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Abstract

In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model in 
general curved space-time considering interactions between two scalar fields in a classical gravitational 
background. The thermalization phenomena is then studied from the obtained de Sitter solution using quan-
tum quench from one scalar field model obtained from path integrated effective action. We consider an 
instantaneous quench in the time-dependent mass protocol of the field of our interest. We find that the dy-
namics of the field post-quench can be described in terms of the state of the generalized Calabrese-Cardy 
(gCC) form and computed the different types of two-point correlation functions in this context. We explic-
itly found the conserved charges of W∞ algebra that represents the gCC state after a quench in de Sitter 
space and found it to be significantly different from the flat space-time results. We extend our study for 
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the different two-point correlation functions not only considering the pre-quench state as the ground state, 
but also a squeezed state. We found that irrespective of the pre-quench state, the post quench state can be 
written in terms of the gCC state showing that the subsystem of our interest thermalizes in de Sitter space. 
Furthermore, we provide a general expression for the two-point correlators and explicitly show the thermal-
ization process by considering a thermal Generalized Gibbs ensemble (GGE). Finally, from the equal time 
momentum dependent counterpart of the obtained results for the two-point correlators, we have studied 
the hidden features of the power spectra and studied its consequences for different choices of the quantum 
initial conditions.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction and summary

The study of Brownian motion [1–6] of a particle coupled to a thermal bath has assumed 
great significance owing to its relevance as a robust model for open quantum systems in the 
context of macroscopic properties of a particle in a general environment. This has been used to 
study quantum dissipation [1–5,7,8] and quantum decoherence due to the system’s interaction 
with the environment [9]. This model of quantum brownian motion has proven to be useful not 
only in studies of open quantum systems but also in the field of quantum cosmology [10–19], 
quantum correlation problems [20–22], among others. It has also been extensively used in the 
context of AdS/CFT [23–25]. The usual approach of tackling this problem involves use of the 
influence functional technique developed by Feynman and Vernon [26]. The contribution of the 
environment degrees of freedom is quantified by the influence functional and one obtains the 
reduced subsystem of interest whose dynamics is of particular interest. A very well-known model 
in this direction was given by Caldeira and Leggett [2]. For the cosmological application look at 
ref. [27], where the authors have studied the origin of time dependent mass from the coupling to 
an inflaton field which is assumed to be in a coherent state leading to a time dependent mass and 
further the phenomena of particle production is studied in detail. For more details see also the 
other refs. [28–30].

The process of thermalization has grown to be an important area of research in the recent past. 
The advent of holography has provided a one-to-one correspondence of the subject of thermaliza-
tion to the issue of gravitational collapse of a black hole. Quantum quench is one such technique 
where the process of thermalization can be realized in the system in the post-quench phase. In a 
quantum quench, some parameter of the Hamiltonian change over a finite duration of time, and 
the initial wave function in the pre-quench function evolves to a state after the quench that is not 
stationary. The evolution of the state after the quench is then guided by the post-quench Hamil-
tonian which is in general time-independent. This kind of study is crucial to find out if and when 
a closed system reaches equilibrium subject to any disturbances. Due to the growing interest in 
studying thermalization for integrable systems, there has been huge progress in the understand-
ing of thermalization in scalar fields and extensive studies in the direction can be found in refs. 
[31]. Besides the theoretical motivation, in many experimental studies, the process of quantum 
quench has been realized using cold atoms and the post quench phase can be described in terms 
of free scalars or fermions [32]. Hence, the study of quantum quench involving scalar fields is of 
prime significance not only theoretically but also experimentally.

Quantum quench has been extensively studied in various contexts in recent times. Specifically, 
several studies have focused on the background of flat space-time, with the system undergoing a 
2
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sudden change in its parameter under a well-defined quench protocol. It has been seen that the 
system undergoing a quench tends to retain some memory of the sudden change at late times 
independent of its initial state condition. This quench protocol has also found its applications in 
the cosmology of the early universe. It has been used to study the characteristics of fast phase 
transitions, under the settings of early cosmology where temperature promptly decreases. An ap-
plication of the quenching mechanism in the context of inflation provided many new results that 
were in contrast with the flat space-time results. During inflation, the post quench state in the 
background of de Sitter space-time doesn’t retain the memory of the quench at late times which 
was in contrast with the flat space-time [33]. Quantum quench has been an effective model to 
study the undergoing transition to the broken phase, which is also used to study various physical 
processes such as baryogenesis due to electroweak phase transition [34]. The process of quantum 
quench has not only been studied for free fields but for the interacting fields as well. Late time 
thermal characteristics of interacting quantum fields have also been studied using the quenching 
mechanism in [35], especially for the φ4 model. Unlike free field theory which exhibits an ex-
ception in the 2d case due to a quantum quench of the energy gap or mass, interacting fields tend 
to thermalize even for the massless 2d case.

The quench approximation has also been studied in the context of conformal field theory 
[36,37]. It was applied to study the properties of universal fast scaling of conformal operators 
undergoing fast quench, in the limit where the coupling suddenly changes its value from zero to 
δλ. The scale by which the holographic conformal operator changes has been found to be univer-
sal, i.e., the same scaling factor appears in the sudden quench limit of free scalar and fermionic 
field theories. One of the most interesting applications of quantum quench comes in the context 
of holographic thermalization, i.e., the thermalization of boundary operators, which has a direct 
correspondence with the collapse of gravitational matter in the bulk. Hence memory retention of 
quench protocol at late times by post quench state results in the retention of information of the 
collapsing matter by the final black hole [38]. In other words, a quantum quench could probe the 
inside geometry of a black hole. Besides all these applications, quantum quench could also be 
used to study general systems which don’t involve phase transitions.

In this paper, we aim to study the thermalization phenomena at late times of two-point cor-
relation functions from the solution obtained in the background of de Sitter space-time using 
quantum quench protocol. By making use of the well known Caldeira Leggett Model, we start 
with two interacting scalar fields in the background of de Sitter spacetime. By doing the Eu-
clidean path integration over one scalar field, we construct the reduced subsystem of our interest 
consisting of one scalar field described by an effective partition function. We then argue that our 
Caldeira Leggett (CL) Model in the context of cosmology, in the background of curved space-
time which describes the particle production, could be translated in the language of Schrödinger 
quantum mechanics in one dimension where one studies the motion of electron in a wire in the 
presence of an impurity. We then identify the potential involved in the Schrödinger equation 
with the quench protocol and study the thermalization properties of two-point correlators, their 
spatial derivatives and canonically conjugate momentum field in the ground state and general-
ized Calabrese-Cardy (gCC) states. We find that the dynamics of the post-quench state of the 
field of our interest can be described in terms of the state of the generalized Calabrese-Cardy 
(gCC) form and compute different types of two-point correlation functions in this context. We 
explicitly find that our post quench gCC state could be represented by the conserved W∞ algebra 
after the mechanism of quench protocol in de Sitter space and found the conserved charges to be 
significantly different from the flat space-time.
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The underlying strong physical motivations and implications of this work are as follows:

1. The main motivation of the present work to provide a detailed framework of computing the 
cosmological correlation functions from a given open quantum mechanical system. Finding 
such correlations within the framework of cosmology is itself a very interesting problem it-
self. Recently, using the same two field coupled model with a specific type of interaction (the 
QFT generalized version of CL model that we have used as our starting point of our paper) in 
some refs. [39,40], the authors have tried to analyse this problem to address the phenomena 
of decohorence and recoherence from the evolution of the system reduced density matrix 
using the cosmological master equation perspective. However, in the mentioned references 
the authors have not addressed the structure, behavior and the cosmological consequences 
of such correlations in the early time scale of the cosmological evolution. Though they have 
very clearly and in detail have established their findings and can be treated as the benchmark 
in a real sense in the context of cosmology with open quantum system. Two possibilities 
one can utilize to study the underlying framework of cosmological correlations from time 
dependent coupling parameter between the proposed two filed coupled CL model. Quantum 
mechanical quench naturally serves the purpose to provide the explicit form of the time de-
pendent coupling parameter within the present framework. The mentioned two possibilities 
are slow and sudden time dependent profile for quench which helps us to trigger the ther-
malization process studied in the later half of this paper. We adopt the possibility of having 
fast or sudden quench which serves the purpose very smoothly in the present context.2 Sud-
den quench actually helps us to construct the accurate quantum states before quench, after 
quench and after sufficient enough time when the underlying physical system fully thermal-
izes. Once we fix the quantum initial condition, which is appearing in terms of the correct 
choice of the initial vacuum state, the structure of the pre-quench state is automatically fixed. 
Next, using such pre-quench state one can immediately construct the post-quench state using 
Bogoliubov transformation and also using the Dirichlet or Neumann type of boundary con-
ditions. Finally, using this specific structure of the post-quench state one can able to fix the 
corresponding structure of the quantum state which can directly contribute and trigger the 
thermalization process in the present context of discussion. These constructed states helps us 
to explicitly compute the cosmological correlations before quench, just after quench and af-
ter a sufficient enough time when the thermalization is achieved. Before this particular work, 
these possibilities have not been explored in great detail for open quantum systems and we 
have tried our best to provide answers to the corresponding question.

2. Now it might be established in great detail, but a natural question comes in our mind that 
what the utility of the cosmological correlation computed from the present QFT generalized 
version of CL model in the de Sitter background? The specific answer to this question is 
as follows. We all know that the micro structure and the quantum mechanical origin of the 
reheating process is not well known and corresponding theoretical framework is not estab-
lished yet. Till date this topic is completely untouched by the researcher due to having the 
lack of knowledge regarding the micro structure of reheating process. We strongly believe 

2 In a more realistic cosmological set up, where the present methodology can be directly applicable, the scale of sudden 
quench can be fixed before reheating, more precisely before achieving thermalization. It might be fixed at end of inflation 
or just after the end of inflation. In the case of warm inflation since there is no reheating involved the framework and 
the thermalization is achieved completely in a different way, the choice of the quench scale should be chosen very 
appropriately.
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that, since we have now a proper understanding of the structure of the quantum states which 
helps us to thermalize an underlying quantum mechanical system and we also know how 
exactly to quantify the two-point cosmological correlation and its corresponding spectrum 
in the Fourier space, using the present methodology one need not to be forcibly assume ther-
malization of a theoretical set up written in the background of de Sitter space-time. We also 
believe that the developed methodology in this work can able to address many unexplored 
issues related to the phenomena of reheating in cosmology, which is treated completely from 
the phenomenological point of view before this work.

3. The prime motivation of using the CL model within the framework of cosmology is as fol-
lows. Actually this model automatically provide the theoretical origin of incorporating the 
phenomena of Quantum Brownian Motion in the present context. Now naturally another cru-
cial question comes in our mind that why at all Quantum Brownian Motion is needed within 
the framework of cosmology? A correct answer to question when we try to incorporate the 
effects of anisotropy and inhomogeneity without introducing any concept of cosmological 
perturbations in the present framework. Quantum Brownian Motion within the framework 
of cosmology naturally helps us to incorporate the effects of anisotropy and inhomogeneity 
without introducing any perturbations. Such anisotropic and inhomogeneous effects helps 
us to construct the pre-quench state, post-quench state and the state responsible to achieve 
thermalization. In an effective framework where two fields are interacting via complicated 
interactions, we really don’t have any proper understanding of the path integration technique 
over an unwanted field in which at the end we are not interested in. This is because of the 
fact that, having complicated two field interactions within the framework of effective field 
theory we really don’t know how to quantize these fields in a proper technical sense. CL 
model is the simplest framework where we really have understanding as well as control over 
the technical computational part that how to do the path integration over the fields which 
describes the thermal bath.

4. Also the present framework allows us to study the particle production process during and 
after reheating with the help of the constructed post-quench state and the state responsible 
to achieve thermalization in the present framework. Signatures of such particle productions 
can be directly found in the enhancement of the power spectra in Fourier space, which we 
have explicitly computed from the two-point cosmological correlations in this paper.

5. Last but not the least, additionally, the present framework can also be utilized to study the 
natural origin and outcomes of warm inflation where in absence of reheating one can ther-
malize an underlying theory.

The main results of the paper are as follows:

• Our prime motivation in this work, is to study the thermalization phenomenon in de Sit-
ter space-time. It is important in the sense that if a system does not thermalize, we can’t 
study its equilibrium properties for the system under consideration. This phenomenon was 
studied using free quantum field theories with massive scalar and fermion fields earlier in 
1 + 1 and 1 + 2 dimensional flat space-time [41,42], but not, to the best of our knowledge, 
in the context of de Sitter space, which has its own cosmological importance. In this paper, 
we have demonstrated how one can implement the same methodology to study the ther-
malization phenomena using free quantum field theory of a scalar field having an effective 
time-dependent mass term in 1 +3 dimensional de Sitter space written in planar coordinates.
5
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• To implement this methodology we use the phenomena of quantum mechanical quench in 
our setup. This is a very successful technique providing a consistent theoretical way to equi-
librate and hence thermalize a quantum mechanical system, initially out of equilibrium due 
to some response in the system. This technique provides a continuous description of the 
system in the associated time scale as it helps to express the quantum mechanical state of 
the system just before thermalization in terms of the state before applying quench. In this 
case, explicit solution of the time evolution of the quantum state from the time-dependent 
Hamiltonian of the system in 1 + 3 dimensional de Sitter space is not needed.

• We do not use this methodology in our work in an ad hoc fashion. We provide a consis-
tent theoretical framework from the beginning where one can naturally implement the above 
mentioned mechanism. In this work, we start with a theory of quantum Brownian motion 
in a general curved space-time background, described in terms of two scalar fields quadrati-
cally interacting with each other having minimal gravitational interaction, canonical kinetic 
terms as well as mass terms for both the fields. The model can be treated as a quantum 
field theoretic generalization of the well known Caldeira Leggett model, used to study the 
phenomena of quantum Brownian motion in the context of quantum mechanics. The original 
Caldeira Leggett model is approximated by a harmonic oscillator coupled to the environment 
consisting of N oscillators, which are integrated out. However, in our case we have taken a 
simplified version where instead of N scalar fields we have a single scalar field as our envi-
ronment, which is technically identified with a noise field. On the other hand, the other scalar 
field in this context is identified to be the signal field, our main point of interest is to study 
the thermalization phenomena by implementing the methodology of quantum mechanical 
quench in 1 + 3 dimensional de Sitter space. This hitherto unexplored possibility was not 
explored before in 1 + 3 dimensional de Sitter space and has cosmological consequences.

• Since the quantum Brownian motion is studied here in 1 + 3 dimensional de Sitter space, the 
signal and noise fields are dependent on both space and time. From the beginning, both the 
fields are considered to be inhomogeneous. See refs. [12,43–50] where a similar approach 
has been followed earlier in various contexts. This approach is usually adapted to study out-
comes of cosmological perturbation theory in the presence of a scalar field. There the field 
is taken be homogeneous in the 1 + 3 dimensional de Sitter background and on top of that 
the inhomogeneous fluctuation of the field appears due to space-time-dependent perturbation 
with respect to the background. But in our computation we don’t need to perform any pertur-
bation on the background 1 +3 dimensional de Sitter space-time. The inhomogeneous effect 
in the signal and noise fields are considered from the beginning due to random movement in 
space-time in the presence of quantum Brownian motion.

• Since we are interested in the signal field, we path integrate the noise field using the Feynman 
path integral technique, treating the background 1 +3 dimensional de Sitter space classically. 
This is thus a semi-classical treatment allowing for the extraction of the information of the 
signal field.

• The quantum effective action of the signal field, in the Euclidean signature, is constructed 
using the saddle point technique, where the path integration is implemented at the local min-
imum of the noise field appearing in the model, described above. After carrying out the path 
integration, it is observed that the mass of the signal field gets modified in presence of the 
coupling parameter of the signal and noise field and the mass of the noise field. Here, during 
the implementation of the saddle point technique it is assured that at the local minimum of 
the noise field the gravitational back-reaction effect also gets minimized.
6
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• As we are interested in understanding the large time behavior of the system in 1 + 3 dimen-
sional de Sitter space, the contribution from the quantum correction terms in the effective 
action goes to zero as in that limit the noise kernel appearing from two-point noise-noise 
field correlation function decays exponentially. As a result, the Klein Gordon equation of 
motion of the signal field appears to be similar to a damped parametric oscillator instead of 
a forced one in presence of the Hubble term in the d’Alembertian operator.

• Next, we Fourier transform the equation of motion in the momentum space. The sudden 
quench protocol in the effective mass profile of the signal field is implemented and the equa-
tions of motion for both the pre-quench and the post-quench phases of the evolution of the 
system under consideration are solved.

• Using the continuity condition for the solutions of the field and its conjugate momenta, we 
compute the Bogoliubov coefficients. This helps obtaining the solutions before the quench 
in terms of the solutions after quench and vice versa.

• After constructing the pre-quench, post-quench and the post thermalization state of the sys-
tem, we study the signal-signal two-point correlation functions in the momentum space.

• Last but not least, instead of doing the exact computation of the two-point functions in the co-
ordinate space, we study a much more observationally relevant quantity known as the power 
spectrum and observe various non-trivial features in the spectrum. We have also found that 
at a certain value of the co-moving wave number, the numerical amplitude of the spectrum 
exactly matches with the result obtained from the power spectrum using cosmological per-
turbation theory. This is quite interesting in the sense that it helps us to conclude that at very 
large time limit, when the effect of quantum corrections in the effective action for the signal 
field vanishes, the power spectrum evaluated from this computation and from cosmological 
perturbation theory exactly matches. On top of that our obtained results have the advantage 
that they naturally thermalize the system using quantum quench. This is not yet properly 
understood in the context of quantum fluctuations generated from cosmological perturbation 
theory.

The organization of the paper is as follows:

• In Sec. 2, we review the Caldeira-Leggett model in quantum mechanics and a quantum field 
theoretic generalized version of it in curved space-time consisting of scalar fields interacting 
with each other. We derive the effective action for the scalar field of our interest by path 
integrating out the contribution of the other field.

• In Sec. 3, we consider the solutions of the mode functions in spatially flat de Sitter space-
time and by computing the Bogoliubov coefficients, derive the conserved charges of the W∞
algebra for the quench profile considered in this paper. We further provide a generalized 
expression of the correlation functions for different initial starting states of the pre-quench 
Hamiltonian. We choose the ground state as well as some squeezed state of the initial Hamil-
tonian as the starting wave functions and showed that the final state in the post-quench phase 
can be expressed in the gCC form. We also compute the thermal correlators to check whether 
the subsystem thermalizes or not.

• In Sec. 4, we provide the plots of the power spectrum obtained from the correlators for all 
different choices of the initial vacuum state and do a comparative analysis.

• In Sec. 5, we conclude and discuss possible future prospects of the present work.
7
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2. Quantum field theoretic generalization of Caldeira-Leggett model in curved space

In the Caldeira-Leggett (CL) model the phenomenon of quantum dissipation was discussed 
and closed equations for such a quantum system were obtained. For the purpose of studying 
such phenomenon, a particular model describing such system-bath interaction was chosen and 
the parameters of the model were fitted in such a way that the classical equations of Brownian 
motion were reproduced.

2.1. The two field interacting model

In this section, our prime objective is to provide the quantum field theoretic generalized ver-
sion of Caldeira-Leggett model in a curved space-time. In general this framework is commonly 
used to describe Quantum Brownian Motion [51–53]. To describe this set up let us first start with 
the following two scalar field interacting theory, which is described by the following action:

SCL[φ,χ]

=
∫

d4x
√−g

⎡
⎢⎢⎢⎢⎣
(

−1

2
(∂φ)2 + m2

φ

2
φ2

)
︸ ︷︷ ︸

Free theory of φ

+
(

−1

2
(∂χ)2 + m2

χ

2
χ2

)
︸ ︷︷ ︸

Free theory of χ

+ cφχ︸︷︷︸
Interaction

⎤
⎥⎥⎥⎥⎦ . (2.1)

In this description both the fields are minimally coupled to the classical background gravity. In 
the above action, the first two underbrace terms represent two free massive scalar fields φ and 
χ and the last term represent the quadratic interaction term between them having interaction 
strength c which is a function of space-time in general to describe an open quantum system. 
Physically it represents the coupling strength of the system (signal field χ ) and the environment 
(noise field φ) in the Markovian limiting situation when the parameter c is dependent on both 
space and time strongly. Such Markovian limiting situation is directly associated with the inher-
ent memory of the evolution of the each of the mentioned fields and their interactions. However, 
as our goal is to develop a cosmological set up out of the present open quantum field theory 
model in the weak coupling regime of the theory where the interaction between the system and 
the bath degrees of freedom is considerably small, so that one can safely apply the path integral 
formalism to integrate out the bath contribution to write down an effective field theory of the 
system field and then apply the perturbation theory in such a fashion that the outcomes become 
trustworthy. Such weak coupling limiting approximation within the framework of open quantum 
field theory is commonly known as the non-Markovian limit which can be implemented when 
the coupling between the system and the bath don’t remember any previous past memory in the 
evolution and behaves according to the instantaneous information provided to the system-bath 
combined open quantum set up. In the simpler language this can only be implemented when the 
associated coupling parameter is slowly varying function of space-time. If we closely look into 
our model action then it can be clearly visible that the coupling parameter c don’t have any ki-
netic term. This is simply chosen from the perspective of non-Markovian quantum critical quench 
(instantaneous information) is applicable within the framework of open quantum system which 
is one of the key ingredients of the underlying physical concept studied in this paper. Since the 
parameter c don’t have any kinetic term because of the non-Markovianity we can safely consider 
the fact that such parameter vary extremely slowly with respect to space and time. In the initial 
8
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part of the computation of the path integral formalism before introducing the explicit mathemat-
ical structure of the space-time metric we will treat the coupling parameter c between the system 
and bath becomes extremely weak under the influence of non-Markovian perturbative approx-
imation and for this reason in general very slowly with space-time both. However, in the later 
half of this paper once we describe the space-time structure in terms of the spatially flat quasi 
de Sitter metric, one can consider that the coupling parameter between the system and bath c
become only time dependent due to having isotropy and homogeneity in this cosmological back-
ground. Though in this specific case also non-Markovian weak coupling approximation is strictly 
maintained throughout the analysis to validate the physical outcomes of the perturbation theory 
in the context of a cosmological set up which is described in terms of an open quantum system 
as designed in this paper. A time dependent heaviside function which describes a sudden quench 
protocol is one of the promising choice of the coupling parameter c which can suffice the purpose 
and in our discussions related to cosmology we haver explicitly used this functional form. We are 
identifying this action as the very simplest quantum field theory version of the Caldeira-Leggett 
model in curved space-time. In this description, the quantum harmonic oscillators are replaced 
by the scalar fields, which is quite justifiable. By following the same logical arguments applied in 
the Caldeira-Leggett model, in the present quantum field theoretic construction we path integrate 
over the field φ and construct an effective action for the field χ . This is because of the fact that 
within the description of Quantum Brownian Motion we have identified φ as the noise field and 
χ is the field, of the system of interest.

To proceed further, let us write down the total contribution in the potential for the φ and χ(x)

fields as appearing in the above action:

V (φ,χ) =
(

m2
φ

2
φ2 + m2

χ

2
χ2 + cφχ

)
. (2.2)

From this one can ask a question that for a given value of χ(x) what is the minimum of the above 
potential, which can be answered as:(

∂V (φ,χ)

∂φ

)
φ=φ0

∼ m2
φφ0 + cχ0 = 0 =⇒ φ0 ∼ −cχ0

m2
φ

, (2.3)

(
∂2V (φ,χ)

∂φ2

)
φ=φ0

∼ m2
φ > 0 =⇒ minimum. (2.4)

Now at this point one can really think of the correctness of considering the minimization of 
the potential with respect to one field, where both the fields as well as the coupling parameter 
is space-time dependent. The confusion arise because of the fact due to having space-time de-
pendence in the coupling our general notion guided us to simplify the problem by solving the 
classical equations of motion of both fields, and due to having the coupling among both the fields 
we will have coupled equations in both the cases. Though this is the perfect approach to treat the 
underlying problem under consideration, but using this approach solving the coupled system of 
two fields is almost impossible in general. Particularly in the case where the system and the bath 
degrees of freedom are strongly coupled to each other and Markovian approximations are valid. 
It may be done for very special type of restricted cases, which we obviously don’t want to do in 
this paper. The justification of performing minimization are as follows point-wise:

1. First of all, to solve this problem using the simplistic approach we have assumed that the 
coupling between the two fields vary with background space-time very slowly, so that one 
9
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can approximately neglect the space and time derivatives of the coupling parameter from this 
present computation. For this reason we take, ∂μc(x) ∼ 0. This approximation is completely 
justifiable with the weakly coupled regime of open quantum field theory where the system 
and bath degrees of freedom follow non-Markovian approximations to maintain the pertur-
bativity throughout the analysis performed in this paper. Particularly when we implement 
the designed technology within the framework of cosmology driven by a open quantum sys-
tem we consider that in the background of quasi-de Sitter space-time the coupling parameter 
is independent of space but vary very slowly with respect to the time coordinate for which 
one can safely neglect the time derivatives of the coupling parameter where this methodol-
ogy and the prescribed framework is further applied explicitly in the later half of this paper. 
To implement such described framework and minute details one needs to parametrize the 
behavior of the coupling parameter very precisely. In the later half of this paper once we 
start discussing about the cosmological implications of open quantum set up designed in this 
paper we have used sudden quench time dependent profile which actually helps us to pre-
pare quantum states to achieve effective thermalization in the present context. Such sudden 
quench (memoryless profile) protocol supports all the initial prerequisites that we have used 
to maintain the weak coupling approximation in terms of non-Markovianity as well as the 
perturbaitivity throughout the computation performed in the rest part of the paper.

2. Now in between two fields χ is identified to be signal field and χ is identified to be the 
noise field in this framework, out of which we want to construct the effective theory of the 
signal field χ at the end by integrating out the contributions from the noise (bath) degrees 
of freedom. For this purpose we treat the set up as an open quantum field theoretic system 
along with the tools and techniques of quantum quench to sufficiently trigger the process 
of achieving thermalization within the framework of primordial cosmology. To technically 
perform this step we have considered a flat direction along the φ field and the position in the 
field space is implemented at the point of minimum, which is at:

φ = φ0 ∼ −cχ0

m2
φ

. (2.5)

3. Our next job is to rewrite the action around the point φ = φ0, which gives us:

SCL[φ,χ] ≈
∫

d4x
√−g

[
−1

2
(∂ (φ − φ0))

2 + m2
φ

2
(φ − φ0)

2

− 1

2
(∂χ)2 + m2

χ

2
χ2 + c (φ − φ0)χ

]
. (2.6)

After substituting φ0 ∼ − cχ0

m2
φ

we get the following simplified form of the action:

SCL[φ,χ] ≈
∫

d4x
√−g

[
−1

2
(∂φ)2 + m2

φ

2
φ2 − 1

2
(∂ (χ + χ0))

2

+ m2
χ

2
χ2 + cφ (χ + χ0)

+ c2

2m2
φ

χ2
0 + c2

m2
φ

χχ0

]
. (2.7)

Now we use the field redefinition, χ + χ0 = χ̃ , which further gives:
10
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SCL[φ, χ̃ ] ≈
∫

d4x
√−g

[
−1

2
(∂φ)2 + m2

φ

2
φ2 − 1

2
(∂χ̃)2 + m2

χ

2
χ̃2 + cφχ̃

+ 1

2

(
c2

m2
φ

− m2
χ

)
χ2

0 +
(

c2

m2
φ

− m2
χ

)
χ̃χ0

]
. (2.8)

4. Further, we use the following constraint condition on the system-bath coupling parameter:

c = mφmχ, (2.9)

which helps us to remove the contributions from the last two terms ads appearing in the 
above mentioned equation (2.8). Consequently, we get the following simplified expression 
for the open quantum field theory set up which further can be used to remove the contribution 
of the bath by implementing path integral technique.:

SCL[φ, χ̃ ] ≈
∫

d4x
√−g

[
−1

2
(∂φ)2 + m2

φ

2
φ2 − 1

2
(∂χ̃)2 + m2

2
χ̃2 + cφχ̃

]
. (2.10)

Here the following effective potential for the field χ̃ :

Veff(χ̃) = m2

2
χ̃2 where m ∼ mχ = c/mφ �= mφ, (2.11)

where m is the effective mass term of the newly introduced redefined χ̃ field which strictly 
satisfy the constraint condition as stated in equation (2.9). Here it is important to note that, 
the constraint condition as stated in equation (2.9) also pointing towards the fact that though 
we have used the field redefinition, χ + χ0 = χ̃ , but in this construction the old bath field χ
is not extremely far from the newly defined bath field χ̃ . The direct consequence of this fact 
is that the mass of both the fields are of the same order i.e. m ∼ mχ .3

5. In terms of the above mentioned effective potential for the field χ (which is actually χ̃ ) one 
can further recast the previously mentioned model action as:

SCL[φ,χ] =
∫

d4x
√−g

[
−1

2
(∂φ)2 + m2

φ

2
φ2 − 1

2
(∂χ)2 + Veff(χ) + cφχ

]
,

(2.12)

using which we now perform the path integration over the field φ in the next subsection. 
In this description we use a semi-classical treatment where we consider the background 
gravity classically and the fields quantum mechanically, which enables the determination of 
the partition function and path integration over the field φ.

6. Now before going to further technical derivations and the corresponding discussions let us 
further clarify few important issues which one needs to understand very clearly. Let us now 
mention these issues in detail which we believe makes the theoretical ground of the proposed 
framework more stronger and will be also helpful to understand the rest of the computations 
performed in the later half of this paper.

3 For the further computational purpose henceforth we will not use the notation χ̃ and instead of this for simplicity we 
will write it as χ . However, one needs to always remember that this new system field χ is different from the old system 
field χ .
11
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Apart from the techniques used to reduce the problem in the language of quantum mechan-
ical path integral one can use different prescriptions for the field redefinition to reduce the 
two field coupled model to a single field set up where the coupling term is absorbed. Let us 
consider the following two field redefinitions which may be useful:

Field redefinition I : � = 1√
2

(φ + iχ) , �† = 1√
2

(φ − iχ) , (2.13)

Field redefinition II : �(+) = √
2 (φ + χ) , �(−) = √

2 (φ − χ) , (2.14)

using which the model action can be further recast as:

Using Field redefinition I :
SCL[φ,χ] → SCL[�,�†]
=
∫

d4x
√−g

[
−1

2
(∂�)† (∂�) +

(
m2

φ + m2
χ − 2ic

)
�2

+
(
m2

φ + m2
χ + 2ic

)(
�†
)2

+2
(
m2

φ − m2
χ

)
�†�
]
, (2.15)

Using Field redefinition II :
SCL[φ,χ] → SCL[�(+),�(−)]
=
∫

d4x
√−g

[
−1

2

(
∂�(+)

)2 − 1

2

(
∂�(−)

)2

+1

2

(
m2

φ + m2
χ

2
+ c

)(
�(+)

)2

+1

2

(
m2

φ + m2
χ

2
− c

)(
�(−)

)2

+1

2

(
m2

φ − m2
χ

)
�(+)�(−)

]
. (2.16)

From the above mentioned obtained structures after field redefinitions it clearly suggests 
that the interaction term only absent when we have a very special case, mφ = mχ . Under this 
condition the two coupled scalar field theory is decoupled to a single complex scalar field or 
two copies of real scalar fields having no interaction term. In this case there is no need of 
performing path integral to construct an Effective Field Theory as various fields degrees of 
freedom are completely decoupled in the absence of interaction term. However, it is impor-
tant to note such type of field redefinitions are only allowed if we are strictly considering a 
closed quantum mechanical system where the quantum system under consideration is adia-
batically shielded from the environment and not interacting with the any type of thermal bath. 
However, our objective is to study open quantum system and its cosmological applications 
in this paper. For this reason this particular possibility is discarded in this context.
Using the previously mentioned Field redefinition II one can also consider another situation 
where mφ �= mχ , particularly mφ > mχ , which give rise to the positive interaction strength 
12
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in the newly field redefined description.4 In this limit two newly defined fields �(+) and 
�(−) interacting with each other which one cannot able to ignore the interaction even after 
performing field redefinition. In this case one needs to apply path integral formalism to 
integrate out the heavy degrees of freedom from the description and to construct an Effective 
Field Theory description of the light degrees of freedom. This is another possibility using 
which one can also construct the theory of system-bath interaction within the framework 
of open quantum field theory set up. However, apart from having another possibility we 
will stick to the previous methodology and the corresponding field redefinition used in the 
previous part of the computation to construct an Effective Field Theory of a system from the 
interacting system-bath model of open quantum field theory set up as proposed earlier.

2.2. Quantum partition function and effective action

In this section our prime objective is to construct the quantum partition function and the 
effective action [54] for the field χ(x) by path integrating over the field φ(x). To perform this 
one needs to compute the following quantity:

Zeff[χ] :=
∫

Dφ exp [iSCL[φ,χ]] = exp [iSeff[χ]] . (2.17)

However, instead of performing the above mention path integral in the Lorentzian signature 
we will do it in the Euclidean signature which can be obtained by replacing Seff

CL[φ, χ] with 
the Euclidean action iSeff

E,CL[φ, χ]. In this new notation the above mentioned quantum partition 
function takes the following simplified form:

Zeff[χ] :=
∫

Dφ exp
[
−SE

CL[φ,χ]
]

= exp
[
−SE

eff[χ]
]
. (2.18)

Here, Seff[χ] and SE
eff[χ] are the effective action for the field χ in the Lorentzian and Euclidean 

signatures, respectively.
In the Euclidean signature the quantum partition function can be further simplified to the 

following form5:

Zeff[χ]
= Z(0)

eff [χ] exp

[∫
d4x
√−g(x)

∫
d4y
√−g(y) c(x)χ(x) Gφ(x, y) c(y)χ(y)

]
, (2.19)

4 Here it is important to note that, using the Field redefinition I along with the limiting situation mφ �= mχ and mφ >

mχ one cannot able to construct the Effective Field Theory description of open quantum system as it described in terms 
of single complex degrees of freedom. Since in this paper we are interested only in pen quantum set up where system-bath 
two field interaction is necessarily required, this possibility is also discarded in this context of discussion.

5 In the expression for the quantum partition function we have used the general space-time metric where the coupling 
parameter between the system and bath degrees of freedom is taken to be space-time dependent but the dependency is 
very slow so that the derivatives approach to zero. This is because of the fact that we can only perform the computation of 
the partition function in the Euclidean signature only when the perturbative approximations holds good perfectly, which 
can be implemented only in the weak coupling regime of system-bath interaction. In this weak coupling regime of the 
open quantum field theory this is technically applicable only when we can treat the coupling parameter as a memoryless 
parameter. This directly implies that we are working in the regime where non-Markovianity is maintained strictly and 
this can only possible only when system-bath coupling varies very slowly with the background space-time coordinates.
13
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where Gφ(x, y) is the Feynman Green’s function (or the propagator) in this construction, which 
appears as a result of the two-point correlation of the φ field in a specific classical gravitational 
background. In the context of Quantum Brownian Motion this is commonly identified as the noise 
kernel. The explicit form of this Feynman Green’s function is given by the following expression:

Gφ(x, y) =
(

1

�x + m2
φ

)(
δ4(x − y)√−g(x)

)
, (2.20)

where the D’Alembertian operator in general gravitational background can be defined as:

�x = 1√−g(x)
∂μ

[√−g(x) gμν(x)∂ν

]
= gμν(x)∇μ∇ν . (2.21)

For a given gravitational classical background one can explicitly compute the mathematical 
structure of this Green’s function. Additionally, the quantum partition function in the Euclidean 
signature without interaction (c = 0) for the free massive theory of the χ field is given by the 
following expression:

Z(0)
eff [χ] = Z(0)

eff [0] exp

[
−
∫

d4x
√−g

{(
−1

2
(∂χ)2 + Veff(χ)

)}]
. (2.22)

Here we define the contribution from the Euclidean quantum partition for the free massive scalar 
field φ, after doing the path integration, as:

Z(0)
eff [0] =

∫
Dφ exp

[
−
∫

d4x
√−g

{(
−1

2
(∂φ)2 + m2

φ

2
φ2

)}]

= 1√
Det
(�x + m2

φ

) . (2.23)

From this derived result the effective action for the field χ can be computed as:

SE
eff[χ] = − ln [Zeff[χ]]

= 1

2
ln
[
Det
(�x + m2

φ

)]
+
∫

d4x
√−g

{(
−1

2
(∂χ)2 + Veff(χ)

)}

−
∫

d4x
√−g(x)

∫
d4y
√−g(y) c(x)χ(x) Gφ(x, y) c(y)χ(y). (2.24)

Up to this point the results are valid for any arbitrary general gravitational space-time. Now we 
derive the results with quasi de Sitter solution described by the following line element written in 
conformal time coordinate:

ds2 = a2(τ )
(
−dτ 2 + dx2

)
, (2.25)

where the scale factor and the determinant of the metric is defined as:

a(τ) = − 1

Hτ
and
√−g(τ) = a4(τ ). (2.26)

For quasi de Sitter space-time considering the Gaussian part of the kinetic operator of the 
noise field φ having mass mφ we get the following simplified expression:
14
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Z(0)
eff [0] = 1√√√√[Det

(
1

a2(τ )

(
∂2

∂τ 2 − ∇2 + 2H(τ )
∂

∂τ

)
+ m2

φ

)]
τ=τT

= 1√√√√[ exp

(
Tr

(
ln

[
1

a2(τ )

(
∂2

∂τ 2 − ∇2 + 2H(τ )
∂

∂τ

)
+ m2

φ

]))]
τ=τT

= 1

mφT

∞∏
n=1

(
1 +
(

mφT

2πn

)2)−1

= 1

mφT

∞∏
n=1

{
n2(

n2 +
(

mφT

2π

)2)
}

= 1

2
cosech

(
mφT

2

)
, (2.27)

where we have:

τT = − 1

H
exp(−HT ) =⇒ T = 1

H
ln

(
− 1

HτT

)
. (2.28)

Here T represents the IR cut-off scale on the co-moving time. The physical origin comes from 
the fact that here during the integration over the co-moving conformal time instead of using 
−∞ < τ < 0 (which is 0 < t < ∞) we need to use −∞ < τ < τT (which is 0 < t < T ) to 
avoid the IR divergence at the late time scale T where CMB observations take place. This makes 
Z(0)

eff [0] finite. However, the final outcomes, which is the correlation functions as well as the 
equation of motion for the field χ will be completely independent of such choice in this paper.

Then the corresponding quantum partition function in the quasi de Sitter space can be ex-
pressed as:

Zeff[χ] = 1

2
cosech

(
mφT

2

)
exp

[
−
∫

d4x
√−g

{(
−1

2
(∂χ)2 + Veff(χ)

)}]

× exp

[∫
d3x
∫

d3y

− exp(−T H)/H∫
−1/H

dτ
√−g(τ)

− exp(−T H)/H∫
−1/H

dτ ′√−g(τ ′)

× c(τ )χ(x, τ ) Gφ(x − y, τ, τ ′) χ(y, τ ′)c(τ ′)
]
, (2.29)

where the noise kernel or the propagator Gφ(x − y, τ, τ ′) can be expressed as:

〈φ(x, τ )φ(y, τ ′)〉 = Gφ(x − y, τ, τ ′). (2.30)

Additionally, we have:

〈φ(x, τ )〉 = 0 = 〈φ(y, τ )〉. (2.31)

Here we assume that the coupling parameter is only time-dependent in the de Sitter background 
for simplicity and there are no explicit or implicit dependencies on the space coordinates.
15
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In this computation the temporal part of the propagator or the noise kernel can be computed 
as:

Gφ(x − y, τ, τ ′) = 1

4π2

∣∣∣∣∣�
(
νφ

)
�
( 3

2

)
∣∣∣∣∣
2 cosh

(
mφ

{∣∣τ − τ ′∣∣− T

2

})

sinh

(
mφT

2

)

× 1

|x − y|3−2νφ
× 1[

|x − y|2 − (∣∣τ − τ ′∣∣− iε
)2 ]

= 1

4π2

∣∣∣∣∣�
(
νφ

)
�
( 3

2

)
∣∣∣∣∣
2

exp

(
− mφ

∣∣τ − τ ′∣∣)

×
(1 + exp

(
mφ

∣∣τ − τ ′∣∣) exp(−mφT )

1 − exp(−mφT )

)

× 1

|x − y|3−2νφ
× 1[

|x − y|2 − (∣∣τ − τ ′∣∣− iε
)2 ] , (2.32)

where the mass parameter νφ for the field φ is given by the following expression:

νφ =
√

9

4
− m2

φ

H 2 . (2.33)

Here, we have used the fact, in two different conformal times τ and τ ′ the Hubble parameters 
are exactly identical. Here we consider quasi de Sitter phase which is used throughout the paper. 
Only the tricky part is, instead of using the explicit structure of the interaction potential we are 
going to use a sudden quench profile in the effective mass of the required χ field which serves 
the same purpose in the present work effectively. Such choice actually helps us both theoretically 
as well from the observational perspective. We all know using just a quadratic potential of the 
χ field having constant mass one cannot satisfy strictly the observational constraints on inflation 
(from the amplitude, tilt of the spectrum and tensor-to-scalar ratio becomes large) using Planck 
2018 data. Now if we insert a theoretically justifiable time dependent profile for the coupling 
parameter c between the χ and φ field in the CL model action this will automatically fix the time 
dependent effective mass of the χ field. In this work, such time dependent profile is supplied 
by the quantum mechanical quench, which allows us take a sudden quench profile for the same 
purpose. Inserting a time dependent profile will going to directly effect the dynamic features 
before quench, just after quench and after long of the quench. This further implies that it is 
indirectly modifying the previously mentioned quadratic potential of the χ field having constant 
mass in the present of a time dependent dynamical mass profile. It is important to note that, in 
the late time limit τT → 0 or T → ∞, then we get the following simplified late time limiting 
result for the Green’s function:

Gφ(x − y, τ, τ ′) = lim Gφ(x − y, τ, τ ′)

τT →0

16
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= 1

4π2

∣∣∣∣∣�
(
νφ

)
�
( 3

2

)
∣∣∣∣∣
2

exp

(
− mφ

∣∣τ − τ ′∣∣)

× 1

|x − y|3−2νφ
× 1[

|x − y|2 − (∣∣τ − τ ′∣∣− iε
)2 ] . (2.34)

Further, varying this semi-classical effective action with respect to the field χ we get the 
following equation of motion in de Sitter space:[

1

a2(τ )

(
∂2

∂τ 2 − ∇2 + 2H(τ )
∂

∂τ

)
+ m2(τ )

]
χ(x, τ )

=
(∫

d3x
∫

d3y

− exp(−T H)/H∫
−1/H

dτ
√−g(τ)

− exp(−T H)/H∫
−1/H

dτ ′√−g(τ ′)

× Gφ(x − y, τ, τ ′) × c(τ ) c(τ ′)
(

χ(y, τ ′) + χ(x, τ )δ3(x − y)δ(τ − τ ′)
))

,

(2.35)

which describes the Brownian motion of the χ field in presence of the noise kernel Gφ(x −
y, τ, τ ′). Here one can consider the following two conditions to analyse the system:

1. One can consider that, |τ − τ ′| → ∞ which means that τ � τ ′ i.e. large separation in time 
scale, then in this case we have:

lim
|τ−τ ′|→∞

Gφ(x − y, τ, τ ′) ≈ 0. (2.36)

2. If we consider that the spatial separation between two points where the field χ is placed are 
separated by a large distance scale but in the time scale they are closely separated then we 
have:

lim
|τ−τ ′|→0

lim|x−y|→∞Gφ(x − y, τ, τ ′) ≈ 0. (2.37)

In both the limiting cases we have the following simplified form of the equation of motion:

[
1

a2(τ )

(
∂2

∂τ 2 − ∇2 + 2H(τ )
∂

∂τ

)
+ m2(τ )

]
χ(x, τ ) = 0 . (2.38)

For the rest of the analysis we will only concentrate on the free part of the effective action for 
the χ field as in both the limits no other terms contribute effectively. Hence we have:

Seff[χ] ≈
∫

d4x
√−g

{(
−1

2
(∂χ)2 + Veff(χ)

)}
. (2.39)
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Using the conformal coordinates the effective action for the χ field in the large time limit can be 
re-expressed as6:

Seff
free[χ] = 1

2

∫
dτ d3x a2(τ )

[
(∂τχ(x, τ ))2 − (∂iχ(x, τ ))2 − m2(τ )a2(τ )χ2(x, τ )

]
,

(2.40)

where the conformal time-dependent mass parameter for the field χ can be written in terms of 
the interaction strength c(τ ) as m2(τ ) = c2(τ ). Here the masses for the field χ are not initially 
conformal time-dependent. But since the coupling strength is time-dependent it turns out that the 
effective mass for the field χ eventually becomes time-dependent.

3. Mass quench in sudden limit in de Sitter space

Quantum quench has been proved to be very effective for probing the dynamics of a system 
undergoing a change in parameters over a short period of time [41,42,55,56]. The initial wave 
function or in other words the state corresponding to the Hamiltonian before undergoing a change 
is called a pre-quench state while the state corresponding to the Hamiltonian after quench is 
called a post-quench state. The quench protocol that has been followed in recent times is to 
consider a mass function m2(τ ) such that in the sudden limit its value changes from m2

0 in past 
to 0 in future, interpolating the behavior of correlators at late times. This method is known as 
sudden quenching of mass parameter from some constant value m2

0 to 0 in the limit −τ → ∞. 
Now an important question to ask is do these late time correlators equilibrate and whether or 
not the post quench state remembers the quench protocol m2(τ ). In the context of the AdS/CFT 
correspondence these questions have direct relevance to the memory retention of the black hole 
of the collapsing matter and been studied in [11,12,41,43,56–63] by checking whether the post-
quench state could be described by a thermal ensemble or not.

Let us start with the previously derived effective action for the dynamical scalar field χ to 
implement the phenomena of quantum mechanical quench in the present context (Fig. 3.1):

Seff
free[χ] = 1

2

∫
dτ d3x a2(τ )

[
(∂τχ(x, τ ))2 − (∂iχ(x, τ ))2 − m2(τ )a2(τ )χ2(x, τ )

]
,

6 In the expression for the finally derived effective action describing an Effective Field Theory of the signal field out 
of the weakly coupled system-bath open quantum field theoretic set up we have used the spatially flat FLRW metric with 
quasi de Sitter solution of the scale factor. In such a case the coupling parameter between the system and bath degrees 
of freedom is taken to be only time dependent but the dependency is very slow so that the derivatives approach to zero. 
Here the space derivatives are absent in the coupling parameter due to having isotropy and homogeneity in the back 
ground space-time metric describing the primordial cosmological set up. In this description slowly time dependence 
is compatible with the perturbative approximations implemented during the performing the computations throughout 
the paper. In the cosmological context this can be implemented only when we consider the weak slowly varying time 
dependent coupling of system-bath interaction. In this weak coupling regime of the open quantum field theory this is 
technically applicable only when we can treat the coupling parameter as a memoryless slowly varying time dependent 
parameter. This directly implies that we are working in the regime where the cosmological evolution is described by the 
non-Markovianity and this can only possible only when system-bath coupling varies very slowly with the background 
time coordinate. In the next section we will mention that we need a proper parametrization to describe this interesting 
phenomena and sudden profile appearing in the context of quantum quench is sufficient enough to describe this mentioned 
additional features. As an immediate outcome of such specific choice quantum states are prepared which helps us to 
establish the phenomena of effective thermalization within the framework of open quantum field theory of quasi de Sitter 
space.
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Fig. 3.1. Mass profile in sudden quench limit.

(3.1)

where we have used the de Sitter solution described by the following line element:

ds2 = a2(τ )
(
−dτ 2 + dx2

)
where a(τ) = − 1

Hτ
. (3.2)

Here conformal time-dependent quench protocol mass profile for the sudden quench phenomena 
is given by the following expression:

m2(τ ) = c2(τ ) = m2
0�(−τ) =

⎧⎪⎨
⎪⎩

m2
0 Before quench : τ < η;

0 After quench : τ ≥ η,

(3.3)

where η is considered as the point of quench in the conformal time scale. Further for computa-
tional simplicity we use the following redefinition:

v(x, τ ) :≡ a(τ)χ(x, τ ). (3.4)

Now using this newly defined field v(x, τ) one can further re-express the classical effective action 
is defined as:

Seff
free[χ] = 1

2

∫
dτ d3x

[
(∂τ v(x, τ ))2 − (∂iv(x, τ ))2

−
(

m2(τ )a2(τ ) − a′′(τ )

a(τ )

)
v2(x, τ )

]
. (3.5)

Next, we choose the following ansatz for the Fourier transform to convert both the effective 
action and the Hamiltonian in the momentum space:

v(x, τ ) :=
∫

d3k
(2π)3 exp(ik.x) v(k, τ ). (3.6)

Using this convention the effective action in Fourier space can be expressed as:

Seff
free[χ] =

∫
dτ d3k

[
|v′(k, τ )|2 − ω2(k, τ )|v(k, τ )|2

]
. (3.7)
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Here we have used the notation ′ to represent the ∂τ operation and will use this notation through 
out the paper.

After varying the action we found the following field equation for the redefined scalar field 
v(k, τ) in Fourier space:[

d2

dτ 2 + ω2(k, τ )

]
v(k, τ ) = 0. (3.8)

The explicit solutions of the above equations before quench (incoming) and after quench (outgo-
ing) solutions are explicitly derived and studied in the next subsection. This equation in general 
physically represents the particle production phenomena in de Sitter background [64]. In this 
work, our prime objective is to solve this classical field equation using the tools and techniques 
of quantum quench. On top of that, quench also provides us a theoretical framework of ther-
malization, which we implement in de Sitter space for the first time to study the thermalization 
process and its impact on quantum correlations in de Sitter space [46,48]. Since the methodol-
ogy is developed for conformally flat space-time, classical solutions other than de Sitter can also 
be used to study the thermalization phenomena in other cosmologically relevant epochs of our 
universe.

Here in this construction the effective conformal time-dependent frequency in the Fourier 
space can be expressed as:

ω2(k, τ ) =
(
k2 + m2

eff(τ )
)

, (3.9)

and the conformal time-dependent effective mass can be expressed in terms of the sudden quench 
protocol as:

m2
eff(τ ) =

(
m2(τ )a2(τ ) − a′′(τ )

a(τ )

)
= − 1

τ 2

(
ν2(τ ) − 1

4

)
. (3.10)

Here we have used the fact that in the de Sitter space:

a′′(τ )

a(τ )
=
(
H2(τ ) +H′(τ )

)
= 2

τ 2 for a(τ) = − 1

Hτ
. (3.11)

Here ν(τ) is the conformal time mass parameter for the given quench protocol:

ν(τ) =
√

9

4
− m2(τ )

H2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

νin =
√

9

4
− m2

0

H2
Before quench : τ < η;

νout = 3

2
After quench : τ ≥ η.

(3.12)

As mentioned above a mass quenching in the sudden limit is considered, i.e., we take a mass 
function m2(τ ) and change its value from m2

0 to 0 in the future using which we compute the 
quantum correlators. Specifically in this paper we have computed the two-point correlators.

The present problem describing the particle production in de Sitter space can be translated 
in the language of Schrödinger quantum mechanics as a problem in 1 dimension, where one 
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needs to study the movement of an electron inside an electrical wire in the presence of an impu-
rity. This impurity is the quantum mechanical potential which is appearing in the corresponding 
Schrödinger equation:[

d2

dx2 + (E − V (x))

]
ψ(x) = 0. (3.13)

In this interpretation the following one-to-one map is set up between the particle production 
problem and the Schrödinger quantum mechanical problem:

Distance x ←→ Conformal time τ, (3.14)

Quantum impurity potential V (x) ←→ Effective quench protocol − m2
eff(τ ), (3.15)

Quantum wave function ψ(x) ←→ Rescaled mode function v(k, τ ). (3.16)

In studying the behavior of wave functions in the quench protocol one of the main approx-
imations we usually employ is solving the Klein-Gordon equation for constant masses instead 
for time-dependent parameter m2(τ ) which in turn is very difficult to interpolate. By doing the 
approximation m2(τ ) =m2

0 =constant and repeating the procedure for each recursion we get more 
and more precise results for the effective mass. However, in the context of sudden quenching we 
choose transition in masses close to zero and this diminishes our need for repeated iteration. In 
this we will also study quenches for masses close to zero because they correspond to half integer 
orders of the Hankel function which makes the wave-functions easy to interpolate. As mentioned 
above quantum quench, which corresponds to the change in the parameters of Hamiltonian for a 
short period of time has been employed in various areas. Starting from the study of various phe-
nomenon under various regimes from studying the behavior of thermalization of correlators at 
late times in the de Sitter space-time, where the value of post-quench parameters doesn’t depend 
on the quench protocol [10,65–69]. In this paper, we are going to study the behavior of fields in 
terms of the correlators in intermediate time scales, we will encode the effects of the fields on 
the correlators through the quench profile followed by the mass parameter in the Hamiltonian of 
the field.

3.1. Solution of mode equation in de Sitter space

In this section, we study the solution of the equation of motion of the Fourier modes of the 
rescaled field in de Sitter background with scale factor a(τ) = −1/Hτ , participating in the quan-
tum quench driven Brownian motion [51,70–72], which are given by:

Before quench :
[

d2

dτ 2 + ω2
eff,in(k, τ )

]
vin(k, τ ) = 0, (3.17)

After quench :
[

d2

dτ ′2 + ω2
eff,out(k, τ ′)

]
vout (k, τ ′) = 0, (3.18)

where vin(k, τ) and vout (k, τ ′) signify the incoming and the outgoing solutions of the rescaled 
field, and particularly in the present context these play the role of the classical solution of the 
equation of motion before and after the quench mechanism. Due to having quantum quench in 
the time-dependent effective mass profile at a particular conformal time scale one can differen-
tiate the solutions with respect to the mass parameters involved in the time-dependent effective 
frequencies, which are given by the following expressions:
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Fig. 3.2. Effective mass profile.

ω2
eff,in(k, τ ) : =

(
k2 − ν2

in − 1
4

τ 2

)
with νin =

√
9

4
− m2

0

H 2 , (3.19)

ω2
eff,out(k, τ ′) : =

(
k2 − ν2

out − 1
4

τ ′2

)
with νout = 3

2
. (3.20)

Here it is important to note that, τ is the associated conformal time scale before the mass quench 
operation. Also τ ′ = τ +η is the associated conformal time scale after the mass quench operation, 
where the quench is performed at the point η in the forward direction in the conformal time scale.

Now, the solution of the mode equations in the Fourier space before and after quenched mass 
profile can be written in spatially flat background de Sitter space as:

Before quench : vin(k, τ ) = √−τ [d1H
(1)
νin

(−kτ) + d2H
(2)
νin

(−kτ)], (3.21)

After quench : vout (k, τ ) = √−τ ′ [d3H
(1)
νout

(−kτ ′) + d4H
(2)
νout

(−kτ ′)], (3.22)

where the solutions appear as linear combinations of the Hankel function of the first and 
second kind of order νin for the incoming and νout outgoing solutions.

It is important to note that here we have the following total effective mass for the sudden mass 
quench profile:

m2
eff(τ ) = 1

τ 2

(
m2(τ )

H 2 − 2

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

τ 2

(
m2

0

H 2
− 2

)
Before quench : τ < η;

− 2

(τ + η)2
After quench : τ ≥ η.

(3.23)

This is plotted in Fig. 3.2. If we closely look into the obtained analytical solutions for the ingoing 
and the outgoing modes then we see that both the solutions are fixed with respect to choice of 
constants d1, d2 and d3, d4. Due to having mass quench at a preferred conformal time scale η
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in this particular set up the constants appearing in the outgoing after quench solution, d3 and d4
can be determined in terms of the constants appearing in the incoming before quench solution, 
d1 and d2. The specific choices for these constants can be fixed by choosing the following set of 
quantum initial conditions [73]:

Bunch − Davies vacuum : d1 = 1, d2 = 0, (3.24)

α vacua : d1 = coshα, d2 = sinhα, (3.25)

Motta − Allen vacua : d1 = coshα, d2 = exp(iγ ) sinhα. (3.26)

For the Bunch-Davies case [74–76] we will get very simple expressions, though the expressions 
for the α or Motta-Allen case will become complicated. To avoid confusion during the compu-
tation we do not substitute these values of the constants for the three different choices of the 
quantum initial conditions. However, during the numerical computations from the obtained re-
sults we will use them explicitly to determine the differences in behavior. In the appendices we 
present some results pertaining to these initial conditions for completeness. Our result, presented 
here, are valid for the any arbitrary choice of the quantum initial conditions, out of which for 
numerical purpose we will only focus on the three above mentioned possibilities.

The Eqs. (3.21) represents the most general solution valid for all time scales. However, work-
ing with these general solutions is often cumbersome and the asymptotic limits of the above 
solutions are found convenient for analysis. The Hankel functions in these asymptotic limits can 
be expressed as:

Sub − horizon asymptotic expansion :

lim−kτ→∞H(1)
ν =

√
2

π

1√−kτ
exp(−i{kτ + �ν}), (3.27)

lim−kτ→∞H(2)
ν = −

√
2

π

1√−kτ
exp(i{kτ + �ν}), (3.28)

Super − horizon asymptotic expansion :

lim−kτ→0
H(1)

ν = i

π
�(ν)

(−kτ

2

)(−ν)

, (3.29)

lim−kτ→0
H(2)

ν = − i

π
�(ν)

(−kτ

2

)(−ν)

, (3.30)

where we define the factor �ν as:

�ν = π

2

(
ν + 1

2

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2

(
νin + 1

2

)
with νin =

√
9

4
− m2

0

H 2 Before quench : τ < η;
π

2

(
νout + 1

2

)
with νout = 3

2
After quench : τ ≥ η.

(3.31)

Let us now discuss the solution of the above equation in the sub horizon limit where modes of 
quantum fluctuations are inside the cosmological horizon, it behaves like a quantum mechanical 
plane wave. In the limit −kτ → ∞ (−kτ � 1), using the above limiting solutions of the Hankel 
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functions, the fluctuation solution reduces to:
Sub-horizon asymptotic incoming solution:

vin(k, τ )|−kτ→∞ =
√

2

πk

[
d1 exp

{
−i

(
kτ + π

2

(
νin + 1

2

))}

− d2 exp

{
−i

(
kτ + π

2

(
νin + 1

2

))}]
, (3.32)

�in(k, τ )|−kτ→∞ =1

i

√
2k

π

[
d1 exp

{
−i

(
kτ + π

2

(
νin + 1

2

))}

+ d2 exp

{
−i

(
kτ + π

2

(
νin + 1

2

))}]
, (3.33)

where �in(k, τ) is the canonically conjugate momentum of the field vin(k, τ), which is defined 
as, �in(k, τ) = v′

in(k, τ).
On the other hand, in the super-horizon limit when the fluctuating modes are goes outside the 

cosmological horizon it behaves classically. In the limit −kτ → 0 (−kτ � 1), using the above 
limiting solutions of the Hankel functions, the fluctuation solution reduces to:
Super-horizon asymptotic incoming solution:

vin(k, τ )|−kτ→0 =
√

2

k

i

π
�(νin)

(−kτ

2

) 1
2 −νin

(d1 − d2), (3.34)

�in(k, τ )|−kτ→0 =
√

2

k

i

2πk

(
νin − 1

2

)
�(νin)

(−kτ

2

)−(νin+ 1
2 )

(d1 − d2). (3.35)

Sub-horizon asymptotic outgoing solution:

vout (k, τ )|−kτ→∞ =
√

2

πk

[
d3 exp

{
−i

(
k(τ + η) + π

2

(
νout + 1

2

))}

− d4 exp

{
−i

(
k(τ + η) + π

2

(
νout + 1

2

))}]
, (3.36)

�out (k, τ )|−kτ→∞ = 1

i

√
2k

π

[
d3 exp

{
−i

(
kτ + π

2

(
νout + 1

2

))}

+ d4 exp

{
−i

(
kτ + π

2

(
νout + 1

2

))}]
. (3.37)

Super-horizon asymptotic outgoing solution:

vout (k, τ )|−kτ→0 =
√

2

k

i

π
�(νout )

(−k(τ + η)

2

) 1
2 −νout

(d3 − d4), (3.38)

�out (k, τ )|−k(τ+η)→0 =
√

2

k

i

2πk

(
νout − 1

2

)
�(νout )

(−k(τ + η)

2

)−(νout+ 1
2 )

(d3 − d4),

(3.39)

where �out (k, τ) is the canonically conjugate momentum of the field vout(k, τ), which is defined 
as, �out (k, τ) = v′ (k, τ).
out
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Combining the above two limiting solutions, the asymptotic solution of the mode equation 
can be written as:
Asymptotic solution for the mode before quench:

vin(k, τ ) = 2νin− 3
2 i (−kτ)

3
2 −νin

√
2k3/2τ

∣∣∣∣ �(νin)

�(3/2)

∣∣∣∣
×
[
d1(1 + ikτ ) exp

(
−i

{
kτ + π

2
(νin + 1

2
)

})

− d2(1 − ikτ ) exp

(
i

{
kτ + π

2
(νin + 1

2
)

})]
. (3.40)

The above equation basically represents the incoming solution before the point of quench. Simi-
larly, the general expression for the canonically conjugate momentum variable for the incoming 
solutions (solution before the point of quench) in this asymptotic limit simplifies to the following 
expression:
Asymptotic momentum before quench:

�in(k, τ ) = 2νin− 3
2 i (−kτ)

3
2 −νin

√
2k5/2

∣∣∣∣ �(νin)

�(3/2)

∣∣∣∣
[
d1

{(
1

2
− νin

)
(1 + ikτ )

k2τ 2 + 1

}

exp

(
− i

{
kτ + π

2
(νin + 1

2
)

})
−d2

{(
1

2
− νin

)
(1 + ikτ )

k2τ 2 + 1

}

exp

(
i

{
kτ + π

2

(
νin + 1

2

)})]
. (3.41)

By following the same logical argument, the outgoing solutions can be calculated as:
Asymptotic solution for the mode after quench:

vout (k, τ ) = 2νout− 3
2 i (−k(τ + η))

3
2 −νout

√
2k3/2(τ + η)

∣∣∣∣�(νout )

�(3/2)

∣∣∣∣
×
[
d3(1 + ik(τ + η)) exp

(
−i

{
k(τ + η)

+ π

2

(
νout + 1

2

)})

− d4(1 − ik(τ + η)) exp

(
i

{
k(τ + η) + π

2

(
νout + 1

2

)})]
. (3.42)

The canonically conjugate momentum variable for the outgoing solution can also be described 
as:
Asymptotic momentum after quench:

�out (k, τ ) = 2νout− 3
2 i (−k(τ + η))

3
2 −νout

√
2k5/2

∣∣∣∣�(νout )

�(3/2)

∣∣∣∣
×
[
d3

{(
1

2
− νout

)
(1 + ik(τ + η))

k2(τ + η)2 + 1

}

exp

(
−i

{
k(τ + η) + π

(
νout + 1

)})

2 2
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− d4

{(
1

2
− νout

)
(1 + ik(τ + η))

k2(τ + η)2 + 1

}

exp

(
i

{
k(τ + η) + π

2

(
νout + 1

2

)})]
.

If we closely look into the expressions for the field variables and their associated canonically 
conjugate momentum variables for the incoming and outgoing situations then we see that the 
solutions differ, (A). in terms of the mass parameters νin and νout and (B). in terms of the con-
stants di∀i = 1, · · · , 4. As we have already mentioned, one can compute the expressions for the 
outgoing constants, d3 and d4 in terms of the incoming constants, d1 and d2, thereby express-
ing the incoming solution in terms of the outgoing solution or vice versa using the Bogoliubov 
transformation technique. This technique is particularly useful in the present context, not just 
for expressing one solution in terms of the other, but also for constructing the ground state as 
well as the excited generalized Calabresse Cardy (gCC) states, which are the key ingredients for 
computing the two-point functions for both the cases. The two-point functions also play another 
role here. They tell us that how the quantum correlations can be explicitly quantified when the 
system tending to thermalize. For the flat space-time, particularly in 1 + 1 dimensional system 
this formalism is easily understandable and was explicitly studied in [41]. Later this work was 
generalized to 1 + 2 dimensions in [42]. But there has been no such development in the presence 
of background classical gravitational solution. The presented technique in this paper will going 
to be an attempt for a very simplest case, where the space-time is described by de Sitter solu-
tion. The results that we have obtained in this paper is an attempt to understand the underlying 
physical phenomena and its related physical explanation of the thermalization phenomena in de 
Sitter space-time in presence of sudden mass quench. We now develop the tools which would be 
needed for the mentioned purpose.

To determine the outgoing coefficients d3 and d4 in terms of the ingoing coefficients d1 and 
d2 one needs to use the following two cruicial conditions:

1. Continuity in the field variable:
First of all, the solution obtained before quench and after quench has to be continuous at the 
point of quench η, i.e.,

vin(k, τ )|τ=η = vout (k, τ )|τ=η. (3.43)

2. Continuity in the momentum variable:
Secondly, the canonically conjugate momenta obtained from both the solutions before 
quench and after quench has to be continuous at the point of quench η, i.e.,

�in(k, τ )|τ=η = �out (k, τ )|τ=η. (3.44)

Again using the continuity condition of the solutions and its derivatives at the point of quench 
we can fix the constants d3 and d4 in terms of d1 and d2. It can be easily found that the constants 
d3 and d4 expressed in terms of d1 and d2 can be written as:

d3 = 2νin− 9
2 exp(iηk)

kη

[
d1(6ηk − 3i) + id2(2ηk + 3i) exp(i(2ηk + πνin))

]
, (3.45)

d4 = 2νin− 9
2 exp{−i(3kη + πνin)}
kη
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×
[
−d1(3 + 2ikη) + 3d2 exp{i(2kη + πνin)}(i + 2kη)

]
. (3.46)

Here it is important to note that, incoming and the outgoing mode functions before and after 
quench can be expressed in terms of each other via the following relations:

vin(k, τ ) = α(k, η) vout (k, τ ) + β(k, η) v∗
out (−k, τ ), (3.47)

vout (k, τ ) = α∗(k, η) vin(k, τ ) − β(k, η) v∗
in(−k, τ ). (3.48)

Consequently, the general solution for the field equation can be written as:

v(k, τ ) = ain(k)vin(k, τ ) + a
†
in(−k)v∗

in(−k, τ )

= aout (k)vout (k, τ ) + a
†
out (−k)v∗

out (−k, τ ), (3.49)

which satisfy the following reality constraint:

v∗(k, τ ) = v(−k, τ ). (3.50)

Using these above mentioned equations one can explicitly show that:

ain(k) = α∗(k, η)aout (k) − β∗(k, η)a
†
out (−k), (3.51)

aout (k) = α∗(k, η)ain(k) + β∗(k, η)a
†
in(−k). (3.52)

Here the Bogolyubov coefficients at the point of quench η, are calculated using the following 
equations:

α(k, η) = v′
out (k, τ )v∗

in(k, τ ) − vout (k, τ )v′ ∗
in(k, τ )

2i

∣∣∣∣
η

, (3.53)

β∗(k, η) = v′
out (k, τ )vin(k, τ ) − vout (k, τ )v′

in(k, τ )

2i

∣∣∣∣
η

. (3.54)

Using the above equation the Bogoliubov coefficients for our quench profile can be calculated as

α(k, η) = 22νin−5

π
exp{−i(2kη + πνin)}(−kη)−2νin

×
[
d1d

∗
2 (1 + ikη)(1 + kη(i + 2kη − 2iνin) − 2νin)

+ d∗
1 d2 exp{2i(2kη + πνin)}(i + kη)(i + kη(1 + 2ikη − 2νin) − 2iνin)

− d2d
∗
2 exp{i(2kη + πνin)} (i + k2η2(3i + 6kη − 2iνin) − 2iνin)

+ d1d
∗
1 exp{i(2kη + πνin)} (k2η2(−3i + 6kη + 2iνin)

+ i(−1 + 2νin))

]
|�(νin)|2, (3.55)

β(k, η) = 22νin−5

π
exp{i(2kη + πνin)}(−kη)−2νin

×
[
d1(i + kη) − id2 exp{−i(2kη + πνin)}(−i + kη)

]
[
d2 exp{−i(2kη + πνin)}(1 + kη(i + 2kη − 2iνin) − 2νin)

+ d1(−i + 2iνin + kη(−1 − 2ikη + 2νin))

]
|�(νin)|2. (3.56)
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Once the Bogoliubov coefficients is found for a given quench profile, one defines a quantity γ (k)

which is defined as

γ (k) = β∗(k, η)

α∗(k, η)
, (3.57)

where in principle the coefficient γ is functions of both k and η, but for a given fixed value of 
the quench time scale, the coefficient γ turns out to be a function of k only.

Another quantity that will be of significance in the formulation of the in states is defined as

For Dirichlet boundary state : κ(k) = −1

2
log(−γ (k)), (3.58)

For Neumann boundary state : κ(k) = −1

2
log(γ (k)). (3.59)

A power series expansion of κ and γ around k = 0 gives us the conserved charges. In [41], the 
authors have explicitly found out the relationship between various coefficients of γ (k) and κ(k). 
For the quench profile considered above, it can be found that the series expansion of γ (k) can be 
written as.

γ (k) = γ0 + γ2|k| + γ3|k|2 + γ4|k|3 + γ5|k|4 + γ6|k|5 + .... (3.60)

and the corresponding κ(k) parameter for the Dirichlet and Neumann boundary states can be 
expressed in terms of the following series expansions around k = 0, as given by:

For Dirichlet boundary state :

κ(k) =
(

κ0,DB +
∞∑

n=1

κn+1,DB|k|n
)

, (3.61)

For Neumann boundary state :

κ(k) =
(

κ0,NB +
∞∑

n=1

κn+1,NB|k|n
)

. (3.62)

where it is important to note that:

κ0,DB =
(

κ0,NB + iπ

2

)
, and κn+1,DB = κn+1,NB ∀ n = 1,2,3, · · · ,∞ (3.63)

In this expansion the various non-vanishing coefficients of γ (k) can be easily verified to be:

γ0 = − id1 + d2 exp(iπνin)

id∗
2 + d∗

1 exp(iπνin)
, (3.64)

γ4 = −2(d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

3(5 + 2νin)

3((id∗
2 + d∗

1 exp(iπνin))2(−1 + 2νin))
, (3.65)

γ6 = 2(d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

5(−29 + 4νin(4 + νin))

5((id∗
2 + d∗

1 exp(iπνin))2(1 − 2νin)2)
. (3.66)

Similarly, the non-vanishing coefficients of the κ(k) expansion can be calculated for Dirichlet 
and Neumann boundary state in the present context, which we have quoted explicitly in the 
Appendix A.

Thus for our quench profile, the relationship between the various coefficients of κ(k) and 
γ (k) can be found out. However, before doing that it can be seen that for the expansion contains 
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an first constant term which is independent of |k| and thus only acts as a phase for the states 
expressed in terms of them.

κ4,DB = κ4,NB = i

2

(
id∗

2 + d∗
1 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4 = 1

2

(
d1 + id2 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4

γ0
(3.67)

κ6,DB = κ6,NB = 1

2

(
id∗

2 + d∗
1 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6 = 1

2

(−id1 + d2 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6

γ0
(3.68)

The explicit expressions of the above coefficients for the three different choices of quantum 
initial conditions has been given in the Appendix A.

Additionally it is important to point that, the classical solution of the field χ can be promoted 
further as a quantum operator by the following expression:

χ̂ (k, τ ) = ain(k)vin(k, τ ) + a
†
in(−k)v∗

in(−k, τ )

a(τ )
(3.69)

= aout (k)vout (k, τ ) + a
†
out (−k)v∗

out (−k, τ )

a(τ )
, (3.70)

where additionally the following reality condition in Fourier space has to be satisfied:

χ̂∗(k, τ ) = χ̂ (−k, τ ). (3.71)

By following this identification at the quantum level the canonically conjugate momentum oper-
ator corresponding to the field operator χ̂(k, τ) can be expressed as:

�̂χ (k, τ ) = ain(k)v′
in(k, τ ) + a

†
in(−k)v∗′

in(−k, τ )

a(τ )

−ain(k)vin(k, τ ) + a
†
in(−k)v∗

in(−k, τ )

a2(τ )
a′(τ ) (3.72)

= aout (k)v′
out (k, τ ) + a

†
out (−k)v∗′

out (−k, τ )

a(τ )

−aout (k)vout (k, τ ) + a
†
out (−k)v∗

out (−k, τ )

a2(τ )
a′(τ ). (3.73)

Further using Eq (3.69) and Eq (3.70) in Eq (3.74) and Eq (3.75) we finally get the following 
simplified form of the momentum operator:

�̂χ (k, τ ) = ain(k)�in(k, τ ) + a
†
in(−k)�∗

in(−k, τ )

a(τ )
− χ̂(k, τ )

a(τ )
a′(τ ) (3.74)

= aout (k)�out (k, τ ) + a
†
out (−k)�∗

out (−k, τ )

a(τ )
− χ̂ (k, τ )

a(τ )
a′(τ ), (3.75)

where we define the canonically conjugate momenta for the incoming and outgoing modes as:

�in(k, τ ) = v′
in(k, τ ), (3.76)

�out (k, τ ) = v′
out (k, τ ). (3.77)
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Also it is important to note that the term a(τ) = − 1

Hτ
represents the scale factor in de Sitter 

space. All these expressions for the field and the momentum operators are very useful for com-
puting the two-point correlation functions [77–79], explicitly computed in the next part of this 
paper.

3.2. Construction of in and out vacuum states

As discussed in the previous section, the solutions of the equation of motion before and after 
the point of quench is not exactly identical mainly because the mass profile changes. Physically it 
can be thought as two different oscillators with different masses. They define two distinct vacua 
|0, in〉 and |0, out〉, where the vacuum |0, in〉 represents the initial vacua of the oscillator before 
the point of quench and |0, out〉 represents the initial vacua of the oscillator after the point of 
quench. We begin with the assumption that we begin from the ground state of the initial massive 
theory, i.e., |0, in〉. Now since we are doing the computation in de Sitter background solution, the 
above mentioned in-vacuum state is not the usual Minkowski vacuum state used in the context 
of flat space-time. In this construction for any arbitrary choice of quantum initial vacuum state 
the in-vacuum and the out-vacuum state in general can be written in the following form:

|0, in〉 = |d1, d2〉 = 1√|d1| |0, in〉vac , (3.78)

where we define

|0, in〉vac = exp

(
− id∗

2

2d∗
1

∫
d3k

(2π)3 a
†
in(k)a

†
in(−k)

)
|0, in〉BD . (3.79)

Here |0, in〉BD is the Bunch Davies Euclidean vacuum state. In this construction the in-vacua 
state |0, in〉vac can be expressed in terms of the out-vacua state using the above mentioned defi-
nition as:

|0, in〉vac = exp

[
1

2

∫
d3k

(2π)3 γ (k)a
†
out (k)a

†
out (−k)

]
|0, out〉 . (3.80)

In this context the in-vacuum can be recast in the following form:

|0, in〉vac = exp

[
−
∫

d3k
(2π)3 κ(k)a

†
out (k)aout (k)

]
|D〉 , (3.81)

|0, in〉vac = exp

[
−
∫

d3k
(2π)3 κ(k)a

†
out (k)aout (k)

]
|N〉 , (3.82)

where, |D〉 is the Dirichlet Boundary state and |N〉, represents the Neumann boundary state 
which are defined in terms of the out-vacuum |0, out〉 state as follows:

|D〉 = exp

[
−1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

]
|0, out〉 , (3.83)

|N〉 = exp

[
1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

]
|0, out〉 . (3.84)

Now using the power series expansion of κ in Eqs (3.81) and (3.82), we find that our in vacuum-
state can be expressed in the following simplified form [35,68,80,81]:
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|0, in〉 = 1√|d1| exp

[
−κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n,DB

]
|D〉 , (3.85)

|0, in〉 = 1√|d1| exp

[
−κ0,NBW0 −

∞∑
n=2

κ2n,NBW2n,NB

]
|N〉 . (3.86)

Thus, for the instantaneous quench from non-zero to zero mass in de Sitter space the post 
quench wave function, starting from the ground state of the original Hamiltonian can be repre-
sented by the generalized Calabrese Cardy (gCC) form with the coefficients κ ′

ns given in (A.16), 
i.e.,

|0, in〉 = |ψ〉gCC . (3.87)

Thus for the instantaneous quenched mass profile in de Sitter space-time, the in-state before 
quench takes the gCC form after the quench. Hence, one can represent the out-state in terms of 
the state |ψ〉gCC after the point of quench via the following relation:

gCC in terms of Dirichlet boundary state :

|ψgCC〉DB = 1√|d1| exp

(
− κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n,DB

)
|D〉

= 1√|d1| exp

(
−κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n

)

exp

(
−1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

)
|0, out〉 .

(3.88)

gCC in terms of Neumann boundary state :

|ψgCC〉NB = 1√|d1| exp

(
− κ0,NBW0 −

∞∑
n=2

κ2n,NBW2n

)
|N〉

= 1√|d1| exp

(
−

∞∑
n=0

κ2n,NBW2n,NB

)

exp

(
1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

)
|0, out〉 .

(3.89)

One can also calculate the various conserved charges for the post quench phases from the expan-
sion of κ . In [41], the authors found that for the same quench profile in flat space-time, the in 
state after the point of quench can be expressed as

|0, in〉 = exp

[
− H

m0
+ W4

6m3
0

+ ...

]
|D〉 . (3.90)

Thus, we find a significant difference in the nature of the gCC state after the point of quench for 
de Sitter space-time from the flat space results. The most striking difference being the absence 
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of the coefficient κ2 which implies the subsystem thermalization at a very large temperature. 
This claim can be made by understanding the fact that the coefficient κ2 is related to the inverse 
temperature Also, another thing to note is the dependence of the coefficients on the choice of 
initial conditions. This is again a manifestation of the fact that the choice of initial vacuum is not 
unique in curved space-time. In our case, the expectation value of the number operator is given 
by:

〈N〉 = 4−5+2νin

π2 exp{−2i(2kη + πνin)}(−kνin)
−4νin

×
(

[d2(−i + kη) + id∗
1 exp{i(2kη + πνin)}(i + kη)]

[(d1(−i + kη) + id2 exp{i(2kη + πνin)})(i + kη)]
× [d∗

2 (1 + kη(i + 2kη − 2iνin) − 2νin)

+ d∗
1 exp{i(2kη + πνin)}(i(−1 + 2νin) + kη(−1 − 2ikη + 2νin))]

[d1(1 + kη(i + 2kη − 2iνin) − 2νin)] + d2 exp{i(2kη + πνin)}
(i(−1 + 2νin) + kη(−1 − 2iηk + 2νin))

)
|�(νin)|4, (3.91)

which will finally appear in the following conserved charges of the W∞ algebra for gCC states:

〈W0〉 :=
∫

d3k
(2π)3 〈0, in|a†

out (k)aout (k)|0, in〉 =
∫

d3k
(2π)3 〈N(k)〉, (3.92)

〈Wn+1〉 :=
∫

d3k
(2π)3 |k|n〈0, in|a†

out (k)aout (k)|0, in〉 =
∫

d3k
(2π)3 |k|n〈N(k)〉, (3.93)

∀ n = 1,2, · · · ,∞ where 〈N(k)〉 = |β(k, η)|2.

3.3. Quenched two-point correlation functions without squeezing

In this section, we will compute the two-point correlation function of the ground state, gCC 
in-vacuum in the post quench state by doing the mode expansion of fields in 3+1 dimensions. By 
changing the mass in the sudden limit from m0 to 0, which implies the changing mass parameter 

from νin =
√

9

4
− m2

0

H 2 to νout = 3

2
, the Hamiltonian of the system changes; the post-quench state 

is given by a gCC state as described in the previous section.

3.3.1. Two-point functions from ground state
Once we have constructed the in-states in terms of the out-states, we can calculate the follow-

ing two-point correlation functions with respect to the ground state:

G0
χχ (x1,x2, τ1, τ2) = 〈0, in|χ(x1, τ1)χ(x2, τ2) |0, in〉 , (3.94)

G0
∂iχ∂iχ

(x1,x2, τ1, τ2) = 〈0, in| ∂iχ(x1, τ1)∂iχ(x2, τ2) |0, in〉 , (3.95)

G0
�χ�χ

(x1,x2, τ1, τ2) = 〈0, in|�(x1, τ1)�(x2, τ2) |0, in〉 , (3.96)

where, G0
χχ (x1, x2, τ1, τ2), G0

∂iχ∂iχ
(x1, x2, τ1, τ2) and G0

�χ�χ
(x1, x2, τ1, τ2) represent the prop-

agators in this computation. Additionally, we will define the spatial separation between the two 
points x1 and x2 as:
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r :≡ x1 − x2, (3.97)

which we willbe using in the subsequent computations.
It is important to note that, in this context, we are interested in the correlation function of the 

field χ , its spatial derivative and canonically conjugate momenta. This field χ is redefined in 
terms of the classical mode function χ = v/a(τ), which we use in the derivation of the two-point 
functions.

The two-point correlators can be expressed as:

G0
χχ (r; τ1, τ2) =

∫
d3k

(2π)3 〈0, in|χin(k, τ1)χ
∗
in(k, τ2) |0, in〉 exp(ik.r)

=
∫

d3k
(2π)3G

0
χχ (k, τ1, τ2) exp(ik.r), (3.98)

G0
∂iχ∂iχ

(r; τ1, τ2) =
∫

d3k
(2π)3 〈0, in| ∂jχ(k, τ1)∂jχ

∗(k, τ2) |0, in〉 exp(ik.r)

=
∫

d3k
(2π)3G

0
∂j χ∂j χ (k, τ1, τ2) exp(ik.r), (3.99)

G0
�χ�χ

(r; τ1, τ2) =
∫

d3k
(2π)3 〈0, in|�χ(k, τ1)�

∗
χ (k, τ2) |0, in〉 exp(ik.r)

=
∫

d3k
(2π)3G

0
�χ�χ

(k, τ1, τ2) exp(ik.r), (3.100)

where G0
χχ (k, τ1, τ2), G0

∂j χ∂j χ (k, τ1, τ2) and G0
�χ�χ

(k, τ1, τ2) representing the Fourier transform 
of the real space Green’s functions. From the present computation we get the following expres-
sions for the Fourier transform of the real space Green’s functions:

G0
χχ (k, τ1, τ2) = 1

a(τ1)a(τ2)

1

|d1|
[ 4∑

b=1

�b(k, τ1, τ2)

]
, (3.101)

G0
∂j χ∂j χ (k, τ1, τ2) = 1

a(τ1)a(τ2)

1

|d1|
[
−k2

4∑
b=1

�b(k, τ1, τ2)

]
, (3.102)

G0
�χ�χ

(k, τ1, τ2) = 1

|d1|
[

a′(τ1)a
′(τ2)

(a(τ1))2(a(τ2))2

( 4∑
b=1

�b(k, τ1, τ2)

)
(3.103)

− a′(τ1)

(a(τ1))2(a(τ2))

( 8∑
b=5

�b(k, τ1, τ2)

)

− a′(τ2)

(a(τ1))(a(τ2))2

( 12∑
b=9

�b(k, τ1, τ2)

)

+ 1

a(τ1)a(τ2)

( 16∑
b=13

�b(k, τ1, τ2)

)]
. (3.104)

Here we have introduced new symbols �i(k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the above 
mentioned expressions for propagators and are explicitly given in Appendix B.1.
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Once we take the equal time case, τ1 = τ2 = τ , it is easy to determine the expressions for the 
amplitude of the Power Spectrum of the field χ , its spatial derivative and canonically conjugate 
momentum:

G0
χχ (k, τ1 = τ, τ2 = τ) := P0

χχ (k, τ ) = 1

a2(τ )

1

|d1|
[ 4∑

b=1

�b(k, τ )

]
, (3.105)

G0
∂j χ∂j χ (k, τ1 = τ, τ2 = τ) := P0

∂j χ∂j χ (k, τ ) = −k2 P0
χχ (k, τ ), (3.106)

G0
�χ�χ

(k, τ1 = τ, τ2 = τ) := P0
�χ�χ

(k, τ ) =
[
(a′(τ ))2

a2(τ )
P0

χχ (k, τ )

− a′(τ )

(a3(τ )

1

|d1|
( 12∑

b=5

�b(k, τ )

)
+ 1

a2(τ )

1

|d1|
( 16∑

b=13

�b(k, τ )

)]
, (3.107)

which are all cosmologically significant quantities. This will finally give rise to the following 
cosmological two-point correlation function:

〈0, in|χ(k, τ )χ(k′, τ ) |0, in〉 = (2π)3δ3(k + k′)P0
χχ (k, τ ), (3.108)

〈0, in| (ikχ(k, τ ))(ikχ(k′, τ )) |0, in〉 = (2π)3δ3(k + k′)P0
∂j χ∂j χ (k, τ )

= −(2π)3δ3(k + k′) k2P0
χχ (k, τ ), (3.109)

〈0, in|�(k, τ )�(k′, τ ) |0, in〉 = (2π)3δ3(k + k′)P0
�χ�χ

(k, τ ). (3.110)

3.3.2. Two-point functions from gCC states
In this section, we focus on calculating the two-point correlation function for the gCC state:

GgCC
χχ (x1,x2, τ1, τ2) = 〈gCC| χ̂ (x1, τ1)χ̂(x2, τ2) |gCC〉 , (3.111)

G
gCC
∂iχ∂iχ

(x1,x2, τ1, τ2) = 〈gCC| ˆ∂iχ(x1, τ1) ˆ∂iχ(x2, τ2) |gCC〉 , (3.112)

G
gCC
�χ�χ

(x1,x2, τ1, τ2) = 〈gCC| �̂(x1, τ1)�̂(x2, τ2) |gCC〉 , (3.113)

where we use two types of gCC states, which are the |ψgCC〉DB Dirichlet and |ψgCC〉NB the 
Neumann boundary states, respectively.

The two-point correlators in terms of the Dirichlet boundary states can be expressed as:

GgCCDB
χχ (r; τ1, τ2)

=
∫

d3k

(2π)3 DB 〈gCC| χ̂in(k, τ1)χ̂
∗
in(k, τ2) |gCC〉DB exp(ik.r)

= 1

|d1|
∫

d3k

(2π)3 exp

(
− (κ∗

0,DB + κ0,DB)W0 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)W2n

)
〈D| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |D〉 exp(ik.r)

=
∫

d3k

(2π)3 GgCCDB
χχ (k, τ1, τ2) exp(ik.r), (3.114)

G
gCCDB
∂j χ∂j χ (r; τ1, τ2)

=
∫

d3k
3 DB 〈gCC| ∂j χ̂in(k, τ1)∂j χ̂

∗
in(k, τ2) |gCC〉DB exp(ik.r)
(2π)
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= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗

0,DB + κ0,DB)W0 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)W2n

)

〈D| ∂j χ̂in(k, τ1)∂̂j χ
∗
in(k, τ2) |D〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCDB

∂j χ∂j χ (k, τ1, τ2) exp(ik.r), (3.115)

G
gCCDB
�χ�χ

(r; τ1, τ2)

=
∫

d3k
(2π)3 DB 〈gCC| �̂χ (k, τ1)�̂

∗
χ (k, τ2) |gCC〉DB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗

0,DB + κ0,DB)W0 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)W2n

)

〈D| �̂χ (k, τ1)�̂
∗
χ (k, τ2) |D〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCDB

�χ�χ
(k, τ1, τ2) exp(ik.r), (3.116)

where GgCCDB
χχ (k, τ1, τ2), GgCCDB

∂j χ∂j χ (k, τ1, τ2) and GgCCDB
�χ�χ

(k, τ1, τ2) represent the Fourier trans-
form of the real space Green’s functions calculated between the Dirichlet boundary gCC states 
formed after quench. The state |D〉 is the Dirichlet boundary state which is defined in terms of 
the out-vacuum state by the following expression:

|D〉 = exp

(
−1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

)
|0, out〉 . (3.117)

Now we can express the Fourier transform of the Green’s functions GgCCDB
χχ (k, τ1, τ2), GgCCDB

∂j χ∂j χ (k,

τ1, τ2) and GgCCDB
�χ�χ

(k, τ1, τ2) in terms of the out vacuum state. Hence, the outgoing solutions are 
represented by the following expressions:

GgCCDB
χχ (k, τ1, τ2)

= 1

a(τ1)a(τ2)

1

|d1|
exp

(
− (κ∗

0,DB + κ0,DB)〈N(k)〉 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)|k|2n−1〈N(k)〉

)
4∑

c=1

�c(k, τ1, τ2), (3.118)

GgCCDB
∂j χ∂j χ (k, τ1, τ2) = −k2GgCCDB

χχ (k, τ1, τ2), (3.119)

GgCCDB
�χ�χ

(k, τ1, τ2)

= 1

|d1| exp

(
− (κ∗

0,DB + κ0,DB)〈N(k)〉 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)|k|2n−1〈N(k)〉

)
{

a′(τ1)a
′(τ2)

(a(τ1)a(τ2))2

[ 4∑
�c(k, τ1, τ2)

]
− a′(τ1)

a2(τ1)a(τ2)

[ 8∑
�c(k, τ1, τ2)

]

c=1 c=5
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− a′(τ2)

a2(τ2)a(τ1)

[ 12∑
c=9

�c(k, τ1, τ2)

]
+ 1

a(τ1)a(τ2)

[ 16∑
c=12

�c(k, τ1, τ2)

]}
, (3.120)

where the functions �c(k, τ1, τ2)∀ c = 1, · · · , 16 are given in Appendix B.2.
Once we take the equal time case, which is τ1 = τ2 = τ , then the expressions for the amplitude 

of the Power Spectrum of the field χ , its spatial derivative and canonically conjugate momentum 
from the gCC Dirichlet boundary states can be easily obtained:

GgCCDB
χχ (k, τ1 = τ, τ2 = τ) := PgCCDB

χχ (k, τ )

= 1

a2(τ )

1

|d1|

exp

(
− (κ∗

0,DB + κ0,DB)〈N(k)〉 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)|k|2n−1〈N(k)〉

)
[ 4∑

c=1

�c(k, τ )

]
, (3.121)

GgCCDB
∂j χ∂j χ (k, τ1 = τ, τ2 = τ) := PgCCDB

∂j χ∂j χ (k, τ ) = −k2 PgCCDB
χχ (k, τ ), (3.122)

GgCCDB
�χ�χ

(k, τ1 = τ, τ2 = τ) := PgCCDB
�χ�χ

(k, τ ) =
[
(a′(τ ))2

a2(τ )
PgCCDB

χχ (k, τ )

− exp

(
− (κ∗

0,DB + κ0,DB)〈N(k)〉 −
∞∑

n=2

(κ∗
2n,DB + κ2n,DB)|k|2n−1〈N(k)〉

)
{

a′(τ )

(a3(τ )

1

|d1|
( 12∑

c=5

�c(k, τ )

)
− 1

a2(τ )

1

|d1|
( 16∑

b=13

�c(k, τ )

)}]
. (3.123)

These are cosmologically significant quantities. This will finally give rise to the following cos-
mological two-point correlation function for gCC Dirichlet boundary states:

DB 〈gCC|χ(k, τ )χ(k′, τ ) |gCC〉DB = (2π)3δ3(k + k′)PgCCDB
χχ (k, τ ), (3.124)

DB 〈gCC| (ikχ(k, τ ))(ikχ(k′, τ )) |gCC〉DB = (2π)3δ3(k + k′)PgCCDB
∂j χ∂j χ (k, τ )

= −(2π)3δ3(k + k′) k2PgCCDB
χχ (k, τ ), (3.125)

DB 〈gCC|�(k, τ )�(k′, τ ) |gCC〉DB = (2π)3δ3(k + k′)PgCCDB
�χ�χ

(k, τ ). (3.126)

Similarly, the two-point correlators in terms of the Neumann boundary states can be expressed 
as:

GgCCNB
χχ (r; τ1, τ2) =

∫
d3k

(2π)3 NB 〈gCC| χ̂in(k, τ1)χ̂
∗
in(k, τ2) |gCC〉NB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗

0,NB + κ0,NB)W0 −
∞∑

n=2

(κ∗
2n,NB + κ2n,NB)W2n

)
〈N | χ̂in(k, τ1)χ̂

∗
in(k, τ2) |N〉 exp(ik.r)

=
∫

d3k
3 GgCCNB

χχ (k, τ1, τ2) exp(ik.r), (3.127)

(2π)

36



S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
G
gCCNB
∂j χ∂j χ (r; τ1, τ2)

=
∫

d3k
(2π)3 NB 〈gCC| ∂j χ̂in(k, τ1)∂j χ̂

∗
in(k, τ2) |gCC〉NB exp(ik.r)

= 1

|d1|
∫

d3k

(2π)3 exp

(
− (κ∗

0,NB + κ0,NB)W0 −
∞∑

n=2

(κ∗
2n,NB + κ2n,NB)W2n

)

〈N | ∂j χ̂in(k, τ1)∂̂j χ
∗
in(k, τ2) |N〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCNB

∂j χ∂j χ (k, τ1, τ2) exp(ik.r),

G
gCCNB
�χ�χ

(r; τ1, τ2) =
∫

d3k
(2π)3 NB 〈gCC| �̂χ (k, τ1)�̂

∗
χ (k, τ2) |gCC〉NB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗

0,NB + κ0,NB)W0 −
∞∑

n=2

(κ∗
2n,NB + κ2n,NB)W2n

)

〈N | �̂χ (k, τ1)�̂
∗
χ (k, τ2) |N〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCNB

�χ�χ
(k, τ1, τ2) exp(ik.r),

where GgCCNB
χχ (k, τ1, τ2), GgCCNB

∂j χ∂j χ (k, τ1, τ2) and GgCCNB
�χ�χ

(k, τ1, τ2) represents the Fourier trans-
form of the real space Green’s functions calculated between the gCC Neumann boundary state 
formed after quench. The state |N〉 is a Neumann boundary state which is defined as

|N〉 = exp

(
1

2

∫
d3k

(2π)3 a
†
out (k)a

†
out (−k)

)
|0, out.〉 (3.128)

Now we can express the Fourier transform of the Green’s functions GgCCNB
χχ (k, τ1, τ2), GgCCNB

∂j χ∂j χ (k,

τ1, τ2) and GgCCNB
�χ�χ

(k, τ1, τ2) in terms of the out vacuum state and hence the outgoing solutions 
represented by the following expressions:

GgCCNB
χχ (k, τ1, τ2)

= 1

a(τ1)a(τ2)

1

|d1|

exp

(
− (κ∗

0,NB + κ0,NB))〈N(k)〉 −
∞∑

n=2

(κ∗
2n,NB + κ2n,NB))|k|2n−1〈N(k)〉

)
4∑

c=1

�c(k, τ1, τ2), (3.129)

GgCCNB
∂j χ∂j χ (k, τ1, τ2) = −k2GgCCNB

χχ (k, τ1, τ2), (3.130)

GgCCNB
�χ�χ

(k, τ1, τ2) = 1

|d1|

exp

(
− (κ∗

0,NB + κ0,NB))〈N(k)〉 −
∞∑

(κ∗
2n,NB + κ2n,NB))|k|2n−1〈N(k)〉

)

n=2
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{
a′(τ1)a

′(τ2)

(a(τ1)a(τ2))2

[ 4∑
c=1

�c(k, τ1, τ2)

]
− a′(τ1)

a2(τ1)a(τ2)

[ 8∑
c=5

�c(k, τ1, τ2)

]

− a′(τ2)

a2(τ2)a(τ1)

[ 12∑
c=9

�c(k, τ1, τ2)

]
+ 1

a(τ1)a(τ2)

[ 16∑
c=12

�c(k, τ1, τ2)

]}
, (3.131)

where the functions �c(k, τ1, τ2)∀ c = 1, · · · , 16 are defined earlier. Here one can further show 
that:

GgCCNB
χχ (k, τ1, τ2)

GgCCDB
χχ (k, τ1, τ2)

=
GgCCNB

∂j χ∂j χ (k, τ1, τ2)

GgCCDB
∂j χ∂j χ (k, τ1, τ2)

=
GgCCNB

�χ�χ
(k, τ1, τ2)

GgCCDB
�χ�χ

(k, τ1, τ2)
= exp

(
2

(
κ0,NB + iπ

2

)
〈N(k)〉

)
= exp(2κ0,DB〈N(k)〉), (3.132)

where we have used the fact that, all the forms of W2n ∀ n = 0, 2, 3, ∞ algebra for Dirichlet and 
Neumann boundary states are exactly same, but the coefficients for the n = 0 term is different and 
others are exactly same. Here particularly n = 1 is not allowed as for our set up the coefficient of 
|k| term is trivially zero in the expansion of the κ(k) parameter.

Once we take the equal time case, τ1 = τ2 = τ , it is straightforward to determine the expres-
sions for the amplitude of the Power Spectrum of the field χ , its spatial derivative and canonically 
conjugate momentum from the gCC Neumann boundary states:

GgCCNB
χχ (k, τ1 = τ, τ2 = τ) := PgCCNB

χχ (k, τ )

= 1

a2(τ )

1

|d1| exp

(
− (κ∗

0,NB + κ0,NB))〈N(k)〉

−
∞∑

n=2

(κ∗
2n,NB + κ2n,NB))|k|2n−1〈N(k)〉

)[ 4∑
c=1

�c(k, τ )

]
, (3.133)

GgCCNB
∂j χ∂j χ (k, τ1 = τ, τ2 = τ) := PgCCNB

∂j χ∂j χ (k, τ ) = −k2 PgCCNB
χχ (k, τ ), (3.134)

GgCCNB
�χ�χ

(k, τ1 = τ, τ2 = τ) := PgCCNB
�χ�χ

(k, τ ) =[
(a′(τ ))2

a2(τ )
PgCCNB

χχ (k, τ ) − exp

(
− (κ∗

0,NB + κ0,NB))〈N(k)〉

−
∞∑

n=2

(κ∗
2n,NB + κ2n,NB))|k|2n−1〈N(k)〉

)
{

a′(τ )

(a3(τ )

1

|d1|
( 12∑

c=5

�c(k, τ )

)
− 1

a2(τ )

1

|d1|
( 16∑

b=13

�c(k, τ )

)}]
, (3.135)

which all are cosmologically significant quantities. This will finally give rise to the following 
cosmological two-point correlation functions for gCC Neumann boundary states:

NB 〈gCC|χ(k, τ )χ(k′, τ ) |gCC〉NB = (2π)3δ3(k + k′)PgCCNB
χχ (k, τ ), (3.136)
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NB 〈gCC| (ikχ(k, τ ))(ikχ(k′, τ )) |gCC〉NB = (2π)3δ3(k + k′)PgCCNB
∂j χ∂j χ (k, τ )

= −(2π)3δ3(k + k′) k2PgCCNB
χχ (k, τ ),

(3.137)

NB 〈gCC|�(k, τ )�(k′, τ ) |gCC〉NB = (2π)3δ3(k + k′)PgCCNB
�χ�χ

(k, τ ). (3.138)

3.3.3. Two-point functions from Generalised Gibbs Ensemble without squeezing
In this section, we calculate the above two-point correlation functions for the Generalized 

Gibbs Ensemble (GGE) [82,83] after quench. They can be expressed as:

GGGE
χχ (β,x1,x2, τ1, τ2) = 〈χ̂ (x1, τ1)χ̂(x2, τ1)〉β = 1

Z
Tr

(
exp

(
− βĤ (τ1)

−
∞∑

n=2

κ2n,DB/NB |k|2n−1N̂k

)
χ̂ (x1, τ1)χ̂(x2, τ2)

)
, (3.139)

GGGE
∂iχ∂iχ

(β,x1,x2, τ1, τ2) = 〈∂j χ̂(x1, τ1)∂j χ̂(x2, τ1)〉β = 1

Z
Tr

(
exp

(
− βH

−
∞∑

n=2

κ2n,DB/NB |k|2n−1N̂k

)
)∂jχ(x1, τ1)∂jχ(x2, τ2)

)
, (3.140)

GGGE
�χ�χ

(β,x1,x2, τ1, τ2) = 〈�̂χ (x1, τ1)�̂χ (x2, τ1)〉β = 1

Z
Tr

(
exp(−βH

−
∞∑

n=2

κ2n,DB/NB |k|2n−1N̂k

)
)�χ(x1, τ1)�χ(x2, τ2)

)
, (3.141)

where, Z is the thermal partition function which in the present context is given by:

Z = Tr

(
exp(−βĤ (τ1) −

∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
)

)
which can be further represented in terms of the occupation number discrete representation of 
the Hamiltonian basis |{Nk}〉 ∀ k as:

Z = 1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})
×

∞∑
{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1))

−
∞∑

n=2

κ2n,DB/NB |k|2n−1N̂k

)
) |{Nk}〉

= 1

2|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.142)

where (βEk(τ1))eff is given by:

(βEk(τ1))eff = βEk(τ1) +
∞∑

κ2n,DB/NB |k|2n−1. (3.143)

n=2
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Thus, the expressions for the two-point for the GGE [84,85] for the field χ , its spatial deriva-
tive and its canonically conjugate momentum as:

GGGE
χχ (β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,χχ (β,k, τ1, τ2) exp(ik.r)

+ GGGE−,χχ (β,k, τ1, τ2) exp(−ik.r)
]
, (3.144)

GGGE
∂iχ∂iχ

(β,k, τ1, τ2) =
∫

d3k
(2π)3

[
GGGE

+,∂iχ∂iχ
(β,k, τ1, τ2) exp(ik.r)

+ GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (3.145)

GGGE
�χ�χ

(β, r, τ1, τ2) =
∫

d3k
(2π)3

[
GGGE+,�χ�χ

(β,k, τ1, τ2) exp(ik.r)

+ GGGE−,�χ�χ
(β,k, τ1, τ2) exp(−ik.r)

]
, (3.146)

where we have defined the spatial separation between the two points x1 and x2 as:

r :≡ x1 − x2. (3.147)

For each of the cases the corresponding thermal propagators in Fourier space are divided into 
two parts, one represents the advanced propagator appearing with + symbol and the other one is 
the retarded propagator appearing with the − symbol. To understand the mathematical structure 
of each of them let us first write their contributions independently in the following expressions:

GGGE+,χχ (β,k, τ1, τ2) = vout (k, τ1)v
∗
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.148)

GGGE−,χχ (β,k, τ1, τ2) = v∗
out (−k, τ1)vout (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.149)

GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE+,χχ (β,k, τ1, τ2) , (3.150)

GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE−,χχ (β,k, τ1, τ2) , (3.151)

GGGE+,�χ�χ
(β,k, τ1, τ2) = v′

out (k, τ1)v
∗′
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)

−GGGE+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (3.152)

GGGE−,�χ�χ
(β,k, τ1, τ2) = v∗′

out (−k, τ1)v
′
out (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff

)
cosech

(
(βEk(τ1))eff

)

2 2
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−GGGE−,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (3.153)

All the technical details of the computations of the above mentioned expressions are explicitly 
presented in the Appendix.

Now we consider a special case, which is the equal time configuration τ1 = τ2 = τ . In that 
case we get the following expressions for the amplitude of the thermal power spectrum of the 
field χ , its spatial derivative and its canonically conjugate momentum:

GGGE+,χχ (β,k, τ, τ ) = PGGE+,χχ (β,k, τ )

= vout (k, τ )v∗
out (−k, τ )

2a2(τ )

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.154)

GGGE−,χχ (β,k, τ, τ ) = PGGE−,χχ (β,k, τ )

= v∗
out (−k, τ )vout (k, τ )

2a2(τ )

× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.155)

GGGE
+,∂iχ∂iχ

(β,k, τ, τ ) = PGGE
+,∂iχ∂iχ

(β,k, τ ) = −k2 PGGE+,χχ (β,k, τ ) , (3.156)

GGGE
−,∂iχ∂iχ

(β,k, τ, τ ) = PGGE
−,∂iχ∂iχ

(β,k, τ ) = −k2 PGGE−,χχ (β,k, τ ) , (3.157)

GGGE+,�χ�χ
(β,k, τ, τ ) = PGGE+,�χ�χ

(β,k, τ )

= v′
out (k, τ )v∗′

out (−k, τ )

2a2(τ )

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)

−PGGE+,χχ (β,k, τ )

a2(τ )
a′2(τ ), (3.158)

GGGE−,�χ�χ
(β,k, τ, τ ) = PGGE−,�χ�χ

(β,k, τ )

= v∗′
out (−k, τ )v′

out (k, τ )

2a2(τ )

× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)

−PGGE−,χχ (β,k, τ )

a2(τ )
a′2(τ ). (3.159)

3.4. Quenched two-point correlation functions with squeezing

In this section, we will calculate the correlation functions for states which are not the ground 
state but excited states of the initial Hamiltonian. We will first show, that even if one starts from 
the excited state of the Hamiltonian before quench, the state after the quench can be expressed 
as gCC states. For this purpose, let’s assume we start from a squeezed state [86–90] instead of 
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the ground state of the pre-quench Hamiltonian. The language of squeezed states in the con-
text of particle production in cosmology was also studied earlier in [91]. The two inter-related 
issues namely particle production and its relation in the dynamics of the early universe was estab-
lished using the formalism of squeezed states. A squeezed state corresponding to the pre-quench 
Hamiltonian can be written as:

|ψ, in〉 = |f 〉 = exp

(
1

2

∫
d3k

(2π)3 f (k)a
†
in(k)a

†
in(-k)

)
|0, in〉 . (3.160)

The above state can be written as:

|f 〉 = exp

(
−
∫

d3k

(2π)3 κeff(k)â
†
out (k)aout (-k)

)
|Bd〉 , (3.161)

where, |Bd〉 represents the boundary state and can be taken as two different possibilities 
|D〉(Dirichlet state) and |N〉(Neumann state) as already discussed in the previous subsection. 
The term κeff is defined as

For Dirichlet State : κeff(k) = −1

2
log(−γeff(k)), (3.162)

For Neumann State : κeff(k) = −1

2
log(γeff(k)). (3.163)

In principle, the signature of γeff(k) captures the effect of the boundary state and takes the nega-
tive signature for Dirichlet state and positive signature for the Neumann state. The quantity γeff
depends on the a particular combination of the ratio of the Bogoliubov coefficients and is given 
by:

γeff(k) =
(

β∗(k, η) + f (k)α(k, η)

α∗(k, η) + f (k)β(k, η)

)
= exp(iδ(k))

(
γ (k) + f (k) exp(iδ(k))

1 + exp(iδ(k))f (k)γ ∗(k)

)
, (3.164)

where we define the momentum dependent phase factor δ(k) as:

exp(iδ(k)) = α(k)

α∗(k)
. (3.165)

For a fixed quench time scale η it is expected to have only the momentum dependence in the γeff.
In this context the function f (k) helps to create an arbitrary squeezed state from the initial 

Hamiltonian of the pre-quench phase. The role of f (k) can be further understood by noting 
that a particular combination of f (k) along with the operators âin(k) and â†

in(k) annihilates the 
squeezed state:(

ain(k) − f (k)a
†
in(−k)

)
|f 〉

=
([

α∗(k, η) + f (k)β(k, η)

]
aout (k) −

[
β∗(k, η) + f (k)α(k, η)

]
a

†
out (−k)

)
|f 〉

= 0. (3.166)

Particularly for a Gaussian squeeze state configuration the functional form of the squeezing func-
tion f (k) is chosen have a Gaussian profile with standard deviation σ = σ0m0, where σ0 is the 
proportionality constant. In this case the squeezing function f (k) can be written as:

f (k) = exp

(
− k2

2

)
. (3.167)
2σ

42



S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
Doing a series expansion of κeff(k), for the specific choice of Gaussian profile of f (k), it can be 
very easily verified that the non-vanishing expansion coefficients for the Dirichlet and Neumann 
boundary states can be written in a very simplified form, mentioned in Appendix B.3.

From the analysis the following additional relations between the non-vanishing expansion 
coefficients before and after squeezing operation are obtained:

κeff
0,DB = κ0,DB, (3.168)

κeff
0,NB = κ0,NB, (3.169)

κeff
4,DB = κeff

4,NB = κ4,DB = κ4,NB, (3.170)

κeff
6,DB = κeff

6,NB = κ6,DB = κ6,NB, (3.171)

κeff
7,DB = κeff

7,NB �= κ7,DB = κ7,NB, (3.172)

κeff
8,DB = κeff

8,NB = κ8,DB = κ8,NB, (3.173)

κeff
9,DB = κeff

9,NB �= κ9,DB = κ9,NB, (3.174)

which implies that for some coefficients one can explicitly observe the deviation in the results 
before and after squeezing operation for the Gaussian squeezing profile function f (k). One can 
explicitly check that the coefficients in which the effect of squeezing is noticeable, has two con-
tributions, i.e.,

κeff
7,DB = κ7,DB + M

sq
7,DB = κ7,NB + M

sq
7,NB = κeff

7,NB, (3.175)

κeff
9,DB = κ9,DB + M

sq
9,DB = κ9,NB + M

sq
9,NB = κeff

9,NB, (3.176)

where κ7,DB, κ7,NB and κ9,DB, κ9,NB are appearing from the non-squeezing part and rest of the 
contributions Msq

7,DB, Msq
7,NB and Msq

9,DB, Msq
9,NB are appearing from the squeezing contributions, 

and are given by:

M
sq
7,DB = M

sq
7,NB =

16(d1d
∗
1 − d2d

∗
2 )2η6 exp(2iπνin)

(1 − 2νin)2
(
id1 + d2eiπνin

)2 (
d∗

1 eiπνin + id∗
2

) (
i(d1 + d∗

1 d∗
2 ) + eiπνin(d∗

1 + d2)
) ,
(3.177)

M
sq
9,DB = M

sq
9,NB =

1

(2νin − 1)3σ 2
(
d∗

1 eiπνin + id∗
2

) (
ieiπνin (d1(d∗

1 + 2d2) + d2d∗
2 ) − d1(d1 + d∗

2 ) + d2e2iπνin (d∗
1 + d2)

)2
×
[

8η6e2iπνin (d1d
∗
1 − d2d

∗
2 )2
(
−i
(

4η2(2νin − 3)σ 2(d1 + d∗
2 ) + d1(2νin − 1)

)

− eiπνin

(
4η2(2νin − 3)σ 2(d∗

1 + d2) + d2(2νin − 1)
))]

. (3.178)

Similarly one can explicitly write down all the higher order odd contributions in the series which 
capture the effects of squeezing.
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3.4.1. Two-point functions from squeezed state
Once we have constructed the in-states in terms of the out-states, we can calculate the follow-

ing two-point correlation functions with respect to the ground state:

Gsq
χχ (x1,x2, τ1, τ2) = 〈f |χ(x1, τ1)χ(x2, τ2) |f 〉 (3.179)

G
sq
∂iχ∂iχ

(x1,x2, τ1, τ2) = 〈f | ∂iχ(x1, τ1)∂iχ(x2, τ2) |f 〉 (3.180)

G
sq
�χ�χ

(x1,x2, τ1, τ2) = 〈f |�(x1, τ1)�(x2, τ2) |f 〉 (3.181)

where, Gsq
χχ (x1, x2, τ1, τ2), G

sq
∂iχ∂iχ

(x1, x2, τ1, τ2) and Gsq
�χ�χ

(x1, x2, τ1, τ2) representing the 
propagators in this computation. Additionally, we will define the spatial separation between the 
two points x1 and x2 as:

r :≡ x1 − x2. (3.182)

We are also interested in the correlation functions of the field χ , its spatial derivative and 
canonically conjugate momenta. This field χ is redefined in terms of classical mode function by 
χ = v/a(τ), used during the derivation of the two-point functions.

The two-point correlators can be expressed as:

Gsq
χχ (r; τ1, τ2) =

∫
d3k

(2π)3 〈f |χin(k, τ1)χ
∗
in(k, τ2) |f 〉 exp(ik.r)

=
∫

d3k
(2π)3G

sq
χχ (k, τ1, τ2) exp(ik.r), (3.183)

G
sq
∂iχ∂iχ

(r; τ1, τ2) =
∫

d3k
(2π)3 〈f | ∂jχ(k, τ1)∂jχ

∗(k, τ2) |f 〉 exp(ik.r)

=
∫

d3k
(2π)3G

sq
∂j χ∂j χ (k, τ1, τ2) exp(ik.r), (3.184)

G
sq
�χ�χ

(r; τ1, τ2) =
∫

d3k
(2π)3 〈f |�χ(k, τ1)�

∗
χ (k, τ2) |f 〉 exp(ik.r)

=
∫

d3k
(2π)3G

sq
�χ�χ

(k, τ1, τ2) exp(ik.r), (3.185)

where Gsq
χχ (k, τ1, τ2), Gsq

∂j χ∂j χ (k, τ1, τ2) and Gsq
�χ�χ

(k, τ1, τ2) representing the Fourier transform 
of the real space Green’s functions, as mentioned before. From the present computation we get 
the following expressions for the Fourier transform of the real space Green’s functions:

Gsq
χχ (k, τ1, τ2) = 1

a(τ1)a(τ2)

1

|d1|
[ 4∑

b=1

�
sq
b (k, τ1, τ2)

]
, (3.186)

Gsq
∂j χ∂j χ (k, τ1, τ2) = 1

a(τ1)a(τ2)

1

|d1|
[
−k2

4∑
b=1

�
sq
b (k, τ1, τ2)

]
, (3.187)

Gsq
�χ�χ

(k, τ1, τ2) = 1

|d1|
[

a′(τ1)a
′(τ2)

(a(τ1))2(a(τ2))2

( 4∑
b=1

�
sq
b (k, τ1, τ2)

)
(3.188)

− a′(τ1)

(a(τ1))2(a(τ2))

( 8∑
�

sq
b (k, τ1, τ2)

)

b=5
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− a′(τ2)

(a(τ1))(a(τ2))2

( 12∑
b=9

�
sq
b (k, τ1, τ2)

)

+ 1

a(τ1)a(τ2)

( 16∑
b=13

�
sq
b (k, τ1, τ2)

)]
. (3.189)

Here we have introduced new symbols �sq
i (k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the above 

mentioned expressions for propagators, and are explicitly defined in the Appendix B.3.
Once we take the equal time case, τ1 = τ2 = τ , the amplitude of the Power Spectrum of the 

field χ , its spatial derivative and canonically conjugate momentum can be determined:

Gsq
χχ (k, τ1 = τ, τ2 = τ) := Psq

χχ (k, τ ) = 1

a2(τ )

1

|d1|
[ 4∑

b=1

�
sq
b (k, τ )

]
, (3.190)

Gsq
∂j χ∂j χ (k, τ1 = τ, τ2 = τ) := Psq

∂j χ∂j χ (k, τ ) = −k2 Psq
χχ (k, τ ), (3.191)

Gsq
�χ�χ

(k, τ1 = τ, τ2 = τ) := Psq
�χ�χ

(k, τ ) =
[
(a′(τ ))2

a2(τ )
Psq

χχ (k, τ )

− a′(τ )

(a3(τ )

1

|d1|
( 12∑

b=5

�
sq
b (k, τ )

)
+ 1

a2(τ )

1

|d1|
( 16∑

b=13

�
sq
b (k, τ )

)]
, (3.192)

all cosmologically significant quantities. This will finally give rise to the following cosmological 
two-point correlation function:

〈f |χ(k, τ )χ(k′, τ ) |f 〉 = (2π)3δ3(k + k′)Psq
χχ (k, τ ), (3.193)

〈f |)(ikχ(k, τ ))(ikχ(k′, τ )) |f 〉 = (2π)3δ3(k + k′)Psq
∂j χ∂j χ (k, τ )

= −(2π)3δ3(k + k′) k2Psq
χχ (k, τ ), (3.194)

〈f |�(k, τ )�(k′, τ ) |f 〉 = (2π)3δ3(k + k′)Psq
�χ�χ

(k, τ ). (3.195)

3.4.2. Two-point functions from squeezed gCC states
In this section, we focus on calculating the two-point correlation function for the squeezed 

gCC state:

G
gCC
χχ,sq(x1,x2, τ1, τ2) = 〈gCCsq | χ̂ (x1, τ1)χ̂(x2, τ2) |gCCsq〉 , (3.196)

G
gCC
∂iχ∂iχ,sq(x1,x2, τ1, τ2) = 〈gCCsq | ˆ∂iχ(x1, τ1) ˆ∂iχ(x2, τ2) |gCCsq〉 , (3.197)

G
gCC
�χ�χ ,sq(x1,x2, τ1, τ2) = 〈gCCsq | �̂(x1, τ1)�̂(x2, τ2) |gCCsq〉 , (3.198)

where we use two types of gCC states, the |ψgCCsq 〉DB Dirichlet boundary state and |ψgCCsq 〉NB
Neumann boundary states, respectively.

The two-point correlators in terms of the Dirichlet boundary states can be expressed as:

G
gCCDB
χχ,sq (r; τ1, τ2) =

∫
d3k

(2π)3 DB 〈gCCsq | χ̂in(k, τ1)χ̂
∗
in(k, τ2) |gCCsq〉DB exp(ik.r)

= 1

|d1|
∫

d3k

(2π)3 exp

(
− (κ∗eff

0,DB + κeff
0,DB)W0 −

∞∑
(κ∗eff

n,DB + κeff
n,DB)Wn

)

n=2
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〈D| χ̂in(k, τ1)χ̂
∗
in(k, τ2) |D〉 exp(ik.r)

=
∫

d3k

(2π)3 GgCCDB
χχ,sq (k, τ1, τ2) exp(ik.r), (3.199)

G
gCCDB
∂j χ∂j χ,sq(r; τ1, τ2)

=
∫

d3k
(2π)3 DB 〈gCC| ∂j χ̂in(k, τ1)∂j χ̂

∗
in(k, τ2) |gCC〉DB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗eff

0,DB + κeff
0,DB)W0 −

∞∑
n=2

(κ∗eff
n,DB + κeff

n,DB)Wn

)

〈D| ∂j χ̂in(k, τ1)∂̂j χ
∗
in(k, τ2) |D〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCDB

∂j χ∂j χ,sq(k, τ1, τ2) exp(ik.r), (3.200)

G
gCCDB
�χ�χ ,sq(r; τ1, τ2) =

∫
d3k

(2π)3 DB 〈gCC| �̂χ (k, τ1)�̂
∗
χ (k, τ2) |gCC〉DB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κ∗eff

0,DB + κeff
0,DB)W0 −

∞∑
n=2

(κ∗eff
n,DB + κeff

n,DB)Wn

)

〈D| �̂χ (k, τ1)�̂
∗
χ (k, τ2) |D〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCDB

�χ�χ ,sq(k, τ1, τ2) exp(ik.r), (3.201)

where GgCCDB
χχ,sq (k, τ1, τ2), GgCCDB

∂j χ∂j χ,sq(k, τ1, τ2) and GgCCDB
�χ�χ ,sq(k, τ1, τ2) represent the Fourier 

transform of the real space Green’s functions calculated between the Dirichlet boundary squeezed 
gCC states formed after quench. The state |D〉 is the Dirichlet boundary state which was defined 
earlier.

Now we can express the Fourier transform of the Green’s functions GgCCDB
χχ,sq (k, τ1, τ2), 

GgCCDB
∂j χ∂j χ,sq(k, τ1, τ2) and GgCCDB

�χ�χ ,sq(k, τ1, τ2) in terms of the out vacuum state and hence the 
outgoing solutions represented by the following expressions:

GgCCDB
χχ,sq (k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,DB + M

sq
n,DB)|k|n−1〈N(k)〉

)

×GgCCDB
χχ (k, τ1, τ2), (3.202)

GgCCDB
∂j χ∂j χ,sq(k, τ1, τ2) = −k2GgCCDB

χχ,sq (k, τ1, τ2), (3.203)

GgCCDB
�χ�χ ,sq(k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,DB + M

sq
n,DB)|k|n−1〈N(k)〉

)

×GgCCDB
�χ�χ

(k, τ1, τ2), (3.204)

where the functions Msq
n,DB∀ n = 7, 9 · · · have been defined earlier.

Once we take the equal time case, τ1 = τ2 = τ , it is easy to determine the expressions for the 
amplitude of the Power Spectrum of the field χ , its spatial derivative and canonically conjugate 
momentum from the squeezed gCC Dirichlet boundary states:
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GgCCDB
χχ,sq (k, τ1 = τ, τ2 = τ) := PgCCDB

χχ,sq (k, τ )

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,DB + M

sq
n,DB)|k|n−1〈N(k)〉

)
PgCCDB

χχ (k, τ ),

(3.205)

GgCCDB
∂j χ∂j χ,sq(k, τ1 = τ, τ2 = τ) := PgCCDB

∂j χ∂j χ,sq(k, τ ) = −k2 PgCCDB
χχ,sq (k, τ ), (3.206)

GgCCDB
�χ�χ ,sq(k, τ1 = τ, τ2 = τ) := PgCCDB

�χ�χ ,sq(k, τ )

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,DB + M

sq
n,DB)|k|n−1〈N(k)〉

)
PgCCDB

�χ�χ
(k, τ ), (3.207)

which are cosmologically significant quantities. This will finally give rise to the following cos-
mological two-point correlation function for the squeezed gCC Dirichlet boundary states:

DB 〈gCCsq |χ(k, τ )χ(k′, τ ) |gCCsq〉DB = (2π)3δ3(k + k′)PgCCDB
χχ,sq (k, τ ), (3.208)

DB 〈gCCsq | (ikχ(k, τ ))(ikχ(k′, τ )) |gCCsq〉DB = (2π)3δ3(k + k′)PgCCDB
∂j χ∂j χ,sq(k, τ )

= −(2π)3δ3(k + k′) k2PgCCDB
χχ,sq (k, τ ), (3.209)

DB 〈gCCsq |�(k, τ )�(k′, τ ) |gCCsq〉DB = (2π)3δ3(k + k′)PgCCDB
�χ�χ ,sq(k, τ ). (3.210)

Similarly, the two-point correlators in terms of the Neumann boundary states can be expressed 
as:

G
gCCNB
χχ,sq (r; τ1, τ2) =

∫
d3k

(2π)3 NB 〈gCCsq | χ̂in(k, τ1)χ̂
∗
in(k, τ2) |gCCsq〉NB exp(ik.r)

= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κeff∗

0,NB + κeff
0,NB)W0 −

∞∑
n=2

(κeff∗
n,NB + κeff

n,NB)Wn

)
〈N | χ̂in(k, τ1)χ̂

∗
in(k, τ2) |N〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCNB

χχ,sq (k, τ1, τ2) exp(ik.r),

G
gCCNB
∂j χ∂j χ,sq(r; τ1, τ2)

=
∫

d3k
(2π)3 NB 〈gCCsq | ∂j χ̂in(k, τ1)∂j χ̂

∗
in(k, τ2) |gCCsq〉NB exp(ik.r)

= 1

|d1|
∫

d3k

(2π)3 exp

(
− (κeff∗

0,NB + κeff
0,NB)W0 −

∞∑
n=2

(κeff∗
n,NB + κeff

n,NB)Wn

)

〈N | ∂j χ̂in(k, τ1)∂̂j χ
∗
in(k, τ2) |N〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCNB

∂j χ∂j χ,sq(k, τ1, τ2) exp(ik.r),

G
gCCNB
�χ�χ ,sq(r; τ1, τ2)

=
∫

d3k
3 NB 〈gCCsq | �̂χ (k, τ1)�̂

∗
χ (k, τ2) |gCCsq〉NB exp(ik.r)
(2π)
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= 1

|d1|
∫

d3k
(2π)3 exp

(
− (κeff∗

0,NB + κeff
0,NB)W0 −

∞∑
n=2

(κeff∗
n,NB + κeff

n,NB)Wn

)

〈N | �̂χ (k, τ1)�̂
∗
χ (k, τ2) |N〉 exp(ik.r)

=
∫

d3k
(2π)3 GgCCNB

�χ�χ ,sq(k, τ1, τ2) exp(ik.r), (3.211)

where GgCCNB
χχ,sq (k, τ1, τ2), GgCCNB

∂j χ∂j χ,sq(k, τ1, τ2) and GgCCNB
�χ�χ ,sq(k, τ1, τ2) represent the Fourier 

transform of the real space Green’s functions calculated between the squeezed gCC Neumann 
boundary state formed after quench. The state |N〉 is a Neumann boundary state, defined earlier.

Now we can express the Fourier transform of the Green’s functions GgCCNB
χχ,sq (k, τ1, τ2), 

GgCCNB
∂j χ∂j χ,sq(k, τ1, τ2) and GgCCNB

�χ�χ ,sq(k, τ1, τ2) in terms of the out vacuum state and hence the 
outgoing solutions represented by the following expressions:

GgCCNB
χχ,sq (k, τ1, τ2)

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,NB + M

sq
n,NB)|k|n−1〈N(k)〉

)
GgCCNB

χχ (k, τ1, τ2), (3.212)

GgCCNB
∂j χ∂j χ,sq(k, τ1, τ2) = −k2GgCCNB

χχ,sq (k, τ1, τ2), (3.213)

GgCCNB
�χ�χ

(k, τ1, τ2)

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,NB + M

sq
n,NB)|k|n−1〈N(k)〉

)
GgCCNB

�χ�χ
(k, τ1, τ2), (3.214)

where the functions Msq
n,DB∀ n = 7, 9 · · · have already been defined earlier.

Once again in the equal time case, τ1 = τ2 = τ , it is straightforward to determine the expres-
sions for the amplitude of the Power Spectrum of the field χ , its spatial derivative and canonically 
conjugate momentum from the gCC Neumann boundary states:

GgCCNB
χχ,sq (k, τ1 = τ, τ2 = τ) := PgCCNB

χχ,sq (k, τ )

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,NB + M

sq
n,NB)|k|n−1〈N(k)〉

)
PgCCNB

χχ (k, τ ), (3.215)

GgCCNB
∂j χ∂j χ,sq(k, τ1 = τ, τ2 = τ) := PgCCNB

∂j χ∂j χ,sq(k, τ ) = −k2 PgCCNB
χχ,sq (k, τ ), (3.216)

GgCCNB
�χ�χ ,sq(k, τ1 = τ, τ2 = τ) := PgCCNB

�χ�χ ,sq(k, τ )

= exp

(
−

∞∑
n=7,9,11,···

(M
sq∗
n,NB + M

sq
n,NB)|k|n−1〈N(k)〉

)
PgCCNB

�χ�χ
(k, τ ). (3.217)

These are cosmologically significant quantities. This will finally give rise to the following cos-
mological two-point correlation function for gCC Neumann boundary states:

NB 〈gCCsq |χ(k, τ )χ(k′, τ ) |gCCsq〉NB = (2π)3δ3(k + k′)PgCCNB
χχ,sq (k, τ ), (3.218)

NB 〈gCCsq | (ikχ(k, τ ))(ikχ(k′, τ )) |gCCsq〉NB = (2π)3δ3(k + k′)PgCCNB
∂j χ∂j χ,sq(k, τ )

= −(2π)3δ3(k + k′) k2PgCCNB
χχ,sq (k, τ ), (3.219)
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NB 〈gCCsq |�(k, τ )�(k′, τ ) |gCCsq〉NB = (2π)3δ3(k + k′)PgCCNB
�χ�χ ,sq(k, τ ). (3.220)

3.4.3. Two-point functions from Generalised Gibbs Ensemble with squeezing
In this section, we calculate the above two-point correlation functions for the Generalized 

Gibbs Ensemble (GGE) [82,83] after quench. They can be expressed as:

GGGE
χχ,sq(β,x1,x2, τ1, τ2) = 〈χ̂ (x1, τ1)χ̂(x2, τ1)〉β = 1

Z
Tr

(
exp

(
− βĤ (τ1)

−
∞∑

n=2

κ
sq
2n,DB/NB |k|2n−1N̂k

)
χ̂ (x1, τ1)χ̂(x2, τ2)

)
, (3.221)

GGGE
∂iχ∂iχ,sq(β,x1,x2, τ1, τ2) = 〈∂j χ̂(x1, τ1)∂j χ̂(x2, τ1)〉β = 1

Z
Tr

(
exp

(
− βH

−
∞∑

n=2

κ
sq

2n,DB/NB |k|2n−1N̂k

)
)∂jχ(x1, τ1)∂jχ(x2, τ2)

)
,

(3.222)

GGGE
�χ�χ ,sq(β,x1,x2, τ1, τ2) = 〈�̂χ (x1, τ1)�̂χ (x2, τ1)〉β = 1

Z
Tr

(
exp(−βH

−
∞∑

n=2

κ
sq

2n,DB/NB |k|2n−1N̂k

)
)�χ(x1, τ1)�χ(x2, τ2)

)
,

(3.223)

where, Z is the thermal partition function which in the present context is given by:

Z = Tr

(
exp(−βĤ (τ1) −

∞∑
n=2

κ
sq

2n,DB/NB |k|2n−1N̂k

)
)

)

which can be further represented in terms of the occupation number discrete representation of 
the Hamiltonian basis |{Nk}〉 ∀ k as:

Z = 1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})
×

∞∑
{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1))

−
∞∑

n=2

κ
sq
2n,DB/NB |k|2n−1N̂k

)
) |{Nk}〉

= 1

2|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.224)

where (βEk(τ1))eff is given by:

(βEk(τ1))eff,sq = βEk(τ1) +
∞∑

n=2

κ
sq

2n,DB/NB |k|2n−1. (3.225)

Thus, the expressions for the two-point for the GGE [84,85] for the field χ , its spatial deriva-
tive and its canonically conjugate momentum as:
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GGGE
χχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,χχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE−,χχ,sq (β,k, τ1, τ2) exp(−ik.r)
]
, (3.226)

GGGE
∂iχ∂iχ,sq(β,k, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE

+,∂iχ∂iχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,∂iχ∂iχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (3.227)

GGGE
�χ�χ ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,�χ�χ ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE−,�χ�χ ,sq (β,k, τ1, τ2) exp(−ik.r)
]
, (3.228)

where we have defined the spatial separation between the two points x1 and x2 as:

r :≡ x1 − x2. (3.229)

For each of the cases the corresponding thermal propagators in Fourier space are divided into 
two parts, one represents the advanced propagator appearing with + symbol and the other one is 
the retarded propagator appearing with the − symbol. To understand the mathematical structure 
of each of them let us first write their contributions independently in the following expressions:

GGGE+,χχ,sq (β,k, τ1, τ2) = vout (k, τ1)v
∗
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
, (3.230)

GGGE−,χχ,sq (β,k, τ1, τ2) = v∗
out (−k, τ1)vout (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.231)

GGGE
+,∂iχ∂iχ,sq (β,k, τ1, τ2) = −k2 GGGE+,χχ,sq (β,k, τ1, τ2) , (3.232)

GGGE
−,∂iχ∂iχ,sq (β,k, τ1, τ2) = −k2 GGGE−,χχ,sq (β,k, τ1, τ2) , (3.233)

GGGE+,�χ�χ ,sq (β,k, τ1, τ2) = v′
out (k, τ1)v

∗′
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− GGGE+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (3.234)

GGGE−,�χ�χ ,sq (β,k, τ1, τ2) = v∗′
out (−k, τ1)v

′
out (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− GGGE−,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (3.235)
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Now we consider a special case, which is the equal time configuration τ1 = τ2 = τ . In that 
case we get the following expressions for the amplitude of the thermal power spectrum of the 
field χ , its spatial derivative and its canonically conjugate momentum:

GGGE+,χχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE+,χχ,sq (β,k, τ )

= vout (k, τ )v∗
out (−k, τ )

2a2(τ )
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
, (3.236)

GGGE−,χχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE−,χχ,sq (β,k, τ )

= v∗
out (−k, τ )vout (k, τ )

2a2(τ )
exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
, (3.237)

GGGE
+,∂iχ∂iχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

+,∂iχ∂iχ,sq (β,k, τ ) = −k2 PGGE+,χχ,sq (β,k, τ ) ,

(3.238)

GGGE
−,∂iχ∂iχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

−,∂iχ∂iχ,sq (β,k, τ ) = −k2 PGGE−,χχ,sq (β,k, τ ) ,

(3.239)

GGGE+,�χ�χ ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE+,�χ�χ ,sq (β,k, τ )

= v′
out (k, τ )v∗′

out (−k, τ )

2a2(τ )
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− PGGE+,χχ,sq (β,k, τ )

a2(τ )
a′2(τ ), (3.240)

GGGE−,�χ�χ ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE−,�χ�χ ,sq (β,k, τ )

= v∗′
out (−k, τ )v′

out (k, τ )

2a2(τ )
exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− PGGE−,χχ,sq (β,k, τ )

a2(τ )
a′2(τ ). (3.241)

4. Numerical results

In this section, we study the behavior of the physically important power spectrum of the two-
point correlators of different quantum states calculated in the Fourier transformed space. We plot 
the power spectrum with respect to the modes and it is expected that from our analysis these 
power spectrum and their associated signatures can be probed via various cosmological observa-
tional datasets. In each plot, we have incorporated the information regarding the three different 
choices of the initial conditions, which are appearing in terms of the Bunch Davies, α and Mota 
Allen vacua. We also have covered a large range of momentum modes to study the behavior of 
the obtained power spectra in small and large cosmological scales. Additionally it is important to 
note that, during performing the numerical analysis we have used the full solution involving the 
Hankel functions for each of the pre quench, post quench and GGE cases. Though we have used 
the full mathematical structure of Hankel functions it is important to note that for cosmological 
estimations and to confront with observational probes only the super horizon modes are physi-
cally relevant. Once the sub horizon modes generated due to having quantum fluctuations, in this 
specific work due to having Quantum Brownian Motion leaves the horizon it freezes and give 
rise to the correct observationally consistent amplitude of the power spectrum. For this reason it 
is immediately expected that solutions obtained by considering the full mathematical structure 
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of Hankel functions in the three consecutive phases (pre quench, post quench and GGE) will be 
completely consistent with the analytically obtained asymptotic solutions within the probed wave 
number window k ∼ O(10−9 − 102)Mpc−1.7 Beyond this mentioned probed window it might 
happen that the full Hankel function solutions and asymptotic solutions8 of the scalar modes in 
the previously mentioned consecutive phases differ from each other. However, the region where 
the deviations are growing with the wave number is identified to be a non-linear regime where the 
all approximations of the cosmological perturbation theory completely breaks and the a-causal 
physics try to dominate in the modes. This is the region where the large scale structure formation 
in the late time scale completely described by the non-linearly evolved density contrast within the 
framework of EFTofLSS. See refs. [95,96] on this issue. Apart from this if we account the non-
linearities along with non-Gaussianities within the framework of Primordial Black Hole (PBH) 
formation then also we need to take care of the full solution in terms of the Hankel function rather 
the asymptotic solution mentioned in this paper. See ref. [97–100] for more details on these as-
pects. To compute the cosmological two point correlation functions and estimate the associated 
power spectrum out of this computation we need the information from the super horizon scale and 
such spectrum should match with the sub horizon quantum fluctuations at the horizon crossing 
point. For this purpose if we at least have the asymptotic solution of the scalar modes in the sub 
horizon region (−kτ → ∞ → −kτ � 1), super horizon region (−kτ → 0 → −kτ � 1)9 and 
at the horizon crossing matching point (−kτ = 1) then one can able to give a complete correct 
estimate of the amplitude of the spectrum in all cosmological scales. Most importantly the super 
horizon and sub horizon results has to match at the horizon crossing boundary. As an immedi-
ate consequence, at the pivot scale when horizon crossing matching condition is implemented 
the correct observationally consistent amplitude can be estimated from the present computation 
performed in this paper.

7 Here look at ref. [92–94] where the discussions regarding the outcomes obtained from the full Hankel function 
solutions and the asymptotic solutions and their comparison have been studied. Using the analysis performed in the work 
[92–94] we have previously inferred at the strong conclusion that the wave number window upto which the full Hankel 
function solutions and the asymptotic solutions match is known as the slow-roll region where the linear approximations 
and associated truncations of the perturbation theory holds good perfectly in the corresponding cosmological scales. The 
exactly similar situation is appearing in the present context of discussion as well.

8 Here it is important to note to write down the analytical results we have separately used the asymptotic solutions in 
the super horizon scale and sub horizon scale. It immediately confuse the readers that probably our asymptotic expansion 
is not at all valid at the horizon crossing point. This notion is not at all true. To write down the total solution we have 
matched the scalar modes at the horizon crossing point as well, which we have not explicitly mentioned before clearly. 
Once we have this information using the result at the sub horizon region, horizon crossing and super horizon region we 
have constructed the final analytical expression for the mode function. Because of this specific reason if we compute the 
cosmological correlation function utilizing these analytical expressions for the modes it will capture the information of 
the three consecutive regions, sub-horizon, horizon crossing and super horizon together. Most importantly if we explicitly 
evaluate the correlation function separately using sub horizon and super horizon region information then it is always 
matching at the boundary which is the horizon crossing point. This clarification needs to be given to avoid any further 
confusion regarding the correctness and utilization of the analytically computed modes and its cosmological impacts in 
this paper. Though for the completeness it is important to further note that during performing the numerical computations 
we have used the full Hankel function solution of the modes which again captures the information of these mentioned 
three regions in the mathematical structure of the solution.

9 Here it is important to note that, to correctly implement the super horizon limit τ → 0 is not the accurate condition. 
It has to be described by the limiting condition −kτ → 0. Now here if we fix the conformal time scale τ = −3Mpc
then to satisfy this condition one has to choose the wave number value small. This will helps us to correctly estimate the 
amplitude of the power spectrum in the super horizon scale.
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• In Fig. 4.1, the behavior of the power spectrum corresponding to the correlator G0
χχ in 

the Fourier transformed space has been studied with respect to the mode functions.10 The 
difference in the effect of the choice of initial vacuum state can be very easily realized by 
seeing the behavior of the power spectrum for the lower modes. Three distinct lines are 
observed for the lower modes which suggest that the choice of initial vacuum has a non-
trivial effect on the power spectrum. The amplitude of the correlator is the lowest for the 
Bunch Davies vacuum. However, the amplitude for the alpha and the Mota Allen vacua cross 
over, as can be clearly seen from the inset of Fig. 4.1. From higher modes, it is extremely 
difficult to capture the role of the initial vacuum state in the power spectrum, due to the 
overlapping of the curves in that region. However, it should be noted that the overlap behavior 
of the power spectrum is independent of the choice of initial vacuum and more or less follows 
an identical pattern for all the vacuum states. From this plot, it is also observed that upto a 
certain range of the mode k the obtained spectra grows almost linearly. After crossing the 
value k ∼ 1.20 Mpc−1 rapid oscillations with small amplitude can be observed, though the 
slope of the growth of the spectra in this region is higher than the previous one. From the 
present observational probes (Planck 2018 data [101]) the amplitude of the scalar modes 
from the power spectrum has to lie within the range:

Ps = (2.975 ± 0.056) × 10−9 at 68%CL

(Planck 2018 data[101] → observed). (4.1)

From this plot, we have found that the amplitude of the spectrum exactly matches with the 
observed value within the range of the comoving scale 10−3 Mpc−1 ≤ k ≤ 0.2 Mpc−1, which 
is a satisfactory finding of our analysis. We have found from our theory the amplitude of the 
power spectrum at the pivot scale k∗ ∼ 0.02Mpc−1 is:

P0
χχ (k∗ ∼ 0.02Mpc−1) ∼ 2.95 × 10−9 (estimated), (4.2)

where the CMB Planck observation takes place. Here all the modes crosses the horizon 
and goes to the sub horizon region for which we can clearly observe that the condition, 
−k∗τ � 1 is explicitly satisfied. Outcomes of the quantum fluctuations of modes becomes 
observationally only relevant when actually we have −kτ ≤ 1. From our analysis we have 
found that within a specific range of the wave number, k ∼ O(10−3 − 0.33)Mpc−1 the con-
dition −kτ ≤ 1 is explicitly satisfied and we have obtained a observationally consistent value 
of the amplitude of the power spectrum lie within the following window:

P0
χχ (k ∼ O(10−3 − 0.33)Mpc−1) ∼ O(2.91 − 2.96) × 10−9 (estimated). (4.3)

• In Fig. 4.2, the behavior of the power spectrum corresponding to the correlator G0
∂jχ∂j χ in 

the Fourier transformed space has been studied with respect to the comoving scale k. The 
overall behavior of the power spectrum is almost identical to the behavior of the correlator 
G0

χχ . However, the amplitude in the entire mode range is very small as compared to the 
power spectrum obtained for the G0

χχ correlator. In the higher mode region, a difference in 
the behavior can also be observed. Though both the power spectrum exhibit a rising behavior 

10 In this paper for the numerical estimation purpose and to obtain the plots we have fixed the unit of the conformal 
time scales, τ and η as Mpc. This further helps us to make the quantity | − kτ | and | − kη| dimensionless throughout the 
analysis performed in this paper. Because of such choice the wave number is measured in the units of Mpc−1.
53



Fig. 4.1. Behavior of the power spectrum of the correlator Gχχ for the ground state with respect to the comoving wave 
number/scale k.

in the higher mode region, the rate of increase for the G0
∂jχ∂j χ correlator is appreciably 

less than that of the G0
χχ correlator which is again a new finding from our analysis. In the 

observational probes this type of two-point correlator and their associated power spectrum 
is not actually analyzed. But since we know the connection between this particular type of 
power spectrum with the previously derived one, it is expected to have smaller amplitude in 
this context. From the observational perspective it is expected that in near future, with the 
development of statistical accuracy in the CL, it may possible to directly probe this type of 
power spectrum.

• The behavior of the power spectrum corresponding to the correlator G0
�χ�χ

in the Fourier 
transformed space has been plotted with respect to the mode functions in Fig. 4.3. We ob-
serve a behavior which is almost identical to the behavior shown by the power spectrum 
corresponding to the G0

χχ correlator in the entire mode region. We have found that the cor-
responding amplitude of the power spectrum from the momentum two-point correlators are 
larger compared to the two types of spectra studied above. In the observational probes this 
type of two-point correlator and its associated power spectrum is not actually analyzed till 
date. However, it is expected to get signatures from two-point momentum correlator in future 
observational probes.

• From the Fig. 4.1, Fig. 4.2 and Fig. 4.3 it is clearly observed that with increasing wave num-
ber gives increasing amplitude of the power spectrum for the scalar modes. Consequently 
one can immediately think that we have obtained a blue tilted power spectrum which is valid 
in all the wave numbers. However this specific notion of interpretation regarding the blue 
tiltedness of the power spectrum is not correct. Let us clarify in detail why this notion is 
not correct. To understand this specific feature we need to start with the CMB pivot scale 
k∗ ∼ 0.02Mpc−1, where the Planck observation takes places and provides statistically sig-
S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
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Fig. 4.2. Behavior of the power spectrum of the correlator G∂j χ∂j χ for the ground state with respect to the comoving 
wave number/scale k.

Fig. 4.3. Behavior of the power spectrum of the correlator G�χ �χ for the ground state with respect to the comoving 
wave number/scale k.
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nificant estimates from observation. If we found the spectral tilt evaluated at this particular 
momentum scale is greater than unity then we can conclude that at CMB observation we get 
inconsistent result because that will correspond to the blue tilted value. From our model at 
the pivot scale the spectral tilt from the obtained power spectrum is estimated as:

n0
χχ =

[
1 +
(

d lnP0
χχ

d ln k

)
k∗∼0.02Mpc−1

]
∼ 0.966 (estimated). (4.4)

From our analysis we have also found that within a specific range of the wave number, 
k ∼ O(10−3 − 0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and within this 
range the spectral tilt from the obtained power spectrum is estimated as:

n0
χχ =

[
1 +
(

d lnP0
χχ

d ln k

)
k∼O(10−3−0.33)Mpc−1

]
∼ O(0.961 − 0.969) (estimated).

(4.5)

Form CMB Planck 2018 the measured value of the spectral tilt is given by:

ns = 0.9649 ± 0.0042 at 68%CL (Planck 2018 data [101] → observed). (4.6)

Which means the estimated value of the spectral tilt from our model is perfectly con-
sistent with CMB Planck 2018 observed data and shows that one can accommodate red 
tilt at the CMB pivot scale k∗ ∼ 0.02Mpc−1 as well as in the preferred window k ∼
O(10−3 − 0.33)Mpc−1 where the quantum fluctuations are entered in the super horizon 
region after crossing the horizon from the sub horizon region. From this discussion its now 
clear that though there is an increment visible in the primordial power spectrum but at the 
pivot scale and within a very small window of wave number one can still accommodate red 
tilted feature. It might happen that beyond the mentioned window of the wave number the 
spectral tilt show blue tilted feature and largely vary with the wave numbers. This outcome 
looks very surprising. However, there lies a deep physical meaning which we now prop-
erly interpret. Apart from the CMB pivot scale non-causal physics play significant role due 
to having significant violation of slow-roll dynamics for which we can’t probe the physical 
outcomes of the any other wave numbers directly though CMB observations. There are many 
examples in cosmology where beyond the pivot scale wave number due to having dominance 
of the non-causal phenomena it might happen that the spectral tilt deviates largely from the 
red tilted behavior. These are:
– Production of Primordial Black Holes (PBHs) [102–108] in presence of ultra slow-roll 

phase.
– Thermal interaction in warm inflationary model [109–113].
In all of these mentioned works the authors have explicitly shown with detailed analysis that 
at the pivot scale red tilted features of the primordial power spectrum can be easily accom-
modated and once we go beyond this scale features largely deviates from red tiltedness.
Let us now give the explanation of the increasing behavior of the primordial power spectrum 
with wave number as appearing in Fig. 4.1, Fig. 4.2 and Fig. 4.3. In the present frame-
work where we are studying the fate of the quantum fluctuations can accommodate both the 
mentioned features of PBHs production through ultra slow-roll and thermal interaction as 
appearing in the context of warm inflation. The framework that we have constructed with 
the help of open quantum field theoretic set up is based on the fact that the system is non-
adiabatically interacting with the thermal environment, which is identified as a thermal bath. 
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In all of these plots the power spectrum is computed with the help of a quantum vacuum 
state (i.e. pre-quench state) where such thermal interactions with the environment play very 
significant role. Before applying the quantum quench the open quantum system we are deal-
ing with in the present context goes immediately to the out-of-equilibrium regime once the 
thermal interaction via Quantum Brownian Motion is activated in the weak coupling non-
Markovian regime. Due to having the mentioned out-of-equilibrium feature the amplitude 
of the computed correlations evaluated using the pre-quench quantum states show growth 
due to having violation of slow-roll dynamics beyond a certain window of the wave number. 
This type of feature is very common in the context of a system driven by out-of-equilibrium 
response which is frequently appearing in the related contexts [114–116].

• In Fig. 4.4, we have plotted the behavior of the power spectrum corresponding to the correla-
tor Gsq

χχ for the squeezed state. We observe three distinctive behavior in the three comoving 
scale regions. For the lower mode region, we observe rapid fluctuations in the power spec-
trum with the amplitude being the largest for the Bunch-Davies vacuum case. A decreasing 
behavior is also observed for the lower mode region. In the intermediate mode region, the 
decreasing behavior is continued with the rate of decrease being significantly larger than 
the lower mode region. However, the point worth mentioning is the fact that the amplitude 
for the Bunch-Davies case becomes lowest in this region. The higher mode region how-
ever, shows a slowly rising behavior, with the contribution from the different vacuum being 
almost identical, as evident from the overlapping curves. From the present observational 
probes (Planck 2018 data [101]) the amplitude of the scalar modes from the power spectrum 
has to lie within the range (2.975 ± 0.056) × 10−10 at 68% CL. From this plot, we have 
found that the amplitude of the spectrum exactly matches with the observed value within the 
range of the comoving scale 0.01 Mpc−1 ≤ k ≤ 0.3 Mpc−1, which is a satisfactory finding 
of our analysis. We have found from our theory the amplitude of the power spectrum at the 
pivot scale k∗ ∼ 0.02Mpc−1 is:

Psq
χχ (k∗ ∼ 0.02Mpc−1) ∼ 2.96 × 10−9 (estimated), (4.7)

where the CMB Planck observation takes place. Here all the modes crosses the horizon and 
goes to the sub horizon region for which we can clearly observe that the condition, −k∗τ � 1
is explicitly satisfied. Outcomes of the quantum fluctuations of modes becomes observation-
ally only relevant when actually we have −kτ ≤ 1. From our analysis we have found that 
within a specific very small range of the wave number, k ∼ O(0.01 −0.33)Mpc−1 the condi-
tion −kτ ≤ 1 is explicitly satisfied and we have obtained a observationally consistent value 
of the amplitude of the power spectrum lie within the following window:

Psq
χχ (k ∼ O(0.01 − 0.33)Mpc−1) ∼ O(2.92 − 2.97) × 10−9 (estimated). (4.8)

• In Fig. 4.5, we have plotted the behavior of the power spectrum corresponding to the corre-
lator Gsq

∂j χ∂j χ for the squeezed state. The behavior of the power spectrum in the intermediate 
and the higher modes are nearly similar to the previous case. However, a difference exists 
in the lower mode region. Whereas in the previous case, we observed decreasing behavior 
for the lower modes, the power spectrum exhibits an increasing behavior in this case. The 
peculiar behavior for the Bunch-Davies case as was seen in the earlier case, also persists in 
this power spectrum. In the observational probes this type of two-point correlator and their 
associated spectrum has not been analyzed yet. It is expected to have smaller amplitude in 
this context, which may be tested in near future with the development of statistical accuracy 
in the CL.
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Fig. 4.4. Behavior of the power spectrum of the correlator Gχχ for the squeezed state with respect to the comoving wave 
number/scale k.

• In Fig. 4.6, we have plotted the behavior of the power spectrum corresponding to the cor-
relator G�χ�χ for the squeezed state. We observe the behavior the power spectrum to be 
identical to that shown for the correlator Gχχ .

• From the Fig. 4.4, Fig. 4.5 and Fig. 4.6 it is clearly observed that with increasing wave 
number gives initially decreasing and then very small increment in the amplitude of the 
power spectrum for the scalar modes. To understand this specific feature we need to start 
with the CMB pivot scale k∗ ∼ 0.02Mpc−1, where the Planck observation takes places and 
provides statistically significant estimates from observation. From our model at the pivot 
scale the spectral tilt from the obtained power spectrum is estimated as:

nsq
χχ =

[
1 +
(

d lnPsq
χχ

d ln k

)
k∗∼0.02Mpc−1

]
∼ 0.964 (estimated). (4.9)

From our analysis we have also found that within a specific range of the wave number, 
k ∼ O(0.01 −0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and within this range 
the spectral tilt from the obtained power spectrum is estimated as:

nsq
χχ =

[
1 +
(

d lnPsq
χχ

d ln k

)
k∼O(0.01−0.33)Mpc−1

]
∼ O(0.963 − 0.967) (estimated).

(4.10)

Form CMB Planck 2018 the measured value of the spectral tilt is ns = 0.9649 ± 0.0042 at
68% CL. Which means the estimated value of the spectral tilt from our model is perfectly 
consistent with CMB Planck 2018 observed data and shows that one can accommodate red 
tilt at the CMB pivot scale k∗ ∼ 0.02Mpc−1 as well as in the preferred window k ∼ O(0.01 −
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Fig. 4.5. Behavior of the power spectrum of the correlator G∂j χ∂j χ for the squeezed state with respect to the comoving 
wave number/scale k.

Fig. 4.6. Behavior of the power spectrum of the correlator G�χ �χ for the ground state with respect to the comoving 
wave number/scale k.
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0.33)Mpc−1 where the quantum fluctuations are entered in the super horizon region after 
crossing the horizon from the sub horizon region. Here now we will describe in detail the 
specific reason of decrement in the corresponding power spectra. Just like the previously 
discussed plots where the increment is prominent here also apart from the pivot scale as well 
as the mentioned very tiny window of the wave number non-causal physics play significant 
role due to having significant violation of slow-roll dynamics for which we can’t probe the 
physical outcomes of the any other wave numbers directly though CMB observations.
Let us now give the explanation of the decreasing behavior of the primordial power spectrum 
with wave number as appearing in Fig. 4.4, Fig. 4.5 and Fig. 4.6. All of these spectrum are 
plotted when the contribution from the sudden quantum mechanical quench is switched on. 
For this reason the vacuum state is shifted to a new squeezed state which describes the post 
quench dynamics. Such new quantum states triggers the phenomena of achieving effective 
thermalization, which further helps us to implement thermal equilibrium for this open quan-
tum field theory set up under consideration. Due to the activation of sudden quench protocol 
the bath degrees of freedom starts dissipating and effects of noise is getting sub-dominant. In 
this description, such dissipation time scale gives the appropriate measure of the thermaliza-
tion time scale for this effective equilibration process. Without having any quench protocol 
such time scale is effectively infinite and activation of sudden quench actually triggers the 
equilibration process, which makes the underlying time scale finite. The similar type of phe-
nomena one can observe for the PBHs production mechanism where after the ultra slow-roll 
when the modes tried enter in a new slow-roll like phase a prominent decrement can be found 
in the corresponding power spectrum. Similarly for all the models of warm inflation due to 
having thermal dissipation one can observe such decrement in the power spectrum.

• In Fig. 4.7(a) and Fig. 4.7(b) the behavior of the power spectrum corresponding to the corre-
lator Gχχ for the gCC and the squeezed gCC states with respect to the comoving scale has 
been shown, respectively. We observe that the gCC state both with and without squeezing 
show a similar decreasing behavior in the lower and the intermediate regions, though the rate 
of decrease may not be identical in both the cases. However, strikingly different behavior can 
be observed for the higher modes. Whereas for the gCC state without squeezing, the power 
spectrum diverges to positive infinity for all the vacua, the same divergence to positive infin-
ity is also observed for the case without squeezing but only for the α vacua case. The power 
spectrum for the Bunch-Davies and the Mota Allen vacua diverges to the negative infinity at a 
higher mode. In this case since the underlying structure of the vacuum state changes for gCC 
the behavior of power spectrum is very non-standard. From the behavior one can observe a 
fall and then a sharp increment with respect to wave number. From the non-standard behavior
it is again obvious that due to having the shifted vacuum states which is prepared due to the 
sudden trigger from quantum quench the system initially show strong dissipative feature for 
which the system-bath interaction is decreasing. As a consequence upto certain wave num-
ber the information of the noise degrees of freedom is extremely sub-dominant compared the 
systems response. After crossing a certain wave number the spectrum increases very sharply 
as the out-of-equilibrium effects start dominating again due to having this non-standard gCC 
vacuum state. This similar type of behavior one can observe within the framework of random 
matrix theory where the correlations show increment. See refs. [114,116] for more details 
on this issue. In the present content dominance of the noise degrees of freedom is directly 
related to the underlying physical phenomena of Quantum Brownian Motion which has a 
indirect connection with random interaction between the system-bath for the open quantum 
system under consideration. Till date in CMB observations such features are not detected 
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Fig. 4.7. Behavior of the power spectrum of the correlator Gχχ for the gCC and the squeezed gCC state respectively 
obtained after quench with respect to the comoving wave number/scale k.
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yet. However, it is expected in near future observation can able to detect such impacts with 
high statistical accuracy.

• In Fig. 4.8(a) and Fig. 4.8(b), the behavior of the power spectrum corresponding to the cor-
relator G∂j χ∂j χ for the gCC and the squeezed gCC states with respect to the modes has been 
shown, respectively. In contrast to the previous case, we observe that the gCC state both with 
and without squeezing shows a similar increasing behavior in the lower and the intermediate 
region, though the rate of increase may not be identical in both the cases. The divergence 
behavior at the higher modes however remains identical to the previous case. In the obser-
vational probes this type of two-point correlators and their associated spectra have not been 
actually analyzed yet. Though it is expected to have smaller amplitudes, it may be tested in 
the near future with the development of statistical accuracy in the CL.

• In Fig. 4.9(a) and Fig. 4.9(b), the behavior of the power spectrum corresponding to the cor-
relator G�χ�χ for the gCC and the squeezed gCC states with respect to the modes has been 
shown, respectively. The behavior of the power spectrum in the entire mode region is iden-
tical to that for the correlator Gχχ . The divergence pattern at the higher mode region is also 
similar in behavior.

• In Fig. 4.10(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states without squeezing at 
a low value of β . We observe that for lower modes the amplitude of the power spectrum 
shows a gradual increasing behavior. In the intermediate mode range however the amplitude 
of the power spectrum saturates followed by a sharp decreasing nature at the higher mode 
range.

• In Fig. 4.10(b), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states without squeezing 
at a high value of β . The behavior of the power spectrum is almost identical to the one we 
observe for the low beta case. However, the most crucial difference is that the amplitude in 
this case is negligible as compared to the low beta case.

• In Fig. 4.11(a), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for post-quench state without 
squeezing at a low value of β . We observe that for lower modes, the amplitude of the power 
spectrum is constant. In the intermediate range the amplitude shows a gradual decreasing 
behavior followed by an overall increasing feature in the higher mode range. Also, the de-
pendence of the amplitude on the choice of the initial vacuum condition is visible only in the 
intermediate mode range.

• In Fig. 4.11(b), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for post-quench state without 
squeezing at a high value of β . We observe that for lower and intermediate modes, the am-
plitude of the power spectrum shows a decreasing behavior which is widely different from 
what we observe in the low β case. The behavior in the higher mode region is identical to 
what we observed in the low β case. Also, the dependence of the amplitude on the choice of 
the initial vacuum condition is visible throughout the lower and intermediate mode region, 
which is also an interesting difference from the low β case. It is also worth mentioning that 
the amplitude of the retarded part takes almost similar values for high and low β , whereas 
for the advanced part the amplitude is almost negligible for the high β as compared to low 
β .

• In Fig. 4.12(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE calculated for states without squeezing 
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Fig. 4.8. Behavior of the power spectrum of the correlator G∂j χ∂j χ for the gCC and the squeezed gCC state respectively 
obtained after quench with respect to the comoving wave number/scale k.
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Fig. 4.9. Behavior of the power spectrum of the correlator G�χ �χ for the gCC and the squeezed gCC state respectively 
obtained after quench with respect to the comoving wave number/scale k.
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Fig. 4.10. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
χχ with respect to 

the comoving wave number/scale k at higher and lower temperatures.
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Fig. 4.11. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
χχ with respect to the 

comoving wave number/scale k at higher and lower temperatures.
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Fig. 4.12. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
∂iχ∂iχ

with respect to 
the comoving wave number/scale k at higher and lower temperatures.
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at a low value of β . We observe that for lower and intermediate modes, the power spectrum 
shows a strictly increasing behavior. However, it shows a sharp and abrupt decrease in the 
power spectrum for higher modes.

• In Fig. 4.12(b), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

∂iχ∂iχ
calculated for states without squeezing 

at a high value of β . We observe that for lower modes, the behavior of the power spectrum 
shows a gradual increase. The rate of increase in the intermediate mode region is very less 
making the increasing nature very slow. However, the sharp fall in the higher mode region is 
observed in this case as well. Also, a key difference is observed in the lower modes region for 
the lower and higher β case. The dependence of the power spectrum on the initial conditions 
is clearly visible in the higher β case whereas the curves overlap in the lower β case. Similar 
to the advanced part of the GGGE

χχ correlator, the amplitude of the power spectrum for the 
low β case is almost negligible compared to the high β case.

• In Fig. 4.13(a), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

∂iχ∂iχ
calculated for states without squeezing 

at a low value of β . We observe an overall increasing behavior for the entire lower mode 
region followed by a peculiar decreasing and then increasing nature of the spectrum in the 
intermediate mode region followed by an overall increasing behavior again at the higher 
mode region.

• In Fig. 4.13(b), we have plotted the retarded part of the power spectrum corresponding to the 
Generalised Gibbs ensemble correlator GGGE

∂iχ∂iχ
calculated for states without squeezing at a 

high value of β . The overall behavior and the amplitude is almost identical to the low β case. 
However, the inlets of the plots clearly show that the initial increase in the power spectrum 
occurs upto a large value of k for high β .

• In Fig. 4.14(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states without squeezing 

at a low value of β . We observe that for lower modes the power spectrum shows a strictly in-
creasing behavior. The amplitude of the power spectrum in the intermediate modes is almost 
constant and the curves corresponding to the different initial conditions overlap. However, a 
sharp and abrupt fall in the power spectrum is observed for higher modes.

• In Fig. 4.14(b), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states without squeezing at 

a high value of β . The overall behavior of the power spectrum is almost identical is identical 
to the low β case apart from the fact that the amplitude of the power spectrum in this case is 
negligible compared to the low β case.

• In Fig. 4.15(a), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states without squeezing 

at a low value of β . It is observed that the power spectrum shows a saturation in its value for 
the lower mode region. This is followed by a decreasing behavior in the intermediate mode 
region. Clear distinction between the curves corresponding to different initial conditions is 
also visible in the intermediate mode region. In the higher mode region an overall increasing 
behavior of the power spectrum is observed.

• In Fig. 4.15(b), we have plotted the retarded part of the power spectrum corresponding to the 
Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states without squeezing at a 

high value of β . The power spectrum in the lower mode region shows a smooth decreasing 
behavior. This is followed by a saturation for a small range of k and then a sudden fall in the 
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Fig. 4.13. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
∂i χ∂iχ

with respect to 
the comoving wave number/scale k at higher and lower temperatures.
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Fig. 4.14. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
�χ �χ

with respect to 
the comoving wave number/scale k at higher and lower temperatures.
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Fig. 4.15. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
�χ �χ

with respect to 
the comoving wave number/scale k at higher and lower temperatures.
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intermediate mode region. The behavior of the higher mode region is identical to the low β
case.

• In Fig. 4.16(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states with squeezing at a 
low value of β . We observe that for lower modes the power spectrum slowly increases for 
a short range of k after which it attains a saturation in its value. However, after a certain k, 
the power spectrum shows an abrupt fall in its value. The amplitude of the power spectrum 
is very high for the entire range of the k.

• In Fig. 4.16(b), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states with squeezing at a 
high value of β . The behavior of the power spectrum in this case is widely different from 
the one observed for the low β case. At lower values of k the power spectrum increases at a 
very fast rate. The saturation value in the intermediate mode region is observed in this case 
as well. However, the sharp fall in the higher k values that was observed in the previous case 
does not happen in this scenario.

• In Fig. 4.17(a), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states with squeezing at a 
low value of β . The behavior of the power spectrum in this case is widely different from the 
advanced part. For very lower values of k the spectrum shows a slightly decreasing behavior. 
It remains saturated for a very large range of k. However after a certain value of k at a 
relatively large value, the power spectrum falls abruptly.

• In Fig. 4.17(b), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

χχ calculated for states with squeezing at a 
high value of β . In this case the initial decreasing behavior occurs for a very large range of k. 
The intermediate saturation region is observed in this case as well. However, the saturation 
range of k is much smaller in this case. At large values of k some random fluctuations after 
a decreasing nature is observed.

• In Fig. 4.18(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

∂iχ∂iχ
calculated for states with squeezing at a 

low value of β . The behavior of the correlator at low β is widely different from the behav-
ior of the corresponding part of the GGGE

χχ correlator. We observe that the power spectrum 
monotonically increases for a very large range of k. The curves corresponding to different 
initial conditions also overlap in this region. However, after a certain characteristic value of 
k, the power spectrum falls a little and then exhibits an oscillatory feature with decreasing 
amplitude.

• In Fig. 4.18(b), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

∂iχ∂iχ
calculated for states with squeezing at a 

high value of β . The behavior of the power spectrum in the low beta case is however identical 
to the corresponding part of the GGGE

χχ correlator. Even the amplitude of the power spectrum 
in different ranges of k is similar to the analogous part of the GGGE

χχ correlator at low β .
• In Fig. 4.19(a), we have plotted the retarded part of the power spectrum corresponding to the 

Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states with squeezing at a low 
value of β . It is observed that the behavior of the power spectrum is pretty similar to what 
we observe for the advanced part. The only difference that we observe is in the amplitude of 
the power spectrum. The amplitude in this case is one order less than the advanced part.

• In Fig. 4.19(b), we have plotted the retarded part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE calculated for states with squeezing at a 
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Fig. 4.16. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
χχ with respect to 

the comoving wave number/scale k at higher and lower temperatures in presence of squeezing.
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Fig. 4.17. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
�χ �χ

with respect to 
the comoving wave number/scale k at higher and lower temperatures in presence of squeezing.
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Fig. 4.18. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
∂iχ∂iχ

with respect to 
the comoving wave number/scale k at higher and lower temperatures in the presence of squeezing.
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Fig. 4.19. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
∂i χ∂iχ

with respect to 
the comoving wave number/scale k at higher and lower temperatures in presence of squeezing.
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high value of β . It is observed that the behavior of the power spectrum in this case is pretty 
similar to what we observe for the low β case.

• In Fig. 4.20(a), we have plotted the advanced part of the power spectrum corresponding to 
the Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states with squeezing at a 

low value of β . The behavior of the power spectrum of this correlator is exactly identical to 
the GGGE

χχ correlator. This identical nature is observed in the entire range of k.
• In Fig. 4.20(b), we have plotted the advanced part of the power spectrum corresponding to 

the Generalised Gibbs ensemble correlator GGGE
�χ�χ

calculated for states with squeezing at 
a high value of β . The behavior at high β is also identical to the corresponding part of the 
GGGE

χχ correlator. The fast increase for lower values of k followed by saturation in the power 
spectrum at intermediate and large values of k occur in this case as well.

• In Fig. 4.21(a), we have plotted the retarded part of the power spectrum corresponding to the 
Generalised Gibbs ensemble correlator GGGE

�χ�χ
calculated for states with squeezing at a low 

value of β . Again the behavior of the correlator is identical to the corresponding part of the 
GGGE

χχ correlator. In this case too the initial decrease of the power spectrum for a small range 
of k followed by the saturation for a large range of k is observed. Moreover, the sudden fall 
that was observed after a certain value of k for GGGE

χχ correlator is also observed in this case. 
Though the behavior of the spectrum remains same the overall amplitude is one order small 
than the GGGE

χχ correlator.
• In Fig. 4.21(b), we have retarded the advanced part of the power spectrum corresponding to 

the Generalised Gibbs ensemble correlator GGGE
�χ�χ

calculated for states with squeezing at 
a high value of β . The feature shown by the correlator exactly matches the one showed by 
the corresponding part of the GGGE

χχ correlator. The smooth decrease for a large range of k
followed by the fluctuations at large k’s is observed in this case too. Here also, the amplitude 
seems to be one order less in magnitude than its corresponding GGGE

χχ correlator.

5. Conclusions

The concluding remarks of our analysis are as follows:

• We have developed the curved space generalization of quantum field theoretic version of the 
well known Caldeira-Leggett model consisting of two interacting scalar fields to describe 
the phenomena of Quantum Brownian Motion. In this construction, we have path integrated 
one scalar field from the two interacting scalar field theory and have constructed the Eu-
clidean partition function and the corresponding effective action for one scalar field. In this 
derivation, all the contributions from the interaction and the free part of the other field will 
be absorbed in the effective coupling parameter and consequently in the effective mass term 
of the scalar field in this effective description.

• In this construction, we have treated the gravitational sector classically and the interacting 
scalar fields quantum mechanically. For this reason during computing the effective action 
and partition function for one scalar field we have treated gravity as the background. Conse-
quently, the result obtained in this construction is a semi-classical result. However, the path 
integral over the metric can also be done if we treat this quantum mechanically by following 
perturbative quantum gravity description. In this paper, we have restricted our analysis in the 
semi-classical regime and have not studied any quantum gravity description of the presented 
framework.
S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
77



S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368

Fig. 4.20. Behavior of the power spectrum corresponding to the advanced part of the correlator GGGE
�χ �χ

with respect to 
the comoving wave number/scale k at higher and lower temperatures in the presence of squeezing.
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Fig. 4.21. Behavior of the power spectrum corresponding to the retarded part of the correlator GGGE
�χ �χ

with respect to 
the comoving wave number/scale k at higher and lower temperatures in presence of squeezing.
79



S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
• Next we derive the results for conformally flat de Sitter space-time solution and used the 
phenomena of quantum quench as a special trick to study the two-point quantum correlation 
functions from the effective scalar field, its spatial derivative and its associated canonically 
conjugate effective field momentum. Particularly in this context, the phenomena of quantum 
quench is used to deal with the conformal time-dependent effective mass which we have 
obtained as an outcome of the previously mentioned semi-classical construction of partition 
function and the effective action for one scalar field in the de Sitter background geometry.

• We have chosen the sudden quench mass protocol using which we compute the classical 
solutions of the effective field in the Fourier transformed space, which is identified as the 
mode functions before and after the quench operation. In the technical description, the solu-
tions obtained before and after quench are known as the incoming and outgoing modes. This 
further enabled us to compute the expressions for the two Bogoliubov coefficients which 
actually connect the solutions before and after the point of quench operation. However, it is 
important to note that the present computational methodology can be implemented for other 
time-dependent effective mass protocols and depending on the specific profile one can ex-
pect to get different types of solutions for the incoming modes, outgoing modes and for the 
two Bogoliubov coefficients which allow expressing one solution in terms of the other.

• From our study we found that irrespective of the initial starting state before the point of 
quench, the state of the system could be written in terms of some conserved charges of W∞
algebra, i.e., in the gCC form. This obtained result further implies that in the late time scale 
the subsystem that we are considering thermalizes. The above fact was true even if one does-
n’t take the ground state of the initial Hamiltonian as the starting state. Most significantly, 
the results that we have established for the thermalization within the framework of de Sitter 
background geometry was not explicitly studied before. Also these obtained results can be 
further extended to study various early universe cosmological phenomena, particle produc-
tion, reheating, etc., where it is needed to thermalize a system from out-of-equilibrium.

• We found that the conserved charges of W∞ algebra describing the gCC state post quench 
was dependent on the choice of the quantum initial conditions for de Sitter background.

• Additionally, we have studied the consequences within the context of a thermal GGE en-
semble where we found that the results for the two-point quantum correlations are explicitly 
dependent on the factor β , which is the inverse equilibrium temperature of the GGE ensem-
ble after thermalization. This is another evidence of the system attaining thermalization at 
the late time scale.

• We also extend the computation for finding the two-point quantum correlation functions 
from a Gaussian squeezed state and for a squeezed gCC state in this paper and found that the 
results are different from the results obtained without squeezing.

• We verify that an assumption of a non-Gaussian squeezed state as the starting wave function 
does not give any significant difference in the conserved charges of W∞ algebra and hence 
the structure of the gCC state describing the post-quench phase is almost identical with the 
gCC state obtained by assuming Gaussian squeezed state. This is nicely consistent with ref. 
[117], in which the author found that the non-Gaussian perturbations of the most dangerous 
type are practically absent.

The future prospects of the present work are as follows:
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• The present work has been done by considering a specific instantaneous quench protocol. 
One can extend the present analysis by considering various other quench protocols in curved 
space-time.

• Another extension of the present work would be to try and consider non-quadratic interac-
tions between the two scalar fields. Though an exact approach may not be possible in that 
case, but one can always resort to perturbative approaches while dealing with such non-
quadratic interaction terms.

• A similar kind of study can be done by taking fermionic fields in the background of De-Sitter 
space instead of the scalar ones and we intend to do it in upcoming days.

• As already clear from the present analysis, the introduction of the curved background plays a 
tremendous role in constructing the gCC states for the post quench phase. One can extend the 
current work not only for different quench profiles but for different background space-times, 
probably in AdS space also.

• The system considered in this paper is a highly realistic one and can be a very useful model 
of many physical systems. One can thus think of studying chaos by computing OTOC’s [79,
118–120], circuit complexity [121–133] and krylov complexity [134,135] for such systems. 
These have attracted significant interest in recent times.
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Appendix A. Charges of W∞ algebra for different quantum initial conditions

A.1. Expression for the coefficients of γ (k)

The specific choices for quantum initial conditions are fixed by choosing the following set of 
constants appearing in the incoming solution:

Bunch − Davies vacuum : d1 = 1, d2 = 0, (A.1)

α vacua : d1 = coshα, d2 = sinhα, (A.2)

Motta − Allen vacua : d1 = coshα, d2 = exp(iγ ) sinhα. (A.3)

The various non-vanishing coefficients of γ (k) can be computed as:

γ0 = − id1 + d2 exp(iπνin)

id∗
2 + d∗

1 exp(iπνin)
, (A.4)

γ4 = −2(d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

3(5 + 2νin)

3((id∗
2 + d∗

1 exp(iπνin))2(−1 + 2νin))
, (A.5)

γ6 = 2(d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

5(−29 + 4νin(4 + νin))

5((id∗
2 + d∗

1 exp(iπνin))2(1 − 2νin)2)
. (A.6)

In the next three subsections we mention the results for the above mentioned three different 
choices of the quantum initial conditions.

A.1.1. Expressions for the Bunch Davies vacuum
For Bunch Davies vacuum we have the following results:

γ0 = exp

(
− iπ

(
νin + 1

2

))
, (A.7)

γ4 = −2

3
exp(−iπνin)η

3
(

5 + 2νin

−1 + 2νin

)
, (A.8)

γ6 = 2
exp(−iπνin)η

5
(−29 + 4νin(4 + νin)

2

)
. (A.9)
5 (1 − 2νin)
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A.1.2. Expressions for the α vacua
For α vacua we have the following results:

γ0 = exp(iπνin) sinhα − i coshα

exp(iπνin) coshα + i sinhα
, (A.10)

γ4 = −2

3

exp(iπνin)η
3(5 + 2νin)

(coshα exp(iπνin) + i sinhα)2(−1 + 2νin)
, (A.11)

γ6 = 2

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(coshα exp(iπνin) + i sinhα)2(1 − 2νin)2 . (A.12)

A.1.3. Expressions for the Mota-Allen vacua
For Mota-Allen vacua we have the following results:

γ0 = exp(i(γ + πνin)) sinhα − i coshα

exp(iπνin) coshα + i exp(−iγ ) sinhα
, (A.13)

γ4 = −2

3

exp(iπνin)η
3(5 + 2νin)

(exp(iπνin) coshα + i exp(−iγ ) sinhα)2(−1 + 2νin)
, (A.14)

γ6 = 2

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(exp(iπνin) coshα + i exp(−iγ ) sinhα)2(1 − 2νin)2 . (A.15)

A.2. Expression for the coefficients of κ(k) for ground state

The non-vanishing coefficients of the κ(k) expansion for arbitrary quantum initial conditions, 
which are representing the non-vanishing charges of the W∞ algebra can be calculated for Dirich-
let and Neumann boundary state as:

κ0,DB = −1

2
log

[
d1 − id2 exp(iπνin)

d∗
2 − id∗

1 exp(iπνin)

]
, (A.16)

κ0,NB = −1

2

{
log

[
d1 − id2 exp(iπνin)

d∗
2 − id∗

1 exp(iπνin)

]
+ iπ

}
, (A.17)

κ4,DB = κ4,NB = − (d1d
∗
1 − d2d

∗
2 ) exp(iπνin))η

3(5 + 2νin)

3(d∗
2 − id∗

1 exp(iπνin))(d1 − id2 exp(iπνin))(−1 + 2νin))
, (A.18)

κ6,DB = κ6,NB = (d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

5(−29 + 4νin(4 + νin))

5(id∗
2 + d∗

1 exp(iπνin)(id1 + d2 exp(iπνin))(1 − 2νin)2)
. (A.19)

κ7,DB = κ7,NB = 1

9(1 − 2νin)2 (d1 − id2 exp(iπνin))
2 (d∗

2 − id∗
1 exp(iπνin)

)2[
η6 exp(iπνin)(d1d

∗
1 − d2d

∗
2 )

(
− 72 exp(iπνin)(d1d

∗
1 − d2d

∗
2 )

+i(d1d
∗
2 + d∗

1 d2 exp(2iπνin)(4νin(νin + 5) − 47)

)]
(A.20)

κ8,DB = κ8,NB = − (d1d
∗
1 − d2d

∗
2 )η7 exp(iπνin)

(
2νin

(
4ν2

in + 22νin − 81
)+ 125

)
7(2νin − 1)3 (id1 + d2 exp(iπνin))

(
d∗

1 exp(iπνin) + id∗
2

)
(A.21)
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κ9,DB = κ9,NB = 1

15(2νin − 1)3 (id1 + d2 exp(iπνin))
2 (d∗

1 exp(iπνin) + id∗
2

)2[
2(d1d

∗
1 − d2d

∗
2 )η8 exp(iπνin)

(
120 exp(iπνin)(2νin − 3)(d1d

∗
1 − d2d

∗
2 ) − id1d

∗
2 (8ν3

in

+ 52ν2
in − 218νin + 215)

− id∗
1 d2 exp(2iπνin)(8ν3

in + 52ν2
in − 218νin + 215)

)]
(A.22)

In the next three subsections we mention the results for the previously mentioned three different 
choices of the quantum initial conditions. Here we are computing the expressions for the Dirichlet 
boundary states from which one can also derive the expressions for the Neumann boundary states 
using the above mentioned connecting relationships. For computational simplicity we will further 
drop the superscript DB in the further computations.

A.2.1. Expressions for the Bunch Davies vacuum
For Bunch Davies vacuum we have the following results:

κ0 = − iπ

2

(
1

2
− νin

)
(A.23)

κ4 = − i

3
η3
(

5 + 2νin

−1 + 2νin

)
(A.24)

κ6 = − i

5
η5
(−29 + 4νin(4 + νin)

(1 − 2νin)2

)
(A.25)

κ7 = 8η6

(1 − 2νin)2 (A.26)

κ8 = i

7
η7
((

2νin

(
4ν2

in + 22νin − 81
)+ 125

)
(2νin − 1)3

)
(A.27)

κ9 = 16η8(3 − 2νin)

(2νin − 1)3 (A.28)

A.2.2. Expressions for the α vacua
For α vacua we have the following results:

κ0 = −1

2
log

(
exp(iπνin) sinh(α) + i cosh(α)

exp(iπνin) cosh(α) + i sinh(α)

)
, (A.29)

κ4 = −1

3
exp(iπνin)η3(5 + 2νin)

(sinhα − i coshα exp(iπνin))(coshα − i sinhα exp(iπνin))(−1 + 2νin)
, (A.30)

κ6 = 1

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(i sinhα + coshα exp(iπνin))(i coshα + sinhα exp(iπνin))(1 − 2νin)2 , (A.31)

κ7 = exp(iπνin)η6 (i (1 + exp(2iπνin)) (4νin(νin + 5) − 47) sinh(2α) − 144 exp(iπνin))

18(1 − 2νin)2 (exp(iπνin) cosh(α) + i sinh(α))2 (exp(iπνin) sinh(α) + i cosh(α))2 (A.32)

κ8 = − η7 exp(iπνin)
(

8ν3
in

+ 44ν2
in

− 162νin + 125
)

3
, (A.33)
7(2νin − 1) (exp(iπνin) cosh(α) + i sinh(α)) (exp(iπνin) sinh(α) + i cosh(α))
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κ9 = 1

15(2νin − 1)3(sinh(2α) sin(πνin) + cosh(2α))2

‘ ×
[
η8 exp(−iπνin)

(
i (1 + exp(2iπνin))

(
8ν3

in + 52ν2
in − 218νin + 215

)
sinh(2α)

‘ − 240 exp(iπν)(2ν − 3))

]
. (A.34)

A.2.3. Expressions for the Mota-Allen vacua
For Mota-Allen vacua we have the following results:

κ0 = −1

2
log

(
coshα − i exp(i(πνin + γ )) sinhα

exp(−iγ ) sinhα − i exp(iπνin) coshα

)
, (A.35)

κ4 = 1

3
exp(iπνin)η3(5 + 2νin)

(exp(−iγ ) sinhα − i coshα exp(iπνin))(coshα − i sinhα exp(i(πνin + γ )))(−1 + 2νin)
, (A.36)

κ6 = 1

5
exp(iπνin)η5(−29 + 4νin(4 + νin))

(i exp(−iγ )) sinhα + coshα exp(iπνin))(i coshα + sinhα exp(i(πνin + γ )))(1 − 2νin)2
, (A.37)

κ7 = 1

18(1 − 2ν)2 (cosh(α) exp(i(γ + πνin)) + i sinh(α))2 (sinh(α) exp(i(γ + πνin)) + i cosh(α))2
,

×
[

exp(i(γ + πνin))η
6
(

i(4ν(νin + 5) − 47) sinh(2α)

×
(

1 + exp(2i(γ + πνin))

)

− 144 exp(i(γ + πνin))

)]
(A.38)

κ8 = − exp(i(γ + πνin))η7
(

2νin

(
4ν2

in
+ 22νin − 81

)
+ 125

)
7(2νin − 1)3 (cosh(α) exp(i(γ + πνin)) + i sinh(α)) (sinh(α) exp(i(γ + πνin)) + i cosh(α))

, (A.39)

κ9 = 1

15(2νin − 1)3 (cosh(α) exp(i(γ + πνin)) + i sinh(α))2 (sinh(α) exp(i(γ + πνin)) + i cosh(α))2

×
[
η8 exp(i(γ + πνin))(240(2νin − 3) exp(i(γ + πνin))

− i(8ν3
in + 52ν2

in − 218νin + 215) sinh(2α)(1 + exp(2i(γ + πνin))))

]
. (A.40)

A.3. Expression for the coefficients of κ(k) for squeezed states

Doing a series expansion of κeff (k), for the specific choice of Gaussian f (k), it can be 
very easily verified that the non-vanishing expansion coefficients for the Dirichlet and Neumann 
boundary states can be written in the following form:

κeff
0,DB = −1

2
log

[
d1 − id2 exp(iπνin)

d∗
2 − id∗

1 exp(iπνin)

]
(A.41)

κeff
0,NB = −1

2

{
log

[
d1 − id2 exp(iπνin)

d∗
2 − id∗

1 exp(iπνin)

]
+ iπ

}
(A.42)

κeff
4,DB = κeff

4,NB = − (d1d
∗
1 − d2d

∗
2 ) exp(iπνin))η

3(5 + 2νin)
∗ ∗ (A.43)
3(d2 − id1 exp(iπνin))(d1 − id2 exp(iπνin))(−1 + 2νin))
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κeff
6,DB = κeff

6,NB = (d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

5(−29 + 4νin(4 + νin))

5(id∗
2 + d∗

1 exp(iπνin)(id1 + d2 exp(iπνin))(1 − 2νin)2)
(A.44)

κeff
7,DB = κeff

7,NB

= 1

9(d∗
2 − id∗

1 exp(iπνin))2(id1 + d2 exp(iπνin))2(d1 + d∗
2 − i(d∗

1 + d2) exp(iπνin))(1 − 2νin)2

[
exp(iπνin)η6

(
id1d∗

2 (d1 + d∗
2 )(−d1d∗

1 + d2d∗
2 )(−47 + 4νin(5 + νin)) + d∗

1 d2(d∗
1 + d2)

(−d1d∗
1 + d2d∗

2 )) exp(3iπνin)(−47 + 4νin(5 + νin))

+
(

(d1d∗
1 − d2d∗

2 )(72d2
1 d∗

1 − d1d∗
2 (2νin + 5)2

(d∗
1 + d2) + 72d2d∗2

2

)
+ d∗

1 d2 exp(3iπνin)(4νin(νin + 5) − 47)(d∗
1 + d2)(d2d∗

2 − d1d∗
1 )

+ id1d∗
2 (4νin(νin + 5) − 47)(d1 + d∗

2 )(d2d∗
2 − d1d∗

1 ) + ie2iπνin (d1d∗
1 − d2d∗

2 )(
d1d∗

1 (72d∗
1 − d2(2νin + 5)2 + d2d∗

2 (72d2 − d∗
1 (2νin + 5)2)

))]
(A.45)

κeff
8,DB = κeff

8,NB − (d1d
∗
1 − d2d

∗
2 ) exp(iπνin)η

7(125 + 2νin(−81 + 22νin + 4ν2
in))

7(id∗
2 + d∗

1 exp(iπνin))(id1 + d2 exp(iπνin))(−1 + 2νin)3

κeff
9,DB = κeff

9,NB

=
1

15(2νin − 1)3σ 2
(

id1 + d2eiπνin

)2(
d∗

2 − id∗
1 eiπνin

)2(
d1 − ieiπνin (d∗

1 + d2) + d∗
2

)2

×

[
2η6eiπνin (d1d∗

1 − d2d∗
2 )

(
d3

1 η2σ2
(

id∗
2

(
8ν3

in + 52ν2
in − 218νin + 215

)
− 120d∗

1 eiπνin (2νin − 3)

)

+ d2
1

(
2d∗

2 eiπνin

(
η2σ2

(
8ν3

in(d∗
1 + d2) + 52ν2

in(d∗
1 + d2) − 2νin(109d∗

1 + 49d2) + 215d∗
1 + 35d2

)

+ 30d∗
1 (2νin − 1)

)
− id∗

1 e2iπνin

(
60d∗

1 (2νin − 1) − d2η2
(

8ν3
in + 52ν2

in + 262νin − 505

)
σ2
)

+ 2id∗2
2 η2

(
8ν3

in + 52ν2
in − 218νin + 215

)
σ2
)

+ d1

(
2d2eiπνin

(
d∗2

2 + d∗2
1 e2iπνin

)
(

η2
(

8ν3
in + 52ν2

in − 218νin + 215

)
σ2 − 60νin + 30

)
+ d2

2 η2e2iπνin σ2
(

2d∗
1 eiπνin

(
8ν3

in + 52ν2
in − 98νin + 35

)
− id∗

2

(
8ν3

in + 52ν2
in + 262νin − 505

))
+ η2σ2

(
d∗

2 − id∗
1 eiπνin

)2

(
120d∗

1 eiπνin (2νin − 3) + id∗
2

(
8ν3

in + 52ν2
in − 218νin + 215

)))

+ d2eiπνin

(
id∗2

2 eiπν

(
d∗

1 η2
(

8ν3
in + 52ν2

in + 262νin − 505

)
σ2 + 60d2(2νin − 1)

)

+ 2d∗
2 e2iπνin

(
η2σ2(d∗

1 + d2)

(
d∗

1

(
8ν3

in + 52ν2
in − 98νin + 35

)
+ 60d2(3 − 2νin)

)

+ 30d∗
1 d2(2νin − 1)

)
− id∗

1 η2e3iπνin

(
8ν3

in + 52ν2
in − 218νin + 215

)
σ2(d∗

1 + d2)2

+ 120d∗3
2 η2(3 − 2νin)σ2

))]

(A.46)

In the next three subsections we mention the results for the previously mentioned three different 
choices of the quantum initial conditions. Here we are computing the expressions for the Dirichlet 
boundary states from which one can also derive the expressions for the Neumann boundary states 
using the above mentioned connecting relationships. For computational simplicity we will further 
drop the superscript DB in the further computations.
86



S. Banerjee, S. Choudhury, S. Chowdhury et al. Nuclear Physics B 996 (2023) 116368
A.3.1. Expressions for the Bunch Davies vacuum
For Bunch Davies vacuum we have the following results:

κeff
0 = κ0 = − iπ

2

(
1

2
− ν

)
(A.47)

κeff
4 = κ4 = − i

3
η3
(

5 + 2ν

−1 + 2ν

)
(A.48)

κeff
6 = κ6 = − i

5
η5
(−29 + 4ν(4 + ν)

(1 − 2ν)2

)
(A.49)

κeff
7 �= κ7 = − 8η6 (exp(iπν) − i)

(exp(iπν) + i) (1 − 2ν)2 (A.50)

κeff
8 = κ8 = i

7
η7
((

2ν
(
4ν2 + 22ν − 81

)+ 125
)

(2ν − 1)3

)
(A.51)

κeff
9 �= κ9 = 8η6 exp(iπν)

(
4η2(2ν − 3)σ 2 cos(πν) + i(2ν − 1)

)
(exp(iπν) + i)2 (2ν − 1)3σ 2

(A.52)

A.3.2. Expressions for the α vacua
For α vacua we have the following results:

κeff
0 = κ0 = −1

2
log

(
exp(iπνin) sinh(α) + i cosh(α)

exp(iπνin) cosh(α) + i sinh(α)

)
, (A.53)

κeff
4 = κ4 = −1

3
exp(iπνin)η3(5 + 2νin)

(sinhα − i coshα exp(iπνin))(coshα − i sinhα exp(iπνin))(−1 + 2ν)
, (A.54)

κeff
6 = κ6 = 1

5
exp(iπνin)η5(−29 + 4νin(4 + νin))

(i sinhα + coshα exp(iπνin))(i coshα + sinhα exp(iπνin))(1 − 2νin)2
, (A.55)

κeff
7 �= κ7 = 1

18(eiπνin + i)(1 − 2νin)2(eiπνin cosh(α) + i sinh(α))2(eiπνin sinh(α) + i cosh(α))2[
η6eiπνin(eiπνin − i)(i(−4ν2

in + e2iπνin (4ν2
in + 20νin − 47)

−20νin + 2ieiπνin(2νin + 5)2

+47) sinh(2α) + 144eiπνin cosh(2α))

]
, (A.56)

κeff
8 = κ8 = − η7 exp(iπνin)

(
8ν3

in
+ 44ν2

in
− 162νin + 125

)
7(2νin − 1)3 (exp(iπνin) cosh(α) + i sinh(α)) (exp(iπνin) sinh(α) + i cosh(α))

, (A.57)

κeff
9 �= κ9 = 1

15
(
eiπν + i

)2
(2νin − 1)3σ 2

(
eiπνin cosh(α) + i sinh(α)

)2 (
eiπνin sinh(α) + i cosh(α)

)2
[

4η6e−2α+3iπνin (sinh(2α)(e2αη2σ 2((8ν3
in + 52ν2

in − 218νin + 215) sin(πνin) + (2νin + 5)

(4νin(νin + 4) − 29)) cos(πνin) − 30i(2νin − 1) sin(πνin))

+ 30 cosh(2α)(−4e2αη2(2νin − 3)

σ 2 cos(πνin) − 2iνin + i))

]
.

(A.58)
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A.3.3. Expressions for the Mota-Allen vacua
For Mota-Allen vacua we have the following results:

κeff
0 = κ0 = −1

2
log

(
coshα − i exp(iπ(νin + γ )) sinhα

exp(−iγ ) sinhα − i exp(iπνin) coshα

)
, (A.59)

κeff
4 = κ4 = 1

3
exp(iπνin)η

3(5 + 2νin)

×
[
(exp(−iγ ) sinhα − i coshα exp(iπνin))(coshα − i sinhαeiπ(νin+γ )(−1 + 2νin)

]−1
, (A.60)

κeff
6 = κ6 = 1

5
exp(iπνin)η

5(−29 + 4νin(4 + νin))

×
[
i(exp(−iγ ) sinhα + coshα exp(iπνin))(i coshα + sinhαei(πνin+γ )(1 − 2νin)2

]−1
, (A.61)

κeff
7 �= κ7 (A.62)

=
(
−ieiπνin

(
eiγ sinh(α) + cosh(α)

)
+ e−iγ sinh(α) + cosh(α)

)−1

9(1 − 2νin)2
(
e−iγ sinh(α) − ieiπνin cosh(α)

)2 (sinh(α)ei(γ+πνin) + i cosh(α)
)2

[
η6eiπνin (eiπνin (−(2νin + 5)2e−iγ sinhα coshα(eiγ sinh(α) + cosh(α)) + 72e−iγ sinh3 α

+ 72 cosh3 α) + ie2iπνin (−(2νin + 5)2eiγ sinhα cosh2 α − (2νin + 5)2 sinh2(α) coshα

+ 72eiγ sinh3 α + 72 cosh3 α)

+ (−i)(4νin(νin + 5) − 47)e−2iγ sinh(α) coshα(eiγ coshα + sinhα)

− (4νin(νin + 5) − 47) sinhα coshαeiγ+3iπνin (eiγ sinhα + coshα))

]
,

(A.63)

κeff
8 = κ8 = −

(
exp(i(γ + πνin))η

7
(

2νin

(
4ν2

in + 22νin − 81
)

+ 125
))

×
(

7(2νin − 1)3
(

cosh(α)ei(γ+πνin) + i sinh(α)
)(

sinh(α)ei(γ+πνin) + i cosh(α)
))−1

, (A.64)

κeff
9 �= κ9

= 1

15(2νin − 1)3σ 2
(
e−iγ sinh(α) − ieiπνin cosh(α)

)2 (sinh(α)eiγ+iπνin + i cosh(α)
)2

× 1(
iπνin

(
iγ

) −iγ
)2
−ie e sinh(α) + cosh(α) + e sinh(α) + cosh(α)
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[
2η6eiπνin (η2σ 2 cosh3(α)(i(8ν3

in + 52ν2
in − 218νin + 215)e−iγ sinh(α)

− 120eiπνin (2νin − 3) cosh(α)) + cosh(α)(2 sinh(α)eiγ+iπνin (η2(8ν3
in + 52ν2

in − 218νin + 215)σ 2

− 60νin + 30)(e−2iγ sinh2(α) + e2iπνin cosh2(α)) + η2σ 2 sinh2(α)e2iγ+2iπνin (2eiπνin (8ν3
in

+ 52ν2
in − 98νin + 35) cosh(α) − i(8ν3

in + 52ν2
in + 262νin − 505)e−iγ sinh(α))

− η2σ 2e−3iγ (cosh(α)eiγ+iπνin + i sinh(α))2(i(8ν3
in + 52ν2

in − 218νin + 215) sinh(α)

+ 120(2νin − 3) cosh(α)eiγ+iπνin ))

+ cosh2(α)(2iη2(8ν3
in + 52ν2

in − 218νin + 215)σ 2e−2iγ sinh2(α)

+ 2 sinh(α)e−iγ+iπνin (η2σ 2((8ν3
in + 52ν2

in − 98νin + 35)eiγ sinh(α)

+ (8ν3
in + 52ν2

in − 218νin + 215) cosh(α)) + 30(2νin − 1) cosh(α))

− ie2iπνin cosh(α)(60(2νin − 1) cosh(α)

− η2(8ν3
in + 52ν2

in + 262νin − 505)σ 2eiγ sinh(α)))

+ i sinh3(α)e−iγ+2iπνin (η2(8ν3
in + 52ν2

in + 262νin − 505)σ 2 cosh(α)

+ 60(2νin − 1)eiγ sinh(α))

+ 2e3iπνin sinh2(α)(η2σ 2(eiγ sinh(α) + cosh(α))((8ν3 + 52ν2
in − 98νin + 35)

cosh(α) + 60(3 − 2νin)eiγ sinh(α)) + 15(2νin − 1)eiγ sinh(2α))

− iη2(8ν3
in + 52ν2

in − 218νin + 215)

σ 2 sinh(α) cosh(α)eiγ+4iπνin (eiγ sinh(α) + cosh(α))2

+ 120η2(3 − 2νin)σ 2 sinh4(α)e−2iγ+iπνin )

]

(A.65)

A.4. Consistency relations

In this appendix, we re-derive the relations between the various coefficients of γ and κ for 
the different choices of quantum initial conditions as discussed earlier in the text portion. For the 
sudden mass quench profile, the relationship between the various coefficients of κ(k) and γ (k)

can be expressed as:

κ4,DB = κ4,NB = i

2

(
id∗

2 + d∗
1 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4 = 1

2

(
d1 + id2 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4

γ0
(A.66)

κ6,DB = κ6,NB = 1

2

(
id∗

2 + d∗
1 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6 = 1

2

(−id1 + d2 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6

γ0
(A.67)

In the next three subsections we mention the results for the previously mentioned three different 
choices of the quantum initial conditions. Here we are computing the expressions for the Dirichlet 
boundary states from which one can also derive the expressions for the Neumann boundary states 
using the above mentioned connecting relationships. For computational simplicity we will further 
drop the superscript DB in the further computations.

A.4.1. Expressions for the Bunch Davies vacuum
For Bunch Davies vacuum we have the following results:

κ4 = 1

2

(
γ4

γ0

)
(A.68)

κ6 = −1
(

γ6
)

(A.69)

2 γ0
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A.4.2. Expressions for the α vacua
For α vacua we have the following results:

κ4 = 1

2

(
coshα + i sinhα exp(iπνin)

i coshα + sinhα exp(iπνin)

)(
γ4

γ0

)
(A.70)

κ6 = 1

2

(−i coshα + sinhα exp(iπνin)

coshα − i sinhα exp(iπνin)

)(
γ6

γ0

)
(A.71)

A.4.3. Expressions for the Mota-Allen vacua
For Mota-Allen vacua we have the following results:

κ4 = 1

2

(
coshα + sinhα exp(iπ(νin + 1/2) + γ )

coshα − sinhα exp(iπ(νin + 1/2) + γ )

)(
γ4

γ0

)
(A.72)

κ6 = 1

2

(
exp(−iπ/2) coshα + sinhα exp(i(πνin + γ )

exp(iπ/2) coshα + sinhα exp(i(πνin + γ ))

)(
γ6

γ0

)
(A.73)

Appendix B. Definition of the Symbols appearing in the two-point correlators

B.1. Symbols appearing in the correlators of the ground state

Here we have defined the symbols �i(k, τ1, τ2) ∀ i = 1, · · · , 16 that appeared in the correla-
tors calculated for the ground state:

�1(k, τ1, τ2) = |α(k)|2vout (k, τ1)v
∗
out (k, τ2) (B.1)

�2(k, τ1, τ2) = α(k)β∗(k)vout (k, τ1)vout (−k, τ2) (B.2)

�3(k, τ1, τ2) = α∗(k)β(k)v∗
out (−k, τ1)v

∗
out (k, τ2) (B.3)

�4(k, τ1, τ2) = |β(k)|2v∗
out (k, τ1)vout (−k, τ2) (B.4)

�5(k, τ1, τ2) = |α(k)|2vout (k, τ1)v
′∗
out (k, τ2) (B.5)

�6(k, τ1, τ2) = α(k)β∗(k)vout (k, τ1)v
′
out (−k, τ2) (B.6)

�7(k, τ1, τ2) = α∗(k)β(k)v∗
out (−k, τ1)v

′∗
out (k, τ2) (B.7)

�8(k, τ1, τ2) = |β(k)|2v∗
out (k, τ1)v

′
out (−k, τ2) (B.8)

�9(k, τ1, τ2) = |α(k)|2v′
out (k, τ1)v

∗
out (k, τ2) (B.9)

�10(k, τ1, τ2) = α(k)β∗(k)v′
out (k, τ1)vout (−k, τ2) (B.10)

�11(k, τ1, τ2) = α∗(k)β(k)v′∗
out (−k, τ1)v

∗
out (k, τ2) (B.11)

�12(k, τ1, τ2) = |β(k)|2v′∗
out (k, τ1)vout (−k, τ2) (B.12)

�13(k, τ1, τ2) = |α(k)|2v′
out (k, τ1)v

′∗
out (k, τ2) (B.13)

�14(k, τ1, τ2) = α(k)β∗(k)v′
out (k, τ1)v

′
out (−k, τ2) (B.14)

�15(k, τ1, τ2) = α∗(k)β(k)v′∗
out (−k, τ1)v

′∗
out (k, τ2) (B.15)

�16(k, τ1, τ2) = |β(k)|2v′∗
out (k, τ1)v

′
out (−k, τ2) (B.16)

and vin and vout are the fluctuation solutions before and after the quench point respectively 
and α and β are Bogoliubov coefficients which encodes the quench protocol in the form of the 
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asymptotic expansion of the Hankel functions. The Bogoliubov coefficients could be written 
entirely in terms of γ (k) as follows:

|α(k)|2 = 1

1 − |γ (k)|2 , (B.17)

|β(k)|2 = |γ (k)|2
1 − |γ (k)|2 , (B.18)

α(k)β∗(k) = |γ (k)|
1 − |γ (k)|2 , (B.19)

α∗(k)β(k) = |γ ∗(k)|
1 − |γ (k)|2 (B.20)

B.2. Symbols appearing in the correlators of the gCC state

The symbols �i(k, τ1, τ2) ∀ i = 1, · · · , 16 appearing in the correlators of the gCC states are 
given by:

�1(k, τ1, τ2) = vout (k, τ1)v
∗
out (k, τ2) (B.21)

�2(k, τ1, τ2) = vout (k, τ1)vout (−k, τ2) (B.22)

�3(k, τ1, τ2) = v∗
out (−k, τ1)v

∗
out (k, τ2) (B.23)

�4(k, τ1, τ2) = v∗
out (k, τ1)vout (−k, τ2) (B.24)

�5(k, τ1, τ2) = vout (k, τ1)v
′∗
out (k, τ2) (B.25)

�6(k, τ1, τ2) = vout (k, τ1)v
′
out (−k, τ2) (B.26)

�7(k, τ1, τ2) = v∗
out (−k, τ1)v

′∗
out (k, τ2) (B.27)

�8(k, τ1, τ2) = v∗
out (k, τ1)v

′
out (−k, τ2) (B.28)

�9(k, τ1, τ2) = v′
out (k, τ1)v

∗
out (k, τ2) (B.29)

�10(k, τ1, τ2) = v′
out (k, τ1)vout (−k, τ2) (B.30)

�11(k, τ1, τ2) = v′∗
out (−k, τ1)v

∗
out (k, τ2) (B.31)

�12(k, τ1, τ2) = v′∗
out (k, τ1)vout (−k, τ2) (B.32)

�13(k, τ1, τ2) = v′
out (k, τ1)v

′∗
out (k, τ2) (B.33)

�14(k, τ1, τ2) = v′
out (k, τ1)v

′
out (−k, τ2) (B.34)

�15(k, τ1, τ2) = v′∗
out (−k, τ1)v

′∗
out (k, τ2) (B.35)

�16(k, τ1, τ2) = v′∗
out (k, τ1)v

′
out (−k, τ2) (B.36)

and vin and vout are the fluctuation solutions before and after the quench point respectively.

B.3. Symbols for squeezed state

Here we have introduced new symbols �sq
i (k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the 

above mentioned expressions for propagators and given by:
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�
sq
1 (k, τ1, τ2) = |αeff(k)|2

|α(k)|2 �1(k, τ1, τ2) (B.37)

�
sq

2 (k, τ1, τ2) = αeff(k)β∗
eff(k)

α(k)β∗(k)
�2(k, τ1, τ2) (B.38)

�
sq
3 (k, τ1, τ2) = α∗

eff(k)βeff(k)

α∗(k)β(k)
�3(k, τ1, τ2) (B.39)

�
sq
4 (k, τ1, τ2) = |βeff(k)|2

|β(k)|2 �4(k, τ1, τ2) (B.40)

�
sq

5 (k, τ1, τ2) = |αeff(k)|2
|α(k)|2 �5(k, τ1, τ2) (B.41)

�
sq

6 (k, τ1, τ2) = αeff(k)β∗
eff(k)

α(k)β∗(k)
�6(k, τ1, τ2) (B.42)

�
sq
7 (k, τ1, τ2) = α∗

eff(k)βeff(k)

α∗(k)β(k)
�7(k, τ1, τ2) (B.43)

�
sq

8 (k, τ1, τ2) = |βeff(k)|2
|β(k)|2 �8(k, τ1, τ2) (B.44)

�
sq
9 (k, τ1, τ2) = |αeff(k)|2

|α(k)|2 �9(k, τ1, τ2) (B.45)

�
sq

10(k, τ1, τ2) = αeff(k)β∗
eff(k)

α(k)β∗(k)
�10(k, τ1, τ2) (B.46)

�
sq
11(k, τ1, τ2) = α∗

eff(k)βeff(k)

α∗(k)β(k)
�11(k, τ1, τ2) (B.47)

�
sq
12(k, τ1, τ2) = |βeff(k)|2

|β(k)|2 �12(k, τ1, τ2) (B.48)

�
sq
13(k, τ1, τ2) = |αeff(k)|2

|α(k)|2 �13(k, τ1, τ2) (B.49)

�
sq
14(k, τ1, τ2) = αeff(k)β∗

eff(k)

α(k)β∗(k)
�14(k, τ1, τ2) (B.50)

�
sq

15(k, τ1, τ2) = α∗
eff(k)βeff(k)

α∗(k)β(k)
�15(k, τ1, τ2) (B.51)

�
sq

16(k, τ1, τ2) = |βeff(k)|2
|β(k)|2 �16(k, τ1, τ2) (B.52)

and vin and vout are the fluctuation solutions before and after the quench point respectively 
and α and β are Bogoliubov coefficients which encodes the quench protocol in the form of the 
asymptotic expansion of the Hankel functions. These Bogoliubov coefficients could be written 
entirely in terms of γeff(k) as follows:

|αeff(k)|2 = 1

1 − |γeff(k)|2 , (B.53)

|βeff(k)|2 = |γeff(k)|2
2 , (B.54)
1 − |γeff(k)|
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αeff(k)β∗
eff(k) = |γeff(k)|

1 − |γeff(k)|2 , (B.55)

α∗
eff(k)βeff(k) = |γ ∗

eff(k)|
1 − |γeff(k)|2 (B.56)

Appendix C. Quantization of Hamiltonian in occupation number representation

Now in the quantum description the corresponding quantized normal ordered Hamiltonian 
operator can be written as:

Ĥ (τ ) =
∞∑

{Nk}=0 ∀ k

Ĥk(τ ), (C.1)

where in the occupation number representation of the Hamiltonian one can write:

Ĥk(τ ) = N̂k Ek(τ ) where N̂k = a
†
out (−k)aout (k). (C.2)

Here Ek(τ) is the dispersion relation which is defined in the present context as:

Ek(τ) =
[
|�out (k, τ )|2 + ω2

out (k, τ )|vout (k, τ )|2
]
. (C.3)

Hence in the occupation number representation we have:

〈{Nk}| Ĥk(τ ) |{Nk}〉 = NkEk(τ). (C.4)

Appendix D. Derivation for thermal partition function for GGE ensemble

First of all we derive the expression for the thermal partition function Z for GGE ensemble. 
For this purpose we start with the following definition:

Z(τ1) = Tr

(
exp(−βĤ (τ1) −

∞∑
n=2

κ2n,DB/NB|k|2n−1 ˆN(k))

)

=
∫

d�out out 〈�| exp(−βĤ (τ1)) −
∞∑

n=2

κ2n,DB/NB|k|2n−1 ˆN(k) |�〉out , (D.1)

where we have translated the trace operation in terms of an outgoing quantum state after quench 
in continuous representation of wave function. But technically computation of this result is very 
cumbersome in terms of a thermal state. For this reason the above mentioned expression can be 
further represented in terms of the occupation number discrete representation of the Hamiltonian 
basis |{Nk}〉 ∀ k as:

Z(τ1) = 1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})
︸ ︷︷ ︸

This factor is the outcome of arbitrary quantum vacuum

×
∞∑

{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1)) −
∞∑

n=2

κ2n,DB/NB|k|2n−1 ˆN(k)) |{Nk}〉 ,

= 1
exp

(
− i
{

d∗
2
∗ − d2

})

|d1| 2 d1 d1
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×
∞∑

{Nk}=0 ∀ k

exp(−βEk(τ1))Nk

−
∞∑

n=2

κ2n,DB/NB|k|2n−1N(k)),

= 1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

}) (
exp(βEk(τ1))eff

exp(βEk(τ1))eff − 1

)
,

= 1

2|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
(D.2)

where Ek(τ1) is the cosmological dispersion relation, which is given by:

Ek(τ1) =
[
|�out (k, τ1)|2 + ω2

out (k, τ1)|vout (k, τ1)|2
]
, (D.3)

having the frequency ωout of the outgoing modes after the quench operation is given by the 
following expression:

ω2
out (k, τ1) =

(
k2 − 2

τ 2
1

)
where τ1 = τ + η (D.4)

where, in the above mentioned notation η represents the time scale where the quantum quench 
operation have been performed. Further translating the dispersion relation in terms of the χ field 
we get the following expression:

Ek(τ1) = a2(τ1)
[
E

χ
k (τ1) +H(τ1) Oχ

k (τ1)
]

where H(τ1) =
(

a′(τ1)

a(τ1)

)
, (D.5)

where the energy dispersion relation in terms of the field χ and the new contribution Oχ
k (τ1) can 

be expressed as:

E
χ
k (τ1) =

[
|�χ(k, τ1)|2 + ω2

χ (k, τ1)|χ(k, τ1)|2
]
, (D.6)

Oχ
k (τ1) = [�χ(−k, τ1)χ(k, τ1) + �χ(k, τ1)χ(−k, τ1)

]
. (D.7)

Here the new effective frequency ωχ after the quench operation for the outgoing field can be 
written as:

ω2
χ (k, τ1) = ω2

out (k, τ1) +H2(τ1) where H(τ1) =
(

a′(τ1)

a(τ1)

)
. (D.8)

Appendix E. Subsystem thermalization from gCC to GGE

Now our aim is to explicitly establish the statement of subsystem thermalization from a gCC 
state to thermal GGE ensemble, and the equivalence between them. The derived results in this 
section is new in the sense that we have done the computation for the 1 + 3 dimension de Sitter 
curved space-time and can be used these results further to interpret various unknown physical 
concepts including the thermalization phenomena in the context of early universe cosmology.

For the post-quench gCC type of quantum states constructed in this paper using the Dirichlet 
and Neumann boundary states within the perturbative regime of the expansion coefficients of 
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the W∞ conserved charges, the reduced density matrix of a region A, which can be obtained by 
performing a partial trace operation on a region B and treated to be the complement of the region 
A can be asymptotically approaches to a GGE, which is technically demonstrated as:

For Dirichlet boundary state :
TrB

[
exp(−iHτ) |ψ(κn)〉 〈ψ(κn)| exp(iHτ)

]

= TrB

[
exp(−iHτ) exp

(
−
∫

d3k
(2π)3 κ(k)N̂(k)

)
|D〉 〈D|

× exp

(
−
∫

d3k
(2π)3 κ(k)N̂(k)

)
exp(iHτ)

]
τ → 0−−−−→
TrB

[
1

Z(τ)
exp

(
−
∫

d3k
(2π)3 4κ(k)N̂(k)

)]

= TrB

[
ρGGE(β,4κn,DB)

]
where

ρGGE(β,4κn,DB) = 1

Z(τ)
exp

(
−βH − 4

∑
n

κn,DBWn

)
, (E.1)

and

For Neumann boundary state :
TrB

[
exp(−iHτ) |ψ(κn)〉 〈ψ(κn)| exp(iHτ)

]

= TrB

[
exp(−iHτ) exp

(∫
d3k

(2π)3 κ(k)N̂(k)

)
|N〉 〈N |

′ × exp

(∫
d3k

(2π)3 κ(k)N̂(k)

)
exp(iHτ)

]
τ → 0−−−−→
TrB

[
1

Z(τ)
exp

(∫
d3k

(2π)3 4κ(k)N̂(k)

)]

= TrB

[
ρGGE(β,4κn,NB)

]
where

ρGGE(β,4κn,NB) = 1

Z(τ)
exp

(
−βH − 4

∑
n

κn,NBWn

)
, (E.2)

Here it is important to note that all the quantum operators of the W∞ algebra in the present 
context can be expressed as:

Wn = |k|n−1 ˆN(k) where ˆN(k) = a
†
out (k)aout (k). (E.3)

This further implies the ensemble average of the conserved charges of W∞ algebra for gCC and 
GGE turn out to be exactly same because of subsystem thermalization, i.e.
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〈Wn〉gCC = 〈Wn〉GGE. (E.4)

It can be explicitly verified that in the present prescription the following statement is true:

〈N(k)〉gCC = |β(k)|2 = |γ (k)|2
1 − |γ (k)|2 , (E.5)

〈N(k)〉GGE = 1

exp(4κ(k)) − 1
, (E.6)

〈N(k)〉gCC = 〈N(k)〉GGE, (E.7)

where all the quantities are evaluated at a fixed value of conformal time η where the quench op-
eration is performed. For simplicity we have dropped the η dependence in the above expressions. 
But remind ourself it is important to note that all functions of k would be actually representing 
functions of (k, η) in this context.

Appendix F. Derivation for thermal Green’s functions for GGE ensemble without 
squeezing in Fourier space

The thermal Green’s functions for the GGE ensemble for the field χ , its spatial derivative and 
its canonically conjugate momentum can be expressed as:

GGGE
χχ (β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,χχ (β,k, τ1, τ2) exp(ik.r)

+ GGGE−,χχ (β,k, τ1, τ2) exp(−ik.r)
]
, (F.1)

GGGE
∂iχ∂iχ

(β,k, τ1, τ2) =
∫

d3k
(2π)3

[
GGGE

+,∂iχ∂iχ
(β,k, τ1, τ2) exp(ik.r)

+ GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (F.2)

GGGE
�χ�χ

(β, r, τ1, τ2) =
∫

d3k
(2π)3

[
GGGE+,�χ�χ

(β,k, τ1, τ2) exp(ik.r)

+ GGGE−,�χ�χ
(β,k, τ1, τ2) exp(−ik.r)

]
, (F.3)

where we define, r :≡ x1 − x2.
For each of the cases the corresponding thermal propagators in Fourier space are divided into 

two parts, one of them represents the advanced propagator which are appearing with + symbol 
and the other one is the retarded propagator which are appearing with the − symbol. In the 
occupation number representation for the Hamiltonian we get:

GGGE+,χχ (β,k, τ1, τ2) = 1

Z(τ1)

vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1) −
∞∑

n=2

κ2n,DB/NB|k|2n−1))

aout (k)a
†
out (−k) |{Nk}〉

= 1 vout (k, τ1)v
∗
out (−k, τ2) 1

exp

(
− i
{

d∗
2
∗ − d2

})

Z(τ1) a(τ1)a(τ2) |d1| 2 d1 d1
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×
∞∑

{Nk}=0 ∀ k

(Nk + 1) exp(−(βEk(τ1)))effNk)

= 1

Z(τ1)

vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp (2(βEk(τ1))eff)

(exp ((βEk(τ1))eff) − 1)2

= vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)
× exp (2(βEk(τ1))eff)

(exp ((βEk(τ1))eff) − 1)2

×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff) − 1)

)−1

= vout (k, τ1)v
∗
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (F.4)

and

GGGE−,χχ (β,k, τ1, τ2) = 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1)

−
∞∑

n=2

κ2n,DB/NB|k|2n−1)) (F.5)

a
†
out (−k)aout (k) |{Nk}〉

= 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

Nk exp(−(βEk(τ1))effNk)

= 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp(βEk(τ1))eff(
exp (βEk(τ1))eff − 1

)2
= v∗

out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

× exp(βEk(τ1))eff(
exp (βEk(τ1))eff − 1

)2 ×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff) − 1)

)−1

= v∗
out (−k, τ1)vout (k, τ2)
2a(τ1)a(τ2)
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× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (F.6)

By following the same steps one can further show the following results in the present context:

GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE+,χχ (β,k, τ1, τ2) , (F.7)

GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE−,χχ (β,k, τ1, τ2) , (F.8)

GGGE+,�χ�χ
(β,k, τ1, τ2) = v′

out (k, τ1)v
∗′
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)

− GGGE+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (F.9)

GGGE−,�χ�χ
(β,k, τ1, τ2) = v∗′

out (−k, τ1)v
′
out (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)

− GGGE−,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (F.10)

Appendix G. Derivation for thermal Green’s functions for GGE ensemble with squeezing 
in Fourier space

The thermal Green’s functions for the GGE ensemble for the field χ , its spatial derivative and 
its canonically conjugate momentum can be expressed as:

GGGE
χχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,χχ,sq (β,k, τ1, τ2) exp(ik.r)

+ GGGE−,χχ,sq (β,k, τ1, τ2) exp(−ik.r)
]
, (G.1)

GGGE
∂iχ∂iχ,sq(β,k, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE

+,∂iχ∂iχ,sq (β,k, τ1, τ2) exp(ik.r)

+ GGGE
−,∂iχ∂iχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (G.2)

GGGE
�χ�χ ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE+,�χ�χ ,sq (β,k, τ1, τ2) exp(ik.r)

+ GGGE−,�χ�χ ,sq (β,k, τ1, τ2) exp(−ik.r)
]
, (G.3)

where we define, r :≡ x1 − x2.
For each of the cases the corresponding thermal propagators in Fourier space are divided into 

two parts, one of them represents the advanced propagator which are appearing with + symbol 
and the other one is the retarded propagator which are appearing with the − symbol. In the 
occupation number representation for the Hamiltonian we get:
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GGGE+,χχ,sq (β,k, τ1, τ2) = 1

Z(τ1)

vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1) −
∞∑

n=2

κ
sq
2n,DB/NB|k|2n−1))

aout (k)a
†
out (−k) |{Nk}〉

= 1

Z(τ1)

vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

(Nk + 1) exp(−(βEk(τ1)))eff,sqNk)

= 1

Z(τ1)

vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp
(
2(βEk(τ1))eff,sq

)
(
exp
(
(βEk(τ1))eff,sq

)− 1
)2

= vout (k, τ1)v
∗
out (−k, τ2)

a(τ1)a(τ2)
× exp

(
2(βEk(τ1))eff,sq

)
(
exp
(
(βEk(τ1))eff,sq

)− 1
)2

×
(

exp
(
(βEk(τ1))eff,sq

)(
exp
(
(βEk(τ1))eff,sq

)− 1
))−1

= vout (k, τ1)v
∗
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
, (G.4)

and

GGGE−,χχ,sq (β,k, τ1, τ2) = 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

〈{Nk}| exp(−β Ĥk(τ1) −
∞∑

n=2

κ2n,DB/NB|k|2n−1))

(G.5)

a
†
out (−k)aout (k) |{Nk}〉

= 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

×
∞∑

{Nk}=0 ∀ k

Nk exp(−(βEk(τ1))eff,sqNk)

= 1

Z(τ1)

v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

1

|d1| exp

(
− i

2

{
d∗

2

d∗
1

− d2

d1

})

× exp(βEk(τ1))eff,sq(
exp (βE (τ )) − 1

)2

k 1 eff,sq
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= v∗
out (−k, τ1)vout (k, τ2)

a(τ1)a(τ2)

× exp(βEk(τ1))eff(
exp (βEk(τ1))eff − 1

)2 ×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff) − 1)

)−1

= v∗
out (−k, τ1)vout (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (G.6)

By following the same steps one can further show the following results in the present context:

GGGE
+,∂iχ∂iχ,sq (β,k, τ1, τ2) = −k2 GGGE+,χχ,sq (β,k, τ1, τ2) , (G.7)

GGGE
−,∂iχ∂iχ,sq (β,k, τ1, τ2) = −k2 GGGE−,χχ,sq (β,k, τ1, τ2) , (G.8)

GGGE+,�χ�χ ,sq (β,k, τ1, τ2) = v′
out (k, τ1)v

∗′
out (−k, τ2)

2a(τ1)a(τ2)

× exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− GGGE+,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (G.9)

GGGE−,�χ�χ ,sq (β,k, τ1, τ2) = v∗′
out (−k, τ1)v

′
out (k, τ2)

2a(τ1)a(τ2)

× exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)

− GGGE−,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (G.10)

Appendix H. From Schrödinger scattering problem in quantum mechanics to particle 
production in de Sitter space

Initially, we have stated with a two interacting scalar field theory describing Quantum Brow-
nian motion by following the quantum field theoretic generalization of the Caldeira-Leggett 
Model. Further performing the Euclidean path integration over one scalar field we have derived 
an effective theory of the other scalar field. Now for the conformally flat de Sitter background we 
have shown that in the Fourier space the Klein Gordon field equation for the modes of survived 
field after path integration can be written as:[

d2

dτ 2 +
(
k2 + m2

eff(τ )
)]

v(k, τ ) = 0 where m2
eff(τ ) = 1

τ 2

(
m2(τ )

H2 − 2

)
. (H.1)

The analogous problem in quantum mechanics is to solve a Schrödinger scattering problem in 
one dimension inside an electrical conduction wire in presence of an impurity potential, which 
is described by11:

11 Here we have assumed h̄ = 1 and 2m = 1 in the Schrödinger equation.
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Fig. H.1. The impurity potential profile.

[
d2

dx2 + (E − V (x))

]
ψ
(√

E,x
)

= 0. (H.2)

Here V (x) is the impurity potential which mimics the role of negative of the effective conformal 
time-dependent mass protocol used in the quenched Quantum Brownian Motion problem. By 
replacing the time coordinate τ with x one can write down the following form of the impurity 
potential in the one dimensional Schrödinger problem:

V (x) = 1

x2 (2 − U(x)) , (H.3)

where the quantum mechanical quench protocol in one dimension quantum mechanical problem 
in the present context is described by:

U(x) = U0�(−x) =

⎧⎪⎨
⎪⎩

U0 Before quench : x < x0;

0 After quench : x ≥ x0.

. (H.4)

Here x0 is identified to be point where the quench operation is performed (Figs. H.1, H.2).

Also it is important to note that, the wave function ψ
(√

E,x
)

in one dimensional 
Schrödinger problem mimics the role of the mode function as appearing in the particle pro-
duction problem in de Sitter space. Finally the energy E in the Schrödinger problem mimics the 
role of k2 in Fourier space in the particle production problem in de Sitter space.

In this description the solutions for the Schrödinger equation before and after quench can be 
written as:

Before quench : ψin

(√
E,x
)

= √
x

[
C1 H

(1)
1
2

√
9−4U0

(√
Ex
)

+ C2 H
(2)
1
2

√
9−4U0

(√
Ex
)]

, (H.5)

After quench : ψout

(√
E,x
)

=
√

2

π
√

E

[
C3

(
sin
(√

Ex
)

√
Ex

− cos
(√

Ex
))
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Fig. H.2. Quantum mechanical quench profile.

− C4

(
cos
(√

Ex
)

√
Ex

+ sin
(√

Ex
))]

. (H.6)

Here ψin(x) and ψout (x) are the representative solutions of the Schrödinger equation before and 
after quench respectively. Also, C1, C2 and C3, C4 are the arbitrary integration constants which 
are fixed by the appropriate choice of the boundary conditions, which are the continuity of the 
in and out solutions and it derivatives at the point of quench x0. This helps us to write C3, C4 in 
terms of C1, C2. Additionally it is important to note that, to serve this purpose instead of using 
the actual solution one need to use the asymptotic solutions of the Schrödinger equation before 
and after quench at x → −∞ and x → ∞ respectively.

In this construction one can actually write down the total asymptotic solution (x → ±∞) of 
the Schrödinger equation by the following expression:

ψ
(√

E,x
)

= C1 fin

(√
E,x
)

+ C2 f ∗
in

(√
E,x
)

= C3 fout

(√
E,x
)

+ C4 f ∗
out

(√
E,x
)

. (H.7)

Here fin

(√
E,x
)

and fout

(√
E,x
)

are the combined asymptotic solutions at x → ±∞ for the 
actual solutions obtained in the previous page.

Here it is important to note that, incoming and the outgoing solutions before and after quench 
can be expressed in terms of each other via the following relations:

fin

(√
E,x
)

= α
(√

E,x0

)
fout

(√
E,x
)

+ β
(√

E,x0

)
f ∗

out

(√
E,x
)

, (H.8)

fout

(√
E,x
)

= α∗ (√E,x0

)
fin

(√
E,x
)

− β
(√

E,x0

)
f ∗

in

(√
E,x
)

. (H.9)

Consequently, the general solution for the field equation can be written as:

ψ
(√

E,x
)

= ain

(√
E
)

fin

(√
E,x
)

+ a
†
in

(√
E
)

f ∗
in

(√
E,x
)

= aout

(√
E
)

fout

(√
E,x
)

+ a
†
out

(√
E
)

f ∗
out

(√
E,x
)

, (H.10)

which satisfy the following reality constraint:
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ψ∗ (√E,x
)

= ψ
(√

E,x
)

. (H.11)

Using these above mentioned equations one can explicitly show that:

ain

(√
E
)

= α∗ (√E,x0

)
aout

(√
E
)

− β∗ (√E,x0

)
a

†
out

(√
E
)

, (H.12)

aout

(√
E
)

= α∗ (√E,x0

)
ain

(√
E
)

+ β∗ (√E,x0

)
a

†
in

(√
E
)

. (H.13)

Here the Bogolyubov coefficients at the point of quench x0, are calculated using the following 
equations:

α
(√

E,x0

)
= 1

2i

⎡
⎣dfout

(√
E,x
)

dx
f ∗

in

(√
E,x
)

− fout

(√
E,x
) df ∗

in

(√
E,x
)

dx

⎤
⎦

x0

,

(H.14)

β∗ (√E,x0

)
= 1

2i

⎡
⎣dfout

(√
E,x
)

dx
fin

(√
E,x
)

− fout

(√
E,x
) dfin

(√
E,x
)

dx

⎤
⎦

x0

.

(H.15)

In this context, one can explicitly show that the incoming coefficients C1, C2 and the outgoing 
coefficients C3, C4 are related via the following matrix equation:⎛

⎝C3

C4

⎞
⎠=

⎛
⎝ α
(√

E,x0

)
β
(√

E,x0

)
β∗
(√

E,x0

)
α∗
(√

E,x0

)
⎞
⎠

︸ ︷︷ ︸
Transfer Matrix

⎛
⎝C1

C2

⎞
⎠ (H.16)

which finally leads to the following constraint:∣∣∣α (√E,x0

)∣∣∣2 −
∣∣∣β (√E,x0

)∣∣∣2 = 1. (H.17)

Now, for the scattering problem one can define the reflection and transmission coefficients for 
the wave traveling from left to right as:

r = C2

C1
= −

β∗
(√

E,x0

)
α∗
(√

E,x0

) , (H.18)

t = C3

C1
= α
(√

E,x0

)
+ β
(√

E,x0

)
r =
(

α
(√

E,x0

)
−
∣∣∣β (√E,x0

)∣∣∣2
α∗
(√

E,x0

)
)

, (H.19)

which finally implies the following conservation equation:

|r|2 + |t |2 = 1. (H.20)

Similarly, for the scattering problem one can define the reflection and transmission coefficients 
for the wave traveling from right to left as:
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r ′ = C3

C4
=

β
(√

E,x0

)
α∗
(√

E,x0

) , (H.21)

t ′ = C2

C4
= 1

α∗
(√

E,x0

) , (H.22)

which further implies:

|r| = |r ′|, t

t ′
=
(

1

|t ′|2 + rr ′

t ′2

)
. (H.23)

Finally, for this scattering problem the transfer matrix can be written in terms of the reflection 
and transmission coefficients as:

⎛
⎝ α
(√

E,x0

)
β
(√

E,x0

)
β∗
(√

E,x0

)
α∗
(√

E,x0

)
⎞
⎠

︸ ︷︷ ︸
Transfer Matrix

=

⎛
⎜⎜⎜⎝

t − rr ′

t ′
r ′

t ′

− r

t ′
1

t ′

⎞
⎟⎟⎟⎠ . (H.24)

After getting the expression for the reflection coefficient after quench one can further expand it 
around 

√
E = 0, which gives:

r ′ =
∞∑

n=0

rn E
n
2 , (H.25)

which is exactly analogous to the expansion of the factor γ , which we have computed in the main 
subject content of the paper.

Appendix I. Determining coefficients for outgoing modes in terms of full solutions

We first consider the case of instantaneous quench where the mass of the field suddenly falls 
of to 0 at a particular conformal time denoted by η in this case. The incoming solutions before 
the point of quench is denoted by:

vin(τ ) = √−kτ [d1H
(1)
νin

(−kτ) + d2H
(2)
νin

(−kτ)]. (I.1)

The derivatives of the above solution can be calculated as:

v′
in(τ ) = 1

2
√−kτ

[
2d1kτ H

(1)
νin−1(−kτ) + d1(−1 + 2νin) H (1)

νin
(−kτ)

+2d2kτ H
(2)
νin−1(−kτ) + d2(−1 + 2νin)H

(2)
νin

(−kτ)

]
. (I.2)

The outgoing solution after the quench point is given by

vout (τ ) =√−k(τ + η)

[
d3 H

(1)
3
2

(−k(τ + η)) + d4 H
(2)
3
2

(−k(τ + η))

]
. (I.3)
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The derivatives of the outgoing solution is calculated as:

v′
out (τ ) = 1√−kτ + η

(
d3k(τ + η)H

(1)
1
2

(−k(τ + η)) + d3H
(1)
3
2

(−k(τ + η))

+ d4(k(τ + η))H 1
2
(−k(τ + η)) + d4H

(2)
3
2

(−k(τ + η))

)
.

Generally out of the four arbitrary constants, two can be fixed by the initial choice of vacuum 
state. Hence, expressing any two arbitrary constants in terms of the other two is quite natural. We 
proceed by expressing the constants appearing in the outgoing solutions in terms of the constants 
of the incoming solution. These fixing is carried out by using the continuity of the solutions and 
its first derivatives at the point of quench. Thus the arbitrary constants d3 and d4 expressed in 
terms of d1 and d2 can be written as

d3 = iπ

8
√

2

(
d1H

(1)
νin

(−kη) {−4kηH
(2)
1
2

(−2kη) + (−3 + 2νin)H
(2)
3
2

(−2kη)}

+ 2kτH
(2)
3
2

(−2kη){d1H
(1)
νin−1(−kη) + d2H

(2)
νin−1(−kη)}

+ d2{−4kτH
(2)
1
2

(−2kη) + (−3 + 2νin)H
(2)
3
2

(−2kη)}H(2)
ν (−kη)

)
(I.4)

d4 = iπ

8
√

2

(
4kηH

(2)
1
2

(−2kη){d1H
(1)
νin

(−kη) + d2H
(2)
νin

(−kη)} + H
(1)
3
2

(−2kη)

{−2d1kηH
(1)
νin−1(−kη) + d1(3 − 2νin)H

(1)
νin

(−kη) − 2d2kηH
(2)
νin−1(−kη)

+ (3 − 2νin)H
(2)
νin

(−kη)}
)

(I.5)

Though in this article we have not used the analytical computations from the full solution of the 
mode equation as computing the two-point correlators and preparing the post quench states are 
extremely time consuming and sometimes impossible to simplify. For this reason we have used 
the asymptotic solution which combines the effect at τ → −∞ and τ → 0 to serve the purpose.
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