

Aus dem Deutschen Rheuma-Forschungszentrum

Ein Institut der Leibniz-Gemeinschaft

eingereicht über den Fachbereich Veterinärmedizin

der Freien Universität Berlin

Bioimage analysis linking information at

protein and transcriptional level in tissues

Inaugural-Dissertation

zur Erlangung des Grades eines

an der

Freien Universität Berlin

vorgelegt von

Ralf Köhler

aus Schkeuditz

Berlin 2023

Journal-Nr.: 4418

Doctor of Philosophy (PhD)

in Biomedical Sciences

Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin

der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. Uwe Rösler

Erste Gutachterin: Univ.-Prof. Dr. Raluca A. Niesner

Zweite Gutachterin: Prof. Dr. Anja Erika Hauser

Dritter Gutachter: Prof. Dr. Sigmar Stricker

Deskriptoren (nach CAB-Thesaurus):
tissues, transcription, gene expression, tissue protein, fluorescence, histology,
biology, medical records

Tag der Promotion: 28.11.2023

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbi-
bliografie; detaillierte bibliografische Daten sind im Internet über <https://dnb.de>
abrufbar.

ISBN: 978-3-96729-236-7
Zugl.: Berlin, Freie Univ., Diss., 2023
Dissertation, Freie Universität Berlin
D188

Dieses Werk ist urheberrechtlich geschützt.
Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen
daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form
reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne
besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und
Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen.

This document is protected by copyright law.
No part of this document may be reproduced in any form by any means without prior written authorization of
the publisher.

Alle Rechte vorbehalten | all rights reserved
© Mensch und Buch Verlag 2024 Choriner Str. 85 - 10119 Berlin

 verlag@menschundbuch.de – www.menschundbuch.de

I

Contents

Contents ... I

Figures ...V

Tables ... X

Abbreviations ... XI

1. Introduction ... 1

1.1. Image based system biology ... 2

1.1.1. Label free imaging – phase contrast microscopy .. 2

1.1.2. Fluorescence-based cell identification .. 3

1.1.3. Gene expression based cell identification ... 4

1.1.4. Digital image formation ... 5

1.2. Bioimage data analysis ... 7

1.2.1. Image signal processing and evaluation ... 7

1.2.2. Statistical analysis of objects ...15

1.3. Aims of this work ..17

2. Material and Methods ...19

2.1. Microscopes ...19

2.1.1. MELC ..19

2.1.2. LSM ...22

2.1.3. LSFM ...22

2.2. ST ..24

2.3. Image analysis software and algorithms...24

2.3.1. Watershed segmentation - Cell Profiler ...24

2.3.2. Seeded region growing ..26

2.3.3. Random forest probability calculation – ilastik ...27

2.3.4. Data analysis environment ..28

3. Application and Results ..31

3.1. Image analysis of LSM data ...31

3.2. Device optimization of the MELC system ...32

3.2.1. Camera ...32

3.2.2. Light source ...34

3.2.3. Optical components ...35

3.2.4. Sample holding and washing box ..37

3.3. Image preprocessing of MELC data ...38

3.3.1. Registration ...38

II

3.3.2. Illumination correction ..39

3.3.3. All in focus projection ...40

3.4. Image analysis of MELC data ..42

3.4.1. Image segmentation ..42

3.4.2. Cell type identification – phenotypic classification ..44

3.4.3. Neighborhood Analysis ..47

3.5. Spatial Transcriptomics data analysis ..51

3.5.1. Preprocessing ST data ..51

3.5.2. Data Integration ...52

3.5.3. Dimensionality reduction and clustering ...53

3.5.4. Gene set enrichment analysis ..54

3.6. Added value of correlative MELC and ST analysis ...55

3.7. LSFM image data analysis ...58

4. Discussion and future prospects ...66

4.1. Seeded region growing and DFT shape descriptors for analysis of microglia in LSM

images ..66

4.2. Enhanced MELC analysis workflow for spatially automated phenotypic classification

and cellular communication investigation ..67

4.3. Comprehensive workflow for object characterization and phenotypic identification in

Spatial Transcriptomics ...69

4.4. Improved object identification accuracy through FFT-based filtering for stripe artifact

suppression in LSFM measurements ..70

4.5. Standardized analysis pipelines for data integration of multiple complementary spatial

technologies - augmenting access to information ..70

4.6. Prospects for future multiplexing projects ...71

5. Summary ..73

6. Zusammenfassung ...75

7. References ...77

8. Appendix – Source codes ...84

8.1. Source codes ...84

8.1.1. SHADE – Fiji/imageJ PlugIn ..84

8.1.2. MELC Evaluation Toolbox – Fiji/imageJ PlugIn ...90

8.1.3. markerSpecifiedSearching – Fiji/imageJ PlugIn ... 107

8.1.4. DFT Coefficient Calculation of object outlines – ImageJ Macro 113

8.1.5. MELC registration scripts – Python .. 116

8.1.6. MELC data integration and unsupervised clustering – R 130

8.1.7. MELC Neibghborhood test and Randomization - Matlab 133

8.1.8. MELC Neighborhood Analysis – R .. 140

Contents

III

8.1.9. ST data integration and clustering analysis script – R .. 145

8.1.10. ST GSEA script – R ... 148

8.1.11. ST ssGSEA script – R ... 150

8.1.12. LSFM destriping script – Python .. 152

8.1.13. SNR calculation of stripy and destriped LSFM images 162

9. List of publications and author contribution ... 164

9.1. Publications as part of this thesis ... 164

9.2. Additional publication contribution .. 165

9.3. List of conference contributions .. 166

10. Acknowledgements .. 167

11. Finanzierungsquellen, Interessenkonflikte und Selbständigkeitserklärung 168

Contents

IV

Figures

Figure 1 Overview of a phase contrast microscope setup and exemplary light paths. White

regions in the condenser annulus and phase plate indicate transparent areas, dark regions

absorbs light (Boas et al., 2016). ... 2

Figure 2 Overview of generalized optical system (Goodman, 2005) 5

Figure 3 Object outline (C) sampled by equidistant points gK in two dimensional complex plane

 .. 9

Figure 4 scatterplot of observation points with regression line, including error deviation

(Heumann et al., 2016) ...10

Figure 5 Decision tree construction example to classify image pixels of image A to be cell class

A or background (bg), related to presence of nuclei signal at same location12

Figure 6 Overview of MELC system (Toponome Image Cycler MM3 (TIC)) and explanation of

main parts ..19

Figure 7 overview of cyclic MELC run workflow taken from Figure 1 in (Holzwarth, Köhler et.

al 2018) with permission from John Wiley and Sons (Sep, 05, 2022)20

Figure 8 tissue sample under microscope of MELC system ...21

Figure 9 Overview of Ultra II light sheet microscope (LaVision Biotec, Germany), red boxed

area shows illumination function creating the light sheet ..23

Figure 10 overview of ST sample preparation, image acquisition and gene expression

extraction ..24

Figure 11 example of watershed segmentation workflow, used input image is from sample

image datasets of Fiji..25

Figure 12 principle CellProfiler pipeline for cell identification and classification26

Figure 13 general workflow of developed seeded region growing ImageJ PlugIn27

Figure 14 Overview of pixel classification by featured random forest algorithm inside

application ilastik by manual annotation (left) and resulting probability maps (right)28

Figure 15 Depicted maximum intensity projections of young (A) and old (B) mice's microglia,

segmentation result in red outlines, averaged and normalized Fourier coefficients (C),

comparing young and old mice, scale bar 50 µm ..31

Figure 16 Pre-installed camera system of toponome-image-cycler (TIC), (A) camera connected

to microscope, (B) dark image, (C) low concentration fluorescence staining with centered bright

spot artifact ...32

Figure 17 Quantum efficiency plots of (left) Apogee KX 4 CCD camera and (right) Hamamatsu

ORCA-Flas4.0 LT CMOS camera, plots are taken from manufactures manual33

Figure 18 The sketch of self-designed and manufactured camera-microscope-adapter on lathe

 ...34

V

Figure 19 Phase contrast images of mice’s bone marrow as comparison between old (left) and

new (right) camera setup - samples are acquired under same light and exposure time

conditions, scale bar 100 µm ..34

Figure 20 overview of closed MELC system inside box, directly connected light source

highlighted by red arrow ...35

Figure 21 lateral resolution estimation on 4 µm beads embedded in agarose along all

fluorescence channels ..37

Figure 22 Self designed and 3D PLA printed equipment for MELC system, from left to right:

sample holder, washing box and washing box cover ..38

Figure 23 image registration quality check on phase contrast (column 1-3) and fluorescent

(column 4) images, where first row are the original input images and in the second row the

realigned images, registered respectively. Phase contrast images in gray scale, average

images as well, standard deviation of images color coded in fire look up table, fluorescent

images in all four channels (red, green, blue, gray) ..39

Figure 24 Illumination correction result, (left) original CD3-labelled image, (center) corrected

CD3 image, (right) line plots along yellow selection of both background signals (red original

CD3, black illumination corrected CD3), contrast are set to 0.35 % saturated pixels40

Figure 25 Sketch of tilted sample. Light green: illumination distribution, green: cells, red: focal

plane, orange: liquid level, violet: sample, blue: coverslip ...41

Figure 26 Workflow overview of best focus calculation ...41

Figure 27 Trained raters vs. automated segmentation validation, (Holzwarth, Köhler et. Al

2018) with permission from John Wiley and Sons (Sep, 05, 2022)43

Figure 28 ilastik - CellProfiler segmentation, from left to right: probability maps of nuclei,

(summed) membrane and extra cellular matrix staining, segmentation result, scale bar 100 µm

 ...43

Figure 29 segmentation improvement, from left to right: original image input, global otsu

thresholded watershed segmentation (found objects in cyan), ilastik and CellProfiler

segmentation workflow (found objects in magenta), scale bar 50 µm44

Figure 30 workflow of "marker specified searching" plugin applied on MELC images, validated

by FACS. (A) Depicted MELC images of bone marrow from mouse, where red and green

outlines represented identified objects. Green objects indicating found cells and related cell

type (ckit+, nuclei+) including all other objects with no expression (Lin-); scale bars 100 µm

(adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep,

05, 2022) ..45

Figure 31 representative 53 marker MELC run panel for ILC identification and localization,

scale bar 100 µm (Pascual-Reguant et al., 2021) ...46

VI

Figures

Figure 32 Dimensionality reduction (t-SNE maps) of (a) intensity profile clustering results vs

(c) pre-defined cell types and (b) heatmap indicating sufficient overlap of manual and

unsupervised clustering (Pascual-Reguant et al., 2021) ...47

Figure 33 spatial distribution analysis workflow, (A) CXCL12 input image, (B) segmentation

result, colored in blue outlines, (C) neighborhood regions (yellow) and central cell (red), (D)

stromal matrix intensity distribution, scale bar 50 µm; (adopted from Holzwarth, Köhler et. Al

2018) with permission from John Wiley and Sons (Sep, 05, 2022 ..48

Figure 34 (top) stromal marker pixel density comparison, (bottom) colocalization analysis

comparison; (adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley

and Sons (Sep, 05, 2022) ...48

Figure 35 Working principle of randomness test. (A) colocalization of two binary masks, (B)

calculated overlap in dependency to image transformation (rotation and flipping), (C) graph

representation of calculated overlaps; (adopted from Holzwarth, Köhler et. Al 2018) with

permission from John Wiley and Sons (Sep, 05, 2022) ..49

Figure 36 (A) example overlap images of one dataset from binary masks used for colocalization

analysis, (B) summarized results plots of randomness test for all datasets; (adopted from

Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 2022) .49

Figure 37 Neighborhood analysis of ILC population out of tonsil data set. A) absolute count on

cell types of 74 ILC neighborhoods, B) separation of ILC neighborhood compared to whole

area count on different cell types, C) localization of vessel and fiber signal in ILC neighborhood,

(Pascual-Reguant et al., 2021) ...50

Figure 38 depicted images of a chronic case, (left) LSM image of human lung sample, (right)

unique molecular identifier (UMI) count per spot, blue low UMI count, red high UMI count, scale

bar 1mm ...51

Figure 39 Violin plots of total gene count averaged per spot (nFeature), total amount of

molecules averaged per spot (nCount) and relative mitochondiral gene amaount per spot [%]

averaged (percent.mt) in dependency of samples, data already filtered52

Figure 40 Raw data gene expression in comparison to SCTransform integrated gene

expression of prominent fibrosis related genes ...52

Figure 41 dimensionality reduction (TSNE and UMAP) applied to raw and integrated data.

Color code of clusters in left panel from “Raw data” represents each of the 12 samples. On the

right side of “Raw data” and “Integrated data” panel color code represents the four disease

phase related samples. Color code of left panel “Integrated data” represents 12 major cell

types as in heatmap (right). ..53

Figure 42 Gene Set Enrichment Analysis (GSEA) of Spatial Transcriptomic (ST) data. (A)

Enrichment plots of GOBP_BLOOD_VESSEL_REMODELING pathway along disease

progression (control, acute, chronic, prolonged). (B) Dot plot of selected pathways, color coded

VII

Figures

in their normalized enrichment scores (NES) and leading edge counts (LEC). (C) localization

of NES from two pathways within example images of two disease stages in combination with

related clusters found and annotation of vessels, airways, fibrosis areas (adopted from Mothes

et al., 2022) ..54

Figure 43 marker panel overview of one representative sample and cell quantification (with

additional Kruskal-Wallis statistic), fibrosis score obtained by pathohistological examination of

several lung sections from each donor based on Elastica van Gieson staining with trend line

via nonparametric Spearman correlation; image size 665 µm x 665 µm; (adopted from Mothes

et al., 2022) ..56

Figure 44 Uniform Manifold Approximation and Projection (UMAP) of identified cell types (A)

and disease groups (B) out of 14 samples imaged via MELC. (C) Dot plot representation of

identified cell clusters along marker profile expression (adopted from Mothes et al., 2022) ..57

Figure 45 Quantification results of endothelial cells, epithelial cells and fibroblasts inside the

found clusters dependent on disease progression. Data from 32 samples analyzed by two-way

ANOVA with Fisher’s LSD test, (adopted from Mothes et al., 2022)57

Figure 46 representative MELC images from smooth muscle actin (αSMA) in blue, CD31 in

cyan, pancytokeratin (PCK) in magenta and ER-TR7 in yellow in an example field of view

(FOV) in lung tissue at different disease stages, scale bar 100 µm (Mothes et al., 2022)58

Figure 47 LSFM measured tibia from reporter mouse illustrates stripe artifact along all

fluorescence channels, red boxes indicates enlarged area (images at the bottom), scale bar

200 µm, depicted images from layer z=275 ..59

Figure 48 2D FFT and histogram of the depicted images at layer z=275, calculated and

displayed in ImageJ/Fiji ..60

Figure 49 filter masks for each stripe angle ..60

Figure 50 LSFM measured tibia from reporter mouse after FFT destriping approach along all

fluorescence channels, red boxes indicates enlarged area (images at the bottom show striped

illumination function), scale bar 200 µm, depicted images from layer z=27561

Figure 51 Enlarged area around the tissue sample's edge show additional stripes by filter

mask, scale bars 50 µm..62

Figure 52 depicted images of LSFM measurements of two reporter mouse’s femoral bone,

scale bars 200 µm ..62

Figure 53 enlarged areas (387x387 µm²) of red boxed regions of previous figure63

Figure 54 pixel classification result masks from reporter mice, where blue indicates probability

of outer tissue signal, green represents tissue area and red shows main vascular or cellular

probability ...64

VIII

Figures

Figure 55 segmentation comparison of striped and destriped depicted Cdh5+tdTomato

vascular image. Red outlines illustrate objects found in striped image, whereas green outlines

represent objects found in destriped image, scale bars 200 µm ...65

IX

Figures

X

Tables

Table 1 Installed fluorescence filter cubes at MELC system and related maximum excitation

and emission wavelengths [nm] including bandwidth ..36

Table 2 lateral and axial resolution test of new equipped MELC system36

Table 3 cell type combination matrix ...44

Table 4 frequency comparison of cell type identification MELC vs. FACS45

Table 5 PSNR, SNR and SBR measurements from original and destriped images64

XI

Abbreviations

2D two-dimensional

3D three-dimensional

CCD charge coupled device

cDNA complementary deoxyribonucleic acid

DFT discrete Fourier transformation

DFT-1, iDFT inverse discrete Fourier transformation

DNA deoxyribonucleic acid

ES enrichment score

FACS fluorescence-activated cell sorting

FFT fast Fourier transform

FOV field of view

FT Fourier transform

FWHM full width at half maximum

GSEA gene set enrichment analysis

IF Immunofluorescence

ILC innate lymphoid cell

LSFM lightsheet fluorescence microscope/microscopy

LSM laser scanning microscope/microscopy

MELC multi-epitope ligand cartography

mRNA messenger ribonucleic acids

MSE mean squared error

n refractive index

NA numerical aperture

PBS phosphate-buffered saline

PC principal component

PCA principle component analysis

PLA polyactide

PMT photo multiplier tube

PSF point spread function

PSNR peak signal to noise ratio

RNA ribonucleic acids

RNA-seq ribonucleic acids sequencing

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

SBR signal to background ratio

sCMOS scientific complementary metal-oxide-semiconductor

XII

SNE Stochastic Neighborhood Embedding

SNN shared nearest neighborhood

SNR signal to noise ratio

ssGSEA Single sample gene set enrichment analysis

ST spatial transcriptomics

TIC Toponome Image Cycler

t-SNE t-distributed Stochastic Neighborhood Embedding

UMAP Uniform Manifold Approximation and Projection

UMI unique molecular identifier

λ wavelength

σ standard deviation

σ² Variance

τ fluorescence lifetime

Abbreviations

1

1. Introduction

Biological tissue samples contain unique and invaluable information that reflects an individual's

entire history of lifestyle, development, or disease progression. Insight into the complex

organization and structure of different cell types within these tissues can reveal the underlying

mechanisms of functional biological processes and diseases. Various techniques, such as

microscopy, flow cytometry or sequencing, provide access to this information, with each

method specializing in certain parameters and aspects of cellular analysis.

In recent years, the fields of multiplex fluorescence microscopy and histocytometry have

emerged with the aim of linking spatial structural information and multiparameter feature

extraction with subsequent quantitative data analysis (Gerner et al., 2012; Gerstner et al.,

2004; Giesen et al., 2014; Schapiro et al., 2017, 2018). These technologies enable a deeper

understanding of biological and pathophysiological processes by considering that cells do not

exist in isolation, but interact within cell groups or tissue microenvironments.

A powerful technique in this area is "multi-epitope ligand cartography" (MELC, Schubert et al.,

2006, 2012), which allows the co-mapping of multiple proteins within the same tissue section.

MELC facilitates phenotypic classification, the study of local and global cell communication,

and the identification of disease-related changes in morphology while preserving sample

integrity. However, to perform quantitative image analysis, it is critical to accurately detect and

analyze individual cells within microscope images. This process is affected by system-specific

and physical limitations, including resolution, signal strength, and image artifacts, which must

be carefully considered and corrected for in the analysis pipelines, especially by the

microscopy technique used.

To address these challenges, appropriate correction and identification algorithms must be

developed that are tailored to the specific technology and imaging system. While fluorescence

microscopy focuses on protein-level analysis, emerging methods such as spatial

transcriptomics (Moses & Pachter, 2022; Ståhl et al., 2016) enable image-based analysis at

the transcriptional level. Despite the differences in molecular targets, the conceptual steps of

the analysis pipelines remain similar and include signal localization and classification.

By integrating advanced imaging techniques with robust quantitative image analysis methods,

we can gain a deeper understanding of the spatial organization, communication networks, and

molecular signatures within biological tissues. The development and application of automated

quantitative image analysis pipelines is necessary to ensure standardized, comparable, and

reproducible results and ultimately to advance our knowledge of complex biological processes.

Introduction

2

1.1. Image based system biology

The basic components of living organisms are cells. They were discovered, introduced and

called as such by Robert Hooke back in 1665, by looking through a candle illuminated

compound microscope, observing plant structures. This was only possible by the previous

work of Z. Janssen and his son H. Janssen, who combined several glasses to magnify

structures and invented in this way the idea of microscopes and telescopes at the same time

around the 17th century. With one of the modified microscope versions Hooke used, first

drawings of the structures could be shared (Masters, 2008).

Over the past decades various techniques have been continuously developed and supported

the functional investigation of cell organisms. Since the 20th century, sample information such

as tissue structures could be inspected, displayed or resolved by cell-specific fluorescence

staining or light stimulation. With the invention of performant computers, the door was open

for systematic and reliable image processing.

1.1.1. Label free imaging – phase contrast microscopy

Image magnification in early days of microscopy allowed scientists to observe the

microbiological components of tissue samples, blood donations or plant cells. The visibility of

structures is limited to the fact that thin transparent samples have small differences in intensity

and the resolution of human eye is limited as well. Based on sample architecture properties

and related density differences, F. Zernike discovered and proposed principles of phase

contrast microscopy in early 1930s. Here phase changes and scattered light differences

caused by sample thickness and refractive indices are modulated into intensity variations,

resulting in edge enhanced microscopic images (Zernike, 1942, 1955).

Figure 1 Overview of a phase contrast microscope setup and exemplary light paths. White regions in the

condenser annulus and phase plate indicate transparent areas, dark regions absorbs light (Boas et al., 2016).

Introduction

3

This change in phase is due to the fact that different components of the light wave (such as

the electric field vector) experience different phase shifts as they pass through the anisotropic

material without interaction with the molecules. Compared to a conventional microscope setup,

a condenser annulus is placed between collector and condenser, the front focal plane

(aperture) of the condenser, and a phase plate (quarter wavelength plate) is placed between

the objective and imaging plane, the back focal plane of the imaging objective lens (Figure 1).

In principle, condenser annulus exiting light illuminates the sample. Undeviated light is reduced

in intensity by the absorbing material (grey ring) within the phase plate, in comparison to the

diffracted light, which appears everywhere in the back focal plane. This is necessary to match

both light amplitudes. Phase plate introduced light wave filtering in the back focal plane (Fourier

plane) of the objective lens leads to interference at the image plane. Light passing through

regions of the specimen that are out of phase with the background will interfere destructively,

leading to reduced intensity and darker regions in the image. Conversely, regions of the

specimen that are in phase with the background will interfere constructively, leading to

increased intensity and brighter regions in the image. In this way the change in refractive index

or samples thickness lead to image intensity differences and allows to enhance structural

borders, edges respectively (Boas et al., 2016; Goodman, 2005).

Phase contrast microscopy as a non-invasive method of thin, transparent and translucent

samples allows studying cell morphology or living cell dynamics over a long time period without

special or complex preparation, which makes it fast and cheap.

1.1.2. Fluorescence-based cell identification

Fluorescence as a subcategory of Luminescence describes the process of spontaneous

emission of photons longer wavelengths from atoms or molecules, in higher excited electronic

states via electromagnetic waves of wavelengths in the range of 250 to 700 nm. This happens

in average time of around 10 ns (vacuum), also called fluorescence lifetime (τ), described as

the time between excitation and relaxation to ground state. The distance between excitation

and emission wavelength maximum amplitude is described as Stokes’ shift (Lakowicz, 2013).

The process of excitation and emission of fluorescent light is limited in the amount of repetitive

cycles and is fading in measurable energy amplitude over time, which is caused by the

decreasing number of excitable molecules. It is called photo-bleaching and depends on the

used fluorescent molecules (Im et al., 2019; Lichtman & Conchello, 2005).

Besides naturally occurring fluorophores (fluorescent substances), unlabeled tissue structures

or cells can be made to fluoresce as well, as shown in the late 19th century by Paul Ehrlich

(1854-1915) or the developer of Köhler illumination microscopy August Köhler (1866-1948)

(Masters, 2008). This method is called immunofluorescence (IF), which at the time was only

described as a different absorption of white light. This can be accomplished through a process

4

known as "fluorescent staining". Here, specific antibodies that bind to the proteins (epitopes)

of the structure or cell of interest are labeled with a fluorochrome. If the used primary antibody

cannot be tagged with fluorophore, an additional (secondary) fluorophore coupled antibody

can be used. This process is called indirect IF in comparison to direct IF and is applied within

fluorescence microscopy, flow cytometry or fluorescence-activated cell sorting (FACS) to

amplify the signal. By visualizing different fluorescent antibodies or fluorescent reporter

proteins that detect different epitopes in parallel, cell types can be identified.

1.1.3. Gene expression based cell identification

Covalently linked deoxyribonucleotide units create double-stranded deoxyribonucleic acid

(DNA) and store the complete genetic information within each cell from generation to

generation. DNA sequencing, introduced by Frederick Sanger (1918 - 2013) in 1977, enables

the determination of the nucleotide sequence of DNA molecules, facilitating the study of

genomic features and genetic variations. In contrast, RNA sequencing (RNA-seq) provides

insights into gene expression by analyzing the actively transcribed regions of the DNA, which

are transcribed into messenger ribonucleic acids (mRNA). The amount of mRNA is a measure

of gene expression. RNA-seq has emerged as a cost-effective and time-efficient method for

examining gene expression patterns, allowing for comprehensive analysis of the

transcriptome.

Next generation sequencing, as one of the newer high throughput RNA-sequencing

technologies, uses a collection of complementary DNA (cDNA) fragments created library from

initial RNA conversion via an enzyme (reverse transcriptase), which are tagged by adaptors

and amplified on a special slide, the flow cell. Iteratively fluorescent-labeled nucleotides are

coupled and read within the sequencing machine and therefore give information on gene

expression. (Alberts et al., 2014; Reinartz et al., 2002; Sanger et al., 1977).

The investigation of differentially expressed genes allows interpretation of biological processes

during disease, treatment or other tissue sample related pre-handlings. Compared to bulk

RNA-sequencing, where the differentially gene expression of all contributing cells of a whole

tissue sample are averaged, single cell RNA-sequencing (single cell RNA-seq) allows cell type

identification and has revolutionized the biology field (Tang et al., 2009). A common feature of

both methods is the enzymatic dissociation or homogenization of the tissue sample into liquid-

based cell suspension. Thereby, the spatial information is detached from the natural

environment surrounding the cells and the extra cellular matrix (Olsen & Baryawno, 2018).

This changed by development of spatial transcriptomics. Here, unique spatially barcoded oligo-

nucleotides covering a glass slide capture mRNA of the tissue sample placed on top, enabling

microscopic imaging before sequencing. Based on location identifiers, the gene expression

can be back tracked to the tissue samples origin at a resolution of 55 µm. Specifically, 5000

Introduction

Introduction

5

circular areas with a diameter of 55 µm are homogeneously distributed over the field of view

with a center-to-center distance of 100 µm (Moses & Pachter, 2022; Ståhl et al., 2016).

1.1.4. Digital image formation

The relation from objects viewed through microscopes is directly connected to the key

component of these optical systems, the objective lens. Regardless of the microscope

architecture, the main task of the objective lens is to magnify the observed structure by transfer

of emitted light of every object point to the observer or a sensor.

Figure 2 Overview of generalized optical system (Goodman, 2005)

Objective lenses typically consist of various single lenses focusing, defocusing and correcting

light wave dependent properties such as chromatic and wave-front distortions, but for

illustration of the light path transfer, the whole lens collection is taken as one system illustrated

as “black box” (Figure 2), where following lenses for image creation in the eye of observer or

camera are included. Finally, the recording system (image plane) only recognize the result

intensity distribution of the exit pupil. Due to the finite size of the pupils, only a range of light

rays can reach and release the optical system, this is why it is also called diffraction limited.

As an effect higher frequencies (f) in space (analogues to wavelengths (λ)) are cut and lead to

spatial resolution limit (S), where

𝑆𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
1,22𝜆

𝑁𝐴𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 +𝑁𝐴𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟
 𝑎𝑛𝑑 𝑆𝑎𝑥𝑖𝑎𝑙 =

2𝜆

𝑁𝐴2
 𝑤𝑖𝑡ℎ 𝑁𝐴 = 𝑛 ∙ 𝑠𝑖𝑛(𝛼), (1)

investigated by Abbe in 1873 (Abbe, 1873) or Lord Rayleigh in 1896 (S., 1896). Numerical

aperture (NA) thereby defines the maximum angular range of entering light emitted of the

object through refractive index (n) dependent medium. The Rayleigh criteria represented in

equation (1) describes the minimum distance of two neighboring objects at which they can be

6

separable seen in case of fluorescence microscope. Separable at this point means the overlap

of two airy disks, where the maximum intensity amplitude of the first object lays within the first

minimum intensity amplitude of the second object. Additional to this formulation, the resolution

limit can be interpreted as the full width at half maximum (FWHM) distance of a single objects

intensity distribution in relation to its known size. Ideally, the real object (Ureal) viewed through

the optical system would be only a magnification (M) scaled version of the original object (UO),

so that

𝑈𝑟𝑒𝑎𝑙 =
1

|𝑀|
𝑈𝑂 . (2)

Due to diffraction limited system, light transfer by pupil area and optics introduce a convolution

of real object image and transfer function

𝑈𝑖𝑚𝑎𝑔𝑒 = ℎ ∗ 𝑈𝑟𝑒𝑎𝑙. (3)

Analogues to convolution, the operation above can be described as the product of two two-

dimensional Fourier Transforms (FT), representing the FT property of optical systems,

modifying shape of the input function, which can be formulated as

𝑈𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) = ∬ ℎ(𝑢 − 𝜉, 𝑣 − �̃�)
∞

−∞

𝑈𝑟𝑒𝑎𝑙(𝜉, �̃�)𝑑𝜉𝑑�̃� 𝑤𝑖𝑡ℎ 𝜉 = 𝑀𝜉; �̃� = 𝑀𝜂, (4)

where the transfer function h is dependent of the signal amplitude (A), exit pupil (P)

ℎ(𝑢, 𝑣) =
𝐴

𝜆𝑧𝑖
∬ 𝑃(𝑥, 𝑦)𝑒

−𝑗
2𝜋
𝜆𝑧𝑖
(𝑢𝑥+𝑣𝑦)

𝑑𝑥𝑑𝑦
∞

−∞

 (5)

and further represents the point spread function (PSF) of the optical system. Image aberrations

or distortions introduced by the object itself or the optical system would result in a changed

phase (additional exponent) of the transfer function (Goodman, 2005; HANSER et al., 2004).

Finally, the objects emitted and transmitted light energy needs to be converted in the image

plane, e.g. via a charge coupled device (CCD) or complementary metal-oxide-semiconductor

(CMOS) sensor. The approximate number of electrons

𝑁 = 𝛿𝐴𝛿𝑡 ∫𝑏(𝜆)𝑞(𝜆) 𝑑𝜆 (6)

liberated in such a sensor is, next to the wavelength (λ), dependent of the pixel area (δA),

exposure time (δt), incident photon flux (b) and quantum efficiency (q), where q defines the

effective ratio of incoming photons and generated electrons. The finite size of the pixel array

within the sensor lead to signal sampling and quantization of the continuous object function to

discrete partitioned values (Gonzalez & Woods, 2002; Umbaugh, 2017).

Introduction

Introduction

7

1.2. Bioimage data analysis

Image acquisition of biological phenomena via microscopes, or expression measurements

using sequencing alone describe only the starting point in hypothesis testing and require

further expert-based interpretation of the data. In case of complex data (also termed “big data”),

conclusion drawing is a time-demanding and subjective non-standardized process. In

response to these challenges, computer driven digital image processing or related data

analysis in general are used to support desired tasks, for example image correction, object

identification or feature extraction. Thereby bioimage data analysis combines pre-existing

algorithms and newly developed methods as integrated software tools or standalone computer

programs. Their application involves extracting relevant information from the underlying image

data and related biological samples. Besides the general idea of data analysis pipelines, each

individual workflow created is unique to its components, tools and biological question or used

devices, caused by raw data formation. In this way, results are standardized, comparable and

ultimately contribute to the reliability of the interpretation (Miura & Sladoje, 2019). Therefore,

the following section introduces the most important signal and data processing concepts.

1.2.1. Image signal processing and evaluation

1.2.1.1. Discrete Fourier transform

One of the most important tools in image processing is the Fourier transform (FT). It is used in

many image analysis applications, such as image filtering, reconstruction, or compression, and

has its origins in signal processing as telecommunications and electrical engineering

developed.

A two dimensional digital image (g(u,v)) can be represented as a collection of one dimensional

signal functions, sampled by pixel’s dimensions along the row or column arrays. The two

dimensional discrete Fourier transformation (2D DFT), which is defined as

𝐺(𝑚, 𝑛) =
1

√𝑀𝑁
∙ ∑ ∑ 𝑔(𝑢, 𝑣) ∙ 𝑒

−𝑖2𝜋(
𝑚𝑢
𝑀
+
𝑛𝑣
𝑁
)
,

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 (7)

converts the finite sized image (MxN) as a set of periodic functions to frequency space image

and therefore gives access to the image’s phase information with spectral coordinates

m=0,...,M-1 and n=0,...,N-1. Similar to the so called forward transformation, the back

transformation (DFT-1), or inverse DFT (iDFT)

𝑔(𝑢, 𝑣) =
1

√𝑀𝑁
∙ ∑ ∑𝐺(𝑚, 𝑛) ∙ 𝑒

𝑖2𝜋(
𝑚𝑢
𝑀
+
𝑛𝑣
𝑁
)
,

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 (8)

8

recovers the main image signal in space domain with image coordinates u=0,...,M-1 and

v=0,...,N-1. These transformations mathematically describe analogously to 1.1.4, the spatial

conversion from optical system’s back focal plane (Fourier domain) to real image plane. The

exponent within the sums represents a linear combination of single sinusoidal basis functions,

where highest possible frequency is dependent on the sampling frequency, which is in this

case the inverse image’s pixel dimension. Any change in frequency, like in Fourier

transformation image filtering, affects the signals reconstruction and leads to aliasing effects,

caused by the pseudo periodic Fourier transformation of the finite sized image or if Nyquist-

Shannon sampling theorem is not fulfilled. Additionally, a modification of frequencies in the

Fourier domain adds artificial signals and therefore can cause artifacts after back

transformation if the filter parameters are not adjusted accordingly. An optimized algorithm

called “fast Fourier transform” (FFT) reduces the computation time of every single DFT from

order n² to n(log(n)), where n is the number of data points (Burger & Burge, 2016).

Besides phase information access, DFT and FFT can be used within correlation analysis. By

correlation of two signals, or in this case images (f(u,v),g(u,v)), the operation is called cross

correlation (r) and is defined as

𝑟𝑓𝑔(𝑢0, 𝑣0) = ∑𝑓(𝑢, 𝑣)𝑔∗(𝑢 − 𝑢0, 𝑣 − 𝑣0)

𝑢,𝑣

, (9)

where (*) is equivalent to complex conjugate (inversion of the sign of the imaginary part). The

same calculation can be performed by convolution, so that

𝑟𝑓𝑔(𝑢0, 𝑣0) = ∑𝐹(𝑚, 𝑛)𝐺∗(𝑚, 𝑛)𝑒𝑥𝑝 [𝑖2𝜋 (
𝑚𝑢0
𝑀

+
𝑛𝑣0
𝑁
)]

𝑚,𝑛

. (10)

The uppercase letters indicate the Fourier transformation of the lower case letters. The method

allows to find the displacement of two shifted images to each other. This requires inverse

Fourier transforming the cross-correlation product, followed by locating the maximum peak,

which becomes the centered offset position and is identical to the displacement. An introduced

upscaling factor of the FFT images enable subpixel accuracy of the calculated shifts (Anuta,

1970; Guizar-Sicairos et al., 2008).

In addition to whole image transformation by DFT for image phase information access or image

registration, another application is to describe closed curves by Fourier coefficients.

Introduction

Introduction

9

Figure 3 Object outline (C) sampled by equidistant points gK in two dimensional complex plane

(Burger & Burge, 2016)

These closed curves could be analogously represented by object outlines inside an image, as

shown as single object graph in Figure 3. Here, the discrete valued curve is interpreted as a

vector, which contain a collection of complex points in a two dimensional plane, where xk

represents the real part and yk the imaginary part of every vector gk. The DFT in this case is

defined as

𝐺𝑚 =
1

𝑀
∙ ∑ 𝑔𝑘 ∙ 𝑒

−𝑖2𝜋𝑚∙
𝑘
𝑀 =

1

𝑀
∙ ∑ 𝑔𝑘 ∙ 𝑒

−𝑖𝜔𝑚∙
𝑘
𝑀

𝑀−1

𝑘=0

𝑀−1

𝑘=0

 (11)

=
1

𝑀
∙ ∑[𝑥𝑘 + 𝑖 ∙ 𝑦𝑘] ∙ [cos (𝜔𝑚

𝑘

𝑀
− 𝑖 ∙ sin (𝜔𝑚

𝑘

𝑀
]

𝑀−1

𝑘=0

, (12)

with angular frequency ωm = 2πm and 0 ≤ m ≤ M. The result out of the multiplication

Gm=Am+iBm, creates the real (Re) and imaginary (Im) Fourier shape descriptors, or also called

spectral coefficients

Re(𝐺𝑚) =
1

𝑀
∑ [𝑥𝑘 ∙ cos (𝜔𝑚

𝑘

𝑀
) + 𝑦𝑘 ∙ sin (𝜔𝑚

𝑘

𝑀
)] ,

𝑀−1

𝑘=0

 (13)

Im(𝐺𝑚) =
1

𝑀
∑ [𝑦𝑘 ∙ cos (𝜔𝑚

𝑘

𝑀
) − 𝑥𝑘 ∙ sin (𝜔𝑚

𝑘

𝑀
)] ,

𝑀−1

𝑘=0

 (14)

as long M is bigger than 1. The FFT can be used for calculation as well, but requires signal

length M = 2n for n ∈ N. Visually, each spectral coefficient defines a circle with decreasing

radius dependent of the index frequency ωm and thereby follows the outline’s form. This

mathematically tool allows to describe and recover complex shaped curves or image objects

with a limited set of numbers (Burger & Burge, 2016; Gonzalez & Woods, 2002).

10

Altogether, DFT is an important algorithm used within many image analysis applications and

developed FFT accelerates calculation speed by preservation of same results.

1.2.1.2. Linear regression analysis

The investigation of relationship between independent multivariate measurements or

observations and their prediction of unknown dependent variables or data points is called

regression. Its application differs from the independent input variables (covariate/regressor)

and defines the output (response variables). There are three common use cases, which fall

into linear regression. Data fitting involves finding the line of best fit that describes the global

relationship between the variables. Interpolation involves estimating the values of the

dependent variable for given values of the independent variable that falls within the range of

the data points. Extrapolation involves estimating the values of the dependent variables for

values of the independent variables that fall outside the range of the data points. This means

that they differ in the mathematical function used, which is applied to a specific range of data

to model the output.

In simple linear regression (data fitting) the relationship of only one set of response variables

Y dependent of input variables X is inspected, where the linear model follows the definition

𝑌 = 𝛼 + 𝛽𝑋 + 𝑒. (15)

Assuming a straight (regression) trend line through the data points and existence of n

observation pairs this can be written as

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖, (16)

where ei represents an error and can be seen as difference between real value and its

prediction. In addition α and β are called the regression coefficients, more precisely intercept

term and slope parameter.

Figure 4 scatterplot of observation points with regression line, including error deviation (Heumann et al., 2016)

Introduction

Introduction

11

Based on the linear model, the minimization of all error terms leads to final fit of regression

line, as illustrated in Figure 4 and further be formulated as

min
𝛼,𝛽

∑𝑒𝑖
2 = min

𝛼,𝛽
∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)²

𝑛

𝑖=1

𝑛

𝑖=1

, (17)

which analogously describe the method of least squares. The estimation of regression

coefficients in case of two parameters can be calculated by

�̂� =
𝑆𝑥𝑦

𝑆𝑥𝑥
=
∑ 𝑥𝑖𝑦𝑖 − 𝑛�̅��̅�
𝑛
𝑖=1

∑ 𝑥𝑖
2 − �̅�𝑛2𝑛

𝑖=1

 ; �̂� = �̅� − �̂��̅� (18)

and create the final prediction function for any value out of these data points

𝑦�̂� = �̂� + �̂�𝑥𝑖. (19)

Errors 𝑒�̂� out of the prediction value in comparison to the measurement points are also called

residuals. Throughout variance decomposition, the quality of found model is quantifiable using

the R² criteria:

𝑅2 =
𝑆𝑄𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑄𝑇𝑜𝑡𝑎𝑙
=
∑ (𝑦�̂� − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

= 1 −
𝑆𝑄𝐸𝑟𝑟𝑜𝑟
𝑆𝑄𝑇𝑜𝑡𝑎𝑙

= 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

, (20)

in range 0 ≤ 𝑅² ≤ 1. For values of R² towards one, the fitting model represents to higher degree

the given values, predicted values as well and vice versa for R² closer to zero.

When working with multiple covariates, the linear regression model can be extended to their

weighted linear combination:

𝑌 = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝 + 𝑒. (21)

In contrast to the equation (15, the intercept term is β0. Based on p covariates and n data

points, a set of n equations defines from now on the model:

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 +⋯+ 𝛽𝑝𝑥1𝑝 + 𝑒1

𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 +⋯+ 𝛽𝑝𝑥2𝑝 + 𝑒2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 +⋯+ 𝛽𝑝𝑥𝑛𝑝 + 𝑒𝑛

(22)

The introduction of matrix notation allows to compress all of the expressions to

𝒚 = 𝑿𝜷 + 𝒆 (23)

Where bold letters are equivalent matrices and vectors, such that

𝒚 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) , 𝑿 =

(

1 𝑥11 𝑥12 ⋯ 𝑥1𝑝
1 𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮
1

⋮
𝑥𝑛1 𝑥𝑛2 ⋯

⋮
𝑥𝑛𝑝)

 , 𝜷 = (

𝛽1
𝛽2
⋮
𝛽𝑝

) , 𝒆 = (

𝑒1
𝑒2
⋮
𝑒𝑛

).

Within X the column of ones represents the intercept term at all observations. Via least squared

method, minimization of the error terms, the estimation of β calculates to

12

�̂� = (𝑿′𝑿)−1𝑿′𝒚.

(24)

Thereby �̂� includes estimates of the all covariates. A continues update during minimization

process of the error terms and related residuals results in a fitted model along the parameter

space until the model converges or satisfy a certain limit.

Application of regression analysis is not limited to physically real variables. The introduction of

dummy variables makes it possible to work with categorical parameters as well and is used in

classification. Another field, nonlinear regression, covers data fitting related to known

distribution functions. Typically in natural and life sciences, the parameters are distributed

following Gaussian functions – therefore Gaussian fitting is key. Here, the initial step consists

of linearization before calculating the parameter estimates. Linearization can be realized

through mathematical transformations or Taylor series decomposition. However, not all

nonlinear regression problems can be solved by support of linearization. Based on the specific

nature of the nonlinear relationship, other techniques may be more appropriate (Fahrmeir et

al., 2016; Heumann et al., 2016).

1.2.1.3. Decision trees and random forests

Evaluation of image signals also refers to pixel or object classification. Based on certain criteria

or rules, numerical and categorical variables are assigned to certain group(s) or class(es),

respectively. In the simplest case of a single limit (threshold), binarization of the input variables

takes place and ends in two classes. In case of multiple available input parameters, a

sequence of binary separations can be realized to refine the final classification, where every

outcome of the previous binarization influences the following step.

Figure 5 Decision tree construction example to classify image pixels of image A to be cell class A or background
(bg), related to presence of nuclei signal at same location

Altogether the whole structure can visually represented as a flow chart (Figure 5), which is

better known as decision tree. The first node on top is called the “root node”, where ending

nodes are called “terminal nodes” or “leafs”, reflecting the final classes. Inner nodes are

equivalent to feature attributes. Commonly, branches which do not fulfill a condition are placed

on the right side.

Introduction

Introduction

13

Construction of decision trees follows a recursive process, finding the best split-point of the

data at each feature attribute, where every nonterminal point separates the previous outcome

data (whole data set at the root node) into two subgroups, those that meet the criterion and

those that don't. One of the metrics for describing the information content of a data set, which

is also known from thermodynamics, is the entropy

𝐻(𝑝) = 𝐻(𝑝1, … , 𝑝𝑛) = −∑𝑝𝑖

𝑛

𝑖=1

log2(𝑝𝑖), (25)

where p denotes the n class probability distribution, equivalent to the amount of data points

within each class. Taking together all classes’ probabilities sums up to a value of one. For

probabilities equal to zero, the entropy is defined to be zero. Out of the entropy the information

content of a data set (D) is defined as

𝐼(𝐷) = 1 − 𝐻(𝑝) = 1 − 𝐻(𝐷). (26)

Based on the global and individual information content, the information gain (G) of every single

attribute (A) related to the whole data set can be calculated:

𝐺(𝐷, 𝐴) =∑
|𝐷𝑖|

|𝐷|
𝐼(𝐷𝑖) − 𝐼(𝐷).

𝑛

𝑖=1

 (27)

The attribute at highest information gain is the one to be taken for the node, dividing the data

set. In case of continuous attributes a similar principle is applied within the value set to get a

final threshold

𝛳𝐷,𝐴 = argmax𝑣{𝐺(𝐷, 𝐴 > 𝑣)}. (28)

For every value (v) the information gain is calculated. Thereby, “argmax” returns the argument

(input value) that maximizes a given function. The threshold value arising in the highest

information gain is taken. Introduction of “mean squared residual” as splitting criteria of a given

data set enables decision-tree based regression as well. In context of classification, other

metrics, such as “misclassification error” or “Gini index” were also used for split-point

calculation. The subsets, separated by category or threshold, now go through the same

procedure until no further subdivision is possible, or to a defined end point (number of elements

within one group). The created decision tree structure fits the underlying data. Minimizing the

risk of overfitting and increasing the model prediction of unknown data points, the original data

set is split into training and test data set, where test data set is unseen from the model during

creation (training). The proportion of right classifications enables model quality check. A partial

reduction of trees (pruning) can increase the global prediction accuracy (Ertel, 2011;

Feigenbaum & Simon, 1961; Hastie et al., 2009; Quinlan, 1986).

14

In contrast to single decision-tree based classification or regression, Random Forest uses a

whole set of de-correlated trees, which averaged results reduces single model variance.

Thereby, each individual tree (hj) is built out of a subset (ϴ) of the original data set (D =

{(x1, y1), … , (xN, yN)}). During construction only a few predictor variables (p) are used to

calculate the split-point, typically this number m is the square root of p and at least one. Data

sets subset (Dj) selection follows a random distribution and is called bootstraping. Via bagging

(bootstrap aggregating) each of the tree than is fitted to its data set selection and related p.

Out of all fitted trees (ĥ), the prediction function in case of regression results in

𝑓(𝑥) =
1

𝐽
∑ℎ̂𝑗(𝑥)

𝐽

𝑗=1

, (29)

where J denotes the number of trees. In case of classification the prediction function belonging

to a certain class y follows

𝑓(𝑥) = argmax𝑦∑𝐼(ℎ�̂�(𝑥) = 𝑦)

𝐽

𝑗=1

. (30)

Due to bootstraping, some of the samples of the original data set are not used. This untouched

subset is called “Out-Of-Bag Data” and is taken to calculate the model’s related error, which in

case of regression is defined by out-of-bag means squared error (MSEoob)

𝑀𝑆𝐸𝑜𝑜𝑏 =
1

𝑁
∑(𝑦𝑖 − 𝑓𝑜𝑜𝑏(𝑥𝑖))

2

𝑁

𝑖=1

 (31)

and in case of classification, the generalized out-of-bag error rate (Eoob)

𝐸𝑜𝑜𝑏 =
1

𝑁
∑𝐼(𝑦𝑖 ≠ 𝑓𝑜𝑜𝑏(𝑥𝑖)

𝑁

𝑖=1

). (32)

In comparison to averaged errors, in classification a separated calculation of the error rate at

each wanted class, enables distinct observations of the final predictions and their accuracy.

Within a “confusion matrix” all of the single error rates can be summarized via cross-tabulating

the out-of-bag predictions and their known values. Adjusting the individual trees by their

number or size is referred to tuning and can be used to get better predictions. A weighting of

unbalanced class occurrences also can refine the global prediction performance (Breiman,

2001; Cutler et al., 2012; Hastie et al., 2009).

Application of single decision-trees or random forest follows a simple model creation process,

but giving a powerful multipurpose tool. Especially in multiclass classification, the

interpretability of the outcome predictions support understanding of underlying data structure

and their relations.

Introduction

Introduction

15

1.2.2. Statistical analysis of objects

1.2.2.1. Dimensionality reduction

The increasing number of different variables inevitably leads to an increase in the complexity

of the respective data set. Among data correlation or prediction, visualization of such relations

is limited by the number of variables. Reduction of these multidimensional feature spaces, by

preserving global or local dependencies is the goal of dimensionality reduction methods.

Additionally, these representations supports the decrease of computationally expensive tasks,

taking them as input variables.

Principal component analysis (PCA) is one of the oldest algorithms (F.R.S., 1901; Hotelling,

1933), which estimates the orientation of the individual feature attributes with the highest

variance and projects the principal components (PCs) thus found into new subspaces created

by each individual computed PC (Ertel, 2011). Each of the PCs are orthogonal to each other,

which means that the dot product between two PCs is zero, confirming that they are

independent of each other. Correlated feature attributes are represented in similar regions and

in this way create a representation of the data with low dimensionality. Estimation of orientation

follows the same concept as in linear regression analysis, where the sum of squared residuals

of a line fitting the data is minimized. In contrast to the low-dimensional representation

subspaces created in PCA, other methods such as “t-distributed Stochastic Neighborhood

Embedding” (t-SNE) or “Uniform Manifold Approximation and Projection” (UMAP) produce only

one final map of the associated connectivity.

The t-SNE algorithm is based on the previously developed Stochastic Neighborhood

Embedding (SNE) and differs mainly in the distribution function used and the symmetrized cost

function, but is conceptually the same. It converts similarities, calculated by Euclidean

distances between all data points (x), to joint probabilities, then followed by minimization of the

Kullback-Leibler (KL) divergence between the joint probabilities of the low-dimensional space

(embedding, q(y)) and the original high-dimensional space (p(x)). Finally the cost function (C)

can be described by

𝐶 = KL(𝑃‖𝑄) =∑∑𝑝𝑖𝑗log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

=∑∑

exp(−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
)

∑ exp (−
‖𝑥𝑘 − 𝑥𝑙‖

2

2𝜎2
)𝑘≠𝑙

log

(

exp(−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
)

∑ exp (−
‖𝑥𝑘 − 𝑥𝑙‖

2

2𝜎2
)𝑘≠𝑙

(1 + ‖𝑦𝑖 − 𝑦𝑗‖
2
)
−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖
2)−1𝑘≠𝑙

)

𝑗𝑖

.

(33)

16

The variance (σ) of the joint probability distribution function is related to the perplexity

parameter k, the effective number of neighboring data points. Besides the manual choice of k,

σ should equalize the distribution functions entropy to log2(k). Minimization of C is performed

via gradient descent

𝛶(𝑡) = 𝛶(𝑡−1) + 𝜂
𝛿𝐶

𝑑𝛶
+ 𝛼(𝑡)(𝛶(𝑡−1) − 𝛶(𝑡−2)), (34)

where Υ(t) denotes the result at iteration t, η denotes the learning rate and α(t) defines the

momentum at iteration t. Here the previous solution of the loss function and momentum

optimizes the minimization process. The resulting low-dimensionality embedding is upon

random initialization of gradient descent and random variable selection different at each

calculation. Therefore, variable relations stay the same, however representation of the final

embedding looks different. In some cases gradient descent tends to stuck in local minimum

rather finding the global minimum (Hinton & Roweis, 2003; van der Maaten & Hinton, 2008).

The alternative method for dimensionality reduction, which is also frequently used, is UMAP.

The working principle follows the same two-stage scheme as for t-SNE. First, conversion from

high-dimensional space into similarity measures, in this case realized by construction of

weighted k-neighbor graph (fuzzy simplical complex), and second their embedding within a

low-dimensional space via stochastic gradient descent. Thereby, hyper parameters such as

number of local neighbors during construction of the graph and the scaled distance (spread)

in the low-dimensional space embedding are taken by manual choice, giving more flexibility of

visualization. The advantage of UMAP lies in the fast calculation time for large data sets by

preserving balance of global data structure and local connectivity (McInnes et al., 2018).

1.2.2.2. Clustering

Partitioning of unlabeled data into similarity-based data point groups is considered to be cluster

analysis. Similarity is a measure of distance metrics, similar to dimensionality reduction

methods. In contrast to distances between neighboring features attributes, the distances of

different partitioned groups (cluster) are bigger and thus define the required criterion.

Additionally, each variable should have only one assigned cluster, allowing no overlap of the

found clusters.

A wide spread and simple clustering algorithm is k-means (MacQueen, 1967), where k

indicates the pre-defined number of groups to partition the data. The working principle in brief

is described in the following. With k random selected centroid points the first clusters positions

are initialized, followed by calculation of the distances of all the data points to the cluster

midpoints. The minimal distance to a cluster midpoint then defines the cluster label. Based on

all assigned data points, the centroid positions of clusters are recalculated. If the location of

Introduction

Introduction

17

the previous cluster centroid is different from the current, the position is shifted, followed by

recalculation of data points distances and cluster assignment. The process of repositioning

and relabeling is repeated until no further change of calculated cluster midpoint location is

reached. Normalizing the feature attributes avoids distortion of the distances to the desired

clusters. Due to random initialization, a pre-investigation of different features can enhance

better probable cluster initialization position or even the number of clusters needed.

In hierarchical clustering (Narasimha Murty & Krishna, 1980) a pre-definition of the number of

clusters is not required. Here, all data points are initially assigned to individual clusters and

then sequentially combined based on a similarity metric until a termination point is reached or

the last cluster contains all data points. Visually, this method resembles a binary tree.

Application of a distance metric, in which the minimal distance between two points of two

clusters is calculated, leads to “nearest neighbor algorithm”.

The "correct" number of clusters to use depends on the data itself and the underlying question.

Introducing quality measures for each cluster (e.g. “silhouette width criterion”) only estimates

the proportions of distances and does not meet user preference. By exploring the relationships

between features (variables) and attributes (clusters), the decomposition of partitioned data

allows the rediscovery of meaningful patterns and structures within the data. This approach

enhances the interpretation and usability of clustering results, enabling deeper insights and a

more refined understanding of the data (Ertel, 2011; Kubat, 2017).

1.3. Aims of this work

In recent years, there has been a growing demand for automated quantitative analysis of

(image) data in various scientific fields. This need is driven by the desire to ensure

standardized, comparable, and reproducible results and to take advantage of advances in

hardware technology and software processing. Existing techniques have laid the foundation

for such automated analysis pipelines, but further development and application is required to

address specific challenges and improve overall system performance.

One area of particular interest is spatial analysis, which involves the exploration and

interpretation of spatial patterns and relationships within biological samples. Spatial

information plays a critical role in understanding complex biological systems by providing

valuable insights into the organization, interactions, and dynamics of cells and molecules within

tissues. By integrating spatial analysis into automated quantitative analysis pipelines, we can

gain a deeper understanding of biological processes and reveal spatially distinct phenotypes.

In addition, a critical aspect to consider is the physical imaging process and the associated

artifacts that can be affected. These artifacts can be introduced by various factors such as the

imaging system itself, sample preparation, and the interaction of the light with the biological

18

tissue. Understanding and mitigating these artifacts is essential to obtaining accurate and

reliable results in automated quantitative analysis.

The aims of this thesis, based on existing methods and techniques:

 Improvement of the existing MELC system, including

 Image quality (signal to noise (SNR) enhancement, resolution)

 Extension of the detection of fluorescently labeled antibodies with regard to the

unused spectral range

 Hardware dependent artifact removal, by application of machine learning algorithms in

relation to physically limited image formation

 Property-related object identification within microscopy images, independent of device

architecture

 Multi-parameter correlation and phenotypic classification at protein and transcriptional

level by visualization of complex data in a compressed manner

Introduction

19

2. Material and Methods

Spatial quantitated image analysis consist of three major tasks: acquiring the image data, pre-

process the data including feature extraction and followed functional correlation analysis to

validate biological hypotheses. As part of these steps, devices, feature extraction methods and

used software or data analysis environments relevant for the present thesis are explained.

2.1. Microscopes

Based on the tissue properties and related resolution required to observe distinct biological

processes, the choice of microscope is essential. In this section, microscopy techniques used

to obtain the image data analyzed within this work, is explained.

2.1.1. MELC

The core of the multi epitope ligand cartography (MELC) system is an inverted widefield

(epi)fluorescence phase contrast microscope (Leica DM IRE2) combined with a pipetting robot,

based on a reconfigured/modified Toponome Image Cycler MM3 (TIC) manufactured by

MelTec GmbH & Co.KG Magdeburg, Germany (Schubert et al., 2006).

Figure 6 Overview of MELC system (Toponome Image Cycler MM3 (TIC)) and explanation of main parts

The basic working principle of system’s (Figure 6) inverted widefield (epi)fluorescence phase

contrast microscope in short. An inverted microscope with the objective lens and related optics

under the sample enables access to the sample from top, which in case of the MELC system

allows for pipetting and suction via the pipetting robot. Furthermore, widefield configuration

means illumination of the entire sample via a light source. An (epi)fluorescence microscope

setup means, that the light path for fluorescence excitation and the detection of the emitted

light is the same. Phase contrast configuration allows for the observation of unstained samples

under the microscope. The different phase components of (transmission) light passing through

the sample are converted in amplitude differences or intensities. A varying phase is caused by

Material and Methods

20

light-dependent transit time, which is dependent on samples’ refractive index architecture.

Condenser annulus aperture in front focal plane and phase plate in the back focal plane limiting

the angle of the incoming light beam and shift the phase of the diffracted light. As a function of

the shift, interference takes place and results in intensity translated differences, requiring

Köhler illumination setup, which means a centered alignment of all optical components

(apertures, field diaphragms) to create homogenous illumination over the entire sample.

Figure 7 overview of cyclic MELC run workflow taken from Figure 1 in (Holzwarth, Köhler et. al 2018) with
permission from John Wiley and Sons (Sep, 05, 2022)

Theoretically, during every MELC run or MELC experiment an unlimited number of

fluorescently labeled antibodies can be acquired in up to four different field of views (FOVs).

Thereby fully software (MelTec TIC-Control) automated driven imaging procedure is

sequentially performed, consisting of four major cycled steps (Figure 7):

1) Loading of cooled fluorescently labelled antibodies (up to four at the same time) from

a 96-Well plate via the pipetting robot, followed by the application of the antibodies on

to the tissue sample, where incubation, subsequent washing and liquid level

adjustment takes place

2) Autofocusing of tissue sample’s preset FOV based on cross-correlation and following

imaging. Here a phase contrast image acquired by user’s selected FOV at the

beginning is used as a reference image and compared with current images to find the

same sample location. If necessary, the motorized microscope moves the sample until

maximum correlation value has been reached. At first phase contrast images are

Material and Methods

21

acquired along the axial axis, then fluorescence images of the desired fluorescence

channels are acquired.

3) Signal removal by time controlled photo-bleaching is combined with washing to keep a

constant liquid level, to avoid drying of the sample and to remove free radicals.

4) Another round of autofocusing and imaging takes place. Besides phase contrast

images, photo-bleached fluorescence images are acquired as well.

All steps and general imaging related settings, such as incubation time, channel information,

antibody names and their location within the 96-Well plate, etc. are included in the user’s

created MELC run initialization file (*.xml) which is read by the machine and is used for

downstream analysis. In addition to phase contrast images, fluorescence signal can also be

used for autofocusing. Actually, phase contrast images offer a staining independent signal,

since they are created only on tissue sample’s heterogeneous refractive index distribution,

which remains stable over long experiments.

Figure 8 tissue sample under microscope of MELC system

In order to perform MELC experiments tissue samples had to be prepared in a special way.

Five to ten micrometer thick fresh frozen cut tissue samples were placed on or glued on a

cover slide (24 × 60 mm #1; Menzel-Gläser, Braunschweig, Germany). The sections were fixed

and blocked, according to the sample’s origin (Holzwarth et al., 2018; Mothes et al., 2023;

Pascual-Reguant et al., 2021). Then a liquid reservoir made of one-millimeter-thick silicone

sheets was created containing a volume of 100 µl (Figure 8), which was prefilled with

phosphate-buffered saline (PBS). The silicon reservoir prevented the liquid from running off,

and the section from drying. In addition, the pipetting robot could accurately pipette the required

fluorescence-labeled antibodies for staining or PBS for washing onto the tissue section and

remove the excess liquid. Excess liquid from the aspiration was discarded into the wash box

positioned around the sample at the beginning of the automated run.

22

2.1.2. LSM

Compared to a widefield microscope, a laser scanning microscope (LSM) creates an image by

measuring laser excited fluorescence emission light along a planar grid of measuring points in

a stepwise manner. Based on the size of the focal volume (PSF), the step width (lateral and

axial) is adjusted. These are both dependent of the magnification of used objective lens. Light

is detected by photo multiplier tubes (PMTs), at the end every measured point the photon count

is converted to intensity values along the image’s pixel grid. Measuring at different depth (often

called image stacking) allows one to acquire three-dimensional image information. The

microscope used (Zeiss LSM 710 / LSM 880) is a confocal configuration, which means that

only in focus light passes through a motorized size variable pinhole. Out of focus light is

blocked and therefore the system results in higher resolved images, equivalent the PSF is

smaller in the LSM compared to widefield microscopes. In case of the mouse model for

vascular dementia, mice were perfused with 4% paraformaldehyde. The brains were dissected

and embedded in Tissue Tek (Sakura), frozen in a methylbutane/dry ice mixture and cut into

10- or 30-μm sections using a cryostat. Sections were stained with goat anti-EGFP (Rockland,

conjugated at the DRFZ to Alexa®488), mouse anti-GFAP-Alexa®488 (eBioscience,

Germany), rabbit anti-Noxo-1 (Novus Biologicals, Germany), or goat anti-p47 (Abcam,

Germany). Secondary antibodies used were donkey anti-rabbit Alexa®647 (Life Technologies,

Germany) or donkey anti-goat-Alexa®647 (Radbruch et al., 2017).

2.1.3. LSFM

In contrast to the previous microscopy techniques, light-sheet fluorescence microscopy

(LSFM) excites the samples from the side and detects the emitted light from the top, so

illumination and detection axes are perpendicular to each other – a beam-path geometry well

known from fluorescence spectrometers. The illumination is performed in a wide-field manner,

due to the use of cylindrical lenses with low NA, in shape of a single plane – light sheet. One

or several light sheets, from one or multiple laser beams, differently oriented to each other,

form the final excitation light sheet. The goal is to achieve a uniform illumination throughout

the sample. Because of the two crossing, orthogonal PSFs, i.e. excitation PSF and detection

PSF, out of focus regions from the used objective lens in the detection part do not contribute

to signal. Photo-toxicity and photo-bleaching of the sample is reduced, due to single plane

illumination.

Material and Methods

Material and Methods

23

Figure 9 Overview of Ultra II light sheet microscope (LaVision Biotec, Germany), red boxed area shows
illumination function creating the light sheet

Tissue clearing and sample preparation of murine femoral and tibial bones were processed

with an adapted tissue clearing protocol, specifically optimized for rendering hard mineralized

tissue optically transparent. In brief, the harvested organs were thoroughly fixed with a flexible

polyepoxide scaffold, and in subsequent chemical steps, decalcified, delipidated and

decolorized. Followed by a staining step with a fluorescent conjugated nanobody against the

endogenous reporter fluorescence, the refractive index of the remaining peptide structure was

matched with a fitting solution. This made the samples optically transparent while preserving

endogenous reporter fluorescence. Combined with signal enhancement, this provided a

sample suitable for deep bone marrow imaging.

During image acquisition, the transparent samples, mounted in small cuvettes, were

surrounded by the refractive index matching solution. This cuvette was in turn immersed in the

sample chamber of the Ultra II light sheet microscope (LaVision Biotec, Germany, Figure 9)

filled with immersion oil matching the refractive indices of the contents of the sample cuvette.

Images were acquired slide by slide, scanning through the entire sample depth, in axial steps

of 3 to 10 µm with a horizontal laser light sheet illumination. The following excitation/emission

wavelengths for the different fluorophores were used: 488/525(50) nm; 561/620(60) nm;

640/680(30) nm. The light sheet width was set to a minimum of 4 µm, and the NA was set to

its highest configuration 0.135. The zoom body setup with an Olympus MVPLAPO 2x/NA 0.5

objective was used for stepwise magnification of 0.63x to 6.3x equipped with an optical

abberation corrected dipping cap. For image acquisition a 5.5 Megapixel sCMOS camera was

used.

24

2.2. ST

Spatial transcriptomics (ST) is a method enabling the visualization and localization of gene

expression within histological tissue sections, by combining microscope image acquisition and

sequencing. It is based on unique spatially barcoded oligo nucleotides, which capture mRNA

of the tissue sample.

Figure 10 overview of ST sample preparation, image acquisition and gene expression extraction

Sample preparation was performed following the manufacturers protocol (10x Genomics,

Figure 10). Briefly, samples were snap frozen in an isopentane bath on liquid nitrogen/dry ice.

10 μm frozen sections were cut into on a MH560 cryotome (ThermoFisher, Waltham,

Massachusetts, USA), and placed on a pre-cooled (-20°C) 10X Visium slide. The tissue

sections were fixed in pre-chilled methanol for 30 minutes, stained with CD45-AF647, CD31-

AF594 and DAPI for 30 minutes, imaged using a LSM 880 confocal microscope (Zeiss). After

imaging, a 10 minutes permeabilizing step prepares spatially tagged cDNA libraries

construction using the 10x Genomics Visium Spatial Gene Expression 3’ Library Construction

V1 Kit. cDNA libraries were sequenced on an Illumina NextSeq 500/550 using 150 cycle high

output kits with sequencing depth of ~5000 reads per spot (Mothes et al., 2023).

2.3. Image analysis software and algorithms

In this section, open-source software and algorithms referring to image segmentation or object

identification are presented.

2.3.1. Watershed segmentation - Cell Profiler

A classical approach for image segmentation is to classify pixels based on their intensity. At a

certain signal limit (threshold), pixels are set to foreground or background, resulting in a

binarized image, in which foreground pixels define areas of objects in the image. Followed

connected component analysis then tries to find the single foreground objects, giving each

point cloud an individual identifier. Sometimes objects are densely packed, or objects with

Material and Methods

Material and Methods

25

similar intensities are very close to each other, e.g. stained nuclei within the image. In this case

a separation of clumped objects is required, in order to avoid counting the wrong number of

objects.

Figure 11 example of watershed segmentation workflow, used input image is from sample image datasets of Fiji

The main workflow of clumped object splitting by watershed segmentation (Barnes et al., 2014;

Beucher & Lantuejoul, 1979) is illustrated in Figure 11. Here the binarized image transformed

to a distance map via Otsu (Otsu et al., 1979) thresholding. The Otsu threshold is automatically

calculated by minimization of intra-class intensity variance of the image. Distance map

transformation is performed by sequential image erosion of the binarized image, where every

step count is set as intensity on disappearing pixels. Borders of every probable object are

highlighted by a Voronoi graph, which is the most distant line of local maxima from the distance

map. Stepwise flooding the distance map with increasing intensity values results in splitting of

the clumped objects by creation of artificial borders on half way distance to neighboring

maxima.

CellProfiler (Carpenter et al., 2006; Kamentsky et al., 2011; McQuin et al., 2018; Stirling et al.,

2021) is a modularized free open-source software, which allow for feature extraction and

analysis of microscopic images, without knowledge in programming. This application was used

to develop general image analysis pipelines, which could be also used by other users to

analyze their images. Next to watershed segmentation, found objects could be further

investigated by specific intensity or shape measurements, filtering and phenotypically

classification.

26

Figure 12 principle CellProfiler pipeline for cell identification and classification

The main modularized workflow of a segmentation and phenotypically classification pipeline in

CellProfiler is shown in Figure 12. Briefly, input images are split by marker into nuclei or

membrane, or optional structural markers, such as vessels. After nuclei detection (Identify

primary Objects) via size or shape limited watershed segmentation, secondary objects are

recognized. For this, nuclei objects are set as starting point/area in the desired membrane

staining images and pixels in the allowed distance over defined threshold are included in these

areas. Due to the fact, that membrane staining does not stain nuclei, the binarized membrane

objects are subtracted by the nuclei area (Identify tertiary objects). The resulting objects are

then measured in their intensity (mean, median, minimum, maximum, etc.) and morphology

(shape, area, circularity, etc.) within the original input images. Based on all features, optional

filtering can be applied to remove outliers or to phenotypically classify the single cell objects.

Following data visualization and saving summarizes the whole process and enables further

data analysis.

2.3.2. Seeded region growing

Fiji (Rueden et al., 2017; Schindelin et al., 2012) is a distribution of the open source image

processing package ImageJ, which allows editing and analyzing images of different sources.

For the purpose of fine structural object detection, I wrote a Java based ImageJ/Fiji PlugIn and

applied a recursive seeded region growing algorithm (Shih & Cheng, 2005) before CellProfiler

was introduced. This PlugIn was used to detect nuclei and membranes in MELC, which is why

the PlugIn was called “MELC_Evaluation_Toolbox” (source code in Appendix).

Material and Methods

Material and Methods

27

Figure 13 general workflow of developed seeded region growing ImageJ PlugIn

The basic concept of seeded region growing mask creation is illustrated in Figure 13. After

image selection and user defined parameters for local maxima initialization, the starting (seed)

points of probable objects are filtered by a preselected neighborhood distance. Sequentially

growing of the objects create a binarized mask image. During the growing process, the pixels

surrounding the object of interest are tested following the criteria:

- Intensity - should be similar to mean value in a four connected pixel neighborhood

- Distance – should be in range of the half distance of probable next cell

- Diameter – should be in range of the allowed user defined range

- Location – should not be at the image border

- Existence – should be an unlabeled pixel

If all the listed criteria are fulfilled, the current pixel is added to the object and the next growing

round of the four connected neighborhood pixels is performed until no further expansion is

possible. In the end, the object’s missing pixels within the structure can be filled, or if more less

roundish objects like nuclei should be found, watershed-based object splitting can be applied.

2.3.3. Random forest probability calculation – ilastik

Common image segmentation workflows or algorithms are based on differentially signal

distribution and single manual featured limitation by image filtering (edge detection, distance

or color information). Ilastik (Berg et al., 2019) is an interactive machine-learning-based tool

that offers a different way of segmentation. Besides object detection via pixel classification,

ilastik offers object classification and object tracking in multidimensional images

28

Figure 14 Overview of pixel classification by featured random forest algorithm inside application ilastik by manual

annotation (left) and resulting probability maps (right)

In short, input image(s) are convolved at the beginning by a set of image filters at different

sizes. Based on the structural information the sizes can be adapted by the user. These filters

aim to enhance or suppress image features (edges, gradients, local maxima, etc.). By manual

annotation (Figure 14, yellow, green and purple highlighted pixels) and classification (related

labels) of singular or connected pixels, a random forest classifier calculates a model and

predicts the probability of the unannotated pixels in the desired classed labels. Due to multi

parameter weighted decision trees, the probability maps are robust against possible

heterogeneous staining quality. The transformation of absolute intensities into probability

values, in different classes allows for image segmentation by simple thresholding.

2.3.4. Data analysis environment

Besides devices for image capture and object related feature extraction, this section lists

programs, programming languages or applied scripts used in this project, each of which

supported biological data validation. Single packages/functions within used programming

scripts can be found within the source code in appendix.

Anaconda

A programming environment with “Spyder” for Python script development including interactive

data mining tool “Orange” (Demšar et al., 2013), which also can be extended by python scripts

(https://www.anaconda.com/).

Scripts:

a) MELC preprocessing (see Appendix, p. 116)

b) LSFM-destriping and related SNR calculations (see Appendix, p.152, 162)

Material and Methods

https://www.anaconda.com/

Material and Methods

29

CellProfiler

A modularized free open-source software, for feature extraction and analysis of microscopic

images (https://cellprofiler.org/)

Pipelines:

MELC images object identification based on raw intensities or probability maps and

neighborhood analysis.

Eclipse

A programming environment for java based script development (https://www.eclipse.org/).

Scripts:

a) MELC evaluation toolbox development as Fiji/ImageJ PlugIn, containing seeded region

growing object identification (see Appendix, p. 90).

b) Marker specified searching for combinatorial binarized phenotypically classification of

multi-channel microscopy images (see Appendix, p. 107).

c) Shape Data Evaluation (SHADE) as Fiji/ImageJ PlugIn, which calculates Fourier

coefficients for shape representation of single 2D image sets (see Appendix, p.84).

Fiji/ImageJ

Fiji is a distribution of the open source image processing package ImageJ, enabling interactive

editing and analyzing images of different sources (https://fiji.sc/). Beside manual image

processing, automated workflows can be programmed in imageJ macro language.

Scripts:

Fourier coefficients calculation of closed identified object’s outlines (see Appendix, p. 113).

Ilastik

An interactive machine learning based tool for object detection via pixel classification, object

classification and object tracking in multidimensional images (https://www.ilastik.org/).

Pipelines:

a) MELC images object pixel classification based on trained random forest classifier

model of raw intensities from separated images of nuclei and membrane staining,

additional background map for object separation.

b) LSFM image pixel classification used for signal to noise ratio calculation, signal to

background ratio calculation respectively.

Loupe Browser

Application for data exploration of Spatial Transcriptomics (10x Genomics) data and

preprocessing, e.g. manual tissue alignment, for Space Ranger.

(https://www.10xgenomics.com/products/loupe-browser)

https://cellprofiler.org/
https://www.ilastik.org/
https://www.10xgenomics.com/products/loupe-browser

30

Matlab 2014b

A programming environment for Matlab based scripts in case of numerical calculations and

image processing (https://de.mathworks.com/products/matlab.html).

Scripts:

a) Neighborhood analysis of MELC images, including import of CellProfiler output (see

Appendix, p.133).

b) Randomnes test, validation of independent distribution observations (see Appendix, p.

133)

R Studio

A programming environment for statistically data analysis based on programming language R

(https://www.rstudio.com/)

Scripts:

a) Spatial Transcriptomics data analysis including batch normalization, or data integration

respectively, dimension reduction visualization and clustering (see Appendix, p.155).

b) MELC analysis in sense of ST data analysis (see Appendix, p. 130)

c) Gene set enrichment analysis (groupe based and single sample based), see Appendix

p. 148, 150

d) Neighborhood analysis (see Appendix, p. 140)

Space Ranger

Command line controlled (Linux) application to process ST based measurements, including

sample demultiplexing, image alignment, gene counting and barcode processing

https://www.10xgenomics.com/).

Material and Methods

31

3. Application and Results

The selection of a measuring device is related to the biological question that is being addressed

in a certain experiment. The decision to use a particular microscope depends on several

factors, including the tissue sample properties, required resolution, 2D vs. volumetric

observation, number of different fluorescent markers, usable and available stainings, etc.

Depending on the specific imaging techniques, image processing and data analysis needs to

be adapted. This chapter describes the application and the development of different workflows

used in this thesis. A variety of imaging techniques was used, each with a different application:

Laser Scanning Microscopy (LSM), Multi Epitope Ligand Cartography (MELC) and Fluorescent

Light Sheet Microscopy (LSFM) give information about imaged samples on the protein level,

Spatial Transcriptomic (ST) yields information about the sample on the transcriptional level.

3.1. Image analysis of LSM data

Conventional fluorescence microscope systems are limited in the number of separable

wavelength related fluorescence channels and are therefore limited in the number of

simultaneously detectable cell types. Depending on the object of interest, a single channel

image could be enough to extract features for characterization of biological phenomena.

In order to analyze morphological differences in microglia in a dementia model, we acquired

confocal images of the front parietal cortex of young (6 months) and old (20 months) Iba-1-

EGFP reporter mice. Here 30 µm thick tissue samples were imaged at 0,42 x 0,42 x 0,87 µm³

voxel resolution, resulting in 3D image stacks. The maximum intensity projections were

calculated to retain spatially oriented processes and cell bodies of microglia in one final image

per field of view (FOV).

Figure 15 Depicted maximum intensity projections of young (A) and old (B) mice's microglia, segmentation result
in red outlines, averaged and normalized Fourier coefficients (C), comparing young and old mice, scale bar 50 µm

The identification and segmentation of microglia was obtained by applying a self-written Java

based ImageJ PlugIn, where a seeded region growing algorithm was implemented to ensure

fine structural preservation of the processes in case they were present (Figure 15). To

objectively quantify the estimated difference in morphology, the outlining of the connected

Application and Results

32

pixels of every single object were converted to discrete Fourier transformation coefficients

(shape descriptors). The higher the coefficient ID by higher value (amplitude) at the same time,

the more complex the microglia shape became. Up to 20 normalized coefficients were used to

determine shape information. This approach could be used to show a loss in microglial

processes in aged mice.

3.2. Device optimization of the MELC system

MELC is a highly multiplexed cycled immunofluorescence (IF) based microscopy technique

that generates a large amount of data, due to the image acquisition procedure. Within one

MELC run, four steps are sequentially repeated. A) loading the fluorescence-coupled antibody

incubation and washing, B) microscope-sample autofocusing referenced by a phase contrast

image from the field of view acquired at the beginning of the cycle and following 3D image

acquisition of fluorescence images, C) fluorescent signal removal via photo-bleaching, D)

another phase contrast based autofocusing step for bleached image acquisition. Besides the

fluorescence images, all phase contrast images of the field of view are recorded.

Performing MELC experiments requires proper sample handling on the one hand, and on the

other hand the right functionality and communication of all related devices. Over the time, parts

of the system have been changed, which has led to enhanced image quality and reduced

hardware-dependent error sources.

3.2.1. Camera

One of the most important devices on a wide-field microscope is the camera. It digitalizes the

visual observations, which can be saved, shared and automatically analyzed. The performance

of such a device determines the detectable phenomena in the examined sample.

The pre-installed camera of the toponome-image-cycler (TIC) was a 14-bit Apogee KX4 CCD

device with 2032x2044 pixels, where every pixel had a size of 9x9 µm². During image

acquisition a manual shutter opened and the light sensitive CCD-sensor detected the intensity

information.

Figure 16 Pre-installed camera system of toponome-image-cycler (TIC), (A) camera connected to microscope, (B)
dark image, (C) low concentration fluorescence staining with centered bright spot artifact

Quality control of the MELC system’s eye showed camera related artifacts, including external

light contribution, missing pixel information (Figure 16B) and artificial centered bright spot

Application and Results

33

illumination (Figure 16C) during image acquisition. In case of the two first artifacts, a simple

light path covering tube would have minimized outer light influence. Single lines to an amount

lower than 1% of missing information on a whole image, caused by camera pixel defects, would

have a lower impact on the following image analysis. However, in case of Figure 16C, the

detected image information is affected by hardware failure and therefore distorted image

content. The motorized shutter on the camera exhibited a signal delay that caused the CCD

chip's exposure time to vary, and also a non-fully closing shutter that produced a steady

exposure that caused the centered bright spot illumination. This is why a new camera was

required, to not only get better quality images, but to ensure reproducible experiments as well.

Based on the requirements, we chose a Hamamatsu 16-bit ORCA-Flash4.0 LT scientific

CMOS camera. Compared to the old camera, the new one offered more pixels (2048x2048)

at smaller size (6,5 x 6,5 µm²) by lower dark current (0.6 < 3,5 electrons/pixel). Unlike the

motorized hardware shutter, an electronically time-controlled readout shutter was used.

Figure 17 Quantum efficiency plots of (left) Apogee KX 4 CCD camera and (right) Hamamatsu ORCA-Flas4.0 LT
CMOS camera, plots are taken from manufactures manual

For image acquisition at low fluorescence signal amplitudes in MELC experiments, one of the

most important decision parameters was quantum efficiency. In contrast to the old camera, the

quantum efficiency was higher as a function of all wavelengths examined and distributed over

an extended range (Figure 17), which resulted in a double photon number at intermediate

wavelengths.

Additionally, due to the smaller form factor of the camera, the position of the camera could also

be changed. Instead of the side port, it was possible to switch to the bottom port. This increased

the transmission power from 80% to 100%, resulting in higher sensitivity. Consequently, weak

signals could be detected better.

34

Figure 18 The sketch of self-designed and manufactured camera-microscope-adapter on lathe

The new camera was connected to the microscope using a new, self-constructed aluminum

adapter that was manufactured on the lathe (Figure 18) and anodized to avoid reflections. The

new adapter manufactured showed no disadvantages in terms of sample illumination, or image

corner intensity loss.

Figure 19 Phase contrast images of mice’s bone marrow as comparison between old (left) and new (right) camera

setup - samples are acquired under same light and exposure time conditions, scale bar 100 µm

In order to test the enhanced camera properties and related image quality, phase contrast

images of mouse bone were acquired and compared (Figure 19). These images were

independent of fluorescent staining and sample quality. The overall image intensities and

dynamic range were dramatically increased under same condition. A cloudy plastic pane in

front of the old camera was observed during replacement, which may have caused additional

light dimming.

Altogether, the images showed higher dynamic range of intensity compared to previous

camera setup under the same illumination conditions. Due to the widened quantum efficiency

wavelength band, fluorescence signals from far red and near blue could be detected, allowing

the use of new fluorescent coupled antibodies, extending further multi-parameter functional

analysis.

3.2.2. Light source

The inverted microscope used for these experiments used a pre-installed arc lamp as light

source for fluorescence excitation. The lamp was incorporated in the MELC system, and was

Application and Results

Application and Results

35

thus located within the closed box, together with the microscope, well plate holder for staining

reagents and robotics.

Figure 20 overview of closed MELC system inside box, directly connected light source highlighted by red arrow

Due to the location of the fluorescent light source (Figure 20), the internal temperature of the

closed measuring station increased to up to 35 °C ± 2 °C at a humidity of about 20 % ± 4 %

during a MELC experiment, whereas the usual room temperature was around 20 °C. Along the

usual incubation times of several minutes, this led to the sample drying out. Suppressing dry

and hot air with additional cooling devices such as fans or ice inside the box would have

created additional problems such as dust flying around inside the sample environment or

convection on optical components. Therefore, the light source was replaced by an external

one (Leica EL 6000 equipped with Osram HXP R 120W/45C VIS), in which the light was

transported via a liquid-filled cable. In addition, there was no need to readjust the arc lamp.

The excitation spectra were increased in dynamic range and amplitude, which resulted in a

higher signal quality along the wavelength band.

3.2.3. Optical components

Besides the camera, the related optics are the most important components of a microscope.

They deliver the excitation light to the sample and transmit the emitted light to the camera.

Light gets focused through the objective lens, onto the sample.

36

The fluorescence filter revolver of the utilized inverted widefield microscope was equipped with

four filter cubes. These cubes work as a bandpass filter configuration and split the excitation

light path from the emission detection light path depending on wavelength. Only three out of

four possible filter cubes were used here, since one position was used for the phase contrast

image configuration. In this setup, the microscope handler could see the phase contrast

images using white light. In addition to that, these images were not dimmed by any optics,

which gained the image intensity required for the camera to operate and for the automated

focusing procedure during MELC experiments.

Table 1 Installed fluorescence filter cubes at MELC system and related maximum excitation and emission

wavelengths [nm] including bandwidth

Filter name Excitation max. [nm] Emission max. [nm]

DAPI 350/50 460/50

FITC 475/40 520/40

PE 546/10 585/40

APC 640/30 690/50

Due to the higher light sensitivity of the new camera setup, the empty filter cube slot was

configured by an additional filter (DAPI, Table 1), which increased the number of detectable

fluorescently labeled antibodies. Phase contrast images didn’t change in information content,

only changed in observed color. The emitted light was bright enough for the camera to process

it. In case filters were damaged, they were replaced. The bandwidth of all excitation and

emission spectra around their maxima was adjusted to avoid possible signal spillover from

fluorescence light.

In line with the new camera’s smaller sCMOS pixel size (6,5 µm x 6,5 µm), the pre-installed

objective lens (Leica HC PL FLUATOR 20x/0.50 PH 2) was replaced by an objective lens with

higher NA at the same magnification (Leica HC PL APO 20x/0.80 PH 2). This allowed for the

photon count entering the focal volume to be increased, which resulted in an enhanced

emission photon count, and increased intensity of low signals within the microscopy images.

An improved resolution was expected as well.

Table 2 lateral and axial resolution test of new equipped MELC system

Filter name /
bead wavelength

[nm]

old theoretical
resolution [nm]

lateral / axial

new theoretical
resolution [nm]

lateral / axial

FWHM
distance [px]
Lateral / axial

bead size [µm]
lateral / axial

DAPI / 430 524,6 / 3440,0 327,9 / 1343,8 12,2 / 5,3 4,0 ± 0,2/ 3,9 ± 0,2

FITC / 515 628,3 / 4120,0 392,7 / 1609,4 10,7 / 6,4 4,2 ± 0,2/ 4,0 ± 0,2

PE / 580 707,6 / 4640,0 442,25 / 1812,5 9,3 / 7,2 4,1 ± 0,2/ 4,0 ± 0,2

APC / 680 829,6 / 5440,0 518,5 / 2125,0 8,2 / 8,5 4,2 ± 0,2/ 4,0 ± 0,2

Application and Results

Application and Results

37

Figure 21 lateral resolution estimation on 4 µm beads embedded in agarose along all fluorescence channels

In order to estimate the resolving power, mid-range fluorescent polysterol beads (four

micrometer in size) were imaged in all fluorescence channels, and measured along their lateral

and axial cross sectional intensity profiles. These outcomes were compared to theoretical

calculated resolving power based on Rayleigh criteria (Table 2, Figure 21). The beads were

embedded in a one percent agarose gel, simulating tissue environment. The intensity profiles

were fitted by a linear regression to Gaussian distribution function to calculate and measure

bead diameter at full width at half maximum (FWHM). The resolution power improvement

estimation confirmed expectations.

In total, the reconfigured optical settings improved lateral and axial resolution power by a factor

of 60 % and 250 % respectively. Furthermore, the new fluorescence filter cube configuration

extended the detectability of fluorescently labeled antibodies. A shift in the fluorescence

intensity maxima of the beads was observed during the resolution estimation, indicating

hardware-related tolerances in the placement of the filter cubes. This offset had to be taken

into account in the subsequent image analysis in order to ensure the signal origin of the

corresponding structures.

3.2.4. Sample holding and washing box

The cover slides prepared for MELC experiments contained the tissue sample and a 100 µl

PBS reservoir made from silicone via the “press-to-seal” method. Due to the shorter free

working distance (400 µm) of the objective lens (Leica HC PL APO 20x/0.80 PH 2), Menzel-

Gläser cover slides of size 24x60x0.17 mm³ were used. These were held by a simple sample

holder plate made from plastic. The application and suction of system liquid (PBS) required an

additional box around the sample, where waste material could be placed without influencing

the samples’ environment. The previous washing box had a limited volume, which created

liquid overflow during long MELC experiments. Furthermore, leakage of the simple sample

holder would also have led to liquid with respect to the microscope and caused damage

38

Figure 22 Self designed and 3D PLA printed equipment for MELC system, from left to right: sample holder,
washing box and washing box cover

Therefore, the sample holder and the washing box were re-designed and 3D printed from

polyactide (PLA, Figure 22), and equipped with drain, preventing the washing box from

overflowing. The sample holder was provided with a recess for the coverslip and the washing

box had been provided with a hole the size of the transmission light condenser along the optical

axis, which held the washing box in place during sample movement through the microscope

stage. In this configuration, longer automated runs were possible, avoiding frequent liquid level

monitoring.

3.3. Image preprocessing of MELC data

The wide field microscope is subjected to physical limitations and thus image formation can be

affected by aberrations. The most prominent factors leading to these phenomena include

image transition in between fluorescence channels due to mechanical tolerances, background

illumination, caused by spherical aberration of the optics, or varying liquid levels. The

elimination of these artifacts guarantees standardized input for downstream quantified image

analysis and thus enhance reproducibility of experiments. All image preprocessing steps were

included in one Python script, which read the MELC run initialization file used for MELC

experiment as well. Within this file, all information about the automated cycled image

acquisition and bleaching of the fluorophores was defined, as well as the sequential naming of

all the steps. Only at the beginning of script execution the user is asked to select secondary

markers, since this information was not included in the file. All other preprocessing steps were

performed automatically.

3.3.1. Registration

The image registration was adapted to the imaging procedure, where an iterative cross

correlation auto-focusing procedure, with the support of reference phase contrast images tried

to find same region of sample. Due to slight shifts in the FOVs mechanical tolerances and

limitations, realignment of images was required.

Post image registration was performed in similar manner as the automated image acquisition,

but with a sub-pixel resolution, up to one tenth, via a cross correlation algorithm, phase

correlation respectively due to calculation in Fourier Domain.

Application and Results

Application and Results

39

Figure 23 image registration quality check on phase contrast (column 1-3) and fluorescent (column 4) images,
where first row are the original input images and in the second row the realigned images, registered respectively.
Phase contrast images in gray scale, average images as well, standard deviation of images color coded in fire look
up table, fluorescent images in all four channels (red, green, blue, gray)

Phase contrast and fluorescence images from a 32 marker MELC experiment, were used to

test the performance of the developed registration workflow. In order to illustrate the image

displacement and registration results, the average and standard deviation of the projection

was calculated, as shown in Figure 23. All 32 displaced phase contrast images of the same

fluorescent channel created a blurred results image. The local pixel information was shifted in

depth and the information for all the fluorescently labelled antibodies was shifted laterally,

which disabled accurate intensity profile measurements. As a measure of uncertainty, the

standard deviation of the projection of these 32 phase contrast images highlighted the most

displaced regions within one final image. Compared to the raw images, registered images

appeared less blurry and displayed a lower standard deviation, which verified the inner channel

shift correction. The same workflow was applied on fluorescent bead images from every

fluorescent channel referenced on the same channel as in phase contrast images. The three-

dimensional displaced bead signals could be registered as well.

Image registration verifies further signal co-localization analysis, enabling intensity profile

comparisons on a pixel level within the set of fluorescent images of the same field of view.

3.3.2. Illumination correction

Working with high NA objectives and light point sources creates an uneven illumination of the

imaged area. Even if the microscope is in the best condition and set to the Köhler illumination

setting, the central area gets more illuminated than the edges, which causes the same cell to

be differently illuminated depending on the location within field of view.

40

Figure 24 Illumination correction result, (left) original CD3-labelled image, (center) corrected CD3 image, (right) line
plots along yellow selection of both background signals (red original CD3, black illumination corrected CD3),
contrast are set to 0.35 % saturated pixels

Applying a flat field correction algorithm suppressed the main irregularity intensity distribution,

as shown in Figure 24, where an image of cells stained with fluorescent anti-CD3 antibody is

corrected.

Compared to primary antibody image illumination correction, where the fluorescent image was

subtracted by the previous bleaching image and then divided by the mean-normalized

background estimation, secondary antibody fluorescent images were subtracted by their

primary fluorescent image (two steps before) and then divided by the mean normalized

background estimation. In this way, all signals introduced by this pre-staining step were

removed, leaving only the secondary antibody intensity information.

Polynomial background estimation based on the fluorescent bleaching image reflected the

spherical aberration caused by the lens and the liquid level on top of tissue sample, but with

enhanced noise in the image corners. Local SNR in these regions remained the same, due to

the multiplicative illumination correction value. If the fluorescence signal was previously

separable from the background, this fact holds true also after the illumination correction.

3.3.3. All in focus projection

Tissue sample preparation and the positioning of the sample under the microscope can cause

variations of the focal plane, due to tilted table adjustments, wavy like tissue contact to the

coverslip, uneven sample thickness, or object positions distribution within thicker tissue sample

slides.

Application and Results

Application and Results

41

Figure 25 Sketch of tilted sample. Light green: illumination distribution, green: cells, red: focal plane, orange:
liquid level, violet: sample, blue: coverslip

For these reasons, multiple images over the entire range of depth along the major focal plane

(red line in Figure 25) were acquired, most of the time by the diameter of one nucleus, +/- 5

µm respectively. The so-called image stack contained three-dimensional information of the

investigated tissue sample, which increased the opportunity for the sample to be in focus.

Next, an all-in-focus algorithm (based on “extended depth-of-field” (Pertuz et al., 2013)) was

applied to project the depth information back into a two-dimensional image to compensate the

tilted sample.

Figure 26 Workflow overview of best focus calculation

The workflow of the best in focus calculation (Figure 26) was split into three parts. Within the

first step, the entire image stack was transversally divided in a 32 by 32 grid (64px by 64px).

Here, the axial index of the best focus was found in each tiny stack by taking the maximum

standard deviation index of the inspected slices when testing the background corrected mean

intensity value in parallel. If the local mean intensity value was higher than the global mean

intensity value of the whole image stack, the focus index was assigned for the second step.

Tiny stacks which did not fulfilled the criteria were assumed to be background and are therefore

rejected from the following interpolation step. Within the interpolation (second) step, a “least

42

square fitting” algorithm was applied to fit a second order polynomial plane through all possible

indices, which was used to create a two dimensional focus map at the same lateral size of the

input image stack. Instead of simple two dimensional plane estimation, second order

polynomial plane estimation was applied, to improve possible image distortion or tissue

bending caused by altered liquid levels. The values in this map were focal plane indices. In the

third and last step, the values from the input image stack at the calculated focal planes were

collected. Due to the one micrometer step width of every layer, intensity values around an axial

Gaussian distribution with standard deviation of 1 were weighted, which reflected the intensity

spreading initialized by the system PSF. A normalized weighted sum along the axial axis at

the end generated the best in focus projected image.

The projected images reflected the sample content and eliminated the out of focus regions. In

case of superimposed objects, the most likely focal plane index was chosen, based on the

focus measure by standard deviation.

3.4. Image analysis of MELC data

Multi parameter images acquired with MELC contain separated information distributed in

various dimensions, if every different fluorescent staining is defined as a dimension. In a

combinatorial way, the information enables deeper insights than the single dimensions alone

and retains the possibility to answer complex biological questions on a spatial localized protein

level. Extraction of relevant information out of the images requires object detection, which

makes quantification, expression level comparison, cell communication and tissue dependent

hypothesis testing possible in the first place.

3.4.1. Image segmentation

In this work, one of the first segmentation pipelines was created in “CellProfiler” to identify

stromal cell networks and cell subsets (Holzwarth et al., 2018) in six different MELC run image

data sets from mouse bone marrow. Relying on image preprocessing, expression levels were

comparable (as tested by signal to noise transformation). Therefore, manual threshold-based

image binarization/segmentation of the network architecture could be applied and single cell

object detection was performed via automated watershed segmentation based on the Otsu

threshold calculation.

For quality control of the automated cell recognition pipeline, six trained raters were randomly

selected and asked to count cells within MELC images, in which B220 and ckit stained cells

represented the objects. The raters counted three different images, to compare the count

performance under divergent conditions to those obtained by “CellProfiler” pipeline.

Application and Results

Application and Results

43

Figure 27 Trained raters vs. automated segmentation validation, (Holzwarth, Köhler et. Al 2018) with permission
from John Wiley and Sons (Sep, 05, 2022)

The automated cell segmentation resulted in an average cell count within the range of trained

raters in all cases (Figure 27), however there was a high variability in counting of each trained

rater.

Figure 28 ilastik - CellProfiler segmentation, from left to right: probability maps of nuclei, (summed) membrane
and extra cellular matrix staining, segmentation result, scale bar 100 µm

Compared to the used data set, other MELC data showed that tissue sample integrity or

staining quality affects the intensity distribution within the single objects and thus throughout

the entire images. Traditional watershed segmentation requires a homogenous signal

contribution to identify single cell objects. Using the application “ilastik”, which uses a random

forest algorithm, we could train the software to recognize nuclei, membrane, and extracellular

matrix areas in our MELC images. Upon training, ilastik produced probability maps for each of

the assigned pixels and related groups (classes), which were then used for further

segmentation in CellProfiler (Figure 28Figure 29Figure 44). In order to obtain membrane and

extra-cellular matrix segmentation, summed images of stainings related to the predefined cell

region were used for training, to include all possible areas of fluorescent signal types.

Based on nuclei identification throughout adjusted watershed segmentation, cells positive for

one particular staining could be found via manual thresholding within single membrane or

nucleated regions, depending on the mean fluorescence intensity of the marker within these

cell areas.

44

Figure 29 segmentation improvement, from left to right: original image input, global otsu thresholded watershed
segmentation (found objects in cyan), ilastik and CellProfiler segmentation workflow (found objects in magenta),

scale bar 50 µm

The combination of ilastik and CellProfiler showed an improvement in the segmentation quality.

The number of counted cells increased approximately 8%, while the shape of the objects and

clumped object separation improved as well (Figure 29).

3.4.2. Cell type identification – phenotypic classification

Compared to conventional microscope systems with a fixed number of fluorescent channels,

MELC allows for the acquisition of a theoretically unlimited number of images of the same field

of view using diverse fluorescent-labeled antibodies. With increasing number of stainings, the

chance of identifying a specific functional cell type increases. Therefore, a “marker specified

searching” plugin for ImageJ/Fiji was developed to find user defined cell types within

segmented images.

As a test, the developed plugin was used for identification of B cells, plasma cells, T helper

cells, cytotoxic T cells and ckit+ progenitor cells within different image stacks from mouse bone

marrow (3.4.1). Only objects with nuclei were analyzed. The single combinations taken for

different cell types are shown in Table 3.

Table 3 cell type combination matrix

Cell Type B220 CD138 CD4 CD8 ckit nuclei

B cell

plasma cell

T helper cell

cytotoxic T cell

ckit+

The green highlighted boxes are interpreted as objects present in the image of the staining of

interest, while the orange ones are interpreted as no object at the desired image location and

staining. Only the cell objects fulfilling the criteria of present or absent objects in the chosen

combination were counted and visualized in the image stack.

Application and Results

Application and Results

45

Figure 30 workflow of "marker specified searching" plugin applied on MELC images, validated by FACS. (A)
Depicted MELC images of bone marrow from mouse, where red and green outlines represented identified objects.
Green objects indicating found cells and related cell type (ckit+, nuclei+) including all other objects with no
expression (Lin-); scale bars 100 µm (adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley
and Sons (Sep, 05, 2022)

Within six image stacks the single cell type frequencies were counted. The data obtained by

MELC were compared with FACS data of the same organs to verify segmentation and

combinatorial cell type identification via “marker specified searching” at the same time (Figure

30). All frequencies showed no significantly differences, as shown in Table 4.

Table 4 frequency comparison of cell type identification MELC vs. FACS

Cell Type frequency MELC [%] frequency FACS [%]

B cell 28.14 ± 5.81 37.80 ± 1.23

plasma cell 0.042 ± 0.12 0.044 ± 0.01

T helper cell 0.54 ± 0.16 0.67 ± 0.06

cytotoxic T cell 0.72 ± 0.08 0.65 ± 0.08

ckit+ 7.57 ± 2.29 8.72 ± 0.64

The differences in B-cell abundance may have been caused by heterogeneous expression of

B220 and higher variance in segmentation accuracy, but this tolerance of trained raters was

taken into account and adjusted for cell identification (3.4.1).

During the cell type identification algorithm development, a manual gating strategy like in FACS

analysis was applied based on single cell measured mean intensity to identify known cell types

in a supervised manner within MELC image data sets. By manual gating, a combination of

allowed minimum and maximum intensity (set by experts) of the single channel expression

levels is determined. This extended colocalization analysis tests for appearance of objects and

their intensity profile at the same time, allowing further characterization within the found cell

types, and finding sub-populations. Throughout five human tonsil MELC data sets, a total of

6391 ± 350 cells could be identified and classified out of a 53 marker panel.

46

Figure 31 representative 53 marker MELC run panel for ILC identification and localization, scale bar 100 µm
(Pascual-Reguant et al., 2021)

Besides the main cell types, such as B cells, plasma cells, T helper cells, cytotoxic T cells,

myeloid cells and endothelial cells, we could identify rare innate lymphoid cells (ILCs) as

demonstrated by the color code in Figure 31. In order to annotate a cell as ILC, the membrane

surrounding a nucleus should have a high expression level of CD45 and CD127, and a low or

non-existing level of the lineage (lin) panel (CD19, CD20, CD14, CD123, CD141 and FcεRIα

(Pascual-Reguant et al., 2021)). This specific cell type only occurred in 0.15-0.50 % of

analyzed data.

Next to the predefinition of known marker combinations a t-distribution stochastic neighbor

embedding (t-SNE) by support of principal component analysis was applied to the whole data

sets. This resulted in an automated identification workflow that replaced the time-consuming

and potentially biased manual work of MELC users. The mean fluorescence intensities of

different runs and markers were normalized to ensure comparability and interpretation of the

data. Applied hierarchical clustering pre-structured similar related cell signals in a tree like

relationship. Furthermore, k-means clustering offered at various cut-off levels major cell types,

their sub-population and ILC population as well. Analysis was interactively performed within

the application Orange.

Application and Results

Application and Results

47

Figure 32 Dimensionality reduction (t-SNE maps) of (a) intensity profile clustering results vs (c) pre-defined cell
types and (b) heatmap indicating sufficient overlap of manual and unsupervised clustering (Pascual-Reguant et

al., 2021)

The automated and manual gating strategy are compared in Figure 32, validating the main cell

type identification (germinal center B cells, B cells, myeloid 1/2, fibroblasts, endothelial cells,

plasma cells, T cells). The expectation of rare cell type identification was confirmed as well, by

the appearance of a spatially separated cluster cells bearing markers characteristic of ILCs.

Cell type identification of the clustered cells was supported by heatmap representation of the

used markers and found clusters. Heatmap representation promotes cell type subpopulation

characterization as well, by visual co-expression of related cell and class signals. Increasing

the number of clusters or reanalyzing only the desired populations can reveal additional

relationships. Based on object features, like size, mean fluorescence intensity or location, the

unique identifier makes a representation of clustered cells within the source images possible,

supporting neighborhood analysis and visualization in tissue context.

3.4.3. Neighborhood Analysis

In addition to object identification, quantification and phenotypic classification of single-cell

images, the spatial relationship of the objects in relation to neighboring signals improves the

understanding of cell communication and its specific localization. In addition to that, multi-

channel images of the same area support visualizing differences of similar stainings.

48

In order to investigate the spatial distribution of specific cells, a neighborhood analysis workflow

was generated, applied and tested on stromal markers, i.e. CXCL12, BP-1, VCAM-1 and LpR.

Images are part of MELC data sets used in 3.4.1.

Figure 33 spatial distribution analysis workflow, (A) CXCL12 input image, (B) segmentation result, colored in blue
outlines, (C) neighborhood regions (yellow) and central cell (red), (D) stromal matrix intensity distribution, scale
bar 50 µm; (adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05,

2022

Here, CXCL12-producing stromal cells were used as central object to create two different

circular regions with respect to the stromal cell soma: the proximal region with a radius of 0-10

µm and the distal region with a radius of 10-25 µm, as shown in Figure 33. Distance choices

were made by assuming an average cell diameter of 10 µm and a calculated average half

distance between adjacent stromal cell somata.

Figure 34 (top) stromal marker pixel density comparison, (bottom) colocalization analysis comparison; (adopted
from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 2022)

Within each proximal and distal region, the pixel density was calculated to compare signal

contribution of the markers on a single cell level, twelve images in total were taken from

Application and Results

Application and Results

49

different samples. Here, pixel density is defined as the ratio of pixel count belonging to a certain

object to the whole object-based area related pixel count. The difference from proximal and

distal pixel density was calculated for every object and summarized for each image, visualized

in Figure 34. Negative values highlight a larger distal signal distribution, positive values

highlight a larger proximal signal distribution, and values around zero indicate no preferential

signal distribution. In case of the GFP, BP-1 and LpR the main signal contribution occurs in

proximal region, whereas signals from VCAM-1 seem more homogenously spread.

Figure 35 Working principle of randomness test. (A) colocalization of two binary masks, (B) calculated overlap in
dependency to image transformation (rotation and flipping), (C) graph representation of calculated overlaps;

(adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 2022)

As an additional test for dissimilar signal contribution of the different stromal markers, I applied

colocalization analysis followed by a randomness test, to validate the results. Here, binary

masks were created out of the segmented images (similar to binary stromal marker images,

Figure 35A), which were used to calculate the overlap in dependency to a rotated or flipped

version of the images (Figure 35B). Out of every possible image (stromal marker) combination,

the overlap can be represented in a graph (Figure 35C).

Figure 36 (A) example overlap images of one dataset from binary masks used for colocalization analysis, (B)
summarized results plots of randomness test for all datasets; (adopted from Holzwarth, Köhler et. Al 2018) with

permission from John Wiley and Sons (Sep, 05, 2022)

50

Even if all stainings are considered to be stromal markers, their heterogeneous spatial signal

distribution could be shown within colocalization analysis (Figure 36A). Since calculated

overlap (blue circles) is “non-zero”, partial co-expression indicates stroma localization. The

subsequent randomness test verified that the observed colocalization was significantly higher

compared to random positioning (black dots, Figure 36B). Negative control colocalization test

(red circles, overlap of same markers from different data sets, Figure 36B) verified independent

image data handling.

Altogether, these results indicate that the complex compartment of stromal markers within

bone marrow is heterogeneously distributed, which was validated by colocalization analysis

and the test of randomness.

Out of the tonsil data from 3.4.2, the rare ILC population was taken to test neighborhood

analysis in between the semi-automatically found cell type objects, tissue related architecture

signals from vessels and extra cellular matrix (ECM).

Figure 37 Neighborhood analysis of ILC population out of tonsil data set. A) absolute count on cell types of 74 ILC
neighborhoods, B) separation of ILC neighborhood compared to whole area count on different cell types, C)

localization of vessel and fiber signal in ILC neighborhood, (Pascual-Reguant et al., 2021)

Compared to the entire tonsil area imaged, ILC neighborhood analysis showed differences in

frequencies from specific cell type quantification in the specific ILC niches (Figure 37). While

there were higher amount of plasma cells (PC), T helper (Th) cells and myeloid cells found in

the neighborhood, the numbers of B cells and cytotoxic T cells (Tc) were lower. Based on multi

parameter spatial data, the vicinity of ILCs to vessels could be confirmed in 70 % of all ILC

neighborhoods, in case of ILC in near distance to fibronectin fibers 80 % of all cases.

In summary, with the help of neighborhood analysis the micro-environmental characterization

of specific cell types in a spatial domain extended colocalization analysis and showed the need

of multi parameter image data, enabling cell communication observations.

Application and Results

Application and Results

51

3.5. Spatial Transcriptomics data analysis

Within a tissue remodeling study of human lungs, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), 12 post-mortem samples were measured by ST.

Along disease progression, these 12 samples were classified by disease duration into four

groups, namely control (non-COVID-19-related pneumonia), acute (up to 15 days of disease

duration), chronic (more than 15 day) and prolonged (in between 7 to 15 weeks).

3.5.1. Preprocessing ST data

After the sequencing, the data was demultiplexed and transferred into fastq format. In

combination with the aligned microscopy images sequence, fiducial detection and unique

molecular identifier (UMI) counting was performed via the software “Space Ranger”,

referenced by human transcriptome (GRCH38-2020-A). Tissue detection and alignment were

performed manually via the interactive software “Loupe Browser” before, since automated

detection and alignment are not implemented for multichannel/multilayer fluorescence

microscopy images.

Figure 38 depicted images of a chronic case, (left) LSM image of human lung sample, (right) unique molecular
identifier (UMI) count per spot, blue low UMI count, red high UMI count, scale bar 1mm

For each individual area captured, there was a results folder, some automated analysis, a web

summary, and a “*.cloupe” file to interactively browse the results in the “Loupe Browser”. In the

Loupe Browser the UMI count in every spot can be visualized (Figure 38), as well as the

general quality statistics. Besides automated analysis, the most important files are those

containing the featured barcode matrices, aligned spot positions and related images, which

are required for downstream analysis.

52

3.5.2. Data Integration

Sample heterogeneity and technical artifacts, such as sequencing depth or detected gene

counts make every single ST experiment unique. In order to investigate all 31801 found

barcoded spatial spots covered by tissue at the same time, data integration was required. For

this purpose an R script was written with the support of the Seurat package (Hao et al., 2021),

which is a toolkit allowing single cell genomics analysis, especially with spatial related data.

Figure 39 Violin plots of total gene count averaged per spot (nFeature), total amount of molecules averaged per
spot (nCount) and relative mitochondiral gene amaount per spot [%] averaged (percent.mt) in dependency of

samples, data already filtered

Filtering at the beginning ensured further analysis on only differentially expressed genes,

where every spot contained 250 genes and less than 13 % of mitochondrial content (Figure

39). For every sample single spot variability was stabilized by SCTransform normalization

(Hafemeister & Satija, 2019) and related captured areas as well. In this way, the local

expression values were comparable to each other and true biological spot variation remained

independent of the absolute number of genes or sequencing depth. Based on median variable

feature rank across all datasets, 3000 top selected features were used to integrate data.

Figure 40 Raw data gene expression in comparison to SCTransform integrated gene expression of prominent
fibrosis related genes

Application and Results

Application and Results

53

The expression values for prominent fibrosis related genes were used to visualize effect of

SCTransform normalization and integration compared to raw data set in dependency of their

disease sample identifier (Figure 40). At this stage every single sample can be interpreted as

acquired with same sequencing depth. An increase of these fibrotic genes count along disease

progression during SARS-CoV-2 infection supports hypothesis of ongoing lung fibrosis.

3.5.3. Dimensionality reduction and clustering

The amount of data from ST experiments makes manual single spot investigation time

demanding and possibly biased. Therefore, dimensionality reduction and clustering were

applied as an automated, objective and reproducible analysis pipeline, which was added to the

integration R script to perform cell type identification and related gene contribution investigation

of single spots.

Figure 41 dimensionality reduction (TSNE and UMAP) applied to raw and integrated data. Color code of clusters
in left panel from “Raw data” represents each of the 12 samples. On the right side of “Raw data” and “Integrated
data” panel color code represents the four disease phase related samples. Color code of left panel “Integrated

data” represents 12 major cell types as in heatmap (right).

Principle component analysis (PCA) reduced the normalized gene expression matrix

dimensionality down to the top 50 components, which were used for shared nearest

neighborhood (SNN) clustering initialization, followed by t-distribution stochastic neighbor

embedding (t-SNE) and uniform manifold approximation and projection (UMAP) visualization

(Figure 41). Along the various cluster resolutions and nearest neighbor settings calculations,

heatmap representation was used to determine final values (resolution set to 0.3 at 30 PCA

dimensions) to identify the 12 major cell types within the data. Because of the high gene count,

only the top 25 ranked differentially expressed genes of every found cluster were taken, and

displayed on the heatmap representation.

54

Both dimensionality reduction visualizations demonstrated the need for integration. In case of

raw data, the differences between samples were found and clustered. In case of integrated

data, similar expressed gene expression profiles were clustered together, as confirmed by

heatmap representation. Compared to t-SNE, UMAP calculation was faster and preserved

inner data structure at default values better. With a higher perplexity value, t-SNE could

achieve similar data structure visualization, but at the expense of computation time.

3.5.4. Gene set enrichment analysis

Gene set enrichment analysis (GESA) is one way to analyze gene related diseases in a

compact way. Here, a whole set of a priori defined genes that drive a disease or tissue state

are tested and compared simultaneously, in this specific case along the four disease

progression groups of SARS-CoV-2 infection.

Figure 42 Gene Set Enrichment Analysis (GSEA) of Spatial Transcriptomic (ST) data. (A) Enrichment plots of
GOBP_BLOOD_VESSEL_REMODELING pathway along disease progression (control, acute, chronic, prolonged).
(B) Dot plot of selected pathways, color coded in their normalized enrichment scores (NES) and leading edge counts
(LEC). (C) localization of NES from two pathways within example images of two disease stages in combination with

related clusters found and annotation of vessels, airways, fibrosis areas (adopted from Mothes et al., 2022)

First GSEA was applied only on the expression data from all samples grouped by disease

phase, resulting in four enrichment plots for every pathway, e.g. shown in Figure 42A were

blood vessel remodeling gene set was taken. The highest enrichment scores (ES) (peak value

of the plot) were normalized and combined in a dot plot (Figure 42B), allowing multiple pathway

observations on a small visualization scale. Dot sizes were adjusted to the number of leading-

edge counted genes (number of genes until peak of ES is reached). Within the tissue

remodeling study, the up- or down regulation of gene sets could be found. Out of the four

Application and Results

Application and Results

55

example pathways in Figure 42B, the disease phase dependent tissue remodeling could be

explained. We found that the broad dysfunction of the endothelial barrier at the beginning of

the infection leads to vessel remodeling attempts linked to progressive tissue fibrosis.

Since the ST data also had spatial parameters, single sample gene set enrichment analysis

(ssGSEA) was applied to localize pathway based enriched spots within the microscopy images

(Figure 42C). Here, the comparison of the two disease phase groups acute and prolonged

showed enriched expression in clusters 5 and 9, which was verified by annotation of specialist

pathologists. Cluster 5 spots contained transcripts, including highly expressed actin alpha 2

(ACTA2), indicating that they were located around medium-sized vessels. Cluster 9 spots

contained the highest expression of transcripts related to endothelial identity and complement

activation. Due to fibrosis in the annotated areas, these results suggested that fibrosis starting

in these vessel remodeled areas.

Overall applied GSEA and ssGSEA supported the identification and localization of gene set

driven disease pathways within ST experiments.

3.6. Added value of correlative MELC and ST analysis

Within the same tissue remodeling study of human lungs, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), consecutive slides of the same 14 post-mortem

samples were also measured by a 44 markers panel MELC, 32 FOV. The samples were split

by disease progression into four groups as well, namely control (non-COVID-19-related

pneumonia), acute (up to 15 days of disease duration), chronic (more than 15 day) and

prolonged (in between 7 to 15 weeks). To obtain both protein and transcriptional information,

we employed a combination of MELC and ST that complement each other, on serial sections.

Thereby, MELC provides a single-cell resolution using a panel of fluorochrome-conjugated

antibodies that specifically bind to proteins of interest, whereas ST enables higher throughput

to capture the whole transcriptome employing spatially resolved barcoded mRNA capture

probes that hybridize with tissue sections. Both techniques have their own advantages and

limitations, and the combination of these two techniques allowed us to gain a more

comprehensive understanding of tissue remodeling in SARS-CoV-2 infected human lungs.

56

Figure 43 marker panel overview of one representative sample and cell quantification (with additional Kruskal-
Wallis statistic), fibrosis score obtained by pathohistological examination of several lung sections from each donor

based on Elastica van Gieson staining with trend line via nonparametric Spearman correlation; image size 665
µm x 665 µm; (adopted from Mothes et al., 2022)

After image acquisition and image preprocessing, cells were segmented and quantified (Figure

43). An increase of fibrosis score, total cell numbers and immune cells (CD45 positive cells)

were observed in prolonged cases. As before, mean fluorescent signals were taken for

unsupervised clustering and dimensionally reduction representation for further cell type

identification via heatmap visualization. Instead of t-SNE, uniform manifold approximation and

projection (UMAP) was used, because of the calculation speed and a better preservation of

the data’s global structure within the dimensionally reduction map. Furthermore, all analysis

steps after segmentation and mean fluorescence intensity measurement were combined and

applied in the previously created ST analysis pipelines within “R”. Here the data integration

Application and Results

Application and Results

57

scripts from ST experiments were adapted to MELC data, allowing for visualization,

functionalities and comparisons in the same environment.

Figure 44 Uniform Manifold Approximation and Projection (UMAP) of identified cell types (A) and disease groups
(B) out of 14 samples imaged via MELC. (C) Dot plot representation of identified cell clusters along marker profile

expression (adopted from Mothes et al., 2022)

The main clusters found are shown color coded in Figure 44A. Additional to cell type

identification, group independent data handling was tested and visualized by Figure 44B,

where the same UMAP was used for disease group coloring. Besides heatmap representation,

dot plots represent not only the existence of desired markers in clusters and their average

expression level by color, they visualizes the expressed frequencies in size as well (Figure

44C). Therefore, the main contributing markers considered to their clusters verified the data

integration.

Figure 45 Quantification results of endothelial cells, epithelial cells and fibroblasts inside the found clusters
dependent on disease progression. Data from 32 samples analyzed by two-way ANOVA with Fisher’s LSD test,

(adopted from Mothes et al., 2022)

58

With respect to clustered cells, quantification of absolute cell numbers (Figure 45) showed an

increase of endothelial cells, epithelial cells and fibroblasts along disease progression.

Figure 46 representative MELC images from smooth muscle actin (αSMA) in blue, CD31 in cyan, pancytokeratin
(PCK) in magenta and ER-TR7 in yellow in an example field of view (FOV) in lung tissue at different disease

stages, scale bar 100 µm (Mothes et al., 2022)

In line with the increase of fibrosis associated cells, stainings of αSMA and ER-TR7 showed

an allocated clumping and higher contribution of marker specific signal within later disease

stages on a single cell level (Figure 46). Epithelial tissue remodelling caused by structural

changes were visualized by PCK staining.

Altogether, applying ST analysis to MELC data confirmed and disclosed a dysregulated

immune response due to COVID-19 infection, resulting in a cascade of processes initializing

and ending in tissue remodeling. The combination of both spatial multiplex methods benefited

from the created R script, which ranged from a high number of parameters (genes) in case of

ST, to single cell resolution in case of MELC.

3.7. LSFM image data analysis

The low numerical aperture cylindrical lenses architecture creating the light sheet in this

microscope results in a much longer light path, which increases the probability of light

scattering through the differentially distributed refractive index and related tissue density. This

also increases the likelihood of artifacts. This becomes evident in femoral and tibia bones, in

the context of a bone regeneration model, where characterization of fluorescence-stained cells

in contrast to their unspecific signal was affected.

Application and Results

Application and Results

59

Figure 47 LSFM measured tibia from reporter mouse illustrates stripe artifact along all fluorescence channels, red
boxes indicates enlarged area (images at the bottom), scale bar 200 µm, depicted images from layer z=275

The images with enhanced stripes in Figure 47 were taken from a test data set, where a

CX3CR1-GFP x Cdh5 GFP-TdTomato reporter mouse’s tibia was imaged at a voxel resolution

of 0.755x0.755x3.000 µm³, final image size 2560x1280x719 px³ for each fluorescence

channel. Stripes occurred along all six illumination directions, being related to the angles of the

three laser beams that form the light-sheet from left and right sides. Due to the heterogeneous

tissue-based refractive index distribution and related refractive indices, the stripes showed no

regularity, and appeared dependent on tissue layers at different positions.

In order to investigate the staining performance and related image quality along different

measurements of young and old mice within the bone regeneration model, signal to noise ratio

(SNR) calculations should be used, but this required stripe free images. For this, a stripe

suppression workflow, which preserves the main signal, had to be developed. Morphological

filter operations would have handled the image locations differently depending on existing

stripes. Because of this, image processing was shifted to the Fourier domain, since it was

expected that repetitive stripes would be associated with specific frequencies that are

dominant in the Fourier spectrum.

60

Figure 48 2D FFT and histogram of the depicted images at layer z=275, calculated and displayed in ImageJ/Fiji

Numerous stripes had similar angles. After two-dimensional fast Fourier transformation (2D

FFT), stripes contributed frequencies highlighted in the same angular direction (Figure 48).

Due to FFT calculations, the angles were rotated by 90°. Histograms of the different

fluorescence channel images showed the three areas of the acquired tissue sample. Low

values represented the overall background signal. The midrange intensity values or second

peak illustrated the hard tissue (cortex) surrounding the soft bone marrow tissue. The last very

broad spread peak contained all the tissue related signals (endosteal bone and bone marrow),

including the stripes information, which caused a broaden distribution.

 Figure 49 filter masks for each stripe angle

Stripe suppression in the Fourier domain was created based on the device-related properties

and the measured angles within the image data. The central area of the FFT image contain

the most important low frequencies to reconstruct the image. This region needs to be

untouched by the filter. However, high frequencies are also important to recover edges within

the images. Due to similar signal height of the outer frequencies in the FFT images, a band

pass filter design was chosen. Filter masks are represented in Figure 49.

In case of the low frequency band, the size of a circular area radius was calculated based on

a Gaussian fit of the 45° line values of the FFT image. These values minimally contributed to

the stripe-associated frequencies. The estimated standard deviation (sigma) was taken as the

diameter for this region. In case of the high frequency band cut-off, the doubled standard

deviation width estimation of a Gaussian fit along stripes values were used. In contrast to single

Application and Results

Application and Results

61

line selection and multiplication at the stripe angles with zero, a continuous Gaussian

decreasing line function with increasing sigma in the direction of image boarders was used to

avoid the aliasing (Gibbs phenomenon) artifacts after back transformation in real space,

inverse FFT. The line width was adjusted to the light-sheet size, by increasing sigma the

function recovered the scattered angle tolerance. All measurements and values are taken from

the absolute FFT magnitude images and scaled logarithmically. Each angled stripe

suppression was performed sequentially.

Figure 50 LSFM measured tibia from reporter mouse after FFT destriping approach along all fluorescence
channels, red boxes indicates enlarged area (images at the bottom show striped illumination function), scale bar

200 µm, depicted images from layer z=275

The test images showed less striped signal within the tissue after the application of the FFT

destriping approach (Figure 50). The subtraction difference between the original and the

destriped images represented the striped illumination functions.

62

Figure 51 Enlarged area around the tissue sample's edge show additional stripes by filter mask, scale bars 50 µm

A closer look to the tissue sample’s edges showed additional stripes that were produced by

the FFT filter mask (Figure 51). They were found around high intensity structures as well. In

case of the test image data set not only single angled stripes occurred, which resulted in a

complex mixture of stripe signals due to higher harmonics of the original stripe frequencies.

Application to other datasets was used to confirm the main working principle that provides

stripe suppressed images.

Figure 52 depicted images of LSFM measurements of two reporter mouse’s femoral bone, scale bars 200 µm

Application and Results

Application and Results

63

Stripe suppression by directional FFT filtering of the LSFM measurements of femoral bone

from two different reporter mice (Cdh5+tdTomato and Prx1+-RFP) in Figure 52 with predefined

parameters showed a better destriping result compared to the tibia data set. Stripes of several

micrometer thickness (top area of Figure 52 within Prx1+RFP data set) were not fully

suppressed, which resulted in a smoothed long waved illumination function. However, signal

preservation along the central mean line along this illumination function was still given. Image

data sets were acquired using the same microscope parameters.

Figure 53 enlarged areas (387x387 µm²) of red boxed regions of previous figure

The relatively sharp stripe signal and constant orientation of the stripe signal resulted in a

better differentiation between the imaged tissue sample and the artifacts. The underlying signal

of cellular and vascular structures were preserved (Figure 53). The Gibbs phenomenon around

the edges was still present, but to a much lower extent. The mean intensity background signal

distribution outside the tissue showed no clear difference after FFT filtering. These results

indicate a relationship between the applied filter mask mean amplitude offset dependency. The

image destriping performance was considered to be sufficient for further image analysis, as

subsequent SNR calculation or object identification was no longer influenced by the stripe

artefacts.

In order to calculate the SNR, object identification was required to differentiate signals from

structural components, tissue background or area outside the sample. Therefore, a random

forest algorithm within the application ilastik was trained to classify pixels by manual annotation

in the destriped test images. The classified pixels were used to identify necessary mean object

intensities and standard deviation values of the images. In addition, the destriping approach

performance could be quantified.

64

Figure 54 pixel classification result masks from reporter mice, where blue indicates probability of outer tissue
signal, green represents tissue area and red shows main vascular or cellular probability

Out of the generated probability maps (Figure 54), objects of the desired classes were created

by simple thresholding. Because of the three classes (background, tissue, objects), pixels of

the related object classes were taken at a probability higher than 66 % and used for mean

intensity (µ) measurements or standard deviation (σ) calculation in the destriped images and

original input images, respectively. Due to average SNR calculation, no further object

separation of single cells or vessels was required.

Table 5 PSNR, SNR and SBR measurements from original and destriped images

sample layer PSNR_orig PSNR_destr SNR_orig SNR_destr SBR_orig SBR_destr

160101 Z0250 13,61 13,45 6,92 6,87 1,30 1,29

160101 Z0300 13,74 13,50 7,29 7,25 1,29 1,27

160101 Z0350 17,46 17,08 7,66 7,65 1,22 1,21

160101 Z0400 19,16 18,74 7,63 7,63 1,24 1,22

160101 Z0435 18,81 18,43 8,06 8,10 1,24 1,22

160101 Z0450 17,62 17,34 8,44 8,49 1,24 1,22

160101 Z0500 12,97 12,81 7,03 7,01 1,27 1,26

AVG 16,20 15,91 7,58 7,57 1,26 1,24

stdDev 2,46 2,37 0,51 0,54 0,03 0,03

sample layer PSNR_orig PSNR_destr SNR_orig SNR_destr SBR_orig SBR_destr

170717 Z0150 6,71 6,59 6,74 6,89 1,16 1,13

170717 Z0175 10,52 10,31 5,54 5,48 1,13 1,10

170717 Z0200 12,58 12,21 5,25 5,22 1,10 1,07

170717 Z0225 13,96 13,62 5,36 5,34 1,09 1,07

170717 Z0235 13,38 13,09 5,31 5,32 1,08 1,06

170717 Z0250 13,31 12,93 5,15 5,16 1,06 1,04

170717 Z0275 11,48 11,03 6,11 6,10 1,04 1,02

AVG 11,71 11,40 5,64 5,64 1,10 1,07

stdDev 2,32 2,24 0,54 0,58 0,04 0,03

Application and Results

Application and Results

65

Calculation of the features:

𝑃𝑒𝑎𝑘 𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑃𝑆𝑁𝑅) =
µ𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑁𝑅) =
µ𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑡𝑖𝑠𝑠𝑢𝑒

𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑎𝑡𝑖𝑜 (𝑆𝐵𝑅) =
µ𝑠𝑖𝑔𝑛𝑎𝑙

µ𝑡𝑖𝑠𝑠𝑢𝑒

Several destriped images of the two data sets were depicted and used to calculate the signal

relations based on the three object classes (Table 5). The measurements seem to be

independent of existing stripes, indicating that stripe structures are a result of interference,

illumination enhancement and the suppression around tissue’s local mean intensity. Further

SNR measurements at different disease phases (imaged tissue sample at different points in

time in a bone regeneration model) showed no loss in signal performance. However, destriping

was essential for object identification and related quantification, neighborhood analysis, or

single voxel analysis.

Figure 55 segmentation comparison of striped and destriped depicted Cdh5+tdTomato vascular image. Red
outlines illustrate objects found in striped image, whereas green outlines represent objects found in destriped

image, scale bars 200 µm

In order to show the influence of the stripes during segmentation, the top images of the

vascular system and cells in both cases (striped and destriped) were segmented using the

developed object identification workflow (Figure 55). Thereby, random forest training within the

application ilastik was performed on each image case individually to guarantee best probability

map calculation and increase segmentation performance. Due to similar signal of stripes and

objects, results showed that objects found in the striped images cross real object boundaries,

while objects were separated from tissue background signal in the destriped images. As shown

in the SNR calculation, found objects can then be used for real signal measurements and

further cell-object-based communication analysis.

66

4. Discussion and future prospects

Developments in recent years have highlighted the importance of image data analysis and

associated reliable data pre-processing - a task that cannot be achieved without a thorough

understanding of the physics behind the microscopic image. The principle of image acquisition

in fluorescence microscopy is general and applicable to microscope-based methods such as

MELC, LSM or LSFM, and results in a matrix-structured representation of the extracted

features - the images. In addition, recent developments have made it possible to combine the

detection of differentially expressed genes by sequencing with spatial information, such as ST.

The information obtained from each device differs in system-dependent characteristics.

Therefore, each analysis pipeline is unique to its device characteristics and conditions (Miura

& Sladoje, 2019), so the pre-processing should be adapted to the data acquisition scheme,

where physical aspects lead to image aberrations. However, images and their associated data

provide a solid foundation for quantifying biologically relevant data.

In this thesis, image data from various microscopy techniques were used to create supervised-

and unsupervised bioimage analysis workflows validating biological questions, which were

conceptually developed on the improved MELC system. Independent of single cell or tissue

structures, features such as morphology, signal distribution and localization are present in

these multi-parameter data sets. Additional hardware-related image artifacts could also be

identified, categorized, suppressed, or removed. Furthermore, the application of signal-

dependent classification in MELC and ST-related data enabled linkage at the protein and

transcriptional level in biological tissues. Conceptually, the bioimage data analysis workflows

created in the different projects followed the same scheme: data acquisition, pre-processing,

object identification, classification and representation of the results. Based on the biological

question and available data, a possible object interaction realized by neighborhood analysis

was applied.

4.1. Seeded region growing and DFT shape descriptors for analysis of
microglia in LSM images

Compared to other acquisition methods that require a detailed artifact model description for

image data preparation, LSM images within the dementia model could be pre-processed by

maximum intensity projections to sufficiently enhance object details while reducing noise.

Since these images were acquired with only one fluorescent channel, image registration was

not necessary.

Simultaneously with improvement of the MELC system and the associated image analysis, a

self-written “Seeded Region Growing” (SRG) algorithm as part of the

“MELC_Evaluation_Toolbox” was used to extract microglial objects via GFP detected

Discussion and future prospects

67

expression from these LSM images. Due to the SRG algorithm used, the fine structures could

be found better. With the objects, the complex shapes of the microglia in different aging mouse

brain samples could be described by closed object contours, avoiding the use of the ImageJ/Fiji

PlugIn “ABsnake” (Andrey & Boudier, 2007) as used in “SHADE” (Kriegel et al., 2018b), where

contour features were smoothed due to the object shape fitting model. In addition, the PlugIn

enabled the identification and extraction of all microglia and associated outlines in one image,

whereas SHADE required individual object images. Even if the class Microglia is defined by

the object itself, the loss of processes with increasing age was described using the DFT shape

descriptors. Thereby the reduction of the complex shape information to a set of 20 coefficients

was used to observe differences, store and represent the results in a compact way (Radbruch

et al., 2017). Furthermore, these descriptors could also be used to train machine learning

models for cluster analysis and group based information (Kriegel et al., 2018a).

4.2. Enhanced MELC analysis workflow for spatially automated
phenotypic classification and cellular communication investigation

Among other things, MELC imaging is affected by mechanical tolerances and therefore

requires image pre-processing. Image registration, compared to similar automated or manual

imaging methods (Eng et al., 2022; Gut et al., 2018; Lin et al., 2015; Wählby et al., 2002),

ensures that the signal contribution of each pixel detected by different stainings originates from

the same location. Thereby, the application of the phase cross correlation (Guizar-Sicairos et

al., 2008) using phase contrast images allowed image registration accuracy down to subpixel

resolution, in this case by a tenth of the pixels size due to FFT based computation. Compared

to segmentation based methods of fluorescence stainings, or those in ST data pre-processing

(fiducial image alignment), which rely on pattern recognition, an increase of ten times higher

accuracy was obtained. Artefacts originating from the excitation illumination function

interaction with the tissue sample were also observed in MELC image data sets. Even when

the updated lens and camera adapter were corrected for possible spherical distortions, the

changing liquid level on the sample during the cyclic measurement caused additional optics-

related light focusing and thus a change in the illumination function. These effects were

eliminated by adapted “flat field correction” algorithm (Herman, 1980). Here, the subtraction of

the previous bleaching image from the current fluorescence image removed resting signal and

dark image offset, where regression based cubic spline interpolation was used to flatten the

illumination function based on the bleaching image. Due to a self-designed and printed sample

holder or sample preparation, possible tissue sample tilting or bending was corrected by an

“all in focus projection”. Contrary to “extended depth of field” (Pertuz et al., 2013), standard

deviation focus measurements were used to find the best tilted focal plane and project only the

68

signal related to the PSF of the system into a final two-dimensional image. In this way out of

focus regions did not contribute to the final projection.

In case of nucleated cells or structural signal distributed over the image, the application

“CellProfiler” was introduced as modularized segmentation tool, which allowed microscope

users upon training the interactive creation and fine tuning of identification and measurement

pipelines. Based on the image pre-processing, a watershed segmentation by manual

thresholding was sufficient, which led to similar counting results in terms of variance compared

to trained raters (Holzwarth et al., 2018). Nevertheless, the possibility of longer measurements

due to external light source usage and the extension of fluorescent markers along MELC

experiments, an increase in intensity distribution variance was observed. In order to improve

segmentation accuracy related to signal variability, the application “ilastik” was introduced

(Schapiro et al., 2017), to pre-classify the image pixels in relation to nuclei, extra cellular matrix,

background or other structures. In addition to ilastik, the imageJ/Fiji PlugIn “Trainable WEKA

segmentation” (Arganda-Carreras et al., 2017) should also be mentioned, which works in a

similar way in principle, but was not used here. By conversion of real valued measurements to

featured variables through different sized image filters, a random forest model could be trained,

where class labels were set manually by drawing based on the desired images of a single

fluorescence channels. In case of fluorescence images representing same class regions by

staining, summed images were used to increase the probability of detection. Using the

resulting probability maps as input for image segmentation in CellProfiler, the object count

within the images could be increased by about eight percent. The additional resolution

improvement of the MELC system by 60% laterally and 250 % axially, achieved by replacing

the camera and objective lens also supported the segmentation performance.

In case of objects from MELC, data sets contained distributed information along several protein

levels, which enabled the phenotypical classification of similarly shaped objects. It thereby

allowed cell differentiation at a higher degree, compared to other physical limited fluorescence

microscopy or morphology based methods (Fekri-Ershad, 2021; Kriegel et al., 2018b). The

first steps in cell classification development were adopted from the idea of binary decision trees

and were part of the “MELC_Evaluation_Toolbox”. Here, colocalization of signals was used to

distinguish individual cell objects. In addition to the identification of colocalizing objects, mean

or median fluorescence intensity measurements of the objects in desired images of various

markers using CellProfiler increased the level of subpopulation differentiation, as shown by

others (Gerner et al., 2012; Schapiro et al., 2017). In accordance to FACS analysis, manual

gated signal evaluation and object classification within microscopy images lead to identification

of major cell types in tissue samples of mouse, e.g. bone marrow, and human, e.g. tonsil, but

also in rare cellular subsets such as ILCs, which occurred in 0.15-0.50 % of the analyzed data

(Holzwarth et al., 2018; Mothes et al., 2023; Pascual-Reguant et al., 2021). With the constantly

Discussion and future prospects

Discussion and future prospects

69

growing number of possible marker combinations, the individual step sequences for manual

gating also grew. In order to circumvent this, dimensionality reductions such as PCA, t-SNE

and UMAP followed by clustering analysis were used to create an unsupervised, automated

workflow reducing the risk of biased data handling and project the complex structured data in

to a two dimensional map. The resulting cell class clusters were still set by manual

interpretation of experts, but could show in comparison to manual gated data sufficient overlap,

especially in case of rare cell subsets, which were also promoted by heatmap representation

revealing other cell subpopulations. In addition to single cell analysis including phenotypically

classification and colocalization, neighborhood analysis was applied to extend the micro

environmental characterization of specific cell types in a spatial domain, which enabled the

investigation of cell communication processes. Thereby the heterogeneously distribution of

stromal markers within mouse bone marrow could be shown (Holzwarth et al., 2018), as well

as the near distance of ILCs to vessels and fibronectin fibers (Pascual-Reguant et al., 2021).

Validation of the distribution results from applied neighborhood analysis were confirmed by a

randomness test. In contrast to a previous method (Zehentmeier et al., 2014) in which

individual objects in the microscopic images were randomly positioned multiple times, the

approach along the Stroma marker and ILC projects used image transformations, such as

rotation or flipping, as a combinatorial computational basis for possible colocalizations. In that

way, calculation time could be decreased and the relation to other tissue sample images

containing different stainings or objects could be shown.

4.3. Comprehensive workflow for object characterization and phenotypic
identification in Spatial Transcriptomics

Objects from ST experimental datasets benefit from the workflow developed by MELC,

including pre-processing and object characterization, which is even more necessary due to the

number of expressed genes (Hao et al., 2021). It should be noted that the objects (spots) in

ST were given by the method itself and could contain multiple cells due to their size (55µm in

diameter), but also had to be aligned due to their unique barcoded fiducials.

In contrast to MELC datasets, where Min-Max, SNR or arcsinh normalization and

transformation of mean-object-signals were sufficient for phenotypic classification along

different measurements, ST data sets exhibited high variance not only per measurement but

due to data acquisition per spot. For this reason, data normalization was performed via

SCTransform to improve visibility of highly differentially expressing genes and remove outliers

by harmonization of Pearson residuals (Hafemeister & Satija, 2019). Furthermore,

normalization was required for whole data integration, which enabled the investigation of

pathomechanisms in all 12 SARS-CoV-2 post-mortem human lung samples at a time. Besides

the upregulation of endothelial and fibrosis related genes found in later disease phases,

70

ssGSEA was applied to localize pathway based enriched spots within the microscopy images

suggesting that fibrosis starts in these vessel remodeled areas. ST analysis was confirmed by

MELC and disclosed a dysregulated immune response due to COVID-19 infection, resulting in

a cascade of processes initializing and ending in tissue remodeling (Mothes et al., 2023)

4.4. Improved object identification accuracy through FFT-based filtering
for stripe artifact suppression in LSFM measurements

The spatial to frequency domain conversion was also used for stripe artifact suppression in

LSFM measurements, because in the centered frequency domain, similarly oriented stripe

signals accumulate along the axes of the incident laser beams and can be directly filtered while

preserving the main signal. In contrast to compressed sensing methods (Schwartz et al., 2019),

where eliminated frequencies were reconstructed by total variation minimization, the filter was

designed, based on known device properties and estimated tissue sample interactions. Other

“wavelet”- or “non-subsampled contourlet” transformation based stripe elimination methods

(Kang et al., 2015; Li et al., 2015; Liang et al., 2016; Münch et al., 2009) follow the same

concept in core, but with prior consideration of the transformation axes and aliasing effect

reduction by Gaussian weighted distributions. Furthermore, the calculation time increased to

several minutes per image due to the different transformation steps, which led to an additional

exclusion criterion. However, these methods showed no beneficial increase in stripe

suppression compared to the self-designed FFT filter mask, which results allowed to improve

segmentation performance.

4.5. Standardized analysis pipelines for data integration of multiple
complementary spatial technologies - augmenting access to
information

Overall, the pre-processing of the image data in all projects ensured the removal of artifacts

and signal enhancement through the application of system-specific analysis pipelines related

to physical image formation. Although the individual algorithms used differed in their

application, they were all necessary for the subsequent image segmentation step.

In order to perform quantitative image analysis, the identification of objects within microscopy

images was essential. Therefore, different segmentation tools and algorithms were applied to

obtain single cell objects or structures from image data. Combining system specific pre-

processed data, semi-automated feature conversion in ilastik and object identification in

CellProfiler in one workflow enabled quantitative image analysis across projects (Mothes et al.,

2023; Pascual-Reguant et al., 2021), and allowed users of different microscopes (LSM, LSFM,

etc.) the chance of object related feature extraction (such as mean fluorescence intensity

Discussion and future prospects

Discussion and future prospects

71

values, location information or morphology related properties) upon a short image analysis

introduction.

Once the objects were found, they had to be phenotypically identified. Using the workflow

developed and adapted in "R", even rare subsets could be identified. The combination of the

two spatial multiplexing methods contributed significantly. The advantages of both methods,

the high number of parameters (genes) and the observation of the whole tissue in the case of

ST with the single cell resolution at the protein level in the case of MELC benefited from the

applied dimension reduction and cluster analysis. This also allowed simultaneous validation

within the data. With the help of the developed image analysis workflow, it is thus possible to

structure a lot of information from different imaging techniques data and extract features.

The last optionally applied neighborhood analysis made it possible to capture the

communication between objects and the relation to their spatial arrangement within large

measurement data. Another reason why spatial imaging is necessary is that it allows objects

to be observed within their "natural" environment. Especially since neighborhood analysis can

also be applied to live cell imaging. Based on located and identified objects, their spatial

relation to the environment.

4.6. Prospects for future multiplexing projects

Multiplexing as part of microscopy, or as part of spatial localized gene expression detection, is

a continuously evolving field in biology, medicine or bioimage data analysis. Thereby, the

associated development of hardware and software solutions is an ongoing process as well.

With improving resolutions, increasing number of parameters and advanced algorithms, the

insights to functional biological processes may become visible at higher degree of detail in

future. This is why I will introduce some thoughts and ideas for future projects in the next

paragraphs.

One example refers to the MELC system. Typically a measurement requires roughly one hour

for each cycle, because of incubation time, image acquisition, bleaching time and pipetting.

This time increases with the raising number of FOV. If the sample could imaged and bleached

along the entire sample in one cycle, the information content and related time could be

improved. Therefore the excitation light has to be applied at all positions of the sample equally.

Unfortunately, the required amount of light is limited by the system and an increase of power

could also result in phototoxic or destructive processes in the tissue sample. An alternating

laser, which randomly bleaches certain regions could be a solution. Additional to this, spectral

unmixing, as utilized in Rakhymzhan et al., 2021, could also be used, to reduce the bleaching

time and decompose the different signals by that. Furthermore, the applied image registration

could be extended and applied right at the beginning of the MELC run, which would allow to

72

relocate and reuse an already used cover slide, because of the tissue preservation after each

MELC run.

As another example, object identification by use of convolutional neuronal networks could

replace semi-automated image segmentation workflows via ilastik and CellProfiler, based on

pre-trained models, as shown in Du et al., 2021, where nuclei were found and used to quantify

human cells from skin and confirm FACS experiments, similar to 3.4.1. Due to the fact, that

the segmentation results were best for nuclei only, the ImageJ/Fiji Plugin “StarDist” (Schmidt

et al., 2018) was not used in the presented projects. Newer pre-trained models, such as

“Cellpose” (Stringer et al., 2021) also allow the detection of other structural objects and could

improve the image segmentation in later projects. However, the use of these models require

besides common objects, like nuclei, the re-training with annotated image data from the utilized

microscopes. On the other hand, pixel based classification of all available parameters of a

location would avoid any segmentation approaches and could highlight differences at sub

cellular resolution.

Finally, an idea for a future project that requires all the tools developed and used in this work

could be the investigation, characterization and classification of epithelial or endothelial cells

around vessels in already available data sets from infected human lungs in terms of disease

progression and tissue remodeling caused by SARS-CoV-2 infection. In contrast to the nicely

oriented and aligned cell distribution of such cells in the control data sets, a disruption

associated with dysfunction in relation to lung fibrosis was visually seen by using LSFM, MELC

and ST (Mothes et al., 2023) at later disease progressions. Combining image segmentation,

morphology classification via DFT shape descriptors and neighborhood analysis could further

validate the results and would allow a closer look into the cellular communication processes.

In addition, the extension of the existing two-dimensional algorithms to three-dimensional

applications with regard to LSM, LSFM and MELC could increase the information content

obtained.

Discussion and future prospects

73

5. Summary

Title: Bioimage analysis linking information at protein and transcriptional level in

tissues

The optical resolution by human eyes is limited. This is why microscopes were invented, to

enable the observation of smaller objects through a specific arrangement of optical

components, as well as the investigation of biological processes regarding disease or

treatment. Through the microscope’s eye, the camera, images of various tissue stainings can

be digitalized and stored on computers. At this time, image interpretation is often performed

by the investigator. Manual annotation or counting is a subjective process by the observer,

time consuming and therefore perhaps biased. Additional physical limitations increase the

chance of misinterpretation regarding aberrations or other distortion artifacts, as well as

complexity, which increases by the growing number of available parameters from the same

location, notably in spatial gene expression detection. Bioimage analysis, as a newly emerging

field in recent years, combines data analysis and imaging methods related to the study of

biological processes and has led me to this work, where image data from various microscopy

techniques were used to create supervised- and unsupervised bioimage analysis workflows

validating biological questions in tissue samples from mouse and human, which were

conceptually developed on the MELC system. Thereby, the MELC-system was improved to its

overall image quality regarding resolution (laterally 60%, axial 250%), duration of MELC-

experiments (reduction of heat and related drying of tissue sample, increase of detectable

fluorescence signals) and signal evaluation (artifact removal). The application of system

related artifact removal algorithms, such as image registration, illumination correction, image

projections or destriping were part of required image pre-processing, which standardized

subsequent image segmentation in ilastik and CellProfiler. Classification of found objects or

cells benefited from clustering or dimensionality reduction methods simplifying complexity of

multi parameter data sets. The application of neighborhood analysis supported the

investigation with regard to spatial localizations and interaction. Based on quantitative image

analysis workflows developed, including image pre-processing, image segmentation, object

identification, classification and representation of the results, a general path from image

acquisition to meaningful data evaluation as tool for users could was realized in case of LSM,

MELC and LSFM data. Furthermore, the application of MELC and ST linked the information

obtained between the protein and transcriptional level. In this way several observations were

made, which helped to answer questions in immunology and neuroscience. Segmented LSM

images of microglia from aging mice revealed the morphological changes and loss of

processes during the course of dementia, using DFT descriptors as a compact way to describe

complex shapes. The distribution of the complex compartment of stromal markers in the bone

Summary

74

marrow of mice was heterogeneous, which can provide insights into their roles in

hematopoiesis and immune cell development. Supervised and unsupervised image analysis

workflows identified rare ILC populations in MELC images of mouse tonsils. In addition, their

location around vessels and fibronectin fibers was detected by neighborhood analysis. Finally,

SARS-CoV-2-induced tissue remodeling was observed in human lung samples from MELC

and ST experiments.

75

6. Zusammenfassung

Titel: Biobildanalyse, die Informationen auf Protein- und Transkriptionsebene in

Geweben verknüpft

Die optische Auflösung des menschlichen Auges ist begrenzt. Deshalb wurden Mikroskope

erfunden, um die Beobachtung kleinerer Objekte durch eine bestimmte Anordnung optischer

Komponenten sowie die Untersuchung biologischer Prozesse im Hinblick auf Krankheit oder

Behandlung zu ermöglichen. Mit Hilfe des Auges des Mikroskops, der Kamera, können Bilder

von verschiedenen Gewebefärbungen digitalisiert und auf Computern gespeichert werden. Zu

diesem Zeitpunkt wird die Bildinterpretation häufig vom Untersucher selbst vorgenommen. Die

manuelle Markierung oder Zählung ist ein subjektiver Prozess des Beobachters, zeitaufwändig

und daher möglicherweise voreingenommen. Zusätzliche physikalische Begrenzungen

erhöhen das Risiko von Fehlinterpretationen in Bezug auf Aberrationen oder andere

Verzerrungsartefakte sowie die Komplexität, die durch die wachsende Anzahl verfügbarer

Parameter am selben Ort zunimmt, insbesondere bei der Erkennung der räumlichen

Genexpression. Die Biobild-Analyse, ein in den letzten Jahren neu aufkommender Bereich,

kombiniert Datenanalyse und bildgebende Verfahren zur Untersuchung biologischer Prozesse

und hat mich zu dieser Arbeit geführt, bei der Bilddaten aus verschiedenen

Mikroskopietechniken verwendet wurden, um überwachte und unüberwachte Biobild-Analyse-

Arbeitsabläufe zur Validierung biologischer Fragen in Gewebeproben von Maus und Mensch

zu erstellen, die konzeptionell auf dem MELC-System entwickelt wurden. Dabei wurde das

MELC-System hinsichtlich seiner Gesamtbildqualität in Bezug auf Auflösung (lateral 60%,

axial 250%), Dauer der MELC-Experimente (Reduktion der Hitze und damit verbundener

Trocknung der Gewebeprobe, Erhöhung der detektierbaren Fluoreszenzsignale) und

Signalauswertung (Artefaktentfernung) verbessert. Die Anwendung systembezogener

Algorithmen zur Beseitigung von Artefakten, wie Bildregistrierung, Beleuchtungskorrektur,

Bildprojektionen oder Entstreifung waren Teil der erforderlichen Bildvorverarbeitung, die die

anschließende Bildsegmentierung in ilastik und CellProfiler standardisierte. Die Klassifikation

der gefundenen Objekte oder Zellen profitierte von Clustering- oder Dimensionali-

tätsreduktionsverfahren, die die Komplexität der mehrparametrigen Datensätze vereinfachten.

Die Anwendung von Nachbarschaftsanalysen unterstützte die Untersuchung im Hinblick auf

räumliche Lokalisierungen und Interaktionen. Basierend auf den entwickelten quantitativen

Bildanalyse-Workflows, die Bildvorverarbeitung, Bildsegmentierung, Objektidentifikation,

Klassifikation und Ergebnisdarstellung umfassen, konnte im Falle von LSM-, MELC- und

LSFM-Daten ein allgemeiner Weg von der Bildaufnahme bis zur aussagekräftigen

Datenauswertung als Werkzeug für die Nutzer realisiert werden. Darüber hinaus wurden durch

die Anwendung von MELC und ST die gewonnenen Informationen zwischen der Protein- und

Zusammenfassung

76

der Transkriptionsebene verknüpft. Auf diese Weise konnten mehrere Beobachtungen

gemacht werden, die zur Beantwortung von Fragen in der Immunologie und den

Neurowissenschaften beitragen. Segmentierte LSM-Bilder von Mikroglia aus alternden

Mäusen zeigten die morphologischen Veränderungen und den Verlust von Prozessen im

Verlauf der Demenz, wobei DFT-Deskriptoren als kompakte Methode zur Beschreibung

komplexer Formen verwendet wurden. Die Verteilung des komplexen Kompartiments

stromaler Marker im Knochenmark von Mäusen war heterogen, was Einblicke in ihre Rolle bei

der Hämatopoese und der Entwicklung von Immunzellen geben kann. Durch überwachte und

nicht überwachte Bildanalyse-Arbeitsabläufe wurden seltene ILC-Populationen in MELC-

Bildern von Mäusemandeln identifiziert. Darüber hinaus wurde ihre Lage in der Nähe von

Gefäßen und Fibronektinfasern durch Nachbarschaftsanalyse ermittelt. Schließlich wurde in

menschlichen Lungenproben aus MELC- und ST-Experimenten ein SARS-CoV-2-induzierter

Gewebeumbau beobachtet.

77

7. References

Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen
Wahrnehmung: II. Die dioptrischen Bedingungen der Leistung des Mikroskops. Archiv Für
Mikroskopische Anatomie, 9(1), 418–440. https://doi.org/10.1007/BF02956174

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014).
Molecular Biology of the Cell. Garland Science.

Andrey, P., & Boudier, T. (2007). Adaptive active contours (snakes) for the segmentation of
complex structures in biological images.

 https://www.researchgate.net/publication/252008688_Adaptive_active_contours_snakes
_for_the_segmentation_of_complex_structures_in_biological_images#fullTextFileConte
nt (last opend May, 25th 2023)

Anuta, P. E. (1970). Spatial Registration of Multispectral and Multitemporal Digital Imagery
Using Fast Fourier Transform Techniques. IEEE Transactions on Geoscience
Electronics, 8(4), 353–368. https://doi.org/10.1109/TGE.1970.271435

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., &
Seung, H. S. (2017). Trainable Weka Segmentation: A machine learning tool for
microscopy pixel classification. Bioinformatics, 33(15), 2424–2426.
https://doi.org/10.1093/bioinformatics/btx180

Barnes, R., Lehman, C., & Mulla, D. (2014). Priority-flood: An optimal depression-filling and
watershed-labeling algorithm for digital elevation models. Computers and Geosciences,
62, 117–127. https://doi.org/10.1016/j.cageo.2013.04.024

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales,
J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A.,
Zhang, C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). Ilastik: Interactive
Machine Learning for (Bio)Image Analysis. Nature Methods, 16(12), 1226–1232.
https://doi.org/10.1038/s41592-019-0582-9

Beucher, S., & Lantuejoul, C. (1979). Use of Watersheds in Contour Detection. In International
Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation (pp.
12–21). http://www.citeulike.org/group/7252/article/4083187

Boas, D. A., Pitris, C., & Ramanujam, N. (2016). Handbook of Biomedical Optics. CRC Press.
https://books.google.de/books?id=lEUECp8OHWEC

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

Burger, W., & Burge, M. J. (2016). Digital Image Processing (second Edition). Springer Verlag.

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin,
D. A., Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P., & Sabatini, D. M. (2006).
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes.
Genome Biology, 7(10). https://doi.org/10.1186/gb-2006-7-10-r100

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Ensemble Machine Learning. Ensemble
Machine Learning, January. https://doi.org/10.1007/978-1-4419-9326-7

78

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar,
M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., &
Zupan, B. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning
Research, 14, 2349–2353. http://jmlr.org/papers/v14/demsar13a.html

Eng, J., Bucher, E., Hu, Z., Zheng, T., Gibbs, S. L., Chin, K., & Gray, J. W. (2022). A framework
for multiplex imaging optimization and reproducible analysis. Communications Biology,
5(1), 1–11. https://doi.org/10.1038/s42003-022-03368-y

Ertel, W. (2011). Introduction to Artificial Intelligence Series editor (second Edition). Springer.

F.R.S., K. P. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),
559–572. https://doi.org/10.1080/14786440109462720

Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I., & Tutz, G. (2016). Statistik | Der Weg zur
Datenanalyse. In Springer Spektrum (Springer Verlag).

Feigenbaum, E. A., & Simon, H. A. (1961). Performance of a Reading Task by an Elementary
Perceiving and Memorizing Program. RAND Corporation.

Fekri-Ershad, S. (2021). Cell phenotype classification using multi threshold uniform local
ternary patterns in fluorescence microscope images. Multimedia Tools and Applications,
80(8), 12103–12116. https://doi.org/10.1007/s11042-020-10321-w

Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J., & Germain, R. N. (2012). Histo-Cytometry:
A Method for Highly Multiplex Quantitative Tissue Imaging Analysis Applied to Dendritic
Cell Subset Microanatomy in Lymph Nodes. Immunity, 37(2), 364–376.
https://doi.org/10.1016/j.immuni.2012.07.011

Gerstner, A. O. H., Trumpfheller, C., Racz, P., Osmancik, P., Tenner-Racz, K., & Tárnok, A.
(2004). Quantitative histology by multicolor slide-based cytometry. Cytometry Part A,
59A(2), 210–219. https://doi.org/10.1002/cyto.a.20054

Giesen, C., Wang, H. A. O., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schüffler,
P. J., Grolimund, D., Buhmann, J. M., Brandt, S., Varga, Z., Wild, P. J., Günther, D., &
Bodenmiller, B. (2014). Highly multiplexed imaging of tumor tissues with subcellular
resolution by mass cytometry. Nature Methods, 11(4), 417–422.
https://doi.org/10.1038/nmeth.2869

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing. Prentice Hall.

Goodman, J. W. (2005). Introduction to Fourier Optics. THE McGRAW-HILL COMPANIES,
INC.

Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image
registration algorithms. Optics Letters, 33(2), 156. https://doi.org/10.1364/OL.33.000156

Gut, G., Herrmann, M. D., & Pelkmans, L. (2018). Multiplexed protein maps link subcellular
organization to cellular states. Science, 361(6401).
https://doi.org/10.1126/science.aar7042

Hafemeister, C., & Satija, R. (2019). Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biology, 20(1),
1–15. https://doi.org/10.1186/s13059-019-1874-1

References

References

79

HANSER, B. M., GUSTAFSSON, M. G. L., AGARD, D. A., & SEDAT, J. W. (2004). Phase-
retrieved pupil functions in wide-field fluorescence microscopy. Journal of Microscopy,
216(1), 32–48. https://doi.org/10.1111/j.0022-2720.2004.01393.x

Hao, Y., Hao, S., Andersen-Nissen, E., III, W. M. M., Zheng, S., Butler, A., Lee, M. J., Wilk, A.
J., Darby, C., Zagar, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. P., Jain, J.,
Srivastava, A., Stuart, T., Fleming, L. B., Yeung, B., … Satija, R. (2021). Integrated
analysis of multimodal single-cell data. Cell. https://doi.org/10.1016/j.cell.2021.04.048

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. In
Revista Espanola de las Enfermedades del Aparato Digestivo (Vol. 26, Issue 4). Springer
New York. https://doi.org/10.1007/978-0-387-84858-7

Herman, G. T. (1980). Image Reconstruction from Projections: The Fundamentals of
Computerized Tomography. Academic Press.

Heumann, C., Schomaker, M., & Shalabh. (2016). Introduction to Statistics and Data Analysis.
In Journal of Association of Physicians of India (Vol. 64, Issue July). Springer International
Publishing. https://doi.org/10.1007/978-3-319-46162-5

Hinton, G., & Roweis, S. (2003). Stochastic neighbor embedding. Advances in Neural
Information Processing Systems.

Holzwarth, K., Köhler, R., Philipsen, L., Tokoyoda, K., Ladyhina, V., Wählby, C., Niesner, R.
A., & Hauser, A. E. (2018). Multiplexed fluorescence microscopy reveals heterogeneity
among stromal cells in mouse bone marrow sections. Cytometry Part A, 93(9), 876–888.
https://doi.org/10.1002/cyto.a.23526

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6), 417.

Im, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An Introduction to Performing
Immunofluorescence Staining. Methods in Molecular Biology (Clifton, N.J.), 1897(1),
299–311. https://doi.org/10.1007/978-1-4939-8935-5_26

Kamentsky, L., Jones, T. R., Fraser, A., Bray, M. A., Logan, D. J., Madden, K. L., Ljosa, V.,
Rueden, C., Eliceiri, K. W., & Carpenter, A. E. (2011). Improved structure, function and
compatibility for cellprofiler: Modular high-throughput image analysis software.
Bioinformatics, 27(8), 1179–1180. https://doi.org/10.1093/bioinformatics/btr095

Kang, W., Yu, S., Seo, D., Jeong, J., & Paik, J. (2015). Push-broom-type very high-resolution
satellite sensor data correction using combined wavelet-fourier and multiscale non-local
means filtering. Sensors (Switzerland), 15(9), 22826–22853.
https://doi.org/10.3390/s150922826

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A.,
& Cseresnyes, Z. (2018a). Cell shape characterization and classification with discrete
Fourier transforms and self-organizing maps. Cytometry Part A, 93(3), 323–333.
https://doi.org/10.1002/cyto.a.23279

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A.,
& Cseresnyes, Z. (2018b). Morphology-Based Distinction Between Healthy and
Pathological Cells Utilizing Fourier Transforms and Self-Organizing Maps. Journal of
Visualized Experiments : JoVE, 140. https://doi.org/10.3791/58543

80

Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing.
https://doi.org/10.1007/978-3-319-63913-0

Lakowicz, J. R. (2013). Principles of Fluorescence Spectroscopy. Springer US.

Li, C. ., Yang, H. ., Cai, Y. ., & Song, B. (2015). Image Denoising Algorithm Based on Non-
Subsampled Contourlet Transform and Bilateral Filtering. Proceedings of the International
Conference on Computer Information Systems and Industrial Applications, 18(Cisia),
666–669. https://doi.org/10.2991/cisia-15.2015.182

Liang, X., Zang, Y., Dong, D., Zhang, L., Fang, M., Yang, X., Arranz, A., Ripoll, J., Hui, H., &
Tian, J. (2016). Stripe artifact elimination based on nonsubsampled contourlet transform
for light sheet fluorescence microscopy. Journal of Biomedical Optics, 21(10), 106005.
https://doi.org/10.1117/1.jbo.21.10.106005

Lichtman, J. W., & Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods, 2(12),
910–919. https://doi.org/10.1038/nmeth817

Lin, J. R., Fallahi-Sichani, M., & Sorger, P. K. (2015). Highly multiplexed imaging of single cells
using a high-throughput cyclic immunofluorescence method. Nature Communications, 6,
1–7. https://doi.org/10.1038/ncomms9390

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of MultiVariate
Observations. In L. M. Le Cam & J. Neyman (Eds.), Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability (Vol. 1, pp. 281–297). University of California
Press.

Masters, B. R. (2008). History of the optical microscope in cell biology and medicine. ELS.

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. http://arxiv.org/abs/1802.03426 (last opened May,
25th 2023)

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K. W.,
Doan, M., Ding, L., Rafelski, S. M., Thirstrup, D., Wiegraebe, W., Singh, S., Becker, T.,
Caicedo, J. C., & Carpenter, A. E. (2018). CellProfiler 3.0: Next-generation image
processing for biology. PLOS Biology, 16(7), e2005970.
https://doi.org/10.1371/journal.pbio.2005970

Miura, K., & Sladoje, N. (2019). Bioimage Data Analysis Workflows. Springer International
Publishing.

Moses, L., & Pachter, L. (2022). Museum of spatial transcriptomics. Nature Methods, 19(5),
534–546. https://doi.org/10.1038/s41592-022-01409-2

Mothes, R., Pascual-Reguant, A., Koehler, R., Liebeskind, J., Liebheit, A., Bauherr, S.,
Dittmayer, C., Laue, M., Manitius, R. von, Elezkurtaj, S., Durek, P., Heinrich, F., Heinz,
G. A., Guerra, G. M., Obermayer, B., Meinhardt, J., Ihlow, J., Radke, J., Heppner, F. L.,
… Hauser, A. E. (2022). Local CCL18 and CCL21 expand lung fibrovascular niches and
recruit lymphocytes, leading to tertiary lymphoid structure formation in prolonged COVID-
19. MedRxiv, 2022.03.24.22272768. https://doi.org/10.1101/2022.03.24.22272768

References

References

81

Mothes, R., Pascual-Reguant, A., Koehler, R., Liebeskind, J., Liebheit, A., Bauherr, S.,
Philipsen, L., Dittmayer, C., Laue, M., von Manitius, R., Elezkurtaj, S., Durek, P., Heinrich,
F., Heinz, G. A., Guerra, G. M., Obermayer, B., Meinhardt, J., Ihlow, J., Radke, J., …
Hauser, A. E. (2023). Distinct tissue niches direct lung immunopathology via CCL18 and
CCL21 in severe COVID-19. Nature Communications, 14(1), 791.
https://doi.org/10.1038/s41467-023-36333-2

Münch, B., Trtik, P., Marone, F., & Stampanoni, M. (2009). Stripe and ring artifact removal with
combined wavelet-Fourier filtering. EMPA Activities, 17(2009-2010 EMPA ACTIVITIES),
34–35. https://doi.org/10.1364/oe.17.008567

Narasimha Murty, M., & Krishna, G. (1980). A computationally efficient technique for data-
clustering. Pattern Recognition, 12(3), 153–158. https://doi.org/10.1016/0031-
3203(80)90039-4

Olsen, T. K., & Baryawno, N. (2018). Introduction to Single‐Cell RNA Sequencing. Current
Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.57

Otsu, N., Smith, P. L., Reid, D. B., Environment, C., Palo, L., Alto, P., & Smith, P. L. (1979). A
Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on
Systems, Man, and Cybernetics, C(1), 62–66.

Pascual-Reguant, A., Köhler, R., Mothes, R., Bauherr, S., Hernández, D. C., Uecker, R.,
Holzwarth, K., Kotsch, K., Seidl, M., Philipsen, L., Müller, W., Romagnani, C., Niesner,
R., & Hauser, A. E. (2021). Multiplexed histology analyses for the phenotypic and spatial
characterization of human innate lymphoid cells. Nature Communications, 12(1), 1–15.
https://doi.org/10.1038/s41467-021-21994-8

Pertuz, S., Puig, D., Garcia, M. A., & Fusiello, A. (2013). Generation of All-in-Focus Images by
Noise-Robust Selective Fusion of Limited Depth-of-Field Images. IEEE Transactions on
Image Processing, 22(3), 1242–1251. https://doi.org/10.1109/TIP.2012.2231087

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
https://doi.org/10.1007/bf00116251

Radbruch, H., Mothes, R., Bremer, D., Seifert, S., Köhler, R., Pohlan, J., Ostendorf, L.,
Günther, R., Leben, R., Stenzel, W., Niesner, R. A., & Hauser, A. E. (2017). Analyzing
nicotinamide adenine dinucleotide phosphate oxidase activation in aging and vascular
amyloid pathology. Frontiers in Immunology, 8(JUL), 1–12.
https://doi.org/10.3389/fimmu.2017.00844

Rakhymzhan, A., Acs, A., Hauser, A. E., Winkler, T. H., & Niesner, R. A. (2021). Improvement
of the similarity spectral unmixing approach for multiplexed two-photon imaging by linear
dimension reduction of the mixing matrix. International Journal of Molecular Sciences,
22(11). https://doi.org/10.3390/ijms22116046

Reinartz, J., Bruyns, E., Lin, J. Z., Burcham, T., Brenner, S., Bowen, B., Kramer, M., &
Woychik, R. (2002). Massively parallel signature sequencing (MPSS) as a tool for in-
depth quantitative gene expression profiling in all organisms. Briefings in Functional
Genomics and Proteomics, 1(1), 95–104. https://doi.org/10.1093/bfgp/1.1.95

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., &
Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics, 18(1), 1–26. https://doi.org/10.1186/s12859-017-1934-z

82

S., L. R. S. R. (1896). XV. On the theory of optical images, with special reference to the
microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 42(255), 167–195. https://doi.org/10.1080/14786449608620902

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences of the United States of
America, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463

Schapiro, D., Jackson, H. W., Raghuraman, S., Fischer, J. R., Vito, R., Zanotelli, T., Schulz,
D., Giesen, C., Catena, R., & Varga, Z. (2018). Europe PMC Funders Group miCAT : A
toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data.
14(9), 873–876. https://doi.org/10.1038/nmeth.4391.miCAT

Schapiro, D., Jackson, H. W., Raghuraman, S., Fischer, J. R., Zanotelli, V. R. T., Schulz, D.,
Giesen, C., Catena, R., Varga, Z., & Bodenmiller, B. (2017). HistoCAT: Analysis of cell
phenotypes and interactions in multiplex image cytometry data. Nature Methods, 14(9),
873–876. https://doi.org/10.1038/nmeth.4391

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V.,
Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for
biological-image analysis. Nature Methods, 9(7), 676–682.
https://doi.org/10.1038/nmeth.2019

Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell detection with star-convex
polygons. Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 11071 LNCS, 265–273.
https://doi.org/10.1007/978-3-030-00934-2_30

Schubert, W., Bonnekoh, B., Pommer, A. J., Philipsen, L., Böckelmann, R., Malykh, Y.,
Gollnick, H., Friedenberger, M., Bode, M., & Dress, A. W. M. (2006). Analyzing proteome
topology and function by automated multidimensional fluorescence microscopy. Nature
Biotechnology, 24(10), 1270–1278. https://doi.org/10.1038/nbt1250

Schubert, W., Gieseler, A., Krusche, A., Serocka, P., & Hillert, R. (2012). Next-generation
biomarkers based on 100-parameter functional super-resolution microscopy TIS. New
Biotechnology, 29(5), 599–610. https://doi.org/https://doi.org/10.1016/j.nbt.2011.12.004

Schwartz, J., Jiang, Y., Wang, Y., Aiello, A., Bhattacharya, P., Yuan, H., Mi, Z., Bassim, N., &
Hovden, R. (2019). Removing Stripes, Scratches, and Curtaining with Non-Recoverable
Compressed Sensing. Microscopy and Microanalysis, 25(S2), 174–175.
https://doi.org/10.1017/s1431927619001600

Shih, F. Y., & Cheng, S. (2005). Automatic seeded region growing for color image
segmentation. Image and Vision Computing, 23(10), 877–886.
https://doi.org/https://doi.org/10.1016/j.imavis.2005.05.015

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., Giacomello,
S., Asp, M., Westholm, J. O., Huss, M., Mollbrink, A., Linnarsson, S., Codeluppi, S., Borg,
Å., Pontén, F., Costea, P. I., Sahlén, P., Mulder, J., Bergmann, O., … Frisén, J. (2016).
Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Science, 353(6294), 78–82. https://doi.org/10.1126/science.aaf2403

References

References

83

Stirling, D. R., Swain-Bowden, M. J., Lucas, A. M., Carpenter, A. E., Cimini, B. A., & Goodman,
A. (2021). CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics,
22(1), 1–11. https://doi.org/10.1186/s12859-021-04344-9

Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist algorithm
for cellular segmentation. Nature Methods, 18(1), 100–106.
https://doi.org/10.1038/s41592-020-01018-x

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch,
B. B., Siddiqui, A., Lao, K., & Surani, M. A. (2009). mRNA-Seq whole-transcriptome
analysis of a single cell. Nature Methods, 6(5), 377–382.
https://doi.org/10.1038/nmeth.1315

Umbaugh, S. E. (2017). Digital Image Processing and Analysis: Applications with MATLAB
and CVIPtools. CRC Press. https://books.google.de/books?id=ZflADwAAQBAJ

van der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86), 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html

Wählby, C., Erlandsson, F., Bengtsson, E., & Zetterberg, A. (2002). Sequential
immunofluorescence staining and image analysis for detection of large numbers of
antigens in individual cell nuclei. Cytometry, 47(1), 32–41.

Zehentmeier, S., Roth, K., Cseresnyes, Z., Sercan, Ö., Horn, K., Niesner, R. A., Chang, H. D.,
Radbruch, A., & Hauser, A. E. (2014). Static and dynamic components synergize to form
a stable survival niche for bone marrow plasma cells. European Journal of Immunology,
44(8), 2306–2317. https://doi.org/10.1002/eji.201344313

Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of
transparent objects. Physica, 9(7), 686–698. https://doi.org/10.1016/S0031-
8914(42)80035-X

Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345–349.
https://doi.org/10.1126/science.121.3141.345

84

8. Appendix – Source codes

8.1. Source codes

8.1.1. SHADE – Fiji/imageJ PlugIn
/*
 * SHADE (Shape Data Evaluation) plugin for ImageJ/Fiji
 *
 * Copyright (C) 2017 Ralf Köhler(1), Fabian Kriegel(2) and Dr. Zoltán Cseresnyés
 *
 * (1) German Rheumatism Research Centre Berlin, Immune Dynamics
 * (2) German Federal Institute for Risk Assessment, Department of Chemical and
 * Product Safety
 * (3) Hans Knöll Institute Jena, Applied Systems Biology
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation
 * (http://www.gnu.org/licenses/gpl.txt)
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program. If not, see http://gnu.org/licenses/gpl.html
 *
 * */

import java.awt.Polygon;
import java.io.File;

import ij.IJ;
import ij.ImagePlus;
import ij.Prefs;
import ij.gui.GenericDialog;
import ij.gui.PolygonRoi;
import ij.gui.Roi;
import ij.gui.WaitForUserDialog;
import ij.measure.Measurements;
import ij.measure.ResultsTable;
import ij.plugin.PlugIn;
import ij.plugin.filter.Analyzer;
import ij.plugin.frame.RoiManager;
import ij.process.ImageConverter;
import ij.process.ImageProcessor;

/*
 * This Plugin was developed to characterize the shape in 2D projections of 3D
 * cell images recorded with a two photon microscope in discrete fourier
 * transformed components. In just a few components (we used 20) the whole shape
 * can be saved and reproduced within a small memory usage. Special shape
 * properties are visible insight these values. With all components a database
 * can be build creating machine learning approaches.
 *
 * For more information you can read in following publication:
 * Cell shape characterization and classification with discrete
 * Fourier transforms and Self-Organizing Maps - Fabian L. Kriegel et al.;

Appendix – Source codes

85

 * (Cytometry, Part A)
 *
 * */

public class SHADE_ implements PlugIn {

 //initialize the global variables
 boolean checkbatch, checkintermediate, checkSave, checkDarkBackground;
 double numbergradient, iterationnumber, dilatations;
 int checkintermediate_wert;
 String dir2, imageName;
 ResultsTable bigResultsTable = new ResultsTable();

 public void run(String arg) {

 //graphical user interface for user defined values
 GenericDialog gd = new GenericDialog("SHADE");

 // open Dialogwindow with Title "SHADE"

 gd.addMessage("Set up the SHADE for finding edges");
 gd.addMessage("--");
 //gd.addCheckbox("Step-by-Step-Mode (manualy saving) ?",false);
 gd.addNumericField("Enter gradient threshold ",40,0);
 gd.addNumericField("Enter number of iterations",25,0);
 gd.addNumericField("Number of dilatations", 10, 0);
 gd.addCheckbox("Dark Background?", false);
 gd.addCheckbox("Do you want to see the intermediate results ?", true);
 gd.addCheckbox("Do you want to save Result Tables?", true);
 gd.showDialog();

 if(gd.wasCanceled()) return;

 numbergradient = gd.getNextNumber();
 iterationnumber = gd.getNextNumber();
 dilatations = gd.getNextNumber();
 checkDarkBackground = gd.getNextBoolean();
 checkintermediate = gd.getNextBoolean();
 checkSave = gd.getNextBoolean();

 if(checkintermediate==true)
 checkintermediate_wert=1;
 else checkintermediate_wert=0;

 // get directory of single cell images (tif file format required)
 String dir1 = IJ.getDirectory("Choose Source Folder");
 if(dir1 == null) return;
 String[] list1 = new File(dir1).list();
 if(list1 == null) return;
 IJ.log("image source folder: "+dir1);

 // get saving directory if option is checked
 if(checkSave==true){
 dir2 = IJ.getDirectory("Choose Results saving folder");
 IJ.log("Results Table saving folder: "+dir2);
 }

 int[] roiLoc = new int[4];

 // loop through every image and process

86

 for (int l = 0; l < list1.length; l++) {

 if(list1[l].endsWith(".tif")){

 IJ.open(dir1+list1[l]);

 ImagePlus img = IJ.getImage();
 imageName = img.getShortTitle();

 // first image is used to get user defined ROI
 if(!ROIisSet(roiLoc)) roiLoc = getInputROI(img);
 img.setRoi(roiLoc[0],roiLoc[1],roiLoc[2],roiLoc[3]);

 //run absnake plugin with preprocessed images
 startPreprocess(img);
 ResultsTable rt = new ResultsTable();
 rt = getABSnakeCoordsAndCalc(img.getTitle());

 if(checkintermediate==true)
 rt.show("Results of : " + list1[l]);

 if(checkSave==true)
 rt.save(dir2+"Results_of_DFT_calc_"+(l+1)+"_"+imageName+".csv");
 IJ.run("Close All", "");
 }
 }
 bigResultsTable.show("All DFT components");
 if(checkSave==true) bigResultsTable.save(dir2

+"Result_collection_of_all_DFT_calculations.csv");
 IJ.error("DFT calculations are done");
 }

 // check if ROI is set in a first image event
 public boolean ROIisSet(int[] roiLoc){

 if(roiLoc[0]>0 && roiLoc[1]>0 && roiLoc[2]>0 && roiLoc[3]>0){
 return true;
 }
 return false;
 }

 // create ROI only around cell -> uninteresting parts will be cropped
 public int[] getInputROI(ImagePlus img) {

 ResultsTable rt = new ResultsTable();
 int measurements = Measurements.RECT;
 Analyzer analyzer = new Analyzer(img, measurements, rt);
 int[] roiPosition = new int[4];

 new WaitForUserDialog("First Image Event", "draw "
 + "rectangle surounding cell !\n"
 + "then you can go on by clicking 'OK' ").show();

 RoiManager rm = RoiManager.getInstance();
 if(rm==null) rm = new RoiManager();
 rm.addRoi(img.getRoi());
 analyzer.measure();
 roiPosition[0] = (int)rt.getValue("BX", 0);
 roiPosition[1] = (int)rt.getValue("BY", 0);

Appendix – Source codes

Appendix – Source codes

87

 roiPosition[2] = (int)rt.getValue("Width", 0);
 roiPosition[3] = (int)rt.getValue("Height", 0);
 img.deleteRoi();
 rm.select(0);
 rm.runCommand(img,"Deselect");
 rm.runCommand(img,"Delete");
 return roiPosition;
 }
// crop image, make selection and run absnake plugin adding results to ROI manager
 public void startPreprocess(ImagePlus img){

 ImagePlus inputImg = img.crop();
 img.close();
 ImageConverter cv = new ImageConverter(inputImg);
 cv.convertToGray8();

 if (!checkDarkBackground) {
 IJ.setAutoThreshold(inputImg, "RenyiEntropy");
 }
 else {
 IJ.setAutoThreshold(inputImg, "RenyiEntropy dark");
 }

 Prefs.blackBackground = false;
 IJ.run(inputImg, "Convert to Mask", "");

 ImagePlus duplImg = inputImg.duplicate();
 ImageProcessor ipDupl = duplImg.getProcessor();

 for(int i = 0; i<dilatations; i++) {
 ipDupl.dilate();
 }

 inputImg.deleteRoi();
 duplImg.deleteRoi();
 IJ.run(duplImg, "Create Selection" ,"");
 Roi roi = duplImg.getRoi();

 Polygon p = roi.getPolygon();
 inputImg.setRoi(new PolygonRoi(p.xpoints,p.ypoints,p.npoints,Roi.POLYGON))
;

 duplImg.close();
 RoiManager rm = RoiManager.getInstance();
 if(rm==null) rm = new RoiManager();
 rm.addRoi(inputImg.getRoi());
 inputImg.show();

 IJ.run("ABSnake", "gradient_threshold="

+numbergradient+" number_of_iterations="
 +iterationnumber+" step_results_show ="

+checkintermediate_wert+" draw_color=Red save_coords");

 rm.select(0);
 rm.runCommand(img,"Deselect");
 rm.runCommand(img,"Delete");

 inputImg.close();

88

 }

// read results from absnake txt file, calculate DFT components
// and add to Results Table
 public ResultsTable getABSnakeCoordsAndCalc(String imageTitle) {
 String pathfile = "ABSnake-r1-z1.txt";
 String filestring = IJ.openAsString(pathfile);
 String[] rows = filestring.split("\n");
 //String[] title_row = rows[0].split("\\s+");

 float[] num = new float[rows.length];
 float[] x = new float[rows.length];
 float[] y = new float[rows.length];
 float[] z = new float[rows.length];
 float[] xcal = new float[rows.length];
 float[] ycal = new float[rows.length];

 for (int r=1; r<rows.length; r++)
 {
 String[] data = rows[r].split("\\s+");
 String number = data[0];
 num[r] = Float.parseFloat(number);
 String xvalue = data[1];
 x[r] = Float.parseFloat(xvalue);
 String yvalue = data[2];
 y[r] = Float.parseFloat(yvalue);
 String zvalue = data[3];
 z[r] = Float.parseFloat(zvalue);
 String xcali = data[4];
 xcal[r] = Float.parseFloat(xcali);
 String ycali = data[5];
 ycal[r] = Float.parseFloat(ycali);

 }

 int n = x.length;
 double[] oreal = new double[n];
 double[] oimag = new double[n];
 double[] oAmpl = new double[n];
 String[] natemp = new String[20];
 double[] toreal = new double[20];
 double[] toimag = new double[20];
 double[] toAmpl = new double[20];
 double[] tnumber = new double[20];
 String name = "Fourier-Parameter";

 for (int k = 0; k < n; k++)
 {
 double creal = 0;
 double cimag = 0;

 for (int t = 0; t < n; t++) {
 creal = creal
+ x[t]*Math.cos(2*Math.PI * t * k / n) + y[t]*Math.sin(2*Math.PI * t * k / n);
 cimag = cimag
+ -x[t]*Math.sin(2*Math.PI * t * k / n) + y[t]*Math.cos(2*Math.PI * t * k / n);
 }

 oreal[k] = creal;

Appendix – Source codes

Appendix – Source codes

89

 oimag[k] = cimag;
 oAmpl[k] = Math.sqrt(creal*creal + cimag*cimag);
 }

 double[] timepoint = new double [19]; double time = 0;

 for (int ti=0; ti<19; ti++)
 { timepoint[ti] = time ; time = time+1; }

 ResultsTable frt = new ResultsTable();

 for (int temc=1; temc < 20; temc++){

 toreal[temc]=oreal[temc];
 toimag[temc]=oimag[temc];
 toAmpl[temc]=oAmpl[temc];
 natemp[temc]=name;
 tnumber[temc]=temc+1;

 String real_value = String.valueOf(toreal[temc]);
 String imag_value = String.valueOf(toimag[temc]);
 String ampl_value = String.valueOf(toAmpl[temc]);

 bigResultsTable.incrementCounter();
 bigResultsTable.addValue("Real", real_value);
 bigResultsTable.addValue("Imag", imag_value);
 bigResultsTable.addValue("Ampl", ampl_value);
 bigResultsTable.addValue("file name", imageTitle);
 frt.incrementCounter();
 frt.addValue("Real", real_value); // (first column, value column(r))
 frt.addValue("Imag", imag_value);
 frt.addValue("Ampl", ampl_value);

 }

 bigResultsTable.incrementCounter();
 bigResultsTable.addValue("Real", 0);
 bigResultsTable.addValue("Imag", 0);
 bigResultsTable.addValue("Ampl", 0);
 //frt.show("Results");
 return frt;
 }

}

90

8.1.2. MELC Evaluation Toolbox – Fiji/imageJ PlugIn
MELC_EvaluationToolbox (main class)
import ij.IJ;
import ij.ImagePlus;
import ij.gui.GenericDialog;
import ij.plugin.PlugIn;

public class MELC_EvaluationToolbox_ implements PlugIn {

 ImagePlus img;

 public void run(String arg) {

 ImagePlus img = IJ.getImage();
 getUserInputAndDetect(img);

 }

 void getUserInputAndDetect(ImagePlus inputImage){

 String[] anySizeChoice = {"yes","no"};

 GenericDialog gd = new GenericDialog("give me some input");
 gd.addNumericField("sigma (unsharp mask): ", 3, 2);
 gd.addNumericField("weight factor: ", 0.75, 2);
 gd.addNumericField("mean factor: ", 1.25, 2);
 gd.addNumericField("min Diameter [px]:" , 10, 1);
 gd.addNumericField("max Diameter [px]:", 30, 1);
 //gd.addChoice("fill holes", holesChoice, "no");
 //gd.addChoice("use watershed", watershedChoice, "no");
 gd.addChoice("show any size", anySizeChoice, "no");
 gd.showDialog();

 if(gd.wasCanceled()) return;

 detector d = new detector(inputImage);
 d.setParams((int)gd.getNextNumber(), (float)gd.getNextNumber(),
 gd.getNextNumber(), (int)gd.getNextNumber(),

(int)gd.getNextNumber(), gd.getNextChoice());
 d.detectNuclei();

 if(d.anySizeChoice == "no"){
 d.show();
 }
 else d.showAnySizeCells();

 }
 }

cell class
import java.util.ArrayList;
import java.awt.Point;
import ij.gui.PointRoi;

public class cell extends MELC_EvaluationToolbox_ {

 int minx, miny, maxx, maxy;
 int startX, startY;

Appendix – Source codes

Appendix – Source codes

91

 int centerX, centerY;
 int area;

 ArrayList<Point> points;
 ArrayList<Integer> intensities;
 ArrayList<Point> borderPoints;
 //PointRoi cellRoi;

 cell(int x, int y){

 minx = x;
 miny = y;
 maxx = x;
 maxy = y;

 centerX = x;
 centerY = y;

 points = new ArrayList<Point>();
 points.add(new Point(x,y));

 intensities = new ArrayList<Integer>();

 borderPoints = new ArrayList<Point>();

 area = 1;

 }

 void add(int x, int y){

 Point p = new Point(x,y);
 points.add(p);

 minx = Math.min(minx, x);
 miny = Math.min(miny, y);
 maxx = Math.max(maxx, x);
 maxy = Math.max(maxy, y);

 centerX = (minx + maxx) / 2;
 centerY = (miny + maxy) / 2;

 area += 1;
 }

 void add(int x, int y, int intensity){

 Point p = new Point(x,y);
 points.add(p);

 minx = Math.min(minx, x);
 miny = Math.min(miny, y);
 maxx = Math.max(maxx, x);
 maxy = Math.max(maxy, y);

 centerX = (minx + maxx) / 2;
 centerY = (miny + maxy) / 2;

 intensities.add(intensity);

92

 area += 1;
 }
 int mean(){

 int m = 0;
 double meanIntensity = 0;

 for(int i : intensities){

 m += i;
 }

 meanIntensity = m/intensities.size();
 return (int)meanIntensity;
 }

 int area(){

 return area;
 }

 boolean contains(int x, int y){

 boolean contain = false;

 for (Point p : points){

 if(p.x == x && p.y == y){

 contain = true;
 break;
 }
 }
 return contain;
 }

 ArrayList<Point> getOutline(){

 Point pn, pe, ps, pw; // north, east, south, west

 for(Point p : points){

 pn = new Point(p.x,p.y+1);
 pe = new Point(p.x+1,p.y);
 ps = new Point(p.x,p.y-1);
 pw = new Point(p.x-1,p.y);

 if(!points.contains(pn) || !points.contains(pe) ||
 !points.contains(ps) || !points.contains(pw)){

 Point pp = new Point(p.x, p.y);
 borderPoints.add(pp);

 }

 }
 return borderPoints;
 }
}

Appendix – Source codes

Appendix – Source codes

93

detector class
import java.awt.Color;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Collections;

import ij.IJ;
import ij.ImagePlus;
import ij.Prefs;
import ij.gui.Overlay;
import ij.gui.PointRoi;
import ij.gui.Roi;
import ij.measure.Measurements;
import ij.measure.ResultsTable;
import ij.plugin.filter.Analyzer;
import ij.plugin.filter.Convolver;
import ij.plugin.filter.ParticleAnalyzer;
import ij.process.ImageProcessor;

public class detector extends MELC_EvaluationToolbox_{

 ImagePlus img, maskImage, voronoiImage, outlineImage;
 ImageProcessor ip, maskIP, voronoiIP, outlineImageP;
 int sigma, minArea, maxArea, startPointIndex, minDiameter, maxDiameter;
 float weight;
 double meanTollerance, distLimit, backgroundMin;
 boolean holes = false;
 boolean watershed = false;
 String anySizeChoice;
 ArrayList<cell> cells = new ArrayList<cell>();
 ArrayList<Point> startPoints = new ArrayList<Point>();
 cell c;

 detector(ImagePlus inputImage){

 img = inputImage;
 ip = img.getProcessor();
 sigma = 3;
 weight = 0.75f;
 meanTollerance = 1.5;
 maxArea = 0;

 }

 void setParams(int sigma, float weight,

double meanTollerance, int minDiameter,
 int maxDiameter, String anySizeChoice){

 this.sigma = sigma;
 this.weight = weight;
 this.meanTollerance = meanTollerance;
 this.minDiameter = minDiameter;
 this.maxDiameter = maxDiameter;
 this.anySizeChoice = anySizeChoice;

94

 minArea = (int)((minDiameter * minDiameter)*Math.PI/4);
 maxArea = (int)((maxDiameter * maxDiameter)*Math.PI/4);

 calcDistLimit(maxDiameter);
 IJ.log("--");
 IJ.log("set Parameters : ");
 IJ.log("input image : " + img.getTitle());
 IJ.log("sigma (unsharp mask) : " + sigma);
 IJ.log("weight (unsharp mask) : " + weight);
 IJ.log("min diameter : " + minDiameter);
 IJ.log("max diameter : " + maxDiameter);
 IJ.log("min area : " + minArea);
 IJ.log("max area : " + maxArea);
 IJ.log("any size choice : " + anySizeChoice);
 IJ.log("--");
 }

 void detectNuclei(){

 IJ.showStatus("looking for seeds...");
 getStartPositions(img);
 createMask();
 //analyseMask();
 }

 void detectMembrane(Roi[] nucleiRoi, ArrayList<Point> centers,

 double[] minNeighborDist){

 // new version with additional Roi[] Array
 // comming from the allowed centers you should start at boundary
 // pixels of this roi and let it grow, to avoid center segmentation

 startPoints = centers;
 backgroundMin = 0;
 Overlay ovl = new Overlay();
 startPointIndex = 0;
 maskImage = IJ.createImage("Membrane Mask",

img.getWidth(), img.getHeight(), 1, 8);
 maskIP = maskImage.getProcessor();
 voronoiImage = IJ.createImage("Voronoi Mask",

img.getWidth(), img.getHeight(), 1, 8);
 voronoiIP = voronoiImage.getProcessor();
 //voronoi image has to be build by placing all the positiv starting points
 //inside empty image

 for(Point sPoint : startPoints){

 voronoiIP.set(sPoint.x, sPoint.y, 255);
 }

 IJ.run(voronoiImage, "Convert to Mask", "");
 IJ.run(voronoiImage, "Voronoi", "");

 for(Point p : startPoints){

 PointRoi pr = new PointRoi(p.x,p.y);
 pr.setPointType(2);
 ovl.add(pr);
 distLimit = minNeighborDist[startPointIndex];

Appendix – Source codes

Appendix – Source codes

95

 c = new cell(p.x,p.y);
 c.add(p.x,p.y,ip.get(p.x, p.y));
 grow4N(p.x, p.y);
 //cells.add(c);
 startPointIndex++;
 }
 getCellOutlines();
 maskImage.setOverlay(ovl);
 maskImage.show();
 }

 void createMask(){

 maskImage = IJ.createImage("Nuclei Mask", img.getWidth(),

img.getHeight(), 1, 8);
 maskIP = maskImage.getProcessor();
 startPointIndex = 0;
 IJ.showStatus("cell regions grow...");

 for(Point p : startPoints){

 IJ.showProgress(startPointIndex+1, startPoints.size());
 IJ.showStatus("cell regions grow...");
 c = new cell(p.x,p.y);
 c.add(p.x,p.y,ip.get(p.x, p.y));
 grow4N(p.x, p.y);
 cells.add(c);
 startPointIndex++;
 }

 if(holes){
 IJ.run(maskImage, "Fill Holes", "");
 }

 if(watershed){
 IJ.run(maskImage, "Watershed","");
 }
 //get the real cell objects after cleanup from maskImage
 getCellOutlines();

 }

 ImagePlus getMask(){

 return maskImage;
 }

 void getStartPositions(ImagePlus img){

 // basic idea of this function is to get the start pixel map for
 // a region growing algorithm. To extend image signal it is filtered
 // with unsharp mask filter. At next thresholding creates binary image
 // where we calculate the ultimate points (max eroded distance map).
 // every pixel bigger 0 is a starting position

 ImagePlus imp = img.duplicate();
 ImageProcessor impIP = imp.getProcessor();

 //IJ.run(imp, "Mean...", "radius=2");

96

 IJ.run(imp, "Gaussian Blur...", "sigma=2");
 IJ.run(imp, "Unsharp Mask...", "radius="+sigma+" mask="+ weight);
 IJ.setAutoThreshold(imp, "Otsu dark");
 Prefs.blackBackground = true;
 backgroundMin = imp.getDisplayRangeMin();
 IJ.log("lower backround value : " + backgroundMin);
 IJ.run(imp, "Convert to Mask", "");
 IJ.run(imp, "Ultimate Points", "");
 for(int x=1;x<imp.getWidth()-1;x++){
 for(int y=1;y<imp.getHeight()-1;y++){

 int[] intensity = imp.getPixel(x, y);//.getPixel(x,y);

 if(intensity[0]>=1){

 startPoints.add(new Point(x,y));
 impIP.set(x, y, 255);
 }
 }
 }
 IJ.run(imp, "Convert to Mask", "");

 IJ.log("I found " + startPoints.size() + " start positions");

 cleanUpStartPoints();

 IJ.log("I cleaned start positions up to : " + startPoints.size());

 voronoiImage = IJ.createImage("Voronoi Mask", img.getWidth(),

img.getHeight(), 1, 8);
 voronoiIP = voronoiImage.getProcessor();

 //voronoi image has to be build by placing all the positiv starting points
 //inside empty image

 for(Point sPoint : startPoints){

 voronoiIP.set(sPoint.x, sPoint.y, 255);
 }

 IJ.run(voronoiImage, "Convert to Mask", "");
 IJ.run(voronoiImage, "Voronoi", "");
 }

 void cleanUpStartPoints(){

 //ArrayList<Point> deletableStartPoints = new ArrayList<Point>();

 int startPointsLength = startPoints.size();

 //for(int s1 = 0; s1 < startPointsLength; s1++){
 for(int s1 = startPointsLength - 1; s1 >= 0; s1--){
 Point p = startPoints.get(s1);

 //for(int s2 = 0; s2 < startPointsLength; s2++){
 for(int s2 = startPointsLength - 1; s2 >= 0; s2--){
 Point pp = startPoints.get(s2);
 double measuredDist = dist(p.x,p.y,pp.x,pp.y);

Appendix – Source codes

Appendix – Source codes

97

 if((int)measuredDist <= minDiameter && (int)measuredDist != 0){

 //deletableStartPoints.add(pp);
 startPoints.remove(pp);
 //startPoints.set(s2, new Point(0,0));
 startPoints.add(new Point(0,0));
 }
 }
 }

 for(int loc = startPoints.size()-1; loc >= 0; loc--){

 Point zP = startPoints.get(loc);

 if(startPoints.contains(new Point(0,0))){
 startPoints.remove(zP);
 }

 }

 Overlay ovl = new Overlay(); //startPositions

 for(Point ppp : startPoints){

 PointRoi pRoi = new PointRoi(ppp.x,ppp.y);
 pRoi.setPointType(2);
 ovl.add(pRoi);

 }

 img.setOverlay(ovl);
 img.show();

 }

 void grow4N(int x, int y){

 boolean noBorders = checkBorders(x,y);
 boolean m = checkMean(x,y);
 boolean d = checkDistance(x,y);
 boolean s = isSet(x,y);
 boolean neighborhoodReached = checkNeighborhood(x,y);

 if(!s && d && m && noBorders && !neighborhoodReached){

 maskIP.set(x, y, 255);
 c.add(x, y, ip.get(x, y));
 grow4N(x+1,y);
 grow4N(x-1,y);
 grow4N(x,y+1);
 grow4N(x,y-1);
 }
 }

 void grow8N(int x, int y){

 boolean noBorders = checkBorders(x,y);

98

 boolean m = checkMean(x,y);
 boolean d = checkDistance(x,y);
 boolean s = isSet(x,y);
 boolean neighborhoodReached = checkNeighborhood(x,y);

 if(!s && d && m && noBorders && !neighborhoodReached){

 maskIP.set(x, y, 255);
 c.add(x, y, ip.get(x, y));
 grow8N(x+1,y);
 grow8N(x-1,y);
 grow8N(x,y+1);
 grow8N(x,y-1);

 grow8N(x+1,y+1);
 grow8N(x-1,y+1);
 grow8N(x+1,y-1);
 grow8N(x-1,y-1);
 }
 }

 boolean checkBorders(int x, int y){

 if(x<ip.getWidth()-1 && x>1 && y<ip.getHeight()-1 && y>1){
 return true;
 }
 else return false;

 }

 boolean checkDistance(int x, int y){

 //check if the distance is not to far away
 Point p = startPoints.get(startPointIndex);
 double d = dist(x,y,p.x,p.y);

 if(d>distLimit){
 return false;
 }
 else return true;

 }

 boolean isSet(int x, int y){

 try {
 int intens = maskIP.get(x, y);
 if(intens>0){
 return true;
 }
 else return false;
 }
 catch (ArrayIndexOutOfBoundsException e) {

 return false;
 }

 }

Appendix – Source codes

Appendix – Source codes

99

 boolean checkMean(int x, int y){

 double mean = 0;
 //IJ.log("mean : " + c.mean());

 try {
 mean += (double)ip.get(x, y);
 mean += (double)ip.get(x+1,y);
 mean += (double)ip.get(x-1,y);
 mean += (double)ip.get(x,y+1);
 mean += (double)ip.get(x,y-1);
 mean = (mean*meanTollerance)/5;
 //IJ.log("current mean : " + mean);

 if(mean >= backgroundMin && c.mean() <= mean){

 return true;
 }
 else return false;

 }

 catch (ArrayIndexOutOfBoundsException e) {
 return false;
 }

 }

 boolean checkNeighborhood(int x, int y){

 // to accelerate computation create voronoi map and check if x,y
 // is touching the voronoi border

 boolean neighborReached = false;

 if(voronoiIP.get(x, y) > 1){
 neighborReached = true;
 }

 return neighborReached;
 }

 public static double dist(int x1, int y1, int x2, int y2){

 double d = Math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));
 return d;
 }

 void calcDistLimit(int maxArea){

 //distLimit = Math.sqrt(maxArea*4/Math.PI);
 distLimit = maxDiameter;///2;
 }

 void getCellOutlines(){

 ImagePlus borderImage = IJ.createImage("border mask", img.getWidth(),

img.getHeight(), 1, 8);

100

 ImageProcessor borderIP = borderImage.getProcessor();

 for(cell cc : cells){

 ArrayList<Point> outlinePixels = cc.getOutline();
 //IJ.log("outlinePixels size : " + cc.borderPoints.size());

 for(Point p : outlinePixels){

 borderIP.set(p.x, p.y, 255);
 }
 }

 borderImage.show();

 }
 void show(){

 IJ.log("total cell in cells array : " + cells.size());
 int cellCount = 0;

 for(cell cc : cells){

 if(cc.area >= minArea && cc.area <= maxArea){

 cellCount += 1;

 }

 else{

 for(int i = 0; i<cc.points.size(); i++){

 Point p = cc.points.get(i);
 maskIP.set(p.x, p.y, 0);
 }
 }

 }

 IJ.log("cells in alowed size : " + cellCount);
 maskImage.show();
 }

 void showAnySizeCells(){

 IJ.log("total cell in cells array : " + cells.size());
 int cellCount = 0;

 for(cell cc : cells){

 if(cc.area >1){

 cellCount += 1;
 }
 }

 IJ.log("cells in any size (bigger than 1 px) : " + cellCount);
 maskImage.show();

Appendix – Source codes

Appendix – Source codes

101

 }

 void analyseMask(){

 int options = ParticleAnalyzer.ADD_TO_MANAGER+

ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES+
ParticleAnalyzer.INCLUDE_HOLES+
ParticleAnalyzer.CLEAR_WORKSHEET;

 int measurements = Measurements.AREA+Measurements.CENTROID+
Measurements.CIRCULARITY;

 ResultsTable rt = new ResultsTable();
 ParticleAnalyzer pa = new ParticleAnalyzer(options,measurements,rt,
 (double) minArea, (double) maxArea);
 pa.analyze(maskImage);

 rt.show("measurements of found objects");
 }
}

Plot2CH
import java.awt.Button;
import java.awt.Color;
import java.awt.Panel;
import java.awt.Point;
import java.awt.Rectangle;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import ij.CompositeImage;
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.WindowManager;
import ij.gui.GUI;
import ij.gui.GenericDialog;
import ij.gui.Overlay;
import ij.gui.Plot;
import ij.gui.Roi;
import ij.plugin.frame.PlugInFrame;
import ij.process.ImageProcessor;

public class Plot_2CH extends PlugInFrame implements ActionListener {

 // defining global variables
 ImagePlus origImage;
 ImagePlus gatedCellImage;
 String[] roiPositions;
 int[] roiPositionsNumber;
 String[] stainingList;
 int[] stainingListNumber;
 Roi[] rois;
 float[][] plotValues;
 Overlay plotOvlContainer;

 String[] plotChoice;
 ImagePlus img;
 ImageStack ims;

 Panel panel;
 Button b1,b2;

102

 String title = "Plot_2CH";
 WindowManager wm;

 public Plot_2CH(){

 // create little panel with buttons for plotting and gating tool
 super("Plot_2CH");
 this.setTitle("Plot 2 CH");
 this.setSize(200,200);
 panel = new Panel();
 b1 = new Button("plot");
 b1.addActionListener(this);
 b2 = new Button("get gated cells");
 b2.addActionListener(this);
 panel.add(b1);
 panel.add(b2);
 this.add(panel);
 GUI.center(this);//panel.setVisible(true);
 }
 public void actionPerformed(ActionEvent e){

 // button pressed action observation

 if(e.getSource() == this.b1){
 initImagesAndPlot();
 }

 if(e.getSource() == this.b2){
 showGatedCells();
 }
 }

 public void run(String arg) {
 // main function for ImageJplugin
 img = IJ.getImage();
 ims = img.getImageStack();
 origImage = img;

 if(!checkInput(img)){
 IJ.error("make sure your segmented images are in a stack");
 return;
 }
 else{
 //initImages();
 Plot_2CH p2ch = new Plot_2CH();
 p2ch.setVisible(true);
 }
 }

 void initImagesAndPlot(){

 // initialize images, extract two channels, plot their mean intensity

 //get input from user which channels should be plotted
 //select stack positions, get rois of these stainings, plot them
 img = IJ.getImage();
 ims = img.getImageStack();
 origImage = img;

Appendix – Source codes

Appendix – Source codes

103

 Overlay ovl = img.getOverlay();
 rois = ovl.toArray();
 roiPositions = new String[rois.length];
 roiPositionsNumber = new int[rois.length];
 stainingList = new String[img.getNSlices()];
 stainingListNumber = new int[img.getNSlices()];

 for(int i = 0; i<rois.length; i++){

 roiPositions[i] = ims.getShortSliceLabel(rois[i].getPosition());
 roiPositionsNumber[i] = i;
 //IJ.log("roiPosition : " + roiPositions[i]);
 }

 for(int j=0; j<stainingList.length; j++){

 stainingList[j] = ims.getShortSliceLabel(j+1);
 stainingListNumber[j] = j;
 //IJ.log("stainingList : " + stainingList[j]);
 }

 plotChoice = get2CH(); // get the string which ch should be plotted

 if(plotChoice[0].equals("-1") && plotChoice[1].equals("-1")){
 return;
 }
 else{
 plot(plotChoice);
 }
 }

 boolean checkInput(ImagePlus img){

 // plugin requires segmented image stack
 boolean check;
 int sliceNum = img.getNSlices();
 Overlay ovl = img.getOverlay();

 if(sliceNum <= 1 || ovl == null){
 check = false;
 }
 else check = true;

 return check;

 }
 String[] get2CH(){

 // ask user which ch he would like to plot against each other
 String[] userChoice = new String[2];

 GenericDialog gd =

new GenericDialog("Which Channels you would like to plot?");
 gd.addChoice("CH 1 :", stainingList, stainingList[0]);
 gd.addChoice("CH 2 :", stainingList, stainingList[1]);
 gd.showDialog();

 if(gd.wasCanceled()){
 userChoice[0] = "-1";

104

 userChoice[1] = "-1";
 }

 if(gd.wasOKed()){
 userChoice[0] = gd.getNextChoice();
 userChoice[1] = gd.getNextChoice();
 }

 return userChoice;

 }

 void plot(String[] plotChoice){

 // plot the values of the two channels
 plotValues = getPlotValues(plotChoice);

 Plot p = new Plot("plot of "+ plotChoice[0] +

" and " + plotChoice[1], plotChoice[0], plotChoice[1]);
 p.addPoints(plotValues[0], plotValues[1], Plot.CROSS);
 p.show();

 }
 float[][] getPlotValues(String[] plotChoice){

 // extract the objects out of the stack and calculate their mean intensity
 // and create an image to show only the two channels and their selected

 // cell objects

 int countedRoi = 1;
 int stackPos1 = 0;
 int stackPos2 = 0;

 for(int s = 0; s < stainingList.length; s++){

 if(plotChoice[0] == stainingList[s]){
 stackPos1 = stainingListNumber[s];
 }

 if(plotChoice[1] == stainingList[s]){
 stackPos2 = stainingListNumber[s];
 }
 }

 ImagePlus imp = origImage.duplicate();//new ImagePlus("duplicated stack");
 ImageStack ims = imp.getImageStack();
 ImageProcessor ip1 = ims.getProcessor(stackPos1+1);
 ImageProcessor ip2 = ims.getProcessor(stackPos2+1);

 for(int i = 0; i<rois.length; i++){

 if(plotChoice[0].equals(roiPositions[i])){
 countedRoi += 1;
 }
 }

 float[][] plotValues = new float[2][countedRoi];
 float meanValue1, meanValue2, area;
 int roiCount = 0;

Appendix – Source codes

Appendix – Source codes

105

 plotOvlContainer = new Overlay();

 for(int j = 0; j<rois.length; j++){

 meanValue1 = 0;
 meanValue2 = 0;
 area = 0;

 if(plotChoice[0].equals(roiPositions[j])){

 plotOvlContainer.add(rois[j]);

 for(Point p : rois[j]){

 meanValue1 += ip1.getf(p.x,p.y);
 meanValue2 += ip2.getf(p.x, p.y);
 area += 1;
 }

 plotValues[0][roiCount] = meanValue1/area;
 plotValues[1][roiCount] = meanValue2/area;
 roiCount++;
 }
 }

 ImageStack ims2 = new ImageStack(ip1.getWidth(),ip1.getHeight());
 ims2.addSlice(ip1);
 ims2.addSlice(ip2);
 gatedCellImage = new ImagePlus("gated cell image", ims2);
 plotOvlContainer.setStrokeColor(Color.YELLOW);
 gatedCellImage.setOverlay(plotOvlContainer);
 //IJ.run(gatedCellImage, "Make Composite", "display=Composite");

 CompositeImage ci = new CompositeImage(gatedCellImage);
 ci.setMode(CompositeImage.COMPOSITE);
 //ci.show();
 gatedCellImage = ci;
 gatedCellImage.show();

 return plotValues;

 }

 void showGatedCells(){

 // gating tool inside the plot

 ImagePlus pw;
 Roi plotRoi;
 Roi[] cellRois;
 Rectangle r;
 double xOrigin, yOrigin, xWidth, yHeigth;

 IJ.selectWindow("plot of "+ plotChoice[0] + " and " + plotChoice[1]);
 pw = IJ.getImage();
 plotRoi = pw.getRoi();

 if(plotRoi == null){
 IJ.error("Create a gate, please");

106

 return;
 }

 r = plotRoi.getBounds();

 //calculating the real position of the bounding rect in the scaled

 //plot image

 xOrigin = pw.getCalibration().xOrigin;
 yOrigin = pw.getCalibration().yOrigin;
 xWidth = pw.getCalibration().pixelWidth;
 yHeigth = pw.getCalibration().pixelHeight;

 cellRois = plotOvlContainer.toArray();
 Overlay gatedCellsOvl = new Overlay();

 for(int i = 0; i < plotValues[0].length-1; i++){

 double plotValueX = Math.round(plotValues[0][i]);
 double plotValueY = Math.round(plotValues[1][i]);
 int count = 0;

 for(Point p : plotRoi){

 double px = Math.round(((double)p.x - xOrigin)*xWidth);
 double py = Math.round((yOrigin - (double)p.y)*yHeigth);

 if(plotValueX == px && plotValueY == py && count == 0){

 //IJ.log("plot x : " + Math.round(plotValues[0][i]));
 //IJ.log("plot y : " + Math.round(plotValues[1][i]));
 //IJ.log("p.x : " + px);
 //IJ.log("p.y : " + py);
 //IJ.log("match " + (count+1+i));

 gatedCellsOvl.add(cellRois[i]);

 count++;

 }
 }

 }

 gatedCellsOvl.setStrokeColor(Color.YELLOW);
 gatedCellImage.setOverlay(gatedCellsOvl);
 gatedCellImage.updateAndDraw();
 }

}

Appendix – Source codes

Appendix – Source codes

107

8.1.3. markerSpecifiedSearching – Fiji/imageJ PlugIn

import java.awt.Color;
import java.awt.Point;
import java.awt.Rectangle;
import java.util.ArrayList;

import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.gui.GenericDialog;
import ij.gui.Overlay;
import ij.gui.Roi;
import ij.measure.ResultsTable;
import ij.plugin.PlugIn;

public class markerSpecifiedSearching implements PlugIn {

 Roi[] rois;
 boolean[] countedRoi;
 boolean[] markerValues;
 String[] imageNames;
 String[] imageList;
 ImagePlus resultImage;

 ArrayList<ArrayList<Integer>> neighborCollection;
 ArrayList<ArrayList<String>> neighborCollectionNames;

 public void run(String arg) {

 ImagePlus img = IJ.getImage();
 ImageStack ims = img.getImageStack();
 resultImage = img.duplicate();

 if(!checkInput(img)){
 IJ.error("make sure your segmented images are in a stack");
 }
 else {

 Overlay ovl = img.getOverlay();
 rois = ovl.toArray();
 imageNames = new String[rois.length];
 imageList = new String[img.getNSlices()];
 countedRoi = new boolean[rois.length];

 for(int i = 0; i<rois.length; i++){

 imageNames[i] = ims.getShortSliceLabel(rois[i].getPosition());
 countedRoi[i] = false;
 }
 for(int j=0; j<imageList.length; j++){

 imageList[j] = ims.getShortSliceLabel(j+1);

 }

 markerValues = new boolean[imageList.length];
 markerValues = getMarkerCombination();
 int gdCanceldCount = 0;

108

 for(int k = 0; k < markerValues.length; k++){

 if(!markerValues[k])
 gdCanceldCount += 1;
 }

 if(markerValues.length == gdCanceldCount) return;

 searchMarkerCombination();
 }
 }

 boolean checkInput(ImagePlus img){

 boolean check;
 int sliceNum = img.getNSlices();
 Overlay ovl = img.getOverlay();

 if(sliceNum <= 1 || ovl == null){
 check = false;
 }
 else check = true;

 return check;
 }

 boolean[] getMarkerCombination(){

 boolean[] markerValue = new boolean[imageList.length];

 //IJ.log("get user information about allowed marker combination...");
 GenericDialog gd = new GenericDialog("Set Marker Combination");
 gd.addMessage("checkbox checked means positive");
 gd.addMessage("checkbox unchecked means negative");

 for(int i=0; i<imageList.length; i++){

 gd.addCheckbox(imageList[i], false);
 }
 gd.showDialog();
 for(int j=0; j<imageList.length; j++){

 if(gd.wasCanceled()){
 markerValue[j] = false;
 }
 else{
 markerValue[j] = gd.getNextBoolean();
 }

 }

 return markerValue;
 }

 void searchMarkerCombination(){

 //IJ.log("search for marker combination...");
 IJ.showStatus("looking for positiv combinations...");

Appendix – Source codes

Appendix – Source codes

109

 neighborCollection = new ArrayList<ArrayList<Integer>>();
 neighborCollectionNames = new ArrayList<ArrayList<String>>();
 //IJ.log("look for combinations...");

 for(int i=0; i<rois.length;i++){

 IJ.showProgress(i+1, rois.length);
 IJ.showStatus("looking for positiv combinations...");
 //Roi selectedRoi = rois[i];
 boolean gotNeighbors = false;
 ArrayList<Integer> foundNeighbors = new ArrayList<Integer>();
 ArrayList<String> neighborNames = new ArrayList<String>();

 for(int j=0; j<rois.length;j++){

 //IJ.log("compare with roi " + j);
 //Roi roiCandidate = rois[j];
 boolean isCandidate = false;

 if(checkCenterDist(rois[i],rois[j])){

 for(Point p : rois[j]){

 if(rois[i].contains(p.x, p.y)){
 isCandidate = true;
 //IJ.log("roi " + j + " is candidate");
 break;
 }
 }

 if(isCandidate && !countedRoi[j]){

 gotNeighbors = true;
 setCounted(j);
 foundNeighbors.add(j);
 neighborNames.add(imageNames[j]);
 //IJ.log("roi : " + i);
 //IJ.log("add " +imageNames[j]);

 }
 }
 }

 if(gotNeighbors){

 foundNeighbors.add(0, i);
 neighborNames.add(0, imageNames[i]);
 neighborCollection.add(foundNeighbors);
 neighborCollectionNames.add(neighborNames);
 // IJ.log("add neighbors from roi " + i + " to " + imageNames[i]);
 }

 resetCountedRoi();
 }

 proveMatches();

 }

110

 void setCounted(int roiIndex){

 countedRoi[roiIndex] = true;

 }

 void resetCountedRoi(){

 for(int i = 0; i<countedRoi.length; i++){

 countedRoi[i] = false;
 }
 }

 boolean checkCenterDist(Roi roi1, Roi roi2){

 boolean isNear = false;
 double distance = 0;
 double doubleWidth, doubleHeight;

 Rectangle rect1 = roi1.getBounds();
 Rectangle rect2 = roi2.getBounds();

 distance = dist(rect1.x, rect1.y, rect2.x, rect2.y);
 doubleWidth = (double) (rect1.width+rect2.width);
 doubleHeight = (double) (rect1.height+rect2.height);

 if(doubleWidth > distance || doubleHeight > distance){

 isNear = true;
 }

 return isNear;
 }

 double dist(int x1, int y1, int x2, int y2){

 double d = Math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));
 return d;
 }

 void proveMatches(){

 for(int i=neighborCollectionNames.size()-1; i>=0; i--){

 ArrayList<String> list = neighborCollectionNames.get(i);
 boolean[] checkValues = new boolean[markerValues.length];
 int c = 0;

 for(int j=0; j<markerValues.length; j++){

 if(list.contains(imageList[j])){
 checkValues[j] = true;
 }
 else{
 checkValues[j] = false;
 }
 }

Appendix – Source codes

Appendix – Source codes

111

 for(int k=0; k<markerValues.length; k++){

 if(markerValues[k] == checkValues[k]) {

 c += 1;
 }
 }

 if(c != markerValues.length){

 neighborCollection.remove(i);
 neighborCollectionNames.remove(i);
 }
 }
 if(neighborCollection.isEmpty()){
 IJ.error("Sorry, but I have not found any of your marker combination");
 }
 else{

 showMarkerCombinations();
 }

 }

 void showMarkerCombinations(){

 Overlay rOvl = resultImage.getOverlay();
 Roi[] rRois = rOvl.toArray();

 //IJ.log("showMarkerCombination...");

 for(int i=0; i<neighborCollectionNames.size(); i++){

 ArrayList<Integer> list = neighborCollection.get(i);
 //IJ.log("got list : " + neighborCollection.get(i));
 //IJ.log("neighborCollectionNames : " + neighborCollectionNames.get(i));

 for(int e : list){

 rRois[e].setStrokeColor(Color.green);
 rOvl.add(rRois[e]);
 }

 }

 int[] totalCellCount = new int[imageList.length];
 int[] matches = new int[imageList.length];
 double[] matchRate = new double[imageList.length];

 for(int j=0; j<imageList.length; j++){

 for(int k=0; k<rRois.length; k++){

 if(rRois[k].getPosition() == (j+1)){

 totalCellCount[j] += 1;

 if(rRois[k].getStrokeColor() == Color.green){

112

 matches[j] += 1;
 }
 }
 }
 matchRate[j] = ((double)matches[j]/(double)totalCellCount[j])*100;
 }

 ResultsTable rt = new ResultsTable();

 for(int m=0; m<imageList.length; m++){

 rt.incrementCounter();
 rt.addValue("staining", imageList[m]);
 rt.addValue("cell count", totalCellCount[m]);
 rt.addValue("matches", matches[m]);
 rt.addValue("%",matchRate[m]);
 }
 rt.show("Marker Searching Result");

 resultImage.setTitle("Marker Searching Result");
 resultImage.setOverlay(rOvl);
 resultImage.show();

 }

}

Appendix – Source codes

Appendix – Source codes

113

8.1.4. DFT Coefficient Calculation of object outlines – ImageJ Macro
// getCoordinatesAndPlotDFT2
// This Macro reads ROIs and calculates the discrete fourier transformation (DFT)
// discriptors, plots and if you want save them, based on SHADE

Dialog.create("getCoordinatesAndPlotDFT2");
Dialog.addMessage("please make sure you have an opened image &\n"+
 "at least one selected cell in ROI Manager !\n");
Dialog.addNumber("how many DFT Discriptors you need?", 20);
Dialog.addCheckbox("save your results?", false);
Dialog.addCheckbox("show intermediate results", false);
Dialog.addMessage("--");
Dialog.addCheckbox("animate surface positions of ROI?", false);
Dialog.addMessage(" wanring, this choice slows your process down");
Dialog.show();

DFTCount = Dialog.getNumber();
saving = Dialog.getCheckbox();
intermediate = Dialog.getCheckbox();
animation = Dialog.getCheckbox();

name=getInfo("image.filename");
imageDir = getInfo("image.directory");
path = imageDir+"DFT_calculation_cell";

origImage = getTitle();
origHeight = getHeight();
origWidth = getWidth();

run("ROI Manager...");
cellCount = roiManager("count");

for (cell=0; cell<cellCount; cell++) {

 roiManager("select",cell);
 Roi.getCoordinates(x, y);
 roiName = Roi.getName;
 n = x.length;

 if (animation == true) {
 run("Point Tool...", "type=Dot color=Yellow size=Medium show counter=0");
 for (i=0; i<n; i++){
 IJ.log("x :" + x[i] + "; y: " + y[i]);
 makePoint(x[i], y[i]);
 wait(50);
 }

 }

 oreal = newArray(n);
 oimag = newArray(n);
 oAmpl = newArray(n);
 natemp = newArray(DFTCount);
 toreal = newArray(DFTCount);
 toimag = newArray(DFTCount);
 toAmpl = newArray(DFTCount);
 tnumber = newArray(DFTCount);

114

 for (k = 0; k < n; k++) {

 creal = 0;
 cimag = 0;

 for (t = 0; t < n; t++) {

 creal = creal + x[t]*cos(2*PI * t * k / n) +

y[t]*sin(2*PI * t * k / n);
cimag = cimag + x[t]*sin(2*PI * t * k / n) +

y[t]*cos(2*PI * t * k / n);
 }
 oreal[k] = creal;
 oimag[k] = cimag;
 oAmpl[k] = sqrt(creal*creal + cimag*cimag);

 }
 for (temc=1; temc < DFTCount; temc++){
 toreal[temc]=oreal[temc];
 toimag[temc]=oimag[temc];
 toAmpl[temc]=oAmpl[temc];
 natemp[temc]=roiName+"_image_"+name;
 tnumber[temc]=temc+1;
 }

 roreal = Array.concat(roreal,toreal);
 roimag = Array.concat(roimag,toimag);
 roAmpl = Array.concat(roAmpl,toAmpl);
 rname = Array.concat(rname,natemp);
 rnumber = Array.concat(rnumber,tnumber);
 Array.show("Results (row numbers)",roreal,roimag,roAmpl,rname,rnumber);

 if (intermediate == true) {
 Plot.create(name+" cell["+cell+"]->real","Timepoint","Value",toreal);
 Plot.show();

 Plot.create(name+" cell["+cell+"]->imaginary","Timepoint","Value",toimag);
 Plot.show();

 Plot.create(name+" cell["+cell+"]->Amplitude","Timepoint","Value",toAmpl);
 Plot.show();

 waitForUser("next cell?");
 }

}

 if(saving==true){

 selectWindow("Results");
 saveAs("Results",path+"_DFT_results_of"+name+".xls");
 //IJ.log("Results of calculations are saved "+
 //"("+path+"_DFT_results_of"+name+".xls)");
 waitForUser("Results of calculations are saved\n "+
 "("+path+"_DFT_results_of"+name+".xls)");
 }

waitForUser("Process completed!");

Appendix – Source codes

Appendix – Source codes

115

116

8.1.5. MELC registration scripts – Python
MELC_image_registration_GUI
#-----------------------------
import tkinter as tk
from tkinter import filedialog
import MELC_run_reader
import registrate_MELC_run

class Main_Window:

 # constructor of the main gui
 def __init__(self):

 self.melc_dict = {}
 self.melc_run_info = MELC_run_reader

 self.master = tk.Tk()
 self.master.title("MELC run registration")
 # self.master.geometry("300x450+5+10")
 self.frame = tk.Frame(self.master)

 self.file_loc_label = tk.Label(self.master, text=

"directory").grid(row=0, column=0, rowspan=1, columnspan=1)
 self.path_entry = tk.Entry(self.master, width=40)
 self.path_entry.insert(0, "melkIni path")
 self.path_entry.grid(row=0, column=1, rowspan=1, columnspan=2)

 self.browse_button = tk.Button(self.master, text="browse",

command=self.set_ini_file).grid(row=0, column=4,
rowspan=1, columnspan=1)

 self.sec_label = tk.Label(self.master,

text="marker list, select secondary markers").grid(row=1, column=2)

 self.list_box = tk.Listbox(self.master,

width=40, height=20, selectmode='multiple')
 self.list_box.grid(row=2, column=2)

 self.run_button = tk.Button(self.master, text="RUN",

command=self.start_melc_registration).grid(row=4,
column=4, rowspan=2, columnspan=2)

 #print(self.master.grid_size())

 self.master.mainloop()

 def set_ini_file(self):

 ini_file_path = filedialog.askdirectory()
 self.path_entry.delete(0, len(self.path_entry.get()))
 self.path_entry.insert(0, ini_file_path)
 self.melc_run_info = self.get_MELC_run_info()

 def get_MELC_run_info(self):

 melc_run_dir = self.path_entry.get()
 melc_run_path = melc_run_dir+'/inifile/melkIni.xml'
 mri = MELC_run_reader.MELC_run_reader(melc_run_path)
 self.melc_dict = mri.MELC_dict

Appendix – Source codes

Appendix – Source codes

117

 count = 0
 for i in self.melc_dict:

 self.list_box.insert(count, self.melc_dict[i]["marker name"])
 count += 1

 return mri

 def start_melc_registration(self):

 secondary_markers =

[self.list_box.get(i) for i in self.list_box.curselection()]

 print("start processing...")
 print("")

 for image_set in self.melc_run_info.MELC_dict:

 secondary = "no"

if self.melc_run_info.MELC_dict[image_set]["marker name"] in secondary
_markers:

 secondary = self.melc_run_info.MELC_dict[image_set]["secondary"] =
"yes"

 f_channel = self.melc_run_info.MELC_dict[image_set]['channel']
 f_exposure = self.melc_run_info.MELC_dict[image_set]['exposure time']
 step = int(self.melc_run_info.MELC_dict[image_set]['inc step'])

 for image_set2 in self.melc_run_info.MELC_dict:

 f_channel2 =

self.melc_run_info.MELC_dict[image_set2]['channel']
 f_exposure2 =

self.melc_run_info.MELC_dict[image_set2]['exposure time']
 previous_step =

(int(self.melc_run_info.MELC_dict[image_set2]['inc step']))

 if f_channel == f_channel2 and

f_exposure == f_exposure2 and
(step-2) == previous_step and
secondary == "yes":

 self.melc_run_info.MELC_dict[image_set]\

['previous bleach image'] =
self.melc_run_info.MELC_dict[image_set2]['marker name'] +
'_' + f_exposure2 + '_' + f_channel2 + '_' +
self.melc_run_info.MELC_dict[image_set2]['inc step']

 # print(step,previous_step)

 registrate_MELC_run.registrate_MELC_run(self.melc_run_info)

start_main_window = Main_Window()

118

MELC_run_reader – python script to parse MELC run XML file
#-----------------
import xml.etree.ElementTree as ET
import os
'''
MELC_run_reader read the melkIni.xml file and creates a dictionary,
containing every step
'''
class MELC_run_reader:
 # some global variables
 web_prefix = ''
 MELC_dict = {}

 def __init__(self, path):

 self.path = path
 self.melc_run_dir = self.path[0:-(len('/inifile/melkIni.xml'))]

 # parsing xml to element tree
 inifile = ET.ElementTree()
 inifile = ET.parse(path)
 inifile_root = inifile.getroot()

 global web_prefix
 web_prefix = self.check_and_get_web_prefix(inifile_root.tag)

 # extract file format, stack size, max shift [x y] for registration
 self.fluorescence_prefix = inifile_root.find((web_prefix + 'runSetting/' +
 web_prefix + 'fluorescenceImagePrefix')).text
 self.bleach_prefix = inifile_root.find((web_prefix + 'runSetting/' +
web_prefix + 'bleachImagePrefix')).text
 self.phase_prefix = inifile_root.find((web_prefix + 'runSetting/' +
web_prefix + 'phaseImagePrefix')).text
 self.bleach_phase_prefix = inifile_root.find((web_prefix + 'runSetting/' +
 web_prefix + 'phaseBleachImagePrefix')).text

 self.file_format = inifile_root.find((web_prefix + 'runSetting/' +
web_prefix + 'imageFormat')).text

 self.stack_range_m = inifile_root.find((web_prefix + 'runSetting/' +
web_prefix + 'visualFieldConfig/' + web_prefix + 'stack/' + web_prefix +
'imageCountNegative')).text
 self.stack_range_p = inifile_root.find((web_prefix + 'runSetting/' +
web_prefix + 'visualFieldConfig/' + web_prefix + 'stack/' + web_prefix +
'imageCountPositive')).text

 self.max_shift_x = inifile_root.find((web_prefix + 'autofocus/' +
web_prefix + 'autofocusStep/' + web_prefix + 'function/' + web_prefix +
'correlation/' + web_prefix + 'maxShiftX')).text
 self.max_shift_y = inifile_root.find((web_prefix + 'autofocus/' +
web_prefix + 'autofocusStep/' + web_prefix + 'function/' + web_prefix +
'correlation/' + web_prefix + 'maxShiftY')).text

 self.reference_image = self.get_reference_image()
 self.reference_image_exposure_time = inifile_root.find((web_prefix +
'runSetting/' + web_prefix + 'exposureTime')).text
 self.reference_image_channel = inifile_root.find(web_prefix +

Appendix – Source codes

Appendix – Source codes

119

'runSetting/' + web_prefix + 'phaseFilter').attrib["name"]
 self.reference_image_size = inifile_root.find((web_prefix + 'autofocus/' +
 web_prefix + 'autofocusStep/' + web_prefix + 'roiSize')).text
 self.MELC_dict = self.get_MELC_dict(inifile_root)

 print('')
 print('melc run directory : ', self.melc_run_dir)
 print('-------------')
 print('file prefixes')
 print('-------------')
 print('fluorescence_prefix : ', self.fluorescence_prefix)
 print('bleach_prefix : ', self.bleach_prefix)
 print('phase_prefix : ', self.phase_prefix)
 print('bleach_prefix : ', self.bleach_phase_prefix)
 print('')
 print('file format : ' + self.file_format)
 print('')
 print('reference image : ', self.reference_image)
 print('reference image exposure time : ',

self.reference_image_exposure_time)
 print('reference image channel : ', self.reference_image_channel)
 print('reference image size [%] : ', self.reference_image_size)
 print('')
 print('stack size : ' + str(int(self.stack_range_m) + 1 +

int(self.stack_range_p)) + ' [' + self.stack_range_m + ' ; ' +
self.stack_range_p + ']') # adding one, because of central position

 print('')
 print('max shift [x y] : [' + self.max_shift_x + ' ; ' +

self.max_shift_y + ']')
 print('')
 print('your MELC run in detail:')
 print('-----------------------\n')
 self.show_MELC_dict(self.MELC_dict)

 def get_reference_image(self):

 all_files = os.listdir((self.melc_run_dir) + '/source/')
 matched = [i for i in all_files if ("_RefImage" in i and

i.endswith(self.file_format))]
 # print(matched)
 return matched

 def check_and_get_web_prefix(self, tag):
 '''
 checking some atribute naming of the nodes inside the parsed xml
 '''

 if len(tag) > 7:
 return tag[0:-7]
 else:
 return ''

 def show_MELC_dict(self, MELC_dict):

 for melc_step in MELC_dict:
 print(melc_step + ': ')

120

 for i in MELC_dict[melc_step]:
 print(i + ' : ' + MELC_dict[melc_step][i])
 print('------------------------------------')

 def get_MELC_dict(self, inifile_root):
 '''
 returns dictionary containing staining step information

 melc_step_info = {image_set_1 : {inc step, channel, marker name, expsure
 time, previous bleach image, secondary?}}

 '''
 inc_step_dict = {}
 inc_step_count = 1
 image_set_count = 1

 for inc_step in inifile_root.iter((web_prefix) + 'incStep'):

 channel_step = inc_step.iter((web_prefix) + 'channelStep')
 channel_step_count = 1

 inc_step_prefix = '00'

 if inc_step_count >= 10 and inc_step_count < 100:
 inc_step_prefix = '0'

 if inc_step_count >= 100 and inc_step_count < 1000:
 inc_step_prefix = ''

 for e in channel_step:
 # print(e.tag, e.attrib)
 name = e.find((web_prefix) + 'marker')
 exposure_time = e.find((web_prefix) + 'exposureTime')
 channel = e.find((web_prefix) + 'fluorescenceFilter')

 image_set_text = 'image_set_' + str(image_set_count)
 inc_step_dict[image_set_text] = {
 "inc step": inc_step_prefix + str(inc_step_count),
 "channel step": str(channel_step_count),
 "marker name": name.attrib['name'],
 "channel": channel.attrib['name'],
 "exposure time": exposure_time.text,
 "previous bleach image": "",
 "secondary": "no"
 }

 image_set_count += 1
 channel_step_count += 1

 inc_step_count += 1

 # add previous bleach image staining to each incStep

 for inc in inc_step_dict:

 f_channel = inc_step_dict[inc]['channel']
 f_exposure = inc_step_dict[inc]['exposure time']
 step = int(inc_step_dict[inc]['inc step'])

Appendix – Source codes

Appendix – Source codes

121

 if step == 1:
 inc_step_dict[inc]['previous bleach image'] =
inc_step_dict[inc]['marker name'] + '_' + f_exposure + '_' + f_channel +
'_' + inc_step_dict[inc]['inc step']

 else:

 for inc2 in inc_step_dict:

 f_channel2 = inc_step_dict[inc2]['channel']
 f_exposure2 = inc_step_dict[inc2]['exposure time']
 previous_step = (int(inc_step_dict[inc2]['inc step']))

 if f_channel == f_channel2 and f_exposure == f_exposure2 and
step > previous_step:
 inc_step_dict[inc]['previous bleach image'] =
inc_step_dict[inc2]['marker name'] + '_' + f_exposure2 + '_' + f_channel2 + '_' +
inc_step_dict[inc2]['inc step']
 # print(step,previous_step)

 if inc_step_dict[inc]['previous bleach image'] == "":
 inc_step_dict[inc]['previous bleach image'] =
inc_step_dict[inc]['marker name'] + '_' + f_exposure + '_' + f_channel + '_' +
inc_step_dict[inc]['inc step']

 return inc_step_dict

registrate_MELC_run - main syript with functions to registrate MELC run
#--
import os
import imageio
import numpy as np
import matplotlib.image as mpimg
from skimage.feature import register_translation
from scipy.ndimage import shift
from scipy import ndimage
from scipy import interpolate

def read_images(image_list):

 image_container = []

 for i in image_list:
 image_container.append(imageio.imread(i).astype('float'))

 loaded_images = np.array(image_container, dtype='float')

 return loaded_images

def createSuffix(m, p, file_format):
 if m < 0:
 steps = abs(m) + p

 if m > 0:
 steps = p - m

122

 suffix = [None] * (steps + 1)
 posCount = 0

 for s in range(m, p + 1):

 if s > 0:
 suffix[posCount] = '_p' + str(s) + file_format
 posCount += 1

 if s == 0:
 suffix[posCount] = file_format
 posCount += 1

 if s < 0:
 suffix[posCount] = '_m' + str(abs(s)) + file_format
 posCount += 1

 return suffix

def find_iamge_shift(ref_image, image):

 ref_image_center_y = int(ref_image.shape[0] / 2)
 ref_image_center_x = int(ref_image.shape[1] / 2)

 image_center_y = int(image.shape[0] / 2)
 image_center_x = int(image.shape[1] / 2)

 image = image[(image_center_y - ref_image_center_y):(image_center_y +
ref_image_center_y), (image_center_x - ref_image_center_x):(image_center_x +
ref_image_center_x)]

 shift_xy, error, diffphase = register_translation(ref_image, image, 10)
 return shift_xy

def get_interpolation_measure(input_image_b):

 dims = input_image_b.shape

 step_x = int(dims[1] / 8)
 step_y = int(dims[0] / 8)

 x_measure = []
 y_measure = []
 z_measure = []

 for sx in range(0, dims[1] + 1, step_x):
 for sy in range(0, dims[0] + 1, step_y):

 rx1 = int(sx - step_x / 2)
 ry1 = int(sy - step_y / 2)
 rx2 = int(sx + step_x / 2)
 ry2 = int(sy + step_y / 2)

 if rx1 < 0:
 rx1 = 0
 if rx2 > dims[1]:
 rx2 = dims[1]
 if ry1 < 0:
 ry1 = 0

Appendix – Source codes

Appendix – Source codes

123

 if ry2 > dims[0]:
 ry2 = dims[0]

 mean_value = np.min(input_image_b[ry1:ry2, rx1:rx2])

 x_measure.append(sx)
 y_measure.append(sy)
 z_measure.append(mean_value)

 return x_measure, y_measure, z_measure

def get_polynomial_interpolation(xs, ys, zs):

 tmp_A = []
 tmp_b = []

 for i in range(len(xs)):

 #under mac os float is normaly taken by default...under windows we have to
 tell explicity
 tmp_A.append([float(xs[i]*xs[i]), float(ys[i]*ys[i]), float(xs[i]*ys[i]),
float(xs[i]), float(ys[i]), 1.])
 tmp_b.append(zs[i])

 b = np.transpose(tmp_b)
 A = np.array(tmp_A)

 fit = np.linalg.inv((np.transpose(A) @ A)) @ np.transpose(A) @ b
 errors = b - A @ fit
 residual = np.linalg.norm(errors)

 print("solution:")
 print("%f x^2 + %f y^2 + %f x*y + %f x + %f y + %f = z" % (fit[0], fit[1], fit
[2], fit[3], fit[4], fit[5]))
 print("errors:")
 print("mean : " + str(np.mean(errors)))
 print("min : " + str(np.min(errors)))
 print("max : " + str(np.max(errors)))
 print("residual:")
 print(residual)

 return fit, errors, residual

def focus_measure(input_images):

 dims = input_images.shape
 global_mean = np.mean(input_images)
 step_x = int(dims[2] / 16)
 step_y = int(dims[1] / 16)

 x = []
 y = []
 z = []

 for sx in range(0, dims[2] + 1, step_x):
 for sy in range(0, dims[1] + 1, step_y):

124

 rx1 = int(sx - (step_x / 2))
 ry1 = int(sy - (step_y / 2))
 rx2 = int(sx + (step_x / 2))
 ry2 = int(sy + (step_y / 2))

 if rx1 < 0:
 rx1 = 0
 if rx2 > dims[2]:
 rx2 = dims[2]
 if ry1 < 0:
 ry1 = 0
 if ry2 > dims[1]:
 ry2 = dims[1]
 local_mean = np.mean(input_images[:, ry1:ry2, rx1:rx2])
 std_means = np.zeros(dims[0])

 for szx in range(dims[0]):
 std_means[szx] = np.std(input_images[szx, ry1:ry2, rx1:rx2])

 max_index_x = np.argmax(std_means)

 if local_mean >= global_mean:
 x.append(sx)
 y.append(sy)
 z.append(max_index_x)

 return x, y, z

def focus_measure2(input_images):
 dims = input_images.shape

 fm = np.zeros(dims)

 for i in range(fm.shape[0]):
 fm[i, :, :] = input_images[i, :, :] - ndimage.gaussian_filter(input_images
[i, :, :], sigma=9)
 fm[fm < 0] = 0
 fm[i, :, :] = ndimage.gaussian_filter(fm[i, :, :], sigma=9)

 # global_mean = np.mean(input_images)
 global_mean = np.mean(fm)
 step_x = int(dims[2] / 32)
 step_y = int(dims[1] / 32)

 x = []
 y = []
 z = []

 for sx in range(0, dims[2] + 1, step_x):
 for sy in range(0, dims[1] + 1, step_y):

 rx1 = int(sx - (step_x / 2))
 ry1 = int(sy - (step_y / 2))
 rx2 = int(sx + (step_x / 2))
 ry2 = int(sy + (step_y / 2))

 if rx1 < 0:
 rx1 = 0
 if rx2 > dims[2]:

Appendix – Source codes

Appendix – Source codes

125

 rx2 = dims[2]
 if ry1 < 0:
 ry1 = 0
 if ry2 > dims[1]:
 ry2 = dims[1]

 # local_mean =np.mean(input_images[:, ry1:ry2, rx1:rx2])
 local_mean = np.mean(fm[:, ry1:ry2, rx1:rx2])
 std_means = np.zeros(dims[0])

 for szx in range(dims[0]):
 # std_means[szx] = np.std(input_images[szx, ry1:ry2, rx1:rx2])
 std_means[szx] = np.std(fm[szx, ry1:ry2, rx1:rx2])

 max_index_x = np.argmax(std_means)

 if local_mean >= global_mean:
 x.append(sx)
 y.append(sy)
 z.append(max_index_x)

 return x, y, z

def get_focus_map_fit(xs, ys, zs):

 print(len(xs))
 print(len(ys))
 print(len(zs))

 tmp_A = []
 tmp_b = []

 for i in range(len(xs)):

 tmp_A.append([xs[i], ys[i], 1])
 tmp_b.append(zs[i])

 b = np.transpose(tmp_b)
 A = np.array(tmp_A)
 fit = np.linalg.inv((np.transpose(A) @ A)) @ np.transpose(A) @ b
 errors = b - A @ fit
 residual = np.linalg.norm(errors)

 print("solution:")
 print("%f x + %f y + %f = z" % (fit[0], fit[1], fit[2]))
 print("errors:")
 print("mean : " + str(np.mean(errors)))
 print("min : " + str(np.min(errors)))
 print("max : " + str(np.max(errors)))
 print("residual:")
 print(residual)

 return fit, errors, residual

def gauss(x, a, b, c, d):
 return a + (b-a)*np.exp(-(x-c)**2./(2.*d**2))

126

def registrate_MELC_run(melc_run_info):
"""
here the whole magic happens and the raw images from melc run are processed (align
ed, subtracted, corrected and projected)
To Do !

- registrate phase and bleach_phase images -
> translate with the values fluorescent images (if possible, correct for chromatic
 shift xyz !!!)
 - subtract the registrated images
 - flat field correction ?
 - z stack projection for all in focus
 """

 print("")
 print("started...")
 print("")

 # create directory inside melc run directory

 subtracted_images_dir = melc_run_info.melc_run_dir +
'/results/subtracted_images'
 best_focus_dir = melc_run_info.melc_run_dir +
'/results/best_focus_images'
 # print("dir : ", subtracted_images_dir)

 if not os.path.exists(subtracted_images_dir):

 try:
 os.mkdir(subtracted_images_dir)
 except OSError:
 print("could not create subtracted_images directory")
 else:
 print("Error: subtracted_images folder is not created...")

 else:
 print("folder subtracted_images allready created")

 if not os.path.exists(best_focus_dir):

 try:
 os.mkdir(best_focus_dir)
 except OSError:
 print("could not create best_focus_images directory")
 else:
 print("Error: best_focus_images folder is not created...")

 else:
 print("folder best_focus_images allready created")

 # create list of all z positions
 position_suffix = createSuffix(-
int(melc_run_info.stack_range_m), int(melc_run_info.stack_range_p),
melc_run_info.file_format)
 # print(position_suffix)

 # aligning/registrating images based on reference phase contrast image
 # via cross correlation

Appendix – Source codes

Appendix – Source codes

127

 ph_ref_image = imageio.imread(melc_run_info.melc_run_dir + "/source/" + melc_r
un_info.reference_image[0]).astype('float')
 #ph_ref_image = np.array(ph_ref_image)
 # plt.imshow(ph_ref_image)
 # plt.show()

 for ms in melc_run_info.MELC_dict:

 image_stack = []
 inc_step = melc_run_info.MELC_dict[ms]["inc step"]
 channel_step = melc_run_info.MELC_dict[ms]["channel step"]
 marker_name = melc_run_info.MELC_dict[ms]["marker name"]
 marker_fexp_time = melc_run_info.MELC_dict[ms]["exposure time"]
 marker_f_channel = melc_run_info.MELC_dict[ms]["channel"]
 previous_bleach_image=melc_run_info.MELC_dict[ms]["previous bleach image"]
 ph_exposure_time = melc_run_info.reference_image_exposure_time
 ph_channel = melc_run_info.reference_image_channel

 if channel_step == "1":
 ph_image = imageio.imread(melc_run_info.melc_run_dir + "/source/p_" +
marker_name + '_' + ph_exposure_time + '_' + ph_channel + '_' + inc_step +
melc_run_info.file_format).astype('float')
 phb_image = imageio.imread(melc_run_info.melc_run_dir +
"/bleach/pb_" + marker_name + '_' + ph_exposure_time + '_' + ph_channel + '_' +
inc_step + melc_run_info.file_format).astype('float')

 shift_p = find_iamge_shift(ph_ref_image, ph_image)
 shift_pb = find_iamge_shift(ph_ref_image, phb_image)

 step = 0

 for z in position_suffix:

 if melc_run_info.MELC_dict[ms]["secondary"] == "no":
 f_image = imageio.imread(melc_run_info.melc_run_dir +
"/source/o_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +
'_' + inc_step + z).astype('float')
 b_image = imageio.imread(melc_run_info.melc_run_dir +
"/bleach/b_" + previous_bleach_image + z).astype('float')
 fb_image = imageio.imread(melc_run_info.melc_run_dir +
"/bleach/b_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +
'_' + inc_step + z).astype('float')
 print(marker_name + '_' + marker_fexp_time + '_' +
marker_f_channel + '_' + inc_step + z + ' - ' + previous_bleach_image + z)
 else:
 f_image = imageio.imread(melc_run_info.melc_run_dir +
"/source/o_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +
'_' + inc_step + z).astype('float')
 b_image = imageio.imread(melc_run_info.melc_run_dir +
"/source/o_" + previous_bleach_image + z).astype('float')
 fb_image = imageio.imread(melc_run_info.melc_run_dir +
"/bleach/b_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +
'_' + inc_step + z).astype('float')
 print(marker_name + '_' + marker_fexp_time + '_' +
marker_f_channel + '_' + inc_step + z + ' - ' + previous_bleach_image + z)

 # now, that we have our target images, we can at fist align them,
 # afterwards we subtract
 f_image = shift(f_image, shift_p, mode='nearest')

128

 b_image = shift(b_image, shift_pb, mode='nearest')
 fb_image = shift(fb_image, shift_pb, mode='nearest')

 fb_image = ndimage.gaussian_filter(fb_image, sigma=3, mode='nearest')
 subtracted = f_image - b_image
 subtracted[subtracted < 0] = 0.0

 x_measure, y_measure, z_measure = get_interpolation_measure(fb_image)

 dims = subtracted.shape

 grid_x, grid_y = np.mgrid[0:dims[1]:1, 0:dims[0]:1]
 grid_z2 = interpolate.griddata((x_measure, y_measure), z_measure,
(grid_x, grid_y), method='cubic')

 subtracted = subtracted/(grid_z2.T/np.mean(grid_z2))
 image_stack.append(subtracted_images_dir + '/o_' + marker_name + '_' +
 marker_fexp_time + '_' + marker_f_channel + '_' + inc_step + z[:-3] + 'tiff')

 subtracted[subtracted>(2**16)-1] = (2**16)-1
 imageio.imwrite(subtracted_images_dir + '/o_' + marker_name + '_' +
marker_fexp_time + '_' + marker_f_channel + '_' + inc_step +
z[:-3] + 'tiff', subtracted.astype('uint16'), format='TIFF')
 step += 1

 print(ms + " of " + str(len(melc_run_info.MELC_dict)) +
" are registered and subtracted")

 # calculating best focus image, to remove tilt in image
 images_for_best_focus = read_images(image_stack)
 dims = images_for_best_focus.shape

 xf, yf, zf = focus_measure2(images_for_best_focus)
 fit, errors, residual = get_polynomial_interpolation(xf, yf, zf)

 x_pos = np.arange(0, dims[2], 1)
 y_pos = np.arange(0, dims[1], 1)

 xx, yy = np.meshgrid(x_pos, y_pos)

 focus_map_new =xx*xx*fit[0]+yy*yy*fit[1]+xx*yy*fit[2]+
xx*fit[3]+yy*fit[4]+fit[5]
 focus_map_new[focus_map_new<0] = 0
 focus_map_new[focus_map_new>dims[0]] = dims[0]-1

 indices_array = np.zeros(dims)

 for ind in range(dims[0]):
 indices_array[ind, :, :] += ind

 sigma = 1
 gauss_along_z = gauss(indices_array, 0., 1., focus_map_new, sigma)
 fim = np.sum(images_for_best_focus * gauss_along_z, axis=0)
 best_focus_image = (fim / np.sum(gauss_along_z, axis=0))# * 2 ** 16
 best_focus_image = best_focus_image-np.min(best_focus_image)
 best_focus_image[best_focus_image>(2**16)-1] = (2**16)-1

Appendix – Source codes

Appendix – Source codes

129

 imageio.imwrite(best_focus_dir + '/' + marker_name + '_' +
marker_fexp_time + '_' + marker_f_channel + '_' + inc_step + '.tiff',
best_focus_image.astype('uint16'), format='TIFF')

 print("and best focus image is calculated")

 print("registration done...")

130

8.1.6. MELC data integration and unsupervised clustering – R
MELC data integration and visualization
loading the libraries
library(Seurat)
library(data.table)
library(dplyr)
library(ggplot2)
library(Rtsne)
library(uwot)
library(doParallel)
library(missForest)
library(missRanger)

define file location and read the data, saved in variable "df"
if dataset was loaded from saved dataset.R paths can differ...have look to
envrionment variable
maindir <- choose.dir()
filename <- "Lungs_rawData.csv" # choose.files(default = maindir)
df <- fread(paste(maindir, filename, sep = "/"), encoding="UTF-8") # read the csv

prepare folder for analysis results
save.path <- paste(maindir,paste(substr(filename,0,nchar(filename)-
4),"_analysis/"), sep = "/")
dir.create(save.path)

sometimes different meta data headers inside csv files (mainly the first two
rows), therefore we have to to extract only the important data and convert to
numeric values, otherwise numbers are interpreted as strings
df.values <- sapply(df[3:nrow(df),c(1:43)], as.numeric)
df.disease.state <- sapply(df[3:nrow(df),`disease state`], as.factor)
df.sampleIDs <- sapply(df[3:nrow(df),SourceID], as.factor)
df.object.ids <- 1:(nrow(df)-2)
rownames(df.values) <- df.object.ids
df.posX <- sapply(df[3:nrow(df),"Location_Center_X"], as.numeric)
df.posY <- sapply(df[3:nrow(df),"Location_Center_Y"], as.numeric)
df.CellID <- sapply(df[3:nrow(df),"ObjectNumber"], as.numeric)

sometimes you miss markers in different experiments, so combining experiment dat
a from different MELC runs will create empty values inside the large data table.
Imputing the data will fill the empty spaces...here we can use, e.g. missRanger
df.values.imputed <- missRanger(as.data.frame(df.values), verbose = 2)

#clipping values to be in same ratio, alternatively arcsinh transformation can be
used instead

for(sID in unique(df.sampleIDs)){
 df.sample <- df.values.imputed[df.sampleIDs == sID,]
 for(marker in colnames(df.sample)){

 q5 <- quantile(unlist(df.sample[[marker]]), probs = 0.05)
 q95 <- quantile(unlist(df.sample[[marker]]), probs = 0.95)

 df.sample[[marker]] <- scales::rescale(df.sample[[marker]],

to = c(0, 1), from = c(q5,q95))
 df.sample[df.sample[[marker]] <= 0,marker] <- 0

 if(max(df.sample[[marker]]) > 0){
 df.sample[df.sample[[marker]] >= 1,marker] <- 1
 }

Appendix – Source codes

Appendix – Source codes

131

 }

 # here we need some back propagation or new df
 if(exists("df.sample.rescale")){
 df.sample.rescale <- rbind(df.sample.rescale,df.sample, make.row.names = FALSE)

 } else {
 df.sample.rescale <- df.sample
 }
}

rotate the whole table and create a Seurat Object (SO)
...our MELC data are now interpreted as single cell seq data, so we can use all
functionality like there
df.values.T <- t(df.sample.rescale)
colnames(df.values.T) <- df.object.ids
SO = CreateSeuratObject(df.values.T)
SO$sampleID <- df.sampleIDs
SO$disease <- df.disease.state

SO.list <- SplitObject(SO, split.by = "sampleID")

for(i in 1:length(SO.list)){
 SO.list[[i]] <- FindVariableFeatures(SO.list[[i]],
 selection.method = "vst",
 nfeatures = 2000, verbose = FALSE)
}

anchors <- FindIntegrationAnchors(object.list = SO.list)
SO.integrated <- IntegrateData(anchorset = anchors)

mean centering and stdDev scaling the expression values makes them comparable
SO.integrated <- FindVariableFeatures(SO.integrated, selection.method = "vst", mea
n.cutoff = c(0, 1), verbose = TRUE) # necessary function for dimRed
SO.integrated <- ScaleData(SO.integrated, do.center = TRUE, do.scale = TRUE, verbo
se=TRUE)
create meta data for later grouping or splitting
Idents(SO.integrated) <- "disease"

dimensionality reduction
SO.integrated <- RunPCA(SO.integrated, npcs = 20, verbose = FALSE) # perform PCA
SO.integrated <- RunUMAP(SO.integrated, reduction = "pca", dims = 1:20)
Idents(SO.integrated) <- SO.integrated$sampleID
UMAPPlot(SO.integrated)

visualization of dimension reductions, saving plots
png(filename=paste(save.path, "UMAP_44PC_13dims.png"), width = 529, height = 435)
print(UMAPPlot(SO.integrated, label = FALSE))
dev.off()

df.markers <- rownames(df.values.T)

for (i in 1:length(df.markers)) {
 png(filename = paste(save.path, df.markers [i],

"_featurePlot_44pc_16dims.png"), width = 350, height = 300)
 print(FeaturePlot(SO.integrated, features = df.markers [i], reduction =

"umap", label = FALSE, cols = c("yellow", "darkred")))
 dev.off()
}

132

perform clustering
SO.integrated <- FindNeighbors(SO.integrated, dims = 1:16, reduction = "pca")
SO.integrated <- FindClusters(SO.integrated, resolution = c(0.18))
plotting the clustered data
Idents(SO.integrated) <- SO.integrated@meta.data$RNA_snn_res.0.18
UMAPPlot(SO.integrated, label = TRUE)

saving the clustered UMAP
png(filename = paste(save.path, "UMAP_clusters_res018a.png"),width=529,height=435)
print(UMAPPlot(SO.integrated, label = TRUE))
dev.off()
saving data table
data_res018 <- df.values.imputed
data_res018$UMAP_1 <- SO@reductions$umap@cell.embeddings[, "UMAP_1"]
data_res018$UMAP_2 <- SO@reductions$umap@cell.embeddings[, "UMAP_2"]
data_res018$posX <- df.posX
data_res018$posY <- df.posY
data_res018$disease_state <- df.disease.state
data_res018$object_id <- df.object.ids
data_res018$cluster <- SO@meta.data$RNA_snn_res.0.18
data_res018$sourceID <- df.sampleIDs
data_res018$cellID <- df.CellID
write.table(data_res018, file = paste(save.path,

"imputed_data_44PC_16dims_clustered_res_0.18.csv"),
 quote = FALSE, sep = ",", row.names = FALSE)

Appendix – Source codes

Appendix – Source codes

133

8.1.7. MELC Neibghborhood test and Randomization - Matlab
Main script reading CellProfiler output and perform neighborhood analysis
close all;
path='/Volumes/RALFSDATA/02_B220_ckit_kappa_prox_dist_measurement/';

%import measurements from CXCL12 somata and proximity within distance 0-
%30 pixels fromsomata edge

[ImageNumber_somata1,ObjectNumber_somata1,MeanIntensity_Bcells_prox,...
MeanIntensity_Bprogenitors_prox,MeanIntensity_CXCL12_prox,...
MeanIntensity_kappa_prox] = import_textfiles2([path,'CXCL12_proximity.txt']);

%import measurements from CXCL12 distal region at distance 31-100 pixels from
%somata edge

[ImageNumber_somata,ObjectNumber_somata,MeanIntensity_Bcells_dist,...
MeanIntensity_Bprogenitors_dist,MeanIntensity_CXCL12_dist,...
MeanIntensity_kappa_dist] = import_textfiles2([path,'CXCL12_distal.txt']);

num_images=max(ImageNumber_somata);

%plot raw intensity data
Mean_Intensities=[MeanIntensity_Bprogenitors_prox';...
MeanIntensity_Bprogenitors_dist';MeanIntensity_Bcells_prox';...
MeanIntensity_Bcells_dist';MeanIntensity_CXCL12_prox';...
MeanIntensity_CXCL12_dist';MeanIntensity_kappa_prox';MeanIntensity_kappa_dist'];

figure;
imagesc(Mean_Intensities);
title('raw data, mean intensities in CXCL12 somata surrounding','FontSize',20);
set(gca,'YTick',1:8);
set(gca,'YTickLabel',{'CXCL12 at 0-30 pix';'CXCL12 at 31-100';...
'BP at 0-30 pix';'BP at 31-100';'LpR at 0-30 pix';'LpR at 31-100';...
'VCam at 0-30 pix';'VCam at 31-100'},'FontSize',16);
xlabel('Cell ID');

diff_Bpro=MeanIntensity_Bprogenitors_prox-MeanIntensity_Bprogenitors_dist;
diff_Bcell=MeanIntensity_Bcells_prox-MeanIntensity_Bcells_dist;
diff_CXCL12=MeanIntensity_CXCL12_prox-MeanIntensity_CXCL12_dist;
diff_kappa=MeanIntensity_kappa_prox-MeanIntensity_kappa_dist;

diff_Bpro(diff_Bpro == 0) = NaN;
diff_Bcell(diff_Bcell == 0) = NaN;
diff_CXCL12(diff_CXCL12 == 0) = NaN;
diff_kappa(diff_kappa == 0) = NaN;

%all_diff=[diff_Bpro';diff_Bcell';diff_CXCL12';diff_kappa'];
%labeltext={'B Progenitor';'B cell';'CXCL12';'kappa'};
all_diff=[diff_Bpro';diff_Bcell';diff_kappa'];
labeltext={'B Progenitor';'B cell';'kappa'};
bins=-0.41:0.02:0.41;
figure; hold on;
m=nanmean(all_diff');
s=nanstd(all_diff');
subplot(615)
errorbar(m,s,'kx');
set(gca,'FontSize',16);
set(gca,'XTick',1:3);
set(gca,'XTickLabel',labeltext);

134

hold on;
set(gca,'FontSize',16); plot([0.5 3.5],[0 0],'k--'); ylim([-0.2 0.2]);
title('Mean and standard deviation, per stain.');

subplot(614);hold on;
set(gca,'FontSize',16);
[a,b]=hist(diff_Bpro,bins);
plot(b,a,'g-');
[a,b]=hist(diff_Bcell,bins);
plot(b,a,'r-');
%[a,b]=hist(diff_CXCL12,bins);
%plot(b,a,'c-');
[a,b]=hist(diff_kappa,bins);
plot(b,a,'b-');
title('all data pooled');
legend(labeltext,'FontSize',16);
axis([-0.31 0.31 0 130]);
ylabel('number of cells');
xlabel('distal (<0) vs proximal (>0)');
%plot intensity differences per image
for i=1:num_images

 current_data=find(ImageNumber_somata==i);
 aa=[-0.31 0.31 0 25];
 set(gca,'FontSize',16);

 %subplot(611); hold on;
 %[a,b]=hist(diff_CXCL12(current_data),bins);
 %title('CXCL12, per image');
 %plot(b,a,'c-');ylabel('number of cells');
 %axis(aa);xlabel('distal (<0) vs proximal (>0)');
 %set(gca,'FontSize',16);

 subplot(611); hold on;
 [a,b]=hist(diff_Bpro(current_data),bins);
 title('B Progenitor, per image');
 plot(b,a,'g-');ylabel('number of cells');
 axis(aa);xlabel('distal (<0) vs proximal (>0)');
 set(gca,'FontSize',16);

 subplot(612); hold on;
 [a,b]=hist(diff_Bcell(current_data),bins);
 title('B cell, per image');
 plot(b,a,'r-');ylabel('number of cells');
 axis(aa);xlabel('distal (<0) vs proximal (>0)');
 set(gca,'FontSize',16);

 subplot(613); hold on;
 [a,b]=hist(diff_kappa(current_data),bins);
 title('kappa, per image');
 plot(b,a,'b-');ylabel('number of cells');
 axis(aa);xlabel('distal (<0) vs proximal (>0)');
 set(gca,'FontSize',16);
end

%measure true and random colocalization per image pair
%pairs ordered CXCL12:BP, CXCL12:LpR, CXCL12:VCam, BP:LpR, BP:VCam, LpR:VCam
%and data ordered Observed white:Mean of random white:Std of random white,
%where white is proportion of colocalized image pixels. This means 3*6

Appendix – Source codes

Appendix – Source codes

135

%values. Also extracting measurements for a 'negative control' consisting
%of a pair where the first image comes from dataset 1, and the second image
%comes from dataset 2. this makes num_images*3*6=18 for rand_coloc and 18 for cont
rol_rand_coloc
rand_coloc=zeros(num_images,18);
for i=1:num_images
 if i==1%create controls
 CXCL12_1=imread(['CXCL12_cells00',num2str(1),'.tiff']);
 Bcells_1 = imread(['B_cells00',num2str(1),'.tiff']);
 Bpro_1=imread(['B_progenitor_cells00',num2str(1),'.tiff']);
 kappa_1=imread(['kappa_cells00',num2str(1),'.tiff']);
 Bcells_2 = imread(['B_cells00',num2str(2),'.tiff']);
 Bpro_2=imread(['B_progenitor_cells00',num2str(2),'.tiff']);
 kappa_2=imread(['kappa_cells00',num2str(2),'.tiff']);
 [ow1,mr1,sr1]=calc_white_pix_n_randomize(CXCL12_1,Bcells_2);
 [ow2,mr2,sr2]=calc_white_pix_n_randomize(CXCL12_1,Bpro_2);
 [ow3,mr3,sr3]=calc_white_pix_n_randomize(CXCL12_1,kappa_2);
 [ow4,mr4,sr4]=calc_white_pix_n_randomize(Bcells_1,Bpro_2);
 [ow5,mr5,sr5]=calc_white_pix_n_randomize(Bcells_1,kappa_2);
 [ow6,mr6,sr6]=calc_white_pix_n_randomize(Bpro_1,kappa_2);
 control_rand_coloc(i,:)=[ow1,mr1,sr1,ow2,mr2,sr2,ow3,mr3,sr3,ow4,mr4,sr4,o
w5,mr5,sr5,ow6,mr6,sr6];

 end

 if i<10
 CXCL12=imread(['CXCL12_cells00',num2str(i),'.tiff']);
 Bcells = imread(['B_cells00',num2str(i),'.tiff']);
 Bpro=imread(['B_progenitor_cells00',num2str(i),'.tiff']);
 kappa=imread(['kappa_cells00',num2str(i),'.tiff']);
 end
 if i>=10
 CXCL12=imread(['CXCL12_cells0',num2str(i),'.tiff']);
 Bcells = imread(['B_cells0',num2str(i),'.tiff']);
 Bpro=imread(['B_progenitor_cells0',num2str(i),'.tiff']);
 kappa=imread(['kappa_cells0',num2str(i),'.tiff']);
 end
 [ow1,mr1,sr1]=calc_white_pix_n_randomize(CXCL12,Bcells);
 [ow2,mr2,sr2]=calc_white_pix_n_randomize(CXCL12,Bpro);
 [ow3,mr3,sr3]=calc_white_pix_n_randomize(CXCL12,kappa);
 [ow4,mr4,sr4]=calc_white_pix_n_randomize(Bcells,Bpro);
 [ow5,mr5,sr5]=calc_white_pix_n_randomize(Bcells,kappa);
 [ow6,mr6,sr6]=calc_white_pix_n_randomize(Bpro,kappa);
 rand_coloc(i,:)=[ow1,mr1,sr1,ow2,mr2,sr2,ow3,mr3,sr3,ow4,mr4,sr4,ow5,mr5,sr5,o
w6,mr6,sr6];
end

figure;
aa=[-1 10 -0.05 0.2];
plot_labels={'CXCL12:B cells';'CXCL12:B progenitor cells';'CXCL12:kappa';'B cells:
B Progenitor cells';'B cells:kappa';'B progenitor cells:kappa'};
%we want a 'stair-case' distribution of plots:
plot_order=[331 334 337 335 338 339];
for p=1:6
 i=p+(p-1)*2;%to step cossectly in the results matrix
 subplot(plot_order(p));
 plot(rand_coloc(:,i),'o','markerSize',12);%CXCL12,BP true overlap
 hold on;
 errorbar(rand_coloc(:,i+1),rand_coloc(:,i+2),'k.','LineWidth',2);

136

 plot(0,control_rand_coloc(i),'o','markerSize',12);
 errorbar(0,control_rand_coloc(i+1),control_rand_coloc(i+2),'k.','LineWidth',2)
 set(gca,'XTick',0:2:13);
 set(gca,'XTickLabel',{'nc','2','4','6','8','10','12' },'FontSize',20);

%negative bontrol
 title(plot_labels(p));xlabel('dataset');axis(aa);
 ylabel('colocalization'); ylim([-0.05 0.1]);
end
legend('observed colocalization',...
 'colocalization at randomization, with 2 standard deviations', 'negative control,
 measuring colocalization across datasets 1&2');

calc overlab function
function [pOL,p1,p2]=calc_overlap(I1,I2)
num_I1_pix=length(find(I1>0));
num_I2_pix=length(find(I2>0));
num_OL_pix=length(find(I1.*I2>0));

pOL=num_OL_pix/(num_I1_pix+num_I2_pix-num_OL_pix);
p1=(num_I1_pix-num_OL_pix)/(num_I1_pix+num_I2_pix-num_OL_pix);
p2=(num_I2_pix-num_OL_pix)/(num_I1_pix+num_I2_pix-num_OL_pix);

randomization test

function [ow,mr,two_times_sr]=calc_white_pix_n_randomize(I1,I2)
%NOTE; the program returns the standard deviation multiplied by 2!!!
I2orig=I2;
%here, 'randomization' is by flipping and rotating square images.
%keep I1 fixed, rotate I2, both images have to be square

%original, before rotating

[pOLl(1),p1l(1),p2l(1)]=calc_overlap(I1,I2);

%a first rotation
I2=rot90(I2);
[pOLl(2),p1l(2),p2l(2)]=calc_overlap(I1,I2);
%a second rotation
I2=rot90(I2);
[pOLl(3),p1l(3),p2l(3)]=calc_overlap(I1,I2);
%a third rotation
I2=rot90(I2);
[pOLl(4),p1l(4),p2l(4)]=calc_overlap(I1,I2);
%flip
I2=flip(I2orig);
[pOLl(5),p1l(5),p2l(5)]=calc_overlap(I1,I2);
%flip+a first rotation
I2=rot90(I2);
[pOLl(6),p1l(6),p2l(6)]=calc_overlap(I1,I2);
%flip+a second rotation
I2=rot90(I2);
[pOLl(7),p1l(7),p2l(7)]=calc_overlap(I1,I2);
%flip+a third rotation
I2=rot90(I2);
[pOLl(8),p1l(8),p2l(8)]=calc_overlap(I1,I2);

%observed white
ow=pOLl(1);

Appendix – Source codes

Appendix – Source codes

137

%mean white after randomizations
mr=mean(pOLl(2:8));
%standard deviation of white after randomizations
two_times_sr=2*std(pOLl(2:8));

import text files from CellProfiler output
function [ImageNumber,ObjectNumber,Intensity_MeanIntensity_B_cells_binary,...
Intensity_MeanIntensity_B_progenitors_binary,...
Intensity_MeanIntensity_CXCL12_somata_processes_binary,...
Intensity_MeanIntensity_kappa_cells_binary] =...
import_textfiles(filename, startRow, endRow)

%IMPORTFILE Import numeric data from a text file as column vectors.
% [IMAGENUMBER,OBJECTNUMBER,INTENSITY_MEANINTENSITY_BP_CELLS_BINARY,
% INTENSITY_MEANINTENSITY_CXCL12_SOMATA_PROCESSES_BINARY,
% INTENSITY_MEANINTENSITY_LPR_CELLS_BINARY,
% INTENSITY_MEANINTENSITY_VCAM_CELLS_BINARY]
% = IMPORTFILE(FILENAME) Reads data from text file FILENAME for the
% default selection.
%
% [IMAGENUMBER,OBJECTNUMBER,INTENSITY_MEANINTENSITY_BP_CELLS_BINARY,
% INTENSITY_MEANINTENSITY_CXCL12_SOMATA_PROCESSES_BINARY,
% INTENSITY_MEANINTENSITY_LPR_CELLS_BINARY,
% INTENSITY_MEANINTENSITY_VCAM_CELLS_BINARY]
% = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows STARTROW
% through ENDROW of text file FILENAME.
%
% Example:
% [ImageNumber,ObjectNumber,Intensity_MeanIntensity_BP_cells_binary,...
% Intensity_MeanIntensity_CXCL12_somata_processes_binary,...
% Intensity_MeanIntensity_LpR_cells_binary,...
% Intensity_MeanIntensity_VCam_cells_binary] = ...
% importfile('CXCL12_proximity.txt',1, 1411);
%
% See also TEXTSCAN.

% Auto-generated by MATLAB on 2018/04/30 16:04:02

%% Initialize variables.
delimiter = '\t';
if nargin<=2
 startRow = 2;
 endRow = inf;
end

%% Read columns of data as strings:
% For more information, see the TEXTSCAN documentation.
formatSpec = '%s%s%s%s%s%s%[^\n\r]';

%% Open the text file.
fileID = fopen(filename,'r');

%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.

138

dataArray = textscan(fileID, formatSpec, endRow(1)-
startRow(1)+1, 'Delimiter', delimiter, 'HeaderLines', startRow(1)-
1, 'ReturnOnError', false);

for block=2:length(startRow)
 frewind(fileID);
 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-...
startRow(block)+1, 'Delimiter', delimiter, 'HeaderLines', startRow(block)-...
1, 'ReturnOnError', false);

 for col=1:length(dataArray)
 dataArray{col} = [dataArray{col};dataArrayBlock{col}];
 end
end

%% Close the text file.
fclose(fileID);

%% Convert the contents of columns containing numeric strings to numbers.
% Replace non-numeric strings with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);

for col=1:length(dataArray)-1
 raw(1:length(dataArray{col}),col) = dataArray{col};
end

numericData = NaN(size(dataArray{1},1),size(dataArray,2));

for col=[1,2,3,4,5,6]
 % Converts strings in the input cell array to numbers. Replaced non-numeric
 % strings with NaN.
 rawData = dataArray{col};

 for row=1:size(rawData, 1);
 % Create a regular expression to detect and remove

% non-numeric prefixes and suffixes.
 regexstr = '(?<prefix>.*?)(?<numbers>...
([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|...
([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
 try
 result = regexp(rawData{row}, regexstr, 'names');
 numbers = result.numbers;

 % Detected commas in non-thousand locations.
 invalidThousandsSeparator = false;
 if any(numbers==',');
 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
 if isempty(regexp(numbers, thousandsRegExp, 'once'));
 numbers = NaN;
 invalidThousandsSeparator = true;
 end
 end
 % Convert numeric strings to numbers.
 if ~invalidThousandsSeparator;
 numbers = textscan(strrep(numbers, ',', ''), '%f');
 numericData(row, col) = numbers{1};
 raw{row, col} = numbers{1};
 end
 catch me

Appendix – Source codes

Appendix – Source codes

139

 end
 end
end

%% Replace non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw);
% Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells

%% Allocate imported array to column variable names
ImageNumber = cell2mat(raw(:, 1));
ObjectNumber = cell2mat(raw(:, 2));
Intensity_MeanIntensity_B_cells_binary = cell2mat(raw(:, 3));
Intensity_MeanIntensity_B_progenitors_binary = cell2mat(raw(:, 4));
Intensity_MeanIntensity_CXCL12_somata_processes_binary = cell2mat(raw(:, 5));
Intensity_MeanIntensity_kappa_cells_binary = cell2mat(raw(:, 6));

140

8.1.8. MELC Neighborhood Analysis – R
perform neighborhood analysis on MELC data

library(data.table)
library(ggplot2)
library(dplyr)

load the data and extract meta data
path_to_file <- choose.dir()
input_data <- choose.files()

print("...read file")
#df_input <- fread(paste0(path_to_file,input_data), encoding="UTF-8")
df_input <- fread(input_data, encoding = "UTF-8")
if data has some weird stuff in the first rows, delete !!!
num_of_rows <- nrow(df_input)
df_input <- df_input[seq(1,num_of_rows),]
marker.list <- colnames(df_input)[1:43]

#combining the different FOVs by Patient IDs
patientID_long <- df_input$sourceID
#inspect different patient IDs and build list for renaming
fovs <- unique(df_input$sourceID) # we also need fovs later in other calculations

#creating short names containing only patient ID
patientID <- fread(input_meta_data, encoding = "UTF-8")

#renaming Patient IDs
for(st in patientID) {
 df_input$sourceID[grepl(st,df_input$sourceID)] <- st
}

#updating fovs
fovs <- unique(df_input$sourceID)

#define which seed cells create the niches and where to put them in table
inspection_object <- "neutrophils"
inspection_column <- "Clusters"
print(paste("...set inspection object to", inspection_object))
#defining the radius of neighborhood
radius.px <- 32

#looking for neighbors, create extra columns for each cluster (n1, n2, n3,)
take a cell, calc distance to neighbor, except target cell
add the colum of desired neighbor by 1 if neighbor is found
caution...go dataset vice throughfaster
adding neighbor columns to big data frame
(nX) := sum of neighboring cell(s) which is of cluster X
clusters.list <- unique(df_input[[inspection_column]])
colnames.neighbors <- paste0("n",clusters.list)
df_input[,colnames.neighbors] <- 0

df_with_neighbors <- data.frame()
neighbors.table <- data.frame()
df_summary <- data.frame(fovs)
colnames(df_summary) <- "FOV"
df_summary[,colnames.neighbors] <- 0
df_diseaseStates <- data.frame()

Appendix – Source codes

Appendix – Source codes

141

print(paste("start to look for neighbors in radius of", radius.px, "px"))

calculating distances vectorized, monitoring via progressbar
pb <- txtProgressBar(min = 1, max = length(fovs), style = 3)

for(d in 1:length(fovs)){

 setTxtProgressBar(pb, value = d)
 a.dataset <- df_input[df_input$sourceID %in% fovs[d],]
 df_diseaseStates <- rbind(df_diseaseStates, unique(a.dataset$disease_state))

 for(i in 1:nrow(a.dataset)) {

 center.point.cluster <- a.dataset[[i,inspection_column]]

 # this if statement makes sure, only the desired cluster of cell is counted
 # to analyse all the cells and their possible neighbor clusters ommit the if
 # statement

 if(center.point.cluster != inspection_object){
 next
 }

 x1 <- as.numeric(a.dataset$posX[i])
 x2 <- as.numeric(a.dataset$posX)
 y1 <- as.numeric(a.dataset$posY[i])
 y2 <- as.numeric(a.dataset$posY)

 distances <- ((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1))

 neighbors <- a.dataset[distances <= (radius.px*radius.px),]

 for(j in 1:nrow(neighbors)){

 neighbor.cluster <- neighbors[[j,inspection_column]]
 a.dataset[[i,paste0("n",neighbor.cluster)]] <-

a.dataset[[i,paste0("n",neighbor.cluster)]]+1
 }
 # remove seed cell count
 a.dataset[[i,paste0("n",center.point.cluster)]] <-

a.dataset[[i,paste0("n",center.point.cluster)]]-1
 neighbors.table <- rbind(neighbors.table, neighbors)
 }

 df_with_neighbors <- rbind(df_with_neighbors,a.dataset)

 #creating summary --> counting the cell's clusters in their niche in each FOV

 for(k in colnames(df_summary)[seq(2,length(colnames(df_summary)))]) {

 cells.with.neighbors <- a.dataset[[k]]
 df_summary[[d,k]] <- length(cells.with.neighbors[cells.with.neighbors > 0])

 }
}

colnames(df_diseaseStates) <- "diseaseStates"

142

colnames(df_summary) <- c("FOV",clusters.list)
close(pb)
print("...just saving the neighborhood analysis output table")

write.table(df_summary, file = paste0(path_to_file,"neighbor_analysis_of_",
inspection_object, "_in_", radius.px, "_px_", input_data),
 quote = FALSE, sep = ",", row.names = FALSE)

#---
--
#calculating the distribution of every niche in % or absulute numbers

df_freq <- subset(df_with_neighbors,

df_with_neighbors[[inspection_column]] == inspection_object,
select = colnames.neighbors)

df_freq_row_sum <- rowSums(df_freq)

#ignoring zero niche counts
df_freq <- df_freq[df_freq_row_sum != 0,]

df_sourc_diseaseSt_subset <- subset(df_with_neighbors, df_with_neighbors[[inspect
ion_column]] == inspection_object, select = c("sourceID", "disease_state", "object
_id"))
df_sourc_diseaseSt_subset <- df_sourc_diseaseSt_subset[df_freq_row_sum != 0,]
df_freq <- cbind(df_sourc_diseaseSt_subset,df_freq)
colnames(df_freq) <- c("SourceID","diseaseState", "object_id", clusters.list)

write.table(df_freq, file = paste0(path_to_file,

"single_niche_abs_neighbor_count_of_", inspection_object, "_in_", radius.px,
 "_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE)

df_freq_avg <- data.frame(fovs,df_diseaseStates)
df_freq_avg[,clusters.list] <- 0

for(i in 1:length(fovs)){
 freqs_fov <- df_freq[df_freq$SourceID %in% fovs[i]]
 freq_means <- colMeans(subset(freqs_fov, select = clusters.list))

 for(j in 1:length(freq_means)){
 df_freq_avg[[i,clusters.list[j]]] <- freq_means[j]
 }

}

writung mean frequencies of neighbors to table
colnames(df_freq_avg) <- c("SampleID", "diseaseState",clusters.list)

write.table(df_freq_avg, file = paste0(path_to_file,"niche_frequency_of_",

inspection_object, "_in_", radius.px,
 "_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE)

#--
calculate the mean fluorescence intensity per niche and per cell cluster
#--
what we would like to show is, e.g. the frequency of T cells dependent on diseas
e state from
endothelia niches and grouped by FOV/PatientID

for (i in 3:length(colnames(df_freq_avg))) {

Appendix – Source codes

Appendix – Source codes

143

 print(paste("...saving plot ", "distribution_plot_of_", gsub("[[:punct:]]",

" ", colnames(df_freq_avg)[i]), "_in_", inspection_object,
"_niche_within_", radius.px, "px.png"))

 df_test <- data.frame(df_freq_avg[[1]], df_freq_avg[[2]], df_freq_avg[[i]])
 colnames(df_test) <- c("SampleID", "diseaseState", colnames(df_freq_avg)[i])
 df_test$diseaseState <- factor(df_test$diseaseState, levels =

c("control", "acute", "chronic", "prolonged"))

 colname.df_test <- colnames(df_freq_avg)[i]

 df_dotplot <- data.frame(df_freq[[1]], df_freq[[2]],df_freq[[i]])
 colnames(df_dotplot) <- c("SampleID", "diseaseState", colnames(df_freq)[i])
 df_dotplot$diseaseState <- factor(df_dotplot$diseaseState, levels = c("control",
 "acute", "chronic", "prolonged"))

 # violin plot with dots
 # dot plot calculation at different place...other loop because of df_freq ...
 # deleted , dotsize = 0.8, binwidth = 2
 data_summary <- function(x) {
 m <- mean(x)
 ymin <- m-sd(x)
 ymax <- m+sd(x)
 return(c(y=m,ymin=ymin,ymax=ymax))
 }

 # trim argument in geom_violin allows or not allows the distribution from
 # violin to be cut
 # creating the violin plot
 v <- ggplot(df_dotplot, aes(x=diseaseState, fill=factor(SampleID),

y=df_dotplot[[3]])) + geom_violin(trim = FALSE)
 v <- v + stat_summary(fun.data = data_summary) + theme_minimal()

 # adding the labels inside the plot
 tit <- paste0("distribution plot of ", gsub("[[:punct:]]", "",

colnames(df_freq_avg)[i]), " in ", inspection_object,
 " niche within ", radius.px, "px")
 xtit <- "Disease State"
 ytit <- paste0("rel. Frequency of ", colname.df_test)

 v <- v + labs(title = tit , x = xtit, y = ytit)

 png(filename = paste0(path_to_file, "distribution dotPlot of ",
gsub("[[:punct:]]", "", colnames(df_freq_avg)[i]), " in ",
inspection_object," niche within ", radius.px, "px.png"),
width = 10, height = 5, res = 144, units = "in")

 print(v)
 dev.off()

}

print("...completed")

#--
trial area to calculate the mean fluorescence intensity per niche and per

144

cell cluster to have the overall average

unique_objID <- duplicated(neighbors.table$object_id)
all_niche_cells_wo_0n <- neighbors.table[!unique_objID,]

MFI.table <- as.data.frame(marker.list)
colnames(MFI.table) <- "marker"
MFI.table[["niche"]] <- rep(inspection_object,length(marker.list))
MFI.table[["disease phase"]] <- rep("",length(marker.list))
MFI.table[["sourceID"]] <- rep("",length(marker.list))
MFI.table[,clusters.list] <- 0
df_for_selection <- data.frame(patientID,df_diseaseStates)
MFI.table.final <- data.frame()
for(i in 1:dim(df_for_selection)[1]){

 MFI.table[["disease phase"]] <- rep(df_for_selection[i,2], length(marker.list)
)
 MFI.table[["sourceID"]] <- rep(df_for_selection[i,1], length(marker.list))

 ds_subset <- as.data.frame(subset(all_niche_cells_wo_0n,

all_niche_cells_wo_0n$disease_state == df_for_selection[i,2] &
 all_niche_cells_wo_0n$sourceID == df_for_selection[i,1]))

 for(cl in clusters.list) {

 dsc_subset <- as.data.frame(subset(ds_subset, ds_subset$Clusters == cl))
 marker.means <- colMeans(dsc_subset[,marker.list])
 MFI.table[[cl]] <- marker.means
 }

 MFI.table.final <- rbind(MFI.table.final,MFI.table)

}

MFI.table.final[is.na(MFI.table.final)] <- ""

write.table(MFI.table.final, file = paste0(path_to_file,"niche_means_of_",

inspection_object, "_in_", radius.px,
"_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE)

Appendix – Source codes

Appendix – Source codes

145

8.1.9. ST data integration and clustering analysis script – R
ST data integration script
loading necessary packages/libraries
library(Seurat)
library(SeuratData)
library(ggplot2)
library(patchwork)
library(dplyr)
library(future)

set environment parameters to reduce calculation time
fgmS <- 6000*1024^2
plan("multiprocess", workers = 2)
options(future.globals.maxSize = fgmS)
plan()

define data and results location
maindir <- choose.dir()
savedir <- maindir+"/analysis_results"

some meta data to each sample
meta_data <- read.csv(file=choose.files(),sep = ";")

experiment <- meta_data$experiment
sample_ID <- meta_data$sample_ID

filter values from meta data, requires data pre-observation
nFeaturef <- meta_data$nfeature_filter_value
percent.mtf <- meta_data$percent_mtf_filter_value

variable.features.list <- c()
barcode.list <- c()

#load ST data and create Seurat Object

for (i in 1:length(experiment)) {

 ddf <- paste0(maindir,"/single_outs/", experiment[i], "/outs")
 SO <- Load10X_Spatial(data.dir = ddf, filename = "filtered_feature_bc_matrix.h5"
)
 SO[["percent.mt"]] <- PercentageFeatureSet(SO, pattern = "^MT-")
 SO <- subset(SO, subset = nFeature_Spatial > nFeaturef[i] &

percent.mt < percent.mtf[i] & nCount_Spatial > 1)

 SO@meta.data$experiment = rep(experiment[i],length(colnames(x = SO)))
 SO@meta.data$sample_ID = rep(sample_ID[i],length(colnames(x = SO)))
 barcode.list <- c(barcode.list,

gsub("-1", paste0("-",i), rownames(SO@meta.data)))
 SO@meta.data$barcodes <- gsub("-1", paste0("-",i), rownames(SO@meta.data))
 if(exists("SO_all")){
 SO_all <- merge(SO_all, SO)
 } else {
 SO_all <- SO
 }
}

first check to see if data is loaded correctly
Idents(SO_all) <- SO_all@meta.data$sample_ID

146

VlnPlot(SO_all, features = c("nFeature_Spatial", "nCount_Spatial", "percent.mt"),
ncol = 3)

plot1 <- FeatureScatter(SO_all, feature1 = "nCount_Spatial",

feature2 = "percent.mt")
plot2 <- FeatureScatter(SO_all, feature1 = "nCount_Spatial",

feature2 = "nFeature_Spatial")
plot1 + plot2

data integration based on SCT transform
SubsetSO.list <- SplitObject(SO_all, split.by = "sample_ID")

for(i in 1:length(SubsetSO.list)){
 SubsetSO.list[[i]] <- SCTransform(SubsetSO.list[[i]],

assay = "Spatial", verbose = TRUE)
 DefaultAssay(SubsetSO.list[[i]]) <- "SCT"
}

SO.features <- SelectIntegrationFeatures(object.list = SubsetSO.list,

nfeatures = 3000)
SubsetSO.list <- PrepSCTIntegration(object.list = SubsetSO.list,

anchor.features = SO.features, verbose = TRUE)
SO.anchors <- FindIntegrationAnchors(object.list = SubsetSO.list,

normalization.method = "SCT", anchor.features = SO.features, verbose = TRUE)
SO.integrated <- IntegrateData(anchorset = SO.anchors,

normalization.method = "SCT", verbose = TRUE)

dimension reduction and clustering based on different resolutions
SO.integrated <- RunPCA(SO.integrated, verbose = FALSE)
SO.integrated <- FindNeighbors(SO.integrated, dims = 1:30)
res <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)
SO.integrated <- FindClusters(SO.integrated, verbose = FALSE, resolution = res)
SO.integrated <- RunUMAP(SO.integrated, dims = 1:30)
SO.integrated <- RunTSNE(SO.integrated, reduction = "pca", dims = 1:30)

data visualization to check parameters, if necessary, rerun previous section wit
h different parameters
DimPlot(SO.integrated, reduction = "umap", group.by = c("ident", "sample_ID"))
DimPlot(SO.integrated, reduction = "tsne", group.by = c("ident", "sample_ID"))

exporting clustered data

Out = as.data.frame(cbind(Barcode = SO.integrated@meta.data$barcodes,
 SO.integrated@meta.data$integrated_snn_res.0.1,
 SO.integrated@meta.data$integrated_snn_res.0.2,
 SO.integrated@meta.data$integrated_snn_res.0.3,
 SO.integrated@meta.data$integrated_snn_res.0.4,
 SO.integrated@meta.data$integrated_snn_res.0.5,
 SO.integrated@meta.data$integrated_snn_res.0.6,
 SO.integrated@meta.data$integrated_snn_res.0.7,
 SO.integrated@meta.data$integrated_snn_res.0.8))

colnames(Out) <- c("Barcode",paste0("ClusterRes",res))
write.table(Out,file = paste0(savedir,"/clustered_cells_allSamples1234.csv"),

quote = F, sep = ",", row.names = F)

dimensionality reductions export
umap.table <- cbind(SO.integrated@meta.data$barcodes,

Appendix – Source codes

mailto:SO.integrated@meta.data$barcodes

Appendix – Source codes

147

 SO.integrated@reductions$umap@cell.embeddings[,1],
 SO.integrated@reductions$umap@cell.embeddings[,2])

colnames(umap.table) <- c("Barcode", "UMAP_1", "UMAP_2")
write.table(umap.table, file=paste0(savedir, "/umap_allSamples1234.csv"),

quote = F, sep = ",", row.names = F)

tsne.table <- cbind(SO.integrated@meta.data$barcodes,

SO.integrated@reductions$tsne@cell.embeddings[,1],
SO.integrated@reductions$tsne@cell.embeddings[,2])

colnames(tsne.table) <- c("Barcode", "tSNE_1", "tSNE_2")
write.table(tsne.table, file=paste0(savedir,"/tsne_allSamples1234.csv"),

quote = F, sep = ",", row.names = F)

mailto:SO.integrated@reductions$umap@cell.embeddings[,1
mailto:SO.integrated@meta.data$barcodes
mailto:SO.integrated@reductions$tsne@cell.embeddings[,1
mailto:SO.integrated@reductions$tsne@cell.embeddings[,2

148

8.1.10. ST GSEA script – R
perform group based Gene Set Enrichment Analysis (GSEA)
library(Seurat)
library(dplyr)
library(tidyverse)
library(presto)
library(msigdbr)
library(fgsea)
library(ggplot2)

#loading the Seurat Object / here we load the SO of the integrated data set contai
ning all rounds of ST experiment
SO <- readRDS(choose.files())
gene.sets.list <- read.csv(choose.files())
save.path <- choose.dir()
dir.create(save.path)

#add meta data column with disease phase
experiments <- unique(SO$experiment)
disease.phase <- c("chronic","chronic","prolonged","acute","control","control",
 "chronic","control","prolonged","prolonged","acute","acute")
df.ed <- cbind.data.frame(experiments,disease.phase)
SO$disease_phase <- rep("", length(SO$experiment))

for(i in 1:length(df.ed$experiments)){
 SO$disease_phase[SO$experiment==df.ed$experiments[i]] <- df.ed$disease.phase[i]
}

#perform a fast Wilcoxon rank sum test
ST.genes <- wilcoxauc(SO,

"disease_phase", assay = "scale.data", seurat_assay = "integrated")
head(ST.genes)

#here we see all the gene count for every group of experiment
dplyr::count(ST.genes, group)

overview of all Molecular Signatures Database collections
msigdbr_species()

stepC <- 1
steps <- length(unique(gene.sets.list$lib))*length(unique(SO$disease_phase))*

length(gene.sets.list$pathway)
fgseaRes_all <- data.frame()

for(l in unique(gene.sets.list$lib)){
 # we focus on human species
 m_df<- msigdbr(species = "Homo sapiens", category = l)
 fgsea_sets <- m_df %>% split(x = .$gene_symbol, f = .$gs_name)
 gs <- filter(gene.sets.list, species == "Homo sapiens", lib == l)[["pathway"]]
 for(dp in unique(SO$disease_phase)) {
 # select only the feature and auc columns for fgsea,

which statistics to use idepends on user specifications
 disease.genes <- ST.genes %>%
 dplyr::filter(group == dp) %>%
 #dplyr::filter(logFC >= 0.25) %>%
 dplyr::filter(padj < 0.05) %>%
 arrange(logFC) %>%
 #arrange(padj) %>%
 dplyr::select(feature, avgExpr)

Appendix – Source codes

Appendix – Source codes

149

 ranks<- deframe(disease.genes)
 #head(ranks)

 # run GSEA and export results
 fgseaRes<- fgseaMultilevel(fgsea_sets, stats = ranks,

nPermSimple = 10000, minSize = 1)
 fgseaRes$leadingEdge <- apply(fgseaRes[,"leadingEdge", drop=F],

1, function(x) paste(unlist(x), sep = ", ", collapse = ", "))
 fgseaRes$leadingEdge <- gsub(", ", ";", fgseaRes$leadingEdge)
 write.table(fgseaRes, file = paste0(save.path,"/fgseaResults_", l, "_",

dp,".csv"), quote = FALSE, sep = ",", row.names = FALSE)
 fgseaRes$diseasePhase <- rep(dp,dim(fgseaRes)[1])
 fgseaRes_all <- rbind(fgseaRes_all,fgseaRes)
 }

}

dotplot creation with Pathway Selection
pathway.selection <- read.csv(choose.files())

fgseaRes_PSelection <- fgseaRes_all[fgseaRes_all$pathway %in%

pathway.selection$pathway,]
pathway.list <- annas.selection$pathway[c(2,3,4,5,15,24,37,1,6,8)]
fgseaRes_PSelection2 <- fgseaRes_PSelection[fgseaRes_PSelection$pathway %in%

pathway.list,]

fgseaRes_PSelection2$diseasePhase <- factor(fgseaRes_PSelection2$diseasePhase,

levels = c("control", "acute", "chronic","prolonged"))

#manual dotplot creation, exporting via R Studio
dplot <- ggplot(fgseaRes_AnnasSelection2, aes(x=diseasePhase, y=pathway,

size=size,color=NES)) + geom_point(alpha=1, stroke = 2) +
theme_classic() + theme(text = element_text(size=16))

dplot = dplot+
scale_color_gradient(low = "grey90", high = "darkblue", space = "Lab")

dplot

150

8.1.11. ST ssGSEA script – R
perform single sample Gene Set Enrichment Analysis (ssGSEA)

library(escape)
library(dittoSeq)
library(SingleCellExperiment)
library(Seurat)
library(SeuratObject)
library(dplyr)
library(ggplot2)

#loading the data and gene sets we would like to investigate
results.path <- choose.dir()
gene.sets.list <- read.csv(choose.files()) # list of gene sets "*.csv"
SO.spatial <- readRDS(choose.files()) # saved integrated Seurat object "*.rds"

names(SO.spatial@images) <- paste0("slide_",unique(SO.spatial$experiment))

#add meta data column with disease phase
experiments <- unique(SO.spatial$experiment)
disease.phase <- c("chronic","chronic","prolonged","acute","control","control",
 "chronic","control","prolonged","prolonged","acute","acute")
df.ed <- cbind.data.frame(experiments,disease.phase)
SO.spatial$disease_phase <- rep("", length(SO.spatial$experiment))

for(i in 1:length(df.ed$experiments)){
 SO.spatial$disease_phase[SO.spatial$experiment == df.ed$experiments[i]] <-

df.ed$disease.phase[i]
}

#visualizing only one image in e.g. SpatialFeaturePlot to check right loading
gene_feature <- "CCL18" # gene to check on spatial plot
image_title <- "slide_" # add desired image title based on naming
SpatialFeaturePlot(SO.spatial, features = gene_feature, images = image_title)

#loop through the gene sets and perform ssGSEA on each spot
start_time <- Sys.time()

for(s in unique(gene.sets.list$species)){

 for(l in unique(gene.sets.list$lib)){

 gs <- filter(gene.sets.list, species == s, lib == l)[["pathway"]]
 #print(gs)
 GS.selected <- getGeneSets(species = s,
 library = l,
 gene.sets = gs)
 ES.selected <- enrichIt(obj = GetAssayData(SO.spatial, slot = "scale.data"),

gene.sets = GS.selected, groups = 1000, cores = 20)
 # adding the enrichment scores to Seurat Object
 for(i in colnames(ES.selected)){
 SO.spatial[[i]] <- ES.selected[[i]]
 }
 }
}

end_time <- Sys.time()
measured.time <- end_time - start_time
measured.time

Appendix – Source codes

Appendix – Source codes

151

now we have all our enrichment scores, we should plot them as a feature
plot to the single images, based on their pathway we have to make sure, that
each image in one pathway gets the same color scale in a fixed range

steps <- length(names(SO.spatial@images))*length(gene.sets.list$pathway)
stepC <- 1

for(p in gene.sets.list$pathway){

 if(!(p %in% names(SO.spatial@meta.data))){
 next
 }

 save.path <- paste0(results.path,"/",p)
 dir.create(save.path)
 q5 <- quantile(unlist(SO.spatial[[p]]), probs = 0.05)
 q95 <- quantile(unlist(SO.spatial[[p]]), probs = 0.95)

 for(img in names(SO.spatial@images)){

 print(paste("saving image ", stepC, "of", steps))
 sfp.name <- paste0(save.path, "/enrichment_fplot_", p, "_", img, ".svg")
 svg(sfp.name)
 print(SpatialFeaturePlot(SO.spatial, features = p,

images = img, min.cutoff = q5, max.cutoff = q95,
image.alpha = 0, pt.size.factor = 2)+
ggplot2::scale_fill_gradient2(low = "white",
mid = "lightblue",high = "darkblue"))

 dev.off()
 stepC <- stepC+1

 }
}

saving the Seurat Object with single pathway related enrichment scores
saveRDS(SO.spatial, file =

paste0(results.path,"/SO_spatial_1234_gsea_escape_filtered.rds"))

152

8.1.12. LSFM destriping script – Python
import os
import sys
import tkinter as tk
from tkinter import filedialog
import numpy as np
from scipy import ndimage
from scipy.optimize import curve_fit
from skimage import io
from skimage import img_as_float
from skimage import draw
import pylab

def get_min_lenght_of_list_elements(values_list):

 '''
 get minimum length of all lists inside list

 Parameters

 values_list : list of lists

 Returns

 minimum length

 '''

 min_len = len(values_list[0])

 for i in values_list:

 if (len(i)<min_len):

 min_len = len(i)

 return min_len

def getEdgePoints(img_width, img_height, theta):

 '''
 calculating the endpoints (2D) of a line, starting from image center
 to image border

 Parameters

 img_width : horizontal size of a 2D array
 img_heigth : vertical size of a 2D array
 theta : angle of line in degree, where 0° is at img_width,img_height//2...
 rotating angles anticlockwise
 Returns

 y, x coordinate of image border points

 '''

Appendix – Source codes

Appendix – Source codes

153

 x0 = img_width//2
 y0 = img_height//2

 x_edge = -1
 y_edge = -1

 angle_ratio = img_height/img_width

 if ((theta >= 0) and (theta <= np.degrees(np.arctan(angle_ratio)))):

 x_edge = img_width-1
 y_edge = y0-x0*np.tan(np.radians(theta))

 if ((theta > np.degrees(np.arctan(angle_ratio))) and

(theta <= 180-(np.degrees(np.arctan(angle_ratio))))):

 t = 90-theta
 x_edge = x0+y0*np.tan(np.radians(t))
 y_edge = 0

 if ((theta > 180-(np.degrees(np.arctan(angle_ratio)))) and

(theta <= np.degrees(np.arctan(angle_ratio))+180)):

 t = 180-theta
 x_edge = 0
 y_edge = y0-x0*np.tan(np.radians(t))

 if ((theta > np.degrees(np.arctan(angle_ratio))+180) and

(theta <= 360-(np.degrees(np.arctan(angle_ratio))))):

 t = 270-theta
 x_edge = x0-y0*np.tan(np.radians(t))
 y_edge = img_height-1

 if ((theta > 360-(np.degrees(np.arctan(angle_ratio)))) and

(theta <= 360)):

 t = 360-theta
 x_edge = img_width-1
 y_edge = y0+x0*np.tan(np.radians(t))

 return y_edge, x_edge
def angular_linePlot(image, angle, getValues = False, showPlot = True):

 '''
 create line selection starting and ending from image borders at a given angle

 Parameters

 image : 2D array, created image, so working with raw values
 angle: angle of line in degree, where 0° is at img_width,img_height//2
 ...rotating angles anticlockwise
 getValues : optional, returns values of line selection measurement if True
 showPlot : optional, visualize plot on image and diagram if True

 Returns

 values from line plot if getValues=True

154

 '''
 h,w = image.shape
 #y0 = h//2
 #x0 = w//2
 y0, x0 = getEdgePoints(w, h, angle+180)
 y1, x1 = getEdgePoints(w, h, angle)

 lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False)
 values = image[lin]

 if(showPlot):

 y, x = np.linspace(y0,y1,len(values),endpoint=False),

np.linspace(x0,x1,len(values),endpoint=False)
 p_min = np.percentile(image,0.1)
 p_max = np.percentile(image,99.9)

 fig, axes = pylab.subplots(ncols=2)
 axes[0].imshow(image, cmap="gray", vmin=p_min, vmax=p_max)
 axes[0].plot(x,y,'r-')
 axes[0].axis('image')

 axes[1].plot(values)

 pylab.show()

 if(getValues):

 return values

def fft_angular_linePlot(fft_image, angle, getValues = False, showPlot = True):

 '''
 create line selection starting and ending from image borders at a given angle

 Parameters

 fft_image : 2D array, created for fft image, so values are scaled by 20*log
 angle: angle of line in degree, where 0° is at img_width,img_height//2...
 rotating angles anticlockwise
 getValues : optional, returns values of line selection measurement if True
 showPlot : optional, visualize plot on image and diagram if True

 Returns

 values from line plot if getValues=True

 '''
 h,w = fft_image.shape
 #y0 = h//2
 #x0 = w//2
 y0, x0 = getEdgePoints(w, h, angle+180)
 y1, x1 = getEdgePoints(w, h, angle)

 lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False)
 values = fft_image[lin]

Appendix – Source codes

Appendix – Source codes

155

 if(showPlot):

 y, x = np.linspace(y0,y1,len(values),endpoint=False),

np.linspace(x0,x1,len(values),endpoint=False)
 p_min = np.percentile(20*np.log(np.abs(fft_image)+1),0.1)
 p_max = np.percentile(20*np.log(np.abs(fft_image)+1),99.9)

 fig, axes = pylab.subplots(ncols=2)
 axes[0].imshow(20*np.log(np.abs(fft_image)+1), cmap="gray",

vmin=p_min, vmax=p_max)
 axes[0].plot(x,y,'r-')
 axes[0].axis('image')

 axes[1].plot(20*np.log(np.abs(values)+1))

 pylab.show()

 if(getValues):

 return values

def set_fft_angular_linePlot_values(fft_image, angle, values):

 '''
 set values of a line selection within fft image at a given anggle
 image do not have to be complex...other types supported as well

 Parameters

 fft_image : 2D array, created for fft image, so values are scaled by 20*log
 angle: angle of line in degree, where 0° is at img_width,img_height//2...
 rotating angles anticlockwise
 values : values to set at single pixel line selection

 '''
 h,w = fft_image.shape
 #y0 = h//2
 #x0 = w//2
 y0, x0 = getEdgePoints(w, h, angle+180)
 y1, x1 = getEdgePoints(w, h, angle)

 lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False)
 fft_image[lin] = values

 return fft_image

def rescale_freqlist_to_same_shape(freq_list):

 '''

 bring single angle measurements to one rectangular array by interpolation
 of different lengths of measurements

 Parameters

 freq_list : list of single angle measurements

 Returns

156

 rectangular shaped array with interpolated measurements

 '''

 list_len = len(freq_list)
 max_len = 0

 for i in freq_list:
 length = len(i)

 if length>max_len:
 max_len = length

 freq_img = np.zeros((list_len,max_len))

 for j in range(list_len):

 freq_img[j,:] = np.interp(np.linspace(0,len(freq_list[j])-1,

num=max_len),np.arange(len(freq_list[j])),freq_list[j])

 return freq_img

def get_doG_bandpass(image_shape, sd1, sd2, normalize = True):

 '''
 create band pass filter mask by difference of two gaussians

 Parameters

 image_shape : size of image mask as tuple
 sd1 : standard deviation of 1st gaussian
 sd2 : standard deviation of 2nd gaussian
 normalize : True/False for normalization by devision of mask's max value

 Returns

 band pass filter mask image

 '''

 iy, ix = image_shape
 cy, cx = iy//2, ix//2
 x = np.linspace(0, ix, ix)
 y = np.linspace(0, iy, iy)
 X, Y = np.meshgrid(x, y)
 if (sd1 == 0):

 g_mask_sd2 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd2**2))
 g_mask_sd2 = g_mask_sd2-g_mask_sd2.min()
 g_mask_sd2 = g_mask_sd2/g_mask_sd2.max()

 g_mask_diff = g_mask_sd2

 else:
 g_mask_sd1 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd1**2))
 g_mask_sd2 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd2**2))
 g_mask_sd1 = g_mask_sd1-g_mask_sd1.min()

Appendix – Source codes

Appendix – Source codes

157

 g_mask_sd2 = g_mask_sd2-g_mask_sd2.min()
 g_mask_sd1 = g_mask_sd1/g_mask_sd1.max()
 g_mask_sd2 = g_mask_sd2/g_mask_sd2.max()

 g_mask_diff = g_mask_sd2-g_mask_sd1

 if (normalize):
 g_mask_diff /= g_mask_diff.max()
 #g_mask_diff[g_mask_diff < 0] = 0

 return g_mask_diff

def get_MSE(img1,img2):

 '''
 calculate mean squared error of two different images

 Parameters

 img1, img2 : images

 Returns

 mean squared error value

 '''
 h,w = img1.shape
 squared_diff = (img2-img1)**2
 return (1/(h*w))*np.sum(squared_diff)

def make_spreaded_gaussian_line(img_shape, theta, sigma, sigma_tol=0.01):

 '''
 creates line with gaussian gradient at given angle

 Parameters

 img_shape : tuple of image mask's size
 theta : angle of line
 sigma : standard deviation offset value
 sigma_tol : spreading of sigma along angled axis

 Returns

 image filter mask with gaussian line function
 '''
 vs,us = img_shape
 vc, uc = vs//2, us//2
 x = np.linspace(-uc, uc, us)
 y = np.linspace(-vc, vc, vs)
 V,U = np.meshgrid(x, y)

 u_ = U*np.cos(np.radians(theta))+V*np.sin(np.radians(theta))
 w = sigma_tol*(np.sqrt(U**2+V**2))+sigma

 mask = 1-np.exp((-0.5*u_**2)/(w**2))

158

 return mask

def gauss(data, offset, amplitude, mean, sigma):

 '''
 gaussian line function

 Parameters

 data : one dimensional array with values
 offset : minimum value of gaussian function
 amplitude : maximum value of gaussian function
 mean : location of maximum value
 sigma : standard deviation, defining width of gaussian peak

 Returns

 gaussian function based on given parameters

 '''

 return offset+(amplitude-offset)*np.exp(-(data-mean)**2/(2*sigma**2))

def get_gaussian_fit_of_line(line_values, show_plot=False):

 '''
 calculate fit function of gaussian estimation

 Parameters

 line values : values along a line selection to fit
 show_plot : optional parameter to visualize result of fit

 Returns

 fitting parameters

 '''

 x_data = np.arange(line_values.shape[0])
 offset_guess = 0
 amplitude_guess = np.max(line_values)
 mean_guess = np.mean(x_data)
 sigma_v = line_values > amplitude_guess/2
 sigma_guess = 2*np.sum(sigma_v)

 popt, pcov = curve_fit(gauss, x_data, line_values,

p0=[offset_guess,amplitude_guess,mean_guess,sigma_guess])

 if(show_plot):

 pylab.plot(x_data, line_values, label="data")
 pylab.plot(x_data, gauss(x_data,*popt),label="fit")
 pylab.legend()
 pylab.show()

 return popt, pcov

Appendix – Source codes

Appendix – Source codes

159

def readjust_intensity_range(image,new_min,new_max):

 '''
 image intensity range transformation

 Parameters

 image : array containing the image intensity values
 new_min : minimum value of new intensity range
 new_max : maximum value of new intensity range

 Returns

 transformed image with new intensity range

 '''

 alow = image.min()
 ahigh = image.max()

 return (new_min + (image-alow)*(new_max-new_min)/(ahigh-alow))

def get_padding_size(image):

 '''
 calculate required pixel distances for padding image, so that image can
 be placed in squre with size of power by two...avoiding ringing artifacts

 Parameters

 image : image data to extract shape information

 Returns

 width and height related pixel (half-) distances

 '''

 h, w = image.shape

 v = 0

 if w > h:
 v = w
 else:
 v = h

 pv = np.ceil(np.log2(v))

 return (int(((2**pv)-h)//2), int(((2**pv)-w)//2))

define image location
asking user for directory - where are the images?
root = tk.Tk()
root.withdraw()

160

dir_path = filedialog.askdirectory()

if (dir_path == "" or dir_path == ()):
 print("no selection...exiting script!")
 sys.exit()

print("selected directory")
print(dir_path)
image_list = []

for (dirpath, dirnames, filenames) in os.walk(dir_path):

 image_list.extend(filenames)
 break

create destriping folder
results_folder_path = os.path.join(dir_path,"destriped/")
os.mkdir(results_folder_path)

for selected_img in image_list:

 # load image and display the image cliped to the first and last percentile
 img = img_as_float(io.imread(os.path.join(dir_path,selected_img),key=0))
 print(selected_img)
 #img = img_as_float(io.imread(img_path+img_name))

 #check if power of two
 ph_offset, pw_offset = get_padding_size(img)
 img = np.pad(img,((ph_offset,ph_offset),(pw_offset,pw_offset)),'linear_ramp')
 img_min = img.min()
 img_max = img.max()
 img_mean = img.mean()
 img_h, img_w = img.shape
 img_cy, img_cx = img_h//2, img_w//2

 # # image plot for development
 # p_min = np.percentile(img,0.5)
 # p_max = np.percentile(img,99.5)
 # pylab.imshow(img, cmap="gray", vmin=p_min, vmax=p_max)
 # pylab.colorbar()
 # pylab.show()

 # Take the 2-dimensional DFT and centre the frequencies
 fftimage = np.fft.fft2(img)
 fftimage = np.fft.fftshift(fftimage)
 p_min = np.percentile(np.log(np.abs(fftimage)+1),0.1)
 p_max = np.percentile(np.log(np.abs(fftimage)+1),99.9)
 # image plot for development
 # #pylab.imshow(np.log(np.abs(ftimage[img_cy-512:img_cy+512,
 # img_cx-512:img_cx+512])+1), cmap="gray", vmin=p_min, vmax=p_max)
 # pylab.imshow(np.log(np.abs(fftimage)+1))
 # pylab.colorbar()
 # pylab.show()

 #io.imsave('fft_from_stripy_image.tif', np.log(np.abs(fftimage)+1))

 # calc center region fit, which should be uneffected of destriping

 central_line_values = fft_angular_linePlot(fftimage, 0,

Appendix – Source codes

Appendix – Source codes

161

getValues=True, showPlot=False)
 popt_fft, pcov_fft =

get_gaussian_fit_of_line(np.log(np.abs(central_line_values)+1))

 angles = [99.5, 80.5, 90] # device related angles

 fftimage_orig = np.copy(fftimage)
 img_dupl = np.copy(img)
 img_dupl2 = np.copy(img)

 for a in angles:

 fftimage = np.fft.fft2(img_dupl)
 fftimage = np.fft.fftshift(fftimage)
 filter_mask = abs(make_spreaded_gaussian_line(fftimage.shape, a,

2*3.4, 0.048)-1) # 0.048 is total angular difference in px

 central_line_values2 = fft_angular_linePlot(fftimage_orig, a,

getValues=True, showPlot=False)
 popt_fft2, pcov_fft2 =

get_gaussian_fit_of_line(np.log(np.abs(central_line_values2)+1))

 filter_mask *= get_doG_bandpass(fftimage.shape, round(popt_fft[3])/2,

2*popt_fft2[3])

 # testing different weights...mean association not found so far
 #weight = popt_fft2[1]/popt_fft[1]
 weight = 1
 filter_mask = np.abs((filter_mask*weight)-1)
 #io.imsave("filter_mask_"+str(int(a))+".tif",filter_mask)
 #print(popt_fft)
 #print(popt_fft2)

 fftimage *= filter_mask
 img_dupl = np.abs(np.fft.ifft2(np.fft.ifftshift(fftimage)))

 # #image plot after destriping for development
 # pylab.imshow(img_dupl[ph_offset:img_h-ph_offset,pw_offset:img_w-pw_offset])
 # pylab.colorbar()
 # pylab.show()

 #mean squared (difference) error for development
 #print(get_MSE(img*2**16-1, img_dupl*2**16-1))
 # save image in results folder
 #io.imsave('results_test/destriped_'+img_name, (img_dupl[ph_offset:img_h-
ph_offset,pw_offset:img_w-pw_offset])*2**16-1)
 io.imsave(os.path.join(results_folder_path,selected_img),

np.uint16((img_dupl[ph_offset:img_h-ph_offset,
pw_offset:img_w-pw_offset])*2**16-1))

162

8.1.13. SNR calculation of stripy and destriped LSFM images
 """
Calculate SNR values based on ilastik’s probability maps
"""
import pandas as pd
import numpy as np
from skimage import io
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

def show_prob_maps(prob_maps):

 colors_R = [(0, 0, 0), (1, 0, 0)] # first color is black, last is red
 cm_r = LinearSegmentedColormap.from_list("Custom", colors_R, N=256)

 colors_G = [(0, 0, 0), (0, 1, 0)] # first color is black, last is green
 cm_g = LinearSegmentedColormap.from_list("Custom", colors_G, N=256)

 colors_B = [(0, 0, 0), (0, 0, 1)] # first color is black, last is blue
 cm_b = LinearSegmentedColormap.from_list("Custom", colors_B, N=256)

 plt.imshow(prob_maps[:,:,0], cmap=cm_r, alpha=0.33)
 plt.imshow(prob_maps[:,:,1], cmap=cm_g, alpha=0.33)
 plt.imshow(prob_maps[:,:,2], cmap=cm_b, alpha=0.33)
 plt.title("probability input maps")
 plt.show()

def show_image(image, img_title="", color="gray", p_low=1, p_high=99):

 p_l = np.percentile(image,p_low)
 p_h = np.percentile(image,p_high)

 plt.imshow(image, cmap=color, vmin=p_l, vmax=p_h)
 plt.colorbar()
 plt.title(img_title)
 plt.show()

def get_mean_std_of_probmap(image,prob_map,threshold=0.66):

 prob_th_ids = prob_map > threshold
 obj_mean = (image[prob_th_ids]).mean()
 obj_std = (image[prob_th_ids]).std()

 return obj_mean, obj_std

load image data
img_path = "H:/LightSheet/160101_depicted_examples_results/"
img_path2 = "H:/LightSheet/160101_depicted_examples/"

define microscope related image naming
date = "16-01-01"
device = "UltraII"
channel = "C01"
stage = "xyz-Table "
file_suffix = ".ome.tif"

select image layers to calculate SNRs
layers = ["Z0250","Z0300","Z0350","Z0400","Z0435","Z0450","Z0500"]

Appendix – Source codes

Appendix – Source codes

163

empty_array = np.zeros(len(layers))
prepare results table
idx = 0
snr_data = pd.DataFrame({"layer" : layers,
 "PSNR_orig" : empty_array,
 "PSNR_destr" : empty_array,
 "SNR_orig" : empty_array,
 "SNR_destr" : empty_array,
 "SBR_orig" : empty_array,
 "SBR_destr" : empty_array})

for z in layers:

 # read the image data
 filename_orig = img_path2+date+"_"+device+"_"+channel+"_"+stage+str(z)+

file_suffix
 filename_destriped = img_path+"destriped_"+date+"_"+device+"_"+channel+

"_"+stage+str(z)+file_suffix
 filename_prob = img_path+"destriped_"+date+"_"+device+"_"+channel+"_"+

stage+str(z)+".ome_Probabilities.tif"

 orig_img = io.imread(filename_orig)
 destriped_img = io.imread(filename_destriped)
 prob_map = io.imread(filename_prob)

 mus = []
 stds = []

 # calculate features
 for i in range(prob_map.shape[2]):

 mu_orig, stdDev_orig =

get_mean_std_of_probmap(orig_img, prob_map[:,:,i])
 mu_destr, stdDev_destr =

get_mean_std_of_probmap(destriped_img, prob_map[:,:,i])
 mus.append(mu_orig)
 stds.append(stdDev_orig)
 mus.append(mu_destr)
 stds.append(stdDev_destr)

 # set values in table
 snr_data["PSNR_orig"][idx] = mus[0]/stds[4]
 snr_data["PSNR_destr"][idx] = mus[1]/stds[5]

 snr_data["SNR_orig"][idx] = mus[0]/stds[2]
 snr_data["SNR_destr"][idx] = mus[1]/stds[3]

 snr_data["SBR_orig"][idx] = mus[0]/mus[2]
 snr_data["SBR_destr"][idx] = mus[1]/mus[3]

 idx += 1

print(snr_data)

save the results table
snr_data.to_csv(img_path+"SNR_results.csv")

164

9. List of publications and author contribution

9.1. Publications as part of this thesis

Radbruch, H., Mothes, R., Bremer, D., Seifert, S., Köhler, R., Pohlan, J., Ostendorf, L.,
Günther, R., Leben, R., Stenzel, W., Niesner, R. A., & Hauser, A. E. (2017). Analyzing
nicotinamide adenine dinucleotide phosphate oxidase activation in aging and vascular
amyloid pathology. Frontiers in Immunology, 8(JUL), 1–12.
https://doi.org/10.3389/fimmu.2017.00844

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A.,
& Cseresnyes, Z. (2018). Morphology-Based Distinction Between Healthy and
Pathological Cells Utilizing Fourier Transforms and Self-Organizing Maps. Journal of
Visualized Experiments : JoVE, 140. https://doi.org/10.3791/58543

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A.,
& Cseresnyes, Z. (2018). Cell shape characterization and classification with discrete
Fourier transforms and self-organizing maps. Cytometry Part A, 93(3), 323–333.
https://doi.org/10.1002/cyto.a.23279

Holzwarth, K., Köhler, R., Philipsen, L., Tokoyoda, K., Ladyhina, V., Wählby, C., Niesner, R.
A., & Hauser, A. E. (2018). Multiplexed fluorescence microscopy reveals heterogeneity
among stromal cells in mouse bone marrow sections. Cytometry Part A, 93(9), 876–
888. https://doi.org/10.1002/cyto.a.23526

Pascual-Reguant, A., Köhler, R., Mothes, R., Bauherr, S., Hernández, D. C., Uecker, R.,
Holzwarth, K., Kotsch, K., Seidl, M., Philipsen, L., Müller, W., Romagnani, C., Niesner,
R., & Hauser, A. E. (2021). Multiplexed histology analyses for the phenotypic and spatial
characterization of human innate lymphoid cells. Nature Communications, 12(1), 1–15.
https://doi.org/10.1038/s41467-021-21994-8

Mothes, R., Pascual-Reguant, A., Koehler, R., Liebeskind, J., Liebheit, A., Bauherr, S.,
Philipsen, L., Dittmayer, C., Laue, M., von Manitius, R., Elezkurtaj, S., Durek, P., Heinrich,
F., Heinz, G. A., Guerra, G. M., Obermayer, B., Meinhardt, J., Ihlow, J., Radke, J., …
Hauser, A. E. (2023). Distinct tissue niches direct lung immunopathology via CCL18 and
CCL21 in severe COVID-19. Nature Communications, 14(1), 791.
https://doi.org/10.1038/s41467-023-36333-2

List of publications and author contribution

165

9.2. Additional publication contribution

Riedel, R., Addo, R., Ferreira-Gomes, M., Heinz, G. A., Heinrich, F., Kummer, J., Greiff, V.,
Schulz, D., Klaeden, C., Cornelis, R., Menzel, U., Kröger, S., Stervbo, U., Köhler, R.,
Haftmann, C., Kühnel, S., Lehmann, K., Maschmeyer, P., McGrath, M., … Radbruch, A.
(2020). Discrete populations of isotype-switched memory B lymphocytes are maintained
in murine spleen and bone marrow. Nature Communications, 11(1), 1–14.
https://doi.org/10.1038/s41467-020-16464-6

Du, W., Lenz, D., Köhler, R., Zhang, E., Cendon, C., Li, J., Massoud, M., Wachtlin, J., Bodo,
J., Hauser, A. E., Radbruch, A., & Dong, J. (2021). Rapid Isolation of Functional ex vivo
Human Skin Tissue-Resident Memory T Lymphocytes. Frontiers in Immunology,
12(March), 1–12. https://doi.org/10.3389/fimmu.2021.624013

Dornieden, T., Sattler, A., Pascual-Reguant, A., Ruhm, A. H., Thiel, L. G., Bergmann, Y. S.,
Thole, L. M. L., Köhler, R., Kuhl, A. A., Hauser, A. E., Boral, S., Friedersdorff, F., &
Kotsch, K. (2021). Signatures and specificity of tissue-resident lymphocytes identified in
human renal peritumor and tumor tissue. Journal of the American Society of
Nephrology, 32(9), 2223–2241. https://doi.org/10.1681/ASN.2020101528

Treimer, W., & Köhler, R. (2021). Determination of the spatial resolution in the case of
imaging magnetic fields by polarized neutrons. Applied Sciences (Switzerland), 11(15).
https://doi.org/10.3390/app11156973

166

9.3. List of conference contributions

Köhler, R. , Holzwarth, K., Philipsen, L., Niesner, R.A., Hauser, A.E., “Histo Cytometry using

Multi Epitope Ligand Cartography (MELC) in the bone marrow”, CYTO 2018 33rd Congress of

the international society for advancement of cytometry, Prague, Czech Republic, oral

presentation

Köhler, R. , Holzwarth, K., Philipsen, L., Wählby, C., Niesner, R.A., Hauser, A.E., “Histo

Cytometry using Multi Epitope Ligand Cartography (MELC)”, 28th Annual Conference of the

German Society for Cytometry 2018, Jena, Germany, oral presentation

Köhler, R., Holzwarth, K., Pascual-Reguant, A., Philipsen, L., Wählby, C., Niesner, R.A.,

Hauser, A.E., “Image preprocessing of multiplexed data for better and easier (2D-)

segmentation”, 3rd NEUBIAS Conference – Luxembourg 2019, Luxembourg, oral presentation

Köhler, R., Holzwarth, K., Pascual-Reguant, A., Bauherr, S., Philipsen, L., Wählby, C., Niesner,

R.A., Hauser, A.E., “Histo Cytometry using Multi Epitope Ligand Cartography (MELC)”, 3rd

NEUBIAS Conference – Luxembourg 2019, Luxembourg, poster presentation

Koehler, R., Mothes, R. , Pascual-Reguant, A., Liebeskind, J., Liebheit, A., Bauherr, S.,

Philipsen, L., Niesner, R.A., Radbruch, H., Hauser, A.E., , “Spatial analysis of tissues at the

protein and transcriptional level”, ZIBI Retreat 2022, Berlin, Germany, oral presentation

List of publications and author contribution

167

10. Acknowledgements

When I was offered the opportunity to do my PhD as a fresh graduate of my master's degree

in applied physics / medical engineering, there was actually no reason to hesitate... man, what

a great idea. Looking back, it was an exciting, interesting, funny and sometimes hard way up

to this point. As my doctor mother once said to me: "In the doctoral thesis you sometimes have

to learn how to deal with frustration." And what can I say, yes, of course she was right about

something, but the positive moments definitely outweighed the negative. I learned a lot, got to

know great people and I would like to take this opportunity to thank everyone.

First and foremost I would like to thank my supervisors Prof. Dr. Raluca A. Niesner (Biophysical

Analytics) and Prof. Dr. Anja E. Hauser (Immune Dynamics) for excellent, motivating and

analytical support during my PhD. The door to their office was always open to me and they

were able to advise me on any question, no matter how strange. They were also open to new

ideas and accordingly gave me a lot of freedom to establish them. The familiar working

atmosphere within the working groups invited people to continue and contributed to the further

scientific development of everyone.

As part of the NieHau working group family, I would of course also like to thank all my

colleagues, students and interns for the incredibly great time with you at the German

Rheumatism Research Center in Berlin. Together we made our everyday work as pleasant as

possible, even if one or the other project drove us into the evenings. Together we could learn

from each other and broaden our horizons. Just like my meanwhile two multiplex microscopes

Jürgen and Jutta, some of which I had to disassemble down to their individual parts on my

table.

Natürlich möchte ich mich zu guter Letzt auch noch bei meiner Familie, zukünftigen Ehefrau

und meinen Freunden bedanken. Ihr habt mich durch alle Phasen begleitet, aufgebaut und mir

immer wieder neue Kraft gegeben um durchzuhalten. Wie auch schon im Studium, hat mich

innerhalb der Promotion ein weiterer Familienteil verlassen. Papa, ich bin mir sicher, dass du

trotzdem von oben runterguckst, dich freust und alle möglichen bösen Dinge von mir fernhältst.

I THANK YOU ALL

168

Die Arbeit wurde finanziell im Rahmen der Anstellung als Mikroskop Operateur des Deutschen

Rheuma Forschungszentrums der Arbeitsgruppe Hauser - Immundynamik unterstützt.

Im Rahmen dieser Arbeit bestehen keine Interessenkonflikte durch Zuwendung Dritter.

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Ich

versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch

genommen habe.

Berlin, den 28.11.2023 Ralf Köhler

11. Finanzierungsquellen, Interessenskonflikte und

Selbständigkeitserklärung

Finanzierungsquellen

Interessenkonflikte

Selbständigkeitserklärung

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 1
 Wie aktuell

 1
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 1
 Wie aktuell

 1
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 2
 Wie aktuell

 2
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 1
 Wie aktuell

 1
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: alle Seiten
 Beschneiden: Größe ändern 8.268 x 11.693 Zoll / 210.0 x 297.0 mm
 Versatz: kein
 Normen (erweiterte Option): 'Original'

 32

 D:20240125192417
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 861
 382
 None
 Right
 9.9213
 0.0000

 Both
 7
 AllDoc
 15

 CurrentAVDoc

 Uniform
 1.4173
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 63
 182
 181
 182

 1

 HistoryItem_V1
 InsertBlanks

 Wo: vor der ersten Seite
 Anzahl der Seiten: 4
 Wie aktuell

 4
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AtStart

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Wo: nach der letzten Seite
 Anzahl der Seiten: 4
 Wie aktuell

 4
 1

 D:20230321164834
 841.8898
 a4
 Blank
 595.2756

 1
 Tall
 220
 349

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

