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A B S T R A C T   

The functionality of human intelligence relies on the interaction and health of neurons, hence, quantifying 
neuronal morphologies can be crucial for investigating the functionality of the human brain. This paper proposes 
a deep learning (DL) based method for segmenting and quantifying neuronal structures in fluorescence micro
scopy images of developing neuronal cells cultured in vitro. Compared to the majority of supervised DL-based 
segmentation methods that heavily rely on creating exact corresponding masks of neuronal structures for the 
preparation of training samples, the proposed approach allows for imperfect annotation of neurons, as it only 
requires tracing the centrelines of the neurites. This ability accelerates the preparation of training data by several 
folds. Our proposed framework is built on a modified version of PSPNet with an EfficientNet backbone pre- 
trained on the CityScapes dataset. To handle the imperfectness of training samples, we incorporated a 
weighted combination of two loss functions, namely the Dice loss and Lovász loss functions, into our network. We 
evaluated the proposed framework and several other state-of-the-art methods on a published dataset of 
approximately 900 manually quantified cultured mouse neurons. Our results indicate a close correlation between 
the proposed method and manual quantification in terms of neuron length and the number of branches while 
demonstrating improved analysis speed. Furthermore, the proposed method achieved high accuracy in neuron 
segmentation, as evidenced by the evaluation of the neurons’ length and number of branches.   

1. Introduction 

Understanding the properties of neurons is crucial for the diagnosis 
and treatment of neurological disorders. Neurons are the fundamental 
units of the nervous system, and their proper functionality depends on 
various factors, including their shape, size, branching, and morpholog
ical features (Rosso et al., 2005; Meinertzhagen et al., 2009). Any 
impairment in these factors can lead to a range of neurological disorders, 
such as Alzheimer’s disease, Parkinson’s disease, and epilepsy Andrade 
and Ramalho (2018). 

The use of advanced imaging techniques, such as fluorescence mi
croscopy, can provide a detailed view of the neuronal structure and 
function Sancataldo et al. (2019). Although microscopy imaging, and 
more specifically, (epi)fluorescence microscopy imaging is a particu
larly effective technique for analyzing the structure and function of 
neurons, accurate numerical evaluation and analysis of such data can 
still be challenging. In fact, accurate quantification of neurons is possible 
through precise segmentation of neuronal images. Precise segmentation 

of neuronal images requires accurate annotation of the images by 
experienced experts. This issue often involves creating binary masks for 
each image, such that each mask accurately colocalizes with the corre
sponding neuron. Precise annotation of the entire neuronal mask, 
however, can be a time-consuming and tedious process. To overcome 
this bottleneck and to accelerate training data preparation, we devel
oped a segmentation approach that allows for imperfect annotations of 
the samples, using only the centrelines of the neurites. To clarify, our 
suggested annotation scenario allows annotators to simply trace the 
centrelines of the neurites rather than requiring them to label the entire 
neurons precisely. The weakly labeled neurons (here, the 1-pixel-width 
skeletons of neurites) are then uniformly dilated using morphology fil
ters. Moreover, higher-order branches of the neurons, which are thin 
and/or short in size, have been discarded by the annotator during the 
annotation process. Along with the raw images of neurons, the corre
sponding dilated structures are then fed into the downstream segmen
tation network during the training process. 

An example neuron image is presented in Fig. 1-a, along with its 
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manual annotation by an expert in Fig. 1-b. The annotator only marked 
the centrelines of the neuronal structures to accelerate the annotation 
process. Moreover, higher-order branches of the neurons, which are thin 
and/or short in size have been discarded by the annotator during the 
annotation process. Subsequently, these centrelines were uniformly 
dilated and used to train the proposed deep learning-based segmentation 
network. As evident from the figure, the data is weakly annotated, often 
resulting in the final mask fed into the network for training being either 
thicker (indicated by red dashed boxes) or thinner (shown by blue solid 
boxes) than the actual neurites. 

The proposed neuron segmentation network is based on a modified 
version of PSPNet (Pyramid Scene Parsing Network) Zhao et al. (2017). 
PSPNet is a well-established deep learning architecture that has shown 
state-of-the-art performance in semantic image segmentation tasks in 
computer vision Zhu et al. (2021). In order to tailor it to our particular 
task of segmenting neurons with imperfect annotation, we introduce 
several contributions, such as leveraging a combined loss function, 
replacing ResNet He et al. (2016) with EfficientNet Tan and Le (2019) as 
the backbone of the PSPNet architecture, and using the pyramid pooling 
module which is added on top of the EfficientNet. EfficientNet is a 
computationally efficient deep learning architecture that has demon
strated success in various computer vision tasks, such as object detection 
Tan et al. (2020), image recognition Xie et al. (2020), and panoptic 
segmentation De Carvalho et al. (2022). Our decision to use EfficientNet 
as the backbone is based on its ability to achieve high accuracy while 
being computationally efficient Tan and Le (2019). Specifically, we 
utilize an EfficientNet model that has been pre-trained on the CityScapes 
dataset. Despite the CityScapes dataset consisting of high-resolution 
images of urban scenes unrelated to biology, we discovered that the 
pre-trained network was a fitting option for performing transfer learning 
and extracting features from our microscopy images. This modification 
enables us to capture more complex features and achieve higher accu
racy in our neuron segmentation task. 

Furthermore, to address the challenge of imperfect training samples 
that leads to a weakly-supervised machine learning problem, we pro
pose using a weighted combination of Dice loss and Lovász loss as the 
loss function for our model during training. This approach takes into 
account both the overlap between predicted and ground-truth segmen
tation masks (Dice loss) and the geometric properties of the segmented 
object (Lovász loss). By properly weighing the two losses, we aim to 

improve the accuracy of our model in segmenting neurons even when 
the training data contains imperfect or noisy samples. 

We present the performance evaluation of our technique on 2D 
fluorescence micrographs of primary hippocampal neurons obtained 
from mice, which were initially quantified manually in Brosig et al. 
(2019a), and subsequently through unsupervised machine learning in 
Zehtabian et al. (2022a). We compare the supervised neurite segmen
tation achieved by our proposed fully-automated approach with ground 
truth results obtained through manual image analysis in terms of neuron 
length as well as the number of branches. The analysis of our technique 
was found to be in agreement with that of experienced users, and it was 
capable of simultaneously analyzing hundreds to thousands of images in 
a short time without requiring manual interventions. 

The primary contributions of this work are summarized as follows: .  

1. Addressing Imperfect Annotation: Unlike the majority of previous 
related works that have only focused on perfect annotation scenarios, 
this study proposes a solution to tackle imperfect annotation. Spe
cifically, the approach involves annotating only the centerlines of the 
neuronal components, which helps mitigate the challenges posed by 
manual annotation efforts that are time-consuming and tedious. 

2. EfficientNet Integration: To strike a balance between speed and ac
curacy, we adopted the EfficientNet algorithm and incorporated it as 
a backbone in the PSPNet architecture. This integration not only 
ensures an accurate segmentation but enhances the computational 
efficiency of the proposed method.  

3. Weighted Loss Function: We suggest a weighted combination of two 
well-known loss functions in this study. This enables the neural 
network to accurately detect finer structures in the neuronal image, 
further improving the quality and integration of segmentation 
results. 

The rest of the article is as follows: in Section 2, we will review 
related articles on neuron segmentation. In Section 3, we will explain 
our proposed neuron segmentation approach in more detail, including 
the main network architecture and the suggested loss function. Section 4 
will present our experimental results and performance comparisons with 
five other state-of-the-art methods. We will also provide a discussion of 
the achieved results. Finally, in Section 5, we will conclude the article by 
summarizing the contributions of our proposed approach and suggesting 

Fig. 1. An example of imperfect annotation of neuronal data. (a) A 2D micrograph of a neuron image. (b) The expert annotates the neuron by marking only the 
centrelines of the neuronal structures. To expedite the process of neuron annotation, the annotator disregarded the smaller and/or finer neurites during the 
annotation process. The annotated centrelines will then be uniformly dilated and fed into the proposed deep learning-based segmentation network for training. (c) 
The dilated centerlines overlaid on the micrograph. The resulting masks are often either thinner (red dashed boxes) or thicker (blue solid boxes) than the actual 
neurites, leading to an imperfect set of training samples that weakly supervise the deep learning network. 
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potential applications. 

2. Literature Review 

The segmentation of neuronal structures in microscopy images is still 
a crucial task in neuroscience research. Over the years, various methods 
have been developed to address this issue, and more specifically, to 
automate the segmentation process. These methods span from unsu
pervised approaches Zehtabian et al. (2022a) and traditional machine 
learning methods Dong and Xie (2005) to more recent deep 
learning-based techniques Bilodeau et al. (2021). This section provides 
an overview of some of the most related works, highlighting their 
strengths and limitations. 

Sholl analysis Sholl (1953) is one of the pioneers in quantifying 
neuronal morphology. This method approximates dendritic branching 
by counting the number of times neurites cross concentric circles at 
increasing distances from the soma, allowing for quantification of 
neuronal morphology. In 2000, Ascoli and Krichmar developed 
L-Neuron, a software package that enables the creation and analysis of 
neuronal analogs for quantifying neurons. L-Neuron employs a set of 
recursive rules to accurately and efficiently describe dendritic geometry 
and topology. This is achieved by locally inter-correlating morpholog
ical parameters such as branch diameter and length. Back in 2000, 
L-Neuron was able to accurately generate neuronal structure models 
that were both realistic and computationally efficient for further anal
ysis Ascoli and Krichmar (2000). In Schmitz et al. (2011), the authors 
developed an automated image analysis routine that utilized steerable 
filters and deconvolutions to analyze dendrite and synapse character
istics in immuno-fluorescence images automatically and was able to 
detect and quantify a wide range of neuronal organelles. Authors in 
Quan et al. (2016) proposed an automated technique for tracing 
neuronal processes in 3D image stacks using the constrained principal 
curves. The algorithm extracts the centerline of neuronal processes by 
tracing a series of points and also identifies collisions, crossings, and 
bifurcations between two processes. In their study, Wang et al. (2017) 
developed an ensemble neuron tracing method that automatically re
constructs complex neuron morphology from 3D image data. Their 
approach incorporated multiple neuron tracers to generate optimal 
tracing results by leveraging the strengths of different tracers. In their 
work Ikeno et al. (2018), the authors presented a method that combines 

several software tools for image masking and filtering with an existing 
tool for dendritic segmentation and tracing to process confocal micro
scope images and reconstruct neuronal structures. The authors evalu
ated the performance of their proposed method by comparing it against 
ground-truth reconstructions from the BigNeuron Project. In 2018, 
Kofahi et al. introduced a single-channel cell segmentation algorithm for 
microscopy images that utilized less staining in the nucleus Al-Kofahi 
et al. (2018). The algorithm integrated deep learning to predict the lo
cations of cells and nuclei, which was subsequently combined with 
thresholding and watershed-based segmentation. A method for detect
ing and segmenting neurons from microscopy acquisition was proposed 
by the authors in Baglietto et al. (2018). The process commenced with 
the automatic detection of the soma through multiscale blob enhance
ment filtering. Subsequently, an active contour approach was employed 
to achieve precise segmentation of the identified cell body. The outcome 
of this segmentation served as the initial seed for the second part of the 
approach, which proposed a method for tracing dendrite arborization. 

StarDist Schmidt et al. (2018) is a supervised deep learning network 
that utilizes the U-Net architecture and was initially designed for cell 
and nuclei segmentation. It also showed its efficiency in the segmenta
tion of other similar structures Zehtabian et al. (2022b). In general, 
StarDist excels at segmenting blob-like objects with a star-convex shape, 
although its performance may be less optimal for strongly elongated 
shapes such as neurons. To achieve better results with such shapes, it 
may be necessary to increase the number of rays used by the model. A 
technique for automated reconstruction and quantification of microglia, 
the brain’s resident immune cells, was proposed by Abdolhoseini et al. 
(2019). The method starts with utilizing multilevel thresholding to 
segment soma structures and identify foreground areas. Seed points are 
subsequently extracted from the foreground areas and used to generate 
the branches’ skeleton via the tracing process. Finally, the reconstructed 
data is quantified. In the study Soltanian-Zadeh et al. (2019), the authors 
developed a three-component segmentation algorithm that includes 
preprocessing steps to prepare two-photon microscopy data for analysis 
by CNN, a core 3D CNN architecture called STNeuroNet, which gener
ates a probability map of potential masks for active neurons, and a set of 
postprocessing steps to infer the location and mask of individual active 
neurons from the outputs of STNeuroNet. 

SplineDist Mandal and Uhlmann (2021) is an extension of the 
StarDist framework that utilizes parametric spline curves to model 

Fig. 2. General overview of the proposed segmentation network architecture.  
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objects, instead of star-convex polygons used in StarDist. This makes 
SplineDist a potentially better alternative to StarDist for segmenting 
elongated or tubular objects such as neurons. The study conducted by 
Shih et al. (2021) introduced a new automatic algorithm named Neu
roRetriever for unbiased large-scale segmentation of confocal fluores
cence images of single neurons in the adult Drosophila brain. 
NeuroRetriever employs a high-dynamic-range thresholding method to 
segment the three-dimensional morphology of single neurons using 
branch-specific structural features. Gallart et al. showed that deep 
learning architectures could be utilized for automatic segmentation of 
dendritic spines using light microscopy Vidaurre-Gallart et al. (2022). 
To achieve this, the authors constructed a sizable dataset of ground truth 
data and evaluated the potentially effective DL biomedical segmentation 
architectures. Authors in Liu et al. (2022) conducted a review of auto
mated neuron segmentation and tracing in diverse scenarios, with 
particular emphasis on the growing use of deep learning enhanced 
methods. They also discussed semi-automatic techniques for single 
neuron tracing in mammalian whole brains, along with the resultant 
datasets. 

Authors in Bilodeau et al. (2022) tackled a relatively similar issue to 
the concern of this study, which is related to dealing with imperfect 
annotation. They introduced a deep learning network, called 
MICRA-Net, for the analysis of microscopy data under weak supervision. 
The approach is particularly useful in situations where achieving pre
cisely annotated datasets is challenging or not feasible. In their proposed 
approach, the learned information is extracted using gradient class 
activation maps to generate detailed feature maps of the biological 
structures of interest. Although their proposed network has been origi
nally trained on a simple main classification task with image-level an
notations, it has shown its ability to solve more complex tasks such as 
semantic segmentation, even when precise annotations are not 
available. 

3. Proposed Method 

3.1. Model Architecture 

Our proposed neuron segmentation framework, as shown in Fig. 2, is 
built upon a modified variant of the PSPNet Zhao et al. (2017), which is 
a modern deep learning architecture for achieving accurate semantic 
image segmentation in computer vision. PSPNet is equipped with a 
pyramid pooling module to capture contextual information at multiple 
scales, thereby enriching the feature maps. This allows the network to 
gain a deeper understanding of the spatial relationship between objects 
in the image (i.e. the various components of the neurons), and conse
quently, to better capture fine-grained features that play a crucial role in 
achieving precise segmentation. In general, PSPNet can be built on top 
of different backbone architectures, including various versions of 
ResNet. More specifically, PSPNet often utilizes the ResNet-50 and 
ResNet-101 backbone architectures. The choice of the backbone archi
tecture depends on factors such as the complexity of the data (here, the 
complexity and morphology of the neurons), available computational 
resources, and desired accuracy. 

Regarding an outstanding accomplishment of the PSPNet in recent 
years Yan et al. (2021), we adapt this architecture to the specific task of 
2D neuron segmentation using imperfect training samples by intro
ducing modifications to the network design. One of the primary modi
fications we made to the architecture is to utilize EfficientNet-B0, which 
is the most lightweight implementation of EfficientNet Tan and Le 
(2019) and was trained on the CityScapes dataset Cordts et al. (2016), as 
the backbone in place of ResNet. EfficientNet is a deep learning archi
tecture that is designed to be computationally efficient while still 
achieving state-of-the-art performance on a wide range of computer 
vision applications, including image recognition, object detection, and 
semantic segmentation. EfficientNet achieves its efficiency through a 
combination of several techniques, one of which is compound scaling. 

This method scales the depth, width, and resolution of the network in a 
principled way, resulting in an improved trade-off between accuracy 
and computational efficiency. By utilizing this technique, EfficientNet is 
able to achieve state-of-the-art performance while maintaining a small 
computational footprint. Furthermore, EfficientNet employs 
Squeeze-and-Excitation (SE) blocks as an additional technique to 
enhance its performance. These SE blocks are designed to selectively 
amplify important features and reduce less relevant information, 
resulting in improved accuracy and efficiency of the network without 
adding significant computational loss to the network. EfficientNet also 
uses the Swish activation function, which has been shown to outperform 
traditional activation functions such as ReLU on our desired neuron 
segmentation task Ramachandran et al. (2017). 

The pyramid pooling module, which is added on top of the Effi
cientNet backbone, constitutes the second part of the PSPNet architec
ture Zhao et al. (2017). The pyramid pooling module in PSPNet is 
composed of parallel pooling layers with different kernel sizes, typically 
1, 2, 3, and 6. Each pooling layer applies a different pooling operation to 
the feature maps, which allows the network to capture contextual in
formation at multiple scales. The four pooling operations are average 
pooling, max pooling, square root of average pooling, and the square 
root of max pooling. Each pooling layer produces a fixed-sized output, 
regardless of the size of the input image, which allows for efficient 
computation. The outputs of the pooling layers are then concatenated 
and passed through a convolutional layer to produce the final segmen
tation map. 

The final layer in the PSPNet architecture is typically a convolutional 
layer that is used to up-sampling the feature maps back to their original 
image size. This layer restores the resolution of the feature maps that 
were reduced during the pooling operations in the pyramid pooling 
module. Additionally, the final layer is equipped with a softmax acti
vation function, which generates a probability distribution over the 
classes for every pixel in the input image. The output of the final layer is 
a segmentation map, where each pixel is assigned a class label (here, 
either the foreground neuron or the background) based on the highest 
probability in the distribution. In some variations of PSPNet, additional 
post-processing steps such as Conditional Random Fields (CRF) can be 
applied to the segmentation map to improve the accuracy of the final 
output. This step is omitted in the proposed framework in order to 
reduce the complexity. 

Ultimately, the presented architecture produces a 2D segmentation 
map of the neurons that has identical dimensions as the input image. 
This segmentation map provides a representation of the location and 
boundaries of the neurons present in the image, enabling further anal
ysis and interpretation of the neural structures. 

3.2. Combined Loss Function 

One of the main contributions of the presented work is the suggestion 
to use a weighted combination of Dice loss Sudre et al. (2017) and 
Lovász loss Berman et al. (2018) as the model’s loss function during 
training. Several sets of experiments confirmed that the network trained 
solely on Dice loss would converge once the general structure of the 
neurons is approximated. However, it may not be able to accurately 
detect the finer structures in the neuronal image. The Lovász loss, on the 
other hand, does not necessarily result in quick convergence of the 
network, unlike the Dice loss. In other words, it is resistant to premature 
convergence, allowing for the detection of finer neurites, such as 
neuronal branches. Additionally, it provides a better estimate of the 
width of different neuronal structures. 

The computation of the suggested combined loss function is 
demonstrated in Equation (1), where χ represents the contribution of 
Dice loss, and φ represents the contribution of Lovász loss. Additionally, 
y and ŷ denote the indicator functions for the true and estimated labels, 
respectively. 
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Loss(y, ŷ) = χLDice(y, ŷ) + φLLovász (y, ŷ) (1)  

The equation defining LDice(y, ŷ) is as follows: 

LDice(y, ŷ) =
1
N
∑N

i=1

(

1 −
2 yi ŷi

yi + ŷi

)

(2)  

Here, yi represents the indicator function for the true label of pixel i, 
while ŷi represents the indicator function for the estimated label of pixel 
i. Furthermore, LLovász is defined using the following equation: 

Lovász =
1
C
∑

c∈C
ΔJc(m(c)) (3)  

In this equation, C denotes the number of classes, and ΔJc is defined as 
follows: 

ΔJc(y, ŷ) = 1 − Jc(y, ŷ) (4)  

In the above equation, Jc is the Jaccard function which is defined by the 
following equation: 

Jc(y, ŷ) =
∣{ŷ = c} ∩ {y = c}∣
∣{ŷ = c} ∪ {y = c}∣

(5)  

The value of m for each pixel i in class c is computed using the following 
equation: 

mi(c) =
{

1 − fi(c) if c = ŷi
fi(c) otherwise (6)  

Here, fi refers to the class probabilities fi(c) ∈ [0,1] that are defined as 
follows: 

fi(c) =
eFi(c)

∑
c′∈C eFi(c′)

∀i ∈ [1, p], ∀c ∈ C (7)  

In this context, the function Fi refers to the softplus function, which is 
defined as Fi(c) = log(1+ ec), where c is a scalar value showing the class 
of pixel i. 

To optimize the changing weights during training, the polynomial 
learning rate policy Mishra and Sarawadekar (2019) is utilized for 
adjusting the learning rate: 

λ = λ0 ∗ (1 −
ι
θι
)

δ (8)  

In this equation, λ represents the running iteration learning rate, where 
λ0 is the initial learning rate, and ι denotes the number of iterations. 
There are a total of epochs times the number of iterations in each epoch, 
which gives θι, and δ is a hyperparameter that determines the shape of 
the polynomial curve. 

4. Experimental Results 

In this section, we present the results of applying our proposed 
neuron segmentation approach and other competing neuron segmen
tation approaches to raw 2D fluorescence micrographs of neurons. The 
purpose of this analysis is to evaluate the effectiveness of our proposed 
method against existing approaches in accurately segmenting individual 
neurons from 2D fluorescence microscopy image data, particularly when 
dealing with imperfect annotations. To achieve this goal, we evaluate 
each method’s performance by comparing their segmentation results to 
the ground truth data, considering the length of the neurons and the 
number of branches. 

4.1. Dataset 

For our research, we utilized a publicly available dataset Brosig et al. 
(2019b) consisting of 2D images of neurons, initially presented in Brosig 

et al. (2019a). Containing approximately 900 images of neurons with 
varying sizes and shapes, the dataset was recorded from primary hip
pocampal neurons of either C57 BL/6 or C57 Bl/6 PRG2 mice. For 
visualization of individual cells, neurons were transfected with a 
plasmid encoding for green fluorescent protein (GFP) after two days in 
culture, fixed after five days in culture, and immunolabeled for the axon 
marker Tau and GFP, following which they were imaged using a Nikon 
Eclipse Ti epifluorescence microscope with a 40x objective Brosig et al. 
(2019a). This must be noted that the neurons in this dataset were imaged 
at an early developmental stage when dendrites are not fully developed, 
resulting in relatively short dendritic structures. 

The process of manually tracing and annotating neurites has been 
carried out using NeuronJ Meijering et al. (2004), an ImageJ plugin that 
is widely used for its ability to perform semi-automated centerline 
tracing of 2D neuron structures. Using NeuronJ, an expert has classified 
each pixel in the ground truth data into two classes, that are the fore
ground and the background. The foreground class consists of the 
centerline of the neuron’s components, including its axon, dendrites, 
and their respective branches. Subsequently, we manually identified and 
incorporated the somas (cell bodies) of the neurons into the ground truth 
masks. The ratio of foreground to background areas in the ground truth 
data had an average of 0.04, suggesting a significant imbalance in the 
segmentation problem. 

Once the ground truth data was prepared, the dataset was parti
tioned into two subsets: training and testing. The training set comprised 
850 images, where 50 of them were allocated for validation during the 
training phase. The testing set contained 50 images unseen to the 
network, which were used for evaluating the model’s performance. 

4.2. Parameters Setting 

The stochastic gradient descent (SGD) algorithm was employed for 
training the model with a momentum of 0.9 and a start learning rate of 
0.001. 

A polynomial learning rate policy Mishra and Sarawadekar (2019) 
was utilized for optimizing the learning rate during the training with the 
combined loss function where φ and χ values were set to 0.1 and 0.9 to 
adjust the impact of Lovász loss and Dice loss in Equation (1), 
respectively. 

Additionally, the number of epochs and batch size were set to 10 and 
4, respectively. We observed that increasing the number of epochs did 
not result in improved quantitative outcomes, which could be attributed 
to transfer learning. Furthermore, through an extensive set of experi
ments, it was observed that smaller weights for the Lovász loss led to 
discontinuities in segmented neurons. At the same time, larger values 
resulted in unwanted thicker neurites in the segmentation outcomes. 

All of our training experiments were conducted on an NVIDIA Tesla 
T4 with 16 GB of VRAM, utilizing PyTorch bfloat16 precision during 
training. 

4.3. Criteria 

While a broader spectrum of quantitative measures, such as the re
gion occupied by the soma and a few more complicated morphological 
features of neurons, can also be simply calculated, the focus of this study 
is primarily on the total length of the neurites and the number of 
branches, which are considered the two most significant readouts in our 
study. All pertinent visual and numerical outcomes are stored for sub
sequent statistical analysis by executing the suggested method. 

4.4. Performance Comparison Results 

The proposed model’s performance and a few existing competing 
supervised segmentation methods have been evaluated on a test set of 50 
randomly taken images from the dataset. It should be noted that these 
images were not used during the training process and are new to all the 
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networks, ensuring that they are unseen by the system. The existing 
supervised segmentation methods used in performance comparisons 
include U-Net Ronneberger et al. (2015), Adapted-U-Net, StarDist 
Schmidt et al. (2018), SplineDist Mandal and Uhlmann (2021), and 
MICRA-Net Bilodeau et al. (2021). 

U-Net is a prevalent deep learning method for image segmentation, 
often employed in medical imaging. It utilizes a U-shaped encoder- 
decoder network with skip connections, enabling it to capture both 
local and global information. The skip connections also help retain 
spatial information lost during downsampling, enhancing the segmen
tation accuracy Ronneberger et al. (2015). 

To enhance the U-Net architecture’s ability to handle imperfectly 
annotated training samples, we incorporated our proposed weighted 
combination of Dice loss and Lovász loss as the loss function. This 
resulted in a modified U-Net segmentation architecture, referred to as 
the “Adapted-U-Net”, hereafter. 

StarDist Schmidt et al. (2018), which was initially developed for cell 
and nucleic segmentation, is a supervised deep machine learning 
network with the U-Net architecture as its foundation. Moreover, Spli
neDist Mandal and Uhlmann (2021) is an extension of the StarDist 
framework. Unlike StarDist, which uses star-convex polygons to repre
sent objects, SplineDist models object using parametric spline curves. 
Finally, MICRA-Net Bilodeau et al. (2021) is a deep learning approach 
designed to analyze microscopy data under weak supervision, address
ing the challenge of acquiring precisely annotated datasets that can be 
difficult or unfeasible to obtain. 

To ensure a fair comparison of the different methods, we conducted a 
thorough grid search to optimize the parameters of the competing 
methods with respect to our data. 

Figure 3 visually demonstrates the performance of our proposed 
method compared to the manual centreline detection of neurites used as 
the ground truth. As shown in the figure, our proposed method re
produces the manual analysis with a high degree of similarity. 

To quantitatively evaluate the results, we computed morphological 
readouts of the segmented neurons and compared them to those ob
tained by manual analysis performed by the expert user. The results, 
shown in Fig. 3-a, include the total lengths of all reconstructed neurites 
as a measure of neuron size and the number of branches as a measure of 
complexity. Our analysis of total length measurements demonstrates a 
strong correlation (R2 = 91.12%) between the automated reconstruction 
and manual reconstruction of the overall size of neurons. 

The method being used categorizes the points where neurites inter
sect as branches. In Fig. 3-b, the number of branches computed by the 

proposed method for each test image is displayed alongside the results 
obtained through manual analysis. Despite having a lower level of cor
relation (R2 = 80.30%) than the total length of the neuron, the proposed 
method is still considered acceptable and suitable for counting the 
number of branches in various applications, including the detection of 
phenotypes following biological treatments. 

Table 1 presents a comparison of the performance of the proposed 
method with other competing methods in terms of accuracy in calcu
lating the neuron length and in counting the number of neuronal 
branches. To achieve this, the correlations between the obtained results 
for each method and the ground-truth values are calculated in terms of 
R2 and presented in the table. 

The table clearly indicates that the traditional U-Net method is un
able to address the challenge of weak supervision caused by imperfectly 
annotated training samples. Furthermore, despite incorporating our 
proposed weighted combination of Dice loss and Lovász loss as the loss 
function in the “Adapted-U-Net” approach, the method was still unable 
to accurately segment the neuron images. While the results were supe
rior to those of the traditional U-Net, the network was not able to learn 
enough from the training samples in which only the centrelines had been 
annotated. 

Compared to the two aforementioned networks, the StarDist method 
demonstrated superior segmentation of the neuronal images, while the 
SplineDist method performed slightly better than the StarDist. We hy
pothesize that this performance difference could be due to the fact that 
the StarDist method is specifically designed to segment objects with a 
star-shaped appearance, whereas the SplineDist method utilizes spline- 
based curve fitting techniques. Given that the morphology of neurons 
can be approximated by a series of spline curves, the SplineDist method 
has been demonstrated to be more effective in segmenting neurons, 
compared with StarDist. However, both methods still struggle with 

Fig. 3. Visualization of the lengths and branch numbers of 50 neurons, comparing the ground truth (horizontal axis) with the predictions of the proposed method 
(vertical axis), with the correlations quantified by R2 scores. The lengths and branch numbers of neurons are expressed in pixel units. 

Table 1 
Comparison of the proposed method’s performance with other methods in terms 
of neuron length and branch count. Correlations with ground truth values are 
presented in terms of R2.  

Method Lengths R2 Branches R2 

U-Net, by Ronneberger et al. (2015)  0.0  0.0 
Adapted-U-Net  0.2600  0.0604 
StarDist2D, by Schmidt et al. (2018)  0.4708  0.3390 
SplineDist, by Mandal and Uhlmann (2021)  0.6438  0.5630 
MICRA-Net, by Bilodeau et al. (2021)  0.8379  0.8168 
Proposed Method  0.9112  0.8030  
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imperfect annotations where the entire mask of the neuron has not been 
annotated by the annotator, and only the centrelines are available for 
training. 

In contrast, the MICRA-Net method demonstrated significantly bet
ter performance than the four aforementioned networks. Although the 
method was not specifically designed to address the type of weak 
annotation presented in this paper, its ability to efficiently extract latent 
information under weak spatial supervision led to superior performance. 

Compared to other approaches, the proposed approach demon
strated the best accuracy in determining the size of neurons. However, in 
terms of accurately counting the number of branches, the proposed 
method ranked second among the evaluated methods. 

Furthermore, we evaluated the performance and number of param
eters of the proposed method by switching the backbone between 
ResNet101 and EfficientNet. The experimental results, presented in  
Table 2, indicate that the proposed PSPNet-based method achieved 
slightly lower accuracy in approximating the neuronal size when 
equipped with EfficientNet. However, the number of parameters was 
approximately three times lower compared to using ResNet-101 as the 

backbone. For our experiments, an Apple MacBook Pro with M2 Apple 
silicon and 8 GB RAM was used for the run-time tests. 

Figure 4 presents example results of applying the proposed method 
(PSPNet+EfficientNet-B0) to raw epifluorescent images randomly 
selected from the test set. The figure shows that the proposed segmen
tation approach is in good agreement with human manual tracing of the 
centerlines of neuronal structures. 

Finally, we illustrate the training progression of our network through 
its learning curve. Fig. 5 displays this curve for the weighted combined 
loss, plotted for both the total number of training iterations and epochs, 
to provide a dual perspective and enhance interpretability. As can be 
seen in the figure, the learning curve demonstrates a significant early 
drop in weighted loss, with diminishing improvements after ten epochs. 
Our data indicates that additional training after this point does not 
substantially enhance the loss reduction. Therefore, we limit training to 
ten epochs, balancing computational efficiency with the accuracy of key 
measures which are the neuron length and branch count. Our decision, 
supported by thorough experimental evidence, ensures both computa
tional expediency and the preservation of quantitative accuracy. 

4.5. Discussion on the limitations of the proposed approach 

While the proposed method has shown its effectiveness in addressing 
the significant challenge of neuronal image segmentation with imperfect 
annotations, it is pertinent to recognize and discuss certain limitations 
associated with our approach. 

Firstly, the applicability of our schema is confined to 2D images of 
neurons. It is not designed for, nor does it accommodate, 3D neuronal 
data. This limitation is a critical consideration, especially in contexts 
where three-dimensional data analysis is essential. 

Table 2 
Comparison of ResNet-101 and EfficientNet-B0 backbone architectures in the 
proposed neuron segmentation approach for measuring neuron length and 
branch count. PSPNet-ResNet-101 performs slightly better than EfficientNet-B0 
in accuracy, but has three times more parameters.  

Architecture Backbone Parameters Run 
Time 

Lengths 
R2 

Branches 
R2 

PSPNet ResNet-101 46 M 3.1 s  0.9120  0.8109 
PSPNet EfficientNet- 

B0 
15.2 M 1.0 s  0.9112  0.8030  

Fig. 4. Example results of the proposed method applied to randomly selected raw epifluorescent images from the test set, demonstrating compatibility of the 
proposed segmentation approach and human manual tracing of the centerlines of neuronal structures. From left to right: raw 2D images of developing neuronal cells, 
expert-created ground-truth data, and predictions made by the proposed network. The resulting centerlines are uniformly dilated for better visualization, as was done 
for the ground-truth data. 
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Moreover, the focus of our study is predominantly on early devel
oping neurons, characterized by elaborated axons and relatively un
derdeveloped axonal branches as well as short dendrites. This specificity 
means that our method may not be as effective when applied to mature 
neurons, which typically exhibit denser networks and more complex 
structural intricacies. As such, the applicability of our approach in sce
narios involving mature neuronal networks remains unexplored and 
potentially limited. 

Additionally, although our framework shows proficiency in seg
menting neuronal structures with perfect annotations, it is important to 
note that its performance in such scenarios is comparable to that of other 
existing segmentation methods but does not demonstrate superiority. 
This observation is a direct consequence of the design and optimization 
of our approach, which is intentionally specialized for handling imper
fect annotations. This specialization, while beneficial in certain con
texts, might not yield additional advantages when applied to datasets 
with perfect annotations. 

Lastly, the nature of the annotations used in training our algorithm 
significantly influences the output. Specifically, training with our 
generated set of imperfect annotations leads to predictions in the form of 
neuronal skeletons, as opposed to segmentation masks that result from 
training with conventional perfect annotations. This distinction in 
output formats might limit the scope of our method’s applicability, 
depending on the specific requirements of a given analysis or research 
objective. 

5. Conclusion 

This paper demonstrated the effectiveness of deep learning for 
fluorescence microscopic neuron image segmentation tasks. We have 
shown that our proposed model can achieve high accuracy on a dataset 
with weak annotations. The centerline labeling has been done via 
NeuronJ, which results in imperfect annotations. In order to ameliorate 
the performance of the PSPNet, an EfficientNet backbone has been uti
lized, which is pre-trained on the CityScapes dataset. We measured 
neuronal morphology from segmented images by extracting essential 
parameters, such as neuron length and branch number. These parame
ters are fundamentally relevant to neuroscience. We tested the proposed 
method on published data comprising manually quantified cultured 
mouse neurons. Our proposed fully-automated method can be used to 
analyze fluorescence microscopy images of 2D neurons in a high- 
throughput manner, thus facilitating the screening of several biolog
ical treatments and the analysis of a larger number of neurons for 
detecting changes in phenotypes following different biological 
treatments. 
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