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Abstract: Background: Shear wave elastography (SWE) is currently used to detect tissue pathologies
and, in the setting of preventive medicine, may have the potential to reveal structural changes before
they lead to functional impairment. Hence, it would be desirable to determine the sensitivity of SWE
and to investigate how Achilles tendon stiffness is affected by anthropometric variables and sport-
specific locomotion. Methods: To investigate the influence of anthropometric parameters on Achilles
tendon stiffness using SWE and examine different types of sports to develop approaches in preventive
medicine for professional athletes, standardized SWE of Achilles tendon stiffness was performed in
65 healthy professional athletes (33 female, 32 male) in the longitudinal plane and relaxed tendon
position. Descriptive analysis and linear regression were performed. Furthermore, subgroup analysis
was performed for different sports (soccer, handball, sprint, volleyball, hammer throw). Results:
In the total study population (n = 65), Achilles tendon stiffness was significantly higher in male
professional athletes (p < 0.001) than in female professional athletes (10.98 m/s (10.15–11.65) vs.
12.19 m/s (11.25–14.74)). Multiple linear regression for AT stiffness did not reveal a significant impact
of age or body mass index (BMI) (p > 0.05). Subgroup analysis for type of sport showed the highest
AT stiffness values in sprinters (14.02 m/s (13.50–14.63)). Conclusion: There are significant gender
differences in AT stiffness across different types of professional athletes. The highest AT stiffness
values were found in sprinters, which needs to be considered when diagnosing tendon pathologies.
Future studies are needed to investigate the benefit of pre- and post-season musculoskeletal SWE
examinations of professional athletes and a possible benefit of rehabilitation or preventive medicine.
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1. Introduction

The Achilles tendon (AT) is the largest tendon in the body, making it very easily
accessible and suitable for ultrasound (US) examinations. Achilles tendinopathy is very
common in both active individuals and in the general population and causes pain and
severe limitations in mobility. Acute and chronic Achilles tendinopathy is one of the
most common overuse injuries in professional athletes such as runners, jumpers and
triathletes [1]. Runners have a lifetime prevalence of developing Achilles tendinopathy of
52% [2,3]. Furthermore, AT rupture is one of the most severe injuries of the lower limb, in
terms of loss of training days in triathletes [4].

Tendon disorders cause pain and severe limitations in mobility. Since the pathogenesis
of tendinopathy is considered a multifactorial process with inflammation and degener-
ation [1,5,6], established ultrasound techniques and MRI are limited tools in assessing
morphological changes, which are required for clinical diagnosis of tendinopathies [7,8]. As
it is reported that there are discrete areas of pathology in disordered tendons, it is even more
relevant that SWE can provide direct measurements of specific areas within the tendon [2].
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Shear wave elastography (SWE) has been reported to be a suitable technique to assess
tissue stiffness and to allow the identification of injuries in professional athletes [9,10]. SWE
has shown its potential and is already established in breast, liver, thyroid and prostate
imaging [7]. Dirrichs et al. showed that SWE had higher sensitivity than B-mode and
power Doppler US, which were established for the examination of tendinopathy [10]. In
contrast to strain elastography (also known as compression elastography), in which the
tissue is subjected to strain stress with uniform repetitive pressure and the resulting com-
pression/deformation can be recorded, SWE uses a different basic physical principle. In
addition to the ultrasound wave, another low-frequency shear wave is applied; the modu-
lus of elasticity can be calculated from the propagation speed of this transverse wave [11].
Formed by ultrasonic pulses radiated perpendicular to the surface, the propagation of the
shear wave front can be recorded and its propagation velocity calculated, which correlates
with the modulus of elasticity. The technical advantage of the method is the indepen-
dence of the externally applied pressure and thus an improved standardization with less
susceptibility to inter- and intra-observer variability.

SWE has revealed significantly lower tendon stiffness in individuals with symptomatic
Achilles lesions [10]. While the effects of anthropometric parameters such as age or body
mass index (BMI) on tissue stiffness assessed by SWE have been investigated in several
studies [12–15], data for professional athletes are missing. Softening of tendon tissue
has been attributed to very early changes in tissue elasticity in early tendinopathy [5,16].
Tendons and muscles undergo changes in composition and architecture with aging, which
impacts their mechanical properties and function [12,17]. Muscle mass declines with age,
which leads to a progressive reduction of muscle function and strength. These changes
impair daily life in the elderly. On the other hand, it has been shown that tendons maintain
their dimensions and mechanical properties with aging [15,18]. Mechanical stress such as
regular exercising can modulate age-related alterations and counteract a loss of function
of the muscle–tendon unit [12]. In another study, participants with Achilles tendinopathy
were older and had significantly higher BMIs compared to a control group [2]. The body
fat percentage seemed to be more relevant for tendon stiffness than BMI, which could be
explained by metabolic pro-inflammatory effects due to larger amounts of adipose tissue.

Shear wave elastography holds great potential for detecting early changes in tendon
structure, even before functional impairment becomes apparent [9].

Due to the increasing availability of SWE in commercial US systems, the number of
publications on the topic of elastography increased in recent years. Despite this, mus-
culoskeletal imaging (MSK) has seen only a limited increase in the level of evidence in
a small number of musculoskeletal questions [19]. However, with the increasing use of
elastography in musculoskeletal US, the growing number of studies may have the potential
to establish this application in routine clinical practice for diagnosis and prevention.

Before SWE can be used to diagnose soft tissue injuries such as tendinopathy, we
need to develop valid diagnostic criteria to differentiate between healthy and abnormal
tendons and to identify preclinical changes. To establish such criteria, we need to know how
anthropometric parameters alter tissue stiffness in professional athletes and in different
types of sports.

Objective

The objective of this study is to investigate the influence of anthropometric parameters
on the tendon and muscle stiffness of the lower limb using SWE and to determine the
reference. Standardized SWE examinations of Achilles tendons in the longitudinal plane
and relaxed tendon position were performed in 65 healthy professional athletes.

2. Methods
2.1. Study Population

The prospective study included 65 healthy professional athletes, who were examined
at Charité–Universitätsmedizin Berlin. Inclusion criteria were: (I) healthy professional
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athletes, (II) without any acute (>6 months) musculoskeletal, rheumatic or vascular co-
morbidities and no previous injuries of the Achilles tendon and (III) written informed
consent to participate in the study. Exclusion criteria were: tendon neovascularization,
hypoechogenity and tendon thickening. The study was conducted in accordance with
the Declaration of Helsinki and was approved by the local ethics committee of Charité
University Medicine Berlin (ethical vote number EA2/162/19).

Baseline participant characteristics were obtained by a questionnaire at the time of
examination. On the day of the examination, no training was performed. Professional ath-
letes (handball, soccer, volleyball, sprint, hammer throw) with more than 10 h training per
week were included. All measurements were jointly performed by a trained sonographer
and a highly experienced radiologist who were blinded to the type of sport.

2.2. Shear Wave Elastography Examination

All US-SWE examinations were performed using a standardized protocol. For assess-
ment of the Achilles tendon (mid portion), participants were examined in the prone position
with both feet hanging over the edge of the examination couch in a relaxed position. Prior
to US-SWE, gray-scale B-mode US was performed in the transverse and longitudinal planes
for the adequate assessment of the Achilles tendon and probe position. All examinations
were performed using a high-end US system with a 4–10 MHz multifrequency linear array
transducer and a center frequency of 7 MHz (Acuson Sequoia, Siemens Healthineers, Er-
langen, Germany). The US-SWE software (Virtual Touch™) allows real-time measurement
using Acoustic Radiation Force Impulse (ARFI) imaging technology for the quantitative
evaluation of shear wave speed.

US-SWE examinations were performed in the longitudinal plane to depict each tendon
and the area of interest in one single image (Figure 1). Using the respective 2D SWE approach,
the examiner acquired four US images of the AT of the right leg of each professional athlete,
with a total of 650 consecutive SWE measurements using a 3-mm circular region of interest
(ROI) placed in the center of each target tendon, avoiding areas of visible artifacts. Thus, rep-
resentative tendon stiffness is given as the median of 10 measurements and the corresponding
interquartile range (IQR). Before ROI placement, shear wave speed as a surrogate for tissue
stiffness was depicted by color-coded SWE mapping. The standardized penetration depth
was adapted to each participant for optimal visualization of the tendon and correct SWE
measurement. Gain was not changed to avoid potential effects on US-SWE measurement.

1 
 

 

Figure 1. Example of SWE examination of a female athlete in a relaxed prone position with longitu-
dinal probe orientation (A,B) and corresponding color-coded mapping of SWE (C) of the Achilles
tendon (AT) in the mid-portion.
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2.3. Statistical Analysis

Multiple linear regression analysis of AT stiffness was performed using anthropomet-
ric parameters such as gender, age and BMI as input parameters. Continuous variables
were tested for normal distribution using the Kolmogorov–Smirnov test. Non-normally
distributed variables are reported as median and IQR. A two-sided significance level of
α = 0.05 was determined as appropriate to indicate statistical significance. All statisti-
cal analyses were performed using the SPSS software (IBM Corp., released 2019. IBM
SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.) and Matlab (MAT-
LAB and Statistics Toolbox Release 2022b, The MathWorks, Inc., Natick, Massachusetts,
United States).

3. Results
3.1. Athletes’ Characteristics

A total of 65 professional athletes with a mean age of 20.19 years [16–29] were ex-
amined. The median BMI was 22.85 kg/m2 (IQR 19.60–32.38 kg/m2). The results are
summarized in Table 1. One professional athlete had a history of hypothyroidism, while
no other diseases such as diabetes mellitus, fatigue, hyperlipidemia, rheumatic diseases or
malposition of lower limb joints were known. Overall, 14 athletes reported rupture of lower
limb ligaments (ligament rupture of the ankle [n = 8), knee ligament rupture [n = 7]). None
reported Achilles tendon pain, swelling, difficulty in joint movement or tendon rupture.
Medications taken at the time of the examination were: hormonal contraceptives (oral
[n = 9], intrauterine device [n = 2]).

Table 1. Baseline characteristics of professional athletes (n = 65).

Male (n = 32) Female (n = 33)

Mean & Range Mean & Range

AT 12.19 11.25–14.74 10.98 10.15–11.65
Age 19.83 18.00–21.00 20.76 18.00–24.50
BMI 23.52 22.40–24.43 23.34 21.30–24.38

3.2. Results of US-SWE in Professional Athletes

The analysis of variance (ANOVA) for AT stiffness in professional athletes is shown in
Tables 2 and 3. In multiple linear regression for AT stiffness, only gender showed a significant
influence (p < 0.01), while age, height, weight and BMI did not (p > 0.05). Therefore, subgroup
analysis for type of sport was performed for female and male professional athletes.

Table 2. Multiple linear regression model of AT stiffness in professional athletes.

Coefficient Standard Error p Value

Bias 4.24 25.48 0.8686

Gender (m = 1, f = 0) −1.34 0.42 0.0021

Age 0.02 0.05 0.7060

Height 4.40 14.09 0.7561

Weight -0.05 0.16 0.7545

BMI 0.16 0.53 0.7697

Shear wave speed (SWS) for male and female athletes showed normal distribution
(Figure 2). Male athletes had significantly higher AT SWE values, which can be seen in the
boxplot in Figure 2. There was no significant difference in age and BMI between males and
females (p > 0.05).
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Table 3. Linear regression model of AT stiffness in professional athletes only for gender.

Coefficient Standard Error p Value

Bias 10.98 0.22 <0.0001

Gender (m = 1, f = 0) 1.20 0.32 0.0003

R2 (adjusted) 0.17

Standard error 1.29 m/s
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Figure 2. SWS in m/s of Achilles tendon in professional athletes (male = blue, female = orange).

For different types of sports and different load impacts on ATs, subgroup analysis
was performed. In the male group, (sports: football (n = 21), handball (n = 7) and sprint
(n = 4)) professional sprint athletes (14.02 m/s (13.50–14.63) showed significantly higher AT
stiffness compared with handball (11.49 m/s (10.34–12.64), p < 0.01) and football players
(12.06 m/s (11.25–12.87), p < 0.01), shown in Figure 3.
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In the female group (sports: handball (n = 6), volleyball (n = 14), sprint (n = 4) and
hammer throw (n = 9)), professional sprint athletes (12.31 m/s (11.19–13.60)) showed signif-
icantly higher AT stiffness compared with volleyball and handball players (VB: 10.88 m/s
(10.04–11.68), HB: 10.31 m/s (8.57–11.63), p < 0.05) and hammer throwers (11.03 m/s
(10.30–11.61), p < 0.05), (Figures 4 and 5). No significant difference in AT stiffness was
found between volleyball players and hammer throwers, volleyball and handball players
and handball players and hammer throwers (p > 0.05).
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4. Discussion

The role of SWE imaging in musculoskeletal applications is currently under discussion.
In clinical practice, it is widely used for the assessment of Achilles tendinopathy and as
an additional tool to confirm findings of B-mode power Doppler US of tendons. Available
data were typically obtained in smaller study populations, and there is no guideline on
musculoskeletal elastography in general for a standardized clinical application. Before we
can use tendon stiffness measured by SWE in rehabilitation or injury prevention, we need
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to establish baseline values and determine the effects of demographic characteristics such
as age, sex or BMI for professional athletes.

4.1. Influence of Anthropometric Parameters on Achilles Tendon Stiffness

Our results show a significant effect of gender on AT stiffness. Stiffness values in
male professional athletes were significantly higher than in female professional athletes
(p < 0.001). This result is in line with the tendon stiffness reported for a non-athlete study
population of similar size [20,21]; however, not in all degrees of dorsiflexion [20]. In another
study of a non-athlete population, no significant difference in tendon stiffness was found
between men and women [22]. A further study reported significant stiffness differences
between professional and semi-professional athletes due to training load [23]. Training
intensity is a relevant factor for Achilles tendon morphology [24], which is why caution is
in order when comparing results obtained in semi-professional and professional athletes.
Tendons combine elastic and viscous characteristics when undergoing deformation due
to stress, so-called viscoelasticity. They transfer forces generated by muscles to bones
to perform movements. The tendon structure is characterized by parallel bundles of
collagen (30%) and elastin (2%), which are embedded in an extracellular matrix (68%)
(water, tenocytes, mucopolysaccharide, proteoglycan gel). Mechanic loading is essential to
maintaining tendon homeostasis [25]. Changes in this molecular structure have an impact
on tendon stiffness and function [15].

Lower stiffness of the Achilles tendon has been reported for older individuals [12]. In
our study, ANOVA did not identify age as a relevant parameter, which may be attributable
to the fact that we investigated a significantly younger study population (16–29 years),
which is significantly younger than other studies (20–85 years) [12–14]. In a study of
326 healthy volunteers, Fu et al. found no correlation between shear wave velocity and
age [22]. Passive tissue stiffness and the correct measurement angle especially need to be
considered [14] to assess further examinations in older professional athletes. Furthermore,
no significant influence of BMI on tendon stiffness was found, as earlier studies also
concluded [24,26,27]. Regular pre- and post-season preventive SWE examinations of the
sport-specific exposed tendons in professional athletes may reduce injury risk by detecting
early changes in tissue stiffness [9,28].

4.2. Achilles Tendon Stiffness in Different Sports

Tendon thickness and stiffness correlate positively with the strength of the correspond-
ing muscle and might affect muscle function and force output, especially in the early phases
of muscle contraction [25,29]. Besides gender, training load and maturation have different
effects on the physical, chemical and mechanical properties of musculoskeletal tissue [24,30].
The elastic properties of tendons and muscles are influenced by activity level and show
higher tissue stiffness in athletes [23,31]. Tissue stiffness might also be modulated by other
factors including false locomotion patterns and sport types with high vertical forces, such
as sprinting [32,33]. Athletes with greater mechanical stress and repetitive microtraumas
show tendon thickening as part of structural remodeling processes and an increase in
cross-sectional area [34]. Regular strength training and loading of muscles and tendons is
known to lead to increased tendon size [18]. This increase is considered a compensatory
mechanism to reduce mechanical loads on tendons and deformation resulting from in-
creased body mass or muscle strength [29,35]. Therefore, we performed subgroup analysis
for sports type to investigate AT stiffness in relation to different locomotion patterns, as all
athletes included had training loads of >10 h per week in our study. AT stiffness values of
professional female sprinters were significantly higher than in other sports such as handball,
volleyball and hammer throw. The significant difference we found between professional
sprinters and professional male soccer players is remarkable, as training patterns and run-
ning workload are comparable in these sports [36]. However, the running surface seems to
have an important impact on AT maturation, stiffness and injury [33,37] and variable sprint-
ing patterns from different angles, especially in a soccer game, needed to be considered and
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may influence tendon load and stiffness [36]. Soccer involves more stop-and-go movement,
which may be a higher risk for injury [38] and could explain the lower AT stiffness values.
Achilles tendon rupture is a critical injury for athletes, with return-to-sport rates of around
70% [39]. Return-to-sport is not exactly defined considering return-to-play in the same
sports and at the same intensity as before [38]. In this context, AT tendinopathy and rupture
can end an athlete’s career [39]. Two studies reported the strength of the lower limb with
AT rupture to be significantly lower in comparison to the other limb after conservative or
surgical therapy [38,40]. Sport-specific return-to-play guidelines are necessary to ensure
optimal rehabilitation for injured athletes [39], and objective criteria are needed [41,42].
With both surgical and conservative treatment, AT rehabilitation is a complex and long
process [43–45]. SWE can be a useful tool to regularly monitor tendon stiffness changes
during rehabilitation, as stiffness might be the best parameter to assess the multifactorial
risk factors for AT injuries [33]. Further studies are necessary to investigate the potential of
SWE in rehabilitation after acute or chronic tendinopathy and in the rehabilitation process
after AT rupture in professional athletes.

Not only do stiffness differences between professional and semiprofessional athletes
need to be considered when SWE is used to detect abnormalities [10], but also differences
in stiffness between different sports. Overall, SWE is an easy-to-use US technique to
assess tissue stiffness in rehabilitation and preventive medicine. It is characterized by high
intra- and inter-operator reliability [46], allowing faster and more cost-efficient diagnosis
than MRI.

4.3. Role of SWE in Assessment of Achilles Tendon

US has been considered the primary imaging modality of choice, with improved
diagnostic performance in the evaluation of tendinopathic changes. Furthermore, the
dynamic assessment established US as part of the functional investigation in acute ruptures
linked to clinical examination as a point-of-care US tool. Compared to other anatomical
regions such as the patellar tendon or quadriceps tendon, there are a larger number of
studies for AT, resulting in a higher experience in Achilles tendon diagnostics, especially
for tendinopathies. The healthy AT usually provides a more homogeneous color map with
higher stiffness values compared to the patellar tendon or quadriceps tendon, whereas
the stiffness of the tendon is related to the training volume or a relevant preload and can
change, especially due to intensive training [23]. Thus, in professional athletes with a high
training volume, the baseline stiffness is higher than in semi-professional amateur athletes.

The use of SWE achieves high specificity in detecting tendinopathy, and the com-
bined use of conventional US is recommended to increase the sensitivity of the diagnosis.
In a meta-analysis, almost all studies described significantly reduced stiffness values in
symptomatic tendons in the setting of tendinopathy, which also reflects clinical experi-
ence [47]. SWE can easily be used for diagnostic and follow-up purposes to demonstrate
early changes in affected tendons and/or adaptation to the healthy contralateral side in the
context of short-term follow-up.

Although acute Achilles tendon rupture is often unequivocal on B-mode imaging and
dynamic examination, SWE can also be helpful in this setting. Total rupture usually shows
very low SWE values due to complete retraction and loss of tendon tension. This can be
used especially in partial ruptures to differentiate the ruptured and still-preserved tendon
portion, with corresponding higher stiffness values. SWE can be used in patients with AT
rupture to assess contralateral tendon stiffness and elasticity. Interestingly, Ivanac et al.
demonstrated a lower elasticity (−23%) of contralateral ATs in patients with acute AT
rupture compared to healthy individuals based on SWE findings [48]. This study’s results
show a potential disorder or compensation of contralateral tendons after surgery. Hence,
contralateral tendons may be exposed to higher force transmission after surgery in patients
who suffered from acute rupture. This may lead to a higher vulnerability for future ruptures
on the contralateral side.
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4.4. Future Aspects in SWE

Despite a great interest in SWE imaging, the published literature is still sparse and
strongly focused on cross-sectional studies with small patient numbers. Thus, the clinically
established application of SWE is mainly anchored in diagnostic questions of tendinopathy.
Here, SWE is usually used additively to the established B-Mode and Doppler Imaging
criteria and increases the diagnostic power. This addition of multiple newer US applications
is now increasingly presented as “multiparametric ultrasound”.

Currently, there is no guideline for SWE in musculoskeletal tissue. Furthermore,
the metric values given by US systems from different manufacturers are not directly
comparable. There is still no guideline in the field of MSK imaging that summarizes a
consensus on technical principles (e.g., measurement field size, region of interest or number
of measurements per area). In addition to the diagnostic approach of SWE, longitudinal
studies are currently lacking, especially in the field of sports medicine, e.g., in the context of
muscle injuries or prognostics (a possible preventive approach of SWE). The scientifically
relevant question in the coming years will be whether the early use of SWE could prevent
acute injuries in a pre-damaged tendon or an overloaded muscle. Quantitative assessment
of tissue stiffness and elasticity allows metric assessment of intrinsic tissue properties,
which may be of particular value in tissue healing or diagnosing early-stage disease if no
pathological findings can be depicted in B-Mode US or Doppler imaging. SWE may help in
the prediction of impending tendon failure, which probably helps the clinician in making
decisions for the early initiation of treatment [19].

4.5. Limitations

Nine female professional athletes in our study took an oral hormonal contraceptive and
this constitutes future work. Oral contraceptives have an impact on the natural fluctuation
of hormones [49–51]. However, the exact effect on tendon stiffness is still a topic under
debate due to less high-quality studies and contradictive results [51–53]. Other factors
such as low energy availability and psychological stress, which can lead to higher cortisol
levels and may also affect tissue properties, need to be considered [53,54]. We did not
consider the menstrual cycle phases of female athletes, which will be considered in future
studies. Further limitations of our study are the small sample sizes for the sports-specific
subgroup analysis and the relatively high scatter of measured values. This results from
the exclusion criteria of tendinopathy symptoms (pain, swelling) and ultrasound findings
(neovascularization, hypoechogenicity and tendon thickening). Further investigations
should include a larger number of athletes in different sports.

5. Conclusions

Gender and type of sports need to be considered as influencing factors when assessing
AT stiffness by SWE in professional athletes. Especially for professional athletes, easy
access to diagnostic tools is necessary to detect the early stages of injuries and to develop
preventive treatment algorithms to avoid severe tendon and muscle injuries. Further
studies are necessary to investigate larger groups of professional athletes in different sports.
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