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The first cotangent cohomology module for matroids

William Brehm and Alexandru Constantinescu

Abstract. We find a combinatorial formula which computes the first cotangent cohomology
module of Stanley–Reisner rings associated to matroids. For arbitrary simplicial complexes
we provide upper bounds for the dimensions of the multigraded components of T 1. For spe-
cific degrees we prove that these bounds are reached if and only if the simplicial complex is
a matroid, obtaining thus a new characterization for matroids. Furthermore, the graded first
cotangent cohomology turns out to be a complete invariant for nondiscrete matroids.

1. Introduction

The cotangent cohomology modules T i (or André–Quillen cohomology modules)
of a commutative ring are obtained from the derived functor of the derivation func-
tor [3]. In cohomological degrees one and two these had been previously introduced
by Lichtenbaum and Schlessinger [5]. The interest in these two degrees comes from
deformation theory. The first module parametrizes first order deformations up to iso-
morphism; i.e., deformations with parameter space KŒ"�=."2/. The second module
contains all obstructions to lifting such deformations to larger parameter spaces, but
may contain more than that.

In this paper we view matroids as abstract simplicial complexes whose maximal
faces satisfy the basis-exchange axiom. Our main contribution is a complete charac-
terization of T 1 for the Stanley–Reisner rings associated to matroids. We also show
one can read from T 1 whether a simplicial complex is a matroid or not. We prove
that only for matroids one can recover from T 1 the combinatorial structure (unless
the matroid consists only of loops and coloops; these are precisely the matroids with
T 1 D 0). The main tool that we use is the description of the multigraded components
of these modules for arbitrary Stanley–Reisner rings in terms of the relative cohomo-
logy of certain topological spaces given by Altmann and Christophersen in [2].

Certain other algebraic properties of simplicial complexes completely characterize
matroids. For instance, the symbolic powers of a radical monomial ideal are Cohen–
Macaulay precisely when the simplicial complex is a matroid [7, 10]. Besides adding
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a new algebraic characterization for matroids, our motivation comes from the pos-
sibility to construct flat families whose special fibre is the Stanley–Reisner ring of
the matroid. Constructing explicit deformations of the projective scheme associated
to matroidal Stanley–Reisner rings may prove useful for understanding numerical
invariants of matroids. This is because, thanks to upper semicontinuity, homological
invariants are preserved; in particular the h-vector is constant on the fibres.1

In Section 2 we recall terminology, we fix notation, and we briefly present the
main tools from [2] that we will use. In Section 3 we refine some techniques for com-
puting the cotangent cohomology which we apply to arbitrary simplicial complexes.
The main result in this section is an upper bound on the vector space dimension of
the graded components of T 1 (Theorem 3.6 and Proposition 3.7). In Section 4 we cal-
culate the first cotangent cohomology of matroidal Stanley–Reisner rings and prove
that a simplicial complex is a matroid if and only if the dimensions of the components
of T 1 are obtained from our formula (Theorem 4.7 (ii)). It turns out that, to determine
if a simplicial complex on Œn� is a matroid, it is enough to know the dimensions of
the Zn-graded components T 1

�ei
for i D 1; : : : ; n (Theorem 4.7 (iii)). In Section 5 we

show how one can recover the independent sets of a matroid from the graded cotan-
gent cohomology module of the associated Stanley–Reisner ring (Theorem 5.5). We
start by characterizing the algebraically rigid matroids, namely those with T 1 D 0.
These turn out to be precisely the discrete matroids: those which are the join of a
simplex with some loops (Corollary 5.2). This is in contrast with arbitrary simplicial
complexes, for which a complete characterization of algebraic rigidity is still missing.
Significant partial results on this topic were obtained by the authors of [1].

2. Preliminaries and notation

2.1. Combinatorics

Matroids were first defined in the 1930s to abstract the combinatorics of linear inde-
pendence. They did so with remarkable success. Given a finite set of vectors E, one
is interested in the combinatorial structure of the subsets of vectors that are linearly
independent. Let # denote the cardinality of a set. The properties which are abstracted
are:

(I1) If I is an independent set and J � I , then J is also an independent set.

(I2) If I;J are independent and #J < #I , there exists v 2 I KJ such that J [ ¹v º
is independent.

1On the general fibre, the h-vector is formed as the coefficients of the numerator of the
Hilbert series.
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A collection � � 2E of subsets of a finite set E satisfying only condition (I1) is
called an abstract simplicial complex2 on the vertex set E. Unless otherwise stated,
we assume that for some positive natural number n we have E D Œn� D ¹1; : : : ; nº.
The subsets in � will be called faces. The faces which are maximal under inclusion
will be called facets. A subset of C � Œn� is a nonface of � if C … �; if all proper
subsets of C are in �, then C is called a minimal nonface. In accordance with the
upcoming definitions for matroids, we will denote for all simplicial complexes:

C� D ¹C � Œn� W C is a minimal nonface of �º;

B� D ¹B � Œn� W B is a facet of �º:

A matroid is a nonempty3 simplicial complex whose faces satisfy (I2). We will call
the faces of a matroid independent sets and the facets of a matroid bases. The minimal
nonfaces of a matroid are called circuits. Matroids have equivalent characterizations
in terms of their bases [8, Section 1.2] or of their circuits. We briefly recall the latter,
as it will be used later. A nonempty simplicial complex � is a matroid if and only
if its minimal nonfaces satisfy the strong circuit elimination axiom, which we label
according to [8, Proposition 1.4.12]:

(C30) If C and C 0 are distinct minimal nonfaces, i 2 C \C 0 and v 2 C KC 0 then
there exists a minimal nonface C 00 with v 2 C 00 � .C [ C 0/ K ¹ i º.

We will use� to denote simplicial complexes which are not necessarily matroids and
reserve the notation M for matroids.

For every simplicial complex � on Œn� we define the rank function rk�W 2
Œn�! N

by
rk�.A/ D max¹#F W F � A and F 2 �º;

Matroids can be viewed as simplicial complexes whose rank function satisfies the
semimodular inequality [8, Chapter 1.3]. The rank of the simplicial complex will be
the maximum value of the rank function. In particular, rk� D max¹#F W F 2 �º.

A loop is an element v 2 Œn� with ¹v º …�; equivalently, v is not contained in any
face of�. A coloop is a vertex v 2 Œn� which is contained in every facet; alternatively,
a coloop is not contained in any minimal nonface. Let W be a subset of Œn�. The
restriction of � to W is the simplicial complex on W given by

�jW D ¹F 2 � W F � W º:

2We will usually drop the word abstract and just use simplicial complex.
3This means that � D ;. If a simplicial complex satisfies � ¤ ;, then by (I1) we have

; 2 �. For matroids this last condition is usually included as an axiom.
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The deletion of W is the restriction to the complement of W in Œn�:

� KW D �jŒn�KW :

Given another simplicial complex � , the join of � and � is

� � � D ¹F tG W F 2 � and G 2 �º;

where t stands for the disjoint union. The link4 of a face F 2 � is defined as

link� F D ¹A 2 � W A \ F D ; and A [ F 2 �º:

For every finite set F , the abstract simplex on F is 2F D ¹A � F º. The star of a face
F 2 � is

star� F D 2
F
� link� F D ¹G 2 � W F [G 2 �º:

2.2. Algebra

Let K be an arbitrary field and S D KŒx1; : : : ; xn� the polynomial ring in n 2 N>0

variables with coefficients in K. To every simplicial complex � on Œn� we associate a
radical monomial ideal of S called its Stanley–Reisner ideal:

I� D

DY
i2F

xi W F 2 2
Œn� K�

E
� S:

This gives a bijection between simplicial complexes on Œn� and radical monomial
ideals of S . The quotient ring KŒ�� D S=I� is called the Stanley–Reisner ring of �
over the field K. If� is a matroid, we will call the associated Stanley–Reisner ring or
ideal matroidal.

We next introduce the first cotangent cohomology module for Stanley–Reisner
rings in the ad hoc way of [2]. For the general homological theory we refer to the
books of André [3] and of Loday [6], and for the connection to deformation the-
ory we refer to Hartshorne’s book [4] and Sernesi’s book [9]. While some algebraic
structures related to Stanley–Reisner rings we are about to introduce depend on the
choice of field and its characteristic, the K-vector space dimensions of the cotangent
cohomology modules depend only on the combinatorics of the complex [1, Corol-
lary 1.4]. As we are only interested in these dimensions, we will for simplicity not
mention “over K” in the following definitions.

4This is a particular case of contraction, which can defined for every subset Œn�, not just for
faces. For our purposes here, the link of a face will suffice.
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For the polynomial ring S D KŒx1; : : : ; xn�, we denote by

DerK.S; S/ D ¹@ 2 HomK.S; S/ W @.fg/ D f @.g/C @.f /g; 8 f; g 2 Sº

the S -module of the K-linear derivations. For any ideal I � S , the first cotangent
cohomology module T 1.S=I / is the cokernel of the natural map

DerK.S; S/! HomS .I; S=I /:

As I � S is a monomial ideal, the Stanley–Reisner ring, its resolution, and all the
modules defined above are Zn-graded. For c 2 Zn we denote the Zn-graded compon-
ents of the first cotangent cohomology module by

T 1
c .S=I /:

Once the field K is fixed, we will denote simply by T 1.�/ the first cotangent cohomo-
logy of S=I�. We call a simplicial complex � algebraically rigid if T 1.�/ D 0. The
complex � is called ;-rigid if T 1

c .�/ D 0 for all c 2 Zn
60. The support of a vector

a 2 Nn is defined as the set

supp a D ¹i 2 Œn� W ai ¤ 0º � Œn�:

We will write every vector c 2 Zn as

c D a � b with a;b 2 Nn and supp a \ supp b D ;:

In this notation, ;-rigid means T 1
�b.�/D 0 for all b 2Nn. We paraphrase the follow-

ing result.

Lemma 2.1 ([2, Lemma 2]). The module T 1
a�b vanishes unless 0 ¤ b 2 ¹0; 1ºn,

supp a 2� and supp b� Œlink� supp a�.5 With these conditions fulfilled, T 1
a�b depends

only on supp a and b.

Furthermore, in [2, Proposition 11] it is shown that a combinatorial interpretation
for the case a D 0 is enough. In particular, if we denote by A D supp a, we have that

T 1
a�b.�/ D T

1
�b.link�A/: (2.1)

For the above reason we will use the following convention.

Convention 2.2. Throughout this paper b will always denote a 0-1 vector, and we
will use the same notation for its support. So, according to context, we may have

b 2 ¹ 0; 1 ºn or b � Œn�:

To present the combinatorial characterization of T 1
�b.�/ from [2] we need the

following.

5Where Œ�� D ¹v 2 Œn� W v 2 �º denotes the set of vertices appearing in �.
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Definition 2.3. Let � be a simplicial complex on Œn� and b � Œn�. We define

Nb.�/ D ¹F 2 � W F \ b D ;; F [ b … �º;
zNb.�/ D ¹F 2 Nb.�/ W 9 b0 ¨ b with F [ b0 … �º:

Remark 2.4. By the above definition we have

Nb.�/ D

´
� K star� b if b 2 �;
� Kb if b … �:

For every nonempty set F � Œn� one assigns the relatively open simplex

hF i D

²
˛W Œn�! Œ0; 1� W

nX
iD1

˛.i/ D 1 and .˛.i/ ¤ 0 ” i 2 F /

³
:

For each collection of subsets � � 2Œn� one defines a topological space in the following
way:

h�i D

´S
F 2� hF i if ; … �;

cone
�S

F 2� hF i
�

if ; 2 �:

Many of our proofs rely on the following theorem of Altmann and Christophersen.

Theorem 2.5 ([2, Theorem 9]). Let� be a simplicial complex on Œn� and b 2 ¹0; 1ºn,
which we will identify with its support. If #b > 1, then T 1

�b.�/ is given by

T 1
�b.�/ ' H

0.hNb.�/i ; h zNb.�/i ;K/:

If #b D 1, then the above formula holds if we use the reduced relative cohomology
instead.6

Note that for b D 0 we have HomS .I; S=I /b D 0, and thus T 1
b .�/ D 0 as well.

3. Upper bounds on the dimension of T 1 for simplicial complexes

In this section we study the first cotangent module for abstract simplicial complexes.
The main results are Theorem 3.6, which gives an upper bound for the dimension of
T 1

a�b.�/ when b is supported on a face of �, and Proposition 3.7 which gives a full
description of T 1

a�b.�/ when b is supported on a nonface of �.

6It is easy to see, that if #bD 1, then zNb.�/D;. So one actually takes the relative cohomo-
logy of Nb.�/, avoiding thus reduced relative cohomology.
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We start by studying Nb.�/ and zNb.�/. To this aim, let A 2 � and b 2 Œn�, with
b ¤ ;. Define the (unoriented) graph GA;b.�/ on the vertex set Nb.link�A/, where

¹F1; F2º is an edge ” F1 ¨ F2 or F2 ¨ F1:

Let GıA;b.�/ be the subgraph of GA;b.�/ that consists of all connected components
that contain no vertex from zNb.link� A/. By Theorem 2.5 the graded components
of T 1 are isomorphic to some relative cohomology module H 0. So T 1

a�b counts the
number of connected components which do not intersect the given subspace. Thus,
denoting supp a D A, we get from [2, Theorem 9] that

dimKT
1

a�b.�/D

´
the number of connected components of GıA;b.�/ if #b > 1;
the number of connected components of GıA;b.�/ � 1 if #b D 1:

(3.1)

Lemma 3.1. Let� be a simplicial complex on Œn� and b� Œn�. The inclusion-minimal
elements of Nb.�/ and zNb.�/ satisfy:

(i) min�Nb.�/ � ¹C Kb W C 2 C�; C \ b ¤ ;º,

(ii) min� zNb.�/ � ¹C Kb W C 2 C�; C \ b ¤ ;; b ª C º.

Proof. (i) Let X 2 Nb.�/ be minimal under inclusion. The set X [ b … � con-
tains some minimal nonface C 2 C�. In particular, C \ b ¤ ;, since X 2 �. Thus,
C Kb � X is a face with

.C Kb/ \ b D ; and .C Kb/ [ b … �:

So by definition C Kb 2Nb.�/, and by the minimality ofX , we must have C KbDX .
(ii) If X 2 zNb.�/ is minimal under inclusion, X [ b0 … � for some b0 ¨ b. Then

there exists C 2 C� with C � X [ b0. Because X \ b D ; and b0 ¨ b, we cannot
have b � C � X [ b0. The rest follows by a similar argument to that above.

Condition (ii) in Proposition 3.2 will occur often in this paper. We will therefore
introduce the following name for it:

b � Œn� is cycle-atomic ” b \ C 2 ¹;;bº for all C 2 C�:

Proposition 3.2. Let� be a simplicial complex on Œn� and b� Œn�. The following two
conditions are equivalent:

(i) zNb.�/ D ;,

(ii) b is cycle-atomic.

Furthermore, the two conditions above imply that

(iii) min�Nb.�/ D ¹C Kb W C 2 C�;b � C º.
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Proof. (i)) (ii) Assume there exists a C 2 C� with b ª C and C \ b ¤ ;. Then
C Kb is a face which is disjoint to b. Thus, C Kb is contained inNb.�/. Since b ª C ,
there exists v 2 b such that .C Kb/[ .b K ¹v º/ is a nonface. Therefore, C Kb 2 zNb.�/

contradicting zNb.�/ D ;.
(ii)) (i) Assume zNb.�/ ¤ ;. This implies that it contains a minimal element.

Lemma 3.1 (ii) implies thus that

¹C Kb W C 2 C�; C \ b ¤ ;; b ª C º ¤ ;;

which contradicts (ii).
(ii)) (iii) By Lemma 3.1 (i) every minimal Element inNb.�/ is of the formC Kb

with C 2 C� and C \ b ¤ ;. By (ii) it follows from C \ b ¤ ; that b � C , and we
have the direct inclusion by the same lemma. For the other inclusion let C 2 C� be a
minimal nonface with b � C . By definition, we have that C Kb 2 Nb.�/. To see that
C K b is also minimal assume there exists A 2 Nb.�/ with A ¨ C K b. This implies
that A [ b … �, with A [ b ¨ C , which contradicts that C is a minimal nonface.

Remark 3.3. The implication (iii))(i) in Proposition 3.2 does not usually hold. For
instance, if� is the 1-skeleton of the tetrahedron on ¹1;2; 3; 4º and if bD 12D ¹1;2º,
then

Nb.�/ D ¹3; 4; 34º;

zNb.�/ D ¹34º ¤ ;; but

min�Nb.�/ D ¹3; 4º D ¹C Kb W C 2 C�;b � C º:

Definition 3.4. Let � be a simplicial complex on Œn� and b � Œn�. We define C�.b/
as the set of minimal nonfaces containing b:

C�.b/ WD ¹C 2 C� W b � C º:

Lemma 3.5. Let� be a simplicial complex and b � Œn� be an arbitrary cycle-atomic
set. The following map is a bijection:

'WC�.b/! min�Nb.�/; C 7! C Kb:

Composing ' with the projection to �0 we get surjection from minimal nonfaces con-
taining b to graph-components:

�WC�.b/! �0.G
ı
;;b.�//; C 7! ŒC Kb�:

Proof. It follows from Proposition 3.2 that the codomain of ' coincides with the set

min�Nb.�/ D ¹C Kb W C 2 C�.b/; b � C º:
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Thus, the first map is bijective since b is fully contained in every C 2 C�.b/. There-
fore, we can compose ' with the canonical projection �0 sending thus elements of
min�Nb.�/ to their graph-component in G;;b.�/. From Proposition 3.2 it also fol-
lows that zNb.�/ is the empty set. Thus, G;;b.�/ D Gı

;;b.�/, and we can choose
�0.G

ı
;;b.�// as the codomain of the extension. The map � is surjective since any

component contains at least one element in min�Nb.�/.

Theorem 3.6. For every simplicial complex � and every b 2 �, we have

dimT 1
�b.�/ 6 min¹#.Clink� b KC�Kb/; #.B�Kb KBlink� b/º:

If #bD 1, then 1 may be subtracted from the right-hand side when the latter is positive.

Proof. First note that every connected component of G;;b.�/ has at least one vertex
that is inclusion-minimal inNb.�/ and one vertex that is inclusion-maximal inNb.�/.
From (3.1) we get thus

dimT 1
�b.�/ 6 min¹# of minima in G;;b.�/; # of maxima in G;;b.�/º:

Recall that by Remark 2.4, as b 2 �, we have Nb.�/ D � K star� b: This means that

F 2 Nb.�/ ” F 2 � Kb and F … link� b:

If X is minimal in Nb.�/, then for every subset X 0 ¨ X , we have X 0 … Nb.�/. As
X 0 2 � Kb still holds, we get X 0 2 link� b. This means that

X is minimal in Nb.�/ ” X 2 Clink� b \ .� Kb/:

If Y is maximal in Nb.�/, then every Y 0 with Y ¨ Y 0 we have Y 0 … Nb.�/. As Y 0

still fulfils Y 0 … link� b, we get Y 0 … � K b. Thus, Y is a facet of � K b. This means
that

Y is maximal in Nb.�/ ” Y 2 B�Kb K link� b:

This implies

dimT 1
�b.�/ 6 min¹#.Clink� b \ .� Kb//; #.B�Kb K link� b/º: (3.2)

Using the definitions (3.2) can be restated in the form of our claim.

We denote by @F D ¹A ¨ F º the boundary of 2F as an abstract simplex.

Proposition 3.7. Let � be a simplicial complex on Œn� and b 2 2Œn� K� be a nonface.
Then

dimT 1
�b.�/ D

´
1 if � Š .� Kb/ � @b and #b > 1;
0 otherwise.
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Proof. Remark 2.4 yields that Nb.�/ D � K b and therefore G;;b.�/ is connected.
So if #b D 1, then dim T 1

�b.�/ D 0. If #b > 1, then dim T 1
�b.�/ D 1 if and only

if zNB.�/ D ;. Otherwise, we have dim T 1
�b.�/ D 0. By Proposition 3.2 this only

happens if b is either fully contained in or disjoint to any minimal nonface of �.
Since b is a nonface this means that b itself is a minimal nonface disjoint to any other
minimal nonface. Thus,

C� D C�Kb [ ¹bº D C�Kb [ C@b D C.�Kb/�@b:

4. Computing T 1 for matroids

It turns out that for a matroidal Stanley–Reisner ring KŒM� one can compute the
dimensions of the graded pieces of T 1 by looking at circuits. In a certain sense, sim-
plicial complexes which are not matroids have “too many” circuits. This makes the
sets zNb.�/ more complicated than in the nice case of matroids. These two observa-
tions lead to the main result of this section: Theorem 4.7, which in particular shows
that it is enough to look at T 1 in degrees �ei to determine whether a simplicial com-
plex is a matroid or not. We start with two results which are specific to matroids.

Lemma 4.1. Let M be a matroid, b� Œn� an arbitrary set, andB1;B2 2BM Kb bases
of the deletion of b. For any b0 � b, we get the equivalence

B1 [ b0 2M ” B2 [ b0 2M:

Proof. We can assume without loss of generality that b0 D b and prove the statement
by induction over the cardinality #b. Considering the symmetry of the conclusion, we
only show the implication

B1 [ b 2M H) B2 [ b 2M: (4.1)

If b D ;, then we obtain an implication between two tautologies. Assume now that
#b>0 and that (4.1) holds for any subset of Œn� of cardinality .#b/� 1. IfB1 [ b2M,
then, since #B2 D #B1 < #.B1 [ b/, we can use the independent set exchange axiom
to find a v 2 B1 [ b, with v … B2, such that B2 [ ¹ v º 2M. If v … b, then B2 [ ¹ v º

would be an independent set of M Kb that properly contains a basis. So bothB1 [ ¹v º

and B2 [ ¹ v º with v 2 b are bases of M K .b K ¹ v º/. Since #.b K ¹ v º/ D .#b/ � 1,
the induction hypothesis implies (4.1).

Corollary 4.2. Let M be a matroid and b � Œn�.

(i) If Nb.M/ ¤ ;, then BM Kb � Nb.M/.

(ii) If zNb.M/ ¤ ;, then BM Kb � zNb.M/.
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(iii) If zNb.M/ ¤ ;, then the inclusion-maximal elements in Nb.M/ and zNb.M/

are the same.

Proof. (i) Let F 2 Nb.M/. This means F 2M K b and F [ b …M. Thus, all inde-
pendent sets X that contain F have the property that X [ b … M. In particular, all
bases of M Kb that contain F are in Nb.M/. By Lemma 4.1 all bases of BM Kb must
also be in Nb.M/.

(ii) If F 2 zNb.M/, then there exists b0 ¨ b such that F [ b0 …M. We then con-
clude by the same argument as in the previous point.

(iii) We have zNb.M/ � Nb.M/ �M K b, with the first two closed under taking
supersets within the third. So the set of maximal elements in each is exactly the inter-
section with BM Kb and we conclude by the previous two points.

Lemma 4.3. If� is a nonempty simplicial complex, then the following are equivalent.

(i) � is a matroid.

(ii) For all cycle-atomic b� Œn�, every element ofNb.�/ contains a unique inclu-
sion-minimal element of Nb.�/.

(iii) For all v 2 Œn�, any element of Nv.�/ contains a unique inclusion-minimal
element of Nv.�/.

Proof. (i)) (ii) The statement is trivial for b D ;. If b … �, then by Remark 2.4 we
getNb.�/D� Kb which contains a unique inclusion-minimal set: ;. Thus, it suffices
to consider the case b 2�. As b is cycle-atomic, for all circuits C 2 C� either b ¨ C

or b � Œn� KC . By Proposition 3.2, we have

min�Nb.�/ D ¹C Kb W C 2 C�.b/º:

Assume that F 2Nb.�/ contains two distinct minimal elements ofNb.�/: C1 Kb and
C2 K b. Because .C1 K b/ [ .C2 K b/ � F 2 � and the union with b contains circuits,
we have that

.C1 Kb/ [ .C2 Kb/ 2 Nb.�/:

Let v 2 b � C1 \ C2. By the circuit exchange axiom (C30), we find a circuit C3 �

.C1 [ C2/ K ¹ v º. As v … C3, we have b ª C3. We also have C3 ª .C1 Kb/[ .C2 Kb/
since the latter is a face of�. So we must also have C3 \ b¤ ;. This contradicts that
all circuits of � are either disjoint to or contain b.

(ii)) (iii) All singletons are cycle-atomic.
(iii)) (i) Assume that � is not a matroid. Then there are at least two minimal

nonfaces C1; C2 2 C� and an element c 2 C1 \ C2 such that there exists no minimal
nonface contained in .C1 [ C2/ K ¹ c º. In other words .C1 [ C2/ K ¹ c º is a face. But
then .C1 [ C2/ K ¹ c º 2 Nc.�/ does contain two sets C1 K ¹ c º; C2 K ¹ c º 2 Nc.�/.
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Both C1 K ¹ c º and C2 K ¹ c º are minimal under inclusion by Proposition 3.2 (iii) and
do not contain each other.

Remark 4.4. The implication (i)) (iii) is given in [8, Proposition 1.1.6]. It turns out
that this implication is an equivalence.

Proposition 4.5. Let � be a simplicial complex on Œn�. The following are equivalent.

(i) � is a matroid.

(ii) For every cycle-atomic b � Œn�, the minimal elements of Nb.�/ with respect
to inclusion are unique in their connected component of G;;b.�/.

(iii) For every v 2 Œn�, the minimal elements of Nv.�/ with respect to inclusion
are unique in their connected component of G;;v.�/.

(iv) For every nonempty b � Œn� such that zNb.�/ D ;, the following map is inj-
ective:

�WC�.b/! �0.G
ı
;;b.�//; C 7! ŒC Kb�:

(v) For every nonempty b � Œn� such that zNb.�/ D ;, the following map is bi-
jective:

�WC�.b/! �0.G
ı
;;b.�//; C 7! ŒC Kb�:

Proof. (i)) (ii) Assume there exists a cycle-atomic b 2 Œn� such that there are dif-
ferent minimal elements in some component of G;;b.�/. By Lemma 3.1 these have
the form C1 K b and C2 K b with Ci 2 C� and Ci \ b ¤ ; for i D 1; 2. Every path
in G;;b.�/ connecting C1 K b and C2 K b can be modified such that each inclusion-
ascending chain ends at a maximal element, and each inclusion-descending chain
ends at a minimal element. Thus, in any connected component with distinct minimal
elements, there is at least one maximal set containing two minimal sets. Therefore,
without loss of generality, we can assume C1 K b and C2 K b to be two minimal sets
contained in a common set F 2 Nb.�/. As� is a matroid and zNb.�/ D ;, all sets in
Nb.�/ contain a unique minimal set by Lemma 4.3 (ii) – a contradiction.

(ii)) (iii) Singletons are cycle-atomic.
(iii)) (i) Note that the inclusion-minimal elements of the graph G;;v.�/ are ex-

actly the minimal elements ofNv.�/. Thus, the implication follows from Lemma 4.3.
(ii), (iv) The map � sends elements of C�.b/ to the connected component of

minimal elements of Nb.�/. Therefore, � being injective means exactly that those
elements are unique.

(iv), (v) The map � is always surjective by Lemma 3.5.

Remark 4.6. One can rephrase conditions (iv) and (v) of Proposition 4.5 in terms of
singletons instead of cycle-atomic sets, and still obtain equivalent statements.
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Having considered for any matroid M both the case zNb.M/ D ; and the case
zNb.M/ ¤ ;, we can prove the following theorem.

Theorem 4.7. For a simplicial complex � on Œn� the following statements are equi-
valent.

(i) � is a matroid.

(ii) For all a � b 2 Zn with a 2 Zn
>0 and b 2 ¹ 0; 1 ºn having disjoint support:

dimT 1
a�b.�/ D

8̂̂̂<̂
ˆ̂:
0 ifA…�, bD;, or b

is not cycle-atomic,
max¹#Clink�A.b/ � 1; 0º if #b D 1;
#Clink�A.b/ otherwise,

(4.2)

where A D supp.a/, b is identified with supp.b/ and

Clink�A.b/ D ¹C 2 Clink�A W b � C º:

(iii) dimT 1
�ei
.�/ D max¹#C�.i/ � 1; 0º 8 i D 1; : : : ; n:

Proof. (i)) (ii) By Lemma 2.1 we only have to consider the case A 2 �, in which
case we have by (2.1) that

T 1
a�b.�/ Š T

1
�b.link�A/:

As the link of an independent set in a matroid is still a matroid, we can restrict our
proof to the case where A D ;. Also, if b D ;, then T 1

a�b.�/ D 0. We already dealt
with the setting where b … � in Proposition 3.7, and a direct check gives the same
formula. Thus, it remains to prove the theorem for A D ; and ; ¤ b 2 �. By (3.1) it
is enough to prove that

the number of connected components of Gı;;b.�/ D

´
#C�.b/ if zNb.�/ D ;;

0 otherwise.

If zNb.�/ ¤ ;, then by Corollary 4.2 (iii) the inclusion-maximal elements in G;;b.�/
are all contained in zNb.�/. This means that every connected component contains
something from zNb.�/, and thus Gı

;;b.�/ is the empty graph. If zNb.�/ D ;, by
Proposition 4.5 (v) we have a bijection between C�.b/ and the connected components
of Gı

;;b.�/.
(ii)) (iii) The third statement is a special case of the second for aD 0 and bD ei .
(iii)) (i) Assume that � is a nonempty simplicial complex that is not a matroid.

Note that,Nv.�/D ; if and only if v is a coloop, and thatNv.�/D� Kv if and only
if v is a loop. Therefore, by Proposition 4.5 (iii), there exists at least one v 2 Œn� such
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that Nv.�/ ¤ ; and there are at least two distinct minimal elements of Nv.�/ in the
same connected component of G;;v.�/. Thus, C�.v/ > 2 and

dimT 1
�ev
.�/ 6 #�0.G;;v.�// � 1 < #C�.v/ � 1 D max¹#C�.v/ � 1; 0º:

In the final part of this section we show that for matroids the dimension of each
nonvanishing graded component of T 1 reaches the upper bound given in Theorem 3.6.

Corollary 4.8 (of Lemma 3.5). Let M be a matroid, A 2 M, and denote by ƒ D
linkM A, the link of A in M. Let b 2 ƒ which is cycle-atomic for ƒ. The following
map is a bijection

Cƒ.b/! Clinkƒ b KCƒKb;

C 7! C Kb:

Proof. We can restrict to the case where A D ;, because a matroid remains a matroid
after contraction. So we may assume ƒ DM. Due to the assumption that b is cycle-
atomic, we may use Lemma 3.5 to get that Cƒ.b/ is in bijection with the minimal
elements of Nb.M/. By Theorem 3.6 these are exactly Clinkƒ b KCƒKb.

Remark 4.9. Using the notation ƒ D linkM A of Corollary 4.8, we can interchange
Cƒ.b/with Clinkƒ b KCƒKb in (4.2). This means that, when a graded component of the
first cotangent cohomology is nonzero, then its dimension is maximal in the sense of
Theorem 3.6. However, while for matroids the existence of a circuit C with b \ C …
¹;; bº implies T 1

�b.M/ D 0, for nonmatroids this is not the case. Take for example
the simplicial complex� on ¹1; : : : ; 5º with minimal nonfaces ¹12; 13; 234; 235; 145º
(where 12 denotes ¹1; 2º and so on) and b D 45. Then we have

G;;b.�/ D ¹Œ1�; Œ2; 3; 23�º;

where the square brackets indicate the connected component, and zNb.�/ D ¹2; 3º.
Thus, dimT 1

�b.�/ D 1.

Example 4.10. LetU k
n be a uniform matroid on the ground set Œn�. That is the matroid

with
BU k

n
D ¹B � Œn� W #B D kº:

Let a � b 2 Zn with a 2 Nn and b 2 ¹0; 1ºn with disjoint supports. Let A D supp a
and identify b and supp b. Using CU k

n
D ¹C � Œn� W #C D k C 1º in Theorem 4.7,

one obtains

dimT 1
a�b.U

k
n / D

8̂̂<̂
:̂
1 if #b > 1, k D n � 1 and #A 6 k;�

n�#A�1
n�k�1

�
� 1 if #b D 1, k < n � 1 and #AC #b 6 k;

0 otherwise:
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5. Characterization of matroids by their first cotangent cohomology

So far we have seen that the dimensions of the graded components of T 1 for matroids
can be computed by counting circuits. This count can be done on the nonfaces of
any simplicial complex, but it returns T 1 if and only if the complex is a matroid. We
ask next how much information the first cotangent cohomology module of a matroid
retains. In this section we show that, in contrast to the general case, matroids can be
fully recovered from T 1 unless this module is trivial (Lemma 5.4) and that triviality
happens only in the extremal case of discrete matroids (Corollary 5.2).

Lemma 5.1. Let M be a matroid on Œn� and v 2 Œn�. The following are equivalent.

(i) v is a loop or a coloop.7

(ii) T 1
c .M/ D 0 for any c 2 Zn with cv D �1.

(iii) T 1
�ev�e.M/ D 0 for any e 2 ¹0º [ ¹ei W i 2 Œn� and i ¤ vº.

Proof. (i)) (ii) Let b and A be the support of the negative and positive parts of c,
respectively. (Co)loops under restriction and deletion remain (co)loops. So if v is a
(co)loop in M and cv D �1, then v is a (co)loop in linkM A. Therefore, we may
use T 1

c .M/ D T 1
�b.linkM A/. If v 2 b is a (co)loop, then the only circuit that may

contain b is ¹ v º. Thus, the statement follows from Theorem 4.7.
(ii)) (iii) The third point is a restriction of the second to a subset of degrees.
(iii)) (i) From T 1

�ev
.M/ D 0 we obtain by Theorem 4.7 that v is contained in

at most one circuit. If v is neither a loop nor a coloop, then v is properly contained
in precisely one circuit C . So there exists i 2 C with i ¤ v. To obtain the contra-
diction dimT 1

�ev�ei
¤ 0 from Theorem 4.7, we must make sure that zN¹v;iº.M/ D ;.

Let us assume zN¹v;iº.M/ ¤ ;. By Proposition 3.2 this means that there is a circuit
C 0 ¤ C which intersects ¹v; iº in a proper subset. As v is contained in only one cir-
cuit, we have i 2 C 0 and v … C 0. Using the strong circuit elimination axiom (C30)
(cf. Section 2.1), we find a circuit C 00 which contains v and which is contained in
.C [ C 0/ K ¹ i º. This contradicts that only one circuit contains v. Thus, v is either a
loop or a coloop.

Corollary 5.2. Let M be a matroid on Œn�. The following are equivalent:

(i) M is algebraically rigid.8

(ii) M is ;-rigid.9

7That is, v is not contained in any basis or it is contained in all bases, respectively.
8That is T 1.M/ D 0.
9That is T 1

�b.M/ D 0 for all b 2 Nn.
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(iii) M consists of only loops and coloops.

(iv) M Š U 0
`
� U c

c for some `; c 2 N.

Proof. (i)) (ii) Follows directly from the definition.
(ii) ) (iii) The condition (ii) implies the statement in Lemma 5.1 (iii) for any

v 2 Œn�. Thus, by the same lemma, every element in Œn� is either a loop or a coloop.
(iii) ) (iv) The restriction of M to the loops is isomorphic to U 0

`
and to the

coloops to U c
c .

(iv)) (i) As U 0
`

and U c
c are rigid, we conclude by [1, Proposition 2.3].10

Matroids satisfying condition (iii) of Corollary 5.2 are termed discrete matroids.
So Corollary 5.2 shows that the first cotangent cohomology does not distinguish
among discrete matroids, but that it determines whether a matroid is discrete or not.
Algebraically rigid simplicial complexes in general are not classified yet [1].

In the remainder of this section we will show that, for nondiscrete matroids, T 1

encodes the entire combinatorial structure.

Proposition 5.3. Fix n 2 N, let � be a simplicial complex on Œn� and A � Œn�. We
have:

(i) rk.�/ > 1Cmax¹#A W T 1.link�A/ ¤ 0º:

(ii) If� is a matroid with no coloops and A2�, then link�A is rigid if and only
if A is a basis.

(iii) If � is a matroid that is not discrete, then

rk.�/ D 1Cmax¹#A W T 1.link�A/ ¤ 0º:

Proof. (i) Assume that #A > rk.�/. Thus A is either a facet or a nonface, so link�A

contains only the empty set or is empty, respectively. In both cases link� A is rigid.
Thus, if T 1.link�A/ ¤ 0, then #A < rk.�/.

(ii) We claim that if a matroid � has no coloops and A 2 �, then link� A has no
coloops.

Assume that v 2 link�A is a coloop in the link but not in �. This means, that

8B 2 B� if A � B; then v 2 B: (5.1)

As v is not a coloop of �, there must exist a basis B 0 with v … B 0: Choose now one
basis B with A [ ¹vº � B . As v 2 B KB 0, by the basis exchange axiom for matroids
we have that there exists w 2 B 0 KB such that

B 00 D .B K v/ [ ¹wº 2 B�:

10This proposition says that the join of two complexes is rigid if and only if each of them is
rigid.
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As A � B 00 and v … B 00 we obtain a contradiction to (5.1).
In summary, by Corollary 5.2, link� A is rigid if and only if link� A D U

0
Œn�KA

.
Since rk.link�A/ D rk.�/ � rk.A/ this can only happen if A is a basis.

(iii) One inequality follows from (i). Part (ii) implies the other inequality if � is
coloop free. If � has a set of coloops C , we can write

� D �0 � U #C
#C

with �0 D link� C being coloop free. Again by (ii) we find a B 2 �0 with #B D
rk.�0/ � 1 and link�0 B nonrigid. So B [ C satisfies

#.B [ C/ D rk.�/ � 1

and by [1, Corollary 2.4], we get

T 1.link�.B [ C// D .T
1.link�0 B/˝KŒU 0

#C �/˚ .KŒlink�0 B�˝ T
1.U 0

#C //

D .T 1.link�0 B/˝KŒx1; : : : ; x#C �/˚ 0:

The latter is nontrivial because T 1.link�0 B/ ¤ 0.

Lemma 5.4. If M is a matroid of rank one, then we can reconstruct the independent
sets of M from the degreewise dimensions of the first cotangent cohomology module
T 1.M/.

Proof. For a matroid of rank one every singleton subset of the ground set is either
dependent or a basis. Thus, all rank one matroids are of the form

M D U 1
m � U

0
` :

Note that any link, with the possible exception of the link of the empty set, has trivial
cotangent cohomology. Thus, the degrees in which T 1 is nontrivial have no positive
entries. The matroid is discrete if and only ifmD 1. IfmD 2, then the only nontrivial
component is T 1

�e1�e2
.M/, since any element in the ground set is contained in at most

one circuit. Thus, we can recover the independent sets from this one degree. Ifm > 2,
then i 2 Œn� is contained in at least two circuits if and only if i 2 U 1

m. Therefore,
¹ i º 2M if and only if T 1

�ei
.M/ ¤ 0.

We now have all the tools we need to prove the main theorem of this section.

Theorem 5.5. A matroid M is discrete if and only if T 1.M/D 0: If T 1.M/¤ 0, then
we can recover all its independent sets from the dimensions of the graded components
of T 1.M/.
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Proof. The first part is given by Corollary 5.2. So let us assume that M is not discrete.
Using Lemma 5.1 we can recover all loops and coloops of M. We can then write M

as a join of a loop and coloop free matroid M0 and a discrete matroid U . By [1,
Corollary 2.4], we can split the first cotangent cohomology module into a direct sum:

T 1.M/ D .T 1.M0/˝KŒU �/˚ .KŒM0�˝ T 1.U //:

Since M is not discrete we obtain from Corollary 5.2 that T 1.M0/¤0 and T 1.U /D0.
Therefore, we can use any nontrivial degree of M0 to reconstruct whether an element
in the ground set ofU is a loop or a coloop. So it suffices to prove the theorem when M

is a loop-and-coloop-free matroid on Œn�. Furthermore, by Lemma 5.4 we may assume
that rk.M/ > 1. Let f 2Nn with F D supp.f/ 2M and denote byƒD linkMF . From
linkƒG D linkM.F [G/ and (2.1), we obtain

T 1.ƒ/ D
M
c2Zn

F \ supp cD;

T 1
cCf.M/: (5.2)

Combining (5.2) with Lemma 2.1 and Proposition 5.3 (ii) we have that T 1.ƒ/ D 0 if
and only if F is a nonface or a basis. We can thus recover all independent sets which
are not a basis as

F 2M KBM ” 9 a;b 2 Nn with F � supp a such that T 1
a�b.M/ ¤ 0:

So we only need to recover the bases. To this aim it is enough to identify for every
F 2M of rank rk.M/� 1 the bases which contain it. This is equivalent to recovering
all faces of linkM F . As linkM F has rank one we may apply Lemma 5.4 to recover
all its faces from T 1.linkM F /. We then conclude by applying (5.2) again.
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