody mediated microglia activation might prevent disease progression by
blocking the down-stream engagement of the peripheral immune system. Finally, strat-
egies aimed at restoring immune-cell tolerance to specific autoantigens could provide a

long-term suppression of these devastating auto-immune disorders (77, 78).
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Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis
is the most common autoimmune encephalitis related to
autoantibody-mediated synaptic dysfunction. Cerebro-
spinal fluid-derived human monoclonal NR1 autoanti-
bodies showed low numbers of somatic hypermutations
or were unmutated. These unexpected germline-config-
ured antibodies showed weaker binding to the NMDAR
than matured antibodies from the same patient. In pri-
mary hippocampal neurons, germline NR1 autoantibodies
strongly and specifically reduced total and synaptic
NMDAR currents in a dose- and time-dependent man-
ner. The findings suggest that functional NMDAR anti-
bodies are part of the human naive B cell repertoire. Given
their effects on synaptic function, they might contribute to
a broad spectrum of neuropsychiatric symptoms.

ANN NEUROL 2019;85:771-776

utoantibodies against the aminoterminal domain (ATD)
A()f the NR1 subunit of the N-methyl-D-aspartate
(NMDA) receptor (NMDAR) are the hallmark of NMDAR
encephalitis, the most common autoimmune encephalitis
presenting with psychusis, cpﬂcpr_ic seizures, amnesia, and
auronomic im‘tability,l The disease can be Lriggcrcd by
NMDAR-expressing teratomas” and occur secondarily to
viral L‘l’lCL‘phELliti.S;SA however, in most cases, the initiating
events remain unclear. Intracerebroventricular injection of
cucbruspinal fluid (CSF), as well as a singlc recombinant
monoclonal NR1 irnrnun()gl()bulin Gl (IgG1) a.rlLib()dy
obtained from cl(maﬂy cxpa.ndu_l intrathecal pla.srna cells of
a patient with NMDAR cnccphaliris into mice, led to tran-
sient behavioral cha.rlgcs cnrnpatiblc with human disease

. 5.6
SYmMptoms.

BRIEF COMMUNICATION

We could recently generate a panel of human mono-
clonal NMDAR autoantibodies from antibody-secreting
cells in CSF of patients with NMDAR cnccphalids,?
Uncxpcctcdly, several NR1-reactive autoantibodies from
different patients were unmutated, suggesting that thcy
had not been selected for high afﬁnity during gcrminal
center reactions and instead were derived from activated
naive B cells. We therefore determined whether these
gcrmlinc NR1 antibodies showed functional effects similar
to a.{:ﬁnity-mamrcd NRI autoantibodies lcading to synap-
tic dysﬁ.mcti(m,

Materials and Methods
Recombinant Monoclonal NMDAR Antibodies

Recombinant monoclonal human NR1 IgG autoantibodies were
generated as described.”® The study was approved by the Charité
University hospital Review Board, and informed consent was
obtained from each subject. The control antibody (mGo33) is a
nonreactive isotype-matched human antibody.” Immunostaining,
using primary hippocampal neurons, unfixed mouse brain sec-
tions, HEK cell-expressed NR1 N368Q mutants, and brain
sections after intravenous antibody injection, followed our
established protocols.” We generated germline counterpart ver-
sions from maturated monoclonal NR1 antibodies with best
matching variable V(D)] genes and elimination of somatic hyper-
mutations.'” Relative affinity curves were calculated based on
concentration-dependent antibody binding to hippocampal sec-
tions, adapted from previous work using HEK cells transfected
with the NR1 subunit.'" For bilateral intracerebroventricular
injection, 200 pg of antibodies were infused over 14 days using

osmotic minipumps. 12

Super-Resolution Imaging
Direct stochastic reconstruction microscopy (dSTORM) was per-
formed in primary hippocampal neurons (DIV 14) as described.'?
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Human NR1 autoantibody (clone #003-109; 4 pg/ml) and poly-
conal guinea pig anti-Homer-1 (1:300; Synaptic Systems
GmbH, Goertingen, Germany) were used as primary antibodies
followed by AlexaFluor-647 goat/anti-human (1:200; Life Tech-
nologies, Carlsbad, CA) and CF-568 donkey/anti-guinea pig

(1:200; Biotium, Fremont, CA) as secondary antibodies.

Electrophysiological Recordings

Autaptic murine hippocampal neurons (DIV 14-17) were incu-
bated with 1 or 5 pg/ml human NRI (#003-109) or control
antibody at 37°C for 3 or 24 hours. Data were acquired as
described." Cells were recorded in standard intra- and extracel-
lular solutions, except for chemically induced NMDA responses,
measured in extracellular solution conmining 0 mM of Mg™’,
0.2 mM of CaCl,, and 10 pM of glycine, and evoked NMDA
responses, measured in extracellular solution containing 0 mM

of Mg®, 2 mM of CaCl,, 10 pM of glycine, and 10 pM of

NBQX (Tocris Bioscience, Bristol, UK). For kinetics of synaptic
NMDA responses, non-silent traces from each cell were averaged
and rise time and decay time constant (t) measured from 10%

o 90% or 90% to 10% of the peak, respectively. Decays were

fitted with a double exponential and decay time constants for

each of the fits converted to a weighted decay.

Homology Modeling
The homology model of the ATD of the human NMDA receptor

was generated using the crystal structure of the rat NMDA recep-
tor subunit, zeta-1. The homology modeling application of MOE
2014.09 (“Molecular Operating Environment [MOE], 2014.09”,
2015) was used with 10 main chain models, each with one side
chain. Samples were built using the amberl 2 force field."*

Results

Germline NR1 Autoantibodies Target the
NMDAR in vitro and in vivo

The CSF autoantibody repertoire in NMDAR encephalitis
contains NR1-binding and non-NR1-binding antibodies.”
Across all 8 patients, NR1-binding antibodies had signif-
icantly lower numbers of somatic hypermutations (SHM)
in the Ig heavy (5.1 & 4.0 versus 11.9 & 8.3) and cor-

responding Ig light chains (3.9 &+ 4.8 versus 7.2 £+ 5.4)

) (A-)

FIGURE 1: Target specificity of the germline NR1 autoantibody #003-109. Inmunofluorescence staining showed the characteristic
NR1 pattern in the brain (A), in particular of hippocampal neuropil (A-l) and cerebellar granule cells (A-ll, arrows). NMDAR-
expressing synaptic clusters were specifically labeled on primary hippocampal neurons (B; green: NR1, red: MAP2). dSTORM
imaging confirmed NR1 expression in the synapse (C; purple: NR1, green: Homer1). Germline NR1 antibodies (D), but not isotype
control antibodies (E), bound to cerebellar granule cells (arrows) 24 hours after intravenous injection together with
lipopolysaccharide. Antibodies were present in the circulation as confirmed with stainings of the choroid plexus (D,E, inserts), in
contrast to control brains of untreated mice (F). Intracerebroventricular injection of maturated (G) and germline (H) NR1
antibodies showed similar neuropil binding in the hippocampus. Scale bars: A = 2 mm; A-VA-Il = 500 pm; B = 20 pm; C=1 pm
(inserts: 200 nm); F = 100 um (for D-F); G,H = 100 pm. DAPI = 4',6-diamidino-2-phenylindole; MAP2, microtubule-associated
protein 2; NMDAR = N-methyl-D-aspartate receptor.

~
J
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than mm—NRl—binding antibodies (total, 9.0 = 7.9 ver-
sus 19.1 &= 12.6 mean & SD; p = 0.018, unp;i.ircd t test).
Individual NR1 antibodies were even completely unmutated
(#003-109) or contained only silent SHM (#007-142,
#007-169).”

The gcrrnlirlc antibody, #003-109, accounted for
1 of 41 (2.4%) of antibody-secreting cells analyzed of this
patient and showed the characteristic NR1 pattern on
unfixed mouse brain sections (Fig 1A) and the NMDAR
cluster distribution on primary hippocampal mouse neu-
rons previously observed for mutated NRI antibodies”
(Fig 1B). dSTORM of hippuca.mp;il neurons demon-
strated NMDAR distribution at synapses, uppuscd to

Homerl-positive postsynaptic densities (Fig C). Intravenous

(B) n3egQmut |(E)

100+

g

Normalized fluorescence [%]

(=]
I

terminal domain

H
(D) (H)

1004

001

50+
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injection of #003-109 resulted in binding to cerebellar
gr:mulc cells i vivo (Fig 1D), which was not detectable
with the isotype control (Fig 1E). Intracerebroventricular
injection of maturated (Fig 1G) and gcrmlinc (Fig 1H)
NR1 antibodies showed similar neuropil binding in the

hippu campus.

Binding of Mutated, Germline, and Reverted
Antibodies to NR1

Binding of #003-109 was prevented by the single-amino-
acid mutation, N368Q), in the ATD of NR1 (Fig ZA,B].?
To model the pus&'iblc antibody/ATD interaction i silico,
protein-protein docking was performed against ATD using
ClusPro (Fig 2C). ATD residues N368 and G369 are

20 waimi

Maturated NR1-antibodies

- #003-102

=~ #008-218

== #007-168
Germling NR1-antibodies

== #003-109

- #007-169
Control antibody

®  H#mGo53

20

T
2
Antibody concentration [ug/mi]

T T
0.02 0.2

-~ #003-102

=== H003-102 GL-I

=== #D03-102 GL-II
-~ #008-218

== #008-218 GL
&  #mGo53

Mormalized fluorescence [%]

1 Ll T 1
0.02 0.2 2 20
Antibody concentration [ug/ml]

z
0.002

FIGURE 2: Interactions between germline antibodies and the NMDAR. Germline antibodies strongly bound to NR1 protein in
transiently transfected HEK cells (A). In contrast, NR1 N368Q mutation completely omitted human antibody binding (B). Predicted
binding pose of antibody #003-109 (blue, with complementarity determining regions in dark blue) to the ATD (green), the 3D
model of the antibody, was generated by the antibody modeling tool of MOE2014.09 (C). Interaction of the key residues N368
and G369 in the H-bond network is illustrated in ball and stick mode; interactions are shown as black lines with the molecule
distance in A (D). Binding strengths with increasing concentrations of NR1 antibodies were determined by fluorescence
intensities of hippocampal brain sections, exemplarily shown for a mutated (E) and germline antibody (F). Plotting these binding
strengths against antibody concentrations showed the range of relative affinity curves of monoclonal patient-derived NR1
autoantibodies with weaker binding of the germline antibodies (G). “Back-mutation” of the high-affinity NR1 antibodies to
germline configuration (GL = germline; two possible germline antibodies for #003-102) showed only minimal reduction of the
binding strengths (H). Data are mean £ SEM, n =3 independent stainings (G,H) each representing the mean of three
hippocampal areas (yellow rectangles in E) per antibody/concentration. Scale bars: AB =20 pm; E =100 pm (for E,F).
DAPI = 4',6-diamidino-2-phenylindole; hNR1/rbNR1 = human/rabbit NR1 antibody; NMDAR = N-methyl-D-aspartate receptor.
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FIGURE 3: Germline antibody #003-109 reduced total and synaptic NMDA currents. Patch clamp whole-cell recordings of autaptic
murine neuronal cultures showed that 24 hours of incubation with antibody #003-109 (5 pg/ml) selectively reduced total NMDA
currents by 30% (A, p = 0.009), but not GABA or kainate currents (B,C), which were evoked by a 1-second bath application of
10 pM of NMDA (A), 5 pM of GABA (B), or 20 pM of kainate (C), respectively. Synaptic NMDA currents, evoked in the presence
of 10 pM of glycine, 10 pM of NBQX, and DMgz*. showed 45% reduction (E, p = 0.003) whereas synaptic AMPA currents
remained unchanged (D). The selective effect on NMDA currents was abolished at lower concentrations of antibody #003-109
(1 pg/ml; F-J). Total GABA and kainate and synaptic AMPA currents were not affected (G-l), while a trend toward reduced
synaptic NMDA currents persisted at this antibody concentration (J, p = 0.152). Established concentrations of antibody #003-109
(5 pg/ml), but shorter incubation of 3 hours, were not sufficient to cause reduced NMDA currents (K-O). Averaged traces of
exemplary cells incubated for 24 hours with germline and control antibodies (5 pg/ml) were scaled to 1 nA for easier comparison
(P) and showed equal rise time (Q) and weighted decay (R) of synaptic NMDA currents. Data are mean + SEM, Student’s t test,
n = 20 to 28 (A-E), n = 15 to 32 (F-J), or n = 20 (K-O) cells per group from four independent experiments. AMPA = alpha-amino
propionic acid; ctrl = control; GABA = gamma-aminocbutyric acid; NMDA = N-methyl-D-aspartate; ns = not significant.
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embedded in the protein-protein interface f(}rrning a net-
work of H-bonds with the ;i.ntib()dy residues (Fig 2D).
N368 is the only amino acid on the receptor side thart sta-
bilizes the binding to both, the zi.rltib()dy hcavy and the
light chains (Fig 2D). Binding curves of paticnt—dcrivcd
gcrmlirlc NR1 antibodies showed gcncraﬂy lower relative
a.{:ﬁnity to hipp()ca.mpa.l sections than mutated antibodies
(Fig 2E-G). However, reverting mutated patient anti-
bodies to gcrmlinc cha.ngcd the binding a‘trcngths (mly
rnirlimally, suggesting a similar functional role a.lrcady of

the naive antibodies (Fig 2H).

Unmutated NR1 Antibodies Selectively Reduced
Total and Synaptic NMDAR Currents

We cxpcctcd smaller clccr_r()physi()l()gical cha.ngcs induced
by antibody #003-109 compared to mutated NR1 anti-
bodies, given the lower binding to murine brain (Fig 2E,F).
Indeed, incubation ()f'autaptic mouse hipp(}ca.mpal NEeurons
with 5 pg/ml of germline antibody #003-109 for 24 hours
resulted in ~30% reduction of the total NMDA currents
cornp;i.rcd to the isotype control a.rlr_ib()dy (Fig 3A). The
a.rlrib()dy effect was spcdﬁc, given that the total gamma-
a.mirl()butyric acid (GABA)- and kainate-mediated currents
remained unaffected after application of 5 pM of GABA or
20 pM of kainate, rcspcctivcly (Fig 3B,C). Measuring syn-
aptic responses in the presence of 10 pM of glycine, 10 pM
of NBQX, and 0 mM of Mgh, NR1 a.n'r_ib(x.ly treatment
also reduced synaptic NMDA currents b)-' ~45%, while
synaptic alpha—a.min() propionic acid (AMPA) currents did
not differ from controls (Fig 3D,E). In contrast to highcr—
aﬂinity mutated NR1 andb()dics,: the effects were not
detectable with lower antibody concentrations (1 pg/ml of
#003-109; Fig 3F-J). In addition, shorter incubation for
3 hours with gcrrnlinc ;i.ndbody was not sufficient to reduce
synaptic or whole-cell NMDA currents (Fig 3K-0). The
kinetics of synaptic NMDA responses were not altered by
NR1 andb()d)f treatment (Fig 3P-R).

Discussion

The present study followed the unexpected observation
that human NRI1 autoantibodies have low numbers of
somatic hypcrmutaﬁ(ms and that even gcrm]inc—cncodcd,
unmutated NR1 autoantibodies are found in patients with
NMDAR encephalitis. Patient-derived germline antibodies
had lower binding curnpa.rcd to mutated NR1 antibodies,
but were also functional in sclccrjvcly rcducing synaptic
NMDAR currents in a dose- and time-dependent manner.
They should be present in the patient's CSF as clone
#003-109 derived from a CSF plasrna cell, which is be-
lieved to continuously produce several thousand IgG mol-

15,16
ecules per second. ™"
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The ﬁnding of gcrmlinc—conﬁgurcd functional
NMDAR autoantibodies in the human repertoire might
cxpla.in the mysterious observation of the high fre-
quency of serum NMDAR antibodies in different dis-
eases and blood donors.!” Gcncrally, B cells carrying
high—afﬁnity autoreactive antibodies undcrg() negative
selection, while lc)w-afﬁnity antibodies might remain in
the rcpcrt()irc,ls Thus, the here identified NR1 autoan-
tibodies likcly did not see their antigen during B cell
development, or were of sufficiently low affinity to
remain part of the naive B cell rcpcrt()irc,lg and might
therefore be present in every individual. The important
role of naive B cells in NMDAR encephalitis was recently
suggested, although the experimental approach did not
Likewise,

autoreactive naive B cells were rcccndy observed in a related

allow informarion on am_ib()dy mutations.”’

antib()dy—rncdiatcd disease, ncur()mycliti.s‘ (}pr_ica,zl It is sdll
an open question how NMDAR-expressing tumors that
might contain gcrrninal center-like strucmrcs,z‘m‘n‘n viral
brain irlfult_'ti()m‘,l‘i or additional factors lead to the matura-
tion and expansion of NR1 ;i.rltib(xly—pmducing cells in
rdar_ivcly rare cascs, u.lr_irnarcl)f rcsuldng in NMDAR
cnccpha.liti.s‘, In ovarian teratomas, tumor-intrinsic abnor-
malities, such as ()rga.niz.cd dyspla.s‘tic neurons, may facilitate
the development of NMDAR aut()irnrnurlit)f,22 No clear
distinction between the here examined gun'nlinc and
mutated antibodies was noted in patients without a tumor
(#007, #008) cc)rnp;i.rcd to a patient with an ovaran carci-
noma (#003).

Distinct unmutated {“narur'a.lly ()ccurring"} autoanti-
bodies are innate-like components of the immune system
that facilitate the clearance of invading par_h()gcm', induce
apoptosis in cancer cells, promote rcmyclinati(m, or dclay
disease progression in murine models of inflammation
and ncur()dcgcncraﬁ(m,24_% May unmutated NMDAR
autoantibodies have been simﬂa.rly selected because of
cvuluti(ma.ry importance {cg, for neutralization of released
NMDAR  protein), thcrcby preventing d)fsﬁ.mcr_i(mal
immune stimulation? Indeed, preexisting NMDAR anti-
bodies were associated with smaller lesion size after stroke
in one study, p()ssibly related to reducrion of gluta.rnatc—
mediated cxx_'it()t()xicity,z; Also, there are cxa.mplcs of
other gcrmlinc antibodies that are reacrive to commensal
bacteria at mucosal barriers, bur ar the expense of paﬂm—
genic reactivity to sclf—pr()tcins,zs

Future studies should examine ;i.m'_ib()dy effects
bcy(md receptor internalization”® and cla.rif:y under which
conditions NR1 (and p()tcndaﬂy further) aut()anr_ib(}dy-
pr()ducirlg cells escape negative selection and cxpa.nd to
cause cnccphalids, Thcy should also address whether and ar
which concentrations functional NMDAR autoantibodies
are part of the hca.lth)f human naive B cell repertoire and
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may thu.s C(ll’l]’.l'ibutl_‘ o a l')l'(liidl_‘l' SPL‘CU’LIIT[ UF HCLII'(]PS)(Chi‘

atric sym ptoms than prL'vi(lu.sly assumed.
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