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Abstract
The honey bee waggle dance is one of the most prominent examples of abstract communication among animals: successful foragers 
convey new resource locations to interested followers via characteristic “dance” movements in the nest, where dances advertise 
different locations on different overlapping subregions of the “dance floor.” To this day, this spatial separation has not been described 
in detail, and it remains unknown how it affects the dance communication. Here, we evaluate long-term recordings of Apis mellifera 
foraging at natural and artificial food sites. Using machine learning, we detect and decode waggle dances, and we individually identify 
and track dancers and dance followers in the hive and at artificial feeders. We record more than a hundred thousand waggle phases, 
and thousands of dances and dance-following interactions to quantitatively describe the spatial separation of dances on the dance 
floor. We find that the separation of dancers increases throughout a dance and present a motion model based on a positional drift of 
the dancer between subsequent waggle phases that fits our observations. We show that this separation affects follower bees as well 
and results in them more likely following subsequent dances to similar food source locations, constituting a positive feedback loop. 
Our work provides evidence that the positional drift between subsequent waggle phases modulates the information that is available 
to dance followers, leading to an emergent optimization of the waggle dance communication system.
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Significance Statement

The honey bee waggle dance is a rare example of abstract communication. Using stereotypical body movements, bees advertise re
source locations on the “dance floor” in the hive. While the dance message itself is well understood, the structure of the emergent 
dance floor is largely unknown. Here, we combine long-term data acquisition and machine learning to showcase a previously ne
glected property of the dance motion. We show that dancers continuously drift along their waggle direction, pulling dance followers 
outwards on the dance floor. This simple bias at the individual level compartmentalizes the available space into subregions that spa
tially represent different sectors of the environment. This likely improves the efficacy of their communication system and demon
strates the elegance of emergence in a complex system.
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Introduction
Honeybees use an elaborate communication system to communi
cate newly found food sources to other workers (1). In the so- 
called “waggle dance,” foragers that return from a valuable feed
ing site move in a repeated, stereotypical pattern over the comb 
surface followed by the so-called dance followers, bees that 
move in an equally stereotypical pattern who may be recruited 
to the new food source by doing so. The dancer first performs 
fast lateral body oscillations while moving forward on an approxi
mately straight line, then turning alternatingly into left and right 
turns that bring her back to the start of her previous “waggle 
phase.” Dances may consist of dozens of waggle and return 
phases, and the duration a dancer engages in dance communica
tion has been shown to correlate with the food profitability (2, 3). 

Intriguingly, the dance contains more information than simply 
that a food source exists somewhere outside. To the human obser
ver, it conveys a distance and a direction, and dance recruits have 
been shown to use the vector information contained in the dance 
(1, 4–6). Postulated already in the 1940s by Karl von Frisch, the dir
ection to the food source is reflected in the dancer’s body orienta
tion with respect to the vertical during the waggle phase (1, 4, 5). 
The reference frames (zero degrees) are the sun’s azimuth in the 
field, and upwards in the hive. Hence, the forager’s dance pattern 
is rotated to correct for the sun’s motion through the sky over the 
day. The distance to the feeder is encoded by the waggle phase’s 
duration (see Fig. 1 for a visual explanation of the dance).

The dance followers enact a similar periodic motion, touching 
the dancer with their antennae alternatingly from both sides, 
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running after her in the return phases. In the darkness of the hive, 
dance followers have to integrate a variety of cues to understand 
their own orientation with respect to that of the dancer all the 
while measuring the duration of the dancer’s body oscillation, 
which could be as short as a few hundred milliseconds (8, 9). 
Since the relevant properties all relate to the waggle phase, it 
can be thought of as an information packet, while the return 
phase serves to localize the dancer to an approximate spot on 
the comb during the dance.

Bees organize the colony space into different functional 
compartments (10–12) and communication dances are per
formed predominantly on a region close to the entrance, called 
the “dance floor” (1, 13–15) (see also Fig. 2). This dance floor is 
not a homogenous area where a returning forager will perform 
her dance in a random location, however. Boch (16) first de
scribed a separation of dancing foragers based on the distance 
to the advertised food source and the direction of the waggle 
phase: bees advertising farther food sources would also dance 
at a location farther away from the hive entrance compared to 
foragers advertising closer resources and the dance floor of 
both groups would change as the direction of the waggle phase 
changed with the sun over a day. Seeley et al. (17) described a 
separation based on the compass direction to the foraging site 
and thus based on the direction of the waggle phase, which was 
attributed to a drift between subsequent waggle phases: 
throughout her dance, a dancer’s return phase would not 
lead her back to the exact same spot where the last waggle 
phase started but to a position slightly offset in the direction 
of the waggle phase. The different waggle phases of a dance 
are therefore not localized to a confined spot on the dance floor 
but are performed in multiple locations over a dance. It 
has been suggested that this might be an adaptation to help 
a dancing bee “broadcast her dance information over much 

of the dance floor” (6). Landgraf et al. (18) first measured 
the magnitude of the forward and sideward drift between 
subsequent waggle phases for one food source at a distance 
of 230 m.

While the spatial separation has been mentioned in the litera
ture, the effects on the follower bees are unknown: do follower 
bees that follow different dances separate on the dance floor as 
well? Does the position of a follower bee already predict the dan
ces and advertised feeding sites she can observe? Does this sub
division of the dance floor allow dancers and dance followers to 
actively target a certain audience? We used long-term recordings 
to identify and track individual bees with the BeesBook system 
(19–21), 2D-convolutional neural networks to detect and decode 
individual waggle phases from an additional video stream, 
1D-convolutional neural networks to classify dance and following 
behavior from the spatiotemporal tracking data, and sucrose 
feeders equipped with cameras to detect and identify the foraging 
bees in the field. Using modern machine learning techniques, we 
created an unprecedented dataset to describe the waggle drift, 
confirmed our observations with a simple mathematical model, 
and investigated how the separation of dances influences the fol
lower bees. We show that the location of individual waggle phases 
on the comb is correlated to the body orientation of the dancer 
during the waggle phase. Moreover, we observed that dances ad
vertising different feeding sites tend to occupy different regions 
of the dance floor and that the distance between the different 
dancers as well as the distance between the follower groups in
creased over the course of a dance. We find that the position 
where a bee starts following a dance is strongly correlated to the 
direction advertised by the dance. We then specifically looked at 
situations where a bee followed an initial dance to either feeder 
and after this interaction, there were at least two other dances 
to the two different feeders available. In that situation, the 

Fig. 1. Correlation between waggle dance properties and food locations in the field. A) three food sources in the field located at 1) 45° counterclockwise 2) 
0° and 3) 90° clockwise, with respect to the sun’s azimuth. B) Their representation through waggle dance paths on the surface of a vertical honeycomb. 
The figure is available under CC BY 4.0 and was adapted from Wario et al. (7).

2 | PNAS Nexus, 2023, Vol. 2, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/9/pgad275/7251052 by FU

 Berlin, Ew
i-Bibliothek user on 13 M

arch 2024



follower bee was more likely to follow the closer dance and dances 
advertising the same feeder as the initial dance were on average 
closer.

Results
In our one-frame observation hive we detected waggle phases 
automatically using software described previously (7), which we 
modified to further improve detection results (see Materials and 
methods section for details).

In 2019, we detected 84,628 (14,404) waggle phases on the left 
(right) side of the comb on 32 (31) days. In 2021, we detected 
36,367 (6,390) waggle phases on the left (right) side of the comb 
on 47 (33) days. The waggle phases always clustered strongly in 
a region around the hive exit and we recorded more dance activity 
on the left side of the comb in both seasons, see Fig. 2A and online 

supplementary Fig. S1 for both datasets and sides. We calculated 
the mean waggle orientation for all waggle phases detected inside 
each 1 cm2 bin on our observation comb. These mean orientations 
appeared to point outwards from the center of the dance floor, see 
Fig. 2B. To confirm the correlation between the location where a 
waggle phase is performed on the comb and its orientation, we cal
culated the offset vector pointing from the dance floor center (the 
overall median waggle phase location) to the location of each indi
vidual waggle phase. We then calculated the dot product between 
this normalized offset vector and the waggle phase orientation. 
This value ranges between −1 (if the two orientations are opposite 
from each other) and 1 (if the two orientations align). We found 
that the median dot product is significantly greater than 0 in all da
tasets (P < 0.05 in the dataset from the right side in Berlin 2021, P < 
0.0001 in the other three datasets; one-sided sign test; for median 
values, test statistics, and histograms see online supplementary 

A B

C D

Fig. 2. Automated detections of waggle phases. A) Each automatically detected waggle phase (N = 84,628) over 32 days is displayed on top of a 
background-subtracted image of the left side of our observation hive from 2019. As the scatterplot is too dense in the central region, a contour plot 
indicates 50, 90, 95% of the density. Most of the waggle phases are located in a small area between the hive entrance (bottom left) and the brood nest 
(center). B) Mean waggle orientation over location. Calculating the mean waggle orientation for a 1 cm2 grid with all detected waggle phases of the Berlin 
2019 season (N = 84,628) shows a clear outward pointing pattern of directions. The mean was calculated over the normalized direction vectors in each 
bin, thus the arrow length for bins with an even distribution of directions is short and the length for bins with a narrower distribution is longer. The arrows 
are colored according to the same density distribution as in subplot a with arrows in the dense region in bright yellow and arrows with only few data 
points in dark blue. The scatterplot in the center of the dance floor shows the median location of all waggle phases grouped by their orientation in 5◦ steps. 
E.g. the median location of waggle phases that point approximately to the right (0◦) is located to the right of the dance floor center. C) The scatterplot 
shows the median position of each automatically recognized dance from bees returning from feeder 1 (blue circles) or feeder 2 (orange crosses) 
(N = 1,497). The two overlapping contours give the 50% density area for feeder 1 (dashed) and feeder 2 (solid). The large area shows the 95% data interval of 
all waggle phases again for reference. Dances advertising the different feeders were performed in different regions on the dancefloor, albeit with a large 
overlap and a high variance of the dance locations. D) Schematic of the feeder experiment conducted in 2019. One of the equidistant feeders was located 
approximately towards the sun and the other away from the sun. As we recorded most dances between 3 PM and 6 PM (Greenwich Mean Time (GMT)+2), 
we show the corresponding solar azimuths at the beginning of the experimental period (2019 August 21). Until the end of the period (2019 September 15), 
the cone became slightly narrower as the sun changed its path.

Dormagen et al. | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/2/9/pgad275/7251052 by FU
 Berlin, Ew

i-Bibliothek user on 13 M
arch 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad275#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad275#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad275#supplementary-data


Fig. S2). Therefore, we confirmed that individual waggle phases are 
on average shifted in the direction the dancer faced throughout 
the waggle phase. In 2019, we trained two groups of bees to two 
equidistant feeders offering highly concentrated sucrose solution. 
Both feeders were located ca. 210 m away from the hive, with feed
er 2 approximately in the direction of the sun during our experi
mental hours and feeder 1 in the opposite direction (see Fig. 2D 
for a schematic and Materials and methods section for details). 
Visits to each feeder were video-recorded by a dedicated camera 
and the ID of the forager was obtained automatically using the 
BeesBook system (see Materials and methods section). The loca
tion of the dances performed by these animals after returning to 
the hive was automatically extracted (N = 1,993 total, N = 1,497 
left side of the comb, N = 496 right side). While the feeders were 
mostly opened around the early afternoon, the exact times varied 
over the experimental days. We recorded 79.2% of the dances be
tween 3 PM and 6 PM (GMT + 2). Additionally, the solar azimuth 
during those times changed slightly over the season, see Fig. 2D 
for two representative sun directions. Both groups thus comprised 
dances with slightly varying expected waggle phase orientations, 
yet dances advertising feeder 2 were always roughly oriented up
wards in the hive with dances to feeder 1 being performed in the 
opposite orientation. We found that dances advertising these 
feeders each covered a similar area as the overall dancefloor (see 
Materials and methods section for details and online 
supplementary Table S1 for an overview of the data used). On 
the left side, the overall dancefloor estimated from all detected 
waggle phases covered 11.64% ± 1.86% (N = 16 days; mean ± std) 
of the comb with dances to feeder 1 covering 9.46% ± 2.41%

(N = 8 days) and dances to feeder 2 covering 10.20% ± 3.43%

(N = 8 days). On the right side, the overall dancefloor covered 
7.10% ± 1.80% (N = 16 days) of the comb with dances to feeder 1 
covering 7.89% ± 1.99% (N = 7 days) and dances to feeder 2 cover
ing 9.50% ± 2.61% (N = 6 days). However, we found that the regions 
covering 50% of the dances of the respective feeders and thus their 
median positions were significantly different from each other (left 
side: P < 0.0001, χ2 = 236.26, N = 1,496; right side: P < 0.0001, 
χ2 = 43.1, N = 496; Mood’s median test on the median vertical posi
tions), see Fig. 2C for the left side of the comb and online 
supplementary Fig. S3 for the right side. This displacement corre
sponded to the expected orientation of the respective waggle 
phases, with the dances advertising feeder 2 roughly oriented up
wards in the hive. Even though the expected orientation of the in
dividual dances changed over the time of the day and the season, a 
clear separation is visible even when all data are shown together.

As suggested previously (6, 17), we hypothesized that the separ
ation of dances that advertise different food source locations and 
the drift throughout a dance arise naturally from the properties of 
the waggle dance. It was shown before that a dancer does not fully 
return to her original location on the comb between waggle 
phases but instead has a slightly positive drift towards the direc
tion indicated by the waggle (16–18). We confirmed this by looking 
at all subsequent waggle phases of our manually annotated 
ground truth data (N = 820 pairs of waggle phases) and calculating 
the distance of the start of each waggle phase with respect to the 
start of the previous phase, projected on the waggle direction with 
the dot product. We found a drift with a high variance but a posi
tive mean (0.81 ± 7.3 mm), see the histogram in online 
supplementary Fig. S6. We used the measured values to param
eterize a simple motion model and simulated 2,000 dances with 
a random start location normally distributed around a comb loca
tion and each with a random waggle direction (see Materials and 
methods section for details). For each dance, we simulated 20 

waggle phases. We found that this model based solely on the drift 
between subsequent waggle phases yields a similar pattern of 
mean waggle orientation per spatial bin and a positive median 
of the dot product between waggle orientations and dance floor 
center as observed in our datasets (median = 0.325, P < 0.0001, one- 
sided sign test with 23,695 of 40,000 samples larger than 0), see 
quiver plot and histogram in online supplementary Figs. S4 and 
S5. For a sample of 55 dances, we annotated the time of the first 
waggle phase down to a precision of approximately 166 ms using 
our video recordings. For those, we calculated the intra-group and 
between-group distances for the two feeder groups and confirmed 
that the distance between the dancers of different groups is con
sistently higher than between dancers within the same group 
(P < 0.0001, χ2 = 52.51, N = 110, Mood’s median test on the median 
intra- and inter-group distances for each dance) and increases 
during the dances, see Fig. 3B. We confirmed the same effect for 
the dance followers by extracting the position of the follower 
bees before and during each dance-following interaction. As 
with the dancing bees, we saw a clear separation during the dance 
as well as slightly before the start of the dance (P < 0.0001, 
χ2 = 269.41, N = 27,300, Mood’s median test on the median intra- 
and inter-group distances for each follower). This separation de
veloped ca. 30 s before the dance started, see Fig. 3. To quantify 
whether there was a difference in the information a candidate fol
lower was exposed to depending on her location on the comb, we 
grouped the initial position of the follower bee for all dance- 
following interactions for each 1 cm2 bin and calculated the most- 
frequent dance target for that bin. We saw a clear boundary where 
bees that started following a dance above that boundary were 
more likely to follow a dance to feeder 2 and vice versa below 
the boundary, see Fig. 4A. We looked at all interactions where 
after an initial dance-following event, at least two dances from 
another two individuals advertising the two different feeders 
were available and the initial follower subsequently followed 
any of these. We recorded this situation 37,774 times from 672 
dances performed by 100 unique dancers on 12 unique days 
with 925 unique followers. We found that the distance from the 
follower to the subsequently followed dance (35.71 ± 22.24 mm; 
mean ± std) was significantly lower than to the dance that was 
subsequently ignored (48.23 ± 24.23 mm; mean ± std; Mood’s me
dian test: P < 0.0001, χ2 = 1,677.63), see Fig. 4B. Disregarding which 
subsequent dance was followed, we found that the distance to the 
dances advertising the same feeder (39.54 ± 23.75; mean ± std) 
was significantly lower than to the dances advertising the other 
feeder (47.05 ± 24.07; mean ± std; Mood’s median test: P < 0.0001; 
χ2 = 824.35), see Fig. 4C.

Conclusion
Using long-term recordings of honey bees in combination with sev
eral machine learning models and different data sources, we created 
a dataset of unprecedented scale to describe a property of the honey 
bee waggle dance: dances to different food sources tend to separate 
on the dance floor throughout a dance. We automatically recognized 
and decoded waggle phases in our observation colonies from a high- 
framerate video stream, and additionally tracked and identified all 
individuals in the hive from a lower framerate, high-resolution re
cording. Additionally, we ran a feeder experiment over several 
weeks, recording and identifying the foraging individuals using cam
eras mounted at the feeders. We used machine learning to recognize 
dancing and dance-following bees inside the hive. In both years we 
observed more dance activity on the left side of the comb, which 
we had also already observed in a previous year (22). This may be 
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caused by a slight bend in the exit tube which leads to returning for
agers primarily moving onto the left side. However, we do not think 
this affects our results. We confirmed the previously described prop
erty of waggle dances, a forward drift between successive waggle 
phases within a dance, that leads to a separation of dances advertis
ing different feeding sites and showed that a simple motion model 
can explain our observations. We then looked at how this drift af
fects the dance followers. We showed that the location where a 
bee starts following a dance is correlated with the advertised food 
source location. We also showed that, if a follower bee has at least 
two dances to different feeding sites available after following an ini
tial dance from a third individual, she will (1) more likely follow the 
closer dance and (2) a dance to the same feeder will on average be 
closer. Our findings indicate that the dance floor area in the hive is 
not homogenous, but instead emerges as the aggregation of subre
gions that represent different sectors of the environment. While 
our experimental conditions slightly vary over the recording period 
and between the years (specifically, we use both scented and un
scented sucrose solutions of varying concentrations), we believe 
that this does not affect our findings. Still, it would be interesting 
to study the effect of different conditions in isolation of each other 
such as the number of feeders, the distance to the feeders, and the 
odor and concentration of the offered sucrose solution on the waggle 
drift and the emergent dance floor.

We hypothesize that the waggle drift, as a simple mechanical 
property of the waggle dance, might help the dancing bee to match 
the information transmitted via the dance better to a specific audi
ence. We know that bees do not compare dances advertising dif
ferent feeding sites before flying out (14). Instead, a follower bee 
that is more likely to see and follow successive dances to a similar 
location might be more likely to fly out and find the feeding site, as 
the number of dances a bee follows before flying out increases her 
chance of finding the advertised location (23). A follower bee might 
follow dozens of individual waggle phases before being successful
ly recruited (reviewed in Ref. (24)), and following more waggle 
phases increases her success at finding a food site (25–27). Thus, 

by leading the follower bees to a specific region on the dance floor 
where they are more likely to observe similar dances, the waggle 
drift might increase their chance to be successfully recruited, con
stituting a positive feedback loop. Additionally, by increasing the 
probability that a follower observes successive dances by different 
individuals that advertise similar locations, the waggle drift might 
increase a follower’s decoding accuracy, as there is a substantial 
error in the communicated information which may be aver
aged out by following more waggle phases (18, 28–31). We 
also know that dance-following often does not convey new spa
tial information but instead reactivates already proficient for
agers (24, 32, 33) and that idle foragers sit at the outer boundary 
of the dance floor but can still be activated to forage if they en
counter a dance (13). It would be an interesting venue for future 
research to check whether idle foragers optimize their location 
on the comb to observe dances pointing to specific directions to 
only be activated by highly motivated and thus, through an in
crease in waggle-bouts (3, 34) likely further drifting, dancers. 
Experiments with a biomimetic waggle dance robot (35) could 
show whether dances at a location that matches the drift ex
pected from the waggle direction attract more followers and 
are thus more successful.

Materials and methods
Colony setup
Berlin 2019
We set up a queenright colony with approximately 1,500 bees in a 
one-frame observation hive (located at 52.457130, 13.296285) on 
2019 July 4. We incubated brood from a sister colony in an external 
incubator. Every day, all hatched bees in the incubator were re
moved and manually marked with circular, curved tags. The 
last batch of bees was added on 2019 October 15. We exchanged 
the comb in the colony approximately every 21 days to prevent 
unmarked bees from emerging inside the colony. We glued four 
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Fig. 3. Locations and group distances of dancers and followers. A) Median locations of follower bees in a specific time window during a dance-following 
interaction. Each dot is the location of a dance follower following a dance to feeder 2 (orange crosses) or feeder 1 (blue circles). The large markers indicate 
the overall group means (orange cross: feeder 2, blue circle: feeder 1). The contours show the 50% density area for feeder 1 (dashed) and feeder 2 (solid). B) 
Mean intra- and inter-group distances for bees dancing either towards feeder 1 or feeder 2 over the course of the dance (N = 55 dances). The bands 
indicate a 95% CI of the mean. The distance between dancers for the two different feeders increases over the course of a dance. C) Mean intra- and 
inter-group distances of bees following dances to the two feeders around the start of a dance-following interaction (N = 18,101 dance-following 
interactions). The bands indicate a 95% CI of the mean. While there is no difference between the groups more than ca. 30 s before the beginning of the 
interaction, it becomes apparent as the interaction starts.
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fiducial markers to the edges of the hive just outside of the comb 
to calculate a homography that allows transforming image coor
dinates into a common reference frame. The colony was con
nected to the outside via a plastic tube. The tube ended in a box 
where we installed a Raspberry Pi camera 2 to record incoming 
and outgoing bees at 10 frames per second.

Berlin 2021
We set up a colony at the same location and observation hive as in 
2019 with ca. 2,000 unmarked bees in the beginning of August. No 
bees were marked and young bees were allowed to emerge from 
the brood nest inside the hive. We recorded the dance activity 
with our waggle dance recognition software between 2021 
August 12 and 2021 September 30.

BeesBook tracking system
Bees marked with a tag could be identified and localized using an 
automated observation system called “BeesBook” (19–21). To cre
ate suitable data for the BeesBook system, an observation hive is 
placed into a camera rig that allows filming high-resolution im
ages at 6 Hz over extended periods. The hive is lighted with infra
red flashes synchronized to the exposure timings of the cameras, 
both sides are alternatingly imaged to avoid back-lighting. The 
image recordings are encoded into short video files and uploaded 
to a server for later analysis. A pipeline of software components 
then processes the data which yields IDs, positions, and orienta
tions for all marked animals. The data are transferred to a data
base for optimized access in the analyses conducted.

Training of foragers to artificial food sources
Berlin 2019
From 2019 August 21 to 2019 September 15, we ran an experi
ment with sucrose feeders that were equipped with cameras to 
record feeding bees. The 3D printed feeders (made from poly
lactic acid) were equipped with a RaspberryPi and a 
Raspberry Pi camera 2 running at 10 frames per second. The 
cameras saved short video snippets when any motion was de
tected using background subtraction. The software used to 

record the images was the same for the entrance camera and 
the feeder cameras. It is available on GitHub.1 Starting on 
2019 August 8, we trained bees to two such artificial feeders 
by capturing outgoing bees at the entrance of the colony and 
transferring them to a feeder. The initial location of the 
feeders was directly in front of the hive and they were moved 
a few meters once enough bees were visiting regularly. The 
feeders reached their final positions on 2019 August 21: Each 
was approximately 210 m from the hive with feeder 1 east- 
northeast of the hive (52.457711, 13.299308) and feeder 2 
southwest from the hive (52.455709, 13.294238). After each 
day of recording, we transferred the video material to a 
Network Attached Storage. We processed the full video mater
ial after the season with the same software that we used for 
the in-hive recordings. The sugar concentration was always 
the same for both feeders but varied between 0.5:1 sugar:water 
and 1:1 sugar:water before the 2019 August 28 after which it 
was held constant at 3:2 sugar:water. We added a drop of 
anis solution to the sugar solution before splitting it for the 
two feeders to ensure that both feeders had the same odor. 
On specific dates (2019 August 30, 2019 September 4, 2019 
September 12, 2019 September 15) we performed experiments 
with a third feeder that was either close to feeder 1 or to feeder 
2, where the original feeders contained only water. On these 
days, we alternatingly carried over bees caught at the hive 
exit or at the farther feeder to feeder 3 to trigger dances to a 
new forage site.

Berlin 2021
Between 2021 August 27 and 2021 September 15, we conducted 
experiments with two feeders at varying locations around the 
hive, so the recorded data contain both dances to natural forage 
sites and to our feeders. Since the bees were not marked individu
ally, we used classical feeders without cameras. We did not scent 
the sugar solution this season.
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Fig. 4. Effect on dance-following interactions. A) For each dance-following interaction, the initial positions of the followers (N = 24,777) were collected 
into a 1 cm2 grid and for each of these bins the most-frequent dance target was calculated. The area inside 90% of the density of data points is opaque, 
with the remaining bins being transparent. The two markers indicate the overall median of the median positions of dancing bees. In the background, the 
same 95% data interval from Fig. 2A is shown for reference. B) The distance between the follower bee and a candidate dancer for all situations where a 
follower bee had subsequent dances for both feeders available after her initial dance-following. The distance to the dance(s) that the bee decided to follow 
was on average lower than other dances the bee did not follow. See online supplementary Fig. S7 for a histogram of the data. C) Same data as in B but 
grouped by whether the subsequent dance advertised the same or the other feeder. Subsequent dances by other individuals advertising the same feeder 
were on average closer to a follower bee than dances advertising the other feeder. See online supplementary Fig. S8 for a histogram of the data.

1 https://github.com/BioroboticsLab/bb_raspicam
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Data processing
Rotation correction
As some tags were not glued onto the bees perfectly aligned 
with their body orientation, we postprocessed the decoded ori
entations to correct for offsets. We had observed that bees 
that move quickly tend to move forward rather than sideways 
or backwards. So we used the average difference between 
movement direction and decoded tag orientation of a bee over 
her life to calculate an offset value for each bee that was then 
used to correct the tag orientation. For that, we collected all de
tections with at least 0.1 detection confidence from all tracks of 
each bee over their life. For each track with at least six detec
tions (ca. 1 s), we calculated the movement direction as the an
gle between the x and y position of successive detections. For 
each of these tracks, we calculated the circular mean of the dif
ferences between body orientation and movement direction. 
We disregarded all short tracks and all tracks with a high stand
ard deviation of the mean differences and kept only the higher 
resp. lower 50%. We generated a histogram with 10◦ bins and 
disregarded all values that did not fall into the mode of the 
histogram. The final orientation correction was then the me
dian of all remaining values.

Interpolation
For single timesteps where we did not have detections for a bee 
available, we linearly interpolated the position and orientation be
tween adjacent timesteps.

Area covered by dance floor and dances
To calculate the fraction of the comb that is used as the overall 
dance floor, we used all days for each side of the hive that had 
more than the median number of detected waggle phases on 
that side to disregard days where no proper dance floor could 
emerge due to low activity. We subdivided the available 
comb (without the wooden frame) into a grid of 1 cm2 cells 
and sorted all waggle phases into their respective cells, creat
ing a 2D histogram of counts. We counted the number of cells 
that covered 95% of the total number of waggle phases and div
ided that by the total number of cells on the comb to get the 
fraction of the comb covered by the dance floor. To estimate 
the area covered by the dances to the individual feeders, we 
took a similar approach. We disregarded all days for each 
side where the number of dances towards that feeder was low
er than the median number of dances per day to that feeder 
and side. Instead of the individual waggle phases (which are 
not available for every dance), we used the location of all de
tections of each individual dancer during their dance to create 
the histogram.

Waggle drift motion model
We used a simple step-based motion model to simulate the loca
tions of successive waggle phases. We simulated 2,000 dances 
each consisting of 20 waggle phases. For each dance, we first 
sampled an initial start location from a Gaussian distribution as 
(x, y) ∼ (N (μ = 80, σ2 = 20), N (μ = 160, σ2 = 20)) and a random wag
gle direction from a uniform distribution α ∼ U(0, 2π). Every waggle 
phase of a dance then constituted one simulation step, i.e. we up
dated the initial position of each dance 20 times and saved the re
sulting 20 locations as our waggle phase locations. For each of 
these steps, we sampled a forward offset o f ∼ N (μ = 0.80834, σ2 = 
7.30946) that was added to the position in the waggle direction α 
and a sideways offset os ∼ N (μ = 0, σ2 = 8.15597) that was added 

to the location orthogonal to α. If the new location was outside 
of the comb area (400 × 240), the sampling was repeated until 
the new spot was inside the comb.

Waggle phase detection
A second pair of cameras observed the hive from both sides at a 
lower spatial resolution (ca. 40 pixels per bee length) but a higher 
frame rate (60 Hz). This camera stream was evaluated in real-time 
to detect image regions that showed periodic brightness changes 
of around 13 Hz, i.e. regions with potential waggle dances. These 
detections were then further processed to filter out nondances, 
decode the waggle orientation and duration, and map these detec
tions to the field. Since the original publication of the waggle 
dance detector (WDD) (7), we continued to improve the software 
which is available on GitHub.2 For the data recorded in 2019, we 
used the original decoding of the waggle angle, but filtered the re
corded waggle phases with a semisupervised machine learning 
approach: we trained a contrastive-predictive-coding (CPC) model 
(36) on the short video sequences that were saved by our software 
for each detection. Then, we annotated a number of waggle 
phases as either real or false detections and used a simple logistic 
regression model based on the CPC embeddings to predict 
whether a waggle was a real detection. We retrieved the waggle 
phases with the lowest prediction confidence and annotated 
them as well to improve the classification of difficult samples. 
For processing the 2021 data, we further improved the resilience 
of the first stage of the WDD by adding an additional background 
subtraction step that reduces the impact of lights flickering in the 
video. Also, in order to improve the accuracy of the final detec
tions, we implemented a convolutional neural network to sort 
and decode the detections of the first stage of the WDD. From 
the data we recorded from the observation hive Berlin 2021, we 
randomly sampled 1,009 detections for which we looked at the re
corded sequences of crops from the full video stream and manu
ally sorted them into the classes waggle phase (N = 246), shaking 
signal (N = 293), ventilating (N = 97), and other (N = 373). We also an
notated the body orientation of the bee in the center of the crop 
that triggered the detection. We chose a neural network architec
ture consisting of seven stacked 3D convolutional layers using the 
Mish activation function (37) with 3D BatchNorm (38) before each 
activation. Before the activation of the final hidden layer, we use a 
Gated Linear Unit (39) and we use feature-map based 
SpatialDropout (40) after the 5th convolutional layer as a regular
izer. The model has 121,431 parameters. The network takes a 40 
frames sequence of 32 × 32 crops at half the original resolution. 
During training, this sequence was randomly selected as a subset 
of the available frames (usually around 200) per sample, which 
was augmented with multiple standard transformations (random 
affine transformation, random noise, random brightness and con
trast changes). We trained the network on 90% of the ground truth 
data with the Madgrad optimizer (41) for 48 epochs with each 
epoch consisting of 1,000 iterations over the training set. In each 
epoch, we used the learning rate scheduler introduced in 
Ref. (42). On the test set, the trained model achieved an average 
one-versus-all area under the receiver operating characteristics 
curve (ROC AUC score) of 97.8%, an average weighted (by sample 
count) harmonic mean of precision and recall (F1 score) of 91%, 
and for the waggle phase class a recall of 83.3% and a precision of 
78.9% (see Ref. (43) for a review of the different classification met
rics). The cosine similarity of the body orientation for the waggle 

2 https://github.com/BioroboticsLab/bb_wdd2
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phase was 0.92. The architecture and code to train the network are 
available on GitHub.3

Dance clustering
In order to further reduce noise, we clustered the detected waggle 
phases into dances by considering all waggle phase detections 
that were less than 3 cm and 5 s apart to belong to one dance. 
We disregarded all clustered dances shorter than three waggle 
phases. For the remaining ones, we calculated an agreement on 
the waggle angle using random sample consensus (RANSAC) 
(44) with at least 60% required inliers. We disregarded waggle 
phases for which no RANSAC agreement could be found.

Dance and dance-following classifier
Ground truth data
To train the neural network that classifies dancing and dance- 
following, we needed annotated ground truth data. We decided 
to individually annotate the start and end timestamps of dance- 
following behavior and the start and end timestamps of individual 
waggle phases for dancing bees. To generate data for subsequent 
annotation, we randomly sampled 5-min intervals from the re
cording period (2019 August 1 to 2019 September 23). For these in
tervals, we queried our WDD detections for all waggle phases that 
fell into each interval. We generated a video from our HD data for 
each of those detections, combining detections that were less 
than 30 s apart into one video. The videos had an additional mar
gin of 10 s before the first and after the last detection. In addition 
to the video data, we queried our positional data to retrieve all the 
bees that were contained in the video and saved them as tracks. 
We used the BioTracker (45) to load the videos and the tracking 
data and manually annotate each waggle and following behavior 
in each of the videos. In total, we annotated 176 videos, containing 
3,278,121 detections from 28,873 tracks by 4,389 unique bee IDs, 
labeling a total of 1,107 distinct waggle phases and 279 follower 
events. We then considered all detections in all frames of the vid
eos as distinct samples, with detections that were not annotated 
as either a waggle phase or a following event being labeled as 
negative samples. This yielded 3,250,375 negative samples, 6,773 
waggle phase samples, 20,817 dance-following samples. We as
signed all samples from each hour to a distinct sample group, 
which we subsequently used to split the data for cross-validation 
to not have strongly correlated samples in the training and testing 
set. We also used additional unsupervised data for the training. 
We sampled 100,000 random waggle phases from our waggle 
dance recognition (WDD) between the dates of 2019 August 20 
and 2019 September 20 and subsequently retrieved all individual 
IDs of bees that had at least three detections with at least a confi
dence of 0.1 in a square of 1-by-1 cm in a 2 s window around the 
WDD detection. That way we generated an additional 314,274 un
supervised samples.

Data preprocessing and features
For each of the samples, we queried our detection database for the 
position and orientation of all detections with the same ID in a 
time window of 12 frames (2 s) for the embedding model and 54 
frames (9 s) of the trajectory model, respectively. If detections 
were missing for single frames (e.g. due to obstruction of the 
bee), these frames were filled by linear interpolation. If more 
than 50% of frames were missing, the samples were dropped. As 
an additional feature, a binary mask was generated that was 0 

for interpolated frames and 1 otherwise. The x, y coordinates, 
and orientation were transformed into ego-motion perspective: 
for each frame, the instantaneous velocity was calculated and 
median filtered with a kernel size of 3. The sine and cosine of 
the motion direction relative to the individual’s orientation were 
calculated. The change in orientation of the bee was given by 
the difference of the sine and cosine of its orientation from the 
last frame. The final features were then: velocity, cos(movement 
direction), sin(movement direction), delta cos(orientation), delta 
sin(orientation), mask. All features were clipped at the 5th and 
95th percentiles and then z-transformed following standard prac
tices. For the cross-validation, the percentiles and centering pa
rameters were extracted on the training set of the embedding 
dataset and then applied to the other datasets.

Models
The model consists of two main parts: an embedding model that 
calculates an embedding vector from a short sequence of a trajec
tory, and another small model that takes a series of embeddings 
and classifies each timestep into one of the classes other, dancing, 
following. Both models are fully convolutional with stacked 
1D-convolutions, using exponential linear units (ELU) as their hid
den layers’ activation functions (46). The embedding network is 
trained with two losses: a weighted cross-entropy loss with the re
spective class labels for the labeled samples, and the InfoNCE loss 
used with the unlabeled and labeled samples in a similar way as in 
Ref. (36). For each sample of the training data, two sequences of 
trajectories are extracted: one 12 frames sequence centered 
around the sampling timestamp t1 and the subsequent 12 frames 
t2. The respective embeddings e1 and e2 of both sequences are cal
culated and with one linear layer a predicted embedding p(e1) is 
calculated. For a batch of size b, we calculate the dot products 
of all p(e1) and all e2 as a matrix of size b × b. The mean row-wise 
cross entropy constitutes the final unsupervised loss. All e1 of all 
labeled samples in each batch are passed through a small three- 
layer fully connected perceptron using ELU activation and 
BatchNorm (38) to predict the likelihoods for the three classes 
and calculate the samples’ mean cross-entropy loss. In addition 
to the two losses, the embeddings are L1-regularized. The full 
code to train the models is on GitHub.4

Training
The models were trained with the Madgrad optimizer (41) for 
around 180,000 batches with batch size 1,024 for the embedding 
submodel and 36,000 batches with batch size 512 for the full (em
bedding + trajectory) model. The learning rate followed a 
cosine-annealing schedule with regular restarts (47). When eval
uated on the middle timestep of each test-set sequence, the 
trained model reached a ROC AUC score of 98.58%, an accuracy 
of 87.85%, an F1 score of 67.17% and a precision for the dancing 
class of 53.92%. We then further improved the precision with 
postprocessing.

Postprocessing
To apply the model to all available data for a whole day, we first 
selected all bees that were alive on that given day (determination 
of alive status as in Ref. (22)). We then stepped through the frames 
for each side of the hive in steps of 30 frames (ca. 5 s) and queried 
the trajectory of each bee with a length of 108 frames (ca. 18 s) cen
tered on the selected frame. We then calculated the features for 

3 https://github.com/BioroboticsLab/bb_wdd_filter 4 https://github.com/BioroboticsLab/bb_dance_networks
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the trajectories as described above and applied the model. We 
then applied a median filter with a kernel size of 5 to the softmax 
output. To determine the output class, we then used the argmax 
of the prediction for each timestep. To further filter out incorrect 
detections, we then considered all adjacent detections of the 
“dance” class that are at least 4 s long (and contain gaps of up to 
3 s) as “dance events.” For each frame of each dance event, we 
then queried all our detections from our database that were at 
maximum 14 mm away from the dancing bee and had a non
negative dot product of their orientation vector and the vector to
wards the dancer (i.e. that approximately faced the dancer). We 
then labeled all these potential followers that we saw for at least 
1 s as either attendee or follower. Bees that were assigned the “fol
lower” label from our model at that point in time were subse
quently treated as followers; all others are attendees. We then 
disregarded very short attention or following events that lasted 
less than one second (subsequent events with gaps of less than 
3 s were merged into one). Since we did this assignment of the at
tendee or follower state for each detected dance, we also had the 
mapping between dancer and follower. To remove remaining 
false positive detections during our feeder experiments, we only 
considered dances where we had seen the individual bee at a feed
er in the last five minutes prior to the dance, which we also used to 
assign that dance to a feeder. We disregarded one data point of a 
bee that was seen at both feeders in that interval, but otherwise 
did not further remove data points of bees that might have 
switched between feeders during the experiment. We manually 
inspected a sample of 55 dance detections and confirmed they 
were indeed all dances.
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