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Abstract

Background

Improvements in computational capacity and new algorithmic approaches to data

analysis have created enormous opportunities to improve conventional diagnostics in

the hospital in recent years. Especially obstetrics, a speciality with high-dimensional

data and limited performances in their conventional diagnostic approaches for many

adverse outcomes in pregnancy, stands to benefit greatly from the application of

machine-learning. This dissertation intends to present our own work which predicts the

occurrence of adverse outcomes in preeclampsia high-risk-pregnancies and to

contextualise it with the current state of research for the application of machine-learning

in preeclampsia as well as other obstetric/gynecologic conditions in general.

Methods

The presented study is based on a patient collective of 1647 women which presented to

the obstetric department of the Charit® Universitªtsmedizin Berlin between July 2010

and March 2019. We determined predictive performance of different machine-learning

algorithms (Gradient boosted trees, Random Forest) for adverse outcomes commonly

associated with preeclampsia and compared them to models based on laboratory and

vital parameter cutoffs (blood pressure, sFlt-1/PlGF ratio and their combination with

proteinuria measurements) used in the clinic. Dataset splitting was performed in a

per-patient randomised fashion using a 90-10 split and evaluation was performed using

a 10x10-fold cross-validation approach.

Results

Our own study showed gains in predictive performance when using machine-learning

models. Accuracy for gradient boosted trees was 87 Ñ 3 % while blood pressure cutoffs

achieved only 65 Ñ 4 % and a cutoff of 38 applied to the sFlt-1/PlGF-ratio yielded an

accuracy of 68 Ñ 5 %. The positive predictive value especially improved from 33 Ñ 9 %

for the blood-pressure-cutoffs to 82 Ñ 10 % for the gradient-boosted trees classifier with

the ñfull clinical modelò consisting of blood pressure, sFlt-1/PlGF ratio and proteinuria

achieving 44 Ñ 9 % PPV. Overall we found that using machine-learning methods leads
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to great improvements in all assessed performance metrics with potential for further

enhancement using optimization on the algorithmsô output probabilitiesô cutoffs.

Conclusions

Machine-learning greatly improves the diagnostic capabilities for preeclampsia and, as

shown by many other works in this dissertation, obstetrics/gynaecology and medicine in

general. This could represent a starting point for further research which leads to more

sophisticated diagnostic or decision-support tools.
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Zusammenfassung

Einleitung

Verbesserungen in Rechenkapazitªten und neue algorithmische Ansªtze der

Datenanalyse haben groÇe Mºglichkeiten zur Verbesserung konventioneller Diagnostik

in Krankenhªusern ¿ber die letzten Jahre kreiert. Besonders die Geburtshilfe, eine

Fachrichtung mit hochdimensionalen Datensªtzen und limitierter Performance der

konventionellen diagnostischen Methoden f¿r viele der adversen Events in der

Schwangerschaft, kann stark von der Anwendung von Machine-Learning profitieren.

Diese Dissertation beabsichtigt unsere eigene Arbeit, welche das Auftreten adverser

Events in Prªeklampsie-Hochrisikoschwangerschaften vorhersagt, vorzustellen und mit

dem aktuellen stand der Forschung f¿r Machine-Learning in der Prªeklampsie sowie

Gynªkologie/Geburtshilfe in Kontext zu setzen.

Methoden

Die vorgestellte Studie basiert auf einer Patientinnengruppe von 1647 Frauen, die sich

zwischen Juli 2010 und Mªrz 2019 in der Klinik f¿r Geburtsmedizin der Charit®

Universitªtsmedizin Berlin vorstellten.

Wir untersuchten die Leistung verschiedener Machine-Learning-Algorithmen (Gradient

Boosted Trees, Random Forest) zur Vorhersage hªufig mit Prªeklampsie assoziierter

adverser Events und verglichen diese mit Modellen basierend auf klinisch

angewendeten Labor- und Vitalparameter-Grenzwerten (Blutdruck, sFlt-1/PlGF-Ratio

und ihre Kombination mit Proteinurie-Messungen).

Der Datensatz wurde auf einer randomisierten Pro-Patient-Basis in einem 90-10-split in

Trainings- und Testsatz geteilt und mittels einer 10x 10-fachen Kreuzvalidierung

evaluiert.

Ergebnisse

Unsere Studie zeigte Zugewinne an prªdiktiver Leistung durch Nutzung von

Machine-Learning-Modellen. Genauigkeit f¿r Gradient boosted trees war 87 Ñ 3 %,

wªhrend Blutdruckgrenzwerte lediglich 65 Ñ 4 % erreichen konnten und ein Grenzwert

von 38 der sFlt-1/PLGF-Ratio eine Genauigkeit von 68 Ñ 5 %. Insbesondere der positiv
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prªdiktive Wert verbesserte sich von 33 Ñ 9 % f¿r den Blutdruckgrenzwert auf 82 Ñ 10

% f¿r den Gradient-boosted Trees-Klassifizierer, wªhrend das ñvollstªndigeò klinische

Modell bestehend aus Blutdruck, sFlt-1/PlGF-Ratio und Proteinurie 44 Ñ 9 % erreichen

konnte. Insgesamt fanden wir, dass Machine-Learning Methoden zu groÇen

Verbesserungen in allen untersuchten Performance-Metriken f¿hrt, mit Potential zu

weiteren Verbesserungen durch Optimierung von Grenzwerten auf den ausgegebenen

Wahrscheinlichkeiten der Modelle.

Schlussfolgerung

Machine-Learning f¿hrt zu immensen Verbesserungen der diagnostischen

Mºglichkeiten f¿r Prªeklampsie und, wie durch viele weitere Arbeiten in dieser

Dissertation gezeigt, Gynªkologie/Geburtshilfe und Medizin im Allgemeinen.

Dies kann einen Startpunkt f¿r weitere Forschung reprªsentieren, welche zu

anspruchsvolleren Diagnostik- und Entscheidung-Support-Werkzeugen f¿hrt.
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1. Introduction

1.1 Machine-Learning

Digitization can be described as one of the defining megatrends in the 21st century.

Computers are part of every facet of modern existence, private life, industry,

governments and healthcare. This resulted in large amounts of data being created and

stored which in turn led to the task of analysing this data to obtain meaningful

information from it. Before the advent of large-scale data analysis the

human-computer-interaction was largely restricted to one-way-information transfer.

Humans could enter and retrieve information in and from the information system but

additional insight was generated solely on the human side of the interaction. To aid in

this endeavour machine-learning methods and automated algorithms for data analysis

were conceived.

The term machine-learning itself encompasses a wide variety of statistical methods

which seek to infer patterns in data via mathematical operations. These automated

processes span from relatively simple methods such as linear regression to highly

complex designs such as artificial neural networks which provide the basis for modern

deep learning strategies.

The first application for machine-learning was established in the 1950s using a

formulated approach to the game of checkers(Samuel, 1959) with theoretical

foundations for other methods such as perceptrons(Shaw, 1986) or Bayesô

theorem(Joyce, 2021) even predating this achievement.

For a significant amount of time computational power and data storage hindered the

practical application of the formulated algorithms. As both increased along an

exponential curve(ñMooreôs Law: The number of transistors per microprocessor,ò n.d.;

Schaller, 1997) applications of these algorithms grew increasingly more realistic and

implementations working on real-world problems became possible. In 1997 IBMôs

DeepBlue(Campbell et al., 2002) managed to defeat the reigning chess world champion

Gary Kasparov in a game of chess in what can be argued to be the first major public

event that demonstrated the capabilities of statistical computing in a field which hitherto

was considered to be an exclusive domain of human creativity. Further improvements in

hardware and algorithms(Ciresan et al., 2011; Le, 2013; Oh and Jung, 2004;

https://www.zotero.org/google-docs/?c7wnnD
https://www.zotero.org/google-docs/?UXd3sq
https://www.zotero.org/google-docs/?XMTZb2
https://www.zotero.org/google-docs/?Uh5SPe
https://www.zotero.org/google-docs/?Uh5SPe
https://www.zotero.org/google-docs/?9HEMx0
https://www.zotero.org/google-docs/?UTqxja
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Schmidhuber, 2015; Taigman et al., 2014) throughout the 2010s enabled deep learning

and saw the widespread application in many different contexts. The current status of

machine-learning sees its usage throughout almost every facet of data processing,

especially in data-driven markets such as financial analytics, social media, image

recognition or statistical modelling. (Dixon et al., 2020; Mohammed et al., 2016)

1.2 Application in Medicine

Although machine-learning has advanced to a significant degree over the past decades,

adoption in medicine has seen very little improvements.(ñeHealth Trend Barometer,ò

2019) Despite being one of the most data-driven sectors of human life, with dozens of

measurements taken during an average hospital stay, evaluation of the results depends

on the treating physician, which in turn are themselves increasingly more occupied by

clerical tasks and documentation.(Hill et al., 2013; Tipping et al., 2010) These high

demands and the little time for the actual medical decision-making are components of a

clinical diagnostic error rate of about 5%.(Singh et al., 2014; Winters et al., 2012)

Adoption of decision-support in the hospital is still only present at a very rudimentary

level.(ñeHealth Trend Barometer,ò 2019; ñElectronic Medical Record Adoption Model |

HIMSS Analytics - Europe,ò n.d.) Clinicians are guided in their decisions largely by

established clinical standards and standard operating procedures. Created to serve as

guidelines for the largest possible number of patients these necessarily canôt apply to

each individual to the same extent. This scenario constitutes a prime example for the

application of machine-learning techniques which, given sufficient data in both quality

and quantity, can more precisely obtain patterns present in that data and serve as a

basis for a more individualised healthcare system by categorising patients along a

multitude of axes.

1.3 Preeclampsia

Preeclampsia constitutes a major factor in the morbidity and mortality of pregnant

women and infant children with an incidence of around 3-6%(Lisonkova and Joseph,

2013; Purde et al., 2015) and high potential for severe complications such as

HELLP-syndrome, Eclampsia, placental abruption or fetal necrotizing enterocolitis,

respiratory distress syndrome and others.

https://www.zotero.org/google-docs/?UTqxja
https://www.zotero.org/google-docs/?goWExO
https://www.zotero.org/google-docs/?kYZnqH
https://www.zotero.org/google-docs/?kYZnqH
https://www.zotero.org/google-docs/?gV6oiV
https://www.zotero.org/google-docs/?sIn1xB
https://www.zotero.org/google-docs/?g6NyxR
https://www.zotero.org/google-docs/?g6NyxR
https://www.zotero.org/google-docs/?OzfofQ
https://www.zotero.org/google-docs/?OzfofQ
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Detection of these outcomes has always proven very difficult. With a variety of

unspecific symptoms and the potential for severe courses developing quickly and no

definitive diagnostic tool the recommended treatment in Germany consists of

hospitalisation and generally induced delivery at the latest possible time in the

pregnancy.(German Society of Gynecology and Obstetrics, 2019) Though in recent

years development of new biomarkers(Verlohren et al., 2014) and scoring systems(ñThe

Fetal Medicine Foundation Risk for preeclampsia calculator,ò n.d.; Wright et al., 2012)

have led to increases in the performance of negative rule-out, the problem of rule-in

meaning prediction of actual adverse outcomes from the risk condition of preeclampsia

still remains low.(Verlohren et al., 2014) This in turn leads to great distress for the

women who are often unnecessarily hospitalised and a large burden for the healthcare

system in terms of resource consumption and financial burden.(Stevens et al., 2017)

Correctly identifying women that will develop adverse outcomes therefore represents a

major challenge in pregnant womensô healthcare.

1.4 ML Application in Preeclampsia

The described situation, high dimensionality in data (ultrasound, biomarkers, standard

laboratory, patient history etc.) and no single data point sufficiently predicting the target

variable, calls for new statistical methods to integrate the entire available range.

Machine-learning techniques lend themselves supremely to this task. Provided enough

data of sufficient quality, these algorithms are theoretically capable of picking up

patterns in highly complex data and therefore identifying the patients at risk.

Furthermore the potential to make use of large amounts of data stored in clinical

information systems and direct integration with those could provide physicians with a

veritable decision-support tool.

Though significant problems such as staff-adoption and privacy concerns should be

considered, the overall potential for major improvements in patient safety, in our

estimation, outweighs the challenges regarding the implementation.(Henry et al., 2022)

We therefore hypothesised that the application of machine-learning techniques in

preeclampsia is capable of improving the identification of pregnant women who will

sustain an adverse outcome in their pregnancy.

https://www.zotero.org/google-docs/?FIv6UX
https://www.zotero.org/google-docs/?S060Rr
https://www.zotero.org/google-docs/?CZYNpI
https://www.zotero.org/google-docs/?CZYNpI
https://www.zotero.org/google-docs/?xOS2Ad
https://www.zotero.org/google-docs/?pqr137
https://www.zotero.org/google-docs/?WwBRIv
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2. Methods

2.1 Dataset & target variable

The basis for our analysis was a dataset of 1647 women across a set of 2472 samples

gathered by a dedicated team between July 2010 and March 2019 at the department of

obstetrics, Charit® University Medicine Berlin.

Exclusion criteria for participation in our study was age under 18 years, gestational age

of less than 20 weeks or unavailable measurements for sFlt, PlGF and missing outcome

reporting. Important inclusion criteria were symptoms or measurements that would

suggest an imminent preeclampsia or were highly associated with it. First, abnormally

high blood pressure measurement of above 140 mmHg systolic or 90 mmHg diastolic.

Second, proteinuria as characterised by urine dipsticks recording a value above ó++ô in

tests at least 6 hrs apart or a 24h urine protein measurement of above 300 mg. Third,

abnormal ultrasound findings such as intrauterine growth restriction (IUGR, <10th

percentile), pathological values for uterine artery, umbilical artery or foetal medial

cerebral artery. Fourth, presence of preeclampsia-related symptoms such as epigastric

pain, headaches, visual disorders, increasing presence of edema or weight gain above

a normal level. The fifth inclusion criteria was abnormal readings in specific laboratory

values such as thrombocyte count or ALT/AST elevations as signs for liver

damage.(Schmidt et al., 2022)

The patient data was organised into visits, each of which compromised the data

gathered at one presentation to the clinic. In case of multiple measurements gathered at

one visit we chose the measurement performed last. Association with adverse

outcomes and thus labelling the data in a manner fit for supervised machine-learning

applications was performed one month after birth since preeclampsia can occur after

delivery.

A significant portion of the study population (1122 patients, 68.12%), representing an

earlier version of the database, was the basis for another study conducted in our

working group by Drºge et al. in 2021.(Drºge et al., 2021)

https://www.zotero.org/google-docs/?cz6lyl
https://www.zotero.org/google-docs/?4be6J4
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Features were all information accessible via our hospitalôs clinical information system

such as biographical information/medical history, measurements of vital signs,

symptoms associated with preeclampsia or adverse outcomes, laboratory results and

ultrasound findings, resulting in a total of 114 features. For a full list please refer to

Schmidt et al.(Schmidt et al., 2022)

The target variable for our analysis was the occurrence of an adverse outcome in either

the mother or the child at any point in the future after the presentation to our clinic.

Foetal adverse outcomes included IUGR, SGA, premature birth (<=34th weeks of

gestation) due to preeclampsia, respiratory distress syndrome (RDS), necrotizing

enterocolitis (NEC), intraventricular haemorrhage, placental abruption or death.

Combined with these were the maternal adverse outcomes of disseminated

intravascular coagulopathy (DIC), pleural effusion or lung edema, cerebral hematoma,

renal failure, HELLP syndrome, eclampsia and death via a logical OR.

Data gathering relied on manual data entry using our hospital's clinical information

system (SAP Hana, SAP) and ultrasound records program (Viewpoint, GE Healthcare)

as data sources.(Schmidt et al., 2022) If a patient's records necessitated it, we relied on

written records.

2.2 Preprocessing

We did not perform interpolation on missing data by inserting newly generated values.

All missing data was signified with a special indicator variable.

The exception to this was the treatment of biographical information or data pertaining to

a patientôs medical history. If this data was missing from subsequent entries but

appeared in a prior visit, we carried it forward to all following entries of that particular

pregnancy. This did not apply to features which could be considered highly variable

between visits such as laboratory values, ultrasound data and vital parameters.(Schmidt

et al., 2022)

Categorical features such as ethnicity were replaced by indicator variables for each of

the features options. We decided not to choose one option as a so-called baseline in

order to have all information directly accessible in case of subsequent analysis.

https://www.zotero.org/google-docs/?xT3MAP
https://www.zotero.org/google-docs/?s2KLzz
https://www.zotero.org/google-docs/?Tm8lBl
https://www.zotero.org/google-docs/?Tm8lBl
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For highly specific features (sFlt, PlGF, ultrasound findings) we added additional

information by placing them along known distributions in the population at

large.(Ciobanu et al., 2019; Verlohren et al., 2014)

2.3 Algorithm explanation

Machine-learning is the basic application of algorithms to infer the relationship between

a set of n observations or feature vectors and an associatedᴦ └  ᵀ
ʖ
ƚ ᵀ

ʗ
ƚƝƝƝƚ ᵀ

ᴶ

response or dependent variable. Each observation represents a setᴧ └  ᵁ
ʖ
ƚ ᵁ

ʗ
ƚƝƝƝƚ ᵁ

ᴶ

of values in a number of categories. For a number of features the vectorᴵ

represents a single observation with a defined value for eachᵀ
ʖ

└  ᵀ
ʖʖ

ƚ ᵀ
ʖʗ

ƚƝƝƝƚ ᵀ
ʖᴵ

feature .(Hastie et al., 2009)ᵀ
ʖʖ

ƚƝƝƝƚ ᵀ
ʖᴵ

Figure 1:

Example of a supervised-learning dataset.

Each feature vector is associated with a target variable.
Own representation: LJ Schmidt

In order to find a suitable algorithm for a specific research question the methods can be

categorised along two axes - training methodology and prediction target which will

influence the choice of algorithms to use.(Burkov, 2019)

Training methodology is itself divided into four categories.

https://www.zotero.org/google-docs/?AItg9y
https://www.zotero.org/google-docs/?8Eg8UU
https://www.zotero.org/google-docs/?Yqgx1d
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First supervised learning in where each observation , is associatedᵀ
ᴶ

└  ᵀ
ᴶʖ

ƚ ᵀ
ᴶʗ

ƚƝƝƝƚ ᵀ
ᴶᴵ

with a response variable .ᵁ
ᴶ

Second is unsupervised learning, where no response variable is present and solely the

set of observations is analysed for structural patterns in the data.

Third is semi-supervised learning, a mixture between the first two categories where only

some of the observations given in the dataset are mapped to a corresponding value for

the dependent variable y.

Figure 2:

Example of a semi-supervised learning dataset

Own representation: LJ Schmidt

The fourth methodological approach is known as reinforcement learning, which

iteratively operates in a trial-and-error approach in order to maximise a given goal

metric.

The nature of our dataset, a patient collective represented by high-dimensional

feature-vectors mapped directly onto the target metric of sustaining an adverse

outcome, lends itself excellently to a supervised-learning approach.

For the specific algorithm selection we have to consider the second axis, the nature of

the prediction target variable. Supervised learning can be broadly summed in two
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specific sets of problems, categorization, where each observation is mapped to a

categorical variable, and regression, where the target variable represents a continuous

variable and the desired prediction is a value on that particular continuous scale. Our

target, prediction of an adverse outcome at any point in the womanôs future, represents

a binary target variable, which classifies our problem as categorical.

Due to inherent characteristics of our dataset, especially the prevalence of missing

values, the need for a more interpretable approach in machine-learning in

healthcare-related fields and their generally high-performance in high-dimensional

classification problems we ultimately decided to implement decision-tree-based

approaches.

Considering an especially high risk for overfitting the dataset, we furthermore chose to

enhance the decision trees by introducing the concept of boosting also known as the

gradient-boosted trees algorithm (GBTree)(Breiman, 1996; Chen and Guestrin, 2016;

Friedman, 2002, 2001; Mason et al., 1999) and bagging(Breiman, 1996), known as a

random forest classifier (RF)(Breiman, 2001; Cutler et al., 2012; Tin Kam Ho, 1995).

2.3.1 Decision trees

A decision tree is a simple model that iteratively analyses the given dataset and splits it

into distinct, non-overlapping regions similar to a Bayesian approach (see Figure 3 for

an illustration). At the beginning the algorithm surveys all features present in the dataset

and applies a number of cutoffs on them. It then selects the feature-cutoff combination

which supplies the highest purity in the resulting subsets as expressed by, in our case,

the subsetôs entropy. Entropy is given by , with being theᴓ └  ⌠
ᴪ└ʖ

ᴐ

˚ ᴸ
ᴪᴵ

  ᴴᴷᴯ ᴸ
ᴪᴵ

 ᴸ
ᴪᴵ

probability of an element in subset b belonging to group m, with being the totalᴐ

number of subsets and m the total number of features. It is evident that this value

decreases as node purity increases.(Hastie et al., 2009; James et al., 2021)

https://www.zotero.org/google-docs/?nwt5dB
https://www.zotero.org/google-docs/?nwt5dB
https://www.zotero.org/google-docs/?eLu9ld
https://www.zotero.org/google-docs/?bpqFNy
https://www.zotero.org/google-docs/?PRRvWT
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Figure 3:

Illustration of dataset-splitting by a decision tree algorithm

The dataset is being split by the decision tree at two cutoffs along a two-dimensional space (A for the x-

value and B for the y-value). The split for x > A is split in two distinct regions (y > B and y < B), which

represents the decision treeôs second level. The treeôs leaf nodes represent the datasetôs different

regions as illustrated by their colour.

Based on James, G., Witten, D., Hastie, T. & Tibshirani, R. Tree-Based Methods. in An Introduction to
Statistical Learning 327ï365 (Springer US, 2021), own Illustration

This procedure is then iteratively repeated on the resulting subdivisions in the dataset

until a predefined number of nodes or subsets is achieved.

Both algorithms used by our group build on this simple principle by constructing a series

of trees with differing target metrics and weights in case of GBTree or an ensemble of

trees by randomly choosing features to build the trees from.

2.3.2 Random forests

Random forests use two strategies to improve upon the basic concept of decision trees

since small shifts in the data can result in relatively large changes to the decision tree.

The term for this - changes in the dataset predicting large changes in the algorithm - is
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called variance. To decrease variance random forests use bagging, that means creating

multiple decision trees from random subsamples of the dataset and random feature

selection, that means at each split only a subset of features is allowed to be analysed

for entropy reduction. Bagging reduces variance by ñaveragingò the featuresô

distributions throughout random subsets while the random feature sampling provides a

necessary decorrelation of features. That means that in case of one or more very strong

predictors present, these would not appear in all trees of the random forest thus making

it more robust to changes in these strong predictors in other datasets.

Predictions for classification are made by majority vote of all created decision trees.

(Hastie et al., 2009; James et al., 2021)

2.3.3 Gradient boosted trees

Gradient boosting also relies on building a number of decision trees but approaches it in

an iterative fashion. At each step in the algorithm it fits the dataset and predictionᴱ

to a shallow decision tree, usually of depth 3 - 8 and then adds this tree toᴦƚ  ᵁ
ᴱ

previously created trees with a penalty parameter or learning rate via the formulaǚ

.(James et al., 2021) The learning rate governs the gradualᴮ
ᴱ⌐ʖ

└  
ᴶ└ʖ

ᴱ⌠ʖ

˚ ǚᴮ
ᴶ
 ⌐  ǚ ᴮ

ᴱ

increase in ability for classification thus allowing each new tree to only contribute a

small part to the overall decision. The label for the next tree is then calculated by

comparing the prediction to the response of the -th step . Thisᵁ
ᴱ

ᴱ ᵁ
ᴱ⌐ʖ

 └  ᵁ
ᴱ
 ⌠  ᵁ

ᴱ
 

residual can be interpreted as the error the new tree made which needs to be corrected

by subsequent trees and provides the target for the next tree. (Hastie et al., 2009;

James et al., 2021)

2.4 Hyperparameter tuning

Tuning of hyperparameters was performed using a 10x10-fold cross-validation

approach which was also used in gathering the final results. Though random search

algorithms provide a veritable alternative, we chose to perform a complete grid-search

over the defined hyperparameters.(Higgins, 2020; Refaeilzadeh et al., 2009)

https://www.zotero.org/google-docs/?3sZb2R
https://www.zotero.org/google-docs/?sScaXe
https://www.zotero.org/google-docs/?DsVOOb
https://www.zotero.org/google-docs/?DsVOOb
https://www.zotero.org/google-docs/?D2mL8s
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2.5 Dataset splitting

Because of the relatively small dataset we chose to rely on a train-test approach with a

90-10 % split for training, testing and validation respectively.

We also chose to only move a patientôs medical record as a whole, so each pregnancy

was either part of the training set or the test set but not both.

2.6 Clinical decision making models

In order to properly compare the machine-learning models to clinical decision-making

we tried to imitate it by also establishing models that were based on defined cutoff on

certain parameters (blood pressure, proteinuria, sFlt-PlGF-ratio).

The first model was a basic blood-pressure model, which predicted an adverse outcome

in the future if either the systolic blood pressure was above 140 mmHg or the diastolic

blood pressure was above 90 mmHg.(World Health Organization, n.d.)

The second model was based on known cutoffs on the sFlt-PlGF-ratio which is known

to be highly predictive for adverse outcomes, especially for the rule-out of such

events.(Drºge et al., 2021; Verlohren et al., 2014)

Third we combined the first two models via a logical OR and additionally added

proteinuria measurement via dipsticks reading above ó++ô or a 24h urine sampling

containing more than 300mg of protein.

2.7 Evaluation metrics

We based our statistical evaluation on basic confusion-matrix-derived metrics which are

a very commonly used tool for ML-algorithm evaluation. We focused on sensitivity,

specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy,

area under the receiver operating characteristics curve (ROCAUC) and the F1-Score,

which combines sensitivity and positive predictive value in a single metric via the

harmonic mean: .ᴔʖ └  ʗ ƴ  ᴻᴭᴶᴻᴱᴼᴱᴾᴱᴼᵁ ƴ ᴞᴞᴤ 
ᴻᴭᴶᴻᴱᴼᴱᴾᴱᴼᵁ ⌐ ᴞᴞᴤ

https://www.zotero.org/google-docs/?ZHaUSU
https://www.zotero.org/google-docs/?H8JjIm
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2.8 Cutoffs on probability score

The native statistical classifiers were initially set up to produce a probability score using

a naive cutoff for positive classification, labelling any output of as positive in┼ ʕƝ ʚ

terms of likelihood of sustaining an adverse outcome in the future.

We also investigated whether optimising this cutoff for any of the ñcompositeò metrics

would result in significant performance gains for the other metrics assessed.

For each fold and individual run on the test data we examined the output of the

machine-learning classifiers and applied all possible cutoffs with two-point decimalᴫ

precision and . We recorded the cutoffs that resulted in the highest value for ʕ ┴ ᴫ ┴ ʖ

the individual composite metric as well as the algorithmôs performance on the other

assessed metrics at that cutoff.

2.9 Statistical analysis

In case of comparison of normally distributed variables we chose Welchôs t-test(Welch,

1947) to test for statistical significance. If one or both variables did not follow a standard

distribution we used Wilcoxonôs signed rank test(Wilcoxon, 1945). The test for standard

distribution was performed using the Kolmogorov-Smirnov-Test.

Categorical variables were compared using Fisherôs exact test.

P-values of were considered significant while values were considered┴ʕƝ ʕʚ ┴ʕƝ ʕʕʖ

highly significant.

We applied Bonferroni-corrected significance in case of comparison of multiple

variables meaning for assessed features we chose a significance level of withᴶ ǚ
ᴶ ǚ

being the overall applied significance level.(Dunn, 1961)

2.10 Feature importance & interpretation

Interpretable machine-learning is an immense concern in the current research

community. Methods that rely on a black-box-approach are harder for humans to accept

and their results are more difficult to justify. Our base learners, decision trees, are

among the most interpretable machine-learning models, but their interpretability is

greatly diminished by our use of enhancement techniques, gradient boosting and

random forest (bagging and feature sampling).

https://www.zotero.org/google-docs/?UDKLQ0
https://www.zotero.org/google-docs/?UDKLQ0
https://www.zotero.org/google-docs/?wWtfHW
https://www.zotero.org/google-docs/?5KrAbK
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We attempted to give back some explicability by analysing the decision-making via

shapley-values. Shapley values(Aumann and Shapley, 2015; Hart, 1989; Merrick and

Taly, 2019; Roth, 1988; Shapley, 1951), introduced in 1951, frame a prediction as a

coalitional game ñplayedò by the instanceôs feature.

The basic definition of shapley values is the presence of a value function withᴾƜ  ᴡ ι Ε

with being the set of features. The shapley value or contribution toᴡ ҡ  ʖƚƝƝƝƚ ᴸ  ʖƚƝƝƝƚ ᴸ

the prediction for a feature is given by:ᴱ Ю ʖƚƝƝƝƚ ᴸ

ǝ
ᴱ

ᴾ  └  
ᴡҡ ʖƚƝƝƝƚᴸ  ɴ ᴱ

˚ ƯᴡƯƠ ᴸ⌠ƯᴡƯ ⌠ʖ Ơ
ᴸƠ  ᴾ ᴡ щ ᴱ  ⌠  ᴾ ᴡ

This can be interpreted as the average contribution this feature makes to a possible set

of features over the total number of permutations of features which can be formed

without that specific feature. (Ichiishi and Shell, n.d.)

2.11 Model calibration

A model's calibration is the quality of fit for the expression of a modelôs output as a

predicted probability for an observation to match the algorithm's output.

It can, for example, be expressed as the mean absolute error (MAE) of the bucketed

model output vs the fraction of positives in that bucket.

ᴑ └  
ᴱ └ ʖ

ᴐ

˚ Ư ᴸ
ᴱ
 ⌠  ᴮᴺᴩᴫ

ᴱ
Ư

being the number of buckets, being the average predicted value for a givenᴐ ᴸ
ᴱ

observation in that bucket, being the fraction of actual instances of the targetᴮᴺᴩᴫ
ᴱ

value in that bucket.

2.12 Software

All statistical analysis and data processing was performed using the Python

programming language. Machine-learning models were implemented using the

xgboost-package(Chen and Guestrin, 2016), data processing relied on the

pandas(team, 2020), scikit-learn(Pedregosa et al., 2011) and numpy(Harris et al., 2020)

software-packages. Calculation of shapley values relied on the shap-package for

Python.(Lundberg et al., 2020; Lundberg and Lee, 2017)

https://www.zotero.org/google-docs/?s6nZtE
https://www.zotero.org/google-docs/?s6nZtE
https://www.zotero.org/google-docs/?7CQLBA
https://www.zotero.org/google-docs/?kO0fXI
https://www.zotero.org/google-docs/?nzW52V
https://www.zotero.org/google-docs/?NX35ok
https://www.zotero.org/google-docs/?ZMsf5w
https://www.zotero.org/google-docs/?dQXzwc
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3. Results

3.1 ML-model results

We were able to show that the machine-learning classifiers greatly outperformed the

conventional cutoff-based diagnostic tools on our dataset(Schmidt et al., 2022).

Table 1:

Statistical classifiers' and clinical decision making modelsô performance

GBTree: Gradient boosted trees, RF: Random forest, PPV:positive predictive value, NPV: negative
predictive value, ROCAUC: receiver operating characteristics area under the curve, SD: standard
deviation, PlGF: placental growth factor, sFlt-1: soluble fms-like tyrosine kinase-1
Source: Schmidt et al. Machine-learning prediction in preeclampsia. Am J Obstet Gynecol 2022.

The most significant improvement could be made in terms of PPV, a metric that has

traditionally been the most difficult to make significant improvements on using

biomarkers or ultrasound findings. All other metrics also proved superior to conventional

predictions. The gradient-boosted trees algorithm achieved the highest performance

with an accuracy of 0.87 Ñ 0.03 %, high specificity (0.95 Ñ 0.03 %) and PPV (0.82 Ñ

0.10 %) (see Table 1 for results). Another noteworthy property of the ML approaches is

the substantial increase in the F1-score as a metric for the correct classification of

events (0.74 Ñ 0.06 for GBTree, 0.37 Ñ 0.07 for sFlt-1/PlGF-ratio, 0.37 Ñ 0.07 for

multi-variable clinical model).

The predictive cutoff-optimisation for one of the composite metrics also yielded very

promising results. Performance was generally improved in comparison to the ñnaiveò

https://www.zotero.org/google-docs/?CrXNQQ
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classifiers (see Table 2 for results). The accuracy-optimised gradient-boosted trees

performance showed great promise with a PPV of 0.87 Ñ 0.07 an accuracy of 0.89 Ñ

0.03 % and an F1-Score of 0.77 Ñ 0.05, equivalent to that of the F1-Score-optimised

model.

Table 2:

Cutoff-optimised modelsô performance
GBTree: Gradient boosted trees, RF: Random forest, PPV:positive predictive value, NPV: negative
predictive value, ROCAUC: receiver operating characteristics area under the curve, SD: standard
deviation
Source: Schmidt et al. Machine-learning prediction in preeclampsia. Am J Obstet Gynecol 2022.
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3.2 Dataset statistics

Our patient collective encompassed a total of 1647 patients with 2472 visits with the

median number of visits being 1. Gestational age showed variety with a SD of 41 days

and a mean of 244 days (34 weeks of gestation + 6 days). 914 patients in our dataset

had a delivery before the 34th gestational week.

The total number of patients with adverse outcomes was 386 with 339 of those

occurring before the womanôs 34th week of gestation. The most common adverse

outcome was premature birth due to preeclampsia or related illnesses with 253 women

sustaining that outcome. The second most common outcome was respiratory distress

syndrome (RDS) which occurred in 190 children. Maternal outcomes were

comparatively rare with the most common being HELLP-syndrome (33 women), renal

failure (8 women) and lung edema (5 women).

Features that differed on a highly significant level between the group of women that

sustained an adverse outcome and those that did not were diastolic and systolic blood

pressure measurements, gestational age, all features related to biomarker

measurements (absolute values, percentiles, deviations from mean) for sFlt-1 and PlGF

and their ratio, pulsatility indexes for the umbilical and uterine arteries.

3.3 Shapley values

We are reporting the mean absolute shapley values for each feature assessed. The

features that, on average, contributed the most to the algorithms output were

gestational age in days (0.725 Ñ 0.073), sFlt-1-PlGF-ratio outside of the 95th percentile

(0.237 Ñ 0.021), sFlt-1-PlGF-ratio multiple of the median (MoM) (0.225 Ñ 0.021),

absolute sFlt-1 value in ng/dL (0.184 Ñ 0.023), PlGF value as deviation from the median

(0.142 Ñ 0.031) and the womanôs height (0.142 Ñ 0.031). Please refer to Schmidt et.

al(Schmidt et al., 2022) for the complete list.(Schmidt et al., 2022)

https://www.zotero.org/google-docs/?9QsBEz
https://www.zotero.org/google-docs/?DoiTAl
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3.4 Model calibration

The modelôs calibration was also satisfactory and well aligned with the ideal calibration

curve (see figure 3, table 3). The mean predicted values for each fold also aligned well

with an ideal calibration.

Table 3:

Model calibration as expressed by fraction of predicted positive and actual fraction of positives
Source: Schmidt et al. Machine-learning prediction in preeclampsia. Am J Obstet Gynecol 2022.

Figure 4: Exemplary mean

calibration for fold 1

Exemplary calibration curve for the first fold (average of 10 models). It represents the mean

predicted output of the classifier GBTree mapped onto the fraction of positives among the

observations with that output.

Source: Schmidt et al. Machine-learning prediction in preeclampsia. Am J Obstet Gynecol 2022.
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4. Discussion

4.1 Short summary of results

In the presented work we were able to show that models trained on the full feature set

proved superior to cutoff-based decision-making currently in use in hospitals, especially

in terms of PPV. The biomarkersô (sFlt-1/PlGF-ratio)(Verlohren et al., 2014) introduction

already provided a gain in specificity but lacked sufficient improvement in the positive

predictive value.(Drºge et al., 2021; Verlohren et al., 2014) Our models close this gap

and expand the possibilities for identifying adverse outcomes throughout the pregnancy.

Another major improvement is the focus on adverse outcomes rather than the prediction

of preeclampsia itself. Preeclampsia constitutes a major risk factor for secondary

disease, but doesnôt necessarily constitute manifest harm to the mother or the child. By

focussing on these direct impacts we are able to more accurately assess which women

need more immediate attention by the physicians and which women can safely be

discharged from the hospital.

The models also appear to be well calibrated which means they can return a rough

estimate of the likelihood of sustaining an adverse outcome. This lends itself to an

application as a decision-support tool because it places the output in an interpretable

context for the physician. This is also strengthened by the inclusion of shapley-values to

formulate the modelôs weighing of the different input features.

Overall we demonstrate a novel approach to the challenging topic of accurately

identifying women at risk for adverse outcomes among the already high-risk-pregnancy

population.

This aligns well with our hypothesis that the application of machine-learning in medicine

will improve patient outcomes.

4.2 Interpretation of results

Overall we were able to show that machine-learning could present a veritable

improvement for the clinical process patients undergo at the hospital. Correctly

identifying women and children at risk for severe adverse outcomes still poses a

significant challenge our model can help overcome. Diagnostics usually either relied on

https://www.zotero.org/google-docs/?yqwATa
https://www.zotero.org/google-docs/?x6hOY3
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the prediction of preeclampsia itself(Jhee et al., 2019; Lundberg et al., 2018; Mariĺ et

al., 2020; Sufriyana et al., 2020a, 2020b) or predicted adverse outcomes without the

use of artificial intelligence(Drºge et al., 2021; Mirkovic et al., 2020; Wright et al., 2012).

Comparisons to these papers can be found in the Schmidt et al (2022)(Schmidt et al.,

2022).

Research directly predicting pregnancy complications using advanced statistical

methods is still in its infancy but significant steps have been made, especially in recent

years. In 2020 Escobar et. al(Escobar et al., 2021) used electronic health records as the

basis for development of a screening algorithm for severe pregnancy complications.

They examined a variety of different algorithms, also encompassing the ones presented

in our study with gradient boosted trees also returning the best performance. Their

patient collective however differed greatly from the one we examined in our study, first

in terms of size, constituted and second in risk-profile, which was generally lower than in

our cohort. Also they predicted their outcomes in a much shorter period between 3 and

12 hours, which our models extend to at any point in the future pregnancy. (Comparison

to Jhee, Lindstroem, Maric etc.)

In a recently published review Bertini et al.(Bertini et al., 2022) investigated the overall

application of machine-learning in prediction of pregnancy complications. They analysed

31 studies that examined a variety of different pregnancy outcomes which all relied on

machine-learning as the statistical tool of choice. They grouped the studies in three

broad categories based on the underlying data: electronic health records, medical

imaging and laboratory parameters, all of which we combine in our approach.

Compared to the electronic-health-record (EHR) subset our dataset was rather limited in

size due to the non-automated data gathering, single-centre-focus and plenitude of

features of our study, but in comparison to the laboratory marker and imaging

subgroups our dataset proved reasonably sizeable. In terms of results our study aligns

well with the overall group, especially compared to the EHR subset, which showed a

mean ROC AUC of 0.799Ñ0.069, although this comparison encompasses a variety of

different targets and should be viewed with care. All these studies, as well as our own,

were simply retrospective studies and the need for prospective evaluation has to be

emphasised.

https://www.zotero.org/google-docs/?lbQe2v
https://www.zotero.org/google-docs/?lbQe2v
https://www.zotero.org/google-docs/?dwFQ6E
https://www.zotero.org/google-docs/?tWkSqG
https://www.zotero.org/google-docs/?tWkSqG
https://www.zotero.org/google-docs/?5ZeXn4
https://www.zotero.org/google-docs/?LjBWna
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In conjunction with these studies our concept further underscores the potential

machine-learning has in making pregnancies safer. This applies to both identification of

patients at risk for complications and identification of patients that exhibit risk factors but

wonôt develop complications. This gives both security to women at risk and removes the

need for preemptive hospitalisation and elaborate diagnostic procedures or even

unnecessary induction of labour.

4.3 Embedding the results into the current state of research

Machine-learning techniques provide an immense potential to change the future of

patient healthcare in pregnancy. Decision support systems and their application in the

clinic will lead to safer and more individualised healthcare for both mothers and children.

This capacity though is not unique to pregnancy research, OBGYN or even medicine

but rather represents a general trend in technological progress due to exponential

increases in computational power (see figure 2).

Figure 5: transistor count over time

Development of transistor counts as a proxy

for computational power on commercial

CPUs from 1970 to 2022

Data Source:

"https://en.wikipedia.org/wiki/Transistor_count"

Machine-learning has the potential to

completely transform healthcare for

pregnant women. We have already shown that approaches similar to our own can

improve detection of adverse outcomes for women in preeclampsia. These results have

also been shown in a variety of other pregnancy-related diseases(Bertini et al., 2022;

Davidson and Boland, 2021; Iftikhar et al., 2020) and adjacent topics, for instance

reproductive medicine(Wang et al., 2019).

https://www.zotero.org/google-docs/?PCY0Ih
https://www.zotero.org/google-docs/?PCY0Ih
https://www.zotero.org/google-docs/?20vV4n
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These advances are not restricted to pregnancy research or gynecology in general but

rather substantiate the potential advanced data analysis has in medicine. These

data-driven applications can increase reliability, validity and accuracy of every step of

the patientôs journey through the healthcare system.

4.3.1 Diagnostics

In diagnostics for example machine-learning can help in correctly identifying diseases

and even give a prognostic evaluation. This is generally possible for every single

modality that is currently available in the clinic, as long as training data is readily

available in electronic form. Examples include skin lesion classification from simple

photography in dermatology(Chan et al., 2020; Dhivyaa et al., 2020; Kassem et al.,

2021; Marka et al., 2019; Pathan et al., 2018; Thomsen et al., 2020), in which digital

images are being assessed for pathologies or identification of liver pathologies in

CT/MRI scans, which uses similar approaches to reliably detect steatosis, fibrosis or

neoplastic diseases(Ahn et al., 2021; Choi et al., 2018; Hill et al., 2021; Yasaka et al.,

2018b, 2018a; Zhou et al., 2019). These show that machine-learning, relying on a data

source and a target variable, can be employed successfully in a variety of different

contexts. There is no conceivable limit to which data sources can be utilised, examples

encompass electronic health records, physiciansô and nursesô notes in free text,

laboratory parameters, medical imaging, vital parameters etc. This first step of the

patient journey after contact with a physician provides an immense potential for

automated diagnostic support-tools and although prospective studies are still available

only in limited quantities some suggest performance that is at least en-par with trained

clinicians and sometimes even surpasses them.

4.3.2 Therapy

The next step in the patient journey after diagnosing the disease would be identification

and application of the correct treatment for the particular disease. Even though for many

diseases this process can take a straight-forward path, especially in the field of

pharmacological therapy the increasingly complex interactions and possible treatments

pose a significant challenge to clinicians. An archetypal example is antibiotic therapy

which needs targeted medication specific to the causing agent, be it bacteria, viruses or

fungi.

https://www.zotero.org/google-docs/?ZXThhe
https://www.zotero.org/google-docs/?ZXThhe
https://www.zotero.org/google-docs/?cBjajL
https://www.zotero.org/google-docs/?cBjajL


Discussion 27

Predicting susceptibleness to available antibiotics currently depends on heuristics

encompassing the clinicians intuition regarding the origin of the infection, the suspected

range of possible causing agents and the locally observed resistance of these

agents.(Paul-Ehrlich-Gesellschaft f¿r Infektionstherapie e.V. (PEG), n.d.)

This process is error-prone and improvements in the statistical process can yield

immense benefits(Paul et al., 2006), especially considering rising antibiotic resistances

and the general lack of innovation regarding new antimicrobial agents.(World Health

Organization, 2021) This complex, high-dimensional situation constitutes a prime

example for the application of machine-learning algorithms. Recent works have shown

that the time for correct antimicrobial resistance determination can be dramatically

reduced(Lv et al., 2021) and that correct treatment decision(Komorowski et al., 2018) as

well as antibiotic resistance prediction can be improved (Lewin-Epstein et al., 2021;

Oonsivilai et al., 2018; Peiffer-Smadja et al., 2020; Weis et al., 2020). Though further

research, especially prospective evaluations, are still needed, these examples show

promising potential for the use of artificial intelligence in the therapeutic process in

addition to the already shown capacities in diagnostics.

4.3.3 Doctor-patient relationship

Employing artificial intelligence in the hospital has immense potential to change the

relationship between physicians and patients.

Several hypotheses have been posed in what this change will constitute for doctors.

One opinion is that artificial intelligence will ultimately replace physicians in their role as

diagnosticians(Pearson, n.d.) and therefore the current age marks the beginning of this

shift.

Another school of thought takes a more integrative position on the future of medical AI

and postulates that AI will complement doctorsô work.(Karches, 2018; Pearson, n.d.;

Recht and Bryan, 2017) This will in turn free the physician from much of the menial

documentation tasks(Hill et al., 2013) and shift work more towards the interaction with

patients and ñperform more value-added tasks, such as integrating patientsô clinical and

imaging information, having more professional interactions, becoming more visible to

patients and playing a vital role in integrated clinical teams to improve patient

care.ò(Recht and Bryan, 2017) This view is also supported by evidence that artificial

https://www.zotero.org/google-docs/?EguyX4
https://www.zotero.org/google-docs/?uQYANR
https://www.zotero.org/google-docs/?4pZsbH
https://www.zotero.org/google-docs/?4pZsbH
https://www.zotero.org/google-docs/?5i3JxM
https://www.zotero.org/google-docs/?ryfzhs
https://www.zotero.org/google-docs/?tc7dU4
https://www.zotero.org/google-docs/?tc7dU4
https://www.zotero.org/google-docs/?d1wwWq
https://www.zotero.org/google-docs/?dwsBkA
https://www.zotero.org/google-docs/?dwsBkA
https://www.zotero.org/google-docs/?4h46Wk
https://www.zotero.org/google-docs/?f3Kbbz
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intelligence systems in combination with a clinician outperform either alone(Hekler et al.,

2019; Sakai et al., 2022), which supports an application of ML as an additional tool for

treating physicians.

4.4 Strengths and limitations of the study

The main limitations with this study are connected to the machine-learning statistics and

to the data sources.

The main risk in any utilisation of machine-learning-techniques lies in overfitting on a

particular dataset. Overfitting means that the patterns and logic derived from one

dataset do not apply to other, previously unknown data, i.e. the algorithm canôt

reproduce the performance observed on the test or validation set when presented with

input that was hitherto unknown. Another problem connected with ML-approaches is the

general difficulty of comprehending the decisions made by the algorithms due to their

highly complex nature. We tried to mitigate both problems by conservatively following

best-practice guidelines(Higgins, 2020) and establishing secondary metrics such as

shapley values to discern the algorithmôs judgements.

From this we observed the algorithms placing strong emphasis on ultrasound and the

biomarkers sFlt-1 and PlGF, which require a certain standard in terms of technological

equipment and restrict the application to settings that exhibit a high standard of

healthcare.

The limitations connected to the study population can be categorised in sampling

biases, study size and the retrospective character of the study. The sampling biases

that should be taken into consideration are the high-risk population, which naturally

increases the frequency of adverse outcomes and introduces a possible intervention

bias, the data collection at a single centre and connected to that the generally low

diversity regarding ethnicity and sociocultural composition. The studyôs size also proves

relatively small compared to other machine-learning research, which is owed to the

laborious process of manual data gathering.

https://www.zotero.org/google-docs/?lU50mm
https://www.zotero.org/google-docs/?lU50mm
https://www.zotero.org/google-docs/?m7dOMf
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The main strength of our study is the definitive increase in predictive power over the

clinical standard and biomarkers alone. It also introduces another level of objective

evaluation apart from the current reliance on the physiciansô clinical experience.

Furthermore it serves as a formidable basis for a following prospective trial to validate

the modelôs in a clinical setting and the development of a possible medical tool for

application in a clinical setting. In addition, by relying on a well formulated approach and

machine-learning best-practices(Higgins, 2020) we are confident to have mitigated

many of the above mentioned limitations. Even though generalisation has yet to be

shown by applying the algorithms to new, structurally more diverse datasets, we are

confident that we indeed did obtain a veritable signal from our data.

4.5 Implications for practice and/or future research

Our study underlines the potential machine-learning techniques have in application to

clinical problems. This in turn leads to two different avenues of future research,

application of machine-learning with regard to the problem defined as the basis for our

publication and application of machine-learning to medical problems in general.

Concerning our research topic, a variety of new problems should be explored -

application of the trained algorithms on new populations in relation to multiple centres

and geographical diversity to test for generalisation, inclusion of other adverse

outcomes and inclusion of patients with varying risk profiles. These analyses should be

performed to solidify the external validity of our work and to create a larger dataset to

train new algorithms from.

For preeclampsia our work constitutes an immense increase in statistical predictive

ability, especially in terms of positive predictive value. This potentially allows for

substantial changes in current clinical practice which at the moment consists of stringent

hospitalisation upon formulating the suspicion of preeclampsia.(German Society of

Gynecology and Obstetrics, 2019) Although only around 5% of these cases actually

develop severe consequences(Magee et al., 2022; Purde et al., 2015) the current lack

of rule-in tests necessitates this procedure. Our algorithms close this gap and allow for

more women to stay in the comfort of their homes. It also improves overall safety due to

the improved identification of patients at risk for severe outcomes. The models

https://www.zotero.org/google-docs/?02D6EV
https://www.zotero.org/google-docs/?BMzxHU
https://www.zotero.org/google-docs/?BMzxHU
https://www.zotero.org/google-docs/?cI2nCj
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presented in the paper could, after careful consideration and testing, prove as viable

bases for a clinical decision-support tool.

The implications for application of machine-learning in general, though our publication

only represents a miniscule amount of additional knowledge, lies mainly in the further

substantiation of the potential advanced statistical methods have as part of an

integrated clinical system. The application of these methods should be carefully

examined in both a horizontal direction, meaning a widening of the total topics ML is

employed in, and a vertical direction, meaning that the entire clinical process screening,

diagnostics, treatment and prevention should be considered in further analysis.

Though many limitations definitely apply to machine-learning, for example difficulty of

new knowledge generation and the potential to obtain erroneous results due to

statistical fluctuations, these tools are crucially underrepresented in clinical

practice.(ñeHealth Trend Barometer,ò 2019; ñElectronic Medical Record Adoption Model

| HIMSS Analytics - Europe,ò n.d.)

They have the potential to free resources, time and attention, and give the treating

physicians more time for the doctor-patient interaction. This development, while also

conferring cost-benefits by increasing the medical systems overall accuracy, might be

the most important medical innovation of the 21st century.

https://www.zotero.org/google-docs/?YQBogi
https://www.zotero.org/google-docs/?YQBogi
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5. Conclusions

The work presented in this text constitutes a significant improvement over the current

standard of care in women with a high-risk profile for preeclampsia and associated

adverse pregnancy outcomes. Though further investigation is of crucial importance, we

present a stepping stone for a line of research at the end of which definitive clinical

impact, in the form of decision-support or diagnostic tools, can be achieved.

Overall we have shown that the application of machine-learning to medical information

can yield immense benefits for patient-care and the overall work-structure in hospitals.

They can support diagnostics, increasing precision and reliability of virtually every single

measurement that is taken in clinical practice. They can yield more precise treatments,

as shown in the case of antibiotics, diagnoses, as demonstrated in case of

preeclampsia, skin lesion- and liver radiology classification and overall improve the

standard of care.

The motor behind these changes, improvements in computational power and

information storage have shaped our society over the course of the last decades as few

technical innovations have before. They have the potential to drastically change

medicine and the way we treat health as well. This work serves as a small contribution

to make this possible.
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