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This solution of the problem of induction gives rise to a new
theory of the method of science, to an analysis of the critical
method, the method of trial and error: the method of proposing
bold hypotheses, and exposing them to the severest criticism, in
order to detect where we have erred.

— Karl Popper
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Abstract

The field of Explainable AI (XAI) aims to explain the decisions made by ma-
chine learning models. Recently, there have been calls for more rigorous and
theoretically grounded approaches to explainability. In my thesis, I respond to
this call by investigating the properties of explainability methods theoretically
and empirically. As an introduction, I provide a brief overview of the history
of XAI. The first contribution is a novel theoretically motivated attribution
method that estimates the importance of each input feature in bits per pixel,
an absolute frame of reference. The method is evaluated against 11 baselines
in several benchmarks. In my next publication, the limitations of modified
backward propagation methods are examined. It is found that many methods
fail the weight-randomization sanity check, and the reasons for these failures are
analyzed in detail. In a follow-up publication, the limitations of one particular
method, Deep Taylor Decomposition (DTD), are further analyzed. DTD has
been cited as the theoretical basis for many other attribution methods. However,
it is found to be either under-constrained or reduced to the simpler gradient
× input method. In the next contribution, a user study design is presented to
evaluate the helpfulness of XAI to users in practice. In the user study, only
a partial improvement is observed when users are working with explanation
methods compared to a baseline method. As a final contribution, a simple
and explainable model of the k-nearest neighbors regression is proposed. We
integrate higher-order information into this classical model and show that it
outperforms the classical k-nearest neighbors, while still maintaining much of
the simplicity and explainability of the original model. In conclusion, this thesis
contributes to the field of XAI by exploring explainability methods, identifying
their limitations, and suggesting novel, theoretically motivated approaches. My
work seeks to improve the performance and interpretability of explainable mod-
els toward more transparent, reliable, and comprehensible machine learning
systems.
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1 Introduction

1.1 Why Should We Explain Deep Neural Networks?

The topic of my dissertation is explaining the decisions made by Machine
Learning models. Different types of explanations exist for Machine Learning
models. For example, a model can be explained by presenting the most important
features that led to a specific decision. Or, the model can be explained by
presenting a counterfactual example, which is a similar input that would have
led to a different decision. Or even, a simple textual summary of the model’s
behavior could be considered an explanation. In the explainability literature, no
common definition of “an explanation” exists. In my dissertation, I will consider
anything that is created to help a human understand the model’s behavior as an
explanation.

Explanations are relevant for various applications: One such application is ex-
plaining decisions to end-users, such as providing detailed reports to physicians
about automatic medical diagnoses. In the case, that an AI model identifies a
tumor as malignant, specific features like irregular shape or increased density
that led to the classification could be presented, allowing the physician to better
understand and trust the model’s output (Hauser et al. 2022).

Another application is using explanations to debug models. Machine Learning
Engineers can detect bugs or biases in the model by examining explanations.
For example, if a loan approval model disproportionately rejects applicants from
a particular minority group, an explanation could reveal that the model places
too much weight on an irrelevant feature like the applicant’s postal code. This
insight enables the engineer to identify and address the issue.

When applying Machine Learning to scientific questions, Explainable AI
plays an important role in unveiling the underlying relationships and mecha-
nisms governing complex phenomena (Roscher et al. 2020). Researchers in
fields such as physics, chemistry, biology, and climate science often leverage
machine learning models to analyze large-scale data and identify patterns or
make predictions. However, the inherently opaque nature of these models can
hinder the scientific community’s ability to build upon these findings or develop
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a deeper understanding of the principles at play. Explainable AI bridges this
gap by demystifying the decision-making processes of these models, enabling
scientists to gain valuable insights into the interdependencies and interactions
between variables, and validate the models against established scientific theories.

Lastly, explanations are crucial in complying with legislation that requires
transparency and fairness such as the AI act (European Commission 2021).
Detailed explanations of the factors contributing to each decision enable in-
stitutions, such as financial organizations using AI models for credit scoring,
to demonstrate compliance with anti-discrimination laws and regulations. By
justifying credit risk assessments and ensuring the model does not discriminate
against protected groups, the institution can operate within the frameworks set
by relevant legislation and regulations.

Given the various ways in which explanations are applied, there are numerous
approaches to create explanations. For vision tasks, the most common approach
is to use saliency maps (Simonyan et al. 2013). They highlight the input features
most relevant to the network’s decision. For images, this can be visualized
using a heatmap, where the color intensity indicates the importance of the
corresponding pixel. Other approaches include prototypical explanations (Chen
et al. 2019a), textual explanations (Kim et al. 2018b), distilling simpler models
(Zhang et al. 2021a) and concept-based explanations (Kim et al. 2018a; Ghorbani
et al. 2019).

The importance of explanations can also be seen when looking at a possible
alternative: summary statistics such as accuracy, AUC, or F1 score. When com-
puted on a held-out test set, they provide a summary of the model’s capabilities,
e.g. how well it generalizes to unseen data. These metrics can also be seen as
an explanation of the model’s capabilities. Especially, when curating custom
test sets, also other properties than generalization accuracy can be measured.
For example, by creating two test sets, one containing only samples of men
and the other only women, it can be determined whether the model is equally
accurate for both. While these summary statistics provide crucial information
about the model’s capabilities, they may be inadequate when it is impossible to
collect a representative test set, such as when the model is used in a production
environment with changing data distribution. Furthermore, metrics computed
over test sets do not provide any information regarding individual data points.
For example, regulations might require to demonstrate that for each prediction,
certain prohibited features did not influence the decision.
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1.2 Challenges of Explainable AI

At first, it may seem that the decisions of deep neural networks could be explained
easily; after all, neural networks are fully observable systems whose inputs
and internal parameters are all known, and they operate according to a well-
defined algorithm. However, modern neural networks consist of millions or even
billions of parameters and are capable of learning highly complex functions.
Thus, providing an algorithm and the network’s parameters might enable a
computer to reproduce the prediction. Even, for a human, it would not be a
helpful explanation but rather a disordered mess.

Explanation methods must therefore break down these complex models to
deliver concise explanations. Necessarily, this means that explanations must
simplify the model’s decision process; otherwise, the explanation would be as
complex as the model itself and consequently not understandable to the end-user.
One example of such a simplification is focusing on the local neighborhood
surrounding an input sample. In addition, approximations such as linearization
are often used, e.g., gradient-based methods (Simonyan et al. 2013; Sundararajan
et al. 2017), or assumptions such as the independence of the input features,
are made (see (Kumar et al. 2020) for a discussion on the approximations of
Shapley values). Unfortunately, these simplifications and assumptions are often
introduced without transparency, and the differences between the original model
and the simplified explanation are seldom quantified.

A negative example is the widely used integrated gradients method (Sun-
dararajan et al. 2017). The integrated gradient method was built on results for
path methods (Friedman 2004) from the cost-sharing literature. The question of
cost-sharing arises in cooperative game theory, which deals with the fair distri-
bution of costs among multiple agents. In the context of integrated gradients,
the authors (Sundararajan et al. 2017) argue that the individual input dimensions
(e.g. pixels) can be considered agents, and the model’s prediction is the cost that
is shared among them. The path method from (Friedman 2004) then provides
a mechanism to assign attribution of to the individual dimensions. However,
(Sundararajan et al. 2017) did not discuss the assumptions made in (Friedman
2004) and whether they are valid for neural networks too. In fact, the recent
work (Lundstrom et al. 2022) shows that neural networks are not contained in
the function class discussed in (Friedman 2004). Thus, the claimed theoretical
justification of integrated gradients does not hold for neural networks in general.

Contrary to the integrated gradients method, the publication (Chen et al.
2019b) provides a theoretical guarantee on the approximation error of the Shap-

– 3 –



ley value (Shapley 1951). Shapley values also have their origins in cooperative
game theory (Shapley 1951) and have been adapted for explainable AI to at-
tribute the contribution of input features to a model’s prediction. Despite their
desirable properties (e.g., efficiency, symmetry, linearity, null player), com-
puting exact Shapley values can be computationally expensive, as it requires
computing the model’s prediction for an enormous number of permutations
of the input features. In the work (Chen et al. 2019b), the authors provide a
new approximation method for Shapley values and also provide a theoretical
guarantee on the approximation error.

The issue of unclear assumptions and approximations becomes even more
complex due to the challenges in evaluating explanation methods. If we do not
understand the model, how can we evaluate the correctness of the explanations?
Moreover, no ground truth about a “correct” explanation exists. First, an erratic-
looking explanation might correctly explain a faulty model. Furthermore, there
might not be a single “correct” explanation, as different applications might
justify different assumptions.

Different proxy tasks have been proposed to address this problem. For ex-
ample, (Samek et al. 2016) introduced the so-called MoRF / LeRF task, which
masks the input based on the relative importance of the features. Another task
is the bounding box task, which measures how many of the highest-scored input
features are contained in ground-truth bounding boxes (Schulz et al. 2020).

Another approach is the sanity checks proposed in (Adebayo et al. 2018). For
example, the authors propose to randomize the network’s weights and measure
the effect on the resulting explanations – surprisingly, the explanations of one
method, GuidedBP (Springenberg et al. 2014), did not change.

In summary, explainable AI methods must make some simplifications and
assumptions to create understandable explanations. However, these simplifi-
cations and assumptions are often not discussed transparently. Furthermore,
the lack of hard ground truth makes it difficult to evaluate the correctness of
the explanations. While a set of proxy tasks and sanity checks can be used to
evaluate the explanations, each evaluation also has its own blind spots.

1.3 Contributions

My contributions address the previously outlined challenges in explainable AI,
aiming to foster a more rigorous and transparent field.

Throughout my work, I have focused on several subtopics of explainability,
including the development and technical evaluation of a theoretically grounded
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saliency method (Schulz et al. 2020), the empirical and theoretical evaluation
of modified backpropagation methods (Sixt et al. 2020; Sixt et al. 2022a), a
human subject study (Sixt et al. 2022b), and the development of a simple and
interpretable model (Nader et al. 2022).

(Schulz et al. 2020) introduced a new explanation method, which is based
on the information bottleneck theory (Tishby et al. 2000). The main advantage
over existing methods is that the amount of information used can be quantified
in bits per pixel. In this publication, we conducted a comprehensive evaluation
of saliency maps involving 10 methods, demonstrating that our new method
consistently outperforms the others.

In (Sixt et al. 2020), we applied the weight-randomization sanity check (Ade-
bayo et al. 2018) to so-called modified backpropagation methods and found that
many of them do not pass it. The sanity check tests whether the explanations
change when the network’s parameters are randomized. If this is not the case, the
explanation method can not explain the model’s prediction. In our publication,
we also investigate why the methods fail the sanity check to better understand
which assumptions or simplifications are responsible for the failure.

In a follow-up publication (Sixt et al. 2022a), we analyzed the Deep Taylor
Decomposition (DTD) (Montavon et al. 2017), which is cited as the theoretical
basis of several modified backpropagation methods (Kindermans et al. 2018a;
Holzinger et al. 2022). We found that the so-called train-free approximation
leads to a violation of the assumptions of the Taylor theorem. Furthermore,
the theory of DTD either degrades to the gradient × input method or is under-
constrained.

Besides the theoretical analyses, a design for a human-subject study is pre-
sented (Sixt et al. 2022b). Given the absence of ground truth for correct ex-
planations, human-subject studies serve as the gold standard for evaluating
explainability methods.

In our study design, we proposed a bias-detection task, i.e. users have to use
explanation to detect whether the model is biased towards a certain property.
In the study, we found that a simple baseline based on the model’s logit scores
performed surprisingly well, and even a strong generative explanation method
did not significantly outperform the baseline.

In the manuscript (Nader et al. 2022), we extended k-NN regression by
including higher-order derivatives. For the evaluation, we conducted a thorough
comparison against existing methods on a large number of datasets.

The contributions of this thesis aim to positively impact the field of explainable
AI by providing more rigorous and transparent methods for evaluating and
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understanding model explanations. I contribute to the ongoing development of
reliable, accurate, and user-friendly AI systems.

1.4 Structure of the Thesis

The thesis is structured as follows: In the next chapter 2, I provide an overview
of the history of explainable AI and the field’s current state. Subsequently, each
publication is presented with a brief introduction in chapters 3,4, 5, 6, and 7.
Finally, I conclude with a discussion of my work and future directions in Chapter
8.
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1.5 Contributions To Individual Publications

In this section, I summarize the contributions to the publications according to §
7 Abs. 3 of the doctoral regulations from 1st December 2021:

1.5.1 Restricting the Flow: Information Bottlenecks for Attribution

L.S. conceived the general idea. K.S. had the idea of the per-sample bottleneck.
K.S. implemented the algorithm. L.S. extended the evaluation and added more
baselines. L.S., K.S., F.T., and T.L wrote the paper together. F.T. and T.L.
provided supervision. The open-source library was implemented by K.S. and
L.S.

1.5.2 When Explanations Lie: Why Many Modified BP Attributions Fail

L.S. had the idea after performing the sanity checks in (Schulz et al. 2020). L.S.
conducted the empirical experiments. M.G. proved the theoretical result. L.S.,
M.G., and T.L. wrote the paper. T.L. provided supervision.

1.5.3 Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
Dataset

The paper’s conception was a collaborative process between L.S., M.S., and
T.L. P.W. wrote the original Two4Two data generator, which L.S. significantly
extended. M.S. designed the user study. O.-I.P. worked on a counterfactual
method, designed the questionnaire to measure the user’s understanding together
with M.S. and ran pre-study interviews. L.S trained the models and created the
explanations used in the study. M.S. and L.S performed the statistical analysis.
L.S., M.S., O.-I.P., and T.L wrote the manuscript. T.L. provided supervision.

1.5.4 DNNR: Differential Nearest Neighbors Regression

Y.N. conceived the idea. Y.N. implemented the algorithm and experiments. L.S.
derived the theoretical results. Y.N., L.S., and T.L. wrote the paper. L.S. and
T.L. provided supervision.

1.5.5 A Rigorous Study Of The Deep Taylor Decomposition

L.S. had the idea, implemented the empirical experiments, and derived the
theoretical results. L.S. wrote the paper together with T.L.. T.L. provided
supervision.
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2 History Of The Field

The long history of explanation methods is often overlooked. For example,
(Bauer et al. 2021) state that “[...] interpretable machine learning as a field is
still in its infancy and requires more scrutiny and rigorous scientific research”.
While I agree with the call for more scrutiny and rigor, I would like to point out
that the field actually has a rich history of more than 50 years. In this section, I
aim to recapitulate each period of research by outlining the major motivations,
questions, and ideas from the late 1960s until the arrival of deep learning at the
beginning of 2010.

The Beginning: The first AI system that was in some sense able to explain its
decisions was Winograd’s SHRDLU system (Winograd 1972). The system was
a dialogue system that could understand English commands about a simulated
3D world. Users gave natural language commands to the system to move objects
such as boxes, blocks, and pyramids around in a the simulated 3D world. A
typical command would be Pick up a green block. The user could also ask why
questions such as: Why did you do that? TO CLEAN OFF THE RED CUBE.
The explanation was derived from the internal stack of recent actions. However,
(Winograd 1972) did not discuss why one should include explanations in a
dialogue system. Therefore, I assume that the main motivation was to cover as
much English grammar as possible.

I found the first call for explanations in (Gorry 1973) with in the context of
medical diagnosis:

“The other side of the coin is explanation. If experts are to use and
improve the program directly, then it must be able to explain the
reasons for its actions. Furthermore, this explanation must be in
terms the physicians can understand. The steps in a deduction and
the facts employed must be identified for the expert so that he or
she can correct one or more of them if necessary. As a corollary,
the user must be able to easily find out what the program knows
about a particular subject.” — (Gorry 1973)
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Although Gorry raised the need to explain the decisions first, his own system
(Gorry 1967), which was based on the famous ELIZA program (Weizenbaum
1966), was not able to explain its decisions.

Influenced by Gorry’s remark, (Shortliffe 1976) developed the first system
(MYCIN) that provided explanations for its decision. A doctor could ask MYCIN
to explain its rules and the steps it took to reach a conclusion.

(Teach et al. 1981) surveyed physicians about computer-based consultation
systems and found that a system’s explanations were the most important feature
for physicians. The need for explanations in the medical field was recognized
early on.

Explanation-Based Learning: A planning system for robots (Fikes et al.
1972) inspired the development of explanation-based learning systems in the
1980s (Silver 1983; Mitchell 1982; DeJong 1981).

The main idea behind explanation-based learning is to generalize from exam-
ples by identifying and removing irrelevant information, thus resulting in more
general examples. For instance, suppose an agent is asked to arrange boxes of
different colors and sizes. As the boxes are stacked above each other, the agent
has to solve a series of sub-problems. The solution to one specific problem
(e.g., ”Stack the blue box on top of the red box”) can be reused later if the agent
identifies irrelevant information (e.g., the specific color). While in the simplest
case, single attributes (e.g. color = blue) are replaced by intervals (e.g., ”color
= any RGB value”), more elaborated generalizations can be made by describing
partial intervals or interactions between attributes.

However, a major limitation of explanation-based learning systems is the need
for a domain theory to specify irrelevant properties. The publications (Mitchell
et al. 1986; Dejong et al. 1986) and the survey (Ellman 1989) provide a good
introduction to the field.

Rules And Neural Networks In the late 1980s, connectionism experienced a
resurgence in popularity with the popularization of the backpropagation algo-
rithm in (Rumelhart et al. 1986). With this renewed interest came the question
of how to extract rules from neural networks. An early approach to this question
was proposed by (Berzuini 1988) who extracted rules from a simple regression
model. Soon after, (Towell et al. 1991) proposed the KBANN algorithm, which
combined an artificial neural network with an expert system. The authors con-
cluded that ”interpretation of ANNs (artificial neural networks) after learning
can be helpful in understanding why the ANN behaves as it does”.

– 10 –



The construction of rules from neural networks became an active line of
research in the early 1990s, with the goal of increasing the comprehensibility
of neural networks. Studies in this area include those by (Towell et al. 1991;
Mahoney et al. 1992; Setiono et al. 1996; Tresp et al. 1992; Craven et al. 1993;
Giles et al. 1993). Relevant Ph.D. theses in this area include (Towell 1993) and
(Craven et al. 1993).

Relevance Measures Pruning methods for neural networks were the first to
analyze the relevance of neurons. One of the first works in this area was proposed
by (Mozer et al. 1988), who suggested using the gradient with respect to the
neurons to prune them.

(LeCun et al. 1989) additionally incorporated second-order terms and noted
that deleting parameters by the order of saliency causes a significantly smaller in-
crease of the objective function than deleting them according to their magnitude.
This established early on that a neuron’s magnitude and saliency differ.

(Sanger 1989) was one of the first works to analyze neurons’ contributions
with the goal to understand the networks better. They analyzed the NETtalk
network (Sejnowski et al. 1987), which learned to transcript English words to
phonemes.

(Garson 1991) was motivated by the black box character of neural networks
and aimed at deriving relative importance for the inputs. (Garson 1991) cal-
culated the inputs’ importance of a 2-layered MLP by multiplying the layer’s
weights and normalizing them per hidden and input neuron (see also Goh 1995).
This work (Garson 1991) is remarkable since it is the first work that raises the
question of how to interpret the weights of a neural network. Additionally, they
simulated the data-generating process in order to have a ground truth to compare
their results – something later work omitted.

However, (Garson 1991) ignored the non-linearity of the activation function
and also took the absolute value of the weights. Consequently, it is not surprising
that (Sarle 2000) found the importance to be not calculated correctly on a simple
example (additive model with three inputs). Extensions of this approach (Milne
1995; Gedeon 1997) suffer from the same problem.

In an application to trout growth, (Lek et al. 1996) quantifies the importance of
input features by changing each dimension separately and measuring the effect on
the model output. Another study (Scardi et al. 1999) uses randomization of inputs
to measure importance in the context of phytoplankton primary production.

A review of different methods for measuring input sensitivity was conducted
by (Gevrey et al. 2003). The methods used in this review include partial input
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differences (Dimopoulos et al. 1995; Fu et al. 1993), input perturbation (Scardi
et al. 1999), Garson’s method (Garson 1991), the profile method (Lek et al.
1996), and the stepwise method (Sung 1998). The stability of each method was
calculated by training the network ten times with different random seeds, and the
PaD method was found to give the most stable results. However, the study design
was questioned in (Olden 2004) due to its reliance on an empirical dataset with
an unknown ”true correlation structure” and the influence of different random
initializations on the stability measure. To address these concerns, they proposed
using a synthetic dataset and measuring how well the methods ranked the input
features. According to (Olden 2004), the best-performing method was the
Connection Weight Approach (Olden et al. 2002).

Many publications on input sensitivity were motivated by ecological applica-
tions and were published in the journal Ecological Modelling (Lek et al. 1996;
Dimopoulos et al. 1999; Scardi et al. 1999; Olden et al. 2002; Gevrey et al. 2003;
Pastor-Bárcenas et al. 2005; Gevrey et al. 2006). Probably, ecological modeling
strikes a good balance between being too complex for linear models but still
simple enough that shallow MLPs were sufficient. Furthermore, quantifying
the effect of input variables might steer and prioritize real-world changes such
as the renaturation of rivers or regulation of fertilizer use.

In the 1990s and early 2000s, the problem of feature importance was solely
studied for the importance of the whole dataset and not for the importance of
individual examples. The main reason was that the models were shallow (e.g.,
one hidden layer) and that the same feature dimension was used for all examples.

The first work that analyzed the importance of features for individual examples
was (Baehrens et al. 2010). The work (Simonyan et al. 2013) introduced saliency
maps for deep neural networks. For the related work on saliency maps since
(Simonyan et al. 2013), see the related work section of (Schulz et al. 2020) in
chapter 3.

Summary of the History First, it is surprising that (Gorry 1973) already
identified the black-box problem as problematic. The field of explanation-
based learning (EBL), popular in the 80s was a completely different way of
generalization than is used today. EBL puts explanations at the center of learning.
For neural networks, rule extraction and pruning were early applications of
explainability. The research on feature importance in the 1990s and 2000s has
similarities with the current field of saliency maps. For example, the points
made in the controversy between (Gevrey et al. 2003) and (Olden 2004) on how
to evaluate methods is still valid today.
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3 Restricting the Flow:
Information Bottlenecks for
Attribution

Saliency methods highlight the regions of an input image based on their relevance
for the model’s decision. In recent years, various saliency methods have been
proposed (Simonyan et al. 2013; Shrikumar et al. 2017a; Bach et al. 2015). A
limitation of these methods is that they only provide relative importance scores
for each input feature, i.e. the importance can only be compared within the same
image. For instance, input gradients (the change in the output w.r.t. the input
dimension) might have the unit of logit/pixel, but they are not comparable across
models and datasets, as the output and input scale might differ. Furthermore,
as saliency maps are post-processed by outlier clipping and normalized to the
range [0, 1], they can also be difficult to compare across different samples.

To introduce an absolute frame of reference, we developed a method that
provides absolute importance scores for each input feature in bits per pixel.
This absolute frame of reference allows us to compare the importance across
different models and datasets. The work builds on the master thesis of Karl
Schulz (Schulz 2019), which I co-supervised.

Building on Karl’s thesis, we published our work “Restricting the Flow:
Information Bottlenecks for Attribution” at ICLR 2020 (Schulz et al. 2020). The
main idea of our work is to add noise to reduce the information flow from the
input to the output. By minimizing the amount of information while retaining
the original network’s output, we can estimate the importance of each image
region. Our method is inspired by the information bottleneck method (Tishby
et al. 2000) and the variational autoencoder (Kingma et al. 2013).

Furthermore, we provided a thorough technical evaluation of Information
Bottleneck Attribution (IBA) using the MoRF / LeRF metrics, the weight-
randomization sanity checks, and the sensitivity-n (Ancona et al. 2017) metric.
From all eleven evaluated methods, our method consistently outperformed the
other methods.
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Other researchers extended our work to the transformer architecture (Jiang
et al. 2020) and it was used as a baseline in (Cao et al. 2020). In (Cao et
al. 2020), IBA was criticized for having a so-called hindsight bias. As IBA
relies on gradient information obtained from the model output, it would remove
information too aggressively. For example, at a current layer, it might not have
been determined whether a certain feature is important or not. However, using
information from later layers through the backpropagation of the gradient, this
feature might still be masked. While this criticism is valid in principle, it could
be easily fixed by using only the local layer’s activation as input to the Readout
network.

The follow-up work InputIBA (Zhang et al. 2021b) estimated the input fea-
tures’ relevance scores. Their approach allows using IBA also for NLP models
where saliency maps cannot be upscaled as for convolutional networks. Com-
pared to various baselines and a wide range of tasks (weight-randomization
sanity checks, Sensitivity-N, Insertion/Deletion, ROAR, Effective Heat Ratios),
they report InputIBA to be consistently performing as the best method.

Besides the work building on our method, we received over 120 citations
within the past few years. Also, our work was accepted for a long talk at ICLR
2020, which placed it in the top 7% of all accepted papers.

The work on ”Restricting the Flow: Information Bottlenecks for Attribution”
is an important part of my thesis. We have developed a method that quantifies
the importance of input features in deep learning models, with the theoretical
properties of quantifying the amount of used information. This provides an
absolute frame of reference to enable comparisons of importance across different
models and datasets. This work shows that theoretical foundations can be used
on the one hand to develop new methods and on the other hand that theoretical
foundations also provide an improvement compared to heuristics.
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ABSTRACT

Attribution methods provide insights into the decision-making of machine learning
models like artificial neural networks. For a given input sample, they assign a
relevance score to each individual input variable, such as the pixels of an image. In
this work, we adopt the information bottleneck concept for attribution. By adding
noise to intermediate feature maps, we restrict the flow of information and can
quantify (in bits) how much information image regions provide. We compare
our method against ten baselines using three different metrics on VGG-16 and
ResNet-50, and find that our methods outperform all baselines in five out of six
settings. The method’s information-theoretic foundation provides an absolute frame
of reference for attribution values (bits) and a guarantee that regions scored close
to zero are not necessary for the network’s decision.

1 INTRODUCTION

Figure 1: Exemplary heatmap
of the Per-Sample Bottleneck
for the VGG-16.

Deep neural networks have become state of the art in many real-
world applications. However, their increasing complexity makes
it difficult to explain the model’s output. For some applications
such as in medical decision making or autonomous driving, model
interpretability is an important requirement with legal implications.
Attribution methods (Selvaraju et al., 2017; Zeiler & Fergus, 2014;
Smilkov et al., 2017) aim to explain the model behavior by assigning
a relevance score to each input variable. When applied to images,
the relevance scores can be visualized as heatmaps over the input
pixel space, thus highlighting salient areas relevant for the network’s
decision.

For attribution, no ground truth exists. If an attribution heatmap
highlights subjectively irrelevant areas, this might correctly reflect
the network’s unexpected way of processing the data, or the heatmap might be inaccurate (Nie et al.,
2018; Viering et al., 2019; Sixt et al., 2019). Given an image of a railway locomotive, the attribution
map might highlight the train tracks instead of the train itself. Current attribution methods cannot
guarantee that the network is ignroing the low-scored locomotive for the prediction.

We propose a novel attribution method that estimates the amount of information an image region
provides to the network’s prediction. We use a variational approximation to upper-bound this estimate
and therefore, can guarantee that areas with zero bits of information are not necessary for the
prediction. Figure 1 shows an exemplary heatmap of our method. Up to 3 bits per pixel are available
for regions corresponding to the monkeys’ faces, whereas the tree is scored with close to zero bits per
pixel. We can thus guarantee that the tree is not necessary for predicting the correct class.

To estimate the amount of information, we adapt the information bottleneck concept (Tishby et al.,
2000; Alemi et al., 2017). The bottleneck is inserted into an existing neural network and restricts
the information flow by adding noise to the activation maps. Unimportant activations are replaced
almost entirely by noise, removing all information for subsequent network layers. We developed
two approaches to learn the parameters of the bottleneck – either using a single sample (Per-Sample
Bottleneck), or the entire dataset (Readout Bottleneck).

1
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We evaluate against ten different baselines. First, we calculated the Sensitivity-n metric proposed
by Ancona et al. (2018). Secondly, we quantified how well the object of interest was localized
using bounding boxes and extend the degradation task proposed by Ancona et al. (2017). In all
these metrics, our method outperforms the baselines consistently. Additionally, we test the impact of
cascading layer-wise weight randomizations on the attribution heatmaps (Adebayo et al., 2018). For
reproducibility, we share our source code and provide an easy-to-use* implementation.

We name our method IBA which stands for Information Bottleneck Attribution. It provides a theoretic
upper-bound on the used information while demonstrating strong empirical performance. Our work
improves model interpretablility and increases trust in attribution results.

To summarize our contributions:

• We adapt the information bottleneck concept for attribution to estimate the information used
by the network. Information theory provides a guarantee that areas scored irrelevant are
indeed not necessary for the network’s prediction.

• We propose two ways – Per-Sample and Readout Bottleneck – to learn the parameters of the
information bottleneck.

• We contribute a novel evaluation method for attribution based on bounding boxes and we
also extend the metric proposed by Ancona et al. (2017) to provide a single scalar value and
improve the metric’s comparability between different network architectures.

2 RELATED WORK

Attribution is an active research topic. Gradient Maps (Baehrens et al., 2010) and Saliency Maps (Si-
monyan & Zisserman, 2014) are based on calculating the gradient of the target output neuron w.r.t. to
the input features. Integrated Gradient (Sundararajan et al., 2017) and SmoothGrad (Smilkov et al.,
2017) improve over gradient-based attribution maps by averaging the gradient of multiple inputs,
either over brightness level interpolations or in a local neighborhood. Other methods, such as Layer-
wise Relevance Propagation (LRP) (Bach et al., 2015), Deep Taylor Decomposition (DTD) (Montavon
et al., 2017), Guided Backpropagation (GuidedBP) (Springenberg et al., 2014) or DeepLIFT (Shriku-
mar et al., 2017) modify the propagation rule. PatternAttribution (Kindermans et al., 2018) builds
upon DTD by estimating the signal’s direction for the backward propagation. Perturbation-based
methods are not based on backpropagation and treat the model as a black-box. Occlusion (Zeiler
& Fergus, 2014) measures the importance as the drop in classification accuracy after replacing in-
dividual image patches with zeros. Similarly, blurring image patches has been used to quantify the
importance of high-frequency features (Greydanus et al., 2018) .

Grad-Cam (Selvaraju et al., 2017) take the activations of the final convolutional layer to compute
relevance scores. They also combine their method with GuidedBP: GuidedGrad-CAM. Ribeiro et al.
(2016) uses image superpixels to explain deep neural networks. High-level concepts rather input
pixels are scored by TCAV (Kim et al., 2018). Khakzar et al. (2019) prune irrelevant neurons. Similar
to our work, Macdonald et al. (2019) uses a rate-distortion perspective, but minimize the norm of the
mask instead of the shared information. To the best of our knowledge, we are the first to estimate the
amount of used information for attribution purposes.

Although many attribution methods exist, no standard evaluation benchmark is established. Thus,
determining the state of the art is difficult. The performance of attribution methods is highly dependent
on the used model and dataset. Often only a purely visual comparison is performed (Smilkov et al.,
2017; Springenberg et al., 2014; Montavon et al., 2017; Sundararajan et al., 2017; Bach et al., 2015).
The most commonly used benchmark is to degrade input images according to the attribution heatmap
and measure the impact on the model output. (Kindermans et al., 2018; Samek et al., 2016; Ancona
et al., 2017). The Sensitivity-n score (Ancona et al., 2018) is obtained by randomly masking the input
image and then measuring the correlation between removed attribution mass and model performance.
For the ROAR score (Hooker et al., 2018), the network is trained from scratch on the degraded
images. It is computationally expensive but avoids out-of-domain inputs – an inherent problem of
masking. Adebayo et al. (2018) proposes a sanity check: if the network’s parameters are randomized,
the attribution output should change too.

*https://github.com/BioroboticsLab/IBA
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Adding noise to a signal reduces the amount of information (Shannon, 1948). It is a popular
way to regularize neural networks (Srivastava et al., 2014; Kingma et al., 2015; Gal et al., 2017).
For regularization, the noise is applied independently from the input and no attribution maps can
be obtained. In Variational Autoencoders (VAEs) (Kingma & Welling, 2013), noise restricts the
information capacity of the latent representation. In our work, we construct a similar information
bottleneck that can be inserted into an existing network. Deep convolutional neural networks have
been augmented with information bottlenecks before to improve the generalization and robustness
against adversarial examples (Achille & Soatto, 2018; Alemi et al., 2017). Zhmoginov et al. (2019)
and Taghanaki et al. (2019) extract salient regions using information bottlenecks. In contrast to our
work, they add the information bottleneck already when training the network and do not focus on
post-hoc explanations.

3 INFORMATION BOTTLENECK FOR ATTRIBUTION

Instead of a backpropagation approach, we quantify the flow of information through the network in
the forward pass. Given a pre-trained model, we inject noise into a feature map, which restrains the
flow of information through it. We optimize the intensity of the noise to minimize the information
flow, while simultaneously maximizing the original model objective, the classification score. The
parameters of the original model are not changed.

3.1 INFORMATION BOTTLENECK FOR ATTRIBUTION

Generally, the information bottleneck concept (Tishby et al., 2000) describes a limitation of available
information. Usually, the labels Y are predicted using all information from the input X . The
information bottleneck limits the information to predict Y by introducing a new random variable Z.
The information the new variable Z shares with the labels Y is maximized while minimizing the
information Z and X share :

max I[Y ;Z]− βI[X,Z] , (1)
where I[X,Z] denotes the mutual information and β controls the trade-off between predicting the
labels well and using little information of X . A common way to reduce the amount of information is
to add noise (Alemi et al., 2017; Kingma & Welling, 2013).

For attribution, we inject an information bottleneck into a pretrained network. The bottleneck is
inserted into an layer which still contains local information, e.g. for the ResNet the bottleneck is
added after conv3 * (after the last conv3 block). Let R denote the intermediate representations at this
specific depth of the network, i.e. R = fl(X) where fl is the l-th layer output. We want to reduce
information in R by adding noise. As the neural network is trained already, adding noise should
preserve the variance of the input to the following layers. Therefore, we also damp the signal R when
increasing the noise, effectively replacing the signal partly with noise. In the extreme case, when
no signal is transmitted, we replace R completely with noise of the same mean and variance as R.
For this purpose, we estimate the mean µR and variance σ2

R of each feature of R empirically. As
information bottleneck, we then apply a linear interpolation between signal and noise:

Z = λ(X)R+ (1− λ(X)) ε , (2)

where ε ∼ N (µR, σ
2
R) and λ(X) controls the damping of the signal and the addition of the noise.

The value of λ is a tensor with the same dimensions as R and λi ∈ [0, 1]. Given λi(X) = 1 at the
feature map location i, the bottleneck transmits all information as Zi = Ri. Whereas if λi = 0, then
Zi = ε and all information of Ri is lost and replaced with noise. It could be tempting to think that Z
from equation 2 has the same mean and variance as R. This is not the case in general as λ(X) and R
both depend on X (for more detail see Appendix E).

In our method, we consider an area relevant if it contains useful information for classification.
We need to estimate how much information Z still contains about R. This quantity is the mutual
information I[R,Z] that can be written as:

I[R,Z] = ER[DKL[P (Z|R)||P (Z)]] , (3)

where P (Z|R) and P (Z) denote the respective probability distributions. We have no analytic expres-
sion for P (Z) since it would be necessary to integrate over the feature map p(z) =

∫
R
p(z|r)p(r)dr

3
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Figure 2: Per-Sample Bottleneck: The mask (blue) contains an αi for each ri in the intermediate
feature maps R (green). The parameter α controls how much information is passed to the next layer.
The mask α is optimized for each sample individually according to equation 6.

– an intractable integral. It is a common problem that the mutual information can not be computed ex-
actly but is instead approximated (Poole et al., 2019; Suzuki et al., 2008). We resort to a variational
approximation Q(Z) = N (µR, σR) which assumes that all dimensions of Z are distributed normally
and independent – a reasonable assumption, as activations after linear or convolutional layers tend
to have a Gaussian distribution (Klambauer et al., 2017). The independence assumption will gener-
ally not hold. However, this only overestimates the mutual information as shown below. Substituting
Q(Z) into the previous equation 3, we obtain:

I[R,Z] = ER[DKL[P (Z|R)||Q(Z)]]−DKL[P (Z)||Q(Z)] . (4)

The derivation is shown in appendix D and follows Alemi et al. (2017). The first term contains
the KL-divergence between two normal distributions, which is easy to evaluated and we use it to
approximate the mutual information. The information loss function LI is therefore:

LI = ER[DKL[P (Z|R)||Q(Z)]] . (5)

We know that LI overestimates the mutual information, i.e. LI ≥ I[R,Z] as the second KL-
divergence term DKL[P (Z)||Q(Z)] has to be positive. If LI is zero for an area, we can guarantee
that information from this area is not necessary for the network’s prediction. Information from this
area might still be used when no noise is added.

We aim to keep only the information necessary for correct classification. Thus, the mutual information
should be minimal while the classification score should remain high. Let LCE be the cross-entropy
of the classification. Then, we obtain the following optimization problem:

L = LCE + βLI , (6)

where the parameter β controls the relative importance of both objectives. For a small β, more bits of
information are flowing and less for a higher β. We propose two ways of finding the parameters λ –
the Per-Sample Bottleneck and the Readout Bottleneck. For the Per-Sample Bottleneck, we optimize
λ for each image individually, whereas in the readout bottleneck, we train a distinct neural network
to predict λ.

3.2 PER-SAMPLE BOTTLENECK

For the Per-Sample Bottleneck, we use the bottleneck formulation described above and optimize L for
individual samples – not for the complete dataset at once. Given a sample x, λ is fitted to the sample
to reflect important and unimportant regions in the feature space. A diagram of the Per-Sample
Bottleneck is shown in Figure 2.

Parameterization The bottleneck parameters λ have to be in [0, 1]. To simplify optimization, we
parametrize λ = sigmoid(α). This parametrization allows α ∈ Rd and avoids any clipping of λ to
[0, 1] during optimization.

Initialization As when training neural networks, the initialization of parameters matters. In the
beginning, we want to retain all the information. For all dimensions i, we initialize αi = 5 and thus
λi ≈ 0.993⇒ Z ≈ R. At first, the bottleneck has practically no impact on the model performance.
It then deviates from this starting point to suppress unimportant regions.

4
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Figure 3: Readout Bottleneck: In the first forward pass 1 , feature maps are collected at different
depths. The readout network uses a resized version of the feature maps to predict the parameters for
the bottleneck layer. In the second forward pass 2 , the bottleneck is inserted and noise added. All
parameters of the analyzed network are kept fixed.

Optimization We do 10 iterations using the Adam optimizer (Kingma & Ba, 2014) with learning
rate 1 to fit the mask α. To stabilize the training, we copy the single sample 10 times and apply
different noise to each. In total, we execute the model on 100 samples to create a heatmap, comparable
to other methods such as SmoothGrad. After the optimization, the model usually predicts the target
with probability close to 1, indicating that only negative evidence was removed.

Measure of information To measure the importance of each feature in Z, we evalu-
ate DKL(P (Z|R)||Q(Z)) per dimension. It shows where the information flows. We
obtain a two-dimensional heatmap m by summing over the channel axis: m[h,w] =∑c

i=0DKL(P (Z[i,h,w]|R[i,h,w])||Q(Z[i,h,w])). As convolutional neural networks preserve the local-
ity in their channel maps, we use bilinear interpolation to resize the map to the image size. For the
ResNet-50, we insert the bottleneck after layer conv3 *. Choosing a later layer with a lower spatial
resolution would increase the blurriness of the attribution maps, due to the required interpolation.
The effect of different depth choices for the bottleneck is visualized in figure 4.

Enforcing local smoothness Pooling operations and convolutional layers with stride greater than
1 are ignoring parts of the input. The ignored parts cause the Per-Sample Bottleneck to overfit to a
grid structure (shown in Appendix B). To obtain a robust and smooth attribution map, we convolve
the sigmoid output with a fixed Gaussian kernel with standard deviation σs. Smoothing the mask
during training is not equivalent to smoothing the resulting attribution map, as during training also
the gradient is averaged locally. Combining everything, the parametrization for the Per-Sample
Bottleneck is:

λ = blur(σs, sigmoid(α)) . (7)

3.3 READOUT BOTTLENECK

For the Readout Bottleneck, we train a second neural network to predict the mask α. In contrast to
the Per-Sample Bottleneck, this model is trained on the entire training set. In Figure 3, the Readout
Bottleneck is depicted. Kümmerer et al. (2014) introduced the readout concept for gaze prediction.
The general idea is to collect feature maps from different depths and then combine them using 1x1
convolutions.

In a first forward pass, no noise is added and we collect the different feature maps. As the spatial
resolution of the feature maps differs, we interpolate them bilinearly to match the spatial dimensions
of the bottleneck layer. The readout network then predicts the information mask based on the collected
feature maps. In a second forward pass, we insert the bottleneck layer into the network and restrict
the flow of information.

Except for the learned importance values, the Readout Bottleneck is identical to the mechanism of the
Per-Sample Bottleneck. The measure of information works in the same way as for the Per-Sample
Bottleneck and we also use the same smoothing. Given a new sample, we can obtain a heatmap by
merely collecting the feature maps and executing the readout network.
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Figure 4: Effect of varying layer depth and β on the Per-Sample Bottleneck for the ResNet-50. The
color bars measure the bits per input pixel. The resulting output probability of the correct class
p = p(y|x, β) is decreasing for higher β.

The readout network consists of three 1x1 convolutional layers. ReLU activations are applied between
convolutional layers and a final sigmoid activation yields λ ∈ [0, 1]. As the input consists of upscaled
feature maps, the field-of-view is large, although the network itself only uses 1x1 conv. kernels.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

As neural network architectures, we selected the ResNet-50 (He et al., 2016) and the VGG-16
Simonyan & Zisserman (2014), using pretrained weights from the torchvision package (Paszke
et al., 2017). These two models cover a range of concepts: dimensionality by stride or max-pooling,
residual connections, batch normalization, dropout, low depth (16-weight-layer VGG), and high depth
(50-weight-layer ResNet). This variety makes the evaluation less likely to overfit on a specific model
type. They are commonly used in the literature concerning attribution methods. For PatternAttribution
on the VGG-16, we obtained weights for the signal estimators from Kindermans et al. (2018).

As naive baselines, we selected random attribution, Occlusion with patch sizes 8x8 and 14x14, and
Gradient Maps. SmoothGrad and Integrated Gradients cover methods that accumulate gradients.
We include three methods with modified backpropagation rules: PatternAttribution, GuidedBP, and
LRP. As our implementation of PatternAttribution and LRP does not support skip connections, we
report no results for them on the ResNet-50. We also include Grad-CAM and its combination with
GuidedBP, GuidedGrad-CAM.

For the compared methods, we use the hyperparameters suggested by the original authors. For LRP
(Bach et al., 2015), different rules exist. We include the most commonly used α=1, β =0, ε=0 rule
which is also displayed in the figures. We also include α=0, β =-1, ε=5 as it gives better results on
the bounding-box task. For sensitivity-n and sanity checks, only the later LRP variante is evaluted.
For our methods, the hyperparameters are obtained using grid search with the degradation metric as
objective (Appendix F). The readout network is trained on the training set of the ILSVRC12 dataset
(Russakovsky et al., 2015) for E = 20 epochs.

The optimization objective of the bottleneck is LCE + βLI as given in equation 6. Generally, the
information loss LI is larger than the classifier loss by several orders of magnitude as it sums over
height h, width w and channels c. We therefore use k = hwc as a reference point to select β. In
figure 4, we display the effect of different orders of β and the effect of layer depth for ResNet-50
(see Appendix C for VGG-16). A uniform uninformative heatmap is obtained for β ≥ 1000/k – all
information gets discarded, resulting in an output probability of 0 for the correct class. The heatmap
for β = 0.1/k is similar to β = 1/k but more information is passed, i.e. less noises is added. In
appendix F, we also compare pre- to post-training accuracy and estimate the mutual information for
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(a) Gradient (b) Saliency (c) SmoothGrad (d) Int. Grad. (e) GuidedBP (f) Occlusion-14

(g) Grad-CAM (h) G.Grad-CAM (i) PatternAttr. (j) LRP (k) Per-Sample (l) Readout

Figure 5: Heatmaps of all implemented methods for the VGG-16 (see Appendix A for more).

both Bottleneck types. For the Per-Sample Bottleneck, we investigate β = 1/k, 10/k, 100/k. The
Readout network is trained with the best performing value β = 10/k.

4.2 QUALITATIVE ASSESSMENT

In Figure 5, the heatmaps of all evaluated samples are shown (for more samples, see Appendix A).
Subjectively, both the Per-Sample and Readout Bottleneck identify areas relevant to the classification
well. While Guided Backpropagation and PatternAttribution tend to highlight edges, the Per-Sample
Bottleneck focuses on image regions. For the Readout Bottleneck, the attribution is concentrated a
little more on the object edges. Compared to Grad-CAM, both our methods are more specific, i.e.
fewer pixels are scored high.

4.3 SANITY CHECK: RANDOMIZATION OF MODEL PARAMETERS

Adebayo et al. (2018) investigates the effect of parameter randomization on attribution masks. A
sound attribution method should depend on the entire network’s parameter set. Starting from the
last layer, an increasing proportion of the network parameters is re-initialized until all parameters
are random. We excluded PatternAttribution as the randomization would require to re-estimate the
signal directions. The difference between the original heatmap and the heatmap obtained from the
randomized model is quantified using SSIM (Wang et al., 2004). We discuss implementation details
in the appendix G.1.

In figure 6, we display the results of the sanity check. For our methods, we observe that randomizing
the final dense layer drops the mean SSIM by around 0.4. The values for the Readout Bottleneck
are of limited expressiveness as we did not re-train it after randomization. For SmoothGrad and Int.
Gradients, the SSIM drops by more than 0.4. The heatmaps of GuidedBP and LRP remain similar
even if large portion of the network’s parameters are randomized – they do not explain the network
prediction faithfully. Nie et al. (2018) provides theoretical insights about why GuidedBP fails. Sixt
et al. (2019) analyzes why LRP and other modified BP methods fail.

4.4 SENSITIVITY-N

Ancona et al. (2018) proposed Sensitivity-n as an evaluation metric for attribution methods.
Sensitivity-n masks the network’s input randomly and then measures how strongly the amount
of attribution in the mask correlates with the drop in classifier score.Given a set Tn containing n
randomly selected pixel indices, Sensitivity-n measures the Pearson correlation coefficient:

corr

(∑
i∈Tn

Ri(x), Sc(x)− Sc(x[xTn=0])

)
, (8)

where Sc(x) is the classifier logit output for class c,Ri is the relevance at pixel i and x[xTn=0] denotes
the input with all pixels in Tn set to zero. As in the original paper, we pick the number of masked
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Figure 6: First row drop in SSIM score when network layers are randomized. Best viewed in color.
Second-row Sensitivity-n scores for ResNet-50 and VGG-16. For the ResNet-50, also tile size 1x1 is
shown. We clipped the y-axis at 0.4 to improve discriminability.

pixels n in a log-scale between 1 and 80% of all pixels. For each n, we generate 100 different index
sets T and test each on 1000 randomly selected images from the validation set. The correlation is
calculated over the different index sets and then averaged over all images.

In Figure 6, the Sensitivity-n scores are shown for ResNet-50 and VGG-16. When masking inputs
pixel-wise as done in Ancona et al. (2018), the Sensitivity-n score across methods are not well
discriminable, all scores range within the lower 10% of the scale. We ran the metric with a tile size of
8x8 pixels. This resulted in an increase of the Sensitivity-n score to 30% of the scale. Although not
shown in the figure due to the zooming, Occlusion-8x8 performs perfectly for small n as its relevance
scores correspond directly to the drop in logits per 8x8 tile. We find that the Per-Sample Bottlenecks
β = 10/k perform best for both models above n = 2 · 103 pixels, i.e. when more then 2% of all
pixels are masked.

4.5 BOUNDING BOX

To quantify how well attribution methods identify and localize the object of interest, we rely on
bounding boxes available for the ImageNet dataset. Bounding boxes may contain irrelevant areas,
in particular for non-rectangular objects. We restrict our evaluation to images with bounding boxes
covering less than 33% of the input image. In total, we run the bounding box evaluation on 11,849
images from the ImageNet validation set.

If the bounding box contains n pixels, we measure how many of the n-th highest scored pixels are
contained in the bounding box. By dividing by n, we obtain a ratio between 0 and 1. The results
are shown in Table 1. The Per-Sample Bottleneck outperforms all baselines on both VGG-16 and
ResNet-50 each by a margin of 0.152.

An alternative metric would be to take the sum of attribution in the bounding box and compare it to
the total attribution in the image. We found this metric is not robust against extreme values. For the
ResNet-50, we found basic Gradient Maps to be the best method as a few pixels receiving extreme
scores are enough to dominate the sum.

4.6 IMAGE DEGRADATION

As a further quantitative evaluation, we rely on the degradation task as used by Ancona et al. (2017);
Kindermans et al. (2018); Hooker et al. (2018); Samek et al. (2016). Given an attribution heatmap,
the input is split in tiles, which are ranked by the sum of attribution values within each corresponding
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Model & Evaluation ResNet-50 deg. VGG-16 deg. ResNet VGG
8x8 14x14 8x8 14x14 bbox bbox

Random 0.000 0.000 0.000 0.000 0.167 0.167
Occlusion-8x8 0.162 0.130 0.267 0.258 0.296 0.312
Occlusion-14x14 0.228 0.231 0.402 0.404 0.341 0.358
Gradient 0.002 0.005 0.001 0.005 0.259 0.276
Saliency 0.287 0.305 0.326 0.362 0.363 0.393
GuidedBP 0.491 0.515 0.460 0.493 0.388 0.373
PatternAttribution – – 0.440 0.457 – 0.404
LRP α=1, β=0 – – 0.471 0.486 – 0.397
LRP α=0, β=1, ε=5 – – 0.462 0.467 – 0.441
Int. Grad. 0.401 0.424 0.420 0.453 0.372 0.396
SmoothGrad 0.485 0.502 0.438 0.455 0.439 0.399
Grad-CAM 0.536 0.541 0.510 0.517 0.465 0.399
GuidedGrad-CAM 0.565 0.577 0.555 0.576 0.468 0.419
IBA Per-Sample β=1/k 0.573 0.573 0.581 0.583 0.606 0.566
IBA Per-Sample β=10/k 0.572 0.571 0.582 0.585 0.620 0.593
IBA Per-Sample β=100/k 0.534 0.535 0.542 0.545 0.574 0.568
IBA Readout β=10/k 0.536 0.536 0.490 0.536 0.484 0.437

Table 1: Degradation (deg.): Integral between LeRF and MoRF in the degradation benchmark for
different models and window sizes over the ImageNet test set. Bounding Box (bbox): the ratio
of the highest scored pixels within the bounding box. For ResNet-50, we show no results for
PatternAttribution and LRP as no PyTorch implementation supports skip-connections.

tile of the attribution. At each iteration, the highest-ranked tile is replaced with a constant value, the
modified input is fed through the network, and the resulting drop in target class score is measured. A
steep descent of the accuracy curve indicates a meaningful attribution map.

Figure 7: Mean MoRF and LeRF
for the Per-Sample Bottleneck. The
area is the final degradation score.

When implemented in the described way, the most relevant
tiles are removed first (MoRF). However, Ancona et al. (2017)
argues that using only the MoRF curve for evaluation is not
sufficient. For the MoRF score, it is beneficial to find tiles dis-
rupting the output of the neural network as quickly as possible.
Neural networks are sensitive to subtle changes in the input
(Szegedy et al., 2013). The tiles do not necessarily have to con-
tain meaningful information to disrupt the network. Ancona
et al. (2017) proposes to invert the degradation direction, re-
moving tiles ranked as least relevant by the attribution method
first (LeRF). The LeRF task favors methods that identify ar-
eas sufficient for classification. We scale the network’s output
probabilities to be in [0, 1]:

s(x) =
p(y|x)− b
t1 − b

, (9)

where t1 is the model’s average top-1 probability on the original samples and b is the mean model
output on the fully degraded images. Both averages are taken over the validation set. A score of 1
corresponds to the original model performance.

Both LeRF and MoRF degradation yield curves as visualized in Figure 7, measuring different qualities
of the attribution method. To obtain a scalar measure of attribution performance and to combine both
metrics, we propose to calculate the integral between the MoRF and LeRF curves.

The results for all implemented attribution methods on the degradation task are given in Table 1.
We evaluated both models on the full validation set using 8x8 and 14x14 tiles. In Appendix H, we
show the mean LeRF and MoRF curves for 14x14 tiles. The Per-Sample Bottleneck outperforms all
other methods in the degradation benchmark except for GuidedGrad-CAM on ResNet-50 where it
scores comparably (score difference of 0.004). The Readout Bottleneck generally achieves a lower
degradation scores but still perform competitively.
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5 CONCLUSION

We propose two novel attribution methods that return an upper bound on the amount of information
each input region provides for the network’s decision. Our models’ core functionality is a bottleneck
layer used to inject noise into a given feature layer and a mechanism to learn the parametrized amount
of noise per feature. The Per-Sample Bottleneck is optimized per single data point, whereas the
Readout Bottleneck is trained on the entire dataset.

Our method does not constrain the internal network structure. In contrast to several modified
backpropagation methods, it supports any activation function and network architecture. To evaluate
our method, we extended the degradation task to quantify model performance deterioration when
removing both relevant and irrelevant image tiles first. We also show results on how well ground-truth
bounding boxes are scored. Our Per-Sample and Readout Bottleneck both show competitive results
on all metrics used, outperforming state of the art with a significant margin for some of the tasks.

Generally, we would advise using the Per-Sample Bottleneck over the Readout Bottleneck. It
performs better and is more flexible as it only requires to estimate the mean and variance of the
feature map. The Readout Bottleneck has the advantage of producing attribution maps with a single
forward pass once trained. Images with multiple object instances provide the network with redundant
class information. The Per-Sample Bottleneck may discard some of the class evidence. Even for
single object instances, the heatmaps of the Per-Sample Bottleneck may vary slightly due to the
randomness of the optimization process.

The method’s information-theoretic foundation provides a guarantee that the network does not
require regions of zero-valued attribution for correct classification. To our knowledge, our attribution
method is the only one to provide scores with units (bits). This absolute frame of reference allows a
quantitative comparison between models, inputs, and input regions. We hope this contributes to a
deeper understanding of neural networks and creates trust to use modern models in sensitive areas of
application.
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Matthias Kümmerer, Lucas Theis, and Matthias Bethge. Deep gaze i: Boosting saliency prediction
with feature maps trained on imagenet. arXiv:1411.1045 [cs, q-bio, stat], 2014.
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Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017.

Weili Nie, Yang Zhang, and Ankit Patel. A theoretical explanation for perplexing behaviors of
backpropagation-based visualizations. In International Conference on Machine Learning, pp.
3809–3818, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 5171–5180. PMLR, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015.
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A VISUAL COMPARISON OF ATTRIBUTION METHODS

Input Grad-CAM GuidedBP. Occl.-14 Per-Sample Readout Grad-CAM GuidedBP. PatternAttr Per-Sample Readout
ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 VGG-16 VGG-16 VGG-16 VGG-16 VGG-16
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Figure 8: Blue indicates negative relevance and red positive. The authors promise that the samples
were picked truly randomly, no cherry-picking, no lets-sample-again-does-not-look-nice-enough.
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B GRID ARTIFACTS WHEN NOT USING SMOOTHING

(a) T = 1 (b) T = 5 (c) T = 10 (d) T = 100

Figure 9: Development of DKL(Q(Z|X)||Q(Z)) of the Per-Sample Bottleneck for layer conv1 3
of the ResNet-50. Red indicate areas with maximal information flow and semi-transparent green for
zero information flow. Top row: without smoothing the mask exhibits a grid structure. Bottom row:
smoothing with σs = 2. The smoothing both prevents the artifacts and reduces overfitting to small
areas.

C EFFECTS OF DIFFERENT β AND LAYER DEPTH FOR THE VGG-16

co
nv

4
1

β = 0.1/k
p = 0.99

β = 1/k
p = 0.95

β = 10/k
p = 0.80

β = 100/k
p = 0.55

β = 1000/k
p = 0.00

β
=

10

conv1 1 conv2 1 conv4 1 conv5 1 conv5 3

Figure 10: Effect of varying layer depth and β on the Per-Sample Bottleneck for the VGG-16. The
resulting ouput probability for the correct class is given as p.
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D DERIVATION OF THE UPPER-BOUND OF MUTUAL INFORMATION

For the mutual information I[R,Z], we have:

I[R,Z] = ER[DKL[P (Z|R)||P (Z)]] (10)

=

∫
R

p(r)

(∫
Z

p(z|r) log p(z|r)
p(z)

dz

)
dr (11)

=

∫
R

∫
Z

p(r, z) log
p(z|r)
p(z)

q(z)

q(z)
dzdr (12)

=

∫
R

∫
Z

p(r, z) log
p(z|r)
q(z)

dzdr +

∫
R

∫
Z

p(r, z) log
q(z)

p(z)
dzdr (13)

=

∫
R

∫
Z

p(r, z) log
p(z|r)
q(z)

dzdr +

∫
Z

p(z)

(∫
R

p(r|z)dr
)
log

q(z)

p(z)
dz (14)

= ER [DKL[P (Z|R)||Q(Z)]]−DKL[P (Z)||Q(Z)] (15)
≤ ER [DKL[P (Z|R)||Q(Z)]] (16)

E MEAN AND VARIANCE OF Z

The λ(X) linearly interpolate between the feature map R and the noise ε ∼ N (µR, σ
2
R), where µR

and σR are the estimated mean and standard derivation of R. Both R = fl(X) and λ(X) depend on
the input random variable X .

Z = λ(X)R+ (1− λ(X))ε (17)
For the mean of Z, we have:

E[Z] = E[λ(X)R] + E[(1− λ(X))ε] . substituting in definition of Z
= E[λ(X)R] + E[1− λ(X)]E[ε] . independence of λ and ε
= cov(λ(X), R) + E[λ(X)]E[R] + E[1− λ(X)]E[ε] . cov(A,B) = E[AB]− E[A]E[B]

≈ cov(λ(X), R) + E[ε] . E[ε] = µR ≈ E[R]
As λ(X) and R are multiplied together, they form a complex product distribution. If they do not
correlate, E[Z] ≈ E[ε] ≈ E[R].

A similar problem araises for the variance:

Var[Z] = E[Z2]− E[Z]2

= E[(λ(X)R+ (1− λ(X)ε)
2
]− (cov(λ(X), R) + E[ε])2

The multiplication of λ(X) and R causes in general the variance of Z and R to not match: Var[Z] 6=
Var[R].

F HYPERPARAMETERS

Parameter ResNet-50 VGG-16 Search space

Target layer conv3 4 conv4 1
Optimizer Adam (Kingma & Ba (2014))
Learning Rate η = 1 {0.03, 0.1, 0.3, 1, 3, 10}
Balance Factor β = 10/k {0.001, 0.01, 0.1, 1, 10, 100, 300}
Iterations T = 10 {1, 3, 5, 10, 30, 100}
Batch Size B = 10 {1, 5, 10, 30}
Smoothing σs = 1 {0.5, 1, 2}

Table 2: Hyperparameters for Per-Sample Bottleneck. The layer notations for the ResNet-50 are
taken from the original publication (He et al., 2016). The first index denotes the block and the second
the layer within the block. For the VGG-16, conv n denotes the n-th convolutional layer.
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Orig. Initial β=0.01/k 0.1/k 1/k 10/k 100/k
LI/k – 2.500 3.174 0.525 0.248 0.098 0.019

Per-Sample Top-5 Acc. 0.928 0.928 1.000 0.971 1.000 0.990 0.522
Top-1 Acc. 0.760 0.760 1.000 0.963 1.000 0.984 0.427
LI/k – 2.500 1.822 0.628 0.222 0.079 0.023

Readout Top-5 Acc. 0.928 0.928 0.930 0.928 0.917 0.870 0.505
Top-1 Acc. 0.760 0.760 0.761 0.756 0.735 0.660 0.302

Table 4: Influence of β on the information loss LI and the test accuracy on ResNet-50. k is the size
of the feature map, i.e. k = hwc. Initial: Configuration of the untrained bottleneck with α = 5.
Original: Values for the original model without the bottleneck.

Parameter ResNet-50 VGG-16 Search space

Target layer conv2 3 conv3 1
Reading out conv2 3

conv3 4
conv4 6
conv5 3
fc

conv3 1
conv4 1
conv5 1
conv5 3
fc

Optimizer Adam (Kingma & Ba (2014))
Learning Rate η = 10−5 {e-4, e-5, e-6}
Balance Factor β = 10/k {0.1/k, 1/k, 10/k, 100/k}
Epochs E = 10
Batch Size B = 16
Smoothing σs = 1

Table 3: Hyperparameters for the Readout Bottleneck.

In Table 2, we provide hyperparameters for the Per-Sample Bottleneck. In Table 3, we provide
hyperparameters for the Readout Bottleneck.

In Table 4, a comparison of pre- to post-training accuracy and the estimated mutual information is
shown for both Bottleneck types. The Per-Sample Bottleneck can learn to suppress negative evidence
for each sample and the accuracy is close to 1 for β ≤ 10/k. For β = 100/k, also positive evidence
is discarded and the accuracy decreases to 0.43. The Readout Bottleneck learns to suppress negative
evidence for small β ≤ 0.1/k and slightly improves the final accuracy.

G EVALUATION METRICS

G.1 SANITY CHECK: WEIGHT RANDOMIZATION

We use the cascading parameter randomization sanity check from Adebayo et al. (2018). Following
the original paper, we used the skimage SSIM implementation with a window of size 5. For LRP, we
found that the weight randomization flips the values of the saliceny heatmap, e.g. hr ≈ −ho where
hr is the heatmap with random weights and ho the heatmap on the original model. Therefore for LRP,
we used: max(ssim(ho, normalize(hr), ssim(ho, normalize(−hr))). We normalized the heatmaps
by first clamping the 1-th and 99-th percentile and then rescaling the heatmap it to [0, 1]. We run the
sanity check on 200 randomly selected samples from the ImageNet valdiation set.
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H MORF AND LERF DEGRADATION PATHS

(a) Random (b) Occlusion-8x8 (c) Occlusion-14x14 (d) Gradient (e) Saliency

(f) Guided BP (g) Int. Grad. (h) Smoothgrad (i) Grad-CAM (j) GuidedGrad-CAM

(k) Per-Sample β = 1/k (l) Per-Sample β = 10/k (m) Per-Sam. β = 100/k (n) Readout β = 10/k

Figure 11: MoRF and LeRF for the ResNet-50 network using 14x14 tiles.

(a) Random (b) Occlusion-8x8 (c) Occlusion-14x14 (d) Gradient (e) Saliency

(f) Guided BP (g) PatternAttr. (h) LRP (i) Int. Grad. (j) Smoothgrad

(k) Grad-CAM (l) GuidedGrad-CAM (m) Per-Sample β = 1/k (n) Per-Sample β = 10/k (o) Per-Sam. β = 100/k

(p) Readout β = 10/k

Figure 12: MoRF and LeRF paths for the VGG-16 network using 14x14 tiles.
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4 When Explanations Lie: Why
Many Modified BP Attributions
Fail

As outlined in the introduction, methods in the field of explainable AI have to
make simplifications and assumptions about the model. While this is necessary
to create comprehensible explanations, it can also create explanations misrepre-
senting the actual model. For example, in Figure 1 of the following paper, the
saliency maps for the evidence for the cat and dog classes seem identical. It is
confusing for observers to see the evidence for the two different classes being
identical. As scientists, we should analyze why this perplexing behavior occurs.

The following publication was the direct follow-up work from the sanity check
experiment performed in (Schulz et al. 2020, Section 4.3). In the sanity check
experiment, we randomized the weights of a neural network partially and tested
whether the attribution methods change their explanations. In this experiment,
we found that explanations from the layer-wise relevance propagation (LRP)
(Bach et al. 2015) were independent of the network’s deeper layers. In addition to
LRP, we also found that other modified backpropagation show similar perplexing
behaviors: Deep Taylor Decomposition (DTD), PatternAttribution, Excitation
BP, Deconv, GuidedBP, and RectGrad (Bach et al. 2015; Montavon et al. 2017;
Kindermans et al. 2018b; Zhang et al. 2018; Zeiler et al. 2014; Springenberg
et al. 2014; Kim et al. 2019). Of all tested propagation-based methods, only
DeepLIFT passed the sanity check experiment (Shrikumar et al. 2017b). As
we found out through an ablation study, the reason for this is that DeepLIFT
considers both positive and negative gradients.

All these methods modify the backpropagation algorithm in different ways.
For example, Guided Backpropagation (Springenberg et al. 2014) applied a rec-
tifier function to the gradients after each layer – a simple but heuristic approach.
Another method, PatternAttribution (Kindermans et al. 2018b), estimates a
signal direction for each layer, which is then used to perform a Taylor expansion
per layer.
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For LRPα1β0 (the particular LRP rule tested), we found that a chain of positive
matrices causes the problem, as this chain converges to a rank-1 matrix. The
characteristic property of a rank-1 matrixM is thatMv = λm, i.e., the resulting
output is a scaled version of a fixed vector m. A rank-1 matrix has only a single
degree of freedom, which is even lost for saliency maps as they are usually
normalized. We also proved that the chain converges exponentially fast under
certain conditions, which are commonly satisfied for fully connected layers.

The following paper reveals that many established methods produce explana-
tions that are not reliable, as they are independent of the explained class and, as a
result, fail to provide meaningful explanations. We have not only demonstrated
this fact empirically, but we have also provided theoretical reasoning for why it
occurs.

Our work served as a wake-up call for numerous research groups working on
attribution methods, as it shows how easily one can be deceived by saliency maps.
Our findings highlight the need to be aware of confirmation bias, which can lead
researchers to erroneously accept or prioritize information that reinforces their
preexisting beliefs, while neglecting opposing evidence. The field of explainable
AI must address these concerns in order to develop more reliable and accurate
explanation methods.



When Explanations Lie: Why Many Modified BP Attributions Fail

Leon Sixt 1 Maximilian Granz 1 Tim Landgraf 1

Abstract
Attribution methods aim to explain a neural net-
work’s prediction by highlighting the most rel-
evant image areas. A popular approach is to
backpropagate (BP) a custom relevance score us-
ing modified rules, rather than the gradient. We
analyze an extensive set of modified BP meth-
ods: Deep Taylor Decomposition, Layer-wise
Relevance Propagation (LRP), Excitation BP, Pat-
ternAttribution, DeepLIFT, Deconv, RectGrad,
and Guided BP. We find empirically that the ex-
planations of all mentioned methods, except for
DeepLIFT, are independent of the parameters of
later layers. We provide theoretical insights for
this surprising behavior and also analyze why
DeepLIFT does not suffer from this limitation.
Empirically, we measure how information of later
layers is ignored by using our new metric, co-
sine similarity convergence (CSC). The paper pro-
vides a framework to assess the faithfulness of
new and existing modified BP methods theoreti-
cally and empirically. 2

1. Introduction
Explainable AI (XAI) aims to improve the interpretability
of machine learning models. For deep convolutional net-
works, attribution methods visualize the areas relevant for
the prediction with so-called saliency maps. Various attri-
bution methods have been proposed, but do they reflect the
model behavior correctly?

(Adebayo et al., 2018) proposed a sanity check: if the pa-
rameters of the model are randomized and therefore the
network output changes, do the saliency maps change too?
Surprisingly, the saliency maps of GuidedBP (Springenberg

1Dahlem Center of Machine Learning and Robotics, Freie
Universität Berlin, Germany. Correspondence to: Leon Sixt
<leon.sixt@fu-berlin.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2 For code see: github.com/berleon/when-explanations-lie

GuidedBP

image original fc3 conv5_3 conv4_1 conv2_1 conv1_1

RectGrad

DTD

LRP 1 0

LRP 2 1

PatternAttr.

DeepLIFT Resc.

Gradient

(a) Sanity Checks (VGG-16)

(b) Image (c) Expl. Cat (d) Expl. Dog

0.005

0.000

0.005

(e) Diff. (c) - (d)

Figure 1: (a) Sanity Checks: Saliency maps should change
if network parameters are randomized. Parameters are ran-
domized from the last to the first layer. Red denotes positive
and blue negative relevance. (b-e) Class insensitivity of
LRPα1β0 on VGG-16. Explanation for (c) Persian cat (283)
and (d) King Charles Spaniel (156). (e) Difference (c) - (d),
both normalized to [0, 1]. L1-norm of (e) = 0.000371.

et al., 2014) stay identical, when the last layer (fc3) is ran-
domized (see Figure 1a). A method ignoring the last layer
can not explain the network’s prediction faithfully.

In addition to (Adebayo et al., 2018), which only reported
GuidedBP to fail, we found several modified backpropaga-
tion (BP) methods fail too: Layer-wise Relevance Propaga-
tion (LRP), Deep Taylor Decomposition (DTD), PatternAt-
tribution, Excitation BP, Deconv, GuidedBP, and RectGrad
(Bach et al., 2015; Montavon et al., 2017; Kindermans et al.,
2018; Zhang et al., 2018; Zeiler & Fergus, 2014; Springen-
berg et al., 2014; Kim et al., 2019). The only tested modified
BP method passing is DeepLIFT (Shrikumar et al., 2017).
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Modified BP methods estimate relevant areas by backprop-
agating a custom relevance score instead of the gradient.
For example, DTD only backpropagates positive relevance
scores. Modified BP methods are popular with practitioners
(Yang et al., 2018; Sturm et al., 2016; Eitel et al., 2019).
For example, (Schiller et al., 2019) uses saliency maps to
improve the classification of whale sounds or (Böhle et al.,
2019) use LRPα1β0 to localize evidence for Alzheimer’s
disease in brain MRIs.

Deep neural networks are composed of linear layers (dense,
conv.) and non-linear activations. For each linear layer, the
weight vector reflects the importance of each input directly.
(Bach et al., 2015; Kindermans et al., 2018; Montavon et al.,
2017) argue that aggregating explanations of each linear
model can explain a a deep neural network. Why do these
methods then fail the sanity check?

Theoretically, we show that the z+-rule – used by DTD,
LRPα1β0, and Excitation BP – yields a multiplication chain
of non-negative matrices. Each matrix corresponds to a
layer. The saliency map is a function of this matrix chain.
We show that such a non-negative matrix chain converges to
a rank-1 matrix. If C∈Rn×m is a rank-1 matrix, then it can
be written as an outer product C = cγT , c∈Rn, γ ∈Rm.
Multiplying C with any vector v yields always the same
the direction: Cv = cγTv = λc, λ ∈ R. The scaling is
irrelevant as saliency maps are normalized. If sufficiently
converged, the backpropagated vector can merely switch
the sign of the saliency map. For example, in Figure 1a, the
sign of the PatternAttribution saliency map switches due
to the randomization of fc3. Figure 1b-1e show how the
saliency maps of LRPα1β0 become class-insensitive.

Empirically, we quantify the convergence to a rank-1 matrix
using our novel cosine similarity convergence (CSC) metric.
CSC allows to retrace, layer by layer, how modified BP
methods lose information about previous layers. Using CSC,
we observe that all analyzed modified BP methods, except
for DeepLIFT, converge towards a rank-1 matrix on VGG-
16 and ResNet-50. For sufficiently large values of α and
β, LRPαβ does not converge but also produces rather noisy
saliency maps.

The paper focuses on modified BP methods, as other attri-
bution methods do not suffer from the converges problem.
They either rely on the gradient directly (Smilkov et al.,
2017; Sundararajan et al., 2017), which does not converge
or consider the model as a black-box (Ribeiro et al., 2016;
Lundberg & Lee, 2017).

Our findings show that many modified BP methods are
prone to class-insensitive explanations and provide saliency
maps that rather highlight low-level features. Negative rele-
vance scores are crucial to avoid the convergence to a rank-1
matrix — a possible future research direction.

2. Theoretical Analysis
Notation For our theoretical analysis, we consider feed-
forward neural networks with a ReLU activation function
[x]+ = max(0,x). The neural network f(x) contains n
layers, each with weight matrices Wl. The output of the l-th
layer is denoted by hl. We use [ij] to index the i, j element
in Wl as in Wl[ij] . To simplify notation, we absorb the bias
terms into the weight matrix, and we omit the final softmax
layer. We refer to the input with h0 = x and to the output
with hn = f(x). The output of the l-th layer is given by:

hl = [Wlhl−1]+ (1)

All the results apply to convolutional neural networks as
convolution can be expressed as matrix multiplication.

Gradient The gradient of the k-th output of the neural
network w.r.t. the input x is given by:

∂fk(x)

∂x
= WT

1 M1
∂fk(x)

∂h1
=

n∏
l

(
WT
l Ml

)
· vk, (2)

where Ml = diag(1hl>0) denotes the gradient mask of the
ReLU operation. The last equality follows from recursive
expansion. The vector vk is a one-hot vector to select the
k-th output.

The gradient of residual blocks is also a product of matrices.
The gradient of hl+1 = hl + g(hl) is:

∂hl+1

∂hl
= I +G∂g(hl)/∂hl

, (3)

where G∂g(hl)/∂hl
denotes the derivation matrix of the

residual block, and I is the identity matrix. For the gradient,
the final saliency map is usually obtained by summing the
absolute channel values of the relevance vector r∇0 (x) of
the input layer.

The following methods modify the gradient definition and
to distinguish the rules, we introduce the notation: r∇l (x) =
∂f(x)
∂hl

which denotes the relevance at layer l for an input x.

Interpretability of Linear Models The relevance of the
input of a linear model can be calculated directly. Let y =
wTx be a linear model with a single output scalar. The
relevance of the input x to the i-th output y[i] is :

rLinear
x (x) = w � x. (4)

2.1. z+-Rule

The z+-rule is used by DTD (Montavon et al., 2017), Ex-
citation BP (Zhang et al., 2018) and also corresponds to
the LRPα1β0 rule (Bach et al., 2015). The z+-rule back-
propagates positive relevance values, which are supposed to
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Figure 2: The positive column vectors a1,a2 of matrix
A1 (orange) form a cone. The resulting columns of A1A2

(green) are contained in the cone as they are positive linear
combinations of a1,a2. At each iteration, the cone shrinks.

correspond to the positive evidence for the prediction. Let
wij be an entry in the weight matrix Wl:

rz
+

l (x) = Z+
l · r

z+

l+1(x)

whereZ+T

l =

(
[wijhl[j] ]

+∑
k[wikhl[k]

]+

)
[ij]

(5)

Each entry in the derivation matrix Z+
l is obtained by mea-

suring the positive contribution of the input neuron i to the
output neuron j and normalizing by the total contributions
to neuron j. The relevance from the previous layer rz

+

l+1 is
then distributed according to Z+

l . The relevance function
rz

+

l : Rn 7→ Rm maps input x to a relevance vector of layer
l. For the final layer the relevance is set to the value of the
explained logit value, i.e. rz

+

n (x) = fk(x). In contrast to
the vanilla backpropagation, algorithms using the z+-rule
do not apply a mask for the ReLU activation.

The relevance of multiple layers is computed by applying
the z+-rule to each of them. Similar to the gradient, we
obtain a product of non-negative matrices: Ck =

∏k
l Z

+
l .

Theorem 1. Let A1, A2, A3 . . . be a sequence of non-
negative matrices. We require that every column vector a of
An has a norm ||a|| ≥ ε0 and that infinite many matrices
Ai with i ∈ I and |I| = |N| exists for which two column vec-
tors have a dot product of at least ε〈·,·〉, i.e. 〈a, b〉 ≥ ε〈·,·〉,
where both ε0, ε〈·,·〉 > 0. Then the product of all terms of
the sequence converges to a rank-1 matrix C̄:

C̄ := lim
n→∞

n∏
i=1

Ai
||
∏n
i=1Ai||

= c̄γT . (6)

(Hajnal, 1976; Friedland, 2006) proved a similar result for
squared matrices. In appendix A, we provide a rigorous
proof of the theorem using the cosine similarity.

The geometric intuition of the proof is depicted in Figure 2.
The column vectors of the first matrix are all non-negative
and therefore in the positive quadrant. For the matrix multi-
plication AiAj , observe that Aiak is a non-negative linear
combination of the column vectors of Ai, where ak is the
k-th column vector Aj[:k]

. The result will remain in the

convex cone of the column vectors of Ai. The conditions
stated in the theorem ensure that the cone shrinks with ev-
ery iteration and it converges towards a single vector. In the
appendix ??, we simulate different matrix properties and
find non-negative matrices to converge exponentially fast.

The column vectors of a rank-1 matrix are linearly depen-
dent C = cγT . A rank-1 matrix C always gives the same
direction of c: CZ+

k+1 =cγTZ+
k+1 =cλT and for any vec-

tor v: CZ+
k+1v = cλTv = tc, where t ∈ R. For a finite

number of matrices Ck =
∏k
l Z

+
l , Ck might resemble a

rank-1 matrix up to floating-point imprecision or CkZ+
k+1

might still be able to alter the direction. In any case, the
influence of later matrices decreases.

The Z+ matrices of dense layers fulfill the conditions of
theorem 1. Convolutions can be written as matrix multipli-
cations. For 1x1 convolutions, the kernels do not overlap
and the row vectors corresponding to each location are or-
thogonal. In this case, the convergence happens only locally
per feature map location. For convolutions with overlapping
kernels, the global convergence is slower than for dense lay-
ers. In a ResNet-50 where the last convolutional stack has
a size of (7x7), the overlapping of multiple (3x3) convolu-
tions still induces a considerable global convergence (see
LRPCMP on ResNet-50 in section 5).

If an attribution method converges, the contributions of the
layers shrink by depth. In the worst-case scenario, when
converged up to floating-point imprecision, the last layer can
only change the scaling of the saliency map. However, the
last layer is responsible for the network’s final prediction.

2.2. Modified BP algorithms

LRPz The LRPz rule of Layer-wise Relevance Propaga-
tion modifies the backpropagation rule as follows:

rz−LRP
l (x) = Zl · rz−LRP

l+1 (x),

whereZl =

(
wijhl[j]∑
k wikhl[k]

)T
[ij]

.
(7)

If only max-pooling, linear layers, and ReLU activa-
tions are used, it was shown that LRPz corresponds to
gradient�input, i.e. rz−LRP

0 (x) = x � ∂f(x)
∂x (Shrikumar

et al., 2016; Kindermans et al., 2016; Ancona et al., 2017).
LRPz can be considered a gradient-based and not a modi-
fied BP method. The gradient is not converging to a rank-1
matrix and therefore gradient�input is also not converging.

LRPαβ separates the positive and negative influences:

rαβl (x) =
(
αZ+

l − βZ
−
l

)
rαβl+1(x), (8)

where Z+
l and Z−l correspond to the positive and negative

entries of the matrix Z. (Bach et al., 2015) propose to
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Figure 3: PatternNet & PatternAttr.: (a)(b) Ratio between the first and second singular value σ1/σ2 forAl,Wl, andAl�Wl.
(c) σ1/σ2 of inter-layer derivation matrices. For (b) (c), we sliced the 3x3 convolutional kernels to 1x1 kernels.

weight positives more: α ≥ 1 and α−β = 1. For LRPα1β0,
this rule corresponds to the z+-rule, which converges. For
α > 1 and β > 0, the matrix Zl = αZ+

l − βZ−l can
contain negative entries. Our empirical results show that
LRPαβ still converges for the most commonly used parame-
ters α = 2, β = 1 and even for a higher α = 5 it converges
considerable on the ResNet-50.

Deep Taylor Decomposition uses the z+-rule if the in-
put to a convolutional or dense layer is in [0,∞], i.e. if the
layer follows a ReLU activation. For inputs in R, DTD also
proposed the w2-rule and the so-call wB rule for bounded
inputs. Both rules were specifically designed to produce
non-negative outputs. Theorem 1 applies and DTD con-
verges to a rank-1 matrix necessarily.

PatternNet & PatternAttribution takes into account
that the input hl contains noise. If dl corresponds to the
noise and sl to the signal, than hl = sl + dl. To assign the
relevance towards the signal direction, it is estimated using
the following equation:

ai =
cov[h]wi

wT
i cov[h]wi

, (9)

where ai is the estimated signal direction for the i− th neu-
ron with input h and weight vectorwi = W[i:]. PatternNet
is designed to recover the relevant signal in the data. Let
Al[i:] = ai be the corresponding signal matrix to the weight
matrix Wl, the rule for PatternNet is:

rPN
l (x) = ATl · rPN

l+1(x), (10)

PatternNet is also prone to converge to a rank-1 matrix.
To recover the relevant signal, it might be even desired to
converge to the a single direction – the signal direction.

The convergence of PatternNet follows from the compu-
tation of the pattern vectors ai in equation 9. It is simi-
lar to a single step of the power iteration method vk+1 =
Cvk/ ‖Cvk‖. In appendix C, we provide details on the
relationship to power iteration and also derive equation 9

from the equation given in (Kindermans et al., 2018). The
power iteration method converges to the eigenvector with
the largest eigenvalue exponentially fast.

All column vectors in A[i:] = ai underwent a single step
of the power iteration and therefore tend to point towards
the first eigenvector of cov[h]. This can also be verified
empirically: the ratio of the first and second singular value
σ1(A)/σ2(A) > 6 for almost all the VGG-16 patterns (see
Figure 3a), indicating a strong convergence of the matrix
chain towards a single direction.

The findings from PatternNet are hard to transfer to Pat-
ternAttribution. The rule for PatternAttribution uses the
Hadamard product of Al and Wl:

rPA
l (x) = (Wl �Al)T · rPA

l+1(x), (11)

The Hadamard product complicates any analytic argument
using the properties of Al or Wl. The theoretical results
available (Ando et al., 1987; Zhan, 1997) did not allow us
to show that PatternAttribution converges to a rank-1 matrix
necessarily.

We provide a mix of theoretical and empirical insights
on why it converges. The conditions of convergence
can be studied well on the singular value decomposition:
(Wl �Al)T = UlΣlVl. Loosely speaking, the matrix chain
will converge to a rank-1 matrix if the first σ1 and second σ2

singular values in Σl differ and if Vl and Ul+1 are aligned
such that higher singular values of Σl and Σl+1 are multi-
plied together such that the ratio σ1/σ2 grows.

To see how well the per layer matrices align, we look at the
inter-layer chain members: Tl =

√
ΣlVlUl+1

√
Σl+1. In

Figure 3, we display the ratio between the first and second
singular values σ1(Tl)/σ2(Tl). For W �A, the first singu-
lar value is considerably larger than for the plain weightsW .
Interestingly, the singular value ratio of inter-layer matrices
shrinks for the plain W matrix. Whereas for PatternAttribu-
tion, the ratio increases for some layers indicating that the
Hadamard product leads to more alignment of the matrices.
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DeepLIFT is the only tested modified BP method which
does not converge to a rank-1 matrix. It is an extension of
the backpropagation algorithm to finite differences:

f(x)− f(x0)

x− x0
(12)

For the gradient, one would take the limit x0 → x.
DeepLIFT uses a so-called reference point for x0 instead,
such as zeros or for images a blurred version of x. The fi-
nite differences are backpropagated, similar to infinitesimal
differences. The final relevance is the difference in the k-th
logit: rDLl (x) = fk(x)− fk(x0).

Additionally to the vanilla gradient, DeepLIFT separates
positive and negative contributions. For ReLU activations,
DeepLIFT uses either the RevealCancel or the Rescale rule.
Please refer to (Shrikumar et al., 2017) for a description.
The rule for linear layers is most interesting because it is
the reason why DeepLIFT does not converge:

rDL+
l (x,x0) =MT

>0 �
(
W+T

l rDL+
l+1 (x,x0)

+W−
T

l rDL−l+1 (x,x0)
) (13)

where the mask M>0 selects the weight rows correspond-
ing to positive deltas (0 < ∆hl = hl − h0

l ). For negative
relevance rDL−l , the rule is defined analogously. An inter-
esting property of the rule (13) is that negative and positive
relevance can influence each other.

If the intermixing is removed by only considering W+ for
the positive rule and W− for the negative rule, the two
matrix chains become decoupled and converge. For the
positive chain, this is clear. For the negative chain, observe
that the multiplication of two non-positive matrices gives
a non-negative matrix. Non-positive vectors b, c have an
angle ≤ 90◦ and cT b = ‖c‖ ‖b‖ cos(c, b) ≥ 0. In the
evaluation, we included this variant as DeepLIFT Ablation,
and as predicted by the theory, it converges.

Guided BP & Deconv & RectGrad apply an additional
ReLU to the gradient and it was shown to be invariant to the
randomization of later layers previously in (Adebayo et al.,
2018) and analyzed theoretically in (Nie et al., 2018):

rGBPl (x) = WT
l

[
Mlr

GBP
l+1 (x)

]+
. (14)

Ml = diag(1h1>0) denotes the gradient mask of the ReLU
operation. For Deconv, the mask of the forward ReLU is
omitted, and the gradients are rectified directly. RectGrad
(Kim et al., 2019) is related to GuidedBP and set the lowest
q percentile of the gradient to zero. As recommended in the
paper, we used q = 98.

As a ReLU operation is applied to the gradient, the back-
propagation is no longer a linear function. The ReLU also

results in a different failure than before. (Nie et al., 2018)
provides a theoretical analysis for GuidedBP. Our results
align with them.

3. Evaluation
Setup We report results on a small network trained on
CIFAR-10 (4x conv., 2x dense, see appendix D), a VGG-16
(Simonyan & Zisserman, 2014), and ResNet-50 (He et al.,
2016). The last two are trained on the ImageNet dataset
(Russakovsky et al., 2015), the standard dataset to evaluate
attribution methods. The different networks cover different
concepts: shallow vs. deep, forward vs. residual connec-
tions, multiple dense layers vs. a single one, using batch nor-
malization. All results were computed on 200 images from
the validation set. To justify the sample size, we show boot-
strap confidence intervals in Figure 4b (Efron, 1979). We
used the implementation from the innvestigate and deeplift
package (Alber et al., 2019; Shrikumar et al., 2017) and
added support for residual connections. The experiments
were run on a single machine with two graphic cards and
take about a day to complete.

Random Logit We display the difference of saliency
maps explaining the ground-truth and a random logit in
Figure 4a. As the logit value is responsible for the predicted
class, the saliency maps should change. We use the SSIM
metric (Wang et al., 2004) as in (Adebayo et al., 2018).

Sanity Check We followed (Adebayo et al., 2018) and
randomized the parameters starting from the last layer to
the first layer. For DTD and LRPα1β0, randomizing the last
layer flips the sign of the saliency map sometimes. We,
therefore, compute the SSIM also between the inverted
saliency map and report the maximum. In Figure 4b, we
report the SSIM between the saliency maps (see also Figure
1a and appendix G).1

Cosine Similarity Convergence Metric (CSC) Instead
of randomizing the parameters, we randomize the back-
propagated relevance vectors directly. We select layer k
and set the corresponding relevance to rk(x) := v1 where
v1 ∼ N (0, I) and then backpropagate it as before. For ex-
ample, for the gradient, we would do: ∂hk

∂h1

∂f(x)
∂hk

:= ∂hk

∂h1
v1.

We use the notation rl(x|rk : =v1) to describe the relevance
rl at layer l when the relevance of layer k is set to v1.

Using two random relevance vectors v1,v2 ∼ N (0, I),
we measure the convergence using the cosine similarity.
A rank-1 matrix C = cγT always yields the same direc-

1For GuidedBP, we report different saliency maps than shown
in Figure 2 of (Adebayo et al., 2018). We were able to confirm a
bug in their implementation, resulting in saliency maps of Guid-
edBP and Guided-GradCAM to remain identical for early layers.
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(b) Parameter Randomization

Figure 4: (a) SSIM between saliency maps explaining the ground-truth or a random logit. (b) The parameters of the
VGG-16 are randomized, starting from the last to the first layer. SSIM quantifies the difference to the saliency map from the
original model. Intervals show 99% bootstrap confidences.

tion: Cv = cγT = λc. If the matrix chain converges,
the backpropagated relevance vectors of v1,v2 will align
more and more. We quantify their alignment using the co-
sine similarity scos(rl (x|rk: =v1) , rl (x|rk: =v2))) where
scos(a, b) = aT b / (‖a‖ · ‖b‖).

Suppose the relevance matrix chain would converge to
a rank-1 matrix perfectly, than we have for both v1,v2:
rl(x|rk=vi) = Cvi = cγTvi = λic where λi = γTvi and
their cosine similarity will be one. The opposite direction
is also true. If C has shape n × m with n ≤ m and if
for n linearly independent vectors vi, the cosine similarity
scos(Cvi, Cvj) = 1, then C is a rank-1 matrix.

An alternative way to measure convergence would have
been to construct the derivation matrix Ck =

∏k
l=1 Zl and

measure the ratio σ1(Ck)/σ2(Ck) of the first to the second-
largest singular value of Ck. Although this approach is well
motivated theoretically, it has some performance downsides.
Ck would be large and computing the singular values costly.

We use five different random vectors per sample – in total
1000 convergence paths. As the vectors are sampled ran-
domly, it is unlikely to miss a region of non-convergence
(Bergstra & Bengio, 2012).

For convolution layers, we compute the cosine similarity
per feature map location. For a shape of (h,w, c), we obtain
h · w values. The jump in cosine similarity for the input
is a result of the input’s low dimension of 3 channels. In
Figure 5, we plot the median cosine similarity for different
networks and attribution methods (see appendix F for addi-
tional Figures). We also report the histogram of the CSC at
the first convolutional layer in Figures 5e-5g.

4. Results
Our random logit analysis reveals that converging methods
produce almost identical saliency maps, independently of

the output logit (SSIM very close to 1). The rest of the
field (SSIM between 0.4 and 0.8) produces saliency maps
different from the ground-truth logit’s map (see Figure 4a).

We observe the same distribution in the sanity check results
(see Figure 4b). One group of methods produces similar
saliency maps even when convolutional layers are random-
ized (SSIM close to 1). Again, the rest of the field is sensi-
tive to parameter randomization. The same clustering can
be observed for ResNet-50 (appendix E, Figure 8).

Our CSC analysis confirms that random relevance vectors
align throughout the backpropagation steps (see Figure 5).
Except for LRPz and DeepLIFT, all methods show conver-
gence up to at least 0.99 cosine similarity. LRPα5β4 con-
verges less strongly for VGG-16. Among the converging
methods, the rate of convergence varies. LRPα1β0, Pattern-
Net, the ablation of DeepLIFT converges fastest. PatternAt-
tribution has a slower convergence rate – still exponential.
For DeepLIFT Ablation, numerical instabilities result in
a cosine similarity of 0 for the first layers of the ResNet-
50. Even on the small 6-layer network, the median CSC is
greater than 1-1e-6 for LRPα1β0 (see Figure 5d).

5. Discussion
When many modified BP methods do not explain the net-
work faithfully, why was this not widely noticed before?
First, it is easy to blame the network for unreasonable expla-
nations – no ground truth exists. Second, MNIST, CIFAR,
and ImageNet contain only a single object class per image –
not revealing the class insensitivity. Finally, it might not be
too problematic for some applications if the saliency maps
are independent of the later network’s layers. For example,
to explain Alzheimer’s disease (Böhle et al., 2019), local
low-level features are sufficient as they are predictive for
the disease and the data lacks conflicting evidences (i.e. the
whole brain is affected).
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(a) ResNet-50
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(b) VGG-16 (logarithmic)
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(c) VGG-16 (linear)
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(d) CIFAR-10
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Figure 5: (a)-(d) Median of the cosine similarity convergence (CSC) per layer between relevance vectors obtained from
randomizing the relevance vectors of the final layer. (e)-(g) histogram of the distribution of the CSC after the first layer.

When noticed, different ways to address the issue were
proposed and an improved class sensitivity was reported
(Kohlbrenner et al., 2019; Gu et al., 2018; Zhang et al.,
2018). We find that the underlying convergence problem
remains unchanged and discuss the methods below.

LRPCMP (Kohlbrenner et al., 2019; Lapuschkin et al.,
2017) use LRPz for the final dense layers and LRPαβ for
the convolutional layer. We report results for α = 1, 2 as in
(Kohlbrenner et al., 2019) in Figure 6a.

For VGG-16, the saliency maps change when the network
parameters are randomized. However, structurally, the un-
derlying image structure seems to be scaled only locally (see
Figure 6a). Inspecting the CSC path of the two LRPCMP

variants in Figure 6c, we can see why. For dense layers, both
methods do not converge as LRPz is used, but the conver-
gence start when LRPαβ is applied. The relevance vectors
of the dense layer can change the coarse local scaling. How-
ever, they cannot alter the direction of the relevance vectors
of earlier layers to highlight different details.

In the backward-pass of the ResNet-50, the global-aver-
aging layer assigns the identical gradient vector to each

location of the last convolutional layer. Furthermore, the
later convolutional layers operate on (7x7), where even a
few 3x3 convolutions have a dense field-of-view. LRPCMP

does not resolve the global convergence for the ResNet-50.

Contrastive LRP (Gu et al., 2018) noted the lack of class
sensitivity and proposed to increase it by subtracting two
saliency maps. The first saliency map explains only the
logit yk = y �mk, wheremk is a one-hot vector and the
second explains the opposite y¬k = y � (1−mk):

max(0,n(rz
+

x (x|rlogits: =yk))

− n(rz
+

x (x|rlogits: =y¬k))
(15)

n(.) normalizes each saliency map by its sum. The results of
Contrastive LRP are similar to Figre 1e, no max is applied.
The underlying convergence problem is not resolved.

Contrastive Excitation BP The lack of class sensitivity
of the z+-rule was noted in (Zhang et al., 2018) and to
increase it, they proposed to change the backpropagation
rule of the final fully-connected layer to:

rcEBP
final fc(x) = (Z+

final fc −N
+
final fc)mk, (16)
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Figure 6: (a-b) Sanity checks and (c) CSC for LRPCMP .

wheremk is a one-hot vector selecting the explained class.
The added N+

final fc is computed as the Z+
final fc but on the neg-

ative weights −Wfinal fc. Note that the combination of the
two matrices introduces negative entries. Class sensitivity
is increased. It does also not resolve the underlying con-
vergence problem. If, for example, more fully-connected
layers would be used, the saliency maps would become
globally class insensitive again.

Texture vs. Contours (Geirhos et al., 2019) found that
deep convolutional networks are more sensitive towards
texture and not the shape of the object. For example, the
shape of a cat filled with an elephant texture will be wrongly
classified as an elephant. However, modified BP methods
highlight the contours of objects rather.

Recurrent Neural Networks Modified BP methods are
focused on convolutional neural networks and are mostly
applied on vision tasks. The innvestigate package does not
yet support recurrent models. To our knowledge, (Arras
et al., 2017) is the only work that applied modified BP
rules to RNNs (LRPz for LSTMs). Training, and applying
modified backpropagation rules to RNNs, involves unrolling
the network, essentially transforming it to a feed-forward
architecture. Due to our theoretical results, modified BP
rules that yield positive relevance matrices (e.g. z+-rule)
will converge. However, further work would be needed to
measure how RNN architectures (LSTM, GRU) differ in
their specific convergence behavior.

Not Converging Attribution Methods Besides modified
BP attribution methods, there also exist gradient averaging
and black-box methods. SmoothGrad (Smilkov et al., 2017)
and Integrated Gradients (Sundararajan et al., 2017) aver-
age the gradient. CAM and Grad-CAM (Zhou et al., 2016;
Selvaraju et al., 2017) determine important areas by the
activation of the last convolutional layer. Black-box attri-
bution methods only modify the model’s input but do not
rely on the gradient or other model internals. The most
prominent black-box methods are Occlusion, LIME, SHAP
(Zeiler & Fergus, 2014; Ribeiro et al., 2016; Lundberg &
Lee, 2017). IBA (Schulz et al., 2020) applies an information
bottleneck to remove unimportant information. TCAV (Kim
et al., 2018) explains models using higher-level concepts.

All here mentioned attribution methods do not converge,
as they either rely on the gradient or treat the model as
black-box. Only when the BP algorithm is modified, the
convergence problem can occur. The here mentioned algo-
rithms might still suffer from other limitations.

Limitations Also, we tried to include most modified BP
attribution methods, we left some out for our evaluation
(Nam et al., 2019; Wang et al., 2019; Huber et al., 2019). In
our theoretical analysis of PatternAttribution, we based our
argument on why it converges on empirical observations
performed on a single set of pattern matrices.

6. Related Work
Limitations of attribution The limitations of explana-
tion methods were studied before. (Viering et al., 2019)
alter the explanations of Grad-CAM arbitrarily by modify-
ing the model architecture only slightly. Similarly, (Slack
et al., 2020) construct a biased classifier that can hide its
biases from LIME and SHAP. The theoretic analysis (Nie
et al., 2018) indicates that GuidedBP tends to reconstruct
the input instead of explaining the network’s decision. (Ade-
bayo et al., 2018) showed GuidedBP to be independent of
later layers’ parameters. (Atrey et al., 2020) tested saliency
methods in a reinforcement learning setting.

(Kindermans et al., 2018) show that LRP, GuidedBP, and
Deconv produce incorrect explanations for linear models if
the input contains noise. (Rieger, 2017; Zhang et al., 2018;
Gu et al., 2018; Kohlbrenner et al., 2019; Montavon et al.,
2019; Tsunakawa et al., 2019) noted the class-insensitivity
of different modified BP methods, but they rather proposed
ways to improve the class sensitivity than to provide cor-
rect reasons why modified BP methods are class insensitive.
Other than argued in (Gu et al., 2018), the class insensitivity
is not caused by missing ReLU masks and Pooling switches.
To the best of our knowledge, we are the first to identify the
reason why many modified BP methods do not explain the
decision of deep neural networks faithfully.
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Evaluation metrics for attribution As no ground-truth
data exists for feature importance, different proxy tasks
were proposed to measure the performance of attribution
algorithms. One approach is to test how much relevance
falls into ground-truth bounding boxes (Schulz et al., 2020;
Zhang et al., 2018).

The MoRF and LeRF evaluation removes the most and least
relevant input features and measures the change in model
performance (Samek et al., 2016). The relevant image parts
are masked usually to zero. On these modified samples, the
model might not be reliable. The ROAR score improves it
by retraining the model from scratch (Hooker et al., 2018).
While computationally expensive, it ensures the model per-
formance does not drop due to out-of-distribution samples.
The ROAR performance of Int.Grad. and GuidedBP is
equally bad, worse than a random baseline (see Figre 4
in (Hooker et al., 2018)). Thus, ROAR does not separate
converging from non-converging methods.

Our CSC measure has some similarities with the work (Bal-
duzzi et al., 2017), which analyzes the effect of skip con-
nections on the gradient. They measure the convergence
between the gradient vector from different samples using
the effective rank (Vershynin, 2012). The CSC metric ap-
plies to modified BP methods and is an efficient tool to trace
the degree of convergence.

A different approach to verify attribution methods is to mea-
sure how helpful they are for humans (Alqaraawi et al.,
2020; Doshi-Velez & Kim, 2017; Lage et al., 2018).

7. Conclusion
In our paper, we analyzed modified BP methods, which aim
to explain the predictions of deep neural networks. Our
analysis revealed that most of these attribution methods
have theoretical properties contrary to their goal. PatternAt-
tribution and LRP cite Deep Taylor Decomposition as the
theoretical motivation. In the light of our results, revisiting
the theoretical derivation of Deep Taylor Decomposition
may prove insightful. Our theoretical analysis stresses the
importance of negative relevance values. A possible way to
increase class-sensitivity and resolve the convergence prob-
lem could be to backpropagate negative relevance similar to
DeepLIFT, the only method passing our test.
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K. T., Montavon, G., Samek, W., Müller, K.-R., Dähne,
S., and Kindermans, P.-J. innvestigate neural networks!
Journal of Machine Learning Research, 20(93):1–8,
2019.

Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E., and
Berthouze, N. Evaluating saliency map explanations for
convolutional neural networks: A user study. In Proceed-
ings of the 25th International Conference on Intelligent
User Interfaces, IUI ’20, pp. 263–274, New York, NY,
USA, 2020. Association for Computing Machinery. doi:
10.1145/3377325.3377519.
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Kindermans, P.-J., Schütt, K., Müller, K.-R., and Dähne, S.
Investigating the influence of noise and distractors on the
interpretation of neural networks. arXiv: 1611.07270,
2016.
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A. Proof of Theorem 1
In (Friedland, 2006) the theorem is proven for square matrices. In fact Theorem 1 can be deduced from this case by the
following argument:

For a sequence of non-square matrices (Ak)k∈N ∈ Rmk×lk of finite size mk, lk ≤ L we can always find a finite set of
subsequent matrices that when multiplied together are a square matrix.

A1 · ... ·An1︸ ︷︷ ︸
=:Ā1∈Rm×m

·An1+1 · ... ·An2︸ ︷︷ ︸
=:Ā2∈Rm×m

·An2+1 · ... ·An3︸ ︷︷ ︸
=:Ā3∈Rm×m

·... (17)

The matrices Ā1, Ā2, Ā3, ... define a sequence of non-negative square matrices that fulfill the conditions in (Friedland, 2006)
and therefore converge to a rank-1 matrix.

We provide another proof using the cosine similarity to show convergence. First, we outline the conditions on the matrix
sequence An. Then, we state the theorem again and sketch our proof to give the reader a better overview. Finally, we prove
the theorem in 4 steps.

Conditions on An The first obvious condition is that the (An)n∈N is a sequence of non-negative matrices such that Ai,
Ai+1 have the correct size to be multiplied together. Secondly, as we calculate angles between column vector in our proof,
no column of An should be zero. The angle between a zero vector and any other vector is undefined. Furthermore, we
assume that the entries of An cannot grow infinitely. They are bound such that ||a||1 ≤ L ∈ R+ for all column vectors a of
any An. Finally, the size of An should not increase infinitely, i.e. an upper bound on the size of the Ai’s exists such that
Ai ∈ Rm×k where m, k ≤ K for some K ∈ N.

Theorem 1. Let A1, A2, A3 . . . be a sequence of non-negative matrices as described above. We require that every column
vector a of An has a norm ||a|| ≥ ε0 and that infinite many matrices Ai with i ∈ I and |I| = |N| exists for which two
column vectors have a dot product of at least ε〈·,·〉, i.e. 〈a, b〉 ≥ ε〈·,·〉, where both ε0, ε〈·,·〉 > 0. Then the product of all
terms of the sequence converges to a rank-1 matrix C̄:

C̄ := lim
n→∞

n∏
i=1

Ai
||
∏n
i=1Ai||

= c̄γT . (18)

Example Infinite many matrices in An must not be too orthogonal
(
〈vi,vj〉 < ε〈·,·〉

)
or be too close to the zero vector

(|vi| < ε0). Matrices of the following form are not in the sequence An:
︸ ︷︷ ︸

arbitrary

v1 ... vl ︸ ︷︷ ︸
〈vi,vj〉 < ε〈·,·〉

vl+1 ... vm ︸ ︷︷ ︸
|vi| < ε0

vm+1 ... vn


up to ordering of the columns.

For example, this concrete example could only occur finite times:
0 1
1 1
1 1
1 1 ︸ ︷︷ ︸

〈v3,v4〉 < ε〈·,·〉

0.5 ε〈·,·〉
0 0
1 0
0 1 ︸ ︷︷ ︸

||vi|| < ε0

0 0
0 0
0 0
0 0.5ε0

 .

Proof sketch To show that
∏∞
i Ai converges to a rank-1 matrix, we do the following steps:

(1) We define a sequence sn as the cosine of the maximum angle between the column vectors of Mn :=
∏n
i=1Ai.

(2) We show that the sequence sn is monotonic and bounded and therefore converging.
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(3) We introduce a complementary sequence εn = 1− sn and show sn+1 ≥ sn + λεn with λ > 0

(4) We assume that limn→∞ sn = 1− ε∗ < 1 and show that than limn→∞ sn →∞ is diverging which is a contradiction
and therefore sn → 1.

Proof To simplify the proof, we assume that all matrices in the sequence Ai are in I . We will show that any finite number
of (Ai)i 6∈I can be added without changing the result.

(1) Let Mn :=
∏n
i=1Ai be the product of the matrices A1 · . . . ·An. We define a sequence on the angles of column vectors

of Mn using the cosine similarity. Let v1(n), ...,vk(n)(n) be the column vectors of Mn. Note, the angles are well defined
between the columns of Mn. The columns of Mn cannot be a zero vector as we required An to have no zero columns. Let
sn be the cosine of the maximal angle between the columns of Mn:

sn = mini6=j scos(vi(n),vj(n)) := min
i,j

〈vi(n),vj(n)〉
‖vi(n)‖‖vj(n)‖

, (19)

where 〈·, ·〉 denotes the dot product. We show that the maximal angle converges to 0 as limn→∞ sn = 1, which is equivalent
to Mn converging to a rank-1 matrix. In the following, we take a look at two consecutive elements of the sequence sn and
check by how much the sequence increases.

(2) We show that the sequence sn is monotonic and bounded and therefore converging. Assume an+1 and bn+1 are the two
columns of An+1 which produce the columns vm(n+ 1) and vm′(n+ 1) of Mn+1 with the maximum angle:

sn+1 = scos(vm(n+ 1),vm′(n+ 1)) = scos(Mnan+1,Mnbn+1). (20)

We also assume that ‖vi(n)‖ = 1 for all i, since the angle is independent of length. To declutter notation, we write
vi(n) =: vi, an = a = (a1, ..., ak)T , bn = b = (b1, ..., bk)T

Substituting Mna =
∑
i aivi into the the definition of the cosine similarity, we show that sn is monotonic:

sn+1 =

∑
ij aibj〈vi,vj〉

‖
∑
i aivi‖‖

∑
i bivi‖

(21)

Using the triangle inequality ‖
∑
i aivi‖ ≤

∑
i ai‖vi‖ we get:

sn+1 ≥
∑
ij aibj〈vi,vj〉

(
∑
i ai‖vi‖)(

∑
i bi‖vi‖)

(22)

As we assumed that the ‖vi‖ = 1, we know that 〈vi,vj〉 = scos(vi,vj) which must be greater than the smallest cosine
similarity sn:

sn+1 ≥
∑
ij aibj〈vi,vj〉

(
∑
i ai)(

∑
i bi)

≥
∑
ij aibj

(
∑
i ai)(

∑
i bi)

sn = sn (23)

Therefore sn is monotonically increasing and upper-bounded by 1 as the cosine of the maximal angle. Due to the monotone
convergence theorem, it will converge. The rest of the proof investigates if the sequence sn converges to 1 and if so, under
which conditions. Equation 23 makes it also clear that we can ignore any (Ai)i 6∈I , as the factor before sn can never be
lower than 1. All values are non-negative,

∑
i ai > 0, and

∑
i bi > 0.

(3) We now introduce a complementary sequence εn = 1− sn.

Using the result from equation 21, we write sn+1 as:

sn+1 =

∑
ij aibj〈vi,vj〉

‖
∑
i aivi‖‖

∑
i bivi‖

=

∑
i6=j aibj〈vi,vj〉+

∑
i aibi〈vi,vi〉

‖
∑
i aivi‖‖

∑
i bivi‖

=

∑
i 6=j aibj〈vi,vj〉+ 〈a, b〉
‖
∑
i aivi‖‖

∑
i bivi‖

, (24)

since we assumed that ‖vi‖ = 1. Now, we apply 1 = sn + εn and 〈vi,vj〉 ≥ sn

sn+1 ≥
(
∑
i6=j aibj)sn + 〈a, b〉(sn + εn)

‖
∑
i aivi‖‖

∑
i bivi‖

≥
(
∑
i 6=j aibj)sn + 〈a, b〉(sn + εn)

(
∑
i |ai|‖vi‖)(

∑
i |bi|‖vi‖)

=
(
∑
i6=j aibj)sn + 〈a, b〉(sn + εn)

(
∑
i ai)(

∑
i bi)

(25)
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Here, we applied the triangle inequality and the fact that the matrix entries ai and bi are positive.

sn+1 ≥
(
∑
i 6=j aibj)

(
∑
i ai)(

∑
i bi)

sn +
〈a, b〉

(
∑
i ai)(

∑
i bi)

(sn + εn) =
(
∑
ij aibj)

(
∑
i ai)(

∑
i bi)

sn +
〈a, b〉

(
∑
i ai)(

∑
i bi)

εn (26)

As the factor before sn is equals one, we have:

sn+1 ≥ sn +
〈a, b〉

(
∑
i ai)(

∑
i bi)

εn ≥ sn + λεn, (27)

where λ =
ε〈·,·〉
L2 < 〈a,b〉

(
∑

i ai)(
∑

i bi)
, as ε〈·,·〉 is the minimal dot product of any two column vectors and

∑
i ai = ||a||1 < L,

as L is the maximum matrix L1-norm of any column vector of An.

(4) Suppose, limn→∞ sn = 1− ε∗, where ε∗ > 0. Then, for all εn, it must be εn > ε∗. Using the result from equation 27,
we get:

sn+1 ≥ εn ≥ sn + λε∗ (28)

We would therefore have:

lim
n→∞

sn ≥ lim
n→∞

nλε∗ →∞. (29)

This is a contradiction. Therefore, ε∗ = 0 and limn→∞ sn = 1. The matrix entries of Mn could grow to infinity, therefore
M∞ may not be defined. However, we normalize the product M̄n = Mn/‖Mn‖, then ‖M̄∞‖1 = 1 and all the columns of
M̄∞ are the same up to a scalar multiple.

Update to the Theorem 1 and the Proof: In a previous version of this manuscript, we did not explicitly require the
dot-product 〈a, b〉 ≥ ε〈·,·〉 to be greater than a constant, and also missed a similar constraint for the zero vector. As a
result, we did not exclude cases where the matrix sequence An converged to such edge-cases. For example, the sequence

An =

(
1 0
1
n 1

)
fulfilled the criteria of the previous version but is now excluded. We also made the normalization more

explicit. An inaccurate statement about the ”convergence of the matrix chain An”, which is not actually required, is now
removed. Furthermore, the updated version now contains a new derivation of the convergence speed. We thank Günter Rote
for bringing these issues to our attention.

B. Convergence Speed
For the derivation of the convergence speed, we assume that all matrices An are in the set I . We start with the intermediate
result from equation 27:

sn+1 ≥ sn + λεn = sn + λ(1− sn) = (1− λ)sn + λ. (30)

We now define a new sequence ξn+1 = (1− λ)ξn + λ with ξ0 = s0 that is a lower bound of sn+1, i.e. for all sn ≥ ξn
Analyzing the first steps of ξn, we have:

ξ1 = (1− λ)s0 + λ (31)

ξ2 = (1− λ) ((1− λ)s0 + λ) = (1− λ)2s0 + (1− λ)λ (32)

ξ3 = (1− λ)
(
(1− λ)2s0 + (1− λ)λ

)
= (1− λ)3s0 + (1− λ)2λ (33)

The general form of ξn is therefore:

ξn = (1− λ)ns0 + λ

n−1∑
k=0

(1− λ)k. (34)

The sum of a geometric series
∑n−1
k=0 r

k is given by 1−rn
1−r . Applying this to the term of our series ξn:

λ
n−1∑
k=0

(1− λ)k = λ

(
1− (1− λ)n

1− (1− λ)

)
= 1− (1− λ)n. (35)

Published in Proceedings of the 37th International Conference on Machine
Learning, Online, PMLR 119, 202

– 49 –



When Explanations Lie: Why Many Modified BP Attributions Fail

0 5 10 15
multiplications

1 - 1e-9

1 - 1e-6

1 - 1e-3

co
si

ne
 s

im
ila

ri
ty vanilla

ReLU
ReLU learned
pattern A W
stocastic
postive
non-neg.

(a) different matrix properties (see text)

0 5 10 15
multiplications

1 - 1e-9

1 - 1e-6

1 - 1e-3

co
si

ne
 s

im
ila

ri
ty = 10, = 9

= 5, = 4
= 4, = 3
= 3, = 2
= 2, = 1
= 1, = 0

(b) αW+ + βW− where W[ij] ∼ N (0, 1)

Figure 7: Simulated convergence for a matrix chain.

Therefore, the closed-form solution for ξn is:

ξn = 1− (1− λ)n(1− s0). (36)

Therefore, sn must also convergence exponentially fast in λ. We bounded λ =
ε〈·,·〉
L2 by the minimum dot-product ε〈·,·〉 and

the maximum L1-norm of the columns of An. In the next section, we conduct an empirical analysis and find that the value
of λ is large enough that typical matrices converge towards a rank-1 matrix up to floating-point impression within a few
steps.

Empirical evaluation We further investigate the convergence speed using a simulation of random matrices and find that
non-negative matrices decay exponentially fast towards 1.

We report the converging behavior for matrix chains which resembles a VGG-16. As in the backward pass, we start from
the last layer. The convolutional kernels are considered to be 1x1, e.g. for a kernel of size (3, 3, 256, 128), we use a matrix
of size (256, 128).

We test out the effect of different matrix properties. For vanilla, we sample the matrix entries from a normal distribution.
Next, we apply a ReLU operation after each multiplication. For ReLU learned, we used the corresponding learned VGG
parameters. We generate non-negative matrices containing 50% zeros by clipping random matrices to [0,∞]. And positive
matrices by taking the absolute value. We report the median cosine similarity between the column vectors of the matrix.

The y-axis of Figure 7a has a logarithmic scale. We observe that the positive, stochastic, and non-negative matrices yield a
linear path, indicating an exponential decay of the form: 1− exp(−λn). The 50% zeros in the non-negative matrices only
result in a bit lower convergence slope. After 7 iterations, they converged to a single vector up to floating point imprecision.

We also investigated how a slightly negative matrix influences the convergence. In Figure 7b, we show the converges of
matrices: αW+ + βW− where W+ = max(0,W ),W− = min(0,W ) and W ∼ N (0, I). We find that for small enough
β < 4 values the matrix chains still converge. This simulation motivated us to include LRPα5β4 in our evaluation which
show less convergence on VGG-16, but its saliency maps also contain more noise.

C. Pattern Attribution
We derive equation 9 from the original equation given in (Kindermans et al., 2018). We will use the notation from the
original paper and denote a weight vector with w = Wl[i,:] and the corresponding pattern with a = Al[i,:] . The output is
y = wTx.

Derivation of Pattern Computation For the positive patterns of the two-component estimator Sa+−, the expectation is
taken only over {x|wTx > 0}. We only show it for the positive patterns a+. As our derivation is independent of the subset
of x considered, it would work analogously for negative patterns or the linear estimator Sa.
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The formula to compute the pattern a+ is given by:

a+ =
E+ [xy]− E+ [x]E+ [y]

wTE+ [xy]−wTE+ [x]E+ [y]

=
cov[x,wTx]

wT cov[x,wTx]
,

(37)

where cov[x,wTx] = E+[xy]− E+[x]E+[y]. Using the bilinearity of the covariance matrix (cov[b, cTd] = cov[b,d]c),
gives:

a+ =
cov[x,x]w

wT cov[x,x]w
. (38)

Using the notation cov[h] = cov[x,x] gives equation 9.

Connection to power iteration A step of the power iteration is given by:

vk+1 =
Mvk
‖Mvk‖

(39)

The denominator in equation 9 is wT cov[h]w. Using the symmetry of cov[h], we have:∥∥∥cov[h]1/2w
∥∥∥ = (wT cov[h]1/2 cov[h]1/2w)1/2 = (wT cov[h]w)1/2 (40)

This should be similar to the norm ‖cov[h]w‖. As only a single step of the power iteration is performed, the scaling should
not matter that much. The purpose of the scaling in the power-iteration algorithm is to keep the vector vk from exploding or
converging to zero.
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D. CIFAR-10 Network Architecture
# network architecture as a keras model
model = Sequential()

model.add(InputLayer(input_shape=(32, 32, 3), name=’input’))
model.add(Conv2D(32, (3, 3), padding=’same’, name=’conv1’))
model.add(Activation(’relu’, name=’relu1’))
model.add(Conv2D(64, (3, 3), padding=’same’, name=’conv2’))
model.add(Activation(’relu’, name=’relu2’))
model.add(MaxPooling2D(pool_size=(2, 2), name=’pool2’))

model.add(Conv2D(128, (3, 3), padding=’same’, name=’conv3’))
model.add(Activation(’relu’, name=’relu3’))
model.add(Conv2D(128, (3, 3), padding=’same’, name=’conv4’))
model.add(Activation(’relu’, name=’relu4’))
model.add(MaxPooling2D(pool_size=(2, 2), name=’pool4’))

model.add(Flatten(name=’flatten’))
model.add(Dropout(0.5, name=’dropout5’))
model.add(Dense(1024, name=’fc5’))
model.add(Activation(’relu’, name=’relu5’))
model.add(Dropout(0.5, name=’dropout6’))
model.add(Dense(10, name=’fc6’))
model.add(Activation(’softmax’, name=’softmax’))

E. Results on ResNet-50
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Figure 8: Effect of (a) randomizing the logits or (b) the parameters on a ResNet-50.
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F. Additional Cosine Similarity Figures
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(a) ResNet-50 (linear)
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(b) ResNet-50 (log)
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(c) VGG-16
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(d) ResNet-50
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(f) VGG-16
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(g) VGG-16 (linear)
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(h) CIFAR-10 (linear)

Figure 9: Convergence measured using the CSC for different starting layers.
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G. Saliency maps for Sanity Checks
For visualization, we normalized the saliency maps to be in [0, 1] if the method produce only positive relevance. If the
method also estimates negative relevance, than it is normalized to [−1, 1]. The negative and positive values are scaled
equally by the absolute maximum. For the sanity checks, we scale all saliency maps to be in [0, 1].
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(a) VGG-16.
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(b) ResNet-50.

Figure 10: Saliency maps for sanity checks. Parameters are randomized starting from last to first layer.
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5 A Rigorous Study Of The Deep
Taylor Decomposition

The previous chapter discussed that various modified backpropagation attribu-
tion methods failed to adequately explain the network’s decision. For LRPα1β0,
it was shown that the problem is caused by a chain of positive matrices.

The authors of LRP have responded to our findings with their manuscript
CLEVR-XAI: A benchmark dataset for the ground truth evaluation of neural
network explanations (Arras et al. 2022). In this manuscript, they designed
a synthetic benchmark for explainable AI: different geometric objects are ar-
ranged in a scene, and the task is to answer a question about the scene. A typical
question might be “What color is the spherical object?”. The saliency map
is then expected to highlight the spherical object. In (Arras et al. 2022), the
authors report that LRPα1β0 performs better than any other method tested (Ex-
citation Backprop, Integrated Gradients, Guided Backprop, Guided Grad-CAM,
SmoothGrad, VarGrad, Gradient, Gradient×Input, Deconvnet, Grad-CAM).
Furthermore, based on their good empirical performance, they concluded that
no convergence problem, as described in (Sixt et al. 2020) would exist:

“In our VQA setup we instead find empirically a high connection
between the relevance heatmaps and the target objects of each ques-
tion, which even increases with the model’s confidence (i.e., the
output of the last layer in the network). Maybe the phenomenon de-
scribed in (Sixt et al. 2020) becomes predominant in the asymptotic
case of a neural network with a very high number of layers, and
might be relevant for further improving XAI methods. However, in
our practical use-case of a neural network with 12 layers, we could
not confirm that this behavior alters the quality of modified back-
propagation based explanations in comparison to gradient-based
ones.” — (Arras et al. 2022)
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In (Arras et al. 2022), it was not discussed how this was possible, although we
provided proof of this failure and showed that the matrix chain converges to a
rank-1 matrix exponentially fast for their case of fully connected layers.

In another publication (Holzinger et al. 2022), LRP was advertised as follows:

“The main advantages of LRP are its high computational effi-
ciency [...], its theoretical underpinning making it a trustworthy
and robust explanation method [...], and its long tradition and high
popularity [...].” — (Holzinger et al. 2022)

I am convinced that this statement is biased since the authors of LRP did not
refute our results from (Sixt et al. 2020); furthermore, they even refute discussing
the limitations of the LRP method entirely.

The situation is further complicated by a claimed theoretical underpinning
and justification of the LRP method, namely the Deep Taylor Decomposition
(DTD), (Montavon et al. 2017). The main idea of the DTD is to recursively
apply the Taylor Theorem to a relevance function. As a start the explained
logit is used relevance and then the relevance is redistributed according to an
application of the Taylor Theorem. The choice of root point leads to different
derivation rules such as the LRPα1β0 or the γ-rule.

The limitations uncovered in (Sixt et al. 2020) apply only to propagation rules
with positive matrices and do not necessarily invalidate the entire DTD theory.
This raised the question of whether the limitations are inherent to the DTD or
whether they only apply to LRPα1β0.

Our work (Sixt et al. 2022a) provides the previously missing theoretical analy-
sis of the DTD. The result of this analysis yields an interesting duality for ReLU
networks: (1) if the root points (a critical parameter of the DTD) are independent
of the network’s activations, then the DTD is equivalent to gradient×input. (2) if
the root points are independent of the network’s activations, then the attribution
values are determined by the Jacobian of the root points w.r.t. the network’s
activations. Those results are concerning: in case (1), we could have omitted
the whole theory of DTD, and used gradient×input right away; for case (2), we
could justify any saliency value as the selection of the root point is left to the
user.

(Sixt et al. 2022a) demonstrates the power of rigorous mathematical analysis
in debunking the claims of a method and serves as a crucial component in
my overall dissertation by reinforcing my criticism towards LRP and DTD
methods. This work is an essential contribution to the scientific dispute about
the DTD, highlighting the potential pitfalls and limitations of these methods



and emphasizing the need for caution when using saliency maps based on LRP
and DTD for explainability purposes.
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Abstract

Saliency methods attempt to explain deep neural networks by highlighting the most salient
features of a sample. Some widely used methods are based on a theoretical framework called
Deep Taylor Decomposition (DTD), which formalizes the recursive application of the Tay-
lor Theorem to the network’s layers. However, recent work has found these methods to be
independent of the network’s deeper layers and appear to respond only to lower-level image
structure. Here, we investigate the DTD theory to better understand this perplexing behav-
ior and found that the Deep Taylor Decomposition is equivalent to the basic gradientˆinput
method when the Taylor root points (an important parameter of the algorithm chosen by
the user) are locally constant. If the root points are locally input-dependent, then one can
justify any explanation. In this case, the theory is under-constrained. In an empirical eval-
uation, we find that DTD roots do not lie in the same linear regions as the input – contrary
to a fundamental assumption of the Taylor theorem. The theoretical foundations of DTD
were cited as a source of reliability for the explanations. However, our findings urge caution
in making such claims.

1 Introduction

Post-hoc explanations are popular for explaining Machine Learning models as they do not require changing
the model’s architecture or training procedure. In particular, feature attribution methods are widely used.
They assign a saliency score to each input dimension, reflecting their relevance for the model’s output. For
images, the saliency scores can be visualized as heatmaps (see Figure 2).

Evaluating post-hoc explanations is challenging because it is inherently circular: As we do not understand
the internal workings of the model, which we are trying to explain, we cannot judge the quality of the
explanation. The situation is further complicated as many methods simplify the model’s complexity to render
explanations accessible to the human eye. For example, most methods focus on the local neighborhood of
an input sample, and rely on assumptions such as linearity (e.g. gradient-based methods) or independence
of the input features (e.g. approximation of Shapley values (Štrumbelj & Kononenko, 2011; 2014; Lundberg
& Lee, 2017; Kumar et al., 2020)).

These factors and the complexity of deep neural networks make it difficult to assess whether an explanation
is correct or not. We can not disentangle failures of the explanation method and unexpected behavior of
the model. While it is acceptable for methods to introduce simplifications or rely on assumptions, their
existence, purpose, and violation should be made transparent. In the best case, a method would be based
on a solid theoretical foundation providing guarantees regarding an explanation’s correctness.

1
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Such a theoretical foundation is the Deep Taylor Decomposition (DTD, Montavon et al. (2017)). DTD
recursively applies the Taylor Theorem to the network’s layers, and backpropagates modified gradients to
the input, thereby computing the input’s relevance. It was used as theoretical foundation of LRP (Bach
et al., 2015), a poplar method to explain image models. LRP was repeatedly advertised as a sound and
reliable explanation technique (Montavon et al., 2019; Samek et al., 2021b; Holzinger et al., 2022). For
example, Holzinger et al. (2022) stated: “The main advantages of LRP are its high computational efficiency
[...], its theoretical underpinning making it a trustworthy and robust explanation method [...], and its long
tradition and high popularity [...].”

However, Sixt et al. (2020) has shown that certain LRP and DTD backpropagation rules create explanations
partially independent of the model’s parameters: the explanation will remain the same even if the last layer’s
parameters are randomized. The theoretical analysis in (Sixt et al., 2020) revealed that the propagation
matrices, which correspond to the layers’ Jacobian matrices, are all positive and their product converges to
a rank-1 matrix quickly. To obtain the saliency map, the result is usually normalized, and thereby even the
last single degree of freedom is lost. Thus, the explanation does not change when explaining a different class
or the parameters of the deeper layers is changed.

This perplexing behavior questions the consistency of DTD directly. While Sixt et al. (2020) described the
convergence to the rank-1 matrix in detail, the failure was not related to DTD’s theory such as the choice
of root points1 and the recursive application of the Taylor Theorem. Here, we fill this gap: Can we identify
flaws in DTD’s theory that would explain the perplexing behavior of ignoring the network’s parameters? Does
DTD provide transparency regarding its assumptions and guarantees about the explanation’s correctness?

Before we approach these questions, we summarize the relevant background of the Deep Taylor Decomposition
in Section 3. For completeness, we start with the well-known Taylor theorem and then discuss how the
theorem connects to DTD’s relevances. We then continue with stating the recursive application of the Taylor
Theorem formally and recapitulate the so-called train-free DTD approximation, which allows to compute
layer-wise relevances efficiently.

In section 4, we present our theoretical analysis of DTD. In particular, we contribute: (C1) a proof that
the root points must be contained in the same linear region as the input; (C2) we generalize a previous
observation about LRP0 (Shrikumar et al., 2016): if the layers’ root points are chosen locally constant
w.r.t the layers’ input, then DTD’s relevances take a similar form as inputˆgradient; (C3) DTD is under-
constrained: if the root points depend on the layers’ input, then the Deep Taylor Decomposition can be
used to create any arbitrary explanation; (C4) we also find that DTD cannot be extended easily to analytic
activation functions (e.g. Softplus), without introducing complex higher-order derivatives with the same
order as the number of network layers.

In an empirical evaluation (Section 5), we applied the theoretical insights from the previous section and
studied the train-free DTD approximation in several experiments: (C5) The train-free DTD does not enforce
the root points to be located in the valid local linear region of the network; (C6) We also validated this
empirically using a small multilayered perceptron, where we found a substantial number of samples having
roots located outside the valid local linear region; (C7) Additionally, we include a reproducibility study of
(Arras et al., 2022) that claimed that DTD’s explanations would not suffer from the problems reported in
Sixt et al. (2020). This reproducibility study also highlights DTD’s black-box character and how difficult it
is to evaluate explanation quality empirically.

Given the theoretical and empirical evidence, we conclude that DTD obscures its simplifications and violates
its own assumptions. DTD is underconstrained and even allows justifying virtually any explanation.

2 Related Work

The theoretical analysis of explanation methods is a small research area. PatternAttribution (Kindermans
et al., 2018) investigated the insensitiveness of DTD rules to input noise and then proposed a way to learn

1Following Montavon et al. (2017), we name the points used for the Taylor Theorem root points. For example, for a function
f : R Ñ R, the first-order Taylor approximation is fpxq « fpx̃q ` f 1px̃qpx ´ x̃q, where x̃ is the root point.

2
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the root points from data. Other lines of work are the manipulation of saliency maps (Dombrowski et al.,
2019; Viering et al., 2019; Wang et al., 2020), the runtime-complexity of explanation methods (Waeldchen
et al., 2021), or the explanations methods with provable guarantees (Chen et al., 2019).

Previous works have analyzed the theoretical properties of various saliency methods. For example, the insen-
stivity of Guided-Backprop (Springenberg et al., 2014) was analyzed in (Nie et al., 2018), and (Lundstrom
et al., 2022) found flaws in the theoretical motivation of integrated gradients Sundararajan et al. (2017).
(Kumar et al., 2020) discussed the issues from an independence assumption between input variables, often
introduced in sampling algorithms (Štrumbelj & Kononenko, 2011; 2014; Lundberg & Lee, 2017). In (Shah
et al., 2021), it was empirically analyzed and proven for a specific dataset that the Gradient’s magnitude will
not correspond to relevant features. Our work also analyzes the theoretical properties of saliency methods
but differs from previous works as it focuses on the DTD and LRP methods.

Although different review articles (Montavon et al., 2018; 2019; Samek et al., 2021b;a) and extensions of
LRP and Deep Taylor (Binder et al., 2016; Kohlbrenner et al., 2020; Hui & Binder, 2019; Ali et al., 2022)
have been published, none discussed the theoretical issues brought forward in our manuscript.

3 Background

In this section, we provide the necessary background on Deep Taylor Decomposition to understand the
theoretical analysis in Section 4. We mainly reproduce the derivations given in (Montavon et al., 2017;
2018). If we comment on the derivations, we do this in the Remark sections.

3.1 Taylor Theorem for multivariate functions

Taylor Theorem for multivariate functions can be concisely stated using multi-index notation. A multi-index
α P Nk

0 is a vector of non-negative integers (α “ rα1, . . . , αks). The following operations are defined as:
α! “ α1!α2! . . . αk!, |α| “

řk
i“1 αi, xα “ xα1

1 xα2
2 . . . xαk

k , and Bαf “ B|α|f{pBα1x1Bα2x2 . . . Bαk xkq, where
x P Rk and f : Rk Ñ R. The following theorem is adapted from Folland (2002, Theorem 2.68):
Theorem 1 (Multivariate Taylor Theorem). Suppose f : Rd Ñ R is of differentiability class Ck on an open
convex set S. If x P S and x̃ P S, then:

fpxq “
ÿ

|α|ďk

Bαfpx̃q

α! px ´ x̃qα ` gkpx, x̃q, (1)

where the remainder is given by:

gkpx, x̃q “ k
ÿ

|α|“k

px ´ x̃qα

α!

ż 1

0
p1 ´ tqk´1

”

Bαf
`

tx ` p1 ´ tq x̃
˘

´ Bαfpxq

ı

dt. (2)

As the Deep Taylor Decomposition focuses on neural networks with ReLU activations, we will mainly look
at the first-order Taylor Theorem:

fpxq “ fpx̃q `
Bfpxq

Bx

ˇ

ˇ

ˇ

x“x̃
¨ px ´ x̃q (3)

where x̃ is the root point, and |x“x̃ denotes the gradient evaluated at the root point x̃. The higher order
terms are zero due to the local linearity of ReLU networks. As the Taylor Theorem requires f P C1 (i.e.,
all partial derivatives Bfpxq{Bx must be continuous in the local neighborhood S), the root point must be
within the same linear region as the input.
Definition 1 (Linear Region). A linear region of a function f : Rd Ñ R is the set Nf pxq of all points
x1 P Nf pxq that (1) have the same gradient at x: ∇fpxq “ ∇fpx1q, and (2) can be reached from x without
passing through a point a with a different gradient, i.e., ∇fpaq ‰ ∇fpxq.

In case of a ReLU network, the approximation error cannot be bounded when selecting a root point x̃ R

Nf pxq, as that linear region’s gradient might differ substantially.

3
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3.2 Taylor Theorem and Relevances

In the previous section, we have recapitulated the Taylor Theorem. We now discuss how the Taylor Theorem
can be used to compute input relevances. A common approach explaining deep neural network is to contrast
the network’s output with a similar point predicted differently. A user could then study pairs px, fpxqq and
px̃, fpx̃qq and relate the input differences to the output differences. To guide the user’s attention, it would
be desirable to highlight which changes between x and x̃ were responsible for the difference in the output.
The first observation in (Montavon et al., 2017) is that the network’s output differences can be redistributed
to the input by using the Taylor Theorem. If the point x̃ is in the local neighborhood Nf pxq, we can use
the first-order Taylor Theorem (equation 3) to write the difference fpxq ´ fpx̃q as:

fpxq ´ fpx̃q “
Bfpxq

Bx

ˇ

ˇ

x“x̃
¨ px ´ x̃q (4)

The relevance of the input R : Rd Ñ Rd is then defined to be the point-wise product of the partial derivatives
with the input differences:

Rpxq “
Bfpxq

Bx

ˇ

ˇ

x“x̃
d px ´ x̃q (5)

While this would be a simple way to compute the relevances, the following reasons are given in (Montavon
et al., 2017; 2019), to not directly use the Taylor Theorem on the network output:

1. Adversarial perturbations (Szegedy et al., 2013): Small input perturbations can lead to a large
change in the output. Therefore, the difference in the output might be enormous but |x ´ x̃| tiny
and uninterpretable.

2. Finding a root point might be difficult: “It is also not necessarily solvable due to the possible
non-convexity of the minimization problem” (Montavon et al., 2017).

3. Shattered gradients (Balduzzi et al. (2017)): “While the function value fpxq is generally accurate,
the gradient of the function is noisy” (Montavon et al., 2019).

Remark 1. We want to point out that the more general problem seems to be that the local linear regions
are tiny, or rather the number of linear regions grows exponentially with the depth of the network in the
worst case (Arora et al., 2018; Xiong et al., 2020; Montufar et al., 2014). This restricts the valid region for
the root point to a small neighborhood around the input.

3.3 Deep Taylor: Recursive Application of Taylor Theorem

The main idea of (Montavon et al., 2017) is to recursively apply the Taylor Theorem to each network layer.
Before we present this in detail, we first we need to clarify the notation of an n-layered ReLU network shortly:

Definition 2 (ReLU network). An n-layered ReLU network f : Rd1 Ñ Rdn`1
ě0 is the composition of n

functions f “ fn ˝ . . . ˝ f1, where each function fl : Rdl Ñ Rdl`1
ě0 has the form flpalq “ rWlals

`, and where
r.s` is the ReLU activation.

Instead of directly calculating the relevance of the input as done in the previous section, we can apply Taylor
Theorem to the final network layer and then apply the Taylor Theorem again to the resulting relevance. By
recursively applying the Taylor Theorem per individual layer, we can calculate the relevance of the input.
As the base case of the recursive application, the relevance of the network output is set to the value of the
explained logit frξspxq “ an`1rξs

:
Rn`1pan`1q “ an`1rξs

, (6)

where Rn`1 denotes the relevance of the n ` 1-th network activation. We decided to use superscripts for
the relevance functions as their individual dimensions are often index as in Rn`1

rjs
. Suppose that we already

4
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know the relevance function Rl`1pal`1q P Rdl`1 for the layer l`1. We can then calculate the relevance of al

(the input to layer l) to the j-th coordinate of Rl`1pal`1q:

Rl`1
rjs

pal`1q “ Rl`1
rjs

pflpãlqq `
BRl`1

rjs
pflpalqq

Bal

ˇ

ˇ

ˇ

ˇ

ˇ

al“ãlpalq

¨ pal ´ ãlpalqq, (7)

where we used al`1 “ flpalq. The root point is selected in dependency of the layers’ input al, i.e., it is a
function ãl : Rdl Ñ Rdl . The total relevance of the input to layer l is given by the sum over all dl`1 hidden
neurons.
Definition 3 (Recursive Taylor). Given a function f : Rd1 Ñ Rdn`1 , which can be written as a composition
of n functions f “ f1 ˝ . . . ˝ fn with fl : Rdl Ñ Rdl`1 , the input to each function fl are denoted by al

and an`1 specifics f ’s output. Additionally, a root point function ãl : Rdl Ñ Rdl is defined for each layer,
which must only return admissible values ãlpalq P NRl

pxq and ãlpalq ‰ al. Then, the base case is given by
Rn`1pan`1q “ an`1rξs

and the relevance function Rl : Rdl Ñ Rdl of layer l ‰ n is recursively defined by:

Rlpalq “

dl`1
ÿ

j“1

¨

˝

BRl`1
rjs

pflpalqq

Bal

ˇ

ˇ

ˇ

ˇ

ˇ

al“ã
pjq

l
palq

d

´

al ´ ã
pjq

l palq

¯

˛

‚ (8)

The above definition corresponds to equation 6 in (Montavon et al., 2017). Except for the root point
selection, which will be discussed in the following sections, definition 3 contains all information to implement
the recursive decomposition using an automatic differentiation library. An exemplary pseudo-code can be
found in Algorithm 1. Before continuing with the approximations of the Deep Taylor Decomposition, we
want to make a few remarks:
Remark 2 (No Axiomatic Motivation). Only some vague arguments are provided to motivate the recursive
application of the Taylor Theorem:

The deep Taylor decomposition method is inspired by the divide-and-conquer paradigm,
and exploits the property that the function learned by a deep network is decomposed into a
set of simpler subfunctions, either enforced structurally by the neural network connectivity,
or occurring as a result of training. – Montavon et al. (2017, Section 3)

In contrast, Shapely values (Shapley, 1951) are motivated by four axiomatic properties, which are uniquely
fulfilled by the Shapely values. A comparable set of axioms with uniqueness result does not exist for the
Deep Taylor Decomposition.

3.4 Deep Taylor Decomposition For A One-Layer Network and DTD’s rules

In the previous section, we introduced the recursive application of the Taylor Theorem. For a concrete exam-
ple, we will now discuss how DTD is applied to a one-layered network. It will also explain the propagation
rules of DTD. This subsection corresponds to Section 4 in Montavon et al. (2017), and we will refer to the
corresponding equations with the notation (DTD eq. 11).

The one-layered network consists of a linear layer with a ReLU activation followed by a sum-pooling layer,
i.e. f : Rd Ñ R, fpxq “

ř

jrWx ` bs
`
j , where r.s` is the ReLU activation. We will denote the output of the

ReLU layer as hpxq “ rWx ` bs`, and the sum-pooling layer as yphq “
ř

j hj . For this subsection, we will
denote the relevance function with Rx, Rh, and Ry for the input, hidden, and output layer, respectively.

The relevance of the final layer is simply given by the network’s output (equation 6; DTD eq. 8):

Ryphpxqq “ yphpxqq. (9)

DTD suggests to select a root point h̃ such that yph̃q “ 0. The advantage of yph̃q “ 0 is that the network’s
output yphq is absorbed to the first-order term (i.e., fpx̃q “ 0 in equation 3). We then have yphq “
BRy

ph̃q

Bh̃
¨ph´h̃q such that the network output is fully redistributed to the hidden layer’s relevance. Additionally,

5
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the root point should be a valid input to the layer. As yphq’s input comes from the ReLU layer hpxq, it is
positive and only h̃ “ 0 solves

ř

j h̃j “ 0. The derivative BRf
hph̃q{Bh̃ “ Byph̃q{Bh̃ “ 1 and therefore, we can

use equation 8 to write the relevance of the ReLU layer’s output as (DTD eq. 10):

Rhpxq “
BRyphq

Bh

ˇ

ˇ

ˇ

h̃“0
d h “ h (10)

As h is the ReLU output, we can write Rhpxq also as (DTD eq. 11):

Rhpxq “ rWx ` bs` (11)

The next step is to connect the input relevance Rxpxq with the ReLU neurons’ relevances Rh. We will use
equation 8 and apply the Taylor theorem to the relevance of each hidden neuron hrjs:

Rxpxq “

d
ÿ

j“1

˜

BRh
rjs

pxq

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

x“x̃pjq

d px ´ x̃pjqq

¸

“

d
ÿ

j“1

´

wj d px ´ x̃pjqq

¯

, (12)

where we used that the derivative of the hidden neuron hrjs w.r.t the input is the weight vector wj “ Wrj:s.

Relevance Propagation Rules For the root point x̃, we could, in theory, select any point in the half-
space wjx̃ ` bj ą 0, as they are all valid according to the Taylor Theorem. However, as it is beneficial to
fully redistribute the relevance, DTD proposed selecting a point that sets the j-th neuron relevance to zero,
i.e., any point on the hyperplane wT

j x̃ ` bj “ 0. The non-differentiability at the ReLU hinge is resolved by
picking the gradient from the case wjx̃ ` bj ą 0.

As there is no unique solution, DTD derives different points by starting at the input x and moving along a
direction vj such that h̃j “ x ´ tvj with t P R. The root point x̃j is then the intersection of the line x ` tvj

with the hyperplane wT
j x ` bj “ 0. Combining these equations yields t “ ´

wT
j x`bj

wT
j

vj
and therefore the root

point x̃pjq “ x ´
wT

j x`bj

wT
j

vj
vj . Substituting this into equation 12 yields: (DTD-Appendix eq. 6, 7)

Rxpxq “

d
ÿ

j“1

˜

wj d
wT

j x ` bj

wT
j vj

vj

¸

“

d
ÿ

j“1

˜

wj d
vj

wT
j vj

Rh
rjs

pxq

¸

. (13)

While almost all choices of v yield a root point with Rxpx̃q “ 0 (except v K w), a few special directions
exists:

• The w2-rule chooses the closest root point in L2 metric: vj “ wj . This will yield the root point
x̃ “ x ´

wj

wT
j

wj
Rhpxq and the following relevance propagation rule: Rxpxq “

řd
j“1

w2
j

wT
j

wj
Rhpxq,

where w2
j “ wj d wj .

• The z` rule uses a direction that always yields a positive root: vj “ 1wj ě0x, which is preferred for
positive inputs (e.g. from ReLU activations). The resulting root point is x̃ “ x ´

w1wj ě0x

wT
j

p1wj ě0xq
Rh

rjs
pxq

and the following relevance propagation rule: Rxpxq “
řd

j“1
z`

j
ř

i z`

ji

Rh
rjs

pxq, where z`
j “ 1wj ě0xdw`

j .

• The gamma rule proposed in Montavon et al. (2019) uses the search direction vj “ 1 `

γ1wj ě0 d x, where γ P R`. The corresponding relevance propagation rule is then: Rxpxq “
řd

j“1
wj `γz`

j

wT
j

p1`γz`

j
q
Rh

rjs
pxq. In the limit γ Ñ 8, the gamma rule becomes the z`-rule.

• A special case is the LRP0 rule which does not use any vector to find a root point but chooses
x̃ “ 0. Although zero is not a valid root point in general, it was shown that LRP0 corresponds to
gradientˆinput Shrikumar et al. (2016); Ancona et al. (2018); Kindermans et al. (2016). The LRPε

rule is an extension of LRP0 that adds a small ε to increase numeric stability.
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3.4.1 Which rule should be chosen?

(a) Non-positive biases (b) Unrestricted biases

Figure 1: Local linear regions of an randomly initialized
neural network (3 layers, ReLU, 2 inputs, 10 hidden neu-
rons). The biases are initialized (a) non-positive and (b)
unrestricted. The gradient are visualized as arrows for a
random selection of points.

The computed relevance values depend substan-
tially on the rule. For example, the LRP0 rule
can compute negative relevance values, whereas
the z` rule will always return positive relevance
values. In Montavon et al. (2017, Sec. 4.1, 4.2,
4.3), the input domain was used as the primary
selection criterion. For example, it was suggested
to pick z` rule for R`

0 and the w2 rule for the do-
main R. The input domain is not a sufficient se-
lection for the root points, as it does not provide a
unique solution. In the later work Montavon et al.
(2019), other selection criterion were proposed for
deep neural networks, which we will analyze in
Section 3.5.1. For now, we can conclude that no
principled way to pick the roots and rules exists.

3.4.2 Non-positive biases

In Montavon et al. (2017), it was proposed to constrain the biases of the linear layer to be non-positive, i.e.
bj ď 0. The main motivation was to guarantee that the origin is a root point of the function f . However,
this is not the case, as the following simple counter-example will show. Suppose the bias b “ ⃗́1. Then
the function f p⃗0q “ 0, as rW 0⃗ ´ 1⃗s` “ 0, but the origin 0⃗ is not a valid root point as the gradient is zero
there. However, any input x with fpxq ě 0 will have a non-zero gradient and will therefore be in a different
local region. In Figure 1, we visualized the local regions of a small 3-layered network for non-positive and
unrestricted bias.

3.5 DTD for Deep Neural Neworks: The Training-Free Relevance Model

Applying the recursive Taylor decomposition to a one-layered network yielded a set of easily applied relevance
propagation rules, which allowed to skip computing the root points explicitly. Of course, it would be desirable
to skip the computation of roots for deep neural networks too. As solution, Montavon et al. (2017) proposed
a so-called training-free relevance model. We follow the derivation from the review article (Montavon et al.,
2018).

Let Rl`1palq be the relevance computed for an upper layer. Montavon et al. (2017) then makes the following
assumption:
Assumption 1 (Positive Linear Relevance). The relevance of the upper layer Rl`1pal`1q can be written as
Rl`1pal`1q “ al`1 d cl`1, where cl`1 P R` should be a constant and positive vector.

As Rl`1palq “ cl`1 d rWlal ` bls
`, we can construct a so-called relevance neuron:

R̂l`1pal`1q “ rŴl`1al`1 ` b̂l`1s`, (14)
where we pulled c into the layer’s parameters: Ŵl`1 “ Wl`1 d Cl`1 and where Cl`1 “ rcl`1, . . . , cl`1s is a
repeated version of cl`1 and b̂l`1 “ bl`1 d cl`1.

This formulation is similar to the relevance of the hidden layer of the one-layer network in equation 11. The
difference is that the root point and search direction will be based on the modified weights Ŵl`1 and b̂l`1.
Using ŵj “ Ŵl`1rj:s

“ cl`1rjs
Wl`1rj:s

, we can write the general relevance propagation rule of equation 13 as:

R̂lpalq “

d
ÿ

j“1

˜

ŵj d vj

ŵT
j vj

R̂l`1
rjs

pflpalqq

¸

“

d
ÿ

j“1

˜

wj d vj

wT
j vj

R̂l`1
rjs

pflpalqq

¸

, (15)

where the cl`1j
canceled out. The corresponding root point would be: ã

pjq

l “ al ´
wT

j x`bj

wT
j

vj
vj . Interestingly,

this deviation recovers the one-layer case from equation 13. Thus, Montavon et al. (2018) argues that all
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the rules from the linear case (Section 3.4) can be applied to a deep neural network too. This result can be
easily extended to sum-pooling layers, as they are equivalent to a linear layer with the weights of value 1.
Remark 3 (Is it correct that ck is constant?). A global constant ck cannot exist, as changing the input vector
can result a in totally different output, which would change the relevance magnitude. A local approximation
of ck could be correct if root points stays within the same local linear region where the function’s gradient
∇f is locally constant.
Remark 4 (C5 no mechanism to enforce that the root point ã

pjq

l P NRl palq? ). The corresponding root
point to equation 15 would be: ã

pjq

l “ al ´
wT

j x`bj

wT
j

vj
vj . Will this root point be in the local region Nf palq

of al? Probably not, as there is no mechanism enforcing this. We test this in more detail in the empirical
evaluation.

3.5.1 Which Root Points To Choose For A Deep Neural Network?

In Section 3.4.1, we already discussed that there is no principled way to select the root points or corresponding
rules. For deep neural networks, DTD Montavon et al. (2017) originally proposed to pick the z`-rule for all
layers except the first one. In a more recent work Montavon et al. (2019), it was argued to use a combination
of LRP0, LRP-ε and the γ-rule. This was motivated by rather vague properties such as the “activations’
entanglement”, “spurious variations”, and “spreading of relevance”. It is concluded that: “Overall, in order to
apply LRP successfully on a new task, it is important to carefully inspect the properties of the neural network
layers, and to ask the human what kind of explanation is most understandable for him.” – Montavon et al.
(2019, Sec. 10.3). Thus, the choice of the rules lies in the hands of the user who might choose any rule or
root point.

Kohlbrenner et al. (2020) introduced a similar combination of rules as LRP-Composite. For the convolution
layers, they used the z`-rule (or the LRPα1β0) and for the fully-connected layers the LRP0. An improve-
ment over using the z`-rule for all layers, they found that this combination of rules did not suffer from
class-insensitivity, i.e., the saliency map do change when the explained output class is changed. However, it
must be noted that this combination relies on the particular properties of the convolutional neural network.
Specifically, there is little information mixing between more distant locations. Furthermore, the explana-
tions are still insensitive to the later convolutional layers: the z` rule creates a fixed saliency map for the
convolutional layers, which, however, can be scaled by the output of the LRP0-rule. For example, if the final
convolutional output has shape (8, 8) than the saliency map can be scaled in an 8x8 grid.

4 Analysis of the Recursive Application of the Taylor Theorem

In the previous sections, we recapitulated how DTD applies the Taylor Theorem recursively to a one-layer
and a deep neural network, and explained how the different propagation rules were derived. In this section,
we provide a theoretical analysis of the recursive application of the Taylor Theorem. In particular, we study
the definition 3 from Section 3.3. As this definition is the most general formulation of the DTD theory, we
ensure that the results of our analysis are applicable to all the propagation rules and are also not caused by
one specific approximation but are rather inherent to the recursive application of the Taylor theorem.

The following propositions are proven in the Appendix A. The main idea of the proof is to apply the product
rule to equation 8 and then analyze the individual terms.

4.1 Size of admissable regions for the root points cannot be increased

Proposition 1 (C1: Recursively applying the Taylor Theorem cannot increase the size of admissible re-
gions). Given a ReLU network f : Rd1 Ñ Rdn`1

ě0 , recursive relevance functions Rlpalq with l P t1, . . . , nu

according to definition 3, and let ξ index the explained logit, then it holds for the admissible region NRl palq

for the root points ã
pjq

l of the relevance function Rl that NRl palq Ď Nfnξ
˝...˝fl

palq.

As the valid region for root points is restricted by the network f , we then we cannot evade the local region.
This motivates a simple empirical test in Section 5.1: for each root point, we can check whether it is contained
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in the correct admissible region. This result questions the motivation that the distance |x ´ x̃| might be
small T from 3.2, as this distance remains bounded by the local linear region of the network.

4.2 Locally Constant Roots Imply Equivalence of Recursive Taylor and Gradient×Input

It is well known that LRP0 is equivalent to gradientˆinput for ReLU networks. This was first noted in
(Shrikumar et al., 2016) and later also in (Kindermans et al., 2016; Ancona et al., 2018). We proof the
following generalization for the recursive application of the Taylor Theorem in Appendix A.1.
Proposition 2 (C2). Let f : Rd1 Ñ Rdn`1

ě0 be a ReLU network, ξ be the index of the explained logit, and
Rlpalq (with l P 1 . . . n ` 1) are recursive relevance functions according to definition 3. If the root points
ãlpalq are locally constant w.r.t. the layer’s input ( @l P 1 . . . n : Bãl{Bal “ 0), then:

Rpxq “ Rpx̃q ` ∇frξspxq d px ´ x̃q, (16)

where x “ a1 is the input vector and Rpxq “ R1pxq.

The similarity with gradientˆinput can be seen when choosing a root point x̃ “ 0 such that Rp0q“0. Then,
the resulting relevance would be ∇frξspxq d x.

A fixed root point for each linear region would be a valid and even desirable choice. For example, from an
efficiency perspective, it would be preferable to search for a valid root point in each linear region only once.
Or one might want to select the one root point corresponding to the lowest network output. We also want
to emphasize that no continuous constraint for selecting the root points exists. Jumps at the boundaries
between the linear region are allowed. This result contradicts DTD’s motivation described in Section 3.2, as
it explicitly aimed to find something more “stable” than the gradient.

4.3 Locally dependent root points

As a next case, we will look at the more general case of root points depending locally on the layer’s input:
Proposition 3 (C3). For a ReLU network f : Rd1 Ñ Rdn`1

ě0 with n layers, and layer activations al “

fl´1pal´1q, the relevance functions Rl´1pal´1q of the recursive applications of the Taylor Theorem as given
in equation 8 can be written as:

Rl´1pal´1q “

dl
ÿ

j“1

dl`1
ÿ

m“1

»

–

¨

˝

Bflpalq

Balrjs

´
Bã

pmq

lrjs
palq

Bal
¨

Bflpalq

Bal

˛

‚¨
BRl`1

rms
pflpalqq

Bflpalq

fi

fl d

´

al´1 ´ ã
pjq

l´1pal´1q

¯

, (17)

The relevance function Rl´1 is determined by the next layer’s Jacobian Bflpalq{Bal, and also a term including
root point Jacobian Bã

pjq

l {Bal. Although some directions are recommended, the choice of root point is not
restricted per se. It is merely recommended to choose it within the layer’s input domain2 and it should
minimize the explained relevance. Any root point could be chosen, as long as it is from the linear region
NRl

rks
palq. However, this also means that Rl´1pal´1q can be influenced arbitrarily by the root point’s

Jacobian. Therefore, any explanation could be justified. A theory under which anything can be justified is
clearly insufficient.

4.4 Why Not Use Analytic Activation Functions (Softplus)?

For ReLu networks, the Deep Taylor Decomposition suffers from the problem that the root point must be
from the local linear region around the layer input al. A possible solution would be to use an analytic
activation function, e.g. the Softplus activation. This would allow to choose any root point in Rdl , although
a sufficiently good approximation might require an unreasonable amount of higher-order terms. The main
obstacle would be that with each decomposition, higher-order derivatives are accumulated:

2In Montavon et al. (2017, Section 4.1.), the different rules were selected based on the input domain. However, the γ rule,
introduced in a more recent work Montavon et al. (2019), can lead to root points outside the ReLU’s input domain R`, e.g.
for γ “ 0 the root point is given by x̃ “ x ´ x

wT x
Rlpxq which can become negative for large relevance values Rlpxq.
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Table 1: Empirical results of different DTD rules on a small neural network (3 layers, 10 input dimensions,
10 hidden dimensions). They show that the root points picked by the rules are not within the local region
of the input, as each rule produced outputs below 100%. It is also the case that some root points will have
the exact same network output as the original input.

Evaluation \ Rule LRP0 γ “ 1.0 w2 z`

Same local linear region [expected 100%] 41.20% 38.70% 37.70% 41.10%
Same network output [expected 0%] 14.62% 13.85% 14.01% 13.99%

Proposition 4 (C4). Let f : Rd1 ÞÑ Rdn`1 be a neural network, contains an analytic activation function,
then each recursive application of the Taylor Theorem yields a higher-order derivative of the form:
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Thus, for a n-layered network, we would get n-ordered derivatives. The problem is that it is unclear how
these chains of higher-order derivatives behave.

5 Experiments

5.1 (C6) DTD-Train-Free

We implemented the train-free DTD using an explicit computation of the root points. The network consists
of 3 linear layers, each with a ReLU activation. The input and each layer has 10 dimensions. We initialized
the network with random weights and used non-positive biases, as Montavon et al. (2017) suggested (even
though we have shown that this has not the same consequences as claimed in Montavon et al. (2017). As
we are only interested in disproving claims, it is acceptable to show that there exists one of neural network
on which the DTD delivers inconsistent results. Therefore, we also did not train the network on any task.

We provide pseudocode for our implementation in Algorithm 2. The main simplifications of the implemen-
tation are that (1) the relevance of the higher layers is computed with the input of the layer and not the root
point, and (2) the root points are computed using the search directions outlined in section 3.4. We tested
our implementation against Captum’s implementation of the DTD (Kokhlikyan et al., 2020) and found the
deviation to be less than 1 ˆ 10´8.

Verifying that the two points are within the local region would require to show that the gradients are equal
and that there is a path between the two points with all points on the path also having equal gradients. As
the last part is more difficult to show, we only test the necessary condition of equal gradients. Therefore,
we compare the gradient of the input with the gradient of the root points |∇fpxq ´ ∇fpx̃q| on 1000 random
inputs. The input points were sampled such that it has a network output greater than 0.1.

We reported the numerical results in Table 1. Less than 100% of all root points have gradient differences
that are zero, thus root point exists which must be from a different local region. This violates Proposition 1,
which requires all root points to be within the function’s local region. Although we only show results on an
exemplary 3-layered network, the situation would only be worse for more complex networks as the number
of local regions increases exponentially with layer depth (Montufar et al., 2014).

As a second analysis, we tested how the root points influence the network output. One might assume that
a root point will alter the network output. However, this is not always the case (see row “Same network
output” in Table 1). At least, these root points do not explain the output of the neural network.

5.2 (C7) Applying Sanity Checks to (Arras et al., 2022)
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Input sphere

There is a small gray rubber object;
what shape is it?

cylinder sphere

What is the
shape of the
tiny brown

rubber thing?

Input cylinder

There is a large blue matte object;
what shape is it?

sphere cylinder

What shape is
the big shiny

object?

Input cube

There is a large green shiny thing;
what shape is it?

sphere cube

What is the
color of the

big ball?

Input cylinder

There is a large brown thing; what
shape is it?

sphere cylinder

What color is
the metal
sphere?

Figure 2: (1) Input images from the CLEVER-XAI dataset with the LRPα1β0 saliency maps computed for
the (2) correct class, (3) an incorrect class, and (4) a different question. The original question is written
above. The saliency maps do not change visually when a different output class is explained. However,
changing the question highlights other regions.

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Difference

10´2

100

102

D
en

sit
y

Correct Logit vs. Rand. Quest.
Correct Logit vs. Rand. Logit

Figure 3: The histogram of absolute dif-
ferences between the saliency maps for
Correct Logit vs. Random Question and
Correct Logit vs. Random Logit.

A recent work (Arras et al., 2022) evaluated different saliency
methods on the CLEVR VQA dataset using ground truth seg-
mentation masks. Interestingly, they found LRPα1β0 (equivalent
to the DTD z`-rule) to highlight the object of interest particu-
larly well: “[...] a high connection between the relevance heatmaps
and the target objects of each question”. This finding seems to
contradict Sixt et al. (2020), which found that LRPα1β0 becomes
independent of the network’s deeper layer. In Arras et al. (2022),
it was therefore concluded: “Maybe the phenomenon described in
(Sixt et al., 2020) becomes predominant in the asymptotic case of
a neural network with a very high number of layers, [...]”.

A simple empirical test would have been to check if LRPα1β0’s
saliency maps change when the network’s last layer is changed.
To perform this test, we replicated their setup and trained a
relation network (Santoro et al., 2017) on the CLEVR V1.0
dataset Johnson et al. (2017). The network reached an accu-
racy of 93.47%, comparable to 93.3% (Arras et al., 2022) and
95.5% (Santoro et al., 2017). We included more details about the model in Appendix B.

We then compared 1000 LRPα1β0’s saliency maps for the correct answer, an incorrect answer (but from
the same category), and the correct answer but a different question. It is valid to ask for an explanation
of a different class, for example, to understand which evidence is present for sphere instead of cube. The
saliency maps were scaled to cover the range [0,1], and the differences were measured using the mean absolute
difference. In Figure 3, a histogram of the differences is shown. While the saliency maps are very similar
in both cases, there seems to be more variability in the question: for “correct logit vs. random question”
there is an order of magnitude more pixels with a difference of « 1. When looking at the resulting saliency
maps in Figure 2, one can see that the saliency maps differ quite significantly when changing the question.
In contrast, the saliency map of the wrong answer does not change.

First, these results validate the claim in (Sixt et al., 2020) that LRPα1β0 is independent of the network’s
deeper layer. Second, they indicate that an information leakage between the question and LRPα1β0’s saliency
maps is present.

The reason for this information leakage can be found in the specific architecture of the relation networks:
pairs are formed between all feature-map locations of the convolutional output. As the feature map has shape
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p8, 8, 24q, 64¨64 pairs are formed (i.e., height2
¨width2). Additionally, the question embedding produced by an

LSTM layer is concatenated to each pair. This yields triples of pvij , vkl, oLSTMq, where i, j, k, l P t1, . . . , 8u,
and v P R8ˆ8ˆ24 is the convolutional stack’s output. As the convolutional layers and the LSTM layer
are trained together, their representations are aligned. Thus, changing the LSTM embedding will change
the internal representation in the subsequent layers. For relevance locations, the question embedding will
match better with the convolutional activation and, therefore will lead to a higher saliency map at relevant
locations. However, the saliency maps will still become independent of the network’s deeper layer.

The implications are substantial: for example, if the model’s final layers’ were fine-tuned on a new task, the
LRPα1β0 explanation would not change and could not be used to explain this model. Even worse, if your
model was altered to predict spheres instead of cubes, the LRP explanation would not reflect this.

It is quite fascinating that the LRPα1β0 explanations highlight the right object according to the ground
truth, but fail to highlight evidence for the wrong object. This result also shows how difficult it is to
evaluate explanation methods empirically.

6 Conclusion

We have shown that DTD, which has been cited as the theoretical foundation of numerous follow-up post-hoc
explanation techniques (Ali et al., 2022; Binder et al., 2016; Kindermans et al., 2018; Arras et al., 2017; Hui
& Binder, 2019; Huber et al., 2019; Eberle et al., 2020), exhibits serious flaws that explain why saliency maps
created with these methods are independent of the output. From Sixt et al. (2020), we know that that the
positive matrices produced by the z`-rule will converge to a rank-1 matrix. These positive matrices stem
from a specific selection of the root-point, and as the selection of the root-points is not restricted, the z`-rule
can be justified by the DTD theory, as every other explanation could be - by picking an appropriate root.

DTD as a theoretical framework for explanations is under-constraint, and can be considered insufficient.
Caution must be used when using explanations derived from this theory. At the core of the problem,
there is no restriction and little guidance on choosing the root points. Under certain conditions (constant
root points), DTD reduces to backpropagating the gradient, albeit hidden behind a complex mathematical
structure. In the other case (input-dependent root points), DTD leaves open a backdoor through which
virtually any explanation can be created by crafting the root point’s Jacobian accordingly. However, this
again is obfuscated by the theory rather than made transparent.

Since its first ArXiv submission (Montavon et al., 2015), the DTD publication has been cited numerous times.
Although even the authors have reported class-insensitive behavior (Kohlbrenner et al., 2020; Montavon
et al., 2018)3, follow-up works have readily used DTD’s key concepts, motivated by the seemingly robust
mathematical foundation, instead of searching for the underlying reasons. Furthermore, explanations based
on DTD were used in various applications, for example, for validating their model (Andresen et al., 2020),
gain insights into geoscientific questions (Toms et al., 2020), or conduct user studies (Alqaraawi et al., 2020).

While we were able to discover serious issues of DTD, we do not see a solution how to solve them. We
therefore want to point out that other theoretically well-justified methods exist: (Deletion of Information)
which information can be deleted without changing the network output? One approach uses noise (Schulz
et al., 2020), other discrete deletion of the input (Macdonald et al., 2019). (Testing prediction capabilities):
We can test whether certain concepts are present in the network by trying to predict them from intermediate
features (Kim et al., 2018). (Model inversion): How would the input need to change to predict another class?
This question can be answered using invertible models (Hvilshøj et al., 2021; Dombrowski et al., 2021) or
conditional generative models (Singla et al., 2020). (Simple Models): If a similar performance is achieved by
a simpler, more interpretable model, why not simply use that? For example, (Zhang et al., 2021) replaced
part of the network with a linear model. All these approaches do not come with a complicated mathematical
superstructure, rather they have a simple and intuitive motivation.

3“A reduced number of fully-connected layers avoids that the relevance, when redistributed backwards, looses its connection
to the concept being predicted.” – Montavon et al. (2018, Sec 5.1.)
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Broader Impact Statement

Although our work focuses on the theoretical foundations of a particular explanation method, we see broader
implications of this work. Our work demonstrates that the theoretical foundation of explanation methods
need rigorous analysis before they can support the trust that developers, users, and even regulatory bodies
may put in it. This is especially important in the field of explainable AI since empirically evaluating
explanations is difficult.

The field offers a variety of explanation methods, and ways to test the quality of explanations. We rec-
ommend using more than just one method and employing a range of metrics and user tests to make sure
explanations are helpful in potentially critical use-cases such as medical decision making or the screening of
job applications.
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A Proofs

A.1 Proof of proposition 3 and 2

We will proof Propositions 2, 3, and 4 together.

We start with the partial derivative of the relevance function at layer l:
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In this first step, we applied the product rule. For ReLU networks, the higher-order terms are zero. For
other networks (Transformer, LSTMs), the higher-order terms will not be zero. The terms which are zero
for ReLU networks are exactly the terms from Proposition 4.

In the next step, we will apply the chain rule and rewrite Balrks
{Bal as the k-standard basis ek (a one-hot

vector where the k-th dimension is 1):

BRl
rks

palq

Bal
“

dl`1
ÿ

j“1

¨

˝ek ´
Bã
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The next observation is that the gradients inside the r. . .s
al“ã

pjq

l
palq

must be the same for al and the root

point ã
pjq

l as both are in the same local region of fl ˝ Rl`1
rjs

. Therefore, we can safely drop the evaluation of
the gradient at the root point (r. . .s
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l
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) and write:
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Substituting this result into the definition of Rl´1pal´1q from equation 8 yields the result of Proposition 3.

To proof proposition 2, we use Bã
pjq

lrks
palq{Bal “ 0 and get:
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Substituting this into the relevance function of the input Rpxq “ R1pa1q and using BRpxq

Bx

ˇ

ˇ

x“x̃pxq
“

BRpxq

Bx

(as x̃ must be in the same linear region), yields:

Rpxq “ Rpx̃pxqq `
BRpxq

Bx

ˇ

ˇ

ˇ

ˇ

x“x̃pxq

d px ´ x̃q “ Rpx̃pxqq ` ∇frξspxq d px ´ x̃pxqq, (31)

which finished the proof of Proposition 2.

A.2 Admissible Region for the root points of the Relevance Function

We now proof Proposition 1 which is restated here:

Proposition 1 (C1: Recursive Taylor cannot increase the size of admissible regions) Given a ReLU network
f : Rd1 Ñ Rdn`1

ě0 , recursive relevance functions Rlpalq with l P t1, . . . , nu according to definition 3, and let
ξ index the explained logit. Then it holds for the admissible region NRl palq for the root points ã

pjq

l of the
relevance function Rl that NRl palq Ď Nfnξ

˝...˝fl
palq.

Let ã1, . . . , ãn fix the root points. Proof by induction over the number of layers. We start with the induction
base case at the final layer. There, we have Rnpãnq “ frξspãnq, which follows from the recursion base case.
Clearly, NRn pãnq Ď Nfnξ

pãnq. Induction step: We assume NRl`1 pãl`1q Ď Nfl`1 pãl`1q. For the layer l, the
root points must be valid for the function Rl`1pflpãlqq. As we know that NRl`1 pãl`1q Ď Nfl`1 pãl`1q, it
must also be the case that NRl pãlq Ď Nfl

pãlq.

B Details About the Relation Network for the CLEVR dataset

Our code-base builds upon a public available implementation of relation networks4 and utilized Captum for
computing LRPα1β0 explanations Kokhlikyan et al. (2020). We also setup the CLEVR XAI dataset released
on Github5

4https://github.com/rosinality/relation-networks-pytorch
5https://github.com/ahmedmagdiosman/clevr-xai/releases/tag/v1.0
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C Pseudo-Code

C.1 Full-backward DTD

Algorithm 1 Pseudocode for the recursive application of the Taylor Theorem. The global state contains
the following variables: f1, . . . , fn the layer functions of the network, d1, . . . , dn`1 the dimension of the input
to each layer, and ξ the index of the output neuron.

function get_relevance(l: layer index, al: the layer input)
if l “ n ` 1 then

return alrξs

end if
ãl Ð find_root_point(f, l, al)
Rl`1 Ð get_relevance(l ` 1, flpãlq)
for j P 1 . . . dl`1 do

ã.grad Ð 0
Rl`1

rjs
.backwardpq

rj Ð ã.grad d pal ´ ãlq

end for
return

řdl`1
j“1 rj

end function
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C.2 Train-free DTD

Algorithm 2 DTD Train-Free

function find_root_point(l: layer index, al: the layer input, Rl`1
rjs

: the relevance)
wj “ Wrj:s

if z`-rule then
v “ al d 1wj ě0

else if w2-rule then
v “ wj

else if γ-rule then
v “ alp1 ` γ1wj ě0q

. . .
end if
t “ Rl`1

rjs
{pwT

j vq

return al ´ tv Ź Ensures that wT
j pal ´ ãlq “ wT

j
Rrjs

wT
j

v
v “ Rrjs

end function

function get_relevance(l: layer index, al: the layer input)
if l “ n ` 1 then

return alrξs

end if
Rl`1 Ð get_relevance(l ` 1, flpalq) Ź relevance of input instead of root point ãl

for j P 1 . . . dl`1 do
ã

pjq

l Ð find_root_point(f, l, al, Rl`1
rjs

)
ã.grad Ð 0
o Ð rWlrjs

a
pjq

l ` blrjs
s

o.backward()
rj Ð ã.grad d pal ´ ãlq

end for
return

řdl`1
j“1 rj

end function
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6 Do Users Benefit From
Interpretable Vision? A User
Study, Baseline, And Dataset

The previous three chapters were mainly concerned with the technical and theo-
retical aspects of explainable AI. We were able to see that some explainability
methods have theoretical and empirical shortcomings.

One reason why those limitations went unnoticed for quite some time is that
the method’s utility was not evaluated in a user study. Only recently, a study
(Alqaraawi et al. 2020) conducted a user study of saliency maps, specifically
focusing on the LRP method.

They discovered that while saliency maps aided users in predicting the model’s
output more accurately, displaying the model’s logit scores alone yielded a
comparable increase in performance.

For the following publication, I collaborated with Martin Schüßler, one author
of Alqaraawi et al. 2020. Extending on their work and inspired by my previous
negative results regarding explainability methods, we asked what would be the
fairest way to test the utility of an explainability method. In particular, we were
concerned with the following:

(1) No prior knowledge of the data domain should be required: This
ensures that participants do not have any preconceived notions about the
data. For example, if the participants are asked about gender bias, they
might be biased by their individual political views.

(2) The task should be approachable for the participants: The task should
be understandable and easy to perform. Participants take less than 15
minutes to learn the task.

(3) The task should be grounded in the model: Performing well on the
task should require knowledge of the model.
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(4) Explanation methods should be more helpful than a simple baseline:
Any technical explanation method should be compared to a simple and
naive baseline such as displaying samples and the model’s output.

To address the first concern, we built a synthetic dataset generator for creating
images of abstract animals. These abstract animals had various adjustable
attributes, including color, position, orientation, and building blocks. The
synthetic datasets ensured that participants were naive about the data domain.

We decided to use a bias detection task in the study design. The users had
to make a binary decision about the model’s output depending on a certain
property of the animal. These attributes were controlled by the dataset generator
and we use them to inject arbitrary biases into the dataset. This task fulfills (2)
and (3): it is easy to understand and perform, and as the biased attribute is not
revealed to the participants, it requires knowledge of the model to perform well.

Previous studies did not use a bias detection task; instead, they used forward
simulation (Alqaraawi et al. 2020), subjective quality evaluation (Hase et al.
2020), or similarity scoring (Zhang et al. 2021a; Ghorbani et al. 2019).

In the forward-simulation task, users are asked to predict the model’s output
using the explanations given. Although the task is inherently linked to the
model by design, it is relatively challenging to execute and may require users to
evaluate a considerable number of test samples. Other work has used a weak
grounding of the task, where the user had to score the subjective quality of the
explanation. However, as noted in (Hase et al. 2020), it appears that subjective
user ratings of the explanation’s quality do not predict explanation effectiveness
in forward-simulation tests.

Other user-studies (Zhang et al. 2021a; Ghorbani et al. 2019) put more focus
on the accessibility of the task. For example, the user had to sort images to
the matching concept category (Ghorbani et al. 2019). However, determining
the concept category does not test the knowledge about the model. Therefore,
the actual goal of the explanation is not tested. Instead, the bias-detection task
allows the user to reason about more high-level properties than on individual
samples.

Another technical aspect of our study is that we measured the biased properties
of the model using interventions. This is important as the biases of a dataset are
not necessarily adopted by the model. These properties can be used to create
biases in the dataset which are challenging to detect visually.

To address the last concern, we developed a baseline method that arranges
images in a grid based on their logit scores. Each column within the grid



corresponds to a specific range of logit scores. This image grid allows users
to scan many images quickly for similarities and differences. For instance, the
previous work by (Ribeiro et al. 2016) lacked such a baseline method, which
drew criticism from others, such as (Hase et al. 2020).

For my thesis, this publication is relevant because while my other publica-
tions focus on the technical aspects of explainability methods, user studies of
explainability are the only way to ensure that the methods are actually useful for
users.
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ABSTRACT

A variety of methods exist to explain image classification models. However, it
remains unclear whether they provide any benefit to users over simply compar-
ing various inputs and the model’s respective predictions. We conducted a user
study (N=240) to test how such a baseline explanation technique performs against
concept-based and counterfactual explanations. To this end, we contribute a syn-
thetic dataset generator capable of biasing individual attributes and quantifying
their relevance to the model. In a study, we assess if participants can identify the
relevant set of attributes compared to the ground-truth. Our results show that the
baseline outperformed concept-based explanations. Counterfactual explanations
from an invertible neural network performed similarly as the baseline. Still, they
allowed users to identify some attributes more accurately. Our results highlight the
importance of measuring how well users can reason about biases of a model, rather
than solely relying on technical evaluations or proxy tasks. We open-source our
study and dataset so it can serve as a blue-print for future studies.

1 INTRODUCTION

Deep neural networks have been widely adopted in many domains. Yet, for some applications, their
use may be limited by how little we understand which features are relevant. Whether engineer or
user, insurance company, or regulatory body; all require reliable information about what the model
has learned or why the model provides a certain output. Numerous methods have been proposed to
explain deep neural networks (Gilpin et al., 2018; Molnar et al., 2020).

Ultimately, to evaluate whether such explanations are helpful, we need user studies (Doshi-Velez
& Kim, 2017; Wortman Vaughan & Wallach, 2020). In fact, some studies provided evidence that
interpretable ML techniques may be helpful to find biases or spurious correlations (Ribeiro et al.,
2016b; Adebayo et al., 2020a). However, a substantial body of work shows that they may not be as
helpful as claimed (Kaur et al., 2020; Alqaraawi et al., 2020; Chu et al., 2020; Shen & Huang, 2020).
Consequently, it seems that in real-world applications, biases are often found by simply inspecting
the model’s predictions rather than applying interpretable ML. A recent example is the Twitter image
cropping algorithm: it was the users who discovered that it favored white people over people of color
(Yee et al., 2021). In this work, we ask: do modern interpretability methods enable users to discover
biases better than by simply inspecting input/output pairs?

To investigate this question empirically, we first propose TWO4TWO: a synthetic dataset depicting
two abstract animals. Its data-generating factors can be correlated with the binary target class, thereby
creating arbitrarily strong biases. We designed a baseline explanation technique for bias discovery
using only the model’s output: input images are arranged in a grid grouped by the model’s logit
predictions. This design allows a user to inspect all attributes that potentially predict the target class.

In an initial user study (N=50), we validated that participants were struggling to find both biases
contained in our dataset using this technique. Hence, more elaborate methods can improve over
the baseline on this dataset. In the main study (N=240), we compared the baseline against two
state-of-the-art explanations: automatically-discovered concepts and counterfactual interpolations
generated with an invertible neural network.
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(a) Baseline (b) Invertible Neural Networks (c) Concepts (Zhang et al., 2021)

Figure 1: We tested whether users can identify the class-relevant features of images showing two types
of animals. We biased attributes like the animal’s color to be predictive of the class and investigated
whether explanation techniques enabled users to discover these biases. We tested a simple baseline (a)
which shows random samples grouped by the model’s output logit, counterfactual samples generated
by an invertible neural network (b), and automatically discovered concepts (c). A participant viewed
only one of the above conditions.

We found that none of these explanations outperformed the baseline, even though some features were
identified more accurately with counterfactuals. The textual justifications of participants revealed
several usability issues in all methods. This highlights the necessity to validate any claims about the
benefits of explanation techniques in user studies.

This work represents substantial empirical novelty and significance in the field of interpretable ML:

• The TWO4TWO dataset generator provides control over features and biases. It is designed
specifically for human subject studies and to challenge existing interpretability approaches,

• Methods to quantify ground-truth feature importance when the data-generating process is
known,

• A study design that provides a unified approach to evaluating interpretable vision methods
on the task of bias discovery. It is suitable for lay-users and includes several measures to
ensure high-quality crowd-sourced responses,

• A strong and simple baseline explanation technique using only the model output, which we
propose as a benchmark for future studies,

• We open-source our dataset, explanation techniques, model, study design, including instruc-
tions and videos to support replicating our results as well as adapting our design to other
explanation techniques.

2 RELATED WORK

Interpretable ML for Vision Different explanation approaches have been proposed: saliency maps
(Bach et al., 2015; Ancona et al., 2018; Sundararajan et al., 2017), example-based explanations (Cai
et al., 2019), counterfactual examples (Singla et al., 2020), activation-concept approaches (Kim et al.,
2018), or models with built-in interpretability (Chen et al., 2019; Brendel & Bethge, 2018). For a
detailed review about the field, we refer to (Gilpin et al., 2018; Molnar et al., 2020).

Our work focuses on counterfactual explanations and automatically-discovered concepts. Counterfac-
tual explanations are samples that change the model output, e.g., flip the output class (Wachter et al.,
2018). We generated counterfactuals with invertible neural networks (INNs) (Jacobsen et al., 2018;
Kingma & Dhariwal, 2018). This approach has recently gained momentum (Hvilshøj et al., 2021;
Dombrowski et al., 2021; Mackowiak et al., 2020). Previous works have also used GANs and VAEs
for counterfactual generation (Goyal et al., 2019; Mertes et al., 2020; Sauer & Geiger, 2021; Singla
et al., 2020; Liu et al., 2019; Baumgartner et al., 2018; Chang et al., 2019). The main advantage of
using INNs for counterfactuals is that the generative function is perfectly aligned with the forward
function, as an analytic inverse exists.

Concepts represent abstract properties, which can be used to explain a model. For example, the
classification of an image as ”zebra” could be explained by a pronounced similarity to the ”stripe”
concept. This similarity is determined by the dot product of the network’s internal activations with a
concept vector. TCAV (Kim et al., 2018) required manually defined concepts. Recent works proposed
to discover concepts automatically (Ghorbani et al., 2019; Zhang et al., 2021).
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Animal Color Block Shape

Body PostureBackgroundLegs stretched outHead peeking out

Peeky Stretchy

Figure 2: The left panel depicts the main difference between Peeky and Stretchy: the legs’ position.
While Peeky shows one pair of legs moved inwards, Stretchy’s legs are moved outwards. TWO4TWO
offers different attributes: animal color, background color, the shape of the blocks and the animal’s
body posture. All of which can be controlled and biased separately.

User Studies for Interpretability Previous works with the task of bias discovery have mainly
evaluated saliency maps and used datasets with a single, simple bias, e.g. background Adebayo
et al. (2020a); Ribeiro et al. (2016a) or image watermarks Kim et al. (2018). User studies for
concept-based methods tested only the accessibility of the explanations by asking users to assign
images to a concept (Zhang et al., 2021; Ghorbani et al., 2019). Counterfactual explanations have
been evaluated by Mertes et al. (2020) on a forward-prediction task. We thus believe that we are the
first to extensively test counterfactual-based and concept-based explanations on bias discovery using
a challenging dataset. Recently, a study on exemplary-based explanations focused on understanding
internal activations of a neural network (Borowski et al., 2020). It showed that for this task, examples
could be more beneficial than complex feature visualizations (Olah et al., 2017). Similarly, there is
evidence that participants often rely on model predictions rather than on explanations (Alqaraawi
et al., 2020; Adebayo et al., 2020a).

Synthetic Datasets for Interpretable Vision Datasets with known ground-truth biases have been
proposed before. BAM is an artificial dataset (Yang & Kim, 2019) where spurious background
correlations are introduced by pasting segmented objects on different textures, e.g. dogs on bamboo
forests. However, the resulting images are unsuitable for user studies as they look artificial and make
it easy for participants to suspect that the background is important. Additionally, it would be difficult
to introduce more than one bias. A limitation that also the synthetic dataset in (Chen et al., 2018)
shares. The synthetic dataset created by Arras et al. (2021) created a dataset to technically evaluate
saliency methods on a visual question answering task technically. TWO4TWO is the first dataset
designed explicitly for human subject evaluations. To the best of our knowledge, we provide the first
unified approach to evaluate interpretable vision on a bias-discovery task.

3 TWO4TWO: DATASETS WITH KNOWN FEATURE IMPORTANCE

Dataset Description Datasets generated with TWO4TWO consist of two abstract animal classes,
called Peeky and Stretchy. Both consist of eight blocks: four for the spine and four for the legs. For
both animals, one pair of legs is always at an extended position. The other pair moves parallel to the
spine inward and outward. The attribute legs’ position, a scalar in [0,1], controls the position. At a
value of 0.5, the pair of legs are at the same vertical position as the last block of the spine. Peekies
have a leg position ≤ 0.52 which means legs are moved mostly inwards to the body center. In the
same fashion, Stretchies are extended outwards, legs’ position ≥ 0.48. We added some ambiguity
to ensure a model has an incentive to use possible biases. Therefore, Peekies and Stretchies are
equally likely for a legs’ position between 0.48 and 0.52. It is also difficult for humans to tell if the
legs are outward or inwards in this range. Besides the legs’ position, the dataset has the following
parameters: body posture (bending and three rotation angles), position, animal color (from red to
blue), blocks’ shape (from cubes to spheres), and background color (from red to blue). Each can be
changed arbitrarily and continuously (See Appendix Table 5).

When designing the dataset, we wanted to ensure that (1) participants can become experts within a
few minutes of training, (2) it allows for the creation of multiple biases that are difficult to find, and
(3) that it provides a challenge for existing interpretability methods. Goal (1) is met as participants
can be instructed using only a few examples (see the tutorial video in Appendix C). The high number
of controllable attributes achieve Goal (2). We biased the attributes such that they do not stand out,
which we validated in the first user study. Goal (3) is met by spatially overlapping attributes and long-
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Figure 3: The joint distributions of legs’ position and the attributes background (left), shape (middle),
and color (right). Datapoints are yellow for Peekies and blue for Stretchies. The background is not
biased. The shape is biased for legs’ position lower than (0.45) or greater (0.55), but is uniform in
the center. The color contains additional predictive information about the target class, as it allow
to discriminate between Peeky and Stretchy where the legs’ position overlaps. However, for more
extreme arms’ positions the color is uniform and not biased.

range image dependencies. Spatially overlapping attributes, like color and shape, directly challenge
saliency map explanations. Long-range image dependencies, like the legs’ positions relative to the
spine, can not be explained when analyzing patches separately as done in (Chen et al., 2019; Brendel
& Bethge, 2018). Both properties are common in real-world datasets: For example, race and gender
in facial datasets are encoded by spatially overlapping features. Long-range image dependencies are
particularly relevant for pose estimation and visual reasoning (Johnson et al., 2017).

Introducing Biases For our studies’ dataset, we sampled the block’s shape in a non-predictive
biased fashion. This means that for legs’ positions that clearly showed a Peeky [0, 0.45] most blocks
were rather cubic, while for legs’ positions that clearly showed a Stretchy [0.55, 1] most blocks were
rather round. However, for the legs’ positions between [0.45, 0.55] the blocks shape was uniformly
distributed. In particular, in the even narrower interval [0.48, 0.52] where a classifier can only be as
good as random guessing, the block’s shape does not provide any additional information about the
target class. In Figure 3, we show the joint distribution of the block’s shape and legs’ position.

We sampled the animals’ color to be predictive for the target class. At the small interval where the
legs overlap [0.48; 0.52], we distributed the animal color to provide additional class information.
Stretchies were more likely to be red, and Peekies were more likely to be blue. Outside of this
centered interval, the color gradually became uniformly distributed (see Figure 3). Hence, color
was more equally distributed than the shape, making the color bias harder to detect visually. The
remaining attributes, background color and body posture, were sampled independently of the class,
and we expected our model to ignore them.

Measuring Ground-Truth Feature Importance Even if a dataset contains biases, it is unclear
how relevant they will be to a neural network after training. Feature importance also depends on the
network architecture, the optimization process, and even the weight initialization. As TWO4TWO
allows us to change any parameter in isolation, we can directly compare the model prediction between
two images that differ in only one parameter. For these two images, we measured both the median
absolute logit change and also for how many samples the predicted class was flipped. Both measures
quantify how influential each parameter is (see Table 1). As expected, the legs’ position had a strong
influence on the prediction. The model relied more on animal color than on the blocks’ shape, which
is expected as the color contains additional information about the class. Surprisingly, the prediction
flip for unrelated attributes such as background was only slightly lower than for blocks’ shape.

To analyze this further, we calculated a linear fit for each parameter change to the logit change.
We reported the coefficient of determination R2, which indicates how much of the variance in
the prediction can be explained linearly by the analyzed property. While the unrelated properties
sometimes flip a prediction, the direction of that flip is random (R2 ≈ 0). In contrast, the biased
parameters influence predictions in a directed fashion, with animal color (R2=0.751) being clearly
more directed than blocks’ shape (R2=0.307).

4 MODEL AND EVALUATED METHODS

As discussed in section 3, TWO4TWO was designed to challenge existing interpretability methods,
e.g., saliency map explanations and patch-based models. We selected two methods that might provide
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Table 1: Importance of the data generating factors to the model’s prediction. Prediction Flip quantifies
how often the model’s prediction changes the sign when changing the attribute. The Mean Logit
Change reports the median of the absolute change in logit values. The R2 score is calculated on an
ordinary least squares from the changes of each factor to the changes in the model’s logit. For more
attributes, see Appendix Table 3.

Factor Prediction Flip [%] Median Logit Change R2

Legs’ Position 41.680 2.493 0.933
Color 7.080 0.886 0.751
Shape 3.920 0.577 0.307
Background 2.640 0.523 0.006
Rotation Yaw 3.480 0.669 0.001
Bending 3.640 0.605 0.000

the user with the necessary information: counterfactuals generated with an invertible neural network
(INN) and concept-based explanations (Zhang et al., 2021).

INN Counterfactuals We trained an INN using both a supervised and an unsupervised objective
(Dinh et al., 2016; 2015). To predict the target class, the model first applies the forward function ϕ to
map a data point x to a feature vector z = ϕ(x). Then, a linear classifier takes those features z and
predicts the logit score f(x) = wTz + b. Any input can be reconstructed from the feature vector by
applying the inverse function x = ϕ−1(z). The model has a test accuracy of 96.7%. Further details
can be found in Appendix A.2. The baseline and concept techniques are also applied to this model.

To create a counterfactual example x̃ for a data point x, we can exploit the linearity of the classifier.
Moving along the weight vector w, i.e., adding w to the features z, changes the model’s prediction.
By controlling the step size with a scalar α, we can directly quantify the change in the logit value
∆y = αwTw. The modified feature vector z + αw can be inverted back to the input domain,
resulting in a counterfactual x̃ = ϕ−1(z + αw) which visualizes the changes introduced by a step
αw in z-space. The INN’s explanations are visualized in a grid where each row shows a single
counterfactual interpolation (see Figure 1b).

Automatically-discovered Concepts We adapted the NMF approach of Zhang et al. (2021) to our
specific network architecture. Because the network’s internal representations also contain negative
values, we used matrix factorization instead of NMF. We generated the concepts using layer 342 (from
a total of 641 layers). The layer has a feature map resolution of 8x8. This choice represents a trade-off
between enough spatial resolution and high-level information. We ran the matrix factorization with
10 components and selected the five components that correlated most with the logit score (r is in the
range [0.21, 0.34]).

Our presentation of concept-based explanations was very similar to (Zhang et al., 2021): we visualized
concepts with five exemplary images per row and highlighted regions corresponding to a concept.
Since our classifier is binary, a negative contribution for Stretchy actually means a positive contribution
for Peeky. Hence, we could have characterized a concept as more Peeky and more Stretchy, to make
the design similar to the other two explanation techniques. However, as the concepts did not strongly
correlate with the model’s output, presenting them as class-related could confuse participants: a
more Peeky column would have contained some images showing Stretchies and vice versa. Thus,
we presented them separately in two consecutive rows (See Figure 1c). Presenting concepts in this
fashion gives them a fair chance in the study because participants rated the relevance of each attribute
for the model rather than for each class separately.

5 HUMAN SUBJECT STUDY

We share the view of Doshi-Velez & Kim (2017) and Wortman Vaughan & Wallach (2020) that
user-testing of explanation techniques is a crucial but challenging endeavor. As our second main
contribution, we propose and conduct a user study based on the Two4Two dataset which can act as a
blue-print for future investigations. Our design has been iterated in over ten pilot studies and proposes
solutions to common problems that arise when evaluating explanation techniques on crowd-sourcing
platforms with lay participants.
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5.1 DESIGN CONSIDERATIONS

Data without Prior Domain Knowlege We specifically designed the Two4Two dataset to avoid
overburdening participants, as might be the case with other types of data. Within a few minutes,
participants can easily become domain experts. Since the data is unknown to them prior to the study,
we avoid introducing any prior domain knowledge as a confounding factor, which can be an issue
(Alqaraawi et al., 2020).

Manageable but not Oversimplified Tasks We propose the task of bias-discovery: participants
had to rate features as either relevant or irrelevant to a model. The task directly reflects users’
perception of feature importance. Furthermore, bias-discovery has the advantage of being suitable
for lay participants. At the same time, it is also grounded in the model’s behavior. This is an
advantage over tasks used in several previous studies, which only evaluated whether explanations
were accessible to users, e.g. by identifying the target property smiling using image interpolations
(Singla et al., 2020) or assigning images to a concept class (Zhang et al., 2021; Ghorbani et al., 2019).
However, these tasks are an oversimplification and cannot measure any insights the users gained
about the model. In contrast, Alqaraawi et al. (2020) employed the task of forward prediction of a
neural network. This requires substantial model understanding and is very challenging, as reflected
by the participants’ low accuracy. Assessing trust in a human-in-the-loop task, despite its realistic
setting, has the disadvantage that trust is influenced by many factors which are difficult to control for
(Lee & See, 2004; Springer et al., 2017). Another approach is to asks participants to assess whether
a model is fit for deployment (Ribeiro et al., 2016b; Adebayo et al., 2020b). However, in our own
pilots studies, users deemed a model fit for deployment even if they knew it was biased.

Baseline Explanation Technique To quantify whether an explanation is beneficial for users, it must
be compared to an alternative explanation. In this work, we argue that a very simple and reasonable
alternative for users is to inspect the model’s logits assigned to a set of input images. We designed
such a baseline explanation as shown in Figure 1a. After several design iterations, we settled for a
visually dense image grid with 5 columns sorted by the logit score, each column covering 20% of the
logit values. The columns were labeled very certain for Peeky/Stretchy, certain for Peeky/Stretchy,
and as unsure. Pilot studies showed that participants’ attention is limited. We thus decided to display
a total of 50 images, i.e. an image grid of 10 rows. The number of images was held constant between
explanation techniques to ensure the same amount of visual information and a fair comparison. In
this work, we focused on binary classifications. For a multi-class setting, one could adapt the baseline
by contrasting one class verses another class.

High Response Quality We took extensive measures to ensure participants understood their task
and the explanation techniques. Participants were required to watch three professionally-spoken
tutorial videos, each under four minutes long. The videos explained, on a high level, the Two4Two
dataset, machine learning and how to use an assigned explanation technique to discover relevant
features. To avoid influencing participants, we prototyped idealized explanations using images from
TWO4TWO. The explanations showed different biases than those in the study. Each video was
followed by a written summary and set of multiple choice comprehension questions After failing
such a test once, participants could study the video and summary again. When failing a test for a
second time, participants were excluded from the study. We also excluded participants if their written
answers reflected a serious misunderstanding of the task, indicated by very short answers copied
for all attributes or reasoning that is very different from the tutorial. We recruited participants from
Prolific who are fluent in English, hold an academic degree and have an approval rate of ≥ 90%. To
ensure they are also motivated, we compensated them with an average hourly pay of £11.45 which
included a bonus of £0.40 per correct answer.

5.2 EXPERIMENTAL DESIGN

We conducted two online user studies. Before starting the data collection, we formulated our
hypotheses, chose appropriate statistical tests, and pre-registered our studies (see Appendix D).
This way, we follow the gold-standard of defining the statistical analysis before the data collection,
thus ensuring that our statistical results are reliable (Cockburn et al., 2018). The first study (N=50)
analyzed whether the task was challenging enough that other methods could potentially improve over
the baseline. We tested if at least one bias in our model (either the animal’s color or the blocks’ shape)
was difficult to find using the baseline technique. Consequently, we used a within-subject design.
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Table 2: The mean accuracy for each attribute by condition. Ncollected provide the number of
participants collected and Nfiltered the number of remaining participants after the filtering. Stars mark
statistical significance.

Condition Ncollected Nfiltered Overall Legs Color Backgr. Shape Posture

Study 1 (Baseline) 50 43 73.4 86.0 48.8 86.0 74.4 72.1

Study 2 240 192 67.0 78.2 58.9 66.8 73.1 59.1
INN 80 62 84.5 ***100.0 *82.3 *79.0 90.3 71.0
Baseline 80 71 80.8 85.9 59.2 95.8 93.0 70.4
Concepts 80 59 32.2 45.8 32.2 18.6 32.2 32.2

In the second study (N=240), we evaluated the two explanation techniques described in Section
4 against the baseline using a between-subjects design. Participants were randomly, but equally
assigned to one of the explanation techniques. We specified two directed hypotheses. We expected
participants in the INN condition to perform better than those in baseline, because the baseline does
not clearly highlight relevant features, whereas interpolations highlight features in isolation. We
expected participants viewing concepts to perform worse than those in the baseline, due to their
inability to highlight spatially overlapping features.

For both studies, participants completed a tutorial phase first. Using their assigned explanations,
they then assessed the relevance of five attributes: legs’ position relative to the spine, animal color,
background, rotation or bending, and blocks’ shape. The questions were formulated as: ”How
relevant is <attribute> for the system?”, and participants had to choose between irrelevant or
relevant. The percentage of correct answers (accuracy) served as our primary metric. Participants
also had to write a short, fully-sentenced justification for their answers. For links to the study, see
Appendix C.

5.3 RESULTS
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Figure 4: The proportion of correct
answers for baseline (BASE), con-
cepts (CON), and INN.

Data Exclusions As stated in the preregistration, we auto-
matically excluded all participants who withdrew their consent,
failed one of the comprehension questions twice, skipped a
video, or exceeded Prolific’s time limit for completion. If
a participant was excluded, a new participant’s place was
made available until the pre-registered number of completed
responses was reached. We excluded 63 study respondents for
the first study, and 145 for the second study in this fashion.
We ensured that all participants were naive about the dataset.
Once they participated in a study, they were blacklisted for
future studies.

For completed studies, two annotators independently marked the participants’ written answers
and excluded those with copy and paste answers or indications of grave misunderstandings of the
instructions. Participants were labeled as: include, unsure, or exclude. Both anotators had an
agreement of κ = 0.545 for the first study and κ = 0.643 for the second (measured include vs.
unsure and exclude). Disagreements were solved by discussion. In total, we excluded 7 participants
from the first study (14%) and 48 participants from the second study (20%).

First Study For the accepted 43 participants, we used two-sided exact McNemar tests on their
answers about the relevance of the legs position compared with animal color (first test) and back-
ground (second test). Participants found the color bias less often than the legs’ positions (P <0.0001).
The success rate for the color attribute was 49% vs. 86% for legs. The shape bias was not sig-
nificantly harder to find than the legs’ positions and was identified correctly with 74% accuracy
(P=0.3036). Hence, we confirmed our hypothesis and concluded that other methods still have room
for improvement over the baseline.

Second Study In the second study, we evaluated 192 valid participant responses (62 INN, 71
BASE, 59 CON). We expected data to be different from the normal distribution, and a Shapiro-Wilk
test for all conditions confirmed this (P < 0.001). We depict the number of correct answers per
condition in Figure 4. A Kruskal-Wallis test showed a significant differences in accuracy scores
between conditions (P < 0.001). For focused comparisons, we used two Wilcoxon-rank-sum
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tests with Bonferroni correction to correct for multiple comparisons. The accuracy scores differed
significantly between the baseline and concept conditions (P <0.001, r=0.778). The performance
of participants using concepts was rather poor, with only 31.7% accuracy, considering that random
answers would yield a score of 50%. For concepts, not a single attribute surpassed the 50% barrier.
We found no significant difference when comparing the baseline and counterfactuals (P=0.441,
r=0.091). Their mean accuracies are close, with 80.8% for baseline and 84.5% for counterfactuals.
INN counterfactuals helped users to discover the main attribute, legs’ position, (P <0.001) and
color bias (P=0.033) more reliably.1 However, counterfactuals performed significantly worse for
the background attribute (P=0.033), while for blocks’ shape and position we found no significant
difference (for both, P=1).

Qualitative Results To understand how participants integrated the explanation techniques into their
reasoning, we analyzed the textual answers of each feature qualitatively. Two annotators first applied
open coding to the answers. They performed another pass of closed coding after agreeing on a subset
of the relevant codes, on which the following analysis is based. Overall, the participants perceived
the task as challenging, as they expressed being unsure about their answers (N=71).

We designed our image grid to show both possible classes and provide information about the model’s
certainty. We found that many participants integrated this additional source of information into their
reasoning. This was especially prevalent in the baseline condition (N=51). Participants particularly
focused on the columns ’very certain Peeky’ and ’very certain Stretchy’, as well as on the column
’unsure’. While this may have helped confirm or reject their own hypotheses, it sometimes led to
confusion; for example, when an image that exhibited a pronounced leg position, and therefore could
easily be identified as Peeky or Stretchy, was classified by the model as ’unsure’ (N=14).

Across conditions, we also observed that participants expect that all images needed to support
a hypothesis. ”The animals are in different colors, there are blue stretchy and also blue peeky
animals, If the color was relevant peeky/stretchy would be in one color etc” (P73, BASE). Across
conditions, most participants that applied such deterministic reasoning failed to find the color bias. In
contrast, other participants applied more probabilistic reasoning, which helped them deal with such
contradictions: ”Peeky is more likely to be blue in colour, whereas Stretchy is more likely to be pink.
This is not always true (e.g. the shapes can be white in colour at either ends of the spectrum) but it
might be somewhat relevant to help the system decide” (P197, INN).

Another observed strategy of participants was to reference how often they saw evidence for the
relevance of a feature (N=35), which was very prevalent in the concepts condition (N=20). Especially
concepts were rather difficult for participants to interpret. A common issue was that they expected a
relevant feature to be highlighted completely and consistently (N=38). Several instances show that
participants struggled to interpret how a highlighted region can explain the relevance of a feature, ”If
this [the legs position] were relevant I would have expected the system to highlight only the portion
of the image that contains the legs and spine. (e.g. only the legs and one block of the spine at each
end). Instead, every image had minimally the entire animal highlighted” (P82, CON). Furthermore,
spatially overlaping features were another cause of confusion: ”there are rows in which the animal is
highlighted but not the background so it could be because of color, shape or rotation” (P157, CON)

Participants erred more often for the background in the INN condition than for the baseline. We
conducted an analysis to investigate this issue. We found that 29 participants stated that they perceived
no changes in the background of the counterfactuals and hence considered this feature irrelevant.
Another 21 participants noted that they saw such a change, which let 12 of them to believe its
a relevant feature. ”The background color changes in every case, it’s also a little subtle but it
does” (P205). Another 9 participants decided that the changes were too subtle to be relevant. ”The
background colour does not change an awful lot along each row, maybe in a couple of rows it changes
slightly but I do not feel the change is significant enough that this is a relevant factor in the machine
decision” (P184).

Do Counterfactuals Highlight Irrelevant Features? Indeed, subtle perceptual changes in back-
ground color are present (Figure 1b). To quantify these changes, we decided to use an objective
observer: a convolutional neural network. We trained a MobileNetV2 (Sandler et al., 2018) to predict

1The statistical analysis of the attributes for INN vs. baseline was not pre-registered. The reported p-values
for the attributes were corrected for eight tests (including the pre-registered tests) using the Holm–Bonferroni
method.
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Figure 5: Attribute changes along counterfactual interpolations as measured by an observer convnet.
Each line corresponds to a single sample whose logit score is modified through linear interpolations
in the classifier space.

the parameter values of individual attributes of an image (e.g., background color, object color, etc.)
using a completely unbiased version of TWO4TWO. After training, the model could predict the
parameter values almost exactly (MSE < 0.0022, see Table 7). We then used this model to evaluate
the parameter values of counterfactual INN interpolations, each spanning 99% of the logit distribution.
We visualize the predictions of MobileNetV2 in Figure 5. All predictive properties (legs’ position,
body color, blocks’ shape) are changed by the counterfactuals consistently. For the background, the
changes are subtle but present. We also quantified the change in parameters using the difference
between the maximum and minimum predicted value per individual interpolation (See Table 6). This
supports the finding that relevant attributes change the most – legs’ position: 0.662; shapes: 0.624;
color: 0.440. The background changes less with 0.045, which seems enough to give some participants
a false impression about its relevance.

6 CONCLUSION

Contributions We contribute a dataset with full control over the biases it contains and methods to
verify the feature importances of a given model. The dataset was specifically designed for user studies
and we contribute a carefully crafted study design as a template for future empirical evaluations of
interpretable vision. Our design includes a simple, yet powerful baseline technique that relies on
the model’s outputs only. While interpretability methods had room to improve over the baseline, we
showed that two state-of-the-art methods did not perform significantly better. Our results emphasize
that any explanation technique needs to be evaluated in extensive user studies.

Limitations Due to budget constraints, we limited the number of factors in our experimental design
(external vs. internal validity trade-off). Our study introduced a predictive bias for the animal’s color
and a non-predictive bias for the blocks’ shape. It remains unclear how our results may have changed
for a different dataset configuration: certain biases could exhibit different visual saliency. It remains
also left for future work to determine which visual interface design is optimal for a given method.
Furthermore, our study design restricted participants to make binary choices and provide textual
justifications – limiting our understanding of the participants issues.

Take-Aways We were surprised by the performance of the two tested techniques. Users had
problems interpreting the automatically-discovered concepts and could not identify the relevant
attributes. As we expected, explaining spatially overlapping features by highlighting important
regions limited the concepts’ expressiveness. On the other hand, INN counterfactuals also did not
perform significantly better than the baseline. Still, counterfactuals were more helpful to discover
the strongest bias in the model. However, some participants rated the relevance of the background
incorrectly, as slight changes in the interpolations were still salient enough. It is therefore important
for future work to develop counterfactuals that alter only relevant attributes.

We presented a user study on a synthetic dataset. We believe that the results also have implications
for natural image data. When we created Two4Two, our objective was to translate challenges faced
on ”real” computer vision data (like spatially overlapping features) into an abstract domain. Although
some properties of photorealistic datasets are lost in this abstraction, a method performing poorly on
TWO4TWO would likely not perform well on a natural dataset with spatially overlapping features.

Outlook The user study was a reality check for two interpretability methods. Such studies can guide
technical innovations by identifying areas where users still struggle with current explanation methods.
They are laborious and expensive, but at the same time, they are crucial for future interpretability
research. Future work could focus on creating a more realistic, controllable dataset, e.g. using
augmented reality (Alhaija et al., 2018). By open-sourcing our videos, study, and code we encourage
the community to take on the challenge to beat the simple baseline.
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Table 3: Importance of the data generating factors to the model’s prediction. For the R2 score,
we fitted an ordinary least squares from the factors’ deltas to the deltas of the model’s logits and
then report the coefficient of determination (R2). The Mean Logit Change reports the median of
the absolute change in logit values. The Prediction Flip column quantifies how often the model’s
prediction changed the sign when changing the attribute.

Factor Prediciton Flip [%] Median Logit Change R2

Legs’ Position 41.680 2.493 0.933
Color 7.080 0.886 0.751
Shape 3.920 0.577 0.307
Position Y 2.960 0.597 0.007
Background 2.640 0.523 0.006
Rotation Yaw 3.480 0.669 0.001
Rotation Roll 2.260 0.413 0.001
Bending 3.640 0.605 0.000
Rotation Pitch 3.500 0.627 0.000
Position X 3.380 0.581 0.000

Table 4: Norm quantifies the length of feature map changes (∆h = f(x)− f(x̂)) after resampling
the different data generative factors. Angle w. Clas. quantifies the mean angle (in degrees) between
∆h and the classifier weight w.

Factor Norm Norm Std. Angle w. Clas. Angle Std.

Legs’ Position 70.8 2.6 79.9 1.9
Color 53.8 2.4 85.3 1.3
Shape 66.9 2.1 88.5 1.5
Position Y 68.1 2.8 89.7 1.7
Background 60.3 2.6 89.7 1.5
Bending 68.9 2.6 89.8 1.7
Rotation Yaw 68.5 2.7 89.8 1.7
Rotation Roll 55.2 2.9 89.9 1.2
Position X 68.4 3.0 89.9 1.6
Rotation Pitch 69.5 2.5 90.0 1.5

A APPENDIX: TECHNICAL DETAILS

A.1 TWO4TWO DATASET DETAILS

Factor Range Distribution Biased Additional Class Information

Legs’ Position [0, 1] Uniform with overlap Yes -
Color [0, 1] See Figure 3 Yes Yes
Shape [0, 1] See Figure 3 Yes No
Position Y [-0.8, 0] Uniform No No
Position X [-0.8, 0] Uniform No No
Background [0.05, 0.95] Uniform No No
Rotation Yaw [0, 2π] Uniform No No
Rotation Roll [−π/4, π/4] Truncated Normal(0, 0.03π/4) No No
Rotation Pitch [−π/6, π/6] Truncated Normal(0, π / 8) No No
Bending [−π/10, π/10] Truncated Normal(0, π / 20) No No

Table 5: Distribution of each attribute in the study’s dataset. Biased denotes whether an attribute is
unequally distributed for the two classes. Additional Class Information show if an attribute contains
any additional information about the target class not already given by the legs’ position.
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Table 6: Two4Two: Effect of interpolating along the weight vector.

Attribute Mean Maximal Change Std.

Legs’ Position 0.662 0.140
Color 0.440 0.190
Shapes 0.624 0.208
Bending 0.059 0.042
Background 0.045 0.044
Rotation Pitch 0.186 0.126
Rotation Yaw 0.102 0.182
Rotation Roll 0.003 0.001
Position X 0.105 0.078
Position Y 0.103 0.078
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Figure 6: All attribute values as predicted by an observer convnet for sequences of counterfactual
interpolations. Each line corresponds to a single sample whose logit score is modified through linear
interpolations in classifier space.
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1 import dataclasses
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 from two4two.blender import render
6 from two4two.bias import Sampler, Continouos
7 from two4two.scene_parameters import SceneParameters
8

9 @dataclasses.dataclass
10 class RotationBiasSampler(Sampler):
11 """A rotation-biased sampler.
12

13 The rotation is sampled conditionally depending on the object type.
14 Positive rotations for peaky and negative rotations for stretchy.
15 """
16

17 obj_rotation_yaw: Continouos = dataclasses.field(
18 default_factory=lambda: {
19 ’peaky’: np.random.uniform(-np.pi / 4, 0),
20 ’stretchy’: np.random.uniform(0, np.pi / 4),
21 })
22

23 # sample a 4 images
24 sampler = RotationBiasSampler()
25 params = [sampler.sample() for _ in range(4)]
26 for img, mask, param in render(params):
27 plt.imshow(img)
28 plt.title(f"{param.obj_name}: {param.obj_rotation_yaw}")
29 plt.show()

Listing 1: Source code example to create a biased sampler. High positive rotations are predictive of
Stretchy and low negative rotations of Peaky.

A.2 ARCHITECTURE OF THE INVERTIBLE NEURAL NETWORK

Our model is based on the Glow architecture (Kingma & Dhariwal, 2018) and contains 7 blocks. A
block is a collection of 32 flow steps, followed by a down-sampling layer, and ends with a fade-out
layer. A single flow step consists of actnorm, invertible 1× 1 convolution and affine coupling layer.
The down-sampling keeps all dimensions, e.g. a shape of (h,w, c) becomes (h/2, w/2, 4c). The
fade-out layer maps removes half of the channels. The out-faded channels are than mapped to a
standard normal distribution to compute the unsupervised loss. For generating counterfactuals, the
out-faded values are not thrown away but rather stored to be used when computing the inverse.

The model is trained using a supervised loss and an unsupervised objective. In total our model had
687 layers and 261 million parameters. The classifier used the output of layer 641. The remaining
layers 642-687 were optimized using the standard unsupervised flow objective. For the first 641
layers, we also trained on the classifier’s supervised loss.

Let ϕ denote the first 641 layers and µ : Rn 7→ Rn the last. We train ϕ both on a supervised loss
from the classifier f(x) and an unsupervised loss from matching the prior distribution N (0, I) and
the log determinante of the Jacobian. µ is only trained on the unsupervised loss:

arg min
θϕ,θµ,θf

Lun(µ ◦ ϕ(x)) + β Lsup(wTϕ(x) + b, ytrue). (1)

For the supervised loss Lsup, we use the binary cross entropy. As unsupervised loss Lun, we use the
commonly used standard flow loss obtained from the change of variables trick Dinh et al. (2016).
The unsupervised loss ensures that inverting the function results in realistic looking images and can
also be seen as a regularization.

The layer 342 used for the concept explanations is an affine coupling layer.
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Table 7: Test performance of the supervised trained model MobileNet-V2 measured using a mean
squared error (MSE).

Attribute Test MSE

Legs’ Position 0.0008912
Bending 0.0001915
Background 0.0001128
Color 0.0005297
Rotation Pitch 0.0009235
Rotation Roll 0.0005622
Rotation Yaw 0.002243
Position X 0.0004451
Position Y 0.0003912
Shapes 0.001102

A.3 SUPERVISED MOBILENET-V2

We used a MobileNet-V2 to predict the attributes values. The models test mean squared errors are
denoted in Table 7.
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B LINKS TO MODEL, DATASET AND STUDY

Model export:
https://f002.backblazeb2.com/file/iclr2022/do_users_
benefit_from_interpretable_vision_model.tar.gz

Unbiased dataset:
https://f002.backblazeb2.com/file/iclr2022/two4two_
obj_color_and_spherical_finer_search_spherical_
uniform_0.33_uniform_0.15_unbiased.tar

Biased dataset:
https://f002.backblazeb2.com/file/iclr2022/two4two_
obj_color_and_spherical_finer_search_spherical_
uniform_0.33_uniform_0.15.tar

Export of study:
https://f002.backblazeb2.com/file/iclr2022/ICLR2022_
Export_Do_Users_Benefit_From_Interpretable_Vision.qsf

PDF print-out of the study:
https://f002.backblazeb2.com/file/iclr2022/ICLR2022_
Export_Do_Users_Benefit_From_Interpretable_Vision.pdf

C USER-STUDY LINKS AND VIDEOS

The studies can be accessed on the Qualtrics platform (with anonymized consent form) under the
following links:

Baseline condition:
https://wznbm.qualtrics.com/jfe/form/SV_
7Umdmdaq8EHVRm6

INN condition:
https://wznbm.qualtrics.com/jfe/form/SV_
dneHADG7BxjVurc

Concepts condition:
https://wznbm.qualtrics.com/jfe/form/SV_
0PWErBQmGL0lobk

The tutorial videos can be viewed under the following links:

Introduction Tutorial for Peeky and Stretchy:
https://f002.backblazeb2.com/file/iclr2022/Intro_
Peeky_Stretchy.mp4

Second Introduction Tutorial for ML and Biases:
https://f002.backblazeb2.com/file/iclr2022/Second_
Intro_ML.mp4

Tutorial for baseline condition:
https://f002.backblazeb2.com/file/iclr2022/condition_
BASE.mp4

Tutorial for concept condition:
https://f002.backblazeb2.com/file/iclr2022/condition_
CONCEPTS.mp4

Tutorial for INN condition:
https://f002.backblazeb2.com/file/iclr2022/condition_
INN.mp4
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D USER-STUDY PREREGISTRATION AND HYPOTHESIS

The Preregistrations can also be viewed under the following URLs:

• Validation of TWO4TWO: https://aspredicted.org/blind.php?x=/62X_
15J

• Study 2: Concepts vs. Baseline and INN vs. Baseline: https://aspredicted.org/
blind.php?x=/7XN_77P

We also paid the participants in both studies the more lucrative tariff included in the preregistration of
study 2, e.g. for third comprehension task: 3.50GBP and so on.

D.1 VALIDATION OF TWO4TWO

1) Have any data been collected for this study already?

No, no data have been collected for this study yet.

2) What’s the main question being asked or hypothesis being tested in this study?

This study investigates whether users identify biases learned by a neural network. The neural networks
task is to discriminate between two abstract animals (”Peeky” and ”Stretchy”). Each participant is
presented with predictions of the system in a 10x5 image grid.

After an initial tutorial phase, the participants have to find biases in the model. They do this by scoring
different characteristics as relevant or irrelevant. The characteristics are: ”legs position relative to the
spine (LEGS)”, ”object color (COLOR)”, ”background (BACK)”, ”rounded or rectangular shape of
the blocks (SHAPE)”, and ”rotation and bending (ROT)”.

The main research question is whether we succeeded in creating a model that contains at least one
bias that is hard to detect, i.e. either COLOR or SHAPE should be harder to detect than LEGS.

HB: Participants can identify the biases in COLOR or SHAPE less frequently than LEGS.

3) Describe the key dependent variable(s) specifying how they will be measured.

Participant will answer the following questions:

• LEGS: How relevant is the legs position relative to the spine for the system?: Relevant /
Irrelevant

• COLOR: How relevant is the color of the animal for the system? Relevant / Irrelevant

• BACK: How relevant is the background of the animal for the system? Relevant / Irrelevant

• SHAPE: How relevant is the rounded or rectangular shape of the animal’s blocks for the
system? Relevant / Irrelevant

• ROT: How relevant is the rotation and bending of the animal for the system? Relevant /
Irrelevant

The ground truth answer is that LEGS, COLOR, SHAPE are relevant while BACK and ROT are
irrelevant. Our first dependent variable is the number of times the head position was selected as
relevant. Our second dependent variable is the number of times the color of the animal was selected
as relevant. Our third dependent variable is the number of times the rounded or rectangular shape of
the animal’s blocks was selected as relevant.

4) How many and which conditions will participants be assigned to?

Our study follows a within-subject design and has only one condition. We first show the participants
introductory videos about the two abstract animals, the machine learning system, and some guidance
on how to interpret the predictions of the system. Each video is accompanied by a written summary.
We then show the predictions of the system in a grid of images: 10 sorted rows of 5 images drawn
from the validation set (50 original images). Each of the five columns represents the neural netwoks’s
logit range. Similarly rated images are assigned to the same column.
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5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

We will conduct two exact one-sided McNemar-tests with LEGS acting as our control: one between
SHAPE and LEGS and a second between COLOR and LEGS. We will use a one-sided test as we
expect that SHAPE and COLOR are harder to identify. The significance level of both tests will be
Bonferroni adjusted to α = 0.025.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding
observations.

We reject participants with low effort responses or who failed to understand the dataset, machine
learning concept, or explanation method. We have implemented hard-coded exclusion criteria directly
in the survey (implemented with Qulatrics and Prolific).

• did not finish experiment at all or in under 77 minutes

• did not watch tutorial videos completely (there are 3 videos) or failed a multiple-choice
comprehension test twice (there are four such tests), unless participants explicitly ask us to
retake the study

• using a device smaller than a tablet (min. 600 px in width or height)

• provided answers about relevant characteristics in under 30 seconds

• withdrawn data consent / returned task on Prolific

• circumvented Qualtrics protection against retaking the entire survey again (first complete
submission will be counted)

We do not plan to exclude any participants who passed all of the above criteria unless the qualitative
answers reveal a serious misunderstanding of the study instructions that the multiple choice tests did
not cover. We will report such exclusions in detail in the Appendix.

7) How many observations will be collected or what will determine sample size?

No need to justify decision, but be precise about exactly how the number will be determined. 50
participants from Prolific with the background:

• Fluent in English

• Hold an academic degree

• Prolific approval rate of at least 90%

• Did not participate in pilot studies

• Passed hard coded exclusion criteria (see 8).

We pay participants max. 8.00 GBP (6.00 GBP base salary + 2.00 GBP max bonus). For those failing
any comprehension questions or not watching the video, we pay:

• First comprehension task: no compensation

• Second comprehension task: 0.5 GBP

• Third comprehension task: 1.75 GBP

• Failed to watch first video: no compensation

• Failed to watch second video: 1 GBP

• Failed to watch third video: 2 GBP

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for
exploratory purposes, unusual analyses planned?) We ask participants to answer three multiple choice
comprehension tests in the form of true/false statements to ensure that they understood the task and
the dataset. We also ask them to provide some free-text justification of why they chose a relevant /
irrelevant rating to the questions in Section 3.

20

Published in International Conference on Learning Representations (ICLR), 2022
– 101 –



Published as a conference paper at ICLR 2022

D.2 STUDY 2: CONCEPTS VS. BASELINE AND INN VS. BASELINE

1) Have any data been collected for this study already?

No, no data have been collected for this study yet.

2) What’s the main question being asked or hypothesis being tested in this study?

This study investigates whether users identify biases learned by a neural network. The neural networks
task is to discriminate between two abstract animals (”Peeky” and ”Stretchy”). Each participant is
presented one of three different explanation methods: baseline (B), counterfactuals obtained using
invertible neural networks (CF) and prototypes (P).

Each participant is randomly assigned to a method. After an initial tutorial phase, the participants have
to find biases in the model. They do this by scoring different characteristics as relevant or irrelevant.
The characteristics are: ”legs position relative to the spine (LEGS)”, ”object color (COLOR)”,
”background (BACK)”, ”rounded or rectangular shape of the blocks (SHAPE)”, and ”rotation and
bending (ROT)”.

The main question of our study is whether the participants can correctly identify relevant and irrelevant
attributes using these explanation methods (B, CF, P). This is reflected by two hypotheses:

H1: Participants identify relevant and irrelevant attributes with less accuracy using P compared to B.

H2: Participants identify relevant and irrelevant attributes with higher accuracy using CF compared
to B.

3) Describe the key dependent variable(s) specifying how they will be measured.

Participant will answer the following questions:

• LEGS: How relevant is the legs position relative to the spine for the system?: Relevant /
Irrelevant

• COLOR: How relevant is the color of the animal for the system? Relevant / Irrelevant
• BACK: How relevant is the background of the animal for the system? Relevant / Irrelevant
• SHAPE: How relevant is the rounded or rectangular shape of the animal’s blocks for the

system? Relevant / Irrelevant
• ROT: How relevant is the rotation and bending of the animal for the system? Relevant /

Irrelevant

The ground truth answer is that LEGS, COLOR, SHAPE are relevant while BACK and ROT are
irrelevant. Our dependent variable is the percentage of correctly answered questions per participant
(accuracy, which is computed as (true positives + true negatives)/number of total answers).

4) How many and which conditions will participants be assigned to?

We run a between-subject study, with randomly but equally assigned participants to 1 of 3 conditions.
We first show introductory videos about the two abstract animals, the machine learning system,
the explanation technique and some guidance on how to interpret the technique. Each video is
accompanied by a written summary. We then show a grid of (10x5) images:

1. B: NN predictions explained with 10 sorted rows of 5 images drawn from the validation set (50
original images). Each of the five columns represents a score range. Similarly rated images are
assigned to the same column.

2.CF: Same grid layout as B, but the NN is explained by counterfactual interpolations. Each row
contains interpolations which change the prediction of the NN to fit the designated score. Original
images are used as starting points but are not shown.

3.P: We found concepts based on the work by (Zhang et al., 2020). Each row shows a set of relevant
concepts. We only used concepts correlated with at least r=0.2 with the model logit values. In total,
we display 10 rows where each row contains a concept. Each row contains a set of 5 example images
for which the concept is relevant.

(Zhang et al., 2020) https://arxiv.org/abs/2006.15417
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5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

We will compute the accuracy scores for each participant and then compare the accuracy scores
between the conditions. We expect the data to be non-normally distributed, and will test this
assumption using a Shapiro-Wilk test with a significance level of α = 0.05. If our assumption is true,
we plan to conduct a Kruskal-Wallis test, followed by post-hoc analysis using Wilcoxon’s-rank-sum
tests for focused comparison between the groups CF and B (expecting higher accuracy in CF) and P
and B (expecting lower accuracy in P).

If the data is normally distributed, we will conduct a one-way ANOVA with planned contrasts, if the
following assumptions of ANOVAs are met:

• Homogeneity of the variance of the population (assessed with a Levene-Test with a signifi-
cance level of α = 0.05.)

If the homogeneity of variance assumption of ANOVA is violated (assessed with a Levene-Test with
a significance level of α = 0.05.), we plan to perform Welch’s Anova.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding
observations.

We reject participants with low effort responses or who failed to understand the dataset, machine
learning concept, or explanation method. We have implemented hard-coded exclusion criteria directly
in the survey (implemented with Qulatrics and Prolific).

• did not finish experiment at all or in under 77 minutes

• did not watch the tutorial videos completely (there are 3 videos) or failed a multiple-choice
comprehension test twice (there are four such tests), unless participants explicitly ask us to
retake the study

• using a device smaller than a tablet (min. 600 px in width or height)

• provided answers about relevant characteristics in under 30 seconds

• withdrawn data consent / returned task on Prolific

• circumvented Qualtrics protection against retaking the entire survey again (first complete
submission will be counted)

We do not plan to exclude any participants who passed all of the above criteria unless the qualitative
answers reveal a serious misunderstanding of the study instructions that the multiple choice tests did
not cover. We will report such exclusions in detail in the Appendix.

7) How many observations will be collected or what will determine sample size? No need to justify
decision, but be precise about exactly how the number will be determined.

240 (80 per condition) participants from Prolific with the background:

• Fluent in English

• First, we sample participants with an academic degree. If we do not reach the desired
participant number, which is likely given the limited availability of such subjects, we will
supplement with participants with an academic degree in other subjects. All participants
will be randomly and equally split into the 4 conditions.

• Prolific approval rate of at least 90%

• Did not participate in pilot studies

• Passed hard coded exclusion criteria (see 8).

We pay participants max. 6.50 GBP (4.50 GBP base salary + 2.00 GBP max bonus). For those failing
any comprehension questions or not watching the video, we pay:

• First comprehension task: 0.5 GBP

• Second comprehension task: 1.75 GBP

22

Published in International Conference on Learning Representations (ICLR), 2022
– 103 –



Published as a conference paper at ICLR 2022

• Third comprehension task: 3.50GBP
• Failed to watch first video: no compensation
• Failed to watch second video: 1 GBP
• Failed to watch third video: 2 GBP

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for
exploratory purposes, unusual analyses planned?)

In a previous study, we collected 50 responses for the baseline condition only (Preregistration
#75056)). We do not plan to use the data for this study.

We ask participants to answer three multiple choice comprehension tests in the form of true/false
statements to ensure that they understood the task and the dataset. We also ask them to provide some
free-text justification of why they chose a relevant / irrelevant rating to the questions in Section 3.

Additionally, we ask the participants about their machine learning expertise level. Participants can
rate their expertise as: complete novice, some expertise, or expert in the topic. We plan to use
descriptive statistics to see how accuracies change per condition for each expertise level and how
expertise was distributed within our sample.

We are also planning a qualitative thematic analysis of the open-text questions in our survey via open
and axial coding, with the aim of understanding how participants integrated explanations in their
reasoning about the relevance of attributes.
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7 DNNR: Differential Nearest
Neighbor Regression

In cases where deep neural networks and explanations for them do not work
efficiently, it is worth exploring simpler methods with more interpretable outputs.
This is especially true for tabular data, where the number of features is limited.
Tabular data remains the most common data type for many practical applications.

With this motivation, (Nader et al. 2022) introduced a novel method for re-
gression tasks called Differential Nearest Neighbor Regression (DNNR). DNNR
extends the k-nearest neighbor regression method with higher-order derivatives,
offering a more straightforward and interpretable approach compared to deep
neural networks. In this chapter, we will discuss the development, theoreti-
cal bounds, and experimental results of DNNR, as well as its advantages and
limitations.

DNNR’s simplicity enables the derivation of theoretical bounds on gener-
alization error. The theoretical bounds are an extension of the bounds for the
k-nearest neighbor regression

Furthermore, the training points responsible for the prediction can be in-
spected directly. When using first-order derivatives, one can inspect also the
corresponding linear coefficients. The advantage of DNNR is that this linear
approximation is made by the prediction algorithm itself, and not by an explana-
tion algorithm. Thus, these linear coefficients must reflect the importance of
the features for the prediction.

While DNNR provides a simple and interpretable model, it does not apply
to every problem. In particular, DNNR cannot work with datasets containing
thousands of dimensions. In this case, deep neural networks are more suitable.
However, for tabular data, DNNR is a promising alternative to deep neural net-
works and provides a more interpretable model than gradient boosting methods.

This work is relevant for my thesis because it shows how simple models allow
us to derive theoretical guarantees.
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Youssef Nader * 1 Leon Sixt * 1 Tim Landgraf 1

Abstract
K-nearest neighbors (KNN) is one of the earli-
est and most established algorithms in machine
learning. For regression tasks, KNN averages the
targets within a neighborhood which poses a num-
ber of challenges: the neighborhood definition is
crucial for the predictive performance as neigh-
bors might be selected based on uninformative
features, and averaging does not account for how
the function changes locally. We propose a novel
method called Differential Nearest Neighbors Re-
gression (DNNR) that addresses both issues simul-
taneously: during training, DNNR estimates local
gradients to scale the features; during inference,
it performs an n-th order Taylor approximation
using estimated gradients. In a large-scale eval-
uation on over 250 datasets, we find that DNNR
performs comparably to state-of-the-art gradient
boosting methods and MLPs while maintaining
the simplicity and transparency of KNN. This
allows us to derive theoretical error bounds and
inspect failures. In times that call for transparency
of ML models, DNNR provides a good balance
between performance and interpretability.2

1. Introduction
K-nearest neighbors (KNN) is an early machine learning
algorithm (Cover & Hart, 1967) and a prototypical example
for a transparent algorithm. Transparency means that a
model’s decision can be explained by inspecting of its parts.
KNN’s transparency follows from its simplicity: it can be
expressed in simple terms as ”the system averages the targets
of the most similar points to the query”. At the same time,
the algorithm’s simplicity makes it amenable for theoretical

*Equal contribution 1Department of Computer Science, Freie
Universität Berlin, Germany. Correspondence to: Youssef
Nader <youssef.nader@fu-berlin.de>, Leon Sixt <leon.sixt@fu-
berlin.de>, Tim Landgraf <tim.landgraf@fu-berlin.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2For code, see https://github.com/younader/
DNNR paper code

analysis, such as obtaining bounds on KNN’s prediction
error (Chaudhuri & Dasgupta, 2014).

However, KNN’s predictive performance is limited. Most
works aiming to improve KNN primarily focused on the
selection of the neighbors, the distance metric, and the
number of nearest neighbors k (Wettschereck & Dietterich,
1993; Weinberger & Tesauro, 2007; Cleary & Trigg, 1995).
KNN’s averaging scheme assumes that the target variable’s
changes are independent of those in the input features.
Here, we introduce Differential Nearest Neighbor Regres-
sion (DNNR) to make use of that very gradient information.
For each neighbor of a query point, we estimate the gradient
of the function, and then – instead of averaging the targets –
we average a Taylor approximation. KNN can then be seen
as a zero-order Taylor approximation, while DNNR uses
higher orders of the Taylor’s theorem. A visual summary of
the differences between KNN regression and DNNR can be
found in Figure 1.

In a theoretical analysis, we derived a bound on the point-
wise error of DNNR in relation to parameters such as the
number of training points and the neighborhood size and
found that the error bound favors DNNR over KNN. In
an empirical evaluation on over 250 different datasets, we
confirmed that DNNR outperforms KNN regression and per-
forms on par with gradient boosting methods. An ablation
study then confirmed that both the gradient-based prediction
and the feature scaling contribute to the performance gains.
Using a synthetic dataset generated with known underlying
ground truth, we simulated the error bound and found that
DNNR requires fewer training points than KNN. Further-
more, we present an investigation on a DNNR failure and
showcase how the model’s transparency can be used in such
an analysis.

The regulation of Machine Learning algorithms in high-risk
applications is being discussed globally or already under
preparation (European Commission, 2021). We contribute
to the overall goal of transparent and safer ML models in
the following ways:

• We propose a new regression method (DNNR) that
performs on par with state-of-the-art algorithms;

• DNNR is theoretically grounded: we provide a proof
to bound DNNR’s point-wise error (Theorem 1) and
validate its usefulness empirically;
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• An extensive evaluation against 11 methods on a
set of 8 regression datasets, the PMLB benchmark
(133 datasets), and Feynman symbolic regression (119
datasets);

• We provide detailed analyses to understand DNNR’s
performance (ablation study; impact of data properties)
and transparency (inspection of failure cases).

2. Related Work
KNN is a non-parametric model based on a simple voting
decision rule where the target of a given point is predicted
by averaging the targets of neighboring samples (Cover &
Hart, 1967). For an introduction to KNN, we refer the reader
to (Chen & Shah, 2018).

Numerous methods have been proposed to improve this
simple decision rule. (Kulkarni & Posner, 1995; Chaud-
huri & Dasgupta, 2014) investigated the KNN convergence
rate under different sampling conditions while (Balsubra-
mani et al., 2019) and (Wettschereck & Dietterich, 1993)
proposed different methods for an adaptive choice of k.

Although the choice of the number of neighbors is critical,
it is not the only factor governing KNN performance. A
large subset of the KNN literature proposed techniques for
the choice of the distance metric that defines the neighbor-
hood. (Cleary & Trigg, 1995) introduced an entropy-based
distance metric, and (Wang et al., 2007) proposed an adap-
tive distance. Metric learning methods propose data-driven
learning mechanisms for the distance function (Weinberger
& Tesauro, 2007; Weinberger et al., 2006; Wang et al., 2018).
A similar approach changes the data representation upon
which the distance function operates via feature weight-
ing or feature selection (Aha, 1998; Vivencio et al., 2007).
(Bhatia & Vandana, 2010) provides a more comprehensive
overview of the different KNN techniques. However, all
these methods do not change how the prediction is being
performed – all use an averaging scheme of the targets that
effectively does not account for how the function changes
within the local neighborhood.

A method that uses local changes is local linear regression
(LL) (Fan, 1992). Similar to KNN, local linear regression
selects k-nearest neighbors and then fits a hyperplane lo-
cally. This differs from our proposed method as we fit the
gradient for all nearest neighbors separately. The single
hyperplane of LL regression assumes an identical gradient
for each neighbor. We show results for LL regression in the
quantitative evaluation.

Gradient Approximation Estimating the gradient from
data has been studied for various reasons, including vari-
able selection and dimensionality reduction (Hristache et al.,
2001; Mukherjee & Zhou, 2006). Several non-parametric
methods exist to estimate the gradient from data (Fan &

Algorithm 1 Pseudocode of DNNR’s prediction for a query
point X . The feature scaling is omitted in this pseudocode.
The OLS function solves an ordinary least-squares problem.

Require: a query point x, train data {(Xi, Yi)}, nearest
neighbors k, nearest neighbors for gradient estimation k′,
range for target value ymin, ymax:
M ← nn(x, k)
# M contains the indices of the k nearest neighbors
predictions = []
for each neighbor index m ∈M do

A← nn(Xm, k
′)

# A contains indices of the k′ neighbors for Xm

∆X ← XA − xm
∆Y ← YA − ym
γ̂m ← OLS(∆X,∆Y )
# γ̂m approximates the gradient
ŷm ← ym + γ̂(xm − x)
predictions.append(ŷm)

end for
ŷ = mean(predictions)
return clip(ŷ, ymin, ymax)

Gijbels, 1996; De Brabanter et al., 2013), and bounds of
convergence already exist for some techniques (Berahas
et al., 2021; Turner et al., 2010). An error bound on L1-
penalized gradient approximation using KNN is derived in
(Ben-Shabat & Gould, 2020) using local gradient approx-
imation for 3D model reconstruction by fitting truncated
jets in the KNN neighborhoods. (Ausset et al., 2021). The
work also applied the estimated gradient to variable selec-
tion and gradient optimization problems, but did not utilize
it to improve the prediction. As we will present in detail, our
method combines non-parametric gradient estimation using
KNN, Taylor expansion, and feature scaling for regression
modeling. To our surprise, this combination was neither
explored theoretically nor empirically before.

3. Method
Notation We will consider the typical supervised regres-
sion problem. The training data is given as a set of n tuples
of data points and target values {(X1, Y1), . . . , (Xn, Yn)}.
We will denote the expected target value by η(x) =
E[Y |X = x]. A ball with radius r around x is given by
Bx,r. For a ball around x with exactly k training points, we
will use a # sign as in Bx,#k. We summarize our notation
in the Appendix Table 4.

DNNR Vanilla KNN predicts the target of a given datapoint
x by averaging the targets of nearby training points:

ηKNN(x) =
1

k

∑
Xm∈Bx,#k

Ym. (1)
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(a) KNN (b) DNNR

Figure 1. (a) An illustration of KNN regression. To predict a value for a query (circle with question mark), the target values of the nearest
points (red circles) are averaged. KNN’s prediction is marked by the red cross. The other data points (gray circles) are not used for
prediction. (b) Similar illustration of DNNR. The local gradient (gray dashed line) is estimated for each neighbor and a target value is
interpolated linearly (light red crosses). The final prediction (red cross) is the average of these interpolated values.

This simple averaging scheme can be seen as a zeroth-term
Taylor expansion around the inference point. If we would
know the gradient of the function η, we could easily extend
it to a first degree Taylor expansion:

ηknown∇(x) =
1

k

∑
Xm∈Bx,#k

(Ym +∇η(Xm)(x−Xm)) . (2)

Of course, we only have access to the training data, not the
underlying target function. Therefore, we approximate the
gradient using nearby points. We can approximate∇η(Xm)
by solving a least-squares problem:

γ̂m = arg min
γm
||Aγm − q||, (3)

where γ̂m ∈ Rd is the estimated gradient at point Xm, A ∈
Rk′×d contains the normalized differences (Xi −Xm)/hi
as row vectors, hi = ||Xi − Xm||, k′ is the number of
points used to approximate the gradient, i indexes these
k′ nearby points around Xm , and q ∈ Rk

′
denotes the

differences in the labels q = (Yi − Ym)/hi. The result γ̂m
can then substitute the real gradient in equation (2) to yield
the DNNR approximation:

ηDNNR(x) =
1

k

∑
Xm∈Bx,#k

(Ym + γ̂m(x−Xm)) . (4)

Using the approximate Taylor expansion, we aim to im-
prove the prediction performance by also utilizing the local
change in the function. The pseudocode of DNNR is listed
in Algorithm 1. The algorithm can also be extended easily
to higher-orders of a Taylor expansion. In the evaluation,
we will report results using the diagonal of the Hessian, i.e.
the elements corresponding to ∂2η

∂2xi
.

Feature Weighting Using an isotropic distance weighs
each dimension equally. This way, a neighbor may be picked
based on irrelevant dimensions. A simple improvement is
to scale the feature dimensions as done in previous work

(Weinberger & Tesauro, 2007). We use a common approach
for a distance metric d using a diagonal matrix W to scale
each dimension:

d(xi, xj) = (xi − xj)TW (xi, xj) (5)

DNNR’s predictions are differentiable w.r.t. the input di-
mensions, so a loss can be backpropagated to the scaling
matrix W and optimized using gradient descent. Inspired
by the Taylor theorem, we require that nearby points predict
each other well while predictions of far points may come
with a larger error. Therefore, the loss enforces a correlation
between distance and the prediction error:

W ∗ = arg min
W

∑
i,j∈I

cossim
(
d(Xi, Xj),∣∣Yi − η̂DNNR(Xnn(i,k′))

∣∣ ),
(6)

where I is an index set of nearby points, and cossim denotes
the cosine similarity.

At first sight, an alternative might have been minimizing the
prediction’s mean squared error (MSE). However, minimiz-
ing the MSE would not alter the scaling, as the prediction
is scale-invariant, i.e. downscaling a dimension will in-
crease the gradient, and the prediction will stay the same.
Therefore, a spatial inductive bias in equation 6 is needed.

4. Theoretical Analysis
We focus on the point-wise error estimate of DNNR vs.
KNN regression. The proof contains two parts: the approxi-
mation error of the gradient and the point-wise prediction
error. In Appendix C.2, we show that:

Lemma 1 Let f : D ⊂ Rd → R be of class Cµ, a ∈ D,
and B(a) ⊂ D be some neighborhood of a. Suppose that
around point a we have m neighboring points vk, k =
1, . . . ,m with a, v1, . . . , vm ∈ B(a) ⊂ D. Suppose further
that all µ-th order derivatives are Lipschitz, i ∈ 1 . . . µ:
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∂if

∂a
l1
1 ...∂a

ld
d

∈ Lipϑi(B(a)) where l1 + . . .+ ld = i and we

approximate the gradient locally at a by γ̂ = E1ω̂ via the
least-squares solution ω̂ = arg minω∈Rd ||Aω− q||, where

A=


νT1 νT1∗
νT2 νT2∗
...
νTm νTm∗

 , q=


f(a+h1ν1)−f(a)

h1
f(a+h2ν2)−f(a)

h2

...
f(a+hmνm)−f(a)

hm

 , (7)

A ∈ Rm×p, q ∈ Rm, E1 =
(
Id 0

)
∈

Rd×p, hk = ||vk − a|| with hkνk = vk − a;
νTk = (ν1k , . . . , νdk), νTk∗ denotes higher-order terms

νTk∗ =
(
hµ
′−1
k

µ′!

(
µ′

l1,...,ld

)∏d
i1
νkii

)
2≤µ′≤µ,l1+...ld=µ′

and

p =
∑µ
i=1

(d+µ)!
d! . Then a bound on the error in the least-

squares gradient estimate is given by:

||∇f(a)− γ̂||2 ≤
ϑmaxh

µ
max

σ1(µ+ 1)!

√√√√ m∑
i=1

||νi||2µ1 , (8)

where σ1 is the smallest singular value of A, which is as-
sumed to have rank(A) = p, ϑmax = maxi∈1...k ϑi and
hmax = max1≤k≤m hk.

This lemma extends a result from the two-dimensional case
(Turner et al., 2010). The gradient approximation depends
on the Lipschitz constant ϑmax, the distance to the neighbors
hmax, and the smallest singular value σ1 of the normed
differences A. The lemma also shows that by accounting
for higher-order terms, e.g. picking µ > 1, the gradient
approximation can be made more accurate.

The following theorem is based on Theorem 3.3.1 in (Chen
& Shah, 2018). We built on the same assumptions except
requiring Lipschitz instead of Hölder continuity.

Technical Assumptions (Atechnical
X ,ρ,PX ): The feature space X

and distance ρ form a separable metric space. The feature
distribution PX is a Borel probability measure.

Assumption Besicovitch(ABesicovitch
η ): The regres-

sion function η satisfied the Besicovitch condition if
limr↓0 E[Y |X ∈ Bx,r] = η(x) for x almost everywhere
w.r.t. PX .

Assumption Lipschitz (ALipschitz(ϑmax)
η ): The regression

function η is Lipschitz continuous with parameter ϑmax if
|η(x)− η(x′)| ≤ ϑmaxρ(x, x′) for all x, x′ ∈ X .

Using Lemma 1, we prove the following theorem in Ap-
pendix C.2:

Theorem 1 (DNNR pointwise error) Under assumptions
Atechnical
X ,ρ,PX and ABesicovitch

η , let x ∈ supp(PX) be a feature
vector, ε > 0 be an error tolerance in estimating the ex-
pected label η(x) = E[Y |X = x], and δ ∈ (0, 1) be a

probability tolerance. Suppose that Y ∈ [ymin, ymax] for
some constants ymin and ymax. There exists a threshold dis-
tance h∗DNNR ∈ (0, inf) such that for any smaller distance
h ∈ (0, h∗), if the number of training points n satisfies:

n ≥ 8

PX(Bx,h)
log

2

δ
, (9)

and the number of nearest neighbors satisfies

2(ymax − ymin)2

ε2
log

4

δ
≤ k ≤ 1

2
nPX(Bx,h), (10)

then with probability at least 1 − δ over randomness in
sampling the training data, DNNR regression at point x has
error

|η̂DNNR(x)− η(x)| ≤ ε. (11)

If we know that ALipschitz(ϑmax)
η also holds, we can pick

h∗DNNR as:

h∗DNNR =

√
ε

ϑmax (1 + τ)
, (12)

where τ=E
[√∑m

i=1 ||νi||
2µ
1

σ1

∣∣X ∈ Bx,h]. ν, σ1, and ϑmax

are defined as in Lemma 1.

The theorem states that we can bound the point-wise error
locally with a high probability given that the conditions on
n and k are fulfilled. Theorem 3.3.1 from (Chen & Shah,
2018) provides a KNN regression point-wise error bound
(their theorem is in turn based on (Chaudhuri & Dasgupta,
2014)). For KNN, the restriction on the maximum distance
h∗KNN = ε

2ϑmax
, while the other conditions on sample size

and probability are identical. To compare DNNR and KNN,
it is beneficial to solve for the error tolerance ε.

εDNNR = h2DNNRϑmax (1 + τ), (13)

and for KNN:

εKNN = 2ϑmaxhKNN. (14)

The influence of the different variables is as follows:

• Both depend on the Lipschitz constant ϑmax linearly.
• Distance to nearest neighbors: hmax vs h2max. For

DNNR, the error decreases quadratically in hmax.
When hmax becomes small, h2max will be even smaller.

• For DNNR, τ represents the error in estimating the
gradient. As long τ < 2

hmax
− 1, the error tolerance

of DNNR will be lower than for KNN. As τ ∝ 1
σ1

, an
ill-conditioned matrix A might increase DNNR’s error.

5. Experiments
We compared DNNR against other methods, including state-
of-the-art gradient boosting methods. First, we discuss
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which baselines we compared against and the general ex-
perimental setup. Then, we present large-scale quantitative
evaluations followed by an ablation study and further quali-
tative analyses.

5.1. Setup

We compared DNNR against state-of-the-art boosting meth-
ods (CatBoost, XGBoost, Gradient Boosted Trees (Doro-
gush et al., 2018; Chen & Guestrin, 2016)), classical meth-
ods such as (KNN, multi-layer perceptron (MLP), and Tab-
Net, that is a deep learning approach for tabular data (Arik
& Pfister, 2021). We also included KNN-Scaled, which uses
DNNR’s feature weighting but KNN’s averaging scheme.

We used standard scaling for all datasets (zero mean, unit
variance per dimension). Each model, except TabNet, was
optimized using a grid search over multiple parameters, and
the models were refit using their best parameters on the
validation data before test inference. We ensured that each
method had a comparable search space, which are listed
in Appendix D). Due to its long training times, we had to
skip the grid search for TabNet. Approximately 4.1k CPU
hours were used to run the experiments. For the larger
benchmarks (Feynman and PMLB), we followed the setup
in (Cava et al., 2021). Our baselines report similar or slightly
better performance than on SRBench3.

5.2. Quantitative Experiments

Benchmark Datasets: The goal of this benchmark is to
inspect DNNR’s performance on eight real-world regres-
sion datasets: Yacht, California, Protein, Airfoil, Concrete,
Sarcos, CO2 Emissions, and NOX emissions. The last two
datasets are part of the Gas Emission dataset. All datasets
were taken from the UCI repository (Dua & Graff, 2017),
except California (Kelley Pace & Barry, 1997) and Sarcos
(Rasmussen & Williams, 2006). These datasets were also
used in previous work (Bui et al., 2016). Some datasets also
have discrete features (Yacht, Airfoil), which challenges
DNNR’s assumption of continuity. All the datasets were
evaluated using a 10-fold split, except for the Sarcos dataset
which comes with a predefined test set. Additionally, we
fixed the data leakage in the Sarcos dataset by removing all
test data points from the training set.

In Table 1, we report the averaged mean squared error (MSE)
over the 10-folds for each dataset and model. Overall, Cat-
Boost is the best performing method. We find that DNNR
achieves the best performance on the Sarcos and California
datasets and the second-order achieves the best performance
on Protein. For NOxEmissions, CO2Emissions, and Pro-
tein, DNNR is within 5% percentage difference to the best
performing method (see Table 3). Discrete features violate

3See results here: https://cavalab.org/srbench/blackbox/
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MLP

DNNR

CatBoost

LGBM

XGBoost

Random Forest

KNN

Noise Level
0
0.001
0.01

Figure 2. Accuracy on the Feynman Symbolic Regression
Database under three levels of noise. The marks show the per-
centage of solutions with R2 > 0.999 . The bars denote 95%
confidence intervals.
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DNNR
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LGBM
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MLP
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Figure 3. Results on the PMLB benchmark. The markers show the
median R2 performance over all datasets runs. Horizontal bars
indicate the 95% bootstrapped confidence interval.

DNNR’s assumptions, which can affect its performance,
as the results on Airfoil and Yacht indicate. On these two
datasets, DNNR is not under the best-performing methods
(e.g. CatBoost: 1.25, XGBoost: 1.63, for Airfoil) but still
performs better than vanilla KNN (2.30 vs. 4.25).

Discrete features can render the Taylor approximation mean-
ingless, e.g. all neighbors may have the same value in one
dimension rendering the gradient zero, or a linear approx-
imation may not be sufficient when values exhibit large
jumps. Interestingly, the second-order DNNR yields better
results on the Airfoil and Concrete datasets, presumably be-
cause the second-order approximates sharp gradients better.

On the other datasets, DNNR delivers a significant improve-
ment over KNN and also over KNN with DNNR feature
scaling (KNN-Scaled).

Feynman Benchmark As the second benchmark, we se-
lected the Feynman Symbolic Regression Database, which
consists of 119 datasets sampled from classical and quantum
physics equations (Udrescu & Tegmark, 2020). These equa-
tions are continuous differentiable functions. The difficulty
can be increased by adding noise.
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Table 1. The MSE on eight regression datasets averaged over 10-folds. The best-performing values are marked as bold. The standard
deviations are given after the ± signs. For the Sarcos dataset, we only evaluate on the given test set.

Protein CO2Emission California Yacht Airfoil Concrete NOxEmission Sarcos

CatBoost 11.82 ± 0.33 1.11 ± 0.40 0.19 ± 0.01 0.25 ± 0.25 1.26 ± 0.24 14.00 ± 5.35 14.65 ± 1.00 1.313
Grad. B. Trees 12.15 ± 0.41 1.25 ± 0.44 0.20 ± 0.01 0.33 ± 0.15 1.76 ± 0.51 16.03 ± 6.13 15.60 ± 1.00 1.813
LGBM 12.74 ± 0.35 1.17 ± 0.41 0.19 ± 0.01 6.86 ± 9.10 2.03 ± 0.38 16.10 ± 5.11 15.66 ± 1.00 1.613
MLP 14.34 ± 0.44 1.23 ± 0.47 0.35 ± 0.26 4.34 ± 10.21 10.17 ± 3.01 35.27 ± 12.17 19.91 ± 1.82 1.277
Rand. Forest 11.80 ± 0.25 1.12 ± 0.43 0.23 ± 0.02 1.13 ± 0.73 2.81 ± 0.66 22.75 ± 5.64 16.35 ± 1.03 2.264
XGBoost 12.01 ± 0.28 1.21 ± 0.44 0.20 ± 0.02 0.26 ± 0.16 1.63 ± 0.40 16.76 ± 6.68 14.99 ± 0.98 1.824
KNN 13.39 ± 0.37 1.17 ± 0.43 0.39 ± 0.03 68.46 ± 51.11 4.25 ± 0.96 60.76 ± 14.19 17.37 ± 1.26 1.752
KNN-Scaled 12.54 ± 0.57 1.20 ± 0.44 0.19 ± 0.02 2.66 ± 1.92 4.14 ± 0.94 40.25 ± 7.00 15.41 ± 1.21 1.770
LL 14.07 ± 0.18 1.20 ± 0.46 0.33 ± 0.07 50.83 ± 14.81 7.04 ± 1.39 51.40 ± 10.50 16.69 ± 1.10 0.792
LL-Scaled 12.90 ± 0.29 1.10 ± 0.43 0.21 ± 0.02 2.47 ± 1.70 3.53 ± 1.24 32.54 ± 6.33 14.57 ± 0.96 0.786
Tabnet 17.02 ± 2.68 1.22 ± 0.38 0.39 ± 0.04 2.83 ± 2.59 9.98 ± 3.04 43.73 ± 14.59 12.97 ± 0.92 1.304

DNNR 12.31 ± 0.35 1.12 ± 0.47 0.19 ± 0.02 1.05 ± 0.63 2.83 ± 0.60 36.52 ± 18.03 13.34 ± 0.96 0.708
DNNR-2 ord. 11.64 ± 0.44 1.24 ± 0.50 0.22 ± 0.02 0.48 ± 0.43 2.30 ± 0.48 28.35 ± 13.47 15.61 ± 1.94 0.727

The evaluation for the Feynman benchmark was executed
with 10 different splits for each dataset and noise level
(std=0, 0.001, 0.01) – similar to (Cava et al., 2021). For the
first split, we divided the data into 70/5/25% train, validation,
and test sets. The hyperparameter tuning was done with
validation data of the first split. Then the models were refit
using the best parameters and evaluated on the 25% test
set. Subsequent splits (75/25% train/test) then used these
hyperparameters.

For the Feynman benchmark, accuracy is defined as the
percentage of datasets that were solved with a coefficient
of determination R2 > 0.999. We report this accuracy in
Figure 2. DNNR is the second-best performing method
after MLP. CatBoost’s performance is also notable, with an
accuracy of more than 80%. The different noise levels had
minor effects on the methods.

PMLB Benchmark The PMLB benchmark contains real
and synthetic datasets with categorical features, discrete
targets, and noisy data in general. In total, we used 133
PMLB datasets. The evaluation setup for the PMLB datasets
was similar to the Feynman benchmark. Figure 3 shows
the median R2 performance of the different models with a
95% confidence interval. CatBoost is the best performing
method with an R2 median > 0.9 with DNNR second-
order closely in the second position. DNNR, XGBoost,
and Gradient Boosted Trees perform similarly well. The
worst-performing method is KNN regression. While adding
feature weighting (KNN-Scaled) improves the R2 median
considerably by over 0.1, only DNNR’s additional use of
gradient information yields results comparable to gradient
boosting methods.

5.3. Ablation

In the previous evaluations, we already included KNN-
Scaled to measure the effect of the scaling versus the gra-
dient information. We dissected DNNR even further and

tested various design alternatives: such as scaling of the
neighborhood (MLKR (Weinberger & Tesauro, 2007)) and
regularization on the gradient estimation (Lasso (Ausset
et al., 2021)). We based this analysis on the Airfoil, Con-
crete, and 5000 samples from Friedman-1 datasets (see Sec-
tion 5.4). As before, we conducted a hyperparameters sweep
for each model configuration and used a 10-fold validation
for each dataset.

For the Concrete and Friedman-1 datasets, using only gra-
dient information and no feature scaling (DNNR-Unsc.)
already improved over KNN’s performance. For the Airfoil
dataset, which contains categorical features, using gradi-
ents without scaling (DNNR-Unsc.) leads to worse results.
MLKR improves KNN’s performance more than DNNR’s
scaling for KNN. However, when using gradient estimation,
MLKR is less suitable as can be seen in the difference be-
tween DNNR and DNNR-MLKR on Airfoil and Concrete.
MLKR draws apart local neighborhoods as points are scaled
based on similarities in the target value. The inference might
than be carried out by points that are drastically different
from the query, both in L2-metric and a different gradient.

Furthermore, we would like to note that MLKR is also com-
putationally more expensive than DNNR’s scaling as they
use Gaussian kernels resulting in a runtime quadratic in the
number of samples. These results highlight that while the
gradient information might be helpful for unscaled neigh-
borhoods, scaling yields better gradients and results in better
approximations.

Using Lasso regularization on the gradient estimation as
done in (Ausset et al., 2021) did not perform well. We spec-
ulate that the regularization limits the gradient estimation.
Future work might test if DNNR benefits from Lasso reg-
ularization in high-dimensional problems as motivated by
the authors.
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Table 2. Ablation study. We report the MSE for different variations
of DNNR for three datasets.

Airfoil Concrete Friedman-1

DNNR 2.83 ± 0.60 36.52 ± 18.03 0.01 ± 0.00
DNNR-Unsc. 4.82 ± 0.74 49.97 ± 13.59 1.03 ± 0.15
KNN-MLKR 3.32 ± 0.84 36.85 ± 9.89 0.40 ± 0.07
KNN-Scaled 4.14 ± 0.94 40.25 ± 7.00 7.27 ± 0.53
DNNR-MLKR 3.20 ± 1.08 1.5e13 ± 4e13 0.03 ± 0.00
KNN 4.25 ± 0.96 60.76 ± 14.19 3.93 ± 0.43
DNNR Rand. 24.38 ± 3.44 115.14 ± 20.52 6.07 ± 0.56
DNNR-Lasso 5.25 ± 1.05 40.24 ± 8.43 7.33 ± 0.52
DNNR-2 ord. 2.30 ± 0.48 28.35 ± 13.47 0.01 ± 0.00

5.4. Effect of noise, #samples, and #features

This analysis investigates how different data properties af-
fect the model’s performance. Such an analysis requires a
controlled environment: we used the Friedman-1 dataset
(Friedman, 1991). This dataset is based on the following
equation:

y(x) = 10x3 + 5x4 + 20 (x2−0.5)
2

+ 10 sin (πx0x1) + sε,
(15)

where xi is uniformly distributed in [0, 1], the noise ε is
sampled from a standard normal distribution, and s controls
the variance of the noise. Unimportant features can be added
by simply sampling xj ∼ U(0, 1). Friedman-1 allowed us
to test the models under different sampling conditions: the
number of samples, the magnitude of noise, and the number
of unimportant features.

As defaults, we choose the number of samples = 5000, the
number of features = 10, and the noise level = 0. Besides
DNNR, we also evaluated Gradient Boosted Trees, Cat-
Boost, Random Forest, MLP, and KNN. For each setting,
we run a 5-fold evaluation (the hyperparameters of each
method are fitted on the first fold and then fixed for the
remaining 4).

We report the effect of each condition in Appendix Figure
8. For the number of samples, we note that DNNR’s error
declined rapidly. Second-best is CatBoost. For noise, we
observed two groupings. While one group (MLP & KNN)
performed poorly, their MSE did not increase when adding
noise. For the better performing group (DNNR, Gradient
Boosted Trees, CatBoost, Random Forest), the error did in-
crease when adding noise. In this group, DNNR performed
the best for low noise levels but was beaten by CatBoost
slightly for higher levels of noise.

Increasing the number of unimportant features impacted
KNN and MLP particularly. DNNR dropped from being
the best method to sharing the second place with Gradient
Boosted Trees as the feature scaling cannot entirely mitigate
the effect of unimportant features. Tree-based methods were
barely affected, as they are adept at handling unimportant
features and operate on the information gain of each feature.

Figure 4. Comparison between the error bound of KNN (yellow)
and DNNR (blue). On the x-axis, all test data points sorted by their
error bounds are plotted. The DNNR performs better than KNN
and the DNNR error bound is also lower.
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Figure 5. Depicts the error tolerance versus the number of training
samples for the Friedman-1 dataset. KNN requires multiple orders
more training points to guarantee the same error tolerance.

5.5. Application of the theoretical bound

In this evaluation, we analyze the error bounds from section
4. As dataset, we use the Friedman-1 dataset introduced
before in section 5.4. The synthetic dataset allows the sam-
pling of arbitrary points. Thereby we can also simulate very
dense neighborhoods.

First, we apply Theorem 1 to the dataset. We pick a proba-
bility tolerance of 0.95 (δ = 0.05), and a Lipschitz constant
for equation (15) of ϑmax = 40. For DNNR, we estimate
a value of τ ≈ 5.59 from the data. We show the depen-
dency between error tolerance and the number of samples
required in Figure 5. In this exemplary calculation, KNN
requires multiple orders of magnitude more training data
than DNNR to achieve the same theoretical guarantee on
the error tolerance. Still, even DNNR would require an
unrealistic amount of samples, e.g. around 1015 for an error
tolerance of ε = 0.1.

As a more practical application, we investigated how local
conditions, e.g. distance to the neighbors and the Lipschitz
constant, influence the local prediction error. Therefore, we
sampled a realistically sized train and test set (10.000 and
2.000 samples) and then compared the error tolerance for
KNN and DNNR according to equations (13) and (14). For
both methods, we choose k = 7, and for the number of
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(a) Feature relevances
(b) Failure (error of 4.85)

Figure 6. (a) Feature relevance of DNNR Unscaled on the Califor-
nia Housing dataset. (b) A failure of DNNR Unscaled. The red
circle marks the query point. The prediction is done by approxi-
mating the gradient locally for each nearest neighbors (crosses).
The circles visualize the points used for gradient approximation.
As DNNR Unscaled weights each dimension equally, it does not
use spatially nearby points, even though longitude and latitude are
scored important.

neighbors to approximate the gradient, we used k′ = 32.
We purposely violate the conditions on k and n of Theorem
1, as we want to analyze how applicable the estimated error
tolerances are in a more realistic setting. In Figure 4, we
sorted the 2000 test points according to the error tolerances
of KNN and DNNR respectively. For both methods, we see
that the error tolerances strictly bound the actual errors by a
gap of around one order of magnitude. We also observe that
the error tolerances were correlated with the actual errors,
e.g. as the error tolerances decrease, so does the actual error.

5.6. Feature importance & Inspecting a prediction

DNNR allows inspecting which neighbors were used for the
prediction and how they contributed. For the following ex-
emplary inspection, we use the California Housing dataset
(Kelley Pace & Barry, 1997). The dataset’s dependent vari-
able is the median house value per block group (a block
group is an aggregation of a local area). The eight observa-
tional variables represent the location, median income, and
information about the houses, such as average rooms or oc-
cupation. For this study, we analyzed DNNR Unscaled, i.e.
DNNR without the feature scaling. We omitted the feature
scaling, as the feature relevance would be impacted by the
scaling and the DNNR with scaling is also performing so
well that the error would be minor to inspect.

First, we can provide a simple local feature relevance score
by multiplying the estimated gradient with the difference in
the input:

ξm = |(x− xm)� γ̂m|, (16)

where xm is the point where we estimate the gradient and
γ̂m the locally fitted gradient. This formulation of feature
importance is analogous to a linear model where one would

take w� x (Molnar, 2019, sec. 5.1.). It is a known property
that the gradient reflects the model’s sensitivity and can be
used for feature importance, and variable selection (Mukher-
jee & Zhou, 2006; Guyon & Elisseeff, 2003). We show the
distributions of the local feature importance in Figure 6a.

The most important dimensions are longitude, latitude, and
median income. We validate the local feature importance
by applying it to variable selection. Using all dimensions,
we get an MSE of around 0.34 (this is lower than in Table
1 as we do not use feature weighting). When deleting the
three most important dimensions, the MSE increases to 0.99.
However, keeping only the most important dimensions, the
MSE slightly improves to 0.33. Therefore, we conclude
that the feature importance has found the most important
dimensions.

We now move on to inspect a failure case of DNNR. In Fig-
ure 6b, we show how the neighborhood of a poorly predicted
point can be inspected. The prediction (red circle) is off by
4.85. From looking at the projection of the data to the longi-
tude and latitude dimensions, we can see that the prediction
is based on points (crosses) far away from the query. These
points might have a similar number of bedrooms but differ
in the location. As we found in the previous experiment,
the latitude/longitude belong to the most important features.
This inspection motivates the feature scaling once again, as
DNNR Unscale weights all dimension equally, it selected
the nearest neighbors using less relevant dimensions.

6. Conclusion, Limitations, and Future Work
Conclusion DNNR showed that local datapoint gradients
carry valuable information for prediction and can be ex-
ploited using a simple Taylor expansion to provide a signifi-
cant performance boost over KNN regression. In large-scale
evaluations, DNNR achieved comparable results to state-of-
the-art complex gradient boosting models. An advantage of
DNNR’s simplicity is that we can obtain error bounds by
extending KNN’s theory. Our theoretical analysis illustrates
the benefits of using DNNR over KNN. DNNR strikes a
good balance between performance and transparency and
may therefore be the method of choice in problems with
elevated requirements for the system’s interpretability.

Limitations Our evaluation of DNNR points to a potential
limitation on discrete data. When features or targets have
the same value, the gradient is zero, and DNNR falls back
to KNN’s decision. On partially discrete datasets, DNNR
always performs at least as well as KNN, e.g. the results of
DNNR and KNN on the Yacht dataset (Table 1). DNNR also
inherits some limitations from KNN, such that the L2-metric
might not represent similarities optimally.

Future Work DNNR was designed for regression tasks
but could also be adapted for classification, e.g. by fitting
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the gradients of a logistic function as in (Mukherjee & Wu,
2006) or via label smoothing (Müller et al., 2019). An inter-
esting future direction may be extending DNNR specifically
to symbolic regression by utilizing the estimated gradient in-
formation. Future work could also explore the use of DNNR
for data augmentation, where points could be sampled, and
the label computed estimated with the local gradient. An-
other research direction would be to tighten the theoretical
bounds or to study the effect of scaling from a theoretical
perspective.
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A. Figures

(a) Sample 1305: Error of 4.85 (b) Zoom of 1305 (c) Sample 1220 (Error 0.02) (d) Zoom of 1220

(e) Sample 1081 (Error 0.13) (f) Zoom of 1081 (g) Sample 393 (Error 1.01) (h) Zoom of 393

Figure 7. The selected neighbors for different queries on the California dataset. The red circle marks the query point. The prediction is
done by approximating the gradient locally for each nearest neighbors (crosses). The filled circles visualize the points used for gradient
approximation. The neighbors are further away for higher errors (a) & (g) while close to the query for lower errors (c) & (e).
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Figure 8. The effect of different parameters of the dataset. The results are obtains on the Friedman-1 dataset. The confidence intervals
denote the standard derivation over multiple folds.
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B. Tables

Table 3. Mean percentage difference from the best performing model on each dataset.

Protein CO2Emission California Yacht Airfoil Concrete NOxEmission Sarcos

CatBoost 1.54% 1.09% 0.00% 0.00% 0.00% 0.00% 12.91% 85.45%
Grad. B. Trees 4.42% 13.71% 7.94% 32.14% 39.32% 14.53% 20.26% 156.07%
KNN 15.03% 6.63% 108.47% 27065.48% 236.23% 334.12% 33.91% 147.46%
KNN-neigh 7.76% 8.90% 2.65% 953.97% 227.69% 187.56% 18.79% 150.00%
LGBM 9.51% 6.09% 3.17% 2623.41% 60.36% 15.05% 20.74% 127.82%
LL 20.93% 8.99% 72.49% 20072.22% 457.28% 267.28% 28.69% 11.86%
LL-neigh 10.83% 0.00% 12.70% 880.95% 179.35% 132.46% 12.35% 11.02%
MLP 23.22% 11.99% 84.13% 1623.02% 704.43% 151.99% 53.46% 80.37%
Random Forest 1.39% 1.54% 21.69% 348.81% 122.15% 62.53% 26.08% 219.77%
Tabnet 46.25% 10.63% 108.47% 1024.21% 689.79% 212.47% 0.00% 84.18%
XGBoost 3.17% 9.99% 6.35% 2.78% 28.72% 19.73% 15.54% 157.63%

DNNR-2 ord. 0.00% 12.35% 13.76% 88.89% 81.96% 102.52% 20.37% 2.68%
DNNR 5.79% 1.27% 0.00% 315.08% 123.58% 160.93% 2.86% 0.00%

C. Approximation Bounds

Notation Meaning

x An input vector
X The random variable of the input
Y The random variable of the output
k The number of nearest neighbors
k′ The number of neighbors to estimate the gradient
η(x) The expected target value: η(x) = E[Y |X = x]
∇η(x) The gradient of η(x) w.r.t. x
ηKNN(x) Estimated regression function for KNN regression
ηDNNR(x) Estimated regression function for DNNR
nn(x, k) Returns the indices of the k nearest neighbors of x
Ŷm,x Estimated regression value for x from point Xm

ϑmax Maximum Lipschitz constant
A Matrix to estimate the gradient using OLS
σ1 Smallest singular value of A
Cµ Set of µ times differentiable continuous functions
(v · ∇)µf The µ-order directional derivative of f w.r.t v
En[.] Expectation over n training points (Xi, Yi)1≤i≤n
γ̂m Locally estimated gradient for point m.
ω̂m Locally estimated gradient and higher order terms
ε The error tolerance
δ Probability tolerance
hm Distance between x and point Xm

ρ(x, x′) Distance metric

Table 4. Notation used in this work.

The proof of the approximation bounds of DANN extends the the proof of KNN approximation bounds given in (Chen &
Shah, 2018, p. 68ff.) by a Taylor Approximation. For the approximation of the gradient, we will rely on results given in
(Turner et al., 2010).
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Notation Our notation follows the one given in (Chen & Shah, 2018):

C.1. General Properties

We list here some inequalities used in the later proof.

Jensen’s Inequality Given a random variable X and a convex function f(X) then:

f(E[X]) ≤ E[f(X)]. (17)

Hoeffding’s Inequality Let X1, . . . , Xk be independent random variables bounded between [a, b]. The empirical mean is
given by: X̄ = 1

k (X1 + . . .+Xk). Then:

P(
∣∣X̄ − E[X̄]

∣∣ > t) ≤ 2 exp

(
− 2kt2

(b− a)2

)
(18)

Chernoff Bound for Binomial distribution Let X =
∑n
i=1Xi be a sum of n independent binary random variable each

Xi = 1 with probability pi. Let µ = E[X] =
∑k
i=1 pi = np̄, where p̄ = 1

n

∑k
i=1 pi. Then

P(X ≤ (1− δ)µ) ≤ exp(−µδ2/2). (19)

C.2. Gradient Approximation

Here, we first proof two lemmas for bounding the gradient. They generalize the proof in (Turner et al., 2010, section 3.1)
from 2 to d-dimensions.

The first Lemma bounds terms of a Taylor series and is need for the proof of Lemma .

Lemma 2 Let f : D ⊂ Rd → R be of class Cµ, a ∈ D, and B(a) ⊂ D some neighborhood of a. Suppose that for
i = 0, 1, . . . , n we have ∂µf

∂µa ∈ Lipϑi(B(a)) and ϑmax = maxi∈1,...µ ϑi. Then for any a+ hν ∈ B(a) with ||ν|| = 1∣∣∣∣∣
µ∑
k=1

hk−1

k!
(ν · ∇)kf(a)− f(a+ hν)− f(a)

h

∣∣∣∣∣ ≤ hµ

(µ+ 1)!
ϑmax||v||µ1 . (20)

Proof Lemma 2. The proof starts with rearranging the Taylor Series which is given here:

f(a+ hν) = f(a) + h
(ν · ∇)f(a)

1!
+ . . .+ hµ

(ν · ∇)µf(a)

µ!
+Rµ. (21)

The remainder Rµ has the following form:

Rµ =
hµ+1

µ!

∫ 1

0

(1− t)µ(ν · ∇)µ+1f(a+ thν)dt. (22)

By dividing by h and rearanging some terms, we have:

f(a+ hν)− f(a)

h
−
µ−1∑
k=1

hk−1

k!
(ν · ∇)kf(a) =

Rµ−1
h

. (23)

Now, we add the same quantity to both sides of the previous equation, using
∫ 1

0
(1− t)µ−1dt = 1

µ :

hµ−1

µ!
(ν · ∇)µf(a)− f(a+ hν)− f(a)

h
+

µ−1∑
k=1

hk−1

k!
(ν · ∇)kf(a)

=
hµ−1

(µ− 1)!

∫ 1

0

(1− t)µ−1
{

(ν · ∇)µf(a)− (ν · ∇)µf(a+ thν)
}
dt.
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Therefore, we have: ∣∣∣∣∣
µ−1∑
k=1

hk−1

k!
(ν · ∇)kf(a)− f(a+ hν)− f(a)

h

∣∣∣∣∣
=

∣∣∣∣ hµ−1

(µ− 1)!

∫ 1

0

(1− t)µ−1
{

(ν · ∇)µ(f(a)− f(a+ thν))
}
dt

∣∣∣∣
=

∣∣∣∣ hµ−1

(µ− 1)!

∫ 1

0

(1− t)µ−1
{

(ν · ∇)µ(f(a)− f(a+ thν))
}
dt

∣∣∣∣
≤ hµ−1

(µ− 1)!

∫ 1

0

(1− t)µ−1
∣∣∣ (ν · ∇)

µ
(f(a)− f(a+ thν))

∣∣∣dt
≤ hµ+1

(µ+ 1)!
ϑmax |ν|µ1 .

In last step, we rewrote the µ-th directional derivative using partial derivative and bounded it using the Lipschitz-continuity
as follows:

|(ν · ∇)µ(f(a)− f(a+ thν))|

=

∣∣∣∣∣∣
∑

k1+...+kd=µ

(
µ

k1, . . . , kd

)( d∏
i=1

νkii

)
∂µ(f(a)− f(a+ thν))

∂ak11 · . . . · ∂a
kd
d

∣∣∣∣∣∣
=

∑
k1+...+kd=µ

(
µ

k1, . . . , kd

)( d∏
i=1

∣∣∣νkii ∣∣∣
)
∂µ |(f(a)− f(a+ thν))|

∂ak11 · . . . · ∂a
kd
d

≤
∑

k1+...+kd=µ

(
µ

k1, . . . , kd

)( d∏
i=1

∣∣∣νkii ∣∣∣
)
ϑmax|a− a+ thν| (Lipschitz continuity of order µ)

= ϑmax|thν| (|ν1|+ . . .+ |νd|)µ (Multinomial theorem)
= ϑmax|th| |ν|µ1 .

This finishes the proof of Lemma 2. �

Lemma 3 Let f : D ⊂ Rd → R be of class Cµ, a ∈ D, and B(a) ⊂ D be some neighborhood of a. Suppose
around point a we have m neighboring points vk, k = 1, . . . ,m with a, v1, . . . , vm ∈ B(a) ⊂ D. Suppose further
that ∂µf

∂a
l1
1 ...∂a

ld
d

∈ Lipϑmax
(B(a)) for l1 + . . . + ld = µ, and we approximate the gradient locally at a by E1ω̂ via the

least-squares solution ω̂ = arg minω∈Rd ||Aω − q||, where

A =


νT1 νT1∗
νT2 νT2∗
...
νTm νTm∗

 ∈ Rm×d, q =


f(a+h1ν1)−f(a)

h1
f(a+h2ν2)−f(a)

h1

...
f(a+hmνm)−f(a)

hm

 ∈ Rmx1, (24)

E1 =
(
Id0
)
∈ Rd×p, hk = ||vk − a|| with hkνk = vk − a; νTk = (ν1k , . . . , νdk),

νTk∗ =
(
hµ
′−1
k

µ′!

(
µ′

l1,...,ld

)∏d
i1
νkii

)
2≤µ′≤µ,l1+...ld=µ′

and p =
∑µ
i=1

(d+µ)!
d! . Then a bound on the error in the least-squares gradient estimate is given by:

||∇f(a)− E1ω̂|| ≤
ϑmaxh

µ
max

σ1(µ+ 1)!

√√√√ m∑
i=1

||νi||2µ1 , (25)
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where σ1 is the smallest singular value of A, which is assumed to have rank(A) = p, ϑmax is as defined in Lemma 2, and
hmax = max1≤k≤m hk.

Proof. Let E2 ∈ R(p−d)×p be the last p− d rows of the identity matrix Ip and

U =

(
∂f

∂a1
(a), . . . ,

∂f

∂ad
(a),

∂2f

∂a
l21
1 . . . ∂a

l2d
d

, . . . ,
∂2f

∂a
l2d
d

, . . . ,
∂µf

∂a
ln1
1

, . . . ,
∂µf

∂a
lnd
d

)T
∈ Rp×1. (26)

Now U − ω̂ can be partitioned as
(
E1(U − ω̂)
E2(U − ω̂)

)
, and hence:

||U − ω̂||2 = ||E1(U − ω̂)||2 + ||E2(U − ω̂)||2 ≥ ||E1(U − ω̂)||2 = ||∇f(a)− E1ω̂||2. (27)

Next, with ω̂ = A†q and ||A†|| = 1
σ2
1

, we have

||U − ω̂||2 = ||U −A†q||2 = ||A†(AU − q)||2 ≤ ||A†||2||AU − q||2 =
1

σ2
1

||AU − q||2. (28)

Now using the result in Lemma 2, the following upper bound can be derived:

||AU − q||2 =

m∑
i=1

∣∣∣∣∣
∣∣∣∣∣
p∑
k=1

Ai,kUk − qk

∣∣∣∣∣
∣∣∣∣∣
2

(29)

=
m∑
i=1

∣∣∣∣∣
∣∣∣∣∣
p∑
k=1

Ai,kUk − qk

∣∣∣∣∣
∣∣∣∣∣
2

(30)

=
m∑
i=1

∣∣∣∣∣
∣∣∣∣∣
µ∑
k=1

hk−1i

k!
(νi · ∇)kf(a)− f(a+ hν)− f(a)

h

∣∣∣∣∣
∣∣∣∣∣
2

(31)

≤
m∑
i=1

(
hµi

(µ+ 1)!
ϑmax||νi||µ1

)2

(using Lemma 2) (32)

=

(
ϑmax

(µ+ 1)!

)2 m∑
i=1

(hµi ||νi||
µ
1 )

2 (33)

≤
(

ϑmax

(µ+ 1)!

)2

(hµmax)
2
m∑
i=1

||νi||2µ1 (34)

The result follows from

||∇f(a)− E1ω̂|| ≤ ||U − ω̂|| ≤
ϑmaxh

µ
max

σ1(µ+ 1)!

√√√√ m∑
i=1

||νi||2µ1 . � (35)

C.3. DaNN pointwise error

The proof follows the one from (Chen & Shah, 2018). In (Chen & Shah, 2018), also a method to break ties, e.g. points with
the same distance is proposed – a common problem when the data is discrete and not continuous. We will not discuss how
to break ties, as the gradient estimation assumes continuous dimensions where ties should a.s. never happen.

Technical Assumptions (Atechnical
X ,ρ,PX ):

• The feature space X and distance ρ form a separable metric space.
• The feature distribution PX is a Borel probability measure.
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Assumptions Besicovitch(ABesicovitch
η ): The regression function η satisfied the Besicovitch condition if limr↓0 E[Y |X ∈

Bx,r] = η(x) for x almost everywhere w.r.t. PX ..

Assumption Lipschitz (ALipschitz(ϑmax)
η ): The regression function η is Lipschitz continuous with parameter ϑmax if

|η(x)− η(x′)| ≤ ϑmaxρ(x, x′) for all x, x′ ∈ X .

Lemma 4 Under assumptionsAtechnical
X ,ρ,PX ,ABesicovitch

η , let x ∈ supp(PX) be a feature vector, and η(x) = E[Y |X = x] ∈ R,
be the expected label value for x. Let ε > 0 be an error tolerance in estimating expected label η(x), and δ ∈ (0, 1) be a
probability tolerance. Suppose that Y ∈ [ymin, ymax] for some constants ymin and ymax. Let ξ ∈ (0, 1). Then there exists a
threshold distance h∗ ∈ (0, inf) such that for any smaller distance h ∈ (0, h∗) and with the number of nearest neighbors
satisfying k ≤ (1− ξ)nPX(Bx,h), then with probability at least

1− 2 exp

(
− kε2

2(ymax − ymin)2

)
− exp

(
−ξ

2nPX(Bx,r
2

)
. (36)

we have
|η̂DNNR(x)− η(x)| ≤ ε. (37)

Furthermore, if the function η satisfies assumptionsALipschitz(ϑmax)
η , then we can take

h∗DNNR =

√
ε

ϑmax (1 + τ)
, (38)

where τ=E
[√∑m

i=1 ||νi||
2µ
1

σ1

∣∣X ∈ Bx,h]. ν, σ1, and ϑmax are defined as in Lemma 1.

Proof of Lemma 4: Fix x ∈ supp(PX). Let ε > 0. We upper-bound the error |η̂ − η(x)| with the triangle inequality:

|η̂(x)− η(x)| = |η̂(x)− En[η̂(x)] + En[η̂(x)]− η(x)|
≤ |η̂(x)− En[η̂(x)]|︸ ︷︷ ︸

1

+ |En[η̂(x)]− η(x)|︸ ︷︷ ︸
2

The proof now continues by showing that both 1 and 2 are below ε/2 with high probability. The proof is adapted from
the KNN pointwise regression proof in (Chen & Shah, 2018, p. 68ff.). The part 1 is almost identical to the proof in (Chen
& Shah, 2018, p. 68ff.). For part 2 , we will use the Taylor Approximation and then bound the gradient using the results
from Lemma 1.

Part 1 |η̂(x)− En[η̂(x)]| ≤ ε
2 :

Lemma 5 Under same assumption of Theorem 1, we have:

P
(
|η̂(x)− En[η̂(x)]| ≥ ε

2

)
≤ 2 exp

(
− kε2

2(ymax − ymin)2

)
. (39)

Proof Lemma 5: As we want to apply the Hoeffding’s inequality, we have to show that the Ŷ are independent

Probability Model: The randomness of the η̂DNNR(x) can be described as:

1. Sample a feature vector X̃ ∈ X from the marginal distribution of the (k + 1)-st nearest neighbor of x, let hk+1 =
ρ(x, X̃) denote the distance between x and X̃ .

2. Sample k feature vectors i.i.d. from PX conditioned on landing in the ball Bo
x,ρ(x,X̃)

,

3. Sample n− k − 1 feature vectors i.i.d. from PX conditoned on landing in X \Box,hk+1
,

4. Randomly permute the n feature vectors sampled,
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5. For each feature vector Xi generated, sample its label Yi based on the conditional distribution PY |X=Xi .

Therefore, we can write the expectation over the n training points as:

En[η̂(x)] = Ehk+1(x)[E[Ŷ |X ∈ Box,hk+1
], (40)

where Ŷ = Y +∇Y (X − x) denotes the prediction for point x from a data point X with label Y and gradient∇Y .

The points samples in step 2 are precisely the k nearest neighbor of x, and their Ŷ values i.i.d. with expectation En[η̂(x)] =
EX̃ [E[Ŷ |X ∈ Box,hk+1

]. As they are bounded between ymin and ymax (this can be enforced by clipping), Hoeffding’s
inequality yields:

P
(
|η̂(x)− En[η̂(x)]| ≥ ε

2

)
≤ 2 exp

(
− kε2

2(ymax − ymin)2

)
(41)

This finishes the proof of Lemma 5. �

Part 2 |En[η̂(x)]− η(x)| ≤ ε
2 :

As discussed above (40) the expectation of η̂(x) is

En[η̂(x)] = Ehk+1(x)[E[Y |X ∈ Box,hk+1
] (42)

Suppose that we could show that there exists home h > 0 such that

|E[Y |X ∈ Box,r]− η(x)| ≤ ε

2
for all r ∈ (0, h]. (43)

Then provided that hk+1 ≤ h:

|En[η̂(x)− η(x)]| = |Ehk+1(x)[E[Y |X ∈ Box,hk+1
]− η(x)]| (44)

≤ Ehk+1(x)[|E[Y |X ∈ Box,hk+1
]− η(x)|] (Jensen’s ineq.) (45)

≤ ε

2
(inequality (43)) (46)

Before establishing the existence of h, we first show that for any distance r > 0, with high probability we can ensure that
hk+1 ≤ r. Thus, once we show that h exists, we also know that we can ensure that hk+1 ≤ h with high probability.

Lemma 6 . Let r > 0 and ξ ∈ (0, 1). For positive integer k ≤ (1− ξ)nPX(Bx,r),

PX(hk+1(x) ≥ r) ≤ exp

(
−ξ

2nPX(Bx,r
2

)
. (47)

Thus, we have hk+1(x) ≤ r with probability at least 1− exp
(
−0.5ξ2nPX(Bx,r)

)
. Proof of Lemma 6. Fix r > 0 and ξ ∈

(0, 1). Let Nx,r be the number of training points that land in the closed ball Bx,r. Note that Nx,r ∼ Binomial(n,PX(Bx,r)).
Then by a Chernoff bound for the binomial distribution, for any integer k ≤ (1− ξ)nPX(Bx,r), we have

P(Nx,r ≤ k) ≤ exp

(
− (nPX(Bx,r − k)2

2nPX(Bx,r)

)
(48)

≤ exp

(
− (nPX(Bx,r − (1− ξ)nPX(Bx,r))

2

2nPX(Bx,r)

)
(49)

= exp

(
−ξ

2nPX(Bx,r))

2

)
. (50)

If Nx,r ≤ k, then also hk+1(x) ≥ r. Therefore, the event {hk+1(x) ≥ r} ⊂ {Nx,r ≤ k} and we have:

PX(hk+1(x) ≥ r) ≤ P(Nx,r ≤ k) ≤ exp

(
−ξ

2nPX(Bx,r))

2

)
. � (51)
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Now, we show which distance h ensures that inequality (43) holds. When we only know that

lim
r↓0

E[Y |X ∈ Box,r] = η(x), (52)

then the definition of a limit implies that there exists h∗ > 0 (that depends on x and ε) such that

|E[Y |X ∈ Box,h]− η(x)| ≤ ε

2
for all h ∈ (0, h∗), (53)

i.e., inequality (43) holds, and so we have |En[η̂(x)]− η(x)| ≤ ε
2 as shown earlier in inequality (46).

In the following derivation, we will assume η to be Lipschitz continuous with parameters ϑmax. Further, we move η(x) inside
the expectation and use it’s first term of Taylor series with X as root point: η(x) = η(X) + η′(X)(x−X) + o(|x−X|),
where o(|x−X|) bounds the higher-order terms.

∣∣E [η̂(x) |X ∈ Bx,h]− η(x)
∣∣ =

= |E [Y +∇Y (x−X) |X ∈ Bx,h]− η(x)|
= |E [Y +∇Y (x−X)− η(X)− η′(X)(x−X) + o(|x−X|) |X ∈ Bx,h]|
= |E [Y − η(X) + (∇Y − η′(X)) (x−X) + o(|x−X|) |X ∈ Bx,h]|

Now, we know that E[|Y − η(X)| |X ∈ Bx,h] = 0, as the noise term has zero mean.

= |E [(∇Y − η′(X)) (x−X) + o(|x−X|) |X ∈ Bx,h]|
≤ E

[
|(∇Y − η′(X)) (x−X)|+ |o(|x−X|)|

∣∣X ∈ Bx,h]
We can bound |x−X| < hmax and |∇Y − η′(X)| by using the results from Lemma 2. The higher order terms o(|x−X|)
can be bound by the remainder of the Talyor series: |Rµ| ≤ ϑµ|X−x|µ

(µ+1)! , where ϑµ ≤ ϑmax.

E
[
|(∇Y − η′(X)) (x−X)|+ |o(|x−X|)|

∣∣X ∈ Bx,h] (54)

≤ E

 ϑmaxh
µ+1
max

σ1(µ+ 1)!

√√√√ m∑
i=1

||νi||2µ1 + ϑmax
h2max

2

∣∣∣∣∣X ∈ Bx,h
 (55)

≤ ϑmaxh
µ+1
max

(µ+ 1)!
E


√∑m

i=1 ||νi||
2µ
1

σ1

∣∣∣∣∣X ∈ Bx,h
+ ϑmax

h2max

2
(56)

≤ τϑmaxh
µ+1
max

(µ+ 1)!
+ ϑmax

h2max

2
≤ ε

2
(57)

We used in the last step τ = E
[√∑m

i=1 ||νi||
2µ
1

σ1

∣∣∣∣X ∈ Bx,h]. As this proof only concerns first-order approximations, we use

µ = 1:

τϑmaxh
2
max

2
+ ϑmax

h2max

2
≤ ε

2
(58)

⇔ hmax ≤
√

ε

ϑmax(1 + τ)
(59)

This finishes the proof of Lemma 4 �.

Theorem 1 follows from selecting ξ = 1
2 and observing that:
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n ≥ 8

PX(Bx,h)
log

2

δ
⇒ exp

(
−ξ

2nPX(Bx,h)

2

)
≤ δ

2
, (60)

k ≥ 2(ymax − ymin)2

ε2
log

4

δ
⇒ exp

(
− kε2

2(ymax − ymin)2

)
≤ δ

2
. (61)

D. Hyperparameters

Table 5. Number of Hyperparameters tuned for each model on the benchmark datasets. For DNNR, KNN and MLP, we take small datasets
to be n < 2000, and medium datasets to be n < 50000. The same applies for PMLB and Feynman. We were unable to tune TabNet
model due to computation constraints and used their Tabnet-L configuration for larger datasets (Sarcos, Protein, CO2 and NOx Emissions)
and Tabnet-S (n d and n a = 16) for smaller datasets.

Airfoil CO2Emission California Concrete NOxEmission Protein Yacht

DNNR 150 40 40 150 40 40 150
LL 50 50 50 50 50 50 50
Random Forest 12 12 12 12 12 12 12
Grad. B. Trees 48 48 48 48 48 48 48
MLP 594 72 72 594 72 72 594
CatBoost 48 48 48 48 48 48 48
XGBoost 48 48 48 48 48 48 48
LGBM 48 48 48 48 48 48 48
KNN 384 64 64 384 64 64 384
Tabnet 1 1 1 1 1 1 1

Table 6. XGBoost Hyperparameters

learning rate max depth n estimators

[0.001,0.01,0.1,0.3] [3,5,10] [50,100,500,1000]

Table 7. LightGBM Hyperparameters

learning rate max depth n estimators

[0.001,0.01,0.1,0.3] [3,5,10] [50,100,500,1000]

Table 8. CatBoost Hyperparameters

verbose learning rate max depth n estimators

[False] [0.001,0.01,0.1,0.3] [3,5,10] [50,100,500,1000]

Table 9. Gradient Boosting Hyperparameters

learning rate max depth n estimators

[0.001,0.01,0.1,0.3] [3,5,10] [50,100,500,1000]
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Table 10. Random Forests Hyper Parameters

criterion n estimators max features

[mse] [50,100,500,1000] [auto,sqrt,log2]

Table 11. MLP Hyperparameters for small datasets

hidden layer sizes

[(25,), (50,), (100,), (250,), (25, 25), (50, 50), (100, 100), (250, 250), (25, 25, 25), (50, 50, 50), (100, 100, 100)

alpha batch size learning rate learning rate init early stopping

[0,0.01,1] [64,128] [constant,invscaling,adaptive] [0.001,0.01,0.1] [True]

Table 12. MLP Hyperparameters for medium datasets

hidden layer sizes alpha

[(128,),(128, 128),(128, 128, 128)] [0,0.01]

batch size learning rate learning rate init early stopping

[512] [constant,invscaling,adaptive] [0.0001,0.001,0.01,0.1] [True]

Table 13. MLP Hyperparameters for large datasets

hidden layer sizes alpha

[(128,),(128, 128),(128, 128, 128)] [0]

batch size learning rate learning rate init early stopping

[512] [constant,adaptive] [0.0001,0.001,0.01] [True]

Table 14. KNN Hyperparameters for small datasets

n neighbors weights

[2,5,7,10,20,30,40,50] [uniform,distance]

algorithm leaf size p

[ball tree,kd tree,brute] [10,30,50,100] [1,2]

Table 15. KNN Hyperparameters for medium datasets

n neighbors weights leaf size p

[2,5,7,10,25,50,100,250] [distance,uniform] [10,30,50,100] [2]

Table 16. KNN Hyperparameters for large datasets

n neighbors weights leaf size p

[2,3,5,7,10,12,15,20,25] [distance] [10,30,50,100] [2]
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Table 17. Tabnet Hyperparameters for large datasets

n d verbose n a lambda sparse batch size virtual batch size

[128] [False] [128] [0.0001] [4096] [128]

momentum n steps gamma optimizer params scheduler params max epochs patience

[0.8] [5] [1.5] [{’lr’: 0.02}] [{’step size’: 8000, ’gamma’: 0.9}] [3000] [100]

Table 18. Tabnet Hyperparameters for small datasets

n d n a verbose lambda sparse batch size virtual batch size

[8,16] [8,16] [False] [0.0001] [64,128] [8,16]

momentum n steps gamma optimizer params scheduler params max epochs patience

[0.02] [3] [1.3] [{’lr’: 0.02}] [{’step size’: 10, ’gamma’: 0.95}] [3000] [100]

Table 19. DNNR Hyperparameters for small datasets, n neighbohrs corresponds to the k. For the k′ (number of neighbors used in
approximating the gradient) we use n values sampled between lower bound× d and lower bound× d

n neighbhors upper bound lower bound n

[1, 2, 3, 5, 7] [15] [2] [30]

Table 20. DNNR Hyperparameters for medium datasets , n neighbohrs corresponds to the k. For the k′ (number of neighbors used in
approximating the gradient) we use n values sampled between lower bound× d and lower bound× d

n neighbhors upper bound lower bound n

[3,4] [18] [2] [20]

Table 21. DNNR Hyperparameters for large datasets , n neighbohrs corresponds to the k. For the k′ (number of neighbors used in
approximating the gradient) we use n values sampled between lower bound× d and lower bound× d

n neighbhors upper bound lower bound n

[3] [12] [2] [14]

Table 22. LL Hyperparameters n neighbohrs corresponds to the k. For the size of the neighborhood we use n values sampled between
lower bound× d and lower bound× d

upper bound lower bound n

[25] [2] [50]
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8 Conclusion

8.1 Discussion

In the introduction, the challenges of explainability were outlined, including
simplifications and intransparent assumptions made by explanation methods, as
well as the difficulty in evaluating these methods.

In (Sixt et al. 2020; Sixt et al. 2022a), the theoretical limitations of modified
backpropagation methods were examined. Our findings revealed that popular
methods failed the weight-randomization sanity check, and that the theoretical
foundation of these methods is incomplete. Specifically, the Deep Taylor De-
composition (DTD) (Sixt et al. 2022a) was found to not satisfy the assumption of
the Taylor Theorem, and to be either under constraint or reduced to the gradient
x input method. Given the application of explanation methods in validating
model decisions and gaining insight into model behavior, it is crucial to validate
them theoretically and empirically.

Besides theoretical limitations, it is also important to evaluate if explanations
are useful to users. For this purpose, a study design using the bias-detection
task was created in (Sixt et al. 2022b). In the user study, it was found that a
powerful generative method had little to no benefit for users compared to a
simple baseline.

I also contributed to the development of new methods for explainability. In
(Schulz et al. 2020), a method was developed that provides absolute importance
scores for each input feature in bits per pixel. This absolute frame of refer-
ence allows us to compare the importance across different models and datasets.
Moreoever, we provided a thorough technical evaluation.

In (Nader et al. 2022), we extended the classical k-nearest neighbor regression
using higher-order information. We showed that this method outperforms the
classical kNN regression and performs similarly to the state-of-the-art tree-based
methods.

In general, I would conclude that explainability is a complex problem and is
likely to remain so for the foreseeable future. Heuristic assumptions, as well
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as the complexity of the models, and the difficulty of evaluating explainability
methods make it a challenging field.

Overall, it is clear that explainability is a complex problem that will continue
to be a challenge. While I would assess that the field is currently moving away
from heuristic assumptions and towards more rigorous methods, the models
have also become more complex than ever. Especially for large language models
(Brown et al. 2020), it is unlikely to provide a comprehensive explanation of the
model’s behavior.

8.2 Future Prospects

The trade-off between model complexity and interpretability could be analyzed
in more detail. In particular, it would be interesting to find a quantitative
measure for interpretability and then to characterize the connection to the model
complexity.

Current theoretical analyzes of explainability methods are often focused on
specific methods, e.g., (Lundstrom et al. 2022) for integrated gradients or (Sixt
et al. 2022a) for Deep Taylor Decomposition. Future work could create more
general theoretical frameworks for explainability methods. Similar to the ACID
tests to check CSS conformality, one could develop a set of theoretical and
empirical tests to validate explainability methods.
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Zusammenfassung Auf Deutsch

In meiner Dissertation habe ich mich mit der Interpretierbarkeit von künstlichen
neuronalen Netzwerken beschäftigt. Interpretierbarkeit bedeutet die Fähigkeit
eines Menschen deren Funktionsweise und Verhalten zu verstehen.

Durch insgesamt fünf Publikationen habe ich mich intensiv mit dem Thema
beschäftigt. In der ersten Publikation (Schulz u. a. 2020) haben wir analysiert,
inwiefern mit Hilfe eines informationstheoretischen Flaschenhalses, der die
Informationsmenge beschränkt, neuronale Netzwerke besser verstanden werden
können. Hierbei haben wir über mehrere Metriken eine Verbesserung gegenüber
anderen Methoden festgestellt. In den Experimenten haben wir auch beobachtet,
dass bestimmte LRP-Methoden (Bach u. a. 2015) invariant zu einer vollständig
zufälligen Änderung der Gewichten in den hinteren Netzwerkschichten ist.

Dieses habe ich dann in der zweiten Publikation (Sixt u. a. 2022b) sowohl
theoretisch als auch experimentell zeigen können, dass durch eine unabsichtliche
Verwendung von positiven Gewichten die Methode zu einer Rank-1 Matrix
konvergiert.

In meiner neuesten Arbeit (Sixt u. a. 2022a) habe ich mich mit dem theore-
tischen Überbau der LRP Methode beschäftigt, der sogenannten Deep Taylor
Decomposition. Hier konnte ich grundlegende Mängel in dem theoretischen
Überbau aufzeigen.

Des Weiteren haben wir untersucht, wie man Interpretierbarkeit in einer
Online-Benutzerstudie messen kann. Hier konnten wir zeigen, dass auch eine
einfache Erklärungsmethode, die nur auf der Netzwerkausgabe basiert, ein ähnli-
ches Level von Interpretierbarkeit erreichen kann, wie im Vergleich komplexere
Methoden, wie invertierbare neuronalen Netze.

In der Publikation (Nader u. a. 2022), haben wir eine einfache Erweiterung
der kNN-Regression für höhere Ordnungen vorgestellt. Hierbei konnten wir
eine bessere Generalisierung erreichen als die klassische kNN-Regression und
durchaus auch mit Gradient-Boosting Methoden mithalten konnten.

Insgesamt hat meine Dissertation gezeigt, dass die Interpretierbarkeit von
neuronalen Netzen ein schwieriges und oft unintuitives Thema ist, bei dem man
auch schnell zu falschen Schlüssen kommen kann.
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