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Celebrating Loday’s associahedron

Vincent Pilaud , Francisco Santos , and Günter M. Ziegler

Abstract. We survey Jean-Louis Loday’s vertex description of the associa-
hedron, and its far reaching influence in combinatorics, discrete geometry,
and algebra. We present in particular four topics where it plays a central
role: lattice congruences of the weak order and their quotientopes, cluster
algebras and their generalized associahedra, nested complexes and their
nestohedra, and operads and the associahedron diagonal.
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Introduction. The associahedron is a polytope whose face lattice encodes
Catalan families: its vertices correspond to parenthesizations of a non-
associative product, triangulations of a convex polygon, or binary trees; its
edges correspond to applications of the associativity rule, diagonal flips, or
edge rotations; and in general its faces correspond to partial parenthesiza-
tions, diagonal dissections, or Schröder trees. It was defined combinatorially
in early works of Tamari [221] and Stasheff [210] with motivation from asso-
ciativity and loop spaces. The associahedron now appears as a fundamental
structure throughout mathematics, in particular for moduli spaces and topol-
ogy [118,210,211], operads and rewriting theory [136,151,212,215,227], clus-
ter algebras [41,86,100,105,188], quiver representation theory [5,30,33,171],
combinatorial Hopf algebras [54,132,156,166], diagonal harmonics [37,175],
physics of scattering amplitudes [4], etc.
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While some 3-dimensional associahedra were drawn in Tamari’s PhD
thesis [221] and constructed by Milnor for the PhD defense of Stasheff, the
first systematic polytopal realizations were constructed by Haiman [97] and
Lee [127]. Since then, three families of realizations were largely developed: the
secondary polytope realizations [25,93], the g-vector realizations [98,100,105,
128,131,162,178,179,195], and the d-vector realizations [41,60,145]. See [60]
for a discussion of some of these realizations, of their connections, and of their
respective advantages.

On the occasion of the 75th anniversary of Archiv der Mathematik and
the 20th anniversary of Loday’s paper [128], we review in this paper the far-
reaching influence of Loday’s associahedron. It has to be mentioned that this
same realization was already described in [206] by simple facet inequalities,
one for each interval of [n], but it became extremely useful and popular only
when J.-L. Loday provided his elementary description of the vertices, one for
each binary tree. Namely, each binary tree T corresponds to a vertex with
coordinates �(T, i) · r(T, i), where �(T, i) and r(T, i) respectively denote the
numbers of leaves in the left and right subtrees of the ith node of T (in infix
labeling). The same realization of associahedron was later described in [162]
as the Minkowski sum of all faces of the standard simplex corresponding to
intervals of [n]. See Sect. 1.

This realization has several advantages. Some were already underlined by
Loday in [128]: “it admits simple vertex and facet descriptions, respects the
symmetry, and fits with the classical realization of the permutahedron”. But
we believe that the real reason that makes this realization ubiquitous in the
literature is that its normal fan transparently encodes each binary tree by a
very natural cone: the cone with one inequality xi ≤ xj for each edge i → j in
the tree. This implies in particular that the natural surjective map from per-
mutations to binary trees [225] translates geometrically to fans and polytopes,
and that the oriented graph of this associahedron is the Hasse diagram of the
Tamari lattice [221] (Sect. 1).

Loday’s construction has served as a prototype for several constructions
generalizing the associahedron. In this survey, we present four specific topics
in which it was instrumental:

• quotientopes (Sect. 2),
• cluster algebras, subword complexes, and quiver representation theory

(Sect. 3),
• graph associahedra and nestohedra (Sect. 4),
• operads and diagonals (Sect. 5).

Additional material on some of these topics can be found in other more detailed
surveys: see in particular [60,61] for realization spaces, [189,191,192] for lattice
quotients of the weak order, [84] for cluster algebras, [81,104] for generalized
associahedra, [222,223] for associahedra and Tamari lattices in representation
theory, [91,136,212,227] for operad theory, and the book [142] for many more
connections of the Tamari lattice.

To summarize, the simplicity of Loday’s description of the associahedron
has fundamentally contributed to break the psychological barrier of realizing
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this “mythical polytope” [97]. It resulted in several constructions of polytopes
with a combinatorial flavor similar to that of the associahedron, some of which
are directly constructed from this associahedron (by Cartesian products and
Minkowski sums, as sections or projections, or as polyhedral decompositions).
We conclude this survey with a (incomplete and partial) list of these construc-
tions (Sect. 6), and invite the reader to discover many more descendants of
Loday’s associahedron.

We hope that this survey can serve as an invitation to the “multiple facets
of the associahedron” [129]. Besides bibliographic pointers to the original lit-
erature, we have reproduced many pictures that should already give an idea
of the topics covered in this survey. Much of the material of this survey is
derived from the habilitation thesis of Pilaud [158], who should be considered
the main contributor.

1. Permutahedra, associahedra, cubes. Loday’s paper [128] is a tale of three
magical families (permutations, binary trees, and binary sequences) and their
fantastic adventures in the lands of lattices, polytopes, and Hopf algebras.
This section proposes a brief recollection of these structures, summarized by
the table:

Permutations Binary trees Binary sequences

Lattices Weak order Tamari lattice [221] Boolean lattice

Polytopes Permutahedron Loday’s associahedron Parallelepiped Para(n)
Perm(n) Asso(n) [128] generated by ei+1 − ei

Hopf algebras Malvenuto–Reutenauer Loday–Ronco Recoil Hopf
Hopf algebra [148] Hopf algebra [132] algebra [92]

1.1. Lattices. We start with three lattices illustrated in Fig. 1:

Weak order. We denote by Sn the set of permutations of [n] := {1, . . . , n}.
The (right) weak order on Sn is the partial order ≤W defined by inclusion of
inversion sets (an inversion of σ ∈ Sn is a pair of values i, j ∈ [n] such that i
is smaller than j but i appears after j in σ). Its cover relations are given by
transpositions of two consecutive letters. Its minimal and maximal elements
are the permutations 1 . . . n and n . . . 1, respectively. It was shown in [29,96]
that the weak order is a lattice (i.e., minimal upper bounds and maximal lower
bounds are unique).

Tamari lattice. We denote by Tn the set of rooted binary trees with n internal
nodes (equivalently, with n + 1 leaves). The Tamari lattice on Tn is the lat-
tice ≤T whose cover relations are given by right rotations on binary trees. Its
minimal and maximal elements are the left and right combs, respectively. We
consider the n internal nodes of a binary tree labeled by [n] in infix order: first
the left subtree is labeled, then the root, then the right subtree, recursively in
subtrees. Observe that this makes node i + 1 be a descendant or an ancestor
of i.
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Figure 1. Weak order on S4 (left), Tamari lattice on T4

(middle), boolean lattice on B4 (right)

Boolean lattice. We denote by Bn the set of binary sequences of n− 1 signs +
or −. The boolean lattice on Bn is the lattice ≤B defined by χ ≤B ζ if and
only if χi ≤ ζi for all i ∈ [n − 1] (for − ≤ +). Its cover relations are given
by replacements of a − by a +. Its minimal and maximal elements are the
sequences −n−1 and +n−1, respectively.

Remark 1. Observe that we denote by Bn the boolean lattice on n − 1 ele-
ments, not n. We take this convention for their relation to permutations of n
elements and binary trees with n internal nodes, where our use of n is stan-
dard. Our sets Sn, Tn, and Bn are respectively denoted by Sn, Yn, and Qn

in J.-L. Loday’s paper [128].

These three lattices are related by the following commutative diagram of
lattice morphisms:

Sn Bn

Tn

rec

bt can

where

• the binary tree map (or Tonks projection) sends a permutation σ := σ1 . . .
σn ∈ Sn to the binary tree bt(σ) ∈ Tn obtained by successive insertions
of σn, . . . , σ1 in a binary search tree. That is, σn is the root, and its
left and right subtrees are constructed recursively from the permutations
obtained by restriction of σ to {i | i < σn} and to {i | i > σn}, respec-
tively. Equivalently, the bt fiber of a tree T is precisely the set of linear
extensions of T , i.e., all permutations σ such that for any i, j ∈ [n], if i
is a descendant of j in T , then i appears before j in σ. This map was
considered in [103,128,188,225].

• the canopy map (or Loday–Ronco projection) sends a binary tree T ∈ Tn

to the binary sequence can(T ) ∈ Bn where at position i ∈ [n − 1] there
is a − if i appears below i+1 and a + if i appears above i+1 in T . This
map was first used by J.-L. Loday and M. Ronco in [132], but the name
“canopy” was coined by X. Viennot [228].
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• the recoil map is the composition of the previous two. It sends a per-
mutation σ ∈ Sn to the binary sequence rec(σ) ∈ Bn where at posi-
tion i ∈ [n − 1] there is a − if i appears before i + 1 and a + if i + 1
appears after i in σ.

Note that the cover graphs of these lattices are classical combinatorial
graphs, namely the simple transposition graph on Sn, the rotation graph
on Tn, and the bit change graph on Bn. Their combinatorial properties have
been extensively investigated; in particular:

• they all admit Hamiltonian cycles. This is classical for Sn by the
Steinhaus–Johnson–Trotter algorithm [111,213,226], and for Bn by the
seminal work of F. Gray [122]. For Tn, it was shown in [135] and later
revisited in [101,102].

• their exact diameter is known. It is obviously
(
n
2

)
for Sn and n − 1

for Bn. For Tn, there is an immediate lower bound of n and, via the
bijection between binary trees and triangulations of the (n + 2)-gon, it is
relatively easy to show an upper bound of 2n − 6 + � 12

n+2� (see e.g. [74,
Proposition 1.1.5]). In particular, the diameter is at most 2n − 6 for
all n > 10. Using volumetric arguments in hyperbolic geometry, it was
shown in [216] that the diameter indeed equals 2n − 6 for n sufficiently
large, but it took another 25 years until a (purely combinatorial, yet
sophisticated) proof for all n > 10 was given in [163]. Along the way,
a lower bound of 2n − 2

√
2n valid for all n was obtained in [64] using

Thompson’s groups.

1.2. Polytopes. We denote by (ei)i∈[n] the canonical basis of R
n and by

1 :=
∑

i∈[n] ei. All our polytopal constructions will lie in the affine subspace
H :=

{
x ∈ R

n
∣
∣ 〈1 | x 〉 =

∑
i∈[n] xi =

(
n+1
2

)}
, and their normal fans will lie

in the vector subspace 1⊥ := {x ∈ R
n | 〈1 | x 〉 = 0}. The main objects of

J.-L. Loday’s paper [128] are the following three polytopes illustrated in Fig. 2:

Permutahedron. The permutahedron Perm(n) is the polytope in R
n obtained

equivalently as:
• the convex hull of the points

∑
i∈[n] ieσ(i) for all permutations σ ∈ Sn,

see [201],
• the intersection of the hyperplane H with the halfspaces{

x ∈ R
n

∣
∣ ∑

i∈I xi ≥ (|I|+1
2

)}
for all ∅ �= I � [n], see [184],

• (a translate of) the Minkowski sum of all segments [ei,ej ] for (i,j) ∈(
[n]
2

)

(where the Minkowski sum of two polytopes P,Q ⊆ R
n is the poly-

tope P + Q := {p + q | p ∈ P, q ∈ Q}).
The face lattice of the permutahedron Perm(n) is the refinement lattice on
ordered partitions of [n]. The normal fan of the permutahedron Perm(n)
is the braid fan F(n) defined by the (type A) Coxeter arrangement
formed by the hyperplanes

{
x ∈ 1⊥ ∣

∣ xi = xj

}
for 1 ≤ i < j ≤ n.

Namely, each permutation σ ∈ Sn corresponds to the maximal cone
C�(σ) :=

{
x ∈ 1⊥ ∣

∣ xσ(1) ≤ · · · ≤ xσ(n)

}
of the braid fan F(n), consisting of

all points whose coordinates are ordered by the permutation σ.
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Figure 2. Permutahedron Perm(4) (left), Loday’s associahe-
dron Asso(4) (middle), parallelepiped Para(4) (right). Shaded
facets are preserved to get the next polytope. [54, Fig. 1]

Associahedron. The associahedron Asso(n) is the polytope in R
n obtained

equivalently as:
• the convex hull of the points

∑
i∈[n] �(T, i) r(T, i)ei for all binary

trees T ∈ Tn, where �(T, i) and r(T, i) respectively denote the num-
bers of leaves in the left and right subtrees of the ith node of T in infix
labeling, see [128],

• the intersection of the hyperplane H with the halfspaces{
x ∈ R

n
∣
∣ ∑

i≤�≤j x� ≥ (
j−i+2

2

)}
for all 1 ≤ i ≤ j ≤ n, see [206],

• (a translate of) the Minkowski sum of the faces �[i,j] of the stan-
dard simplex �[n] for all 1 ≤ i ≤ j ≤ n, where �X := conv {ex | x ∈ X}
for X ⊆ [n], see [162].

The face lattice of the associahedron Asso(n) is the edge contraction
lattice on Schröder trees with n + 1 leaves (rooted plane trees where
each node has at least 2 children). The normal fan of the associahedron
is the sylvester fan. Each binary tree T ∈ Tn corresponds to a normal
cone C�(T ) :=

{
x ∈ 1⊥ ∣

∣ xi ≤ xj for i child of j in T
}
.

Parallelepiped. Finally, we consider the parallelepiped Para(n) in R
n obtained

equivalently as:
• the convex hull of the points n+1

2 1 + n−1
2

∑
i∈[n−1] χi(ei − ei+1) for all

binary sequences χ ∈ Bn,
• the intersection of the hyperplane H with the halfspaces{

x ∈ R
n

∣
∣ ∑

1≤�≤i x� ≥ (
i+1
2

)}
and

{
x ∈ R

n
∣
∣ ∑

i<�≤n x� ≥ (
n−i+1

2

)}

for all i ∈ [n − 1],
• (a translate of) the Minkowski sum of the segments (n − 1) · [ei,ei+1]

for i ∈ [n − 1].
The face lattice of the parallelepiped Para(n) is the lattice on ternary words
on {−, 0,+} given by the componentwise order, where the order on {−, 0,+}
is defined by 0 ≤ − and 0 ≤ +. The normal fan of the parallalepiped Para(n)
is the coordinate fan. Each binary sequence χ ∈ Bn corresponds to a normal
cone C�(χ) :=

{
x ∈ 1⊥ ∣

∣ χi(xi − xi+1) ≥ 0 for all i ∈ [n − 1]
}
.
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Remark 2. Observe that we stick to our convention of Remark 1 and depart
form Loday’s notation; the polytopes Perm(n), Asso(n), and Para(n) (which
are of dimension n− 1 but are naturally embedded in a hyperplane in R

n) are
denoted by Pn−1, Kn−1, and Cn−1 in [128].

These three polytopes and fans refine each other:

• the facet description of Perm(n) contains the facet description of Asso(n),
which contains the facet description of Para(n) (see Sect. 1.4.1 for more
details).

• the braid fan refines the sylvester fan, which refines the coordinate fan.
Namely,

C�(T ) =
⋃

σ∈Sn
bt(σ)=T

C�(σ) and

C�(χ) =
⋃

σ∈Sn
rec(σ)=χ

C�(σ) =
⋃

T∈Tn
can(T )=χ

C�(T ).

Moreover, these polytopes geometrically realize the lattices of Sect. 1.1. Indeed,
oriented in the direction ω := (n, . . . , 1) − (1, . . . , n) =

∑
i∈[n](n + 1 − 2i)ei,

the graph of the permutahedron Perm(n) (resp. of the associahedron Asso(n),
resp. of the parallelepiped Para(n)) is the Hasse diagram of the weak order
on Sn (resp. of the Tamari lattice on Tn, resp. of the boolean lattice on Bn).

1.3. Hopf algebras. Recall that a combinatorial Hopf algebra is a combina-
torial vector space A endowed with an associative product · : A ⊗ A → A
and a coassociative coproduct � : A → A ⊗ A, subject to the compatibility
relation �(a · b) = �(a) · �(b), where the right hand side product has
to be understood componentwise. As discussed in [129], the construction of
J.-L. Loday’s paper [128] was fundamentally motivated by the following three
Hopf algebras:

Malvenuto–Reutenauer Hopf algebra. For ρ ∈ Sm and σ ∈ Sn, the shuffle
ρ �̄σ (resp. the convolution ρ � σ) denotes the set of permutations of Sm+1

where the order of the first m and last n values (resp. positions) is given by ρ
and σ respectively. For instance,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 � 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Let S :=
⊔

n∈N
Sn be the set of all finitary permutations (any size) and kS

denote its k-vector span with basis (Fτ )τ∈S. The Malvenuto–Reutenauer Hopf
algebra [148] is the Hopf algebra on kS where the product · and coproduct �
are defined by

Fρ · Fσ =
∑

τ∈ρ �̄σ

Fτ and �Fτ =
∑

τ∈ρ�σ

Fρ ⊗ Fσ.
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Loday–Ronco Hopf algebra. The Loday–Ronco Hopf algebra [132] is the Hopf
subalgebra kT of kS generated by the elements

PT :=
∑

τ∈S
bt(τ)=T

Fτ

for all binary trees T ∈ T of any size.

Recoil Hopf algebra. The recoil Hopf algebra [92] is the Hopf subalgebra kB
of kS generated by the elements

Xχ :=
∑

τ∈S
rec(τ)=χ

Fτ =
∑

T∈T
can(T )=χ

PT

for all binary sequences χ ∈ B of any size.
By definition, these three Hopf algebras are closely related: the recoil alge-

bra is a Hopf subalgebra of the Loday–Ronco algebra, which is a subalgebra
of the Malvenuto–Reutenauer algebra. Moreover, there are close connections
between these Hopf algebras, the lattices of Sect. 1.1, and the polytopes of
Sect. 1.2. Namely,

• the product of two elements in kS (resp. in kT, resp. in kB) is a sum
over an interval in a weak order (resp. a Tamari lattice, resp. a boolean
lattice) [133].

• the product in kS (resp. in kT, resp. in kB) can be interpreted as the
product (as formal power series) of the non-negative integer point enu-
merators of the normal cones of the permutahedra (resp. associahedra,
resp. parallelepipeds) [24,44,48]. The non-negative integer point enumer-
ator of the cone C�(P ) of a poset P on [n] whose Hasse diagram is a tree
is given by

∑

x∈Rn
≥0∩C �(P )

yx =
∏

i�j∈P

yδi>j ·sc(i,j,P )

1 − ysc(i,j,P )
,

where sc(i, j, P ) is the connected component of i in the Hasse diagram
of P minus (i, j).

We note that these three Hopf algebras can be extended to Hopf algebras
on all faces of the permutahedra, associahedra, and cubes [43].

We refer to [1,10,11,43,92,103,132,148] for more details on the topic of this
section, but we want to highlight the work [1]. In this paper, Aguiar and Ardila
use Loday’s realization to explain the role of the face structure of the asso-
ciahedron in the compositional inverse of power series, which was a question
asked by Loday in [129]. Quoting from [1]: there are many other realizations of
the associahedron as a generalized permutahedron. [...] Surprisingly, to answer
Loday’s question within this algebro-polytopal context, Loday’s realization of
the associahedron is precisely the one that we need!
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1.4. Three surprising geometric properties. To close this section, we present
three surprising geometric properties connecting the permutahedron Perm(n)
to the associahedron Asso(n). The first two were already partially discussed
in [128], while the last one is more recent.

1.4.1. Removahedra. A removahedron of a polytope P is a polytope obtained
by removing some inequalities from the facet description of P. As already
mentioned, Para(n) is a removahedron of Asso(n), which is a removahedron
of Perm(n). This is illustrated in Fig. 2, where the facets which are not deleted
to pass to the next polytope are shaded. This property motivates the following
observations:
(1) Asso(n) has precisely n pairs of parallel facets, which are the pairs of

parallel facets of Para(n).
(2) Perm(n) and Asso(n) have precisely 2n−2 common vertices, which corre-

spond to the permutations where all values before i or all values after i
are larger than i for all i ∈ [n], and to the binary trees where every node
has at most one (internal) child. Moreover, each facet of Asso(n) has at
least one vertex in common with Perm(n).

(3) Asso(n) and Para(n) have precisely n common vertices, which correspond
to the binary trees where the left subtree of the root is a left comb and
the right subtree of the root is a right comb, and to the binary sequences
of the form −i+n−1−i. Moreover, each facet of Para(n) has at least one
vertex in common with Asso(n).

(4) Perm(n), Asso(n), and Para(n) have precisely 2 common vertices, which
correspond to the permutations 12 . . . n and n . . . 21, to the left and right
combs, and to the binary sequences −n−1 and +n−1.

1.4.2. Vertex barycenter. The vertex barycenter of a polytope P is the iso-
barycenter of the vertices of P (note that it is in general not the center
of mass of P). Surprisingly, the vertex barycenters of Perm(n), of Asso(n),
and of Para(n) all coincide. This was observed by F. Chapoton and reported
in [128,129]. However, note that the argument given in [128,129] is wrong: the
contribution of the vertex of Asso(n) corresponding to a binary tree T is not
the sum of the contributions of the vertices of Perm(n) corresponding to the
linear extensions of T . A correct argument, involving averaging over orbits of
the dihedral rotation on triangulations, appeared later in [99] and was simpli-
fied in [131]. An alternative approach based on brick polytopes (see Sect. 3.2)
appeared in [180]. Finally, an argument based on the universal associahedron
(see Sect. 3.1) appeared in [105].

1.4.3. Deformation cone. A deformation of a polytope P can be equivalently
described as (i) a polytope whose normal fan coarsens the normal fan of
P [140], (ii) a Minkowski summand of a dilate of P [141,204], (iii) a polytope
obtained from P by perturbing the vertices so that the directions of all edges
are preserved [162,176], (iv) a polytope obtained from P by gliding its facets in
the direction of their normal vectors without passing a vertex [162,176]. The
deformations of P form a cone under positive dilations and Minkowski sums,
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called the deformation cone of P [140,176]. Polytopes in the deformation cone
of P are parametrized by the values of the support functions in the directions
normal to the facets of P. Under this parametrization, this cone is defined by
the wall-crossing inequalities, corresponding to the pairs of maximal adjacent
cones of the normal fan of P.

For instance, the deformations of the permutahedron Perm(n) have been
studied extensively (historically as polymatroids [76], or more recently as gen-
eralized permutahedra [1,162,176]). They are parametrized by the cone of
submodular functions. While the facets of this cone correspond to (minimal)
submodular inequalities, its rays are still poorly understood (it is still an open
question to determine its number of rays).

Surprisingly, the deformation cone of the associahedron Asso(n) is a sim-
plicial cone [33,171,172]. Its facets are given by the wall-crossing inequali-
ties corresponding to the exchanges of pairs of rays given by two intervals
of the form [i, j] and [i + 1, j + 1]. Its rays are (all positive dilations of) the
faces �[i,j] of the standard simplex corresponding to intervals of [n]. Hence,
the sylvester fan is the normal fan of any Minkowski sum of positive dilates of
the faces �[i,j]. It is however arguable that Loday’s associahedron is the most
natural realization of the sylvester fan, as it is the isobarycenter of the rays of
its simplicial deformation cone.

2. Lattice congruences and quotientopes. In this section, we survey the deep
influence of Loday’s associahedron in the construction of polytopal realizations
of lattice quotients of the weak order, in particular (type A) Cambrian and
permutree lattices [166,188]. Alternative detailed sources include the original
papers [186–188,190] and the survey articles [189,191,192] for lattice quotients
of the weak order, and the original papers [98,166,172,181] for their polytopal
realizations.

2.1. Sylvester congruence. A lattice congruence of a lattice (L,≤,∧,∨) is an
equivalence relation on L that respects the meet and the join, i.e., such that
x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. A lattice
congruence ≡ automatically defines a lattice quotient L/≡ on the congruence
classes of ≡ where the order relation is given by X ≤ Y if and only if there
exists x ∈ X and y ∈ Y such that x ≤ y. The meet X∧Y (resp. the join X∨Y )
of two congruence classes X and Y is the congruence class of x∧y (resp. of x∨y)
for arbitrary representatives x ∈ X and y ∈ Y .

Our prototypical example of a lattice congruence is the sylvester congru-
ence of the weak order (the term “sylvester”, coined in [103], is an adjective
meaning “woody” and is not referring to the mathematician James Joseph
Sylvester). Its congruence classes are the sets of linear extensions of the
binary trees of Bn, or equivalently, the fibers of the binary tree map bt of
Sect. 1.1. It can be defined equivalently as the transitive closure of the rewrit-
ing rule UacV bW ≡sylv UcaV bW where a < b < c are letters and U, V,W
are words on [n]. It was studied in particular in [54,103,166,186,188,225]. The
quotient ≤W /≡sylv of the weak order by the sylvester congruence is the Tamari
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Figure 3. Four examples of permutrees. The first is generic,
and the last three use specific decorations corresponding to
permutations, binary trees, and binary sequences. [166, Fig. 2
& 3]

lattice [221]. In other words, for any T, T ′ ∈ Tn, we have T ≤T T ′ if and only
if there exist σ, σ′ ∈ Sn such that bt(σ) = T , bt(σ′) = T ′, and σ ≤W σ′.

2.2. Cambrian and permutree congruences. A permutree [166] is a tree whose
nodes are labeled bijectively by [n] and whose edges are oriented with the
following local rules around each node:

• each node may have either one or two parents and either one or two
children,

• if a node j has two parents (resp. children), all nodes in the left parent
(resp. child) of j are smaller than j, while all nodes in the right parent
(resp. child) of j are larger than j.

We decorate each node with the symbols , , , depending on their num-
ber of parents and children, and the sequence δ(T ) of these symbols is called
the decoration of the permutree T . As illustrated in Fig. 3, the permutrees
extend and interpolate between permutations when δ(T ) = n, binary trees
when δ(T ) = n, and binary sequences when δ(T ) = n. The permutrees
with δ(T ) ∈ { , } are called Cambrian trees [54,131].

Generalizing Sect. 1, it was shown in [166] that for each δ ∈ { , , , }n,
(1) the sets of linear extensions of the δ-permutrees define a lattice con-

gruence of the weak order, the δ-permutree congruence ≡δ. These sets
are also the fibers of the δ-permutree map sending permutations to δ-
permutrees. The δ-permutree congruence ≡δ is also the transitive closure
of the rewriting rules

UacV bW ≡δ UcaV bW if a < b < c and δb = or ,
UbV acW ≡δ UbV caW if a < b < c and δb = or ,

where a, b, c are letters while U, V,W are words on [n]. See [166, Sect. 2.3].
For instance, ≡δ is the trivial congruence when δ = n, the sylvester
congruence [103] when δ = n, the (type A) Cambrian congruences [54,
186,188] when δ ∈ { , }n, and the hypoplactic congruence [124,153]
when δ = n. See Fig. 4 (left) for a generic example.

(2) the quotient ≤W/≡δ is the δ-permutree lattice, whose cover rela-
tions are right rotations on permutrees. See [166, Sect. 2.6]. For
instance, the δ-permutree lattice is the weak order when δ = n, the
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Tamari lattice [221] if δ = n, the (type A) Cambrian lattices [188] if
δ ∈ { , }n, and the boolean lattice when δ = n. See Fig. 4 (midddle
left) for a generic example.

(3) the cones C�(T ) :=
{
x ∈ 1⊥ ∣

∣ xi ≤ xj , ∀ i → j in T
}

for all δ-permutrees
form a complete simplicial fan, the δ-permutree fan F(δ). In other words,
the maximal cones of F(δ) are obtained by glueing together the maximal
cones of the braid fan F(n) which correspond to permutations in the
same congruence class for ≡δ. See [166, Sect. 3.1]. For instance, F(δ)
is the braid fan when δ = n, the sylvester fan when δ = n, the
(type A) Cambrian fans of [194] when δ ∈ { , }n, and the coordinate
fan when δ = n. See Fig. 4 (middle right) for a generic example, drawn
in stereographic projection.

(4) the fan F(δ) is the normal fan of the δ-permutreehedron PT(δ), which
can be equivalently defined as

• the convex hull of the points p(T ) for all δ-permutrees T , whose ith
coordinate is defined by p(T )i = 1 + d + �r − �r, where d denotes
the number of descendants of i in T , � and r denote the sizes of
the left and right descendant subtrees of i in T when δi ∈ { , }
(otherwise, � = r = 0), and � and r denote the sizes of the left
and right ancestor subtrees of i in T when δi ∈ { , } (otherwise,
� = r = 0).

• the intersection of the hyperplane H with the halfspaces{
x ∈ R

n
∣
∣ ∑

i∈B xi ≥ (|B|+1
2

)}
for each subset B ⊆ [n] which is an

edge cut in some δ-permutree (equivalently, a, c ∈ B implies b ∈ B
or δb ∈ { , }, and a, c /∈ B implies b /∈ B or δb ∈ { , } for
all a < b < c).

See [166, Sect. 3.2]. For instance, PT(δ) is the permutahedron Perm(n)
when δ = n, Loday’s associahedron Asso(n) [128,206] when δ = n,
Hohlweg–Lange’s associahedra Asso(δ) [98,131] when δ ∈ { , }n,
and the parallelepiped Para(n) when δ = n. See Fig. 4 (right) for a
generic example. The face lattice of the δ-permutreehedron PT(δ) can
be described in terms of Schröder permutrees, see [166, Sect. 5]. We
note that the very simple expression of the vertex coordinates of Asso(n)
given in [128] was particularly influencial in the definition of Hohlweg–
Lange’s associahedra [98], which in turn motivated the definition of the
permutreehedra of [166].

(5) the Hasse diagram of the δ-permutree lattice is the graph of the
δ-permutreehedron PT(δ) oriented in the direction ω := (n, . . . , 1) −
(1, . . . , n) =

∑
i∈[n](n + 1 − 2i)ei.

Generalizing Sect. 1, there are natural refinements between the permutree
objects. For two decorations δ, δ′ ∈ { , , , }n with δi � δ′

i for all i ∈ [n],
for the order � { , } � ,

• the δ-permutree congruence refines the δ′-permutree congruence,
• the δ′-permutree lattice is a lattice quotient of the δ-permutree lattice,
• the δ-permutree fan F(δ) refines the δ′-permutree fan F(δ′),
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Figure 4. The permutree congruences ≡δ (left), δ-permutree
lattice (middle left), the permutree fan F(δ) (middle right),
and the permutreehedron PT(δ) (right) for δ = .
Adapted from [166, Figs. 11, 14 & 15] and [8, Fig. 9]

Figure 5. The δ-permutreehedra for all decorations δ ∈ ·
{ , , , }2 · [166, Fig. 16]

• the permutreehedron PT(δ′) is obtained by deleting some inequalities in
the facet description of the permutreehedron PT(δ). As a consequence,
PT(δ) ⊆ PT(δ′). See Fig. 5.

The pairs of parallel facets, the common vertices of PT(δ) and PT(δ′), and
the isometries between permutreehedra are discussed in [166, Sect. 3.3], with
motivation from [27].

Finally, we briefly mention that the combinatorial Hopf algebras of Sect. 1.3
extend to a big combinatorial Hopf algebra on all permutrees (all sizes, all
decorations), see [54] and [166, Sect. 4]. Similarly, the Hopf algebras of [43]
extend to a Hopf algebra on all Schröder permutrees, see [166, Sect. 5].
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2.3. All congruences. We now consider all lattice quotients of the weak order
on Sn. To keep this section short, we refrain from presenting the wonderful
combinatorics of these lattice quotients in terms of non-crossing arc diagrams
[190], and focus on their geometric realizations.

Any lattice congruence ≡ of the weak order on Sn defines a quotient
fan F(≡) [187], whose maximal cones are obtained by glueing together the
maximal cones of the braid fan F(n) which correspond to permutations in
the same congruence class for ≡. This fan F(≡) is complete but not neces-
sarily simplicial (the congruences for which the quotient fan is simplicial are
characterized in [101, Sect. 4.4], see also [69, Thm. 1.13] for a representation
theoretic approach, and [34] for a shorter combinatorial proof and the con-
nection to the permutrees of Sect. 2.2). This fan F(≡) is the normal fan of a
quotientope QT(≡) which was constructed

• in [181] by a direct but quite intricate facet description,
• in [172] as a Minkowski sum of certain simple pieces called shard poly-

topes.
See Fig. 6. The graph of the quotientope, oriented in a linear direction, is the
Hasse diagram of the quotient of the weak order by ≡. We note that these
quotientopes somehow simultaneously reach the limit and use the full power
of Loday’s simple construction of the associahedron:

• there is no simple formula for the vertex coordinates of the quotientopes
similar to [128].

• the only lattice congruences of the weak order which can be realized by
a removahedron of Perm(n) are the permutree congruences [8].

• however, as observed in [172], any quotient fan can be realized as the
normal fan of a Minkowski sum of well-chosen associahedra Asso(δ) of
[98], which admit a simple vertex description inspired from [128] and
are removahedra of Perm(n), as discussed in Sect. 2.2. For instance, the
diagonal rectangulation polytope [134] (orange in Fig. 6) is the Minkowski
sum of two opposite associahedra of [128] (blue and purple in Fig. 6).

To complete our comparison between associahedra and arbitrary quotientopes
from the perspective of Sect. 1, we observe that

• the graphs of the quotientopes all admit Hamiltonian paths [101] (it is
open to prove that they all admit a Hamiltonian cycle).

• the vertex barycenters of the quotientopes do not coincide (not even for
permutreehedra),

• the deformation cone of a quotientope QT(≡) is simplicial if and only if
the congruence ≡ is refined by a Cambrian congruence [8,167].

• generalizing the Hopf algebras of [92,132,148] described in Sect. 1.3,
various Hopf algebra structures have been investigated, either on
specific congruences [54,90,126,134,154,156,166,187], or on all lattice
quotients [157].

2.4. Beyond the braid arrangement. Consider now a central hyperplane
arrangement H defining a fan F , and a distinguished base region B of F .
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Figure 6. The quotientope lattice for n = 4: all quotien-
topes ordered by inclusion (which corresponds to refinement of
the lattice congruences). We only consider lattice congruences
whose fan is essential. We have highlighted the cube (green),
Loday’s associahedron [128] (blue), another one of Hohlweg–
Lange’s associahedra [98] (purple), the diagonal rectangula-
tion polytope [134] (orange), and the permutahedron (red).
Adapted from [181, Fig. 9]

The poset of regions R(H, B) is the set of regions of F ordered by inclusion
of their separating sets (the set of hyperplanes of H that separate the given
region form the base region B). For instance, the poset of regions is the weak
order on W when H is the Coxeter arrangement of a finite Coxeter group
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W [14,106]. In general, the poset of regions R(H, B) is always a lattice when
the fan F is simplicial, and never a lattice when the chamber B is not sim-
plicial [23]. See also the survey of N. Reading [192] for further conditions, in
particular a discussion on tight arrangements.

Assume now that R(H, B) is a lattice, and consider a lattice congruence ≡
of R(H, B). It was proved in [187] that the lattice congruence ≡ defines a
complete fan F(≡) obtained by glueing together the cones of the fan F that
belong to the same congruence class of ≡. It remains an open question whether
these quotient fans are polytopal. The answer is known to be positive for:

• the braid arrangement (whose poset of regions is the weak order on per-
mutations) by [172,181] as discussed in Sect. 2.3,

• graphical arrangements of skeletal graphs (whose poset of regions are
precisely the acyclic reorientation lattices) by [159],

• the hyperoctahedral arrangement (or type B Coxeter arrangement)
by [172].

Using quiver representation theory (see Sect. 3.3), [68] also recently proposed
candidates for shard polytopes, which should lead to quotientopes for arbitrary
finite Coxeter arrangements. We note also that quotientopes for the braid
arrangement and for graphical arrangements can be constructed as Minkowski
sums of (lower dimensional) associahedra of [98], showing again the longlasting
influence of Loday’s associahedron [128].

3. Cluster algebras, brick polytopes, and quiver representation theory. In this
section, we present some polytope constructions in the theory of cluster alge-
bras, of subword complexes, and of quiver representation theory, in which
Loday’s associahedra were instrumental. Alternative surveys on this section
include [81,84,104,222,223].

3.1. Cluster algebras and generalized associahedra. Cluster algebras were
introduced in the series of papers [26,85,86,88]. Their motivations came from
total positivity and canonical bases, but cluster algebras quickly appeared
to be a fundamental structure in many areas of mathematics (representation
theory of quivers, Poisson geometry, integrable systems, etc.). See the cluster
algebra portal [79], or the surveys [81,84].

A cluster algebra is a commutative ring generated by a set of cluster vari-
ables grouped into overlapping clusters. One can choose an initial cluster as
a seed from which all other clusters are obtained by a mutation process con-
trolled by a combinatorial object (a skew-symmetrizable matrix, or a weighted
quiver). During a mutation, a single variable in the cluster is perturbed and the
new variable is computed by an exchange relation. One fundamental aspect of
this process is the Laurent phenomenon [85]: all cluster variables are Laurent
polynomials with respect to the cluster variables of the initial seed.

An important combinatorial and geometric object associated to a cluster
algebra is its cluster complex: the simplicial complex with cluster variables as
vertices and clusters as facets. A cluster algebra is of finite type if its cluster
complex is finite. Finite type cluster algebras are classified by the same Cartan–
Killing classification of finite root systems [86], and there are combinatorial
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models for the cluster variables and clusters of the cluster algebras of non-
exceptional finite types. In particular, the cluster complex of the cluster algebra
of type An−1 is isomorphic to the simplicial associahedron: cluster variables
correspond to internal diagonals of an (n + 2)-gon, clusters correspond to
triangulations of this polygon, a mutation between clusters corresponds to a
flip between triangulations, and the exchange relation can even be interpreted
as a Ptolemy relation in a quadrilateral.

A finite type cluster algebra (together with a choice of the initial seed)
naturally defines two complete simplicial fans, both combinatorially isomorphic
to the cluster complex but geometrically different: the d-vector fan [87] and the
g-vector fan [88]. The information needed to construct these fans is encoded
in the algebra as follows: the d-vectors are given by the denominators of the
cluster variables, while the g-vectors are given by exponents of coefficients in
the cluster algebra with principal coefficients. In type An−1, the d-vector fan is
the compatibility fan (the ray corresponding to a diagonal δ of the (n + 2)-gon
consists of all positive multiples of the characteristic vector of the diagonals of
the initial triangulation of the (n+2)-gon crossed by δ), while the g-vector fan is
the sylvester fan introduced in Sect. 1.2. In fact, the g-vector fans of finite type
cluster algebras with respect to acyclic initial seeds are precisely the Cambrian
fans of [194] realizing the Cambrian lattices of [188] in crystallographic types.
The Cambrian lattices are particular lattice quotients of the weak orders on
Coxeter groups [14,106]. (Note that g-vector fans are not limited to acyclic
initial seeds but are restricted to Weyl groups, while Cambrian lattices and
fans are limited to acyclic initial seeds, but are defined for arbitrary finite
Coxeter groups). See Fig. 8 for illustrations of g-vector fans.

The generalized associahedron of a finite type cluster algebra is a simple
polytope whose polar realizes the cluster complex. Generalized associahedra
were first constructed in [41] using the d-vector fans, and alternative realiza-
tions were obtained in [100] using the g-vector fans with respect to acyclic
initial seeds (in fact, the Cambrian fans of [194] for arbitrary finite Cox-
eter groups). The latter realizations are direct descendants of Loday’s asso-
ciahedra. Namely, generalizing the construction of the associahedra of [98]
(directly inspired by [128] as discussed in Sect. 2.2), they are obtained by
deleting inequalities in the facet description of the Coxeter permutahedron,
the convex hull of the orbit of a generic point under the action of the reflection
group. The remaining facets are those that contain at least one singleton, i.e., a
point of the Coxeter permutahedron corresponding to a singleton class of the
Cambrian congruence (thus a common point with the resulting generalized
associahedron). The isometry classes of generalized associahedra of [100] were
described in [27]. See Fig. 7 and the first two columns of Fig. 8 for illustrations.
We refer to [104] for a very instructive presentation.

The construction of [100] was revisited in [214] with an approach similar
to the original one of [41], and in [179] via brick polytopes (see Sect. 3.2).
Later, it was proved in [105] that all g-vector fans with respect to any initial
seed (acyclic or not) are actually polytopal (this construction yields the same
generalized associahedron as [100] when it starts from an acyclic initial seed).
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Figure 7. Some Coxeter permutahedra (red) and general-
ized associahedra of [100] (blue) in type A (top), B (mid-
dle), and D (bottom). The singletons (common vertices of
the permutahedron and associahedron) are marked (purple).
Adapted from [179, Figs. 14, 15 & 16]

See the last two columns of Fig. 8 for illustrations. This construction also led to
the definition of a universal associahedron [105], a polytope whose normal fan
simultaneously contains all g-vector fans of a given finite type cluster algebra.

To complete our connection between Loday’s associahedra [128] and the
generalized associahedra of [100,105] from the perspective of Sect. 1, we observe
that

• the diameters of the mutation graphs of the finite type cluster algebras
have been determined in [53,163,164], see [53, Tab. 2]. Moreover, all gen-
eralized associahedra have the non-leaving face property [53,229].

• the realizations of [105] are removahedra of the underlying zonotope only
when the initial seed is acyclic (hence the resulting generalized associ-
ahedron coincides with that of [100]) or when the cluster algebra is of
type A. See Fig. 8.

• the vertex barycenters of all generalized associahedra of [100,105] coincide
with that of the Coxeter permutahedron [105,180].

• the deformation cone of a generalized associahedron of [100,105] is always
simplicial [33,171]. The rays of this deformation cone are (positive dila-
tions of) the Newton polytopes of the F -polynomials [88] of the cluster
variables of the cluster algebra [33].

Finally, let us mention that cluster algebras and in particular the asso-
ciahedron appear in an extremely promising recent line of research in high
energy physics. In quantum field theory, the scattering amplitudes (the prob-
abilities that particular interactions occur among particles) are traditionally
expressed as sums over all possible Feynman diagrams for the interaction.

576



Celebrating Loday’s associahedron

Figure 8. Some g-vector fans and generalized associahedra
of finite type cluster algebras. Top: all type A3 and the cyclic
type C3 initial exchange matrices. Middle: The corresponding
dual c-vector fans (thin red) and g-vector fans (bold blue).
Bottom: The corresponding zonotopes (thin red) and gener-
alized associahedra (bold blue). In type A, the generalized
associahedra are removahedra of the corresponding zonotope.
In cyclic type C3, the shaded facets of the zonotope and of
the associahedron are parallel but do not coincide. Adapted
from [105, Figs. 2, 3, 5 & 6]

In [6], Arkani-Hamed and Trnka introduce amplituhedra, geometric objects
that greatly simplify these computations. Although the theory is still under
construction, in the case treated in [6] (Super Yang-Mills theory with N = 4),
the amplituhedron is a linear image of the positive Grassmannian and the
scattering amplitudes are computed by evaluating a certain form in it, conjec-
turally the volume of a “dual amplituhedron” which should exist.

In [4], this approach is applied to the so-called “bi-adjoint φ3 scalar theory”,
for which the amplituhedron turns out to be exactly Loday’s associahedron.
The relation is as follows: in this theory n cyclically ordered particles in the
plane interact via ternary trees. Hence, there is one Feynman diagram corre-
sponding to each vertex of Asso(n − 2), that is, to each facet F of the polar
Asso(n−2)�. It turns out that the summand of each ternary tree in the expres-
sion for the scattering amplitude equals the volume of the simplex obtained
coning the corresponding facet F to the origin, so indeed the total sum equals
the volume of Asso(n − 2)�. There is a deformation of Asso(n − 2) involved in
the process. Before computing the polar, each facet of Asso(n−2) is translated
by an amount depending on the momenta of the two particles defining that
facet. In fact, the treatment of deformed associahedra in [4] inspired the works
[33,171] mentioned above.

577Vol. 121 (2023)



V. Pilaud et al. Arch. Math.

The relation between associahedron-like polytopes and scattering ampli-
tudes has been explored intensively in the past few years, see e.g. [2,7,31,47,
109,110,114–116,119,123,185,199,208].

3.2. Subword complexes and brick polytopes. Subword complexes were intro-
duced in [121] in the context of Gröbner geometry of Schubert varieties, and
extended to all finite Coxeter groups in [120]. Given a finite Coxeter sys-
tem (W,S) [14,106], a word Q of Sm, and an element w of W , the subword
complex SC(Q,w) is the simplicial complex of subwords of Q whose comple-
ments contain a reduced expression of w. In other words, its ground set is the
set [m] of positions in Q, and its facets are the complements of the reduced
expressions of w in Q. Here, we only consider the case where w = w◦ is the
longest element of W , and Q contains a subword which is a reduced expression
for w◦, and we just write SC(Q) for SC(Q,w◦).

The subword complex SC(Q) is known to be a vertex-decomposable sim-
plicial sphere [120]. The question of whether these simplicial spheres are poly-
topal is a longstanding open problem [50,58,59,61,120,165,177–179]. Largely
inspired from Loday’s associahedron [128], the brick polytope of [178,179] was
designed as an attempt to solve this question.

To a facet I of SC(Q) and a position k ∈ [m], we associate a root
r(I, k) := ΠQ[k−1]�I(αqk) [50] and a weight w(I, k) := ΠQ[k−1]�I(αqk) [179],
where ΠQX denotes the product of the reflections qx ∈ Q, for x ∈ X, in the
order given by Q. The root configuration of I is the set R(I) := {r(I, i) | i ∈ I}
and the brick vector is the vector b(I) :=

∑
k∈[�] w(I, k). The brick poly-

tope BP(Q) of the word Q is the convex hull of the brick vectors of all facets
of SC(Q) [178,179]. It was shown in [113,178,179] that the vertices of BP(Q)
correspond to the facets I of SC(Q) whose root configuration R(I) is acyclic
(i.e., form a pointed cone). It follows that the brick polytope BP(Q) realizes
the subword complex SC(Q) if and only if the root configuration of every (or
equivalently, of one of) the facets of SC(Q) is linearly independent.

Subword complexes have a simple visual interpretation in type An−1, i.e.,
when W = Sn and S = {τp | p ∈ [n − 1]} where τp is the simple transpo-
sition (p p + 1). A (primitive) sorting network N is formed by n horizontal
lines (its levels, labeled from bottom to top) together with m vertical segments
(its commutators, labeled from left to right) joining two consecutive levels. A
pseudoline arrangement on N is a collection of n x-monotone paths supported
by N which cross pairwise precisely once at a commutator and have no other
intersection. The commutators where two pseudolines cross are called cross-
ings while the others are called contacts of the pseudoline arrangement. A
word Q := q1q2 · · · qm on S is represented by the sorting network NQ whose
kth commutator lies between the pth and (p + 1)th levels if qk = τp. A facet I
of SC(Q) is then represented by the pseudoline arrangements whose contacts
lie at the positions given by I. See Fig. 9. As pointed out in [165], type A
subword complexes can be used to provide a combinatorial model for many
relevant families of geometric graphs (see Fig. 10 for illustrations):

• triangulations of a convex polygon [165,207,217,230].
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Figure 9. The sorting network NQ corresponding to the
word Q = τ2τ3τ1τ3τ2τ1τ2τ3τ1 (left) and the pseudoline
arrangements corresponding to the facets {2, 3, 5} (mid-
dle) and {2, 3, 9} (right). Adapted from [178, Figs. 3 & 4]

Figure 10. Sorting networks interpretations of certain geo-
metric graphs: a triangulation of the convex octagon, a 2-
triangulation of the convex octagon, a pseudotriangulation of
a point set, and a pseudotriangulation of a set of disjoint con-
vex bodies. [179, Fig. 6]

• k-triangulations of a convex polygon [165,177,207,217]. A k-triangulation
of a convex (n + 2k)-gon is a maximal set of diagonals such that no
k + 1 of them are pairwise crossing [52,71,112,152,177]. Some of the
corresponding brick polytopes are illustrated in Fig. 11. We note that
these particular subword complexes have various connections with lattice
quotients and Hopf algebras discussed in Sects. 1 and 2 [156].

• pseudotriangulations of a point set P in general position (no line contains
three points). A pseudotriangulation of P is a maximal pointed crossing-
free set of edges between points of P [183,196]. Pseudotriangulations
correspond to the vertices of the pseudotriangulation polytope of [195].

• pseudotriangulations of a set of disjoint convex bodies in general position
(no line is tangent to three convex bodies).

In particular, for subword complexes corresponding to triangulations of a con-
vex polygon, the brick polytopes precisely recover the associahedra of [98,128]
(up to a translation).

More generally, the subword complex interpretation of [165,207,217] for
triangulations and multitriangulations of convex polygons where extended to
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Figure 11. The brick polytopes BP(ckw◦(c)) for c = τ1τ2τ3
in type A3 and k ∈ [3]. Adapted from [156, Fig. 11]

arbitrary finite Coxeter groups in [50]. In particular, for a Coxeter element c
of a finite Coxeter group, the c-cluster complex is isomorphic to the subword
complex SC(cw◦(c)) where w◦(c) denotes the c-sorting word of w◦ (meaning
the lexicographic minimal reduced word in c∞ := ccc · · · ). The correspond-
ing brick polytope BP(cw◦(c)) then coincides (up to translation) with the
c-associahedra Asso(c) of [100] discussed in Sect. 3.1 [179]. This alternative
interpretation provides an explicit vertex description of Asso(c), and thus
enables to easily derive some of their geometric properties, for instance that
their barycenter all coincide with that of the Coxeter permutahedron [180].

For completeness, let us mention that non-spherical subword complexes
also have their brick polyhedra [113], whose oriented skeleta are sometimes
lattice quotients of intervals of the weak order [18].

3.3. Quiver representation theory and gentle associahedra. To illustrate the
far reaching influence of Loday’s associahedra, we conclude with some of its
apparitions and generalizations in the quiver representation theory.

There are several connections between representation theory and the asso-
ciahedron. For instance, the introductory paper [222] connects the lattice of
torsion classes of the linear An−1 quiver to the Tamari lattice. Here, we prefer
to follow [224] to go straight from representation theory to Loday’s associahe-
dron.

A quiver Q := (Q0, Q1) is a directed graph with vertices Q0 and arrows Q1.
A representation V of Q is an assignment of a finite dimensional vector space Vi

(over a fixed algebraic closed field) for each vertex i of Q0, and of a linear
map Vα : Vi → Vj for each arrow i

α−→ j of Q1. Representations are considered
up to isomorphisms, meaning basis changes in each of the vector spaces Vi.

Note that the representations of Q correspond to the modules over the
path algebra of Q (the algebra of oriented paths on Q, where the product of
two paths π, π′ is the concatenation ππ′ when π′ starts where π ends, and 0
otherwise). As any (basic) finite dimensional algebra is the path algebra of
a quiver with relations, the theory of quiver representations (with relations)
thus corresponds to the theory of modules over finite dimensional algebras.
We refer to the textbooks [12,202].
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The dimension vector of a representation V is dim V := (dim Vi)i∈Q0 . The
direct sum of two representations V,W of Q is the representation V ⊕ W
of Q defined by (V ⊕ W )i = Vi ⊕ Wi for each vertex i of Q0, and (V ⊕W )α =
Vα⊕Wα for each arrow α of Q1. A representation is indecomposable if it cannot
be decomposed as the direct sum of two non-zero representations. A subrepre-
sentation of a representation V is a representation W such that Wi is a vector
subspace of Vi for each vertex i of Q0, and Vα(Wi) ⊆ Wj for each arrow i

α−→ j
of Q1. The Harder–Narasimhan polytope HN(V ) of a representation V is the
convex hull of the dimension vectors of the subrepresentations of V . It trans-
ports direct sums to Minkowski sums: HN(V ⊕W ) = HN(V )+HN(W ). In par-
ticular, if Q admits only finitely many indecomposable representations (up to
isomorphism), it is natural to consider HN(Q) :=HN(

⊕
V V ) =

∑
V HN(V ),

where the (direct and Minkowski) sums range over all (representatives of the
isomorphism classes of) indecomposable representations of Q.

Consider now the linear An−1 quiver Q, with Q0 = [n − 1] and
Q1 = {i

αi−→ i + 1 | i ∈ [n − 2]}. Up to isomorphism, its indecomposable repre-
sentations are precisely the representations Eij for 1 ≤ i ≤ j ≤ n − 1, consist-
ing of a one-dimensional vector space at each vertex between i and j (included)
with identity maps between them, and zero vector spaces and maps elsewhere.
One can check the Harder–Narasimhan polytope HN(Eij) is (up to a change
of basis) the face �[i,j+1] of the standard simplex corresponding to the inter-
val [i, j + 1]. Hence, HN(Q) coincides with Loday’s associahedron Asso(n).
Moreover, as already mentioned, the Tamari lattice given by the linear ori-
entation of the graph of Asso(n) corresponds to the lattice of torsion classes
of Q [69].

Note that starting from any orientation Q of a type A/D/E Dynkin
quiver, the polytopes HN(V ) of the indecomposable representations V would
be the Newton polytopes of the F -polynomials of the corresponding cluster
algebra [33], the polytope HN(Q) would coincide with another associahedron
of [100], and the lattice of torsion classes of Q′ would be a Cambrian lattice
[188] of type A/D/E [107].

Even more powerful statements arise in the situation of quivers with rela-
tions (see [12,202] for definitions). Two families of examples deserve a partic-
ular mention here as they are closely connected to Loday’s associahedron and
the material discussed here.

The first family is that of preprojective quivers of type A/D/E. The poly-
tope HN(Q) is the corresponding Coxeter permutahedron [5], and the lat-
tice of torsion classes is the weak order of the corresponding finite Coxeter
group [143]. Moreover, the Harder–Narasimhan polytopes HN(V ) of the inde-
composable brick representations of Q̃ are natural candidates for shard poly-
topes [68], which would enable to realize all lattice quotients of these weak
orders, as mentioned in Sect. 2.4. The same construction should extend to
arbitrary finite Weyl groups, working with quiver representations on non-
algebraically closed fields.
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Figure 12. Some gentle quivers (top), their gentle fans (mid-
dle) and their gentle associahedra (bottom). Adapted from
[169, Figs. 40 & 41] and [168, Fig. 30]

The second family is that of gentle quivers [9,38]. The lattice of torsion
classes of a gentle quiver was interpreted combinatorially in terms of non-
kissing walks of a blossoming quiver, or equivalently in terms of non-crossing
accordions on a dissection of a surface [20,168,169]. Moreover, gentle quivers
with finitely many indecomposables naturally define a gentle fan (generaliz-
ing the sylvester fan) and a gentle associahedron (generalizing Loday’s asso-
ciahedron), whose constructions were directly inspired from that of Sect. 1,
see [169,171]. See Fig. 12 for illustrations. These gentle associahedra specialize
to and uniformize grid associahedra previously considered in [94,139,173,209],
and accordiohedra previously considered in [13,45,95,146].

4. Graph associahedra and nestohedra. In this section, we briefly present the
families of graph associahedra and hypergraph associahedra (or nestohedra).
They were constructed in [40,65,73,82,162] in connection to wonderful com-
pactifications of hyperplane arrangements [62]. The associahedron of [128]
served again as the prototype in these constructions.

4.1. Graph associahedra. Consider a simple graph G with vertex set V . A tube
of G is a non-empty subset of V which induces a connected subgraph of G. Two
tubes are compatible if they are either nested, or disjoint and non-adjacent
(their union is not a tube). A tubing of G is a set of pairwise compatible tubes,
which contains the connected components of G. The nested complex of G is
the simplicial complex of tubings of G. It can be geometrically realized by the
nested fan, with a ray g(t) for each tube t of G, given by (the projection of)
the characteristic vector of t. Moreover, the nested fan is the normal fan of
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Figure 13. The permutahedron (left), the associahedron
(middle), and the cyclohedron (right) as graph associahedra.
Adapted from [147]

a polytope, called graph associahedron Asso(G), and first constructed in [40]
(see also [70]). This polytope can be obtained

• by truncating some faces of the standard simplex [40],
• as the intersection of H with the hyperplanes 〈 g(t) | x 〉 ≤ −3|t| for all

tubes t of G [65],
• as the Minkowski sum

∑
t �t of the faces of the standard simplex given

by all tubes t of G [162].
See the first two columns of Fig. 14 for two generic examples. As illustrated
in Fig. 13, the graph associahedra of certain special families of graphs coin-
cide with well-known families of polytopes: complete graph associahedra are
permutahedra, path associahedra are classical associahedra, cycle associahe-
dra are cyclohedra, star associahedra are stellohedra, and parallelotopes are
empty graph associahedra (meaning graphs with no edges).

We restrict ourselves to a few observations motivated by Sect. 1:
• graph properties of graph associahedra have been investigated in [51,

57,144]: their graphs are Hamiltonian, and their diameters are partially
understood.

• the oriented graphs of graph associahedra are not always Hasse diagrams
of lattices. The ones which are lattice quotients of the weak order have
been characterized in [32].

• the nested fan of G is realized as a removahedron of Perm(n) if and only
if every cycle of G induces a clique [155]. In particular, the cyclohedron
is not a removahedron of Perm(n).

• the deformation cones of the graph associahedra are described in [170].
In particular, the Cartesian products of associahedra are the only graph
associahedra whose deformation cone is simplicial.

• Hopf algebraic structures on graph associahedra were investigated in [32,
83,193].

4.2. Hypergraph associahedra and nestohedra. Hypergraph associahedra [73]
are obtained exactly as graph associahedra by replacing the initial graph data
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Figure 14. Some hypergraphs (top), nested fans (middle)
and hypergraph associahedra (bottom). The first two are
graphical, the last two are hypergraphical. Adapted from [170,
Fig. 4, 5, 7 & 8]

by a hypergraph [21]. They were described independently as nestohedra of
building sets [82,162,231]. They are constructed as the Minkowski sums of
the faces of the standard simplex corresponding to their tubes [162], and thus
belong to the family of hypergraphical polytopes [16] inside the rich family of
generalized permutahedra [162]. See the last two columns of Fig. 14 for two
generic examples.

A particularly interesting family of hypergraph associahedra is obtained
from interval hypergraphs (hypergraphs all of whose hyperedges are intervals
of [n]): they contain

• the classical associahedron of [128,206] for the building set with all inter-
vals of [n],

• the Pitman–Stanley polytope of [205] for the building set with all single-
tons {i} and all initial intervals [i] for i ∈ [n],

• the freehedron of [200] for the building set with all singletons {i}, all
initial intervals [i] for i ∈ [n], and all final intervals [n]� [i] for i ∈ [n − 1],

• the fertilotopes of [63] for the binary building sets defined as the interval
building sets where any two intervals are either nested or disjoint.

For completeness, we just briefly mention that
• the hypergraph associahedra which are removahedra of Perm(n) were

characterized in [155].
• the deformation cones of hypergraph associahedra were described in [170].

In particular, all interval hypergraph associahedra have a simplicial defor-
mation cone.

Various generalizations of nestohedra were studied, e.g., in [67,89,147].
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5. Operads and diagonals. In this section, we come to the relation of the asso-
ciahedron to loop spaces. Although this was the original motivation for J.
Stasheff [210], we have delayed this topic until the end since in Stasheff’s orig-
inal work only the combinatorics of the associahedron is important. In fact,
he defined it not as a polytope but as a convex body with its face structure
given via non-linear inequalities. Only recently Loday’s realization has acquired
importance in this area, for the construction of diagonals of associahedra.

We briefly introduce loop spaces and the notion of A∞-operad, and then
focus on the diagonal of the associahedron where (a weighted version of)
Loday’s construction was fundamentally exploited [151]. Expository texts for
this section include [136,212,227].

5.1. Loop spaces and operads. In a pointed topological space (X, ∗), a loop
is a continuous map f : [0, 1] → X with f(0) = f(1) = ∗. The concatena-
tion product fg of two loops f and g is defined by fg(t) = f(2t) if t ≤ 1/2
and fg(t) = g(2t − 1) if t ≥ 1/2. This product fails to be associative: for three
loops f, g, h, the images of f(gh) and (fg)h coincide, but their parametrizations
differ. However, one can easily find a homotopy that deforms f(gh) to (fg)h.

If we now consider four loops f, g, h, k, then their five possible concate-
nations (parenthesizations of the word fghk) are homotopic, but also the two
possible ways to compose homotopies between the loops f(g(hk)) and ((fg)h)k
are homotopic. Continuing this process, Stasheff [210] was led to the defini-
tion of an A∞-algebra, or homotopy associative algebra, that is, a topological
monoid together with an infinite tower of homotopies correcting coherently
the defect of associativity of the product. Such a structure defines a homotopy
invariant characterization of loop spaces: a space is a loop space if and only if
it possesses an A∞-algebra structure, encoded by the associahedra.

These associahedra in turn form an A∞ operad, equivalent to the little
intervals operads. An operad is an algebraic structure encoding a type of
algebras (for instance, associative, commutative, Lie algebras, or A∞-algebras
in this case). See [91,136,150,212,227] for introductions and references. The
notion of operad first appeared in the seminal work of May [138] on iterated
loop spaces, where he proved the recognition principle, generalizing Stasheff’s
result: a space is a k-fold loop space (space of functions from the k-dimensional
sphere to a pointed topological space, sending the north pole to the base point)
if and only if it is an algebra over the little k-cubes operad. Today, operads
are ubiquitous in mathematics: in addition to algebraic topology, they are
used in differential geometry, algebraic geometry, non-commutative geometry,
mathematical physics, and probability, among other fields [136,150]. Many of
these fields interact in the work [75] where the toric varieties associated with
Loday’s associahedra are used to define a non-symmetric analogue of the little
2-cubes operad, leading to a non-commutative notion of cohomological field
theory with Givental-type symmetries.

5.2. Cellular diagonal of the associahedron. Taking cellular chains on associ-
ahedra, one arrives at the algebraic version of an A∞-algebra. This algebraic
structure plays a prominent role in many fields, for instance in symplectic
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Figure 15. The diagonal of the associahedron in dimension 2
(left) and 3 (right). The 3-dimensional picture is a courtesy
of G. Laplante-Anfossi [125, Fig. 13 (left)]

Figure 16. The diagonal of the 2-dimensional associahedron,
where faces are labeled by pairs of Schröder trees (left) and
attached to their max-min pair of binary trees given by the
magical formula (right). Adapted from [19, Fig. 2]

topology where it describes the fine structure of the Fukaya category of a sym-
plectic manifold [203]. In this context, but also in others such as the study
of the homology of fibered spaces [174], one is led to the problem of defin-
ing a universal tensor product of A∞-algebras, which can be achieved by the
construction of a cellular approximation of the diagonal of the associahedra.

The diagonal of a polytope P is the map δ : P → P × P defined
by x �→ (x, x). A cellular diagonal of P is a map δ̃ : P → P × P homo-
topic to δ, which agrees with δ on the vertices of P , and whose image is a
union of faces of P × P . For face-coherent families of polytopes (i.e., when
faces are products of polytopes in the family, like simplices, cubes, permutahe-
dra, or associahedra), some algebraic purposes additionally require the cellular
diagonal to be compatible with the face structure. Finding cellular diagonals
in such families of polytopes is an important challenge at the crossroad of
operad theory, homotopical algebra, combinatorics, and discrete geometry, see
[125,130,149,151,218].

For the family of associahedra, algebraic diagonals were described in [218]
and later in [130,149]. However, there were no known topological diagonals as
defined above, until the recent work of [151] defining a cellular diagonal Δn for
(a weighted version of) the associahedron Asso(n) of [128,206] (and recovering,
at the cellular level, all the previous formulas [72,220]). We note that the
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method of [151] essentially relies on the theory of fiber polytopes of [39], and
enables to see the cellular diagonal of the associahedron as a polytopal complex
refining the associahedron, see Fig. 15.

The face structure of the cellular diagonal Δn is given by the magical for-
mula [151]. Namely, the k-dimensional faces correspond to the pairs (F,G)
of faces of the associahedron Asso(n) with dim(F ) + dim(G) = k and
max(F ) ≤ min(G) (where ≤, max, and min refer to the order given by the
Tamari lattice). See Fig. 16. In particular, the vertices of Δn correspond to
intervals of the Tamari lattice, which are counted by

2
(3n + 1)(3n + 2)

(
4n + 1
n + 1

)

as proved in [42,46]. This formula also counts the rooted 3-connected planar
triangulations with 2n + 2 faces, and explicit bijections were given in [15,77].
More generally, the f -vector of Δn is given by

fk(Δn) =
2

(3n + 1)(3n + 2)

(
n − 1

k

)(
4n + 1 − k

n + 1

)

as proved in [19,77].
Note that the construction of the diagonal Δn, its face description by the

magical formula, and the product formulas for its f -vector all rely essentially
on the fact that the normal fan of the associahedron is the sylvester fan and
behaves nicely with the Tamari lattice (Sect. 1).

6. Further generalizations. We believe that the main impact of Loday’s
description of the associahedron was to break the psychological barrier of real-
izing this “mythical polytope” [97] by showing a natural and well-behaved
realization. Consequently, this construction was the first seed of a teeming
forest of polytopal realizations of combinatorial structures. Even if it is impos-
sible to cite all its descendants, we conclude with a partial list of polytopes
obtained from Loday’s associahedron, with pointers to the literature for the
interested readers.
(1) Cartesian products and Minkowski sums:

• quotientopes [172,181] (presented in Sect. 2),
• multiplihedron, graph multiplihedron, and multinestohedron [3,55,

66,80],
• biassociahedron [55,137,219],
• constrainahedron [36,55,161],

(2) sections and projections:
• accordiohedra [146] (and their extensions to gentle algebras [169,

171]),
• poset associahedra and acyclonestohedra [89,147,198],

(3) polyhedral decompositions:
• ν-associahedra [56], in connection to multivariate diagonal harmon-

ics [22,37,175],
• diagonals of the associahedron [19,151] (presented in Sect. 5.2),

(4) further descendants:
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• pebble tree associahedra [160,182],
• categorical k-associahedra [17,35,36],
• permutoassociahedra [28,49,78,108,117,197].

We hope that this survey invites the reader to develop further the family of
these associahedra.
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hedra. J. Éc. Polytech. Math. 8, 121–146 (2021)

[152] Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Com-

binatorics and optimization (Okinawa, 1996). Theoret. Comput. Sci. 235(2),

271–282 (2000)

[153] Novelli, J.-C.: On the hypoplactic monoid. Formal power series and algebraic

combinatorics (Vienna, 1997). Discrete Math. 217(1–3), 315–336 (2000)

[154] Novelli, J.-C., Reutenauer, C., Thibon, J.-Y.: Generalized descent patterns in

permutations and associated Hopf algebras. Eur. J. Combin. 32(4), 618–627

(2011)

[155] Pilaud, V.: Which nestohedra are removahedra? Rev. Colombiana Mat. 51(1),

21–42 (2017)

[156] Pilaud, V.: Brick polytopes, lattice quotients, and Hopf algebras. J. Combin.

Theory Ser. A 155, 418–457 (2018)

[157] Pilaud, V.: Hopf algebras on decorated noncrossing arc diagrams. J. Combin.

Theory Ser. A 161, 486–507 (2019)

596



Celebrating Loday’s associahedron

[158] Pilaud, V.: From permutahedra to associahedra, a walk through geometric

and algebraic combinatorics. Habilitation à Diriger des Recherches, Univer-
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