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We investigate magnetotransport across an interface between two Weyl semimetals whose Weyl
nodes project onto different interface momenta. Such an interface generically hosts Fermi arcs that
connect Weyl nodes of identical chirality in different Weyl semimetals (homochiral connectivity) —
in contrast to surface Fermi arcs that connect opposite-chirality Weyl nodes within the same Weyl
semimetal (heterochiral connectivity). We show that electron transport along the arcs with homochi-
ral connectivity, in the presence of a longitudinal magnetic field, leads to a universal longitudinal
magnetoconductance of e2/h per magnetic flux quantum. Furthermore, a weak tunnel coupling can
result in a close encounter of two homochiral-connectivity Fermi arcs, enabling magnetic breakdown.
Above the breakdown field the interface Fermi arc connectivity is effectively heterochiral, leading
to a saturation of the conductance.

Introduction — Weyl semimetals (WSMs) are a class
of three dimensional semimetals characterized by pairs
of opposite-chirality Weyl fermions instantiated as topo-
logically protected gapless points in the bulk Brillouin
zone (BZ) [1–11]. Individual Weyl fermions exhibit the
chiral anomaly [12, 13] — a violation of particle-number
conservation in presence of parallel electric and magnetic
fields. The chiral anomaly manifests as a spectral flow on
chiral zeroth Landau levels, which disperse either paral-
lel or anti-parallel to an applied magnetic field depending
on chirality of the Weyl fermion [14]. In a finite system,
the reconnection of this spectral flow necessitates the ex-
istence of gapless Fermi-arc surface states, which connect
Weyl nodes of opposite chirality.

One of the most striking transport phenomena associ-
ated with the chiral anomaly is the chiral magnetic effect
(CME), which leads to a positive longitudinal magne-
toconductance [9, 15, 16]. In the ballistic (also called
ultra-quantum) limit, where transport is governed solely
by the lowest (chiral) Landau level, the longitudinal con-
ductance is predicted to show a universal linear depen-
dence pm the magnetic field [17]. Experimental evidence
of the chiral anomaly by way of the CME has, however,
turned out to be challenging because of various extrinsic
effects [18, 19]. Moreover, since the Weyl nodes often
do not reside exactly at the Fermi energy, the ballistic-
limit CME is only achieved at large non-universal field
strengths.

In this work we show that in tunnel junctions between
two WSMs both the CME and the Fermi arcs combine
to give alternative magnetoconductance signatures of the
chiral anomaly. We consider WSMs with Weyl nodes
whose transverse momenta are displaced with respect to
one another. Previous work has focused on the tunnel
conductance across interfaces where the Fermi pockets
of the two WSMs overlap [20–23]. We instead consider
non-overlapping Fermi pockets, which, in the absence
of further ingredients, would simply result in a vanish-
ing tunnel conductance. We, however, show that upon

adding a magnetic field normal to the interface, the chiral
Landau levels can transmit across the interface via the
interface Fermi arcs, while higher Landau levels are re-
flected. In contrast to bulk realisations, the ballistic-limit
CME across the tunnel junction (characterised by a uni-
versal, linear in field conductance), occurs around zero
magnetic field, irrespective of whether the Weyl nodes
are at exactly the Fermi energy.

We further show that magnetotransport across the
tunnel-junction allows for the exploration of the phe-
nomenon of magnetic breakdown — magnetic-field in-
duced quantum tunneling between disjoint equienergy
contours [24–27]. In bulk materials, level separation is
typically too large for magnetic breakdown to manifest
at realistic magnetic field strengths [26, 28]. In a tunnel
junction however, the level repulsion between Fermi arcs
can be made small by weakening the coupling [29] at the
interface. The onset of magnetic breakdown causes an
effective switch between topologically distinct Fermi-arc
connectivities at the interface (see below), signified by
a saturation of the magnetoconductance above a charac-
teristic mangnetic-breakdown field which is controlled by
the tunneling amplitude.

Tunnel-junction CME — We consider electron trans-
port through a tunnel junction of two Weyl semimetals in
the presence of a magnetic field of magnitude B normal
to the interface. We assume that the projection onto the
interface BZ of the Fermi surfaces of all the Weyl nodes
(on both sides of the interface) are separated by lattice
momentum much larger than the inverse magnetic length
l−1B =

√
eB/h. This ensures that the bulk Weyl nodes

are not coupled by the applied magnetic field.

In presence of the magnetic field, each Weyl node has
an imbalance in the number of left and right movers be-
cause of the N(B)–fold degenerate chiral lowest Landau
level, where N(B) is the number of magnetic flux quanta
through the interface. As the spectral flow from the sur-
plus chiral modes cannot terminate at the interface, there
must exist a continuous chain of states (the interface
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FIG. 1. Spectral flow at the interface between two Weyl
semimetals with a longitudinal magnetic field (a) Interface
Fermi arcs with homochiral connectivity (orange lines) lead
to a full transmission of the chiral zeroth Landau level across
the interface, while the higher Landau levels are reflected. (b)
Fermi arcs of heterochiral connectivity (green lines) lead to
reflection of all Landau levels.

Fermi arcs) that reconnects the interface projection of
one Weyl node to that of another, as illustrated in Fig.
1. This follows from particle conservation and the obser-
vation that an infinitesimal field only couples states that
are infinitesimally close in transverse momenta.

Consequently, two such types of Fermi arcs are possi-
ble: those that connect projections of opposite-chirality
Weyl nodes in the same WSM and those which connect
same-chirality nodes in WSMs on opposite sides of the in-
terface [30–33]. We term the two connectivities heterochi-
ral and homochiral connectivity, respectively. While the
connectivity of the interface Fermi arcs is a robust topo-
logical property (See the Supplemental Material (SM) for
a topological argument), their shape is non-universal and
depends on system details, such as boundary potentials
and the tunneling amplitude.

We first consider the situation where the interface
Fermi arcs are separated by lattice momenta much larger
than `−1B . In this case, a pair of homochiral Fermi arcs
perfectly transmit the incoming mode across the inter-
face, while a pair of heterochiral Fermi arcs are totally
reflected. Following a Landauer approach (see the SM
for a detailed derivation), the conductance is given by

G = nhoN(B)
e2

h
, (1)

where nho is the number of homochiral Fermi arcs and
N(B) is the number of incoming modes per unit area.
Note that the conductance is independent of the occupa-
tion of higher Landau levels, which are pefectly reflected.
This results in a universal conductance that is insensi-
tive to material-specific details such as the energies of
the Weyl nodes and velocities.

Magnetic breakdown — The derivation of Eq. (1)
breaks down once the magnetic field is large enough to
enable backscattering via the interface Fermi arcs. This

however, only happen once `−1B ≈ 0.004 Å
−1√

B[T] (with

B in Teslas) approaches the reciprocal space separation
between the two chiral modes. Realistic magnetic fields
can thus only couple modes whose separation is small
compared to the size of the surface BZ, resulting in the
phenomena of magnetic breakdown being considered a
rather exotic [26]. However, in our setup, a close en-
counter of interface Fermi arcs can be achieved by a weak
tunnel coupling of two WSMs whose Fermi arcs cross in
the decoupled limit, as illustrated in Fig. 2(a).

Near a close encounter of two Fermi arcs, the linearized
interface Hamiltonian reads

Hint(k⊥) = (vz∆/2)σx + vykyσz + vzkz, (2)

where k⊥ is the transverse momentum measured from
the mid-point of the smallest separation between con-
tours (see Fig. 2(b)), the Pauli matrices correspond to
the two Fermi arcs from the decoupled system, the veloc-
ities vy and vz are fixed by the specific dispersion of the
Fermi arcs, and ∆ quantifies the hybridization strength,
which depends on the tunneling amplitude. The short-
est distance between the Fermi arcs is then given by |∆|
and θ = tan−1(vz/vy) is half the angle of the Fermi arc
intersection, as shown in Fig. 2(b).

The essential requirement for our setup is a crossing
of interface Fermi arcs in the decoupled limit. At finite
tunneling, such a crossing turns into a close encounter,
unless protected by a symmetry deriving from the sym-
metries of the WSMs. Explicitly, this must forbid mass
terms proportional to both σx and σy in Eq. (2). Such a
protection, however, requires a lattice symmetry; which,
though it may hold for interfaces between a pair of highly
symmetric Weyl node configurations, would not hold for
generic interfaces. The close encounter described above is
thus generic so long as the decoupled Fermi arcs exhibit
a crossing.

At a finite but small ∆, a longitudinal magnetic field B
enables quantum tunneling between the two Fermi arcs
when `−1B & ∆. To quantify this magnetic breakdown we
deploy an analytical description following the standard
formalism of Refs [24, 26, 27, 34]. Using the semiclassical
wavefunctions of the Fermi arcs away from the encounter
as scattering states that move along the arcs in accor-
dance with the Lorentz force, we calculate the transition
probability across the gap by matching the scattering
states with the exact solutions of Hint. The resulting
probability of tunneling between the arcs is given by

P = e−B0/B ; B0 =
π

4
∆2 |tan θ| . (3)

A particle passing a single encounter will thus experi-
ence a heterochiral connectivity — and is thus reflected
— with probability P , so that the probability of trans-
mission across the interface is given by 1− P . The con-
ductance is thus obtained by weighing Eq. (1) by a factor
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FIG. 2. (a) Coupling the surfaces of two WSMs with crossing
Fermi arcs, whose hybridization leads to the interface Fermi
arc connectivity switching from heterochiral to homochiral.
(b) The close encounter of interface Fermi arcs for weak tun-
neling between the two WSMs.

of 1− P , so that

G = N(B)
e2

h

nho∑

i=1

(
1− e−B0,i/B

)
, (4)

where the sum runs over all homochiral connectivities
and B0,i are the corresponding breakdown fields. For
B � B0,i Eq. (1) is recovered, while for B � B0,i the
conductance saturates at (e2/h)N(B0,i). In the latter
limit, the transmission probability approaches zero as
1/B (rendering the connectivity effectively heterochiral)
but as N(B) is linear in B, the conductance saturates to
a constant value.

If we further increase the magnetic field, it couples the
Weyl nodes of the same chirality and opposite sides of the
interfaces. In this case, the modes can transmit across
the interface directly (skipping the Fermi arc), so that
N(B) is no longer the upper bound for the transmission,
and the transmission probability becomes non-universal,
depending on the number of occupied Landau levels. If
the field couples opposite chirality nodes, the WSM phase
is effectively destroyed [35].

Lattice simulation — We test the above predictions
by numerical and semi-analytical calculations on a WSM
lattice model. We consider lattice models described by
Hamiltonians of the form [36]

H(k) = Hx(kx) + ηy(k⊥)σy + ηz(k⊥)σz, (5)

where Hx(kx) = sin kxσ
x + (1− cos kx)σz. The hopping

strength along x and the lattice constant are set to one,
and ηy,z(k⊥) are functions of the transverse momentum
k⊥ ≡ (ky, kz). For ηz(k⊥) > −2, the model hosts Weyl
nodes in the kx = 0 plane at k⊥ satisfying ηy(k⊥) =
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FIG. 3. Conductance in units of the saturation value
(e2/h)N(B0) as a function of the magnetic field in units of the
breakdown field B0. The numerical computation is performed
for model parameters b = π/2, energy E = 0.1 and various
values of θ and κ. The analytical result (black dashed curve)
fits perfectly with the numerical results for weak fields. The
straight dashed lines indicate the predicted asymptotic low-
and high-field behavior. For the numerical data, the upper
bound on the magnetic field is set by the smallest magnetic
length `B = 3.1 lattice units — since smaller `B results in a
trivial breakdown of WSM physics — while the lower bound is
set by computational limits to 13.8 lattice units. Data points
corresponding to a smaller (larger) breakdown field B0 [for
smaller (larger) κ] thus span a range of fields at higher (lower)
values of B/B0. The inset shows a close-up at small fields;
highlighting the deviation from perfect transmission caused
by the onset of magnetic breakdown.

ηz(k⊥) = 0. At a boundary normal to x, the Fermi arcs
lie along ηy(k⊥) = 0 for ηz(k⊥) < 0 [36].

We consider an interface between two WSMs with

η±y (k⊥) =
1

sin b
[± sin by sin ky + sin bz sin kz] ,

η±z (k⊥) = cos by + cos bz − cos ky − cos kz, (6)

where the superscript ± refers to the left/right WSM.
The corresponding Weyl nodes with chirality χ lie at
k⊥ = χb, where b = (by, bz) = b(sin θ̃, cos θ̃). The tun-
nel junction between these two WSMs is modelled by a
reduced hopping 0 ≤ κ ≤ 1 along x at the interface. The
conductance for this lattice model for various values of
θ , computed numerically using the Kwant package [37],
are plotted in Fig. 3.

To compare the numerical results to the analytics, we
derive the breakdown field Eq. (3) from the lattice param-
eters. To this end, we need to determine the intersection
angle θ of the Fermi arcs in the decoupled limit (κ = 0)
as well as the minimum separation ∆ between the hy-
bridized (κ 6= 0) Fermi arcs [cf. Fig. 2(b)]. The Fermi
arcs in the decoupled limit are given by η±y (k⊥) = 0,
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linearizing around k⊥ = 0 gives

tan θ =
sin by
sin bz

=
sin(b sin θ̃)

sin(b cos θ̃)
. (7)

We next derive the interface Fermi arcs at a finite cou-
pling κ using a transfer-matrix approach [36, 38], as de-
scribed in the SM. To leading order in κ � 1, the mini-
mum separation is given by

∆ = 2κβ(2 + β)
sin b

sin by
, (8)

where β = cos by + cos bz − 2. The breakdown field can
then be determined by Eqs. (3), (7), and (8). The con-
ductance computed using (4) with the analytically com-
puted breakdown field shows excellent agreement with
the numerical results so long as the magnetic length is
much larger than the lattice spacing, as shown in Fig. 3.

Discussion and conclusion — In this article, we con-
sider the magnetoconductance across a tunnel barrier be-
tween two WSMs arranged such that the projection of the
Weyl node’s Fermi surfaces onto the interface BZ are well
separated and thereby aren’t coupled by a magnetic field.
At generic couplings of the WSMs the interface Fermi
arcs, which come in two topologically distinct connec-
tivity types (heterochiral and homochiral), will typically
also be well separated. In this regime the system displays
a universal tunnel magnetoconductance of (e2/h)N(B)
(where N(B) is the number of flux quanta through the
interface) for each pair of homochiral-connectivity Fermi
arcs. While the CME of a bulk WSM in the ballistic
limit is also characterised by a universal magnetoconduc-
tance where the number of Fermi-arc pairs is replaced by
the number of Weyl-node pairs, it requires a minimal
magnetic-field strength, whose scale is set by the energy
of the Weyl nodes and by diffusion properties [9, 17].
In contrast, the tunnel conductance considered here is
independent of such details because the interface is in-
transparent for higher Landau level and thus acts like a
filter. An alternative bulk system showing a similar ef-
fect of the ballistic-limit CME extending down to zero
magnetic field independent of system details is achieved
in Fermi-arc metals [39], recently predicted by Brouwer
and one of us.

Such interfaces can also be used to realize the phenom-
ena of magnetic breakdown. This requires a close en-
counter of two Fermi arcs so as to enable magnetic field
induced quantum tunneling between arcs. Such an en-
counter is generic between WSMs whose interface Fermi
arcs cross in the decoupled limit. The magnetic break-
down leads to a suppression of the transmission probabil-
ity for field strengths above a characteristic breakdown
field B0 (set by the coupling strength). Since the mag-
netic breakdown effectively turns a homochiral connec-
tivity into a heterochiral connectivity, one might expect
the conductance to drop to zero above B0. The increased

probability of experiencing a heterochiral connectivity at
a higher field is however balanced by the increased degen-
eracy of transmitted modes, thus leading to the satura-
tion of the conductance at a finite value of (e2/h)N(B0).
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SUPPLEMENTAL MATERIAL

TOPOLOGICAL ARGUMENT FOR
HOMOCHIRAL INTERFACE FERMI ARCS

Consider an interface between two WSMs whose Weyl
nodes occur at different transverse lattice momenta, as
shown in Fig. S1. We begin by noting that the the restric-
tion of the lattice model to transverse momenta forming
a loop in the interface away from the projections of the
Weyl nodes can be interpreted as the band structure of
two semi-infinite gapped 2d systems, which can possess a
Chern number. An interface between two gapped phases
with Chern numbers C1 and C2 hosts |C1 − C2| protected
chiral modes in the bulk gap. Thus, for a given loop,
we can infer the number of topologically protected zero
modes crossing it, depending on the enclosed Weyl nodes
on either side of the interface. In particular, if the loop
encloses a single Weyl node of chirality χ from one of
the WSMs and none from the other, then the loop cor-
responds to an interface between gapped 2D phases with
Chern numbers χ and 0, guaranteeing the existence of
a chiral mode crossing zero energy at some momentum
on the loop. On the other hand, if the loop encloses
Weyl nodes of identical chirality χ from both WSMs, it
corresponds to an interface between two gapped phases
with identical Chern numbers, which does not host any
topologically protected modes.

In terms of the interface between Fermi arcs, we thus
conclude that a Fermi arc emanate from each projection
of a Weyl node, but given a loop enclosing Weyl nodes
of identical chiralities from the two sides, the Fermi arcs
can always be deformed to lie entirely inside it. Thus, the
topologically protected interface Fermi arcs must connect

projections of Weyl nodes of identical chiralities coming
from the two WSMs.

TUNNEL CONDUCTANCE FROM LANDAUER
APPROACH

The Landauer formula G = (e2/h)T relates the con-
ductance G with the transmission probability T , the sum
of transmission probabilities over all right- or leftmoving
modes. We consider the transmission of a flat interface
where the modes (scattering states) are divided into two
decoupled groups, labeled 1 and 2, whereby in group 1
the number of rightmovers is larger by N modes than the
number of leftmovers, and vice versa for group 2. The
scattering problem, illustrated in Fig. S2, with scattering
matrices Si for the two groups i = 1, 2, reads

(
a−i
b+i

)
=

(
ri t′i
ti r′i

)

︸ ︷︷ ︸
≡Si

(
a+
i

b−i

)
. (S1)

Note that the reflection and transmission amplitude ma-
trices have different rectangular shapes, set by the size of
the vectors of mode coefficients.

We will now show that the total transmission proba-
bility is bound from below as

T ≡
∑

i

Tr
(
t†i ti
)
≥ N. (S2)

Heuristically one can understand from particle conserva-
tion that, considering e.g., the modes to the left of the
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a + N(B) b + N(B)

dc

c + N(B) d + N(B)

≥ N(B)

≤ d

≥ N(B)

≤ a

heterochiralhomochiral

en
er

gy

FIG. S1. (Left) Interface between two WSMs with Weyl
nodes of positive/negative chirality (red/blue spheres) and
their projections onto the interface from the upper WSM
(filled circles) and lower WSM (empty circles). Fermi arcs
can either connect Weyl nodes of opposite chirality on the
same side of the interface (green lines) or same chirality on
opposite sides of the interface (orange lines), corresponding to
heterochiral and homochiral connectivities, respectively. The
topology of interface Fermi arcs can be inferred from consid-
ering the interface of 2D Chern insulators with Chern number
C, indicated as cylinders. (Right) Numerically computed in-

terface Fermi arcs for the lattice model Eq. (6) with θ̃ = π/2
for κ = 0.1 (top) and κ = 0.25 (bottom).

FIG. S2. Illustration of the scattering problem, Eq. (S1),
indicating the numbers of modes.

interface, only a of the a + N rightmovers in subsys-
tem 1 can be reflected since there are only a leftmovers
and, in subsystem 2, all c rightmovers can be reflected
since there are c+N leftmovers. Hence, in total, at least
N modes must be transmitted. (The same conclusion
can be reached considering the modes to the right of the
interface.) Formally, this derives from the unitarity of

the scattering matrices, t†1t1 + r†1r1 = 1(a+N)×(a+N) and

t′1t
′
1
†

+ r1r
†
1 = 1a×a. Taking the trace of both equations

and eliminating Tr
(
r†1r1) and repeating the same for the

other subsystem, we obtain

Tr
(
t†1t1) = Tr

(
t′1
†
t′1
)

+N (S3)

Tr
(
t†2t2) = Tr

(
t′2
†
t′2
)
−N. (S4)

Equation (S2) follows by taking into account

Tr
(
t
(′)†
i t

(′)
i

)
≥ 0.

We can apply this result to a pair of chiral Weyl
Fermions in an applied magnetic field directed perpen-
dicular to the interface, at which the homochiral Fermi
arcs connect Weyl Fermions of the same chirality at op-
posite sides of the interface. In this case, the difference
in the number of right- and leftmovers is the degeneracy
of the chiral Landau level N = N(B) and subsystem 1
and 2 correspond to positive and negative chirality. The
lower bound of the conductance for a single homochiral

Fermi arc is thus G = e2

h T ≥
e2

h N(B). The upper bound
is set by the number of states at the smallest constriction.
As argued in the main text, all particles must pass the
Fermi arc, which in the magnetic field becomes a single
N(B)-degenerate Landau level. It follows that

G = nhoN(B)
e2

h
, (S5)

where we included the total number nho of homochiral
connectivities.

TUNNEL CONDUCTANCE FROM
SEMICLASSICS

In an applied magnetic field directed perpendicular to
the interface, the Lorentz force moves a particle along the
Fermi arc in time dt by the amount dk = vdt/`2B , where
v is the velocity and `B the magnetic length. Particles
contributing to transport are within the energy range eU ,
set by the applied voltage U , which corresponds to the
momentum eU/~v. Hence, the transported charge is

dQ = e
dk (eU/~v)

(2π)2
A, (S6)

where A is the interface area. Inserting dk = vdt/`2B and
with N(B) = A/(2π`2B) we obtain

dQ

Udt
= N(B)

e2

h
. (S7)

This correctly corresponds to the tunneling conductance
across the interface via a single homochiral Fermi arc
obtained from the scattering-matrix formalism.

INTERFACE MODES OF A LATTICE MODEL
USING TRANSFER MATRICES

The generalized transfer matrix along x for the two-
band models lattice model of Eq. (5) is given by [36, 38]

T (ε,k⊥) =
1

1 + ηz

(
ε2 − Γ2 −ε+ ηy
ε+ ηy −1

)
, (S8)
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where Γ ≡ η2y + (1 + ηz)2. For an interface along x with
tunneling strength κ, a necessary condition for the exis-
tence of a mode localized at the interface is [30]

det [T+,KT−K] = 0, (S9)

where T± denote the transfer matrices on the two sides of
the interface and K = diag {(1/κ), κ}. For the transfer
matrix Eq. (S8), this expression becomes

Λ+ − Λ− = ±2 sinhλ

√
Λ+Λ− + 4 cosh2 λ, (S10)

where λ = lnκ and

Λ± =
1

η±y

[
1−

(
η±y
)2 −

(
1 + η±z

)2]
. (S11)

For Λ+ = −Λ− ≡ Λ, Eq. (S10) simplifies to

Λ = ±2 sinhλ = ±
(
κ− 1

κ

)
. (S12)

This turns out to be the relevant limit for our setup.

For the interface between WSMs described by Eq. (6),

linearizing around k⊥ = 0 yields

η±y (k⊥) = ±vyky + vzkz,

η±z (k⊥) = β +
1

2

(
k2y + k2z

)
, (S13)

where vi = sin bi/ sin b and β = cos(by) + cos(bz) − 2.
Thus, the Fermi arcs at the interface for κ = 0 lie along
vzkz = ±vyky, leading to a crossing at k⊥ = 0. For
κ > 0, the interface Fermi arc can be computed using
Eqns. (S10) and (S11). In particular, the minimum sep-
aration between the arcs lies along ky. Setting kz = 0,
we get

Λ± = ± 1

vyky


1− (vyky)2 −

(
1 + β +

k2y
2

)2

 (S14)

so that Λ+ = −Λ−. The zero crossings along kz = 0
and thus the minimum separation between the interface
Fermi arcs are given by Eq. S12. For κ � 1, we only
retain the terms at O(1/κ) and O(1/ky), so that

1

κ
= − 1

vyky

[
1− (1 + β)

2
]

=
β(2 + β)

vyky
. (S15)

The minimum separation between the interface Fermi arc
at O(κ) is thus given by

∆ = 2ky =
2κβ(2 + β)

vy
. (S16)


	Preprint.pdf
	2302.09896
	Magnetic Breakdown and Chiral Magnetic Effect at  Weyl-Semimetal Tunnel Junctions
	Abstract
	 References
	 SUPPLEMENTAL MATERIAL
	 Topological argument for homochiral interface Fermi arcs
	 Tunnel conductance from Landauer approach
	 Tunnel conductance from semiclassics
	 Interface modes of a lattice model using transfer matrices



