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Abstract
The Benford law is used world-wide for detecting non-conformance or data fraud 
of numerical data. It says that the significand of a data set from the universe is not 
uniformly, but logarithmically distributed. Especially, the first non-zero digit is One 
with an approximate probability of 0.3. There are several tests available for testing 
Benford, the best known are Pearson’s �2-test, the Kolmogorov–Smirnov test and a 
modified version of the MAD-test. In the present paper we propose some tests, three 
of the four invariant sum tests are new and they are motivated by the sum invari-
ance property of the Benford law. Two distance measures are investigated, Euclidean 
and Mahalanobis distance of the standardized sums to the orign. We use the sig-
nificands corresponding to the first significant digit as well as the second significant 
digit, respectively. Moreover, we suggest inproved versions of the MAD-test and 
obtain critical values that are independent of the sample sizes. For illustration the 
tests are applied to specifically selected data sets where prior knowledge is available 
about being or not being Benford. Furthermore we discuss the role of truncation of 
distributions.
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1  Introduction

In many data sets the first non-zero digit d is not uniformly distributed but obeys 
a logarithmic law. This fact was observed by Newcomb (1881) and Benford 
(1938). Conformance officers of big companies use the Benford law for unscram-
bling data manipulations mostly by applying the �2 goodness-of-fit test. Such 
manipulations may be inserting fraudulent figures or changing digits. Those and 
more applications may be found, for example, in the books of Nigrini (2012) 
and Berger and Hill (2015), see also Kössler et  al. (2024). However, not every 
real or artificial data set follows the Benford law, the question arises how this 
can be tested in practice. There is a vast literature on applications and testing 
of Benford’s law, we refer to the website of Berger et  al. (accessed 3.1.2024) 
and to Nigrini (2012). The latter author applies Pearsons �2-test, the Kolmogo-
rov–Smirnov test and the MAD-test on the 1st digit, the 2nd digit, the 1st and 
2nd digit together and 1st, 2nd and 3rd digit together. His MAD-test assigns the 
numerical values of the MAD statistic to the linguistic terms close conformity, 
acceptable conformity, marginally acceptabel conformity und nonconformity, cf. 
Table 7.1 (p. 160) of Nigrini (2012) book.

Berger and Hill (2011) as well as Nigrini (1992) analyzed the scale-, base- and 
sum-invariance. The latter includes especially that the expected sum of all the 
significands with leading digit 1 is equal to the sums of the significands of the 
remaining digits 2, ..., 9, respectively.

In the present article we apply the sum invariance properties of Benford’s law 
for constructing several further tests of significance. Our test statistics are suit-
able linear combinations of squares of suitably chosen statistics, and they are, 
under the null hypothesis, asymptotically or approximately �2-distributed.

Emphasis is especially taken on the second significant digit. A �2 goodness-
of-fit test for the second digit was already suggested, cf. eg. Diekmann (2007). 
We suggest some further tests based on properties of the second significant digit. 
In Sect. 2.1 we present some basic properties and some statistical tests for testing 
Benford that are applied later on. In Sect. 2.2 we recall the �2 goodness-of-fit test, 
the Kolmogorov–Smirnov test, and apply them to the first and second significant 
digit. Moreover, the MAD-test is modified to obtain critical values that do not 
depend on the sample size. In Sect. 2.3 we introduce four variants of the invariant 
sum test, three of them are new, and in Sect. 3 we illustrate the considered tests 
on some chosen data sets. In Sect. 4 we summarize and discuss the results. All 
mathematical derivations are deferred to the appendices.
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2 � Methodology

2.1 � Some basics of the Benford law

Benford’s law makes claims about the leading digits of a number regardless of 
its scale. Closely connected to the leading digits are the terms of significands and 
significant digits, which formal notion is given in Definition 1.

Definition 1  (Significant digits and the significand, Berger and Hill (2015)) Let 
x ∈ ℝ . The first significant digit D1(x) = d of x is given by the unique integer 
d ∈ {1, 2,… , 9} where 10kd ≤ |x| < 10k(d + 1) with an integer k.

The m-th significant digit Dm(x) = d with m ≥ 2 can recursively be determined by
10k

�∑m−1

i=1
Di(x)10

m−i + d
� ≤ �x� < 10k

�∑m−1

i=1
Di(x)10

m−i + d + 1
�

where d ∈ {0, 1,… , 9} and k ∈ ℤ.
The significand function S ∶ ℝ → [1, 10) is defined as follows: If x ≠ 0 then 

S(x) = t , where t is the unique number t ∈ [1, 10) with |x| = 10kt for some unique 
k ∈ ℤ . For x = 0 we set, for convenience, S(0) ∶= 0.

Next, we state the strong and weak form of Benford’s law.

Definition 2  (Benford’s law for the significand, strong form of Benford’s law) The 
significand S(X) follows Benford’s law if

Definition 3  (Benford’s law for the first significant digit, weak form of Ben-
ford’s law) The probability of the first significant digit d ∈ {1, 2, 3...9} is 
P(D1(X) = d) = log(1 + d−1).

In Table 1, we give the distribution of the leading digit D1.
In the following we call a random variable X Benford distributed iff (1) is 

satisfied, and we write X ∼ Benford. Benford distributed random variables own 
some remarkable properties. In the present article we focus on the sum-invariance 
property. Sum-invariance specifically means that, if summing all significands 
with the first digit 1 we expect the same sum as summing all significands with the 
first digit 2, 3 etc., i.e. their expectations are the same. For further explanations 
and proofs we refer to Berger and Hill (2011, 2015), Pinkham (1961) and Nigrini 
(1992).

(1)P(S(X) ≤ t) = log t for all t ∈ [1, 10).

Table 1   Probabilities P(D1(X) = d1) according to Benford’s law

d
1

1 2 3 4 5 6 7 8 9

P(d
1
) 0.301 0.176 0.124 0.096 0.079 0.066 0.057 0.051 0.045
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2.2 � Classical tests against Benford and their modifications

Our test problem is in general

Note, H1 is a very large class of alternatives.
The �2-test is one of the most popular goodness-of-fit tests, and it was origi-

nated by Pearson (1900). The �2-test statistic measures the relative distance 
between the relative frequencies nj∕n and the probabilities pj = P(D1 = dj) for all 
j = 1, 2,… , 9 under the Benford law, and it is defined by

The �2-test rejects the null hypothesis H0 , if 𝜒2
> 𝜒

2
1−𝛼,8

 , where �2
1−�,8

 is the (1 − �) 
quantile of the �2 distribution with eight degrees of freedom. Note that the �2 good-
ness-of-fit test is an approximate test, the statistic (2) is asymptotically �2-distrib-
uted with eight degrees of freedom.

Since some data fraudsters may know Benford’s law for the first significant 
digit some authors suggest to use the second significant digits instead of the first 
one and to apply a goodness-of-fit test to them, cf. eg. Diekmann (2007) or Hein 
et al. (2012) for scientific fraud or Mebane (2010) for election fraud.

The probability of the second significant digit d ∈ {0, 1, 2,… , 9} is 
P(D2(X) = d) =

∑9

j=1
log10(1 +

1

10j+d
) , and it is presented in Table  2. Note that 

according to rounding effects, the probabilities do not exactly sum up to one. We 
abbreviate both variants of the �2 goodness-of-fit test by GoF1 and GoF2, 
respectively.

An alternative goodness-of-fit test is the Kolmogorov–Smirnov (KS) test, cf. 
Kolmogorov (1933), Smirnov (1948) and Darling (1957). The idea of this test is 
to compare the empirical cumulative distribution function (cdf) Fn(x) with a fully 
specified theoretical one, F0(x) . The KS-tests uses the norm

Since we investigate tests based on the first or second significant digit, respectively, 
we apply the KS-test first to the first significant digit according to the weak form of 
Benford’s law (cf. Definition 3). Alternatively, we apply the KS-test to the second 
significant digit.

H0 ∶ X ∼ Benford against H1 ∶ X ≁ Benford .

(2)�
2 = n

9∑

j=1

(nj∕n − pj)
2

pj
=

9∑

j=1

(nj − npj)
2

npj
.

(3)dmax = supx∈ℝ|Fn(x) − F0(x)|.

Table 2   Probabilities P(D2(X) = d2) according to Benford’s law

d
2

0 1 2 3 4 5 6 7 8 9

P(d
2
) 0.1197 0.1139 0.1088 0.1043 0.1003 0.0967 0.0934 0.0904 0.0876 0.0850
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The critical values of the KS test were completely tabulated by Miller (1956) for 
underlying continuous distributions. Morrow (2014) computed tighter bounds by 
Monte Carlo simulation for the discrete Benford distribution of the first digit, cf. 
Table 1.

For the KS-test applied to the second significant digit, cf. Table 2, the (asymp-
totic) critical values are approximated by simulation. To do this we simulate from 
a (continuous) Benford distribution (cf. Definition 2). Then we put the observations 
into bins 0,… , 9 according to the the definition of the second (significant) digit. 
Taking a large sample size of n = 10, 000 and repeating this M = 10, 000 times we 
get a sufficiently accurate estimation of the asymptotic critical values. Some critical 
values are presented in Table 3. We abbreviate the KS-tests, based on the first or 
second significant digit, respectively, by KS1 and KS2.

As another alternative goodness-of-fit test we suggest a kind of MAD-test that is 
based on the statistic

where MAD stays for Mean Absolute Deviation. Though there are no means here, 
our proposal is derived from an idea due to Nigrini (2012) who used the mean 
MADN =

∑k

j=1

�nj∕n−pj�
k

 , where the index N stays for Nigrini. Our proposal uses a 
suitably scaled sum of the absolute deviations between the relative frequencies and 
the Benford probabilities for the first digit. In our new version we introduced the 
factor 

√
n to get critical values of the test being rather independent of n. This prop-

erty is illustrated in Table 4. The motivation for introducing the factor 
√
n is that 

the relative frequencies tend to the true probability with 
√
n rate. Recently, Cerqueti 

(4)MAD =
√
n

k�

j=1

�nj∕n − pj�,

Table 3   Asymptotic critical 
values cKS2,1−� and cMAD2,1−� of 
the KS2 and MAD2 test

�

0.01 0.05 0.1

KS2 1.46 1.19 1.05
MAD2 3.92 3.42 3.18

Table 4   Critical values cMAD,1−� 
of the MAD test (1st digit)

�

n 0.1 0.05 0.01

72 2.883 3.111 3.618
369 2.896 3.140 3.683
1000 2.905 3.156 3.683
3998 2.895 3.159 3.663
7022 2.881 3.142 3.597
∞ 2.869 3.084 3.485
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and Lupi (2021) obtained the asymptotic distribution of the MAD statistic (4). From 
that we computed the asymptotic critical values, cf. Table 4. The convergence of the 
finite critical values to the asymptotic critical value is rather fast.

Evidently, the critical values are not very sensitive to the sample sizes. For sim-
plicity, we use in our study the critical value cMAD,1−� = 3.60 for � = 0.01.

The MAD-test may also be applied to the second significant digit. Some (asymp-
totic) critical values are presented in Table 3. The critical values are obtained in an 
analogous way as that for the tests KS1 and KS2. We abbreviate both variants, first 
and second significant digit, by MAD1 and MAD2.

One may ask why we do not use the first two digits together. This idea was sug-
gested in, Diekmann (2007) cf. also Nigrini (2012). However, we consider data sets 
with moderate sample sizes, nearly between n = 200 and n = 4000. If we use the 
first two digits together then we have altogether 90 bins and therefore very much 
bins with very few or even no observations. Therefore this idea is not applicable 
here to the class of invariant sum tests. However, some kind of KS-test or MAD-test 
for discrete distributions might be applied. Since our interest here lies on invariant 
sum tests, they are not considered.

Of course, there are other possibilities to test against Benford, despite of the 
invariant sum tests that we introduce in the next section. We mention only two 
recently published ideas. Kazemitabar and Kazemitabar (2022) make use of the 
alternative definition of Benford’s Law saying that the logarithms of the significands 
are uniformly distributed. Cerqueti and Maggi (2021) discuss some distance meas-
ures, especially the sum of squares deviation and the MAD.

2.3 � Invariant sum tests

In this section we apply the invariant-sum property of Benford, cf. Nigrini (1992), 
Allaart (1997) and Berger and Hill (2015, theorem 5.18).Berger and Hill (2015) To do 
this we define the sets C(d1,… , dm) = {x ∈ [1, 10) ∶ Dj(x) = dj for j = 1,… ,m} , 
C1(d1) = {x ∈ [1, 10) ∶ D1(x) = d1} = [d1, d1 + 1) and C2(d2) = {x ∈ [1, 10):
D2(x) = d2} =

⋃9
j=1[j +

d2
10
, j + d2+1

10
) . C(d1,… , dm) is the set of all significands with 

first m digits d1,… , dm , C1(d1) is the set of all significands with first digit d1 , and 
C2(d2) is the set of all significands with second digit d2.

Proposition 1  (Sum Invariance (Berger and Hill (2015), Nigrini (2012), Allaart 
(1997)) A random variable X is Benford if and only if X has sum invariant signifi-
cant digits, i.e. for every fixed m,m ∈ ℕ , the expectations �(S(X)1C(d1,…,dm)

(S(X))) 
are the same for all tuples (d1,… , dm), d1 ≠ 0 of digits.

Therefore one necessary condition for X to be Benford is that the expectation of 
the sum of all significands with the first digit 1, 2, 3, ..., 9 is the same. The same is 
true for the expectation of the sum of all significands with second digit 0, 1,… , 9.

Let us start with the first significant digit. Denote by 
� = �

(
S(X)1C1(i)

(S(X))
)
=

1

ln 10
 the expectation of the random variable 
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S(X)1C1(d1)
(S(X)) if Benford is true. Let �i be the true expectation of S(X)1C1(i)

(S(X)) 
for the underlying distribution.

Then our first test problem is

Denote the sums of the significands of the observations Xi in the interval [j, j + 1)

Since we have sums of n independent identically distributed random variables 
S(Xi)1C1(j)

(S(Xi)), i = 1,… , n , and they have finite variance, we may assume that 
they are approximately normally distributed, and the standardized sums

are (approximately) standard normal. The expectations �( Sum1,j) =
n

ln 10
 , variances 

var(Sum1,j) and covariances are derived in the Appendix A.
Let be R1 = (R1,1,… ,R1,9) and �R1

 be the correlation matrix of the vector R1 of 
standardized sums under the null. We consider the following two types of test 
statistics

where IS stays for Invariant Sum. The statistic IS1,E is the Euklidean distance of the 
vector R1 of standardized sums from zero, and IS1,M is the corresponding Mahalano-
bis distance.

The question may come up why we use both distance measures, Euclidean 
and Mahalanobis. The two distances are generally different, and so are the cor-
responding test statistics. Therefore there may be alternative directions for which 
the Euclidean distance is better than the Mahalanobis distance and vice versa.

Theorem 2  Under H0,1 the statistic IS1,M is asymptotically �2-distributed with nine 
degrees of freedom, and IS1,E is is approximated by a weighted sum of independent 
�
2-distributed random variables, each with one degree of freedom.

H0,1 ∶ �1 = … = �9 = � against H1,1 ∶ ∃j ∈ {1,… , 9} ∶ �j ≠ �

Sum1,j =

n∑

i=1

S(Xi)1C1(j)
(S(Xi)).

R1,j =
Sum1,j − �( Sum1,j)
√

var (Sum1,j)

IS1,E = R
�
1
R1 and IS1,M = R

�
1
�
−1
R1
R1

Table 5   Simulated levels 
of significance under H0,1 
and H0,2 , respectively, of the 
invariant sum tests, for various 
sample sizes, nominal level of 
significance � = 0.01

n 25 100 400 900

IS
1,E

0.012 0.010 0.011 0.011
IS

1,M
0.011 0.009 0.011 0.011

IS
2,E

0.023 0.012 0.015 0.010
IS

2,M
0.023 0.011 0.013 0.009
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The proof of the theorem can be found in Appendix B.
The null hypothesis H0,1 is rejected in favour of H1,1 if IS1,M > 𝜒

2
1−𝛼,9

 or if 
IS1,E > cIS1,E ,1−𝛼 , respectively, where �2

1−�,9
 is the 1 − �-quantile of the �2-distribu-

tion with nine degrees of freedom and cIS1,E ,1−� is the corresponding quantile of 
the null distribution of IS1,E . The latter quantile will be determined by approxi-
mating the null distribution of IS1,E by a suitably scaled and shifted �2-distribu-
tion, see Appendix C. Table 5 gives simulated levels of significance of the two 
tests. Even for small sample sizes they are close to the nominal value of � = 0.01.

Note that statistic IS1,M was independently introduced by Barabesi et al. (2021).
Now, consider the second significant digit. Denote by 

� = �
(
S(X)1C2(j)

(S(X))
)
=

9

10 ln 10
 the expectation of S(X)1C2(j)

(S(X)) if Benford is 
true. Let �j the true expectation of S(X)1C2(j)

(S(X)) for the underlying distribution.
Then our second test problem is

Denote the sums of the significands in C2(j) of observations Xi

Again, we have sums of n independent identically distributed random variables 
S(Xi)1C2(j)

(S(Xi)), i = 1,… , n , and they have finite variance, we may assume that 
they are approximately normally distributed, and the standardized sums

are (approximately) standard normal. The expectations �( Sum2,j) =
9n

10 ln 10
 , vari-

ances var(Sum2,j) and covariances are derived in the Appendix A.
Let be R2 = (R2,0,… ,R2,9) and let �R2

 be the correlation matrix of the sums 
vector R2 under the null. Similarly as above we consider the following two types 
of test statistics

Theorem  3  Under H0,2 the statistic IS2,M is asymptotically �2-distributed with ten 
degrees of freedom, and IS2,E is a weighted sum of independent �2-distributed ran-
dom variables, each with one degree of freedom.

The proof of the theorem can be found in Appendix B.
Table 5 gives simulated levels of significance of the two tests. Again, even for 

small sample sizes they are close to the nominal value of � = 0.01.
In Appendix F our algorithm for the implementation of the invariant sum tests 

is provided.

H0,2 ∶ �0 = … = �9 = � against H1,2 ∶ ∃j ∈ {0,… , 9} ∶ �j ≠ �

Sum2,j =

n∑

i=1

S(Xi)1C2(j)
(S(Xi)).

R2,j =
Sum2,j − �( Sum2,j)
√

var(Sum2,j)

IS2,E = R
�
2
R2 and IS2,M = R

�
2
�
−1
R2
R2
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3 � Illustration

We illustrate our methods by four carefully selected data sets. The first two data 
sets are chosen to illustrate that our tests really yield results conforming to Num-
ber Theory. The other two represent empirical data sets. 

#1:	Fibonacci ( n = 1000 ) The Fibonacci numbers are proved to be Benford distrib-
uted, cf. e.g. Berger and Hill (2015).

#2:	 Prime Numbers ( n = 1000 ) Opposite to the Fibonacci numbers the prime num-
bers are known to be not Benford, cf. e.g. Berger and Hill (2015).

#3:	Population ( n = 3998 ) This data set consists of the number of inhabitants in cities 
worldwide that are larger than 100.000 people. It illustrates that data from certain 
truncated distributions are not Benford, cf. Appendix D.

#4:	Share Prices ( n = 369 ) The data include share prices as a mixture from interna-
tional stock market indices. Such data sets are assumed to behave like Benford, 
according to the Theorem of Mixtures due to Berger and Hill (2015, section 8.3).

First, we study the behaviour of each of the four invariant sum tests. The level of 
significance is � = 0.01 . The nine values of the statistics R1,i , i = 1,… , 9 as well 
as the ten values of the statistics R2,i , i = 0,… , 9 are summarized in Fig. 1. We 
see that the values of R1,j for the Share Prices and for the Fibonacci numbers are 

Fig. 1   Plots summarizing the values for the statistics R
1,j and R

2,j , respectively

Table 6   p-Values for the tests 
IS1,E , IS1,M , IS2,E , and IS2,M 
applied on our illustrative data 
sets

Data sets

Fibonacci Primes Population Share prices

Test   ∖ n 1000 1000 3998 369
IS

1,E
1.00 0.00 0.00 0.89

IS
1,M

1.00 0.00 0.00 0.88
IS

2,E
1.00 0.02 0.00 0.26

IS
2,M

1.00 0.00 0.00 0.33
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very close to zero which provides some evidence of the Benford property. For 
the datasets Population and Prime Numbers the boxes are large and far from zero 
which gives some evidence of non-Benford. For the second significant digit it is 
similar but sometimes less clear. However, for Share Prices most of the values R2,j 
are less than one resulting in small values for IS2,E and IS2,M . Table 6 contains the 
p-values for the tests IS1,E , IS1,M , IS2,E , and IS2,M.

Note that the values are rounded. This way, the entries especially for p-values 
may become 1.00 or 0.00. The p-value of (nearly) 1.00 of Fibonacci numbers 
signals evidence of the from Number Theory well-known fact that they are nearly 
perfect Benford. The (rounded) p-value of 0.00 gives very strong evidence of the 
well known fact that prime numbers are not Benford, also known from number 
theory. For the notation of evidence and (very) strong evidence we refer to Was-
serman (2004). The two data sets, Fibonacci and Prime numbers, are selected for 
illustrating that all the tests considered yield a decision that confirms the mathe-
matical theory. Note that for the Fibonacci and prime numbers we have some few 
entries with only one digit. As they represent structural non-existing items they 
are removed when testing for the second significant digit.

The tests conform to the underlying theories, i.e number theory, Berger and 
Hill’s theorem on mixtures and the conjecture of bounded domains in Appen-
dix D. The data set #1 (Fibonacci) is clearly Benford. Furthermore, data set #3 
(Population) is clearly not Benford. For an explanation based on trimming of val-
ues or bounded domains we refer to the Appendix D. Prime numbers (data set 
#2) are known to be not Benford which is clearly illustrated by the three tests 
IS1,E, IS1,M and IS2,M , the test IS2,E does not reject Benford at the � = 0.01 level 
that might be caused by less power of IS2,E for sample size n=1000. The data set 

Table 7   Critical values 
(� = 0.01 ) and observed values 
of the various Goodness of Fit 
tests

1 For the tests KS2, GoF2, MAD2, IS
2,E

 , and IS
2,M

 we removed all 
entries with only one digit
2 The critical value for the KS1-test is obtained by Morrow (2014)

Test Critical Data sets

Population Share Prices Fibonacci1 Primes1

Value n=3998 n=369 n=1000 n=1000

KS1 1.422 15.4 0.36 0.03 5.41

KS2 1.46 5.00 0.58 0.20 1.41
GoF1 20.09 1090 3.45 0.17 299.9

GoF2 21.67 136 9.06 0.58 11.22
MAD1 3.60 30.7 1.23 0.23 14.9

MAD2 3.92 10.0 2.60 0.79 2.91
IS

1,E
22.64 1274 4.10 0.18 332.8

IS
1,M

21.67 1293 4.51 0.34 303.2

IS
2,E

23.30 308 12.1 0.69 21.6
IS

2,M
23.11 918 11.3 0.65 54.7
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#4 (Share Prices) is in accordance with the Mixture Theorem of Berger and Hill 
(2015) such leading to Benford’s law.

The results for all tests considered, KS1, KS2, GoF1, GoF2, MAD1, MAD2, 
IS1,E , IS1,M , IS2,E and IS2,M , are presented in Table 7. Bold values mean ’rejection’, 
given � = 0.01 . Note that for that decision one and only one corresponding test him-
self is considered, such that the multiple test problem is not relevant here. The clas-
sical tests GoF1, KS1, and MAD1 confirm the results of the invariant sum tests.

Note that when testing primes most of the tests based on the second significant 
digit do not reject Benford due to low power. However, if we inccrease the sam-
ple size and take all prime numbers between 11 and 100,000 then Benford will be 
rejected by all the tests based on the second significant digit, too.

4 � Summary

We consider several statistical tests of the Benford law, some few are known, most 
are new. Completely new tests are that based on the second significant digit, except 
test GoF2. The various variants of the invariant sum tests are appealing as they use 
the significand. Therefore the Invariant Sum tests use the full information of the 
data.

We have shown that almost all the tests give confirmative results for data sets 
for which there is a theory whether the Benford property is true or not, except for 
primes with the second significant digit, cf. Tables 7 and 8. The last line in Table 8 
presents the Bonferroni adjusted p-values and it is intended only for a very quick 
impression to the reader. We see that data sets #1 and, quite sure, #4 are Benford, the 
other two are not.

Table 8   p-Values of the various 
test statistics

a For the tests KS2, GoF2, MAD2, IS
2,E

 , and IS
2,M

 we removed all 
entries with only one digit

Test Data sets

Population Share prices Fibonaccia Primesa

n = 3998 n = 369 n = 1000 n = 1000

KS1 0.000 0.890 1.000 0.000
KS2 0.000 0.608 0.968 0.013
GoF1 0.000 0.903 1.000 0.000
GoF2 0.000 0.432 1.000 0.261
MAD1 0.000 0.946 1.000 0.000
MAD2 0.000 0.351 1.000 0.192
IS

1,E
0.000 0.888 1.000 0.000

IS
1,M

0.000 0.875 1.000 0.000
IS

2,E
0.000 0.261 1.000 0.017

IS
2,M

0.000 0.334 1.000 0.000
BON 0.000 1.000 1.000 0.000
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In future research it is intended to investigate which of the considered tests is 
good for various alternative directions. Moreover, various sample sizes are to be 
considered. Furthermore, we intend to construct tests that are based on sum invari-
ance and on other invarianvce principles.

Appendix A

Expectations, variances and covariances of the significands with fixed first 
or fixed second digit, respectively

If the random variable X is Benford, then it has sum invariant significant digits. Let 
d1 ∈ {1, 2, ..., 9} be given, then we have

�
(
S(X)1C(d1)

(S(X))
)
=

d1+1

�
d1

t ⋅
1

t ln 10
dt =

1

ln 10

�(S(X)1C(d1)
(S(X)))2 =

d1+1

�
d1

t2 ⋅
1

t ln 10
dt =

2d1 + 1

2 ln 10

var
(
S(X)1C(d1)

(S(X))
)
=
2d1 + 1

2 ln 10
−
( 1

ln 10

)2

cov
(
S(X)1C(d1)

(S(X)), S(X)1C(d�
1
)(S(X))

)
= −

1

(ln 10)2
if d1 ≠ d�

1

Table 9   Variances of 
S(X)1C(d1)

(S(X)) if X is Benford
First digit d

1

1 2 3 4 5 6 7 8 9
0.463 0.897 1.331 1.766 2.200 2.634 3.069 3.503 3.937

Table 10   Correlation matrix �1,R of Sum1,j of the Invariant sum tests IS1,E and IS1,M if X is Benford

1. −0.293 −0.240 −0.209 −0.187 −0.171 −0.158 −0.148 −0.140
−0.293 1. −0.173 −0.150 −0.134 −0.123 −0.114 −0.106 −0.100
−0.240 −0.173 1. −0.123 −0.110 −0.101 −0.093 −0.087 −0.082
−0.209 −0.150 −0.123 1. −0.096 −0.087 −0.081 −0.076 −0.072
−0.187 −0.134 −0.110 −0.096 1. −0.078 −0.073 −0.068 −0.064
−0.171 −0.123 −0.101 −0.087 −0.078 1. −0.066 −0.062 −0.059
−0.158 −0.114 −0.093 −0.081 −0.073 −0.066 1. −0.058 −0.054
−0.148 −0.106 −0.087 −0.076 −0.068 −0.062 −0.058 1. −0.051
−0.140 −0.100 −0.082 −0.072 −0.064 −0.059 −0.054 −0.051 1.
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which are already well-known results, cf. Barabesi et al. (2021).
The variances of S(X)1C(d1)

(S(X)) are tabulated in Table 9 and the correlation 
matrix �1,R of the vector R1 is tabulated in Table 10.

Now, let d2 ∈ {0, 1, 2, ..., 9} be given. Recall the sets 
C2(d2) = {x ∈ [1, 10) ∶ D2(x) = d2} . Then we have

The variances of S(X)1C2(d2)
(S(X)) are tabulated in Table 11.

To obtain the covariance note that the sets C2(d2) and C2(d
�
2
) are disjunct if 

d2 ≠ d′
2
 , and therefore

Therefore the covariance equals

Therefore the correlation matrix �R,2 of the vector R2 can be computed, see Table 12.

�
(
S(X)1C2(d2)

(S(X))
)
=

9∑

d1=1
∫

d1+
d2+1

10

d1+
d2

10

t ⋅
1

t ln 10
dt

=
1

ln 10

9∑

d1=1

(
d1 +

d2 + 1

10
−

(
d1 +

d2

10

))
=

9

10 ln 10

�
(
S(X)1C2(d2)

(S(X))
)2

=

9∑

d1=1
∫

d1+
d2+1

10

d1+
d2

10

t2 ⋅
1

t ln 10
dt

=
1

2 ln 10

9∑

d1=1

((
d1 +

d2 + 1

10

)2

− (d1 +
d2

10
)2

)

=
1

2 ln 10

9∑

d1=1

(
2

10
(d1 +

d2

10

)
+

1

102

=
1

200 ln 10

9∑

d1=1

(
20 ⋅ d1 + 2d2 + 1

)
=

9(101 + 2d2)

200 ln 10

var
(
S(X)1C2(d2)

(S(X))
)
=
9(101 + 2d2)

200 ln 10
−
(

9

10 ln 10

)2

�

(
(S(X)1C2(d2)

(S(X)) ⋅ (S(X)1C2(d
�
2
)(S(X))

)
= 0 if d2 ≠ d�

2

cov
(
S(X)1C2(d2)

(S(X)), S(X)1C2(d
�
2
)(S(X))

)
= −

81

(10 ln 10)2
if d2 ≠ d�

2
.

Table 11   Variances of S(X)1C2(d2)
(S(X)) if X is Benford

second digit d
2

0 1 2 3 4 5 6 7 8 9
1.821 1.860 1.899 1.938 1.977 2.017 2.056 2.095 2.134 2.173
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Appendix B

Proof of theorems 2 and 3

Proof of theorem  2  To obtain the asymptotic distributions of IS1,E and IS1,M let 
U1 be the matrix of Eigenvectors of the asymptotic correlation matrix �1,R . Let 
�1 = diag (�1,1,… , �1,9) , where the �1,j , j = 1,… , 9 , are the Eigenvalues of �1,R.

Consider the random vector

Obviously, cov (W∗
1
) = �

−
1

2

1
U

�
1
�1,RU1�

−
1

2

1
= I1 , where I1 is the (9 × 9) identity 

matrix. Let 01 be the null vector of dimension 9. Therefore W∗
1
∼ N(01, I1 ), asymp-

totically, under H1,0 . This way we have

where the W1,j are the components of the vectors W∗
1
 . Therefore the statistics IS1,E 

are, under H0,1 , asymptotically weighted sums of independent �2
1
 distributed ran-

dom variables, where the weights �1,j are the Eigenvalues of �1,R . Since the statistics 
IS1,M are asymptotically sums of nine squares of independent standard normal ran-
dom variables, we have IS1,M ∼ �

2
9
 . 	�  ◻

W
∗
1
= �

−
1

2

1
U

�
1
R1.

IS1,E = R
�
1
R1 = R

�
1
U1�

−
1

2

1
�1�

−
1

2

1
U

�
1
R1 = W

∗�

1
�1W

∗
1
=

9∑

j=1

�1,jW
2
1,j

IS1,M = R
�
1
�
−1
1,R

R1 = R
�
1
U1�

−1
1
U

�
1
R1 = R

�
1
U1�

−1∕2

1,R
�

−1∕2

1
U

�
1
R1 = W

∗�

1
W

∗
1

=

9∑

j=1

W2
1,j

Table 12   Correlation matrix �2,R of Sum2,j of the Invariant sum tests IS2,E and IS2,M if X is Benford

1. −0.081 −0.080 −0.080 −0.079 −0.078 −0.077 −0.077 −0.076 −0.075
−0.081 1. −0.080 −0.079 −0.078 −0.077 −0.077 −0.076 −0.075 −0.075
−0.080 −0.080 1. −0.078 −0.077 −0.077 −0.076 −0.075 −0.074 −0.074
−0.080 −0.079 −0.078 1. −0.077 −0.076 −0.075 −0.074 −0.074 −0.073
−0.079 −0.078 −0.077 −0.077 1. −0.075 −0.074 −0.074 −0.073 −0.072
−0.078 −0.077 −0.077 −0.076 −0.075 1. −0.074 −0.073 −0.073 −0.072
−0.077 −0.077 −0.076 −0.075 −0.074 −0.074 1. −0.072 −0.072 −0.071
−0.077 −0.076 −0.075 −0.074 −0.074 −0.073 −0.072 1. −0.071 −0.070
−0.076 −0.075 −0.074 −0.074 −0.073 −0.072 −0.072 −0.071 1. −0.070
−0.075 −0.075 −0.074 −0.073 −0.072 −0.072 −0.071 −0.070 −0.070 1.
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Proof of theorem  3  To obtain the asymptotic distributions of IS2,E and IS2,M let 
U2 be the matrix of Eigenvectors of the asymptotic correlation matrix �2,R . Let 
�2 = diag (�2,0,… , �2,9) , where the �2,j , j = 0,… , 9 , are the Eigenvalues of �2,R.

Consider the random vector

Obviously, cov (W∗
2
) = �

−
1

2

2
U

�
2
�2,RU2�

−
1

2

2
= I2 , where I2 is the (10 × 10) identity 

matrix. Let 02 be the null vector of dimension 10. Therefore W∗
2
∼ N(02, I2 ), asymp-

totically, under H2,0 . This way we have

where the W2,j are the components of the vectors W∗
2
 . Therefore the statistics IS2,E 

are, under H0,2 asymptotically weighted sums of independent �2
1
 distributed random 

variables, where the weights �2,j are the Eigenvalues of �2,R . Since the statistics IS2,M 
are asymptotically sums of ten squares of independent standard normal random vari-
ables, we have IS2,M ∼ �

2
10

 . 	�  ◻

Appendix C

Approximation of the weighted sums by a �2 distributed random variable

The quadratic forms R′
k
Rk , k = 1, 2 , will be approximated by (possibly noncentral) �2 

distributed random variables Zk suitably shifted and scaled according to the idea of Liu 
et al. (2009). It is based on the moment equating method. The degrees of freedom, the 
location and scale parameters and the noncentrality parameter are to be determined. 
Recall that �1,j, j = 1,… , 9 are the Eigenvalues of the correlation matrix �1,R . The 

W
∗
2
= �

−
1

2

2
U

�
2
R2.

IS2,E =R�
2
R2 = R

�
2
U2�

−
1

2

2
�2�

−
1

2

2
U

�
2
R2 = W

∗�

2
�2W

∗
2
=

9∑

j=0

�2,jW
2
2,j

IS2,M =R�
2
�
−1
2,R

R2 = R
�
2
U2�

−1
2
U

�
2
R2 = R

�
2
U2�

−1∕2

2,R
�

−1∕2

2
U

�
2
R2 = W

∗�

2
W

∗
2

=

9∑

j=0

W2
2,j

Table 13   Eigenvalues of the correlation matrix �1,R in the Invariant Sum Tests IS1,E ans IS1,M
1.329 1.181 1.125 1.096 1.078 1.066 1.057 1.050 0.019

Table 14   Eigenvalues of the correlation matrix �2,R in the Invariant Sum Tests IS2,E ans IS2,M
1.082 1.080 1.078 1.077 1.075 1.074 1.072 1.071 1.069 0.323
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Eigenvalues can be found in Table 13. Analogously, recall that �2,j, j = 0,… , 9 are the 
Eigenvalues of the correlation matrix �2,R . The Eigenvalues can be found in Table 14.

Denote

Consider first the case of the first significant digit (k = 1), and denote

 The approximation generally depends on whether we have s2
1,1

< s1,2 or not. In our 
case s2

1,1
< s1,2 is true and applying the approximation of Liu et al. (2009) we obtain 

that the noncentrality parameter of the �2 approximation is zero, and the degrees of 
freedom df1 , and the regression coefficients �1,0 and �1,1 are

The approximation of our statistic IS1,E is then

Therefore, if we choose � = 0.01 , the critical value of the test IS1,E is 
dcrit,IS1,E = �1,1�

2
1−�,df1

+ �1,0 = 22.6435 , which is close to the critical value 
dcrit,IS1,M = �

2
0.99,9

= 21.666 of the IS1,M-test.
In the case of the second significant digit (k = 2) denote

Again, we have the simpler case, now s2
2,1

< s2,2 , and the �2 approximation is com-
puted in the same way as above,

c1,r =

9∑

j=1

�
r
1,j
, c2,r =

9∑

j=0

�
r
2,j
, r = 1, 2, 3, 4.

s1,1 =
c1,3

c
3∕2

1,2

= 0.357 and s1,2 =
c1,4

c2
1,2

= 0.128.

df1 =
1

s2
1,1

= 7.84619

�1,0 = −
c2
1,2

c1,3
+ c1,1 = 0.0780258

�1,1 =
c1,3

c1,2
= 1.13711

IS1,E = R
�
1
R1 ≈ �1,1Z1 + �1,0, where Z1 ∼ �

2
df1

s2,1 =
c2,3

c
3∕2

2,2

= 0.3334 and s2,2 =
c2,4

c2
2,2

= 0.111117.
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The approximation of our statistic IS2,E is then

Therefore, if we choose � = 0.01 , the critical value of the test IS2,E is approximately 
dcrit,IS2,E = �2,1�

2
1−�,df2

+ �2,0 = 23.2963 , which is very close to the critical value 
dcrit,IS2,M = �

2
0.99,10

= 23.2093 of the IS2,M-test.

Appendix D

On the (non-existing) Benford property for conditional distributions conditioned 
under X > t with large t and with small probability mass P(X > t) . This section is 
intended to illustrate that data set Population is not Benford. Recall that only cities 
with more than 100,000 inhabitants are considered. Moreover, there are much less 
cities with more than 100,000 inhabitants than that with less inhabitants. Therefore, 
for the random variable, say X, with support [a,∞) we have an underlying condi-
tional distribution, conditioned under X > 100, 000 . Note that the starting point a 
of the distribution is small in our example we have, perhaps a = 1 (inhabitant) or 
a = 10 or a = 100 ), a ≪ 100, 000.

Now, let t be a large threshold ( t = 100, 000 in our example), and let F(x) be a con-
tinuous cdf with positive density on support [a,∞) where a ≪ t is some positive real 
number much less than t and most of the probability mass of the random variable X is 
below the threshold t. Then the conditional cdf F(x ⏐ t) = P(X < x ⏐ X > t) =

F(x)−F(t)

1−F(t)
 

may be approximated by the cdf of a Generalized Pareto Distribution (GPD), as a 
result of the Pickands-Balkema-de Haan theorem, cf. Pickands (1975, theorem 7) or 
Balkema and Haan (1974). Let x = t + y, y ≥ 0.

The cdf of the GPD G(y;k, �) is given by

where k is the shape parameter and � is the scale parameter. The range of the GPD is 
given by 0 < y < ∞ if k ≤ 0 , and 0 < y <

𝜎

k
 if k > 0 , cf. e.g. Smith (1987, p.1175). 

The parameters k and � are given by the extreme value theory, cf. e.g. Falk (1989) 
or Kössler (1999). Note that the parameter −k is sometimes called the extreme value 
index of the underlying distribution, cf. Haan and Fereira (2006).

df2 =
1

s2
2,1

= 8.99964 ≈ 9

�2,0 = −
c2
2,2

c2,3
+ c2,1 = 0.000128938 ≈ 0

�2,1 =
c2,3

c2,2
= 1.07527

IS2,E = R
�
2
R2 ≈ �2,1Z2 + �2,0, where Z2 ∼ �

2
df2

GPD(y;k, �) =

{
1 − e

−
y

� if k = 0

1 −
(
1 −

ky

�

) 1

k if k ≠ 0,
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Since the cdf F has support [a,∞) and we consider t ≫ a > 0 we only have one 
of the cases k ≤ 0 . We assume a polynomial decreasing density for x → ∞ . That 
is why we may assume that the parameter k < 0 . Then we have � = −kt , cf. e.g. 
Falk (1989) or Kössler (1999). The conditional cdf F(x ⏐ t) = F(t + y ⏐ t) = Ft(y) is 
approximated by

which is a Pareto cdf with scale parameter t and shape parameter � ∶=
1

k
 . To obtain 

the probability P(D1(X) = 1) ⏐ X > t) that the first significand has value one, let, for 
simplicty and without loss of generality, be t = 10m (in our example we have m = 5 ). 
Let G(x) ∶= 1 −

(
x

t

)� . We have

Looking at the shape of the function g(𝛾), 𝛾 < 0 we see that for small values of � 
the probability P(D1(X) = 1 ⏐ X > t) is much larger than the Benford probability of 
approximately 0.301. For example, for the Pareto with shape parameter � = −1 or 
for the Cauchy distribution we have k = � = −1 and the last probability becomes 
5

9
≈ 0.55 . For the shorter tail Pareto with shape parameter � = −2 ( k = −0.5 ) we 

have g(�) = g(−2) ≈ 0.75 . Even for the very long-tail Pareto with k = −2 we obtain 
P(D1(X) = 1) ≈ 0.428 which is still very far from the Benford probability of approx-
imately 0.301.

Note that in the case of an exponential distribution, which is an example 
for the case of shape parameter k = 0 , a similar computation yields values for 
P(D1(X) = 1 ⏐ X > t) ≫ 0.301.

Consider the second significant digit. A similar but somewhat more laborious 
computation shows that

Ft(y) = Ft(x − t) ≈ 1 −
(
1 +

y

t

) 1

k = 1 −
(x
t

) 1

k , (x > t, y > 0)

P(D1(X) = 1 ⏐ X > t) ≈

∞∑

j=−∞

(
G(2 ⋅ 10j) − G(10j)

)

=

∞∑

j=m

(
(10j−m)𝛾 − (2 ⋅ 10j−m

)𝛾
)

=

∞∑

j=0

(
(10j)𝛾 − (2 ⋅ 10j

)𝛾
)

=(1 − 2𝛾 )

∞∑

j=0

(10𝛾 )j =
1 − 2𝛾

1 − 10𝛾
∶= g(𝛾).

Table 15   Probabilities P(D2(X) = l ⏐ X > t), l = 0,… , 9 for various values of � of the Pareto distribution

� k l

0 1 2 3 4 5 6 7 8 9

− 2 −0.5 0.213 0.167 0.133 0.109 0.090 0.076 0.065 0.056 0.049 0.043
-1 − 1 0.156 0.138 0.122 0.109 0.098 0.089 0.081 0.074 0.068 0.063
−0.5 − 2 0.137 0.125 0.115 0.107 0.099 0.093 0.088 0.083 0.079 0.075
−0.25 − 4 0.128 0.119 0.112 0.106 0.100 0.095 0.091 0.087 0.083 0.080
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In Table 15 the probabilities P(D2(X) = l ⏐ X > t), l = 0,… , 9 are presented for var-
ious values of the parameter � of the Pareto distribution. It seems that, if the tails of 
the density are very long as it is the case for small values of k, the distribution of the 
second significant digit may be closer to Benford.

Appendix E

Frequencies of first and second significant digits

For the convenience of the reader who is interested in reproducing also the classi-
cal goodnes-of-fit tests we present the frequencies of the first and second significant 
digits, rspectively. The frequencies of the second significant digit are obtained after 
removing all entries with only one digit. Additionally, we present the values for the 
GoF1 and GoF2 statistics, respectively (Tables 16, 17).

P(D2(X) = l ⏐ X > t) ≈

∞∑

j=−∞

9∑

n=1

(
G((n + 1) ⋅ (10j + l)) − G(n ⋅ (10j + l))

)

=

∞∑

j=−1

9∑

n=1

(
(10j(10n + l))𝛾 − (10j(10n + l + 1)

)𝛾
)

=

9∑

n=1

(
(10n + l)𝛾 − (10n + l + 1)𝛾

) ∞∑

j=−1

(10𝛾 )j

=

9∑

n=1

(
(10n + l)𝛾 − (10n + l + 1)𝛾

) 1

10𝛾 ⋅ (1 − 10𝛾 )

Table 16   Sample sizes n for first digit, frequencies of the first significant digit, and values of the GoF1 
statistic

Data set n First significant digit GoF1

1 2 3 4 5 6 7 8 9

#1 Fibonacci 1000 301 177 125 96 80 67 56 53 45 0.17
#2 Primes 1000 160 146 139 139 131 135 118 17 15 299.9
#3 Population 3998 2103 775 352 247 165 134 77 77 68 1090
#4 Share Prices 369 107 63 47 34 38 23 20 21 16 3.45

Table 17   Sample sizes n for second digit, frequencies of the second significant digit, and values of the 
GoF2 statistic

Data set n Second significant digit GoF2

0 1 2 3 4 5 6 7 8 9

#1 Fibonacci 994 119 115 103 107 102 95 93 92 86 82 0.58
#2 Primes 996 105 91 104 105 95 104 104 102 94 92 11.22
#3 Population 3998 589 594 483 436 387 374 306 307 256 266 136.0
#4 Share Prices 369 35 45 51 45 30 35 31 38 28 31 9.06
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Appendix F

Algorithm that computes the test statistics and the p‑values of the invariant sum 
tests

To perform the invariant sum tests, we used the packages SAS, cf. SAS Institute 
(2022) and Mathematica 12.0, cf. Wolfram Research (2023).
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