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1. Introduction 

Biological tissue samples contain unique and invaluable information that reflects an individual's 

entire history of lifestyle, development, or disease progression. Insight into the complex 

organization and structure of different cell types within these tissues can reveal the underlying 

mechanisms of functional biological processes and diseases. Various techniques, such as 

microscopy, flow cytometry or sequencing, provide access to this information, with each 

method specializing in certain parameters and aspects of cellular analysis. 

In recent years, the fields of multiplex fluorescence microscopy and histocytometry have 

emerged with the aim of linking spatial structural information and multiparameter feature 

extraction with subsequent quantitative data analysis (Gerner et al., 2012; Gerstner et al., 

2004; Giesen et al., 2014; Schapiro et al., 2017, 2018). These technologies enable a deeper 

understanding of biological and pathophysiological processes by considering that cells do not 

exist in isolation, but interact within cell groups or tissue microenvironments. 

A powerful technique in this area is "multi-epitope ligand cartography" (MELC, Schubert et al., 

2006, 2012), which allows the co-mapping of multiple proteins within the same tissue section. 

MELC facilitates phenotypic classification, the study of local and global cell communication, 

and the identification of disease-related changes in morphology while preserving sample 

integrity. However, to perform quantitative image analysis, it is critical to accurately detect and 

analyze individual cells within microscope images. This process is affected by system-specific 

and physical limitations, including resolution, signal strength, and image artifacts, which must 

be carefully considered and corrected for in the analysis pipelines, especially by the 

microscopy technique used. 

To address these challenges, appropriate correction and identification algorithms must be 

developed that are tailored to the specific technology and imaging system. While fluorescence 

microscopy focuses on protein-level analysis, emerging methods such as spatial 

transcriptomics (Moses & Pachter, 2022; Ståhl et al., 2016) enable image-based analysis at 

the transcriptional level. Despite the differences in molecular targets, the conceptual steps of 

the analysis pipelines remain similar and include signal localization and classification. 

By integrating advanced imaging techniques with robust quantitative image analysis methods, 

we can gain a deeper understanding of the spatial organization, communication networks, and 

molecular signatures within biological tissues. The development and application of automated 

quantitative image analysis pipelines is necessary to ensure standardized, comparable, and 

reproducible results and ultimately to advance our knowledge of complex biological processes. 
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1.1. Image based system biology 

The basic components of living organisms are cells. They were discovered, introduced and 

called as such by Robert Hooke back in 1665, by looking through a candle illuminated 

compound microscope, observing plant structures. This was only possible by the previous 

work of Z. Janssen and his son H. Janssen, who combined several glasses to magnify 

structures and invented in this way the idea of microscopes and telescopes at the same time 

around the 17th century. With one of the modified microscope versions Hooke used, first 

drawings of the structures could be shared (Masters, 2008).  

Over the past decades various techniques have been continuously developed and supported 

the functional investigation of cell organisms. Since the 20th century, sample information such 

as tissue structures could be inspected, displayed or resolved by cell-specific fluorescence 

staining or light stimulation.  With the invention of performant computers, the door was open 

for systematic and reliable image processing. 

1.1.1. Label free imaging – phase contrast microscopy 

Image magnification in early days of microscopy allowed scientists to observe the 

microbiological components of tissue samples, blood donations or plant cells. The visibility of 

structures is limited to the fact that thin transparent samples have small differences in intensity 

and the resolution of human eye is limited as well. Based on sample architecture properties 

and related density differences, F. Zernike discovered and proposed principles of phase 

contrast microscopy in early 1930s. Here phase changes and scattered light differences 

caused by sample thickness and refractive indices are modulated into intensity variations, 

resulting in edge enhanced microscopic images (Zernike, 1942, 1955). 

 

Figure 1 Overview of a phase contrast microscope setup and exemplary light paths. White regions in the 

condenser annulus and phase plate indicate transparent areas, dark regions absorbs light (Boas et al., 2016). 
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This change in phase is due to the fact that different components of the light wave (such as 

the electric field vector) experience different phase shifts as they pass through the anisotropic 

material without interaction with the molecules. Compared to a conventional microscope setup, 

a condenser annulus is placed between collector and condenser, the front focal plane 

(aperture) of the condenser, and a phase plate (quarter wavelength plate) is placed between 

the objective and imaging plane, the back focal plane of the imaging objective lens (Figure 1). 

In principle, condenser annulus exiting light illuminates the sample. Undeviated light is reduced 

in intensity by the absorbing material (grey ring) within the phase plate, in comparison to the 

diffracted light, which appears everywhere in the back focal plane. This is necessary to match 

both light amplitudes. Phase plate introduced light wave filtering in the back focal plane (Fourier 

plane) of the objective lens leads to interference at the image plane. Light passing through 

regions of the specimen that are out of phase with the background will interfere destructively, 

leading to reduced intensity and darker regions in the image. Conversely, regions of the 

specimen that are in phase with the background will interfere constructively, leading to 

increased intensity and brighter regions in the image. In this way the change in refractive index 

or samples thickness lead to image intensity differences and allows to enhance structural 

borders, edges respectively (Boas et al., 2016; Goodman, 2005).  

Phase contrast microscopy as a non-invasive method of thin, transparent and translucent 

samples allows studying cell morphology or living cell dynamics over a long time period without 

special or complex preparation, which makes it fast and cheap. 

1.1.2. Fluorescence-based cell identification 

Fluorescence as a subcategory of Luminescence describes the process of spontaneous 

emission of photons longer wavelengths from atoms or molecules, in higher excited electronic 

states via electromagnetic waves of wavelengths in the range of 250 to 700 nm. This happens 

in average time of around 10 ns (vacuum), also called fluorescence lifetime (τ), described as 

the time between excitation and relaxation to ground state. The distance between excitation 

and emission wavelength maximum amplitude is described as Stokes’ shift (Lakowicz, 2013). 

The process of excitation and emission of fluorescent light is limited in the amount of repetitive 

cycles and is fading in measurable energy amplitude over time, which is caused by the 

decreasing number of excitable molecules. It is called photo-bleaching and depends on the 

used fluorescent molecules (Im et al., 2019; Lichtman & Conchello, 2005). 

Besides naturally occurring fluorophores (fluorescent substances), unlabeled tissue structures 

or cells can be made to fluoresce as well, as shown in the late 19th century by Paul Ehrlich 

(1854-1915) or the developer of Köhler illumination microscopy August Köhler (1866-1948) 

(Masters, 2008). This method is called immunofluorescence (IF), which at the time was only 

described as a different absorption of white light. This can be accomplished through a process 
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known as "fluorescent staining". Here, specific antibodies that bind to the proteins (epitopes) 

of the structure or cell of interest are labeled with a fluorochrome. If the used primary antibody 

cannot be tagged with fluorophore, an additional (secondary) fluorophore coupled antibody 

can be used. This process is called indirect IF in comparison to direct IF and is applied within 

fluorescence microscopy, flow cytometry or fluorescence-activated cell sorting (FACS) to 

amplify the signal. By visualizing different fluorescent antibodies or fluorescent reporter 

proteins that detect different epitopes in parallel, cell types can be identified. 

1.1.3. Gene expression based cell identification 

Covalently linked deoxyribonucleotide units create double-stranded deoxyribonucleic acid 

(DNA) and store the complete genetic information within each cell from generation to 

generation. DNA sequencing, introduced by Frederick Sanger (1918 - 2013) in 1977, enables 

the determination of the nucleotide sequence of DNA molecules, facilitating the study of 

genomic features and genetic variations. In contrast, RNA sequencing (RNA-seq) provides 

insights into gene expression by analyzing the actively transcribed regions of the DNA, which 

are transcribed into messenger ribonucleic acids (mRNA). The amount of mRNA is a measure 

of gene expression. RNA-seq has emerged as a cost-effective and time-efficient method for 

examining gene expression patterns, allowing for comprehensive analysis of the 

transcriptome. 

Next generation sequencing, as one of the newer high throughput RNA-sequencing 

technologies, uses a collection of complementary DNA (cDNA) fragments created library from 

initial RNA conversion via an enzyme (reverse transcriptase), which are tagged by adaptors 

and amplified on a special slide, the flow cell. Iteratively fluorescent-labeled nucleotides are 

coupled and read within the sequencing machine and therefore give information on gene 

expression. (Alberts et al., 2014; Reinartz et al., 2002; Sanger et al., 1977). 

The investigation of differentially expressed genes allows interpretation of biological processes 

during disease, treatment or other tissue sample related pre-handlings. Compared to bulk 

RNA-sequencing, where the differentially gene expression of all contributing cells of a whole 

tissue sample are averaged, single cell RNA-sequencing (single cell RNA-seq) allows cell type 

identification and has revolutionized the biology field (Tang et al., 2009). A common feature of 

both methods is the enzymatic dissociation or homogenization of the tissue sample into liquid-

based cell suspension. Thereby, the spatial information is detached from the natural 

environment surrounding the cells and the extra cellular matrix (Olsen & Baryawno, 2018). 

This changed by development of spatial transcriptomics. Here, unique spatially barcoded oligo-

nucleotides covering a glass slide capture mRNA of the tissue sample placed on top, enabling 

microscopic imaging before sequencing. Based on location identifiers, the gene expression 

can be back tracked to the tissue samples origin at a resolution of 55 µm. Specifically, 5000 
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circular areas with a diameter of 55 µm are homogeneously distributed over the field of view 

with a center-to-center distance of 100 µm (Moses & Pachter, 2022; Ståhl et al., 2016). 

1.1.4. Digital image formation 

The relation from objects viewed through microscopes is directly connected to the key 

component of these optical systems, the objective lens. Regardless of the microscope 

architecture, the main task of the objective lens is to magnify the observed structure by transfer 

of emitted light of every object point to the observer or a sensor. 

 

Figure 2 Overview of generalized optical system (Goodman, 2005) 

Objective lenses typically consist of various single lenses focusing, defocusing and correcting 

light wave dependent properties such as chromatic and wave-front distortions, but for 

illustration of the light path transfer, the whole lens collection is taken as one system illustrated 

as “black box” (Figure 2), where following lenses for image creation in the eye of observer or 

camera are included. Finally, the recording system (image plane) only recognize the result 

intensity distribution of the exit pupil. Due to the finite size of the pupils, only a range of light 

rays can reach and release the optical system, this is why it is also called diffraction limited. 

As an effect higher frequencies (f) in space (analogues to wavelengths (λ)) are cut and lead to 

spatial resolution limit (S), where 

𝑆𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
1,22𝜆

𝑁𝐴𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 +𝑁𝐴𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟
   𝑎𝑛𝑑 𝑆𝑎𝑥𝑖𝑎𝑙 =

2𝜆

𝑁𝐴2
  𝑤𝑖𝑡ℎ 𝑁𝐴 = 𝑛 ∙ 𝑠𝑖𝑛(𝛼), (1) 

investigated by Abbe in 1873 (Abbe, 1873) or Lord Rayleigh in 1896 (S., 1896). Numerical 

aperture (NA) thereby defines the maximum angular range of entering light emitted of the 

object through refractive index (n) dependent medium. The Rayleigh criteria represented in 

equation (1) describes the minimum distance of two neighboring objects at which they can be 
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separable seen in case of fluorescence microscope. Separable at this point means the overlap 

of two airy disks, where the maximum intensity amplitude of the first object lays within the first 

minimum intensity amplitude of the second object. Additional to this formulation, the resolution 

limit can be interpreted as the full width at half maximum (FWHM) distance of a single objects 

intensity distribution in relation to its known size. Ideally, the real object (Ureal) viewed through 

the optical system would be only a magnification (M) scaled version of the original object (UO), 

so that 

𝑈𝑟𝑒𝑎𝑙 =
1

|𝑀|
𝑈𝑂 . (2) 

Due to diffraction limited system, light transfer by pupil area and optics introduce a convolution 

of real object image and transfer function 

𝑈𝑖𝑚𝑎𝑔𝑒 = ℎ ∗ 𝑈𝑟𝑒𝑎𝑙. (3) 

Analogues to convolution, the operation above can be described as the product of two two-

dimensional Fourier Transforms (FT), representing the FT property of optical systems, 

modifying shape of the input function, which can be formulated as 

𝑈𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) = ∬ ℎ(𝑢 − 𝜉, 𝑣 − �̃�)
∞

−∞

𝑈𝑟𝑒𝑎𝑙(𝜉, �̃�)𝑑𝜉𝑑�̃�  𝑤𝑖𝑡ℎ 𝜉 = 𝑀𝜉; �̃� = 𝑀𝜂, (4) 

where the transfer function h is dependent of the signal amplitude (A), exit pupil (P) 

ℎ(𝑢, 𝑣) =
𝐴

𝜆𝑧𝑖
∬ 𝑃(𝑥, 𝑦)𝑒

−𝑗
2𝜋
𝜆𝑧𝑖
(𝑢𝑥+𝑣𝑦)

𝑑𝑥𝑑𝑦
∞

−∞

 (5) 

and further represents the point spread function (PSF) of the optical system. Image aberrations 

or distortions introduced by the object itself or the optical system would result in a changed 

phase (additional exponent) of the transfer function (Goodman, 2005; HANSER et al., 2004). 

Finally, the objects emitted and transmitted light energy needs to be converted in the image 

plane, e.g. via a charge coupled device (CCD) or complementary metal-oxide-semiconductor  

(CMOS) sensor. The approximate number of electrons  

𝑁 = 𝛿𝐴𝛿𝑡 ∫𝑏(𝜆)𝑞(𝜆) 𝑑𝜆 (6) 

liberated in such a sensor is, next to the wavelength (λ), dependent of the pixel area (δA), 

exposure time (δt), incident photon flux (b) and quantum efficiency (q), where q defines the 

effective ratio of incoming photons and generated electrons. The finite size of the pixel array 

within the sensor lead to signal sampling and quantization of the continuous object function to 

discrete partitioned values (Gonzalez & Woods, 2002; Umbaugh, 2017). 
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1.2. Bioimage data analysis 

Image acquisition of biological phenomena via microscopes, or expression measurements 

using sequencing alone describe only the starting point in hypothesis testing and require 

further expert-based interpretation of the data. In case of complex data (also termed “big data”), 

conclusion drawing is a time-demanding and subjective non-standardized process. In 

response to these challenges, computer driven digital image processing or related data 

analysis in general are used to support desired tasks, for example image correction, object 

identification or feature extraction. Thereby bioimage data analysis combines pre-existing 

algorithms and newly developed methods as integrated software tools or standalone computer 

programs. Their application involves extracting relevant information from the underlying image 

data and related biological samples. Besides the general idea of data analysis pipelines, each 

individual workflow created is unique to its components, tools and biological question or used 

devices, caused by raw data formation. In this way, results are standardized, comparable and 

ultimately contribute to the reliability of the interpretation (Miura & Sladoje, 2019). Therefore, 

the following section introduces the most important signal and data processing concepts. 

1.2.1. Image signal processing and evaluation 

1.2.1.1.  Discrete Fourier transform 

One of the most important tools in image processing is the Fourier transform (FT). It is used in 

many image analysis applications, such as image filtering, reconstruction, or compression, and 

has its origins in signal processing as telecommunications and electrical engineering 

developed. 

A two dimensional digital image (g(u,v)) can be represented as a collection of one dimensional 

signal functions, sampled by pixel’s dimensions along the row or column arrays. The two 

dimensional discrete Fourier transformation (2D DFT), which is defined as 

𝐺(𝑚, 𝑛) =
1

√𝑀𝑁
∙ ∑ ∑ 𝑔(𝑢, 𝑣) ∙ 𝑒

−𝑖2𝜋(
𝑚𝑢
𝑀
+
𝑛𝑣
𝑁
)
,

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 (7) 

converts the finite sized image (MxN) as a set of periodic functions to frequency space image 

and therefore gives access to the image’s phase information with spectral coordinates 

m=0,...,M-1 and n=0,...,N-1. Similar to the so called forward transformation, the back 

transformation (DFT-1), or inverse DFT (iDFT) 

𝑔(𝑢, 𝑣) =
1

√𝑀𝑁
∙ ∑ ∑𝐺(𝑚, 𝑛) ∙ 𝑒

𝑖2𝜋(
𝑚𝑢
𝑀
+
𝑛𝑣
𝑁
)
,

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 (8) 
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recovers the main image signal in space domain with image coordinates u=0,...,M-1 and 

v=0,...,N-1. These transformations mathematically describe analogously to 1.1.4, the spatial 

conversion from optical system’s back focal plane (Fourier domain) to real image plane. The 

exponent within the sums represents a linear combination of single sinusoidal basis functions, 

where highest possible frequency is dependent on the sampling frequency, which is in this 

case the inverse image’s pixel dimension. Any change in frequency, like in Fourier 

transformation image filtering, affects the signals reconstruction and leads to aliasing effects, 

caused by the pseudo periodic Fourier transformation of the finite sized image or if Nyquist-

Shannon sampling theorem is not fulfilled. Additionally, a modification of frequencies in the 

Fourier domain adds artificial signals and therefore can cause artifacts after back 

transformation if the filter parameters are not adjusted accordingly. An optimized algorithm 

called “fast Fourier transform” (FFT) reduces the computation time of every single DFT from 

order n² to n(log(n)), where n is the number of data points (Burger & Burge, 2016). 

Besides phase information access, DFT and FFT can be used within correlation analysis. By 

correlation of two signals, or in this case images (f(u,v),g(u,v)), the operation is called cross 

correlation (r) and is defined as 

𝑟𝑓𝑔(𝑢0, 𝑣0) =  ∑𝑓(𝑢, 𝑣)𝑔∗(𝑢 − 𝑢0, 𝑣 − 𝑣0)

𝑢,𝑣

, (9) 

where (*) is equivalent to complex conjugate (inversion of the sign of the imaginary part). The 

same calculation can be performed by convolution, so that 

𝑟𝑓𝑔(𝑢0, 𝑣0) =  ∑𝐹(𝑚, 𝑛)𝐺∗(𝑚, 𝑛)𝑒𝑥𝑝 [𝑖2𝜋 (
𝑚𝑢0
𝑀

+
𝑛𝑣0
𝑁
)] 

𝑚,𝑛

. (10) 

The uppercase letters indicate the Fourier transformation of the lower case letters. The method 

allows to find the displacement of two shifted images to each other. This requires inverse 

Fourier transforming the cross-correlation product, followed by locating the maximum peak, 

which becomes the centered offset position and is identical to the displacement. An introduced 

upscaling factor of the FFT images enable subpixel accuracy of the calculated shifts (Anuta, 

1970; Guizar-Sicairos et al., 2008).    

In addition to whole image transformation by DFT for image phase information access or image 

registration, another application is to describe closed curves by Fourier coefficients.  
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Figure 3 Object outline (C) sampled by equidistant points gK in two dimensional complex plane  

(Burger & Burge, 2016) 

These closed curves could be analogously represented by object outlines inside an image, as 

shown as single object graph in Figure 3. Here, the discrete valued curve is interpreted as a 

vector, which contain a collection of complex points in a two dimensional plane, where xk 

represents the real part and yk the imaginary part of every vector gk. The DFT in this case is 

defined as 

𝐺𝑚 =
1

𝑀
∙ ∑ 𝑔𝑘 ∙ 𝑒

−𝑖2𝜋𝑚∙
𝑘
𝑀 =

1

𝑀
∙ ∑ 𝑔𝑘 ∙ 𝑒

−𝑖𝜔𝑚∙
𝑘
𝑀

𝑀−1

𝑘=0

𝑀−1

𝑘=0

 (11) 

 

 
=
1

𝑀
∙ ∑[𝑥𝑘 + 𝑖 ∙ 𝑦𝑘] ∙ [cos (𝜔𝑚

𝑘

𝑀
− 𝑖 ∙ sin (𝜔𝑚

𝑘

𝑀
]

𝑀−1

𝑘=0

, (12) 

with angular frequency ωm = 2πm and 0 ≤ m ≤ M. The result out of the multiplication 

Gm=Am+iBm, creates the real (Re) and imaginary (Im) Fourier shape descriptors, or also called 

spectral coefficients   

Re(𝐺𝑚) =
1

𝑀
∑ [𝑥𝑘 ∙ cos (𝜔𝑚

𝑘

𝑀
) + 𝑦𝑘 ∙ sin (𝜔𝑚

𝑘

𝑀
)] ,

𝑀−1

𝑘=0

 (13) 

Im(𝐺𝑚) =
1

𝑀
∑ [𝑦𝑘 ∙ cos (𝜔𝑚

𝑘

𝑀
) − 𝑥𝑘 ∙ sin (𝜔𝑚

𝑘

𝑀
)] ,

𝑀−1

𝑘=0

 (14) 

as long M is bigger than 1. The FFT can be used for calculation as well, but requires signal 

length M = 2n for n ∈ N. Visually, each spectral coefficient defines a circle with decreasing 

radius dependent of the index frequency ωm and thereby follows the outline’s form. This 

mathematically tool allows to describe and recover complex shaped curves or image objects 

with a limited set of numbers (Burger & Burge, 2016; Gonzalez & Woods, 2002). 
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Altogether, DFT is an important algorithm used within many image analysis applications and 

developed FFT accelerates calculation speed by preservation of same results. 

1.2.1.2.  Linear regression analysis 

The investigation of relationship between independent multivariate measurements or 

observations and their prediction of unknown dependent variables or data points is called 

regression. Its application differs from the independent input variables (covariate/regressor) 

and defines the output (response variables). There are three common use cases, which fall 

into linear regression. Data fitting involves finding the line of best fit that describes the global 

relationship between the variables. Interpolation involves estimating the values of the 

dependent variable for given values of the independent variable that falls within the range of 

the data points. Extrapolation involves estimating the values of the dependent variables for 

values of the independent variables that fall outside the range of the data points. This means 

that they differ in the mathematical function used, which is applied to a specific range of data 

to model the output. 

In simple linear regression (data fitting) the relationship of only one set of response variables 

Y dependent of input variables X is inspected, where the linear model follows the definition 

𝑌 =  𝛼 + 𝛽𝑋 + 𝑒. (15) 

Assuming a straight (regression) trend line through the data points and existence of n 

observation pairs this can be written as 

𝑦𝑖 =  𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖, (16) 

where ei represents an error and can be seen as difference between real value and its 

prediction. In addition α and β are called the regression coefficients, more precisely intercept 

term and slope parameter.  

 

Figure 4 scatterplot of observation points with regression line, including error deviation (Heumann et al., 2016) 
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Based on the linear model, the minimization of all error terms leads to final fit of regression 

line, as illustrated in Figure 4 and further be formulated as  

min
𝛼,𝛽

∑𝑒𝑖
2 = min

𝛼,𝛽
∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)²

𝑛

𝑖=1

𝑛

𝑖=1

, (17) 

which analogously describe the method of least squares. The estimation of regression 

coefficients in case of two parameters can be calculated by 

�̂� =
𝑆𝑥𝑦

𝑆𝑥𝑥
=
∑ 𝑥𝑖𝑦𝑖 − 𝑛�̅��̅�
𝑛
𝑖=1

∑ 𝑥𝑖
2 − �̅�𝑛2𝑛

𝑖=1

  ;  �̂� = �̅� − �̂��̅� (18) 

and create the final prediction function for any value out of these data points  

𝑦�̂� = �̂� + �̂�𝑥𝑖. (19) 

Errors 𝑒�̂� out of the prediction value in comparison to the measurement points are also called 

residuals. Throughout variance decomposition, the quality of found model is quantifiable using 

the R² criteria:   

𝑅2 =
𝑆𝑄𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑄𝑇𝑜𝑡𝑎𝑙
=
∑ (𝑦�̂� − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

= 1 −
𝑆𝑄𝐸𝑟𝑟𝑜𝑟
𝑆𝑄𝑇𝑜𝑡𝑎𝑙

= 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

, (20) 

in range 0 ≤ 𝑅² ≤ 1. For values of R² towards one, the fitting model represents to higher degree 

the given values, predicted values as well and vice versa for R² closer to zero.   

When working with multiple covariates, the linear regression model can be extended to their 

weighted linear combination: 

𝑌 = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝 + 𝑒. (21) 

In contrast to the equation (15, the intercept term is β0. Based on p covariates and n data 

points, a set of n equations defines from now on the model: 

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 +⋯+ 𝛽𝑝𝑥1𝑝 + 𝑒1 

𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 +⋯+ 𝛽𝑝𝑥2𝑝 + 𝑒2 

⋮         ⋮            ⋮               ⋮                        ⋮           ⋮ 

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 +⋯+ 𝛽𝑝𝑥𝑛𝑝 + 𝑒𝑛 

(22) 

The introduction of matrix notation allows to compress all of the expressions to 

𝒚 = 𝑿𝜷 + 𝒆 (23) 

Where bold letters are equivalent matrices and vectors, such that 

𝒚 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) ,   𝑿 =

(

 

1 𝑥11 𝑥12 ⋯ 𝑥1𝑝
1 𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮
1

⋮
𝑥𝑛1 𝑥𝑛2 ⋯

⋮
𝑥𝑛𝑝)

 ,   𝜷 = (

𝛽1
𝛽2
⋮
𝛽𝑝

) ,   𝒆 = (

𝑒1
𝑒2
⋮
𝑒𝑛

). 

Within X the column of ones represents the intercept term at all observations. Via least squared 

method, minimization of the error terms, the estimation of β calculates to 
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�̂� = (𝑿′𝑿)−1𝑿′𝒚.  
 

(24) 

Thereby �̂� includes estimates of the all covariates. A continues update during minimization 

process of the error terms and related residuals results in a fitted model along the parameter 

space until the model converges or satisfy a certain limit.  

Application of regression analysis is not limited to physically real variables. The introduction of 

dummy variables makes it possible to work with categorical parameters as well and is used in 

classification. Another field, nonlinear regression, covers data fitting related to known 

distribution functions. Typically in natural and life sciences, the parameters are distributed 

following Gaussian functions – therefore Gaussian fitting is key. Here, the initial step consists 

of linearization before calculating the parameter estimates. Linearization can be realized 

through mathematical transformations or Taylor series decomposition. However, not all 

nonlinear regression problems can be solved by support of linearization. Based on the specific 

nature of the nonlinear relationship, other techniques may be more appropriate (Fahrmeir et 

al., 2016; Heumann et al., 2016).  

1.2.1.3.  Decision trees and random forests 

Evaluation of image signals also refers to pixel or object classification. Based on certain criteria 

or rules, numerical and categorical variables are assigned to certain group(s) or class(es), 

respectively. In the simplest case of a single limit (threshold), binarization of the input variables 

takes place and ends in two classes. In case of multiple available input parameters, a 

sequence of binary separations can be realized to refine the final classification, where every 

outcome of the previous binarization influences the following step.  

 

Figure 5 Decision tree construction example to classify image pixels of image A to be cell class A or background 
(bg), related to presence of nuclei signal at same location 

Altogether the whole structure can visually represented as a flow chart (Figure 5), which is 

better known as decision tree. The first node on top is called the “root node”, where ending 

nodes are called “terminal nodes” or “leafs”, reflecting the final classes. Inner nodes are 

equivalent to feature attributes. Commonly, branches which do not fulfill a condition are placed 

on the right side.  
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Construction of decision trees follows a recursive process, finding the best split-point of the 

data at each feature attribute, where every nonterminal point separates the previous outcome 

data (whole data set at the root node) into two subgroups, those that meet the criterion and 

those that don't. One of the metrics for describing the information content of a data set, which 

is also known from thermodynamics, is the entropy 

𝐻(𝑝) = 𝐻(𝑝1, … , 𝑝𝑛) =  −∑𝑝𝑖

𝑛

𝑖=1

log2(𝑝𝑖), (25) 

where p denotes the n class probability distribution, equivalent to the amount of data points 

within each class. Taking together all classes’ probabilities sums up to a value of one. For 

probabilities equal to zero, the entropy is defined to be zero. Out of the entropy the information 

content of a data set (D) is defined as 

𝐼(𝐷) = 1 − 𝐻(𝑝) = 1 − 𝐻(𝐷). (26) 

Based on the global and individual information content, the information gain (G) of every single 

attribute (A) related to the whole data set can be calculated: 

𝐺(𝐷, 𝐴) =∑
|𝐷𝑖|

|𝐷|
𝐼(𝐷𝑖) − 𝐼(𝐷).

𝑛

𝑖=1

 (27) 

The attribute at highest information gain is the one to be taken for the node, dividing the data 

set. In case of continuous attributes a similar principle is applied within the value set to get a 

final threshold  

𝛳𝐷,𝐴 = argmax𝑣{𝐺(𝐷, 𝐴 > 𝑣)}. (28) 

For every value (v) the information gain is calculated. Thereby, “argmax” returns the argument 

(input value) that maximizes a given function. The threshold value arising in the highest 

information gain is taken. Introduction of “mean squared residual” as splitting criteria of a given 

data set enables decision-tree based regression as well. In context of classification, other 

metrics, such as “misclassification error” or “Gini index” were also used for split-point 

calculation.  The subsets, separated by category or threshold, now go through the same 

procedure until no further subdivision is possible, or to a defined end point (number of elements 

within one group). The created decision tree structure fits the underlying data. Minimizing the 

risk of overfitting and increasing the model prediction of unknown data points, the original data 

set is split into training and test data set, where test data set is unseen from the model during 

creation (training). The proportion of right classifications enables model quality check. A partial 

reduction of trees (pruning) can increase the global prediction accuracy (Ertel, 2011; 

Feigenbaum & Simon, 1961; Hastie et al., 2009; Quinlan, 1986). 
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In contrast to single decision-tree based classification or regression, Random Forest uses a 

whole set of de-correlated trees, which averaged results reduces single model variance. 

Thereby, each individual tree (hj) is built out of a subset (ϴ) of the original data set (D =

{(x1, y1), … , (xN, yN)}). During construction only a few predictor variables (p) are used to 

calculate the split-point, typically this number m is the square root of p and at least one. Data 

sets subset (Dj) selection follows a random distribution and is called bootstraping. Via bagging 

(bootstrap aggregating) each of the tree than is fitted to its data set selection and related p. 

Out of all fitted trees (ĥ), the prediction function in case of regression results in 

𝑓(𝑥) =
1

𝐽
∑ℎ̂𝑗(𝑥)

𝐽

𝑗=1

, (29) 

where J denotes the number of trees. In case of classification the prediction function belonging 

to a certain class y follows 

𝑓(𝑥) = argmax𝑦∑𝐼(ℎ�̂�(𝑥) = 𝑦)

𝐽

𝑗=1

. (30) 

Due to bootstraping, some of the samples of the original data set are not used. This untouched 

subset is called “Out-Of-Bag Data” and is taken to calculate the model’s related error, which in 

case of regression is defined by out-of-bag means squared error (MSEoob)  

𝑀𝑆𝐸𝑜𝑜𝑏 =
1

𝑁
∑(𝑦𝑖 − 𝑓𝑜𝑜𝑏(𝑥𝑖))

2

𝑁

𝑖=1

 (31) 

and in case of classification, the generalized out-of-bag error rate (Eoob) 

𝐸𝑜𝑜𝑏 =
1

𝑁
∑𝐼(𝑦𝑖 ≠ 𝑓𝑜𝑜𝑏(𝑥𝑖)

𝑁

𝑖=1

). (32) 

In comparison to averaged errors, in classification a separated calculation of the error rate at 

each wanted class, enables distinct observations of the final predictions and their accuracy. 

Within a “confusion matrix” all of the single error rates can be summarized via cross-tabulating 

the out-of-bag predictions and their known values. Adjusting the individual trees by their 

number or size is referred to tuning and can be used to get better predictions. A weighting of 

unbalanced class occurrences also can refine the global prediction performance (Breiman, 

2001; Cutler et al., 2012; Hastie et al., 2009). 

Application of single decision-trees or random forest follows a simple model creation process, 

but giving a powerful multipurpose tool. Especially in multiclass classification, the 

interpretability of the outcome predictions support understanding of underlying data structure 

and their relations.   
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1.2.2. Statistical analysis of objects 

1.2.2.1. Dimensionality reduction 

The increasing number of different variables inevitably leads to an increase in the complexity 

of the respective data set. Among data correlation or prediction, visualization of such relations 

is limited by the number of variables. Reduction of these multidimensional feature spaces, by 

preserving global or local dependencies is the goal of dimensionality reduction methods. 

Additionally, these representations supports the decrease of computationally expensive tasks, 

taking them as input variables.  

Principal component analysis (PCA) is one of the oldest algorithms (F.R.S., 1901; Hotelling, 

1933), which estimates the orientation of the individual feature attributes with the highest 

variance and projects the principal components (PCs) thus found into new subspaces created 

by each individual computed PC (Ertel, 2011). Each of the PCs are orthogonal to each other, 

which means that the dot product between two PCs is zero, confirming that they are 

independent of each other. Correlated feature attributes are represented in similar regions and 

in this way create a representation of the data with low dimensionality. Estimation of orientation 

follows the same concept as in linear regression analysis, where the sum of squared residuals 

of a line fitting the data is minimized. In contrast to the low-dimensional representation 

subspaces created in PCA, other methods such as “t-distributed Stochastic Neighborhood 

Embedding” (t-SNE) or “Uniform Manifold Approximation and Projection” (UMAP) produce only 

one final map of the associated connectivity.  

The t-SNE algorithm is based on the previously developed Stochastic Neighborhood 

Embedding (SNE) and differs mainly in the distribution function used and the symmetrized cost 

function, but is conceptually the same. It converts similarities, calculated by Euclidean 

distances between all data points (x), to joint probabilities, then followed by minimization of the 

Kullback-Leibler (KL) divergence between the joint probabilities of the low-dimensional space 

(embedding, q(y)) and the original high-dimensional space (p(x)). Finally the cost function (C) 

can be described by 

𝐶 = KL(𝑃‖𝑄) =∑∑𝑝𝑖𝑗log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

=∑∑
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The variance (σ) of the joint probability distribution function is related to the perplexity 

parameter k, the effective number of neighboring data points. Besides the manual choice of k, 

σ should equalize the distribution functions entropy to log2(k). Minimization of C is performed 

via gradient descent  

𝛶(𝑡) = 𝛶(𝑡−1) + 𝜂
𝛿𝐶

𝑑𝛶
+ 𝛼(𝑡)(𝛶(𝑡−1) − 𝛶(𝑡−2)), (34) 

where Υ(t) denotes the result at iteration t, η denotes the learning rate and α(t) defines the 

momentum at iteration t. Here the previous solution of the loss function and momentum 

optimizes the minimization process. The resulting low-dimensionality embedding is upon 

random initialization of gradient descent and random variable selection different at each 

calculation. Therefore, variable relations stay the same, however representation of the final 

embedding looks different. In some cases gradient descent tends to stuck in local minimum 

rather finding the global minimum (Hinton & Roweis, 2003; van der Maaten & Hinton, 2008). 

The alternative method for dimensionality reduction, which is also frequently used, is UMAP. 

The working principle follows the same two-stage scheme as for t-SNE. First, conversion from 

high-dimensional space into similarity measures, in this case realized by construction of 

weighted k-neighbor graph (fuzzy simplical complex), and second their embedding within a 

low-dimensional space via stochastic gradient descent. Thereby, hyper parameters such as 

number of local neighbors during construction of the graph and the scaled distance (spread) 

in the low-dimensional space embedding are taken by manual choice, giving more flexibility of 

visualization. The advantage of UMAP lies in the fast calculation time for large data sets by 

preserving balance of global data structure and local connectivity (McInnes et al., 2018). 

1.2.2.2. Clustering  

Partitioning of unlabeled data into similarity-based data point groups is considered to be cluster 

analysis. Similarity is a measure of distance metrics, similar to dimensionality reduction 

methods. In contrast to distances between neighboring features attributes, the distances of 

different partitioned groups (cluster) are bigger and thus define the required criterion. 

Additionally, each variable should have only one assigned cluster, allowing no overlap of the 

found clusters.  

A wide spread and simple clustering algorithm is k-means (MacQueen, 1967), where k 

indicates the pre-defined number of groups to partition the data. The working principle in brief 

is described in the following. With k random selected centroid points the first clusters positions 

are initialized, followed by calculation of the distances of all the data points to the cluster 

midpoints. The minimal distance to a cluster midpoint then defines the cluster label. Based on 

all assigned data points, the centroid positions of clusters are recalculated. If the location of 
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the previous cluster centroid is different from the current, the position is shifted, followed by 

recalculation of data points distances and cluster assignment. The process of repositioning 

and relabeling is repeated until no further change of calculated cluster midpoint location is 

reached. Normalizing the feature attributes avoids distortion of the distances to the desired 

clusters. Due to random initialization, a pre-investigation of different features can enhance 

better probable cluster initialization position or even the number of clusters needed. 

In hierarchical clustering (Narasimha Murty & Krishna, 1980) a pre-definition of the number of 

clusters is not required. Here, all data points are initially assigned to individual clusters and 

then sequentially combined based on a similarity metric until a termination point is reached or 

the last cluster contains all data points. Visually, this method resembles a binary tree. 

Application of a distance metric, in which the minimal distance between two points of two 

clusters is calculated, leads to “nearest neighbor algorithm”.  

The "correct" number of clusters to use depends on the data itself and the underlying question. 

Introducing quality measures for each cluster (e.g. “silhouette width criterion”) only estimates 

the proportions of distances and does not meet user preference. By exploring the relationships 

between features (variables) and attributes (clusters), the decomposition of partitioned data 

allows the rediscovery of meaningful patterns and structures within the data. This approach 

enhances the interpretation and usability of clustering results, enabling deeper insights and a 

more refined understanding of the data (Ertel, 2011; Kubat, 2017). 

1.3. Aims of this work 

In recent years, there has been a growing demand for automated quantitative analysis of 

(image) data in various scientific fields. This need is driven by the desire to ensure 

standardized, comparable, and reproducible results and to take advantage of advances in 

hardware technology and software processing. Existing techniques have laid the foundation 

for such automated analysis pipelines, but further development and application is required to 

address specific challenges and improve overall system performance. 

One area of particular interest is spatial analysis, which involves the exploration and 

interpretation of spatial patterns and relationships within biological samples. Spatial 

information plays a critical role in understanding complex biological systems by providing 

valuable insights into the organization, interactions, and dynamics of cells and molecules within 

tissues. By integrating spatial analysis into automated quantitative analysis pipelines, we can 

gain a deeper understanding of biological processes and reveal spatially distinct phenotypes. 

In addition, a critical aspect to consider is the physical imaging process and the associated 

artifacts that can be affected. These artifacts can be introduced by various factors such as the 

imaging system itself, sample preparation, and the interaction of the light with the biological 
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tissue. Understanding and mitigating these artifacts is essential to obtaining accurate and 

reliable results in automated quantitative analysis. 

The aims of this thesis, based on existing methods and techniques: 

 Improvement of the existing MELC system, including 

 Image quality (signal to noise (SNR) enhancement, resolution)  

 Extension of the detection of fluorescently labeled antibodies with regard to the 

unused spectral range 

 Hardware dependent artifact removal, by application of machine learning algorithms in 

relation to physically limited image formation 

 Property-related object identification within microscopy images, independent of device 

architecture 

 Multi-parameter correlation and phenotypic classification at protein and transcriptional 

level by visualization of complex data in a compressed manner  

Introduction
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2. Material and Methods 

Spatial quantitated image analysis consist of three major tasks: acquiring the image data, pre-

process the data including feature extraction and followed functional correlation analysis to 

validate biological hypotheses. As part of these steps, devices, feature extraction methods and 

used software or data analysis environments relevant for the present thesis are explained. 

2.1. Microscopes 

Based on the tissue properties and related resolution required to observe distinct biological 

processes, the choice of microscope is essential. In this section, microscopy techniques used 

to obtain the image data analyzed within this work, is explained. 

2.1.1. MELC 

The core of the multi epitope ligand cartography (MELC) system is an inverted widefield 

(epi)fluorescence phase contrast microscope (Leica DM IRE2) combined with a pipetting robot, 

based on a reconfigured/modified Toponome Image Cycler MM3 (TIC) manufactured by 

MelTec GmbH & Co.KG Magdeburg, Germany (Schubert et al., 2006).  

 

Figure 6 Overview of MELC system (Toponome Image Cycler MM3 (TIC)) and explanation of main parts 

The basic working principle of system’s (Figure 6) inverted widefield (epi)fluorescence phase 

contrast microscope in short. An inverted microscope with the objective lens and related optics 

under the sample enables access to the sample from top, which in case of the MELC system 

allows for pipetting and suction via the pipetting robot. Furthermore, widefield configuration 

means illumination of the entire sample via a light source. An (epi)fluorescence microscope 

setup means, that the light path for fluorescence excitation and the detection of the emitted 

light is the same. Phase contrast configuration allows for the observation of unstained samples 

under the microscope. The different phase components of (transmission) light passing through 

the sample are converted in amplitude differences or intensities. A varying phase is caused by 
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light-dependent transit time, which is dependent on samples’ refractive index architecture. 

Condenser annulus aperture in front focal plane and phase plate in the back focal plane limiting 

the angle of the incoming light beam and shift the phase of the diffracted light. As a function of 

the shift, interference takes place and results in intensity translated differences, requiring 

Köhler illumination setup, which means a centered alignment of all optical components 

(apertures, field diaphragms) to create homogenous illumination over the entire sample.    

 

Figure 7 overview of cyclic MELC run workflow taken from Figure 1 in (Holzwarth, Köhler et. al 2018) with 
permission from John Wiley and Sons (Sep, 05, 2022) 

Theoretically, during every MELC run or MELC experiment an unlimited number of 

fluorescently labeled antibodies can be acquired in up to four different field of views (FOVs). 

Thereby fully software (MelTec TIC-Control) automated driven imaging procedure is 

sequentially performed, consisting of four major cycled steps (Figure 7): 

1) Loading of cooled fluorescently labelled antibodies (up to four at the same time) from 

a 96-Well plate via the pipetting robot, followed by the application of the antibodies on 

to the tissue sample, where incubation, subsequent washing and liquid level 

adjustment takes place 

2) Autofocusing of tissue sample’s preset FOV based on cross-correlation and following 

imaging. Here a phase contrast image acquired by user’s selected FOV at the 

beginning is used as a reference image and compared with current images to find the 

same sample location. If necessary, the motorized microscope moves the sample until 

maximum correlation value has been reached. At first phase contrast images are 
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acquired along the axial axis, then fluorescence images of the desired fluorescence 

channels are acquired. 

3) Signal removal by time controlled photo-bleaching is combined with washing to keep a 

constant liquid level, to avoid drying of the sample and to remove free radicals. 

4) Another round of autofocusing and imaging takes place. Besides phase contrast 

images, photo-bleached fluorescence images are acquired as well. 

All steps and general imaging related settings, such as incubation time, channel information, 

antibody names and their location within the 96-Well plate, etc. are included in the user’s 

created MELC run initialization file (*.xml) which is read by the machine and is used for 

downstream analysis. In addition to phase contrast images, fluorescence signal can also be 

used for autofocusing. Actually, phase contrast images offer a staining independent signal, 

since they are created only on tissue sample’s heterogeneous refractive index distribution, 

which remains stable over long experiments. 

 

Figure 8 tissue sample under microscope of MELC system 

In order to perform MELC experiments tissue samples had to be prepared in a special way. 

Five to ten micrometer thick fresh frozen cut tissue samples were placed on or glued on a 

cover slide (24 × 60 mm #1; Menzel-Gläser, Braunschweig, Germany). The sections were fixed 

and blocked, according to the sample’s origin (Holzwarth et al., 2018; Mothes et al., 2023; 

Pascual-Reguant et al., 2021). Then a liquid reservoir made of one-millimeter-thick silicone 

sheets was created containing a volume of 100 µl (Figure 8), which was prefilled with 

phosphate-buffered saline (PBS). The silicon reservoir prevented the liquid from running off, 

and the section from drying. In addition, the pipetting robot could accurately pipette the required 

fluorescence-labeled antibodies for staining or PBS for washing onto the tissue section and 

remove the excess liquid. Excess liquid from the aspiration was discarded into the wash box 

positioned around the sample at the beginning of the automated run. 
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2.1.2. LSM 

Compared to a widefield microscope, a laser scanning microscope (LSM) creates an image by 

measuring laser excited fluorescence emission light along a planar grid of measuring points in 

a stepwise manner. Based on the size of the focal volume (PSF), the step width (lateral and 

axial) is adjusted. These are both dependent of the magnification of used objective lens. Light 

is detected by photo multiplier tubes (PMTs), at the end every measured point the photon count 

is converted to intensity values along the image’s pixel grid. Measuring at different depth (often 

called image stacking) allows one to acquire three-dimensional image information. The 

microscope used (Zeiss LSM 710 / LSM 880) is a confocal configuration, which means that 

only in focus light passes through a motorized size variable pinhole. Out of focus light is 

blocked and therefore the system results in higher resolved images, equivalent the PSF is 

smaller in the LSM compared to widefield microscopes. In case of the mouse model for 

vascular dementia, mice were perfused with 4% paraformaldehyde. The brains were dissected 

and embedded in Tissue Tek (Sakura), frozen in a methylbutane/dry ice mixture and cut into 

10- or 30-μm sections using a cryostat. Sections were stained with goat anti-EGFP (Rockland, 

conjugated at the DRFZ to Alexa®488), mouse anti-GFAP-Alexa®488 (eBioscience, 

Germany), rabbit anti-Noxo-1 (Novus Biologicals, Germany), or goat anti-p47 (Abcam, 

Germany). Secondary antibodies used were donkey anti-rabbit Alexa®647 (Life Technologies, 

Germany) or donkey anti-goat-Alexa®647 (Radbruch et al., 2017). 

2.1.3. LSFM 

In contrast to the previous microscopy techniques, light-sheet fluorescence microscopy 

(LSFM) excites the samples from the side and detects the emitted light from the top, so 

illumination and detection axes are perpendicular to each other – a beam-path geometry well 

known from fluorescence spectrometers. The illumination is performed in a wide-field manner, 

due to the use of cylindrical lenses with low NA, in shape of a single plane – light sheet. One 

or several light sheets, from one or multiple laser beams, differently oriented to each other, 

form the final excitation light sheet. The goal is to achieve a uniform illumination throughout 

the sample. Because of the two crossing, orthogonal PSFs, i.e. excitation PSF and detection 

PSF, out of focus regions from the used objective lens in the detection part do not contribute 

to signal. Photo-toxicity and photo-bleaching of the sample is reduced, due to single plane 

illumination. 
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Figure 9 Overview of Ultra II light sheet microscope (LaVision Biotec, Germany), red boxed area shows 
illumination function creating the light sheet 

Tissue clearing and sample preparation of murine femoral and tibial bones were processed 

with an adapted tissue clearing protocol, specifically optimized for rendering hard mineralized 

tissue optically transparent. In brief, the harvested organs were thoroughly fixed with a flexible 

polyepoxide scaffold, and in subsequent chemical steps, decalcified, delipidated and 

decolorized. Followed by a staining step with a fluorescent conjugated nanobody against the 

endogenous reporter fluorescence, the refractive index of the remaining peptide structure was 

matched with a fitting solution. This made the samples optically transparent while preserving 

endogenous reporter fluorescence. Combined with signal enhancement, this provided a 

sample suitable for deep bone marrow imaging. 

During image acquisition, the transparent samples, mounted in small cuvettes, were 

surrounded by the refractive index matching solution. This cuvette was in turn immersed in the 

sample chamber of the Ultra II light sheet microscope (LaVision Biotec, Germany, Figure 9) 

filled with immersion oil matching the refractive indices of the contents of the sample cuvette. 

Images were acquired slide by slide, scanning through the entire sample depth, in axial steps 

of 3 to 10 µm with a horizontal laser light sheet illumination. The following excitation/emission 

wavelengths for the different fluorophores were used: 488/525(50) nm; 561/620(60) nm; 

640/680(30) nm. The light sheet width was set to a minimum of 4 µm, and the NA was set to 

its highest configuration 0.135. The zoom body setup with an Olympus MVPLAPO 2x/NA 0.5 

objective was used for stepwise magnification of 0.63x to 6.3x equipped with an optical 

abberation corrected dipping cap. For image acquisition a 5.5 Megapixel sCMOS camera was 

used.  
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2.2. ST 

Spatial transcriptomics (ST) is a method enabling the visualization and localization of gene 

expression within histological tissue sections, by combining microscope image acquisition and 

sequencing. It is based on unique spatially barcoded oligo nucleotides, which capture mRNA 

of the tissue sample.  

 

Figure 10 overview of ST sample preparation, image acquisition and gene expression extraction 

Sample preparation was performed following the manufacturers protocol (10x Genomics, 

Figure 10). Briefly, samples were snap frozen in an isopentane bath on liquid nitrogen/dry ice. 

10 μm frozen sections were cut into on a MH560 cryotome (ThermoFisher, Waltham, 

Massachusetts, USA), and placed on a pre-cooled (-20°C) 10X Visium slide. The tissue 

sections were fixed in pre-chilled methanol for 30 minutes, stained with CD45-AF647, CD31-

AF594 and DAPI for 30 minutes, imaged using a LSM 880 confocal microscope (Zeiss). After 

imaging, a 10 minutes permeabilizing step prepares spatially tagged cDNA libraries 

construction using the 10x Genomics Visium Spatial Gene Expression 3’ Library Construction 

V1 Kit. cDNA libraries were sequenced on an Illumina NextSeq 500/550 using 150 cycle high 

output kits with sequencing depth of ~5000 reads per spot (Mothes et al., 2023). 

2.3. Image analysis software and algorithms 

In this section, open-source software and algorithms referring to image segmentation or object 

identification are presented. 

2.3.1. Watershed segmentation - Cell Profiler 

A classical approach for image segmentation is to classify pixels based on their intensity. At a 

certain signal limit (threshold), pixels are set to foreground or background, resulting in a 

binarized image, in which foreground pixels define areas of objects in the image. Followed 

connected component analysis then tries to find the single foreground objects, giving each 

point cloud an individual identifier. Sometimes objects are densely packed, or objects with 
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similar intensities are very close to each other, e.g. stained nuclei within the image. In this case 

a separation of clumped objects is required, in order to avoid counting the wrong number of 

objects.   

 

Figure 11 example of watershed segmentation workflow, used input image is from sample image datasets of Fiji 

The main workflow of clumped object splitting by watershed segmentation (Barnes et al., 2014; 

Beucher & Lantuejoul, 1979) is illustrated in Figure 11. Here the binarized image transformed 

to a distance map via Otsu (Otsu et al., 1979) thresholding. The Otsu threshold is automatically 

calculated by minimization of intra-class intensity variance of the image. Distance map 

transformation is performed by sequential image erosion of the binarized image, where every 

step count is set as intensity on disappearing pixels. Borders of every probable object are 

highlighted by a Voronoi graph, which is the most distant line of local maxima from the distance 

map. Stepwise flooding the distance map with increasing intensity values results in splitting of 

the clumped objects by creation of artificial borders on half way distance to neighboring 

maxima.  

CellProfiler (Carpenter et al., 2006; Kamentsky et al., 2011; McQuin et al., 2018; Stirling et al., 

2021) is a modularized free open-source software, which allow for feature extraction and 

analysis of microscopic images, without knowledge in programming. This application was used 

to develop general image analysis pipelines, which could be also used by other users to 

analyze their images. Next to watershed segmentation, found objects could be further 

investigated by specific intensity or shape measurements, filtering and phenotypically 

classification. 
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Figure 12 principle CellProfiler pipeline for cell identification and classification 

The main modularized workflow of a segmentation and phenotypically classification pipeline in 

CellProfiler is shown in Figure 12. Briefly, input images are split by marker into nuclei or 

membrane, or optional structural markers, such as vessels. After nuclei detection (Identify 

primary Objects) via size or shape limited watershed segmentation, secondary objects are 

recognized. For this, nuclei objects are set as starting point/area in the desired membrane 

staining images and pixels in the allowed distance over defined threshold are included in these 

areas. Due to the fact, that membrane staining does not stain nuclei, the binarized membrane 

objects are subtracted by the nuclei area (Identify tertiary objects). The resulting objects are 

then measured in their intensity (mean, median, minimum, maximum, etc.) and morphology 

(shape, area, circularity, etc.) within the original input images. Based on all features, optional 

filtering can be applied to remove outliers or to phenotypically classify the single cell objects. 

Following data visualization and saving summarizes the whole process and enables further 

data analysis. 

2.3.2. Seeded region growing 

Fiji (Rueden et al., 2017; Schindelin et al., 2012) is a distribution of the open source image 

processing package ImageJ, which allows editing and analyzing images of different sources. 

For the purpose of fine structural object detection, I wrote a Java based ImageJ/Fiji PlugIn and 

applied a recursive seeded region growing algorithm (Shih & Cheng, 2005) before CellProfiler 

was introduced. This PlugIn was used to detect nuclei and membranes in MELC, which is why 

the PlugIn was called “MELC_Evaluation_Toolbox” (source code in Appendix).  
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Figure 13 general workflow of developed seeded region growing ImageJ PlugIn 

The basic concept of seeded region growing mask creation is illustrated in Figure 13. After 

image selection and user defined parameters for local maxima initialization, the starting (seed) 

points of probable objects are filtered by a preselected neighborhood distance. Sequentially 

growing of the objects create a binarized mask image. During the growing process, the pixels 

surrounding the object of interest are tested following the criteria: 

- Intensity - should be similar to mean value in a four connected pixel neighborhood 

- Distance – should be in range of the half distance of probable next cell 

- Diameter – should be in range of the allowed user defined range 

- Location – should not be at the image border 

- Existence – should be an unlabeled pixel 

If all the listed criteria are fulfilled, the current pixel is added to the object and the next growing 

round of the four connected neighborhood pixels is performed until no further expansion is 

possible. In the end, the object’s missing pixels within the structure can be filled, or if more less 

roundish objects like nuclei should be found, watershed-based object splitting can be applied. 

2.3.3. Random forest probability calculation – ilastik 

Common image segmentation workflows or algorithms are based on differentially signal 

distribution and single manual featured limitation by image filtering (edge detection, distance 

or color information). Ilastik (Berg et al., 2019) is an interactive machine-learning-based tool 

that offers a different way of segmentation. Besides object detection via pixel classification, 

ilastik offers object classification and object tracking in multidimensional images 
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Figure 14 Overview of pixel classification by featured random forest algorithm inside application ilastik by manual 

annotation (left) and resulting probability maps (right) 

In short, input image(s) are convolved at the beginning by a set of image filters at different 

sizes. Based on the structural information the sizes can be adapted by the user. These filters 

aim to enhance or suppress image features (edges, gradients, local maxima, etc.). By manual 

annotation (Figure 14, yellow, green and purple highlighted pixels) and classification (related 

labels) of singular or connected pixels, a random forest classifier calculates a model and 

predicts the probability of the unannotated pixels in the desired classed labels. Due to multi 

parameter weighted decision trees, the probability maps are robust against possible 

heterogeneous staining quality. The transformation of absolute intensities into probability 

values, in different classes allows for image segmentation by simple thresholding.   

2.3.4. Data analysis environment 

Besides devices for image capture and object related feature extraction, this section lists 

programs, programming languages or applied scripts used in this project, each of which 

supported biological data validation. Single packages/functions within used programming 

scripts can be found within the source code in appendix. 

 

Anaconda  

A programming environment with “Spyder” for Python script development including interactive 

data mining tool “Orange” (Demšar et al., 2013), which also can be extended by python scripts 

(https://www.anaconda.com/).  

Scripts: 

a) MELC preprocessing (see Appendix, p. 116) 

b) LSFM-destriping and related SNR calculations (see Appendix, p.152, 162) 
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CellProfiler 

A modularized free open-source software, for feature extraction and analysis of microscopic 

images (https://cellprofiler.org/) 

Pipelines: 

MELC images object identification based on raw intensities or probability maps and 

neighborhood analysis. 

 

Eclipse 

A programming environment for java based script development (https://www.eclipse.org/).  

Scripts: 

a) MELC evaluation toolbox development as Fiji/ImageJ PlugIn, containing seeded region 

growing object identification (see Appendix, p. 90). 

b) Marker specified searching for combinatorial binarized phenotypically classification of 

multi-channel microscopy images (see Appendix, p. 107). 

c) Shape Data Evaluation (SHADE) as Fiji/ImageJ PlugIn, which calculates Fourier 

coefficients for shape representation of single 2D image sets (see Appendix, p.84). 

 

Fiji/ImageJ 

Fiji is a distribution of the open source image processing package ImageJ, enabling interactive 

editing and analyzing images of different sources (https://fiji.sc/). Beside manual image 

processing, automated workflows can be programmed in imageJ macro language.  

Scripts: 

Fourier coefficients calculation of closed identified object’s outlines (see Appendix, p. 113). 

 

Ilastik 

An interactive machine learning based tool for object detection via pixel classification, object 

classification and object tracking in multidimensional images (https://www.ilastik.org/). 

Pipelines: 

a) MELC images object pixel classification based on trained random forest classifier 

model of raw intensities from separated images of nuclei and membrane staining, 

additional background map for object separation. 

b) LSFM image pixel classification used for signal to noise ratio calculation, signal to 

background ratio calculation respectively.  

 

Loupe Browser 

Application for data exploration of Spatial Transcriptomics (10x Genomics) data and 

preprocessing, e.g. manual tissue alignment, for Space Ranger.  

(https://www.10xgenomics.com/products/loupe-browser) 

 

https://cellprofiler.org/
https://www.ilastik.org/
https://www.10xgenomics.com/products/loupe-browser
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Matlab 2014b 

A programming environment for Matlab based scripts in case of numerical calculations and 

image processing (https://de.mathworks.com/products/matlab.html). 

Scripts: 

a) Neighborhood analysis of MELC images, including import of CellProfiler output (see 

Appendix, p.133). 

b) Randomnes test, validation of independent distribution observations (see Appendix, p. 

133) 

 

R Studio 

A programming environment for statistically data analysis based on programming language R 

(https://www.rstudio.com/) 

Scripts: 

a) Spatial Transcriptomics data analysis including batch normalization, or data integration 

respectively, dimension reduction visualization and clustering (see Appendix, p.155). 

b) MELC analysis in sense of ST data analysis (see Appendix, p. 130) 

c) Gene set enrichment analysis (groupe based and single sample based), see Appendix 

p. 148, 150 

d) Neighborhood analysis (see Appendix, p. 140) 

 

Space Ranger 

Command line controlled (Linux) application to process ST based measurements, including 

sample demultiplexing, image alignment, gene counting and barcode processing 

https://www.10xgenomics.com/). 
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3. Application and Results 

The selection of a measuring device is related to the biological question that is being addressed 

in a certain experiment. The decision to use a particular microscope depends on several 

factors, including the tissue sample properties, required resolution, 2D vs. volumetric 

observation, number of different fluorescent markers, usable and available stainings, etc. 

Depending on the specific imaging techniques, image processing and data analysis needs to 

be adapted. This chapter describes the application and the development of different workflows 

used in this thesis. A variety of imaging techniques was used, each with a different application: 

Laser Scanning Microscopy (LSM), Multi Epitope Ligand Cartography (MELC) and Fluorescent 

Light Sheet Microscopy (LSFM) give information about imaged samples on the protein level, 

Spatial Transcriptomic (ST) yields information about the sample on the transcriptional level.   

3.1. Image analysis of LSM data 

Conventional fluorescence microscope systems are limited in the number of separable 

wavelength related fluorescence channels and are therefore limited in the number of 

simultaneously detectable cell types. Depending on the object of interest, a single channel 

image could be enough to extract features for characterization of biological phenomena. 

In order to analyze morphological differences in microglia in a dementia model, we acquired 

confocal images of the front parietal cortex of young (6 months) and old (20 months) Iba-1-

EGFP reporter mice. Here 30 µm thick tissue samples were imaged at 0,42 x 0,42 x 0,87 µm³ 

voxel resolution, resulting in 3D image stacks. The maximum intensity projections were 

calculated to retain spatially oriented processes and cell bodies of microglia in one final image 

per field of view (FOV). 

 

Figure 15 Depicted maximum intensity projections of young (A) and old (B) mice's microglia, segmentation result 
in red outlines, averaged and normalized Fourier coefficients (C), comparing young and old mice, scale bar 50 µm  

The identification and segmentation of microglia was obtained by applying a self-written Java 

based ImageJ PlugIn, where a seeded region growing algorithm was implemented to ensure 

fine structural preservation of the processes in case they were present (Figure 15). To 

objectively quantify the estimated difference in morphology, the outlining of the connected 
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pixels of every single object were converted to discrete Fourier transformation coefficients 

(shape descriptors). The higher the coefficient ID by higher value (amplitude) at the same time, 

the more complex the microglia shape became. Up to 20 normalized coefficients were used to 

determine shape information. This approach could be used to show a loss in microglial 

processes in aged mice. 

3.2. Device optimization of the MELC system 

MELC is a highly multiplexed cycled immunofluorescence (IF) based microscopy technique 

that generates a large amount of data, due to the image acquisition procedure. Within one 

MELC run, four steps are sequentially repeated. A) loading the fluorescence-coupled antibody 

incubation and washing, B) microscope-sample autofocusing referenced by a phase contrast 

image from the field of view acquired at the beginning of the cycle and following 3D image 

acquisition of fluorescence images, C) fluorescent signal removal via photo-bleaching, D) 

another phase contrast based autofocusing step for bleached image acquisition. Besides the 

fluorescence images, all phase contrast images of the field of view are recorded.  

Performing MELC experiments requires proper sample handling on the one hand, and on the 

other hand the right functionality and communication of all related devices. Over the time, parts 

of the system have been changed, which has led to enhanced image quality and reduced 

hardware-dependent error sources. 

3.2.1. Camera 

One of the most important devices on a wide-field microscope is the camera. It digitalizes the 

visual observations, which can be saved, shared and automatically analyzed. The performance 

of such a device determines the detectable phenomena in the examined sample. 

The pre-installed camera of the toponome-image-cycler (TIC) was a 14-bit Apogee KX4 CCD 

device with 2032x2044 pixels, where every pixel had a size of 9x9 µm². During image 

acquisition a manual shutter opened and the light sensitive CCD-sensor detected the intensity 

information.  

 

Figure 16 Pre-installed camera system of toponome-image-cycler (TIC), (A) camera connected to microscope, (B) 
dark image, (C) low concentration fluorescence staining with centered bright spot artifact 

Quality control of the MELC system’s eye showed camera related artifacts, including external 

light contribution, missing pixel information (Figure 16B) and artificial centered bright spot 
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illumination (Figure 16C) during image acquisition. In case of the two first artifacts, a simple 

light path covering tube would have minimized outer light influence. Single lines to an amount 

lower than 1% of missing information on a whole image, caused by camera pixel defects, would 

have a lower impact on the following image analysis. However, in case of Figure 16C, the 

detected image information is affected by hardware failure and therefore distorted image 

content. The motorized shutter on the camera exhibited a signal delay that caused the CCD 

chip's exposure time to vary, and also a non-fully closing shutter that produced a steady 

exposure that caused the centered bright spot illumination. This is why a new camera was 

required, to not only get better quality images, but to ensure reproducible experiments as well. 

Based on the requirements, we chose a Hamamatsu 16-bit ORCA-Flash4.0 LT scientific 

CMOS camera. Compared to the old camera, the new one offered more pixels (2048x2048) 

at smaller size (6,5 x 6,5 µm²) by lower dark current (0.6 < 3,5 electrons/pixel). Unlike the 

motorized hardware shutter, an electronically time-controlled readout shutter was used. 

 

Figure 17 Quantum efficiency plots of (left) Apogee KX 4 CCD camera and (right) Hamamatsu ORCA-Flas4.0 LT 
CMOS camera, plots are taken from manufactures manual 

For image acquisition at low fluorescence signal amplitudes in MELC experiments, one of the 

most important decision parameters was quantum efficiency. In contrast to the old camera, the 

quantum efficiency was higher as a function of all wavelengths examined and distributed over 

an extended range (Figure 17), which resulted in a double photon number at intermediate 

wavelengths. 

Additionally, due to the smaller form factor of the camera, the position of the camera could also 

be changed. Instead of the side port, it was possible to switch to the bottom port. This increased 

the transmission power from 80% to 100%, resulting in higher sensitivity. Consequently, weak 

signals could be detected better.   
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Figure 18 The sketch of self-designed and manufactured camera-microscope-adapter on lathe 

The new camera was connected to the microscope using a new, self-constructed aluminum 

adapter that was manufactured on the lathe (Figure 18) and anodized to avoid reflections. The 

new adapter manufactured showed no disadvantages in terms of sample illumination, or image 

corner intensity loss.  

 

Figure 19 Phase contrast images of mice’s bone marrow as comparison between old (left) and new (right) camera 

setup - samples are acquired under same light and exposure time conditions, scale bar 100 µm 

In order to test the enhanced camera properties and related image quality, phase contrast 

images of mouse bone were acquired and compared (Figure 19). These images were 

independent of fluorescent staining and sample quality. The overall image intensities and 

dynamic range were dramatically increased under same condition. A cloudy plastic pane in 

front of the old camera was observed during replacement, which may have caused additional 

light dimming.  

Altogether, the images showed higher dynamic range of intensity compared to previous 

camera setup under the same illumination conditions. Due to the widened quantum efficiency 

wavelength band, fluorescence signals from far red and near blue could be detected, allowing 

the use of new fluorescent coupled antibodies, extending further multi-parameter functional 

analysis.   

3.2.2. Light source 

The inverted microscope used for these experiments used a pre-installed arc lamp as light 

source for fluorescence excitation. The lamp was incorporated in the MELC system, and was 
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thus located within the closed box, together with the microscope, well plate holder for staining 

reagents and robotics. 

 

Figure 20 overview of closed MELC system inside box, directly connected light source highlighted by red arrow 

Due to the location of the fluorescent light source (Figure 20), the internal temperature of the 

closed measuring station increased to up to 35 °C ± 2 °C at a humidity of about 20 % ± 4 % 

during a MELC experiment, whereas the usual room temperature was around 20 °C. Along the 

usual incubation times of several minutes, this led to the sample drying out. Suppressing dry 

and hot air with additional cooling devices such as fans or ice inside the box would have 

created additional problems such as dust flying around inside the sample environment or 

convection on optical components. Therefore, the light source was replaced by an external 

one (Leica EL 6000 equipped with Osram HXP R 120W/45C VIS), in which the light was 

transported via a liquid-filled cable. In addition, there was no need to readjust the arc lamp. 

The excitation spectra were increased in dynamic range and amplitude, which resulted in a 

higher signal quality along the wavelength band. 

3.2.3. Optical components 

Besides the camera, the related optics are the most important components of a microscope. 

They deliver the excitation light to the sample and transmit the emitted light to the camera. 

Light gets focused through the objective lens, onto the sample.  
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The fluorescence filter revolver of the utilized inverted widefield microscope was equipped with 

four filter cubes. These cubes work as a bandpass filter configuration and split the excitation 

light path from the emission detection light path depending on wavelength. Only three out of 

four possible filter cubes were used here, since one position was used for the phase contrast 

image configuration. In this setup, the microscope handler could see the phase contrast 

images using white light. In addition to that, these images were not dimmed by any optics, 

which gained the image intensity required for the camera to operate and for the automated 

focusing procedure during MELC experiments. 

Table 1 Installed fluorescence filter cubes at MELC system and related maximum excitation and emission 

wavelengths [nm] including bandwidth 

Filter name Excitation max. [nm] Emission max. [nm] 

DAPI 350/50 460/50 

FITC 475/40 520/40 

PE 546/10 585/40 

APC 640/30 690/50 

Due to the higher light sensitivity of the new camera setup, the empty filter cube slot was 

configured by an additional filter (DAPI, Table 1), which increased the number of detectable 

fluorescently labeled antibodies. Phase contrast images didn’t change in information content, 

only changed in observed color. The emitted light was bright enough for the camera to process 

it. In case filters were damaged, they were replaced. The bandwidth of all excitation and 

emission spectra around their maxima was adjusted to avoid possible signal spillover from 

fluorescence light. 

In line with the new camera’s smaller sCMOS pixel size (6,5 µm x 6,5 µm), the pre-installed 

objective lens (Leica HC PL FLUATOR 20x/0.50 PH 2) was replaced by an objective lens with 

higher NA at the same magnification (Leica HC PL APO 20x/0.80 PH 2). This allowed for the 

photon count entering the focal volume to be increased, which resulted in an enhanced 

emission photon count, and increased intensity of low signals within the microscopy images. 

An improved resolution was expected as well.  

Table 2 lateral and axial resolution test of new equipped MELC system 

Filter name / 
bead wavelength 

[nm] 

old theoretical 
resolution [nm] 

lateral / axial 

new theoretical 
resolution [nm] 

lateral / axial 

FWHM 
distance [px] 
Lateral / axial 

bead size [µm] 
lateral / axial 

DAPI / 430 524,6 / 3440,0 327,9 / 1343,8 12,2 / 5,3 4,0 ± 0,2/ 3,9 ± 0,2 

FITC / 515 628,3 / 4120,0 392,7 / 1609,4 10,7 / 6,4 4,2 ± 0,2/ 4,0 ± 0,2 

PE / 580 707,6 / 4640,0 442,25 / 1812,5 9,3 / 7,2 4,1 ± 0,2/ 4,0 ± 0,2 

APC / 680 829,6 / 5440,0 518,5 / 2125,0 8,2 / 8,5 4,2 ± 0,2/ 4,0 ± 0,2 
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Figure 21 lateral resolution estimation on 4 µm beads embedded in agarose along all fluorescence channels 

In order to estimate the resolving power, mid-range fluorescent polysterol beads (four 

micrometer in size) were imaged in all fluorescence channels, and measured along their lateral 

and axial cross sectional intensity profiles. These outcomes were compared to theoretical 

calculated resolving power based on Rayleigh criteria (Table 2, Figure 21). The beads were 

embedded in a one percent agarose gel, simulating tissue environment. The intensity profiles 

were fitted by a linear regression to Gaussian distribution function to calculate and measure 

bead diameter at full width at half maximum (FWHM). The resolution power improvement 

estimation confirmed expectations.  

In total, the reconfigured optical settings improved lateral and axial resolution power by a factor 

of 60 % and 250 % respectively. Furthermore, the new fluorescence filter cube configuration 

extended the detectability of fluorescently labeled antibodies. A shift in the fluorescence 

intensity maxima of the beads was observed during the resolution estimation, indicating 

hardware-related tolerances in the placement of the filter cubes. This offset had to be taken 

into account in the subsequent image analysis in order to ensure the signal origin of the 

corresponding structures. 

3.2.4. Sample holding and washing box 

The cover slides prepared for MELC experiments contained the tissue sample and a 100 µl 

PBS reservoir made from silicone via the “press-to-seal” method. Due to the shorter free 

working distance (400 µm) of the objective lens (Leica HC PL APO 20x/0.80 PH 2), Menzel-

Gläser cover slides of size 24x60x0.17 mm³ were used. These were held by a simple sample 

holder plate made from plastic. The application and suction of system liquid (PBS) required an 

additional box around the sample, where waste material could be placed without influencing 

the samples’ environment. The previous washing box had a limited volume, which created 

liquid overflow during long MELC experiments. Furthermore, leakage of the simple sample 

holder would also have led to liquid with respect to the microscope and caused damage 
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Figure 22 Self designed and 3D PLA printed equipment for MELC system, from left to right: sample holder, 
washing box and washing box cover 

Therefore, the sample holder and the washing box were re-designed and 3D printed from 

polyactide (PLA, Figure 22), and equipped with drain, preventing the washing box from 

overflowing. The sample holder was provided with a recess for the coverslip and the washing 

box had been provided with a hole the size of the transmission light condenser along the optical 

axis, which held the washing box in place during sample movement through the microscope 

stage. In this configuration, longer automated runs were possible, avoiding frequent liquid level 

monitoring. 

3.3. Image preprocessing of MELC data 

The wide field microscope is subjected to physical limitations and thus image formation can be 

affected by aberrations. The most prominent factors leading to these phenomena include 

image transition in between fluorescence channels due to mechanical tolerances, background 

illumination, caused by spherical aberration of the optics, or varying liquid levels. The 

elimination of these artifacts guarantees standardized input for downstream quantified image 

analysis and thus enhance reproducibility of experiments. All image preprocessing steps were 

included in one Python script, which read the MELC run initialization file used for MELC 

experiment as well. Within this file, all information about the automated cycled image 

acquisition and bleaching of the fluorophores was defined, as well as the sequential naming of 

all the steps. Only at the beginning of script execution the user is asked to select secondary 

markers, since this information was not included in the file. All other preprocessing steps were 

performed automatically. 

3.3.1. Registration 

The image registration was adapted to the imaging procedure, where an iterative cross 

correlation auto-focusing procedure, with the support of reference phase contrast images tried 

to find same region of sample. Due to slight shifts in the FOVs mechanical tolerances and 

limitations, realignment of images was required. 

Post image registration was performed in similar manner as the automated image acquisition, 

but with a sub-pixel resolution, up to one tenth, via a cross correlation algorithm, phase 

correlation respectively due to calculation in Fourier Domain. 
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Figure 23 image registration quality check on phase contrast (column 1-3) and fluorescent (column 4) images, 
where first row are the original input images and in the second row the realigned images, registered respectively. 
Phase contrast images in gray scale, average images as well, standard deviation of images color coded in fire look 
up table, fluorescent images in all four channels (red, green, blue, gray) 

Phase contrast and fluorescence images from a 32 marker MELC experiment, were used to 

test the performance of the developed registration workflow. In order to illustrate the image 

displacement and registration results, the average and standard deviation of the projection 

was calculated, as shown in Figure 23. All 32 displaced phase contrast images of the same 

fluorescent channel created a blurred results image. The local pixel information was shifted in 

depth and the information for all the fluorescently labelled antibodies was shifted laterally, 

which disabled accurate intensity profile measurements. As a measure of uncertainty, the 

standard deviation of the projection of these 32 phase contrast images highlighted the most 

displaced regions within one final image. Compared to the raw images, registered images 

appeared less blurry and displayed a lower standard deviation, which verified the inner channel 

shift correction. The same workflow was applied on fluorescent bead images from every 

fluorescent channel referenced on the same channel as in phase contrast images. The three-

dimensional displaced bead signals could be registered as well. 

Image registration verifies further signal co-localization analysis, enabling intensity profile 

comparisons on a pixel level within the set of fluorescent images of the same field of view. 

3.3.2. Illumination correction 

Working with high NA objectives and light point sources creates an uneven illumination of the 

imaged area. Even if the microscope is in the best condition and set to the Köhler illumination 

setting, the central area gets more illuminated than the edges, which causes the same cell to 

be differently illuminated depending on the location within field of view. 
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Figure 24 Illumination correction result, (left) original CD3-labelled image, (center) corrected CD3 image, (right) line 
plots along yellow selection of both background signals (red original CD3, black illumination corrected CD3), 
contrast are set to 0.35 % saturated pixels 

Applying a flat field correction algorithm suppressed the main irregularity intensity distribution, 

as shown in Figure 24, where an image of cells stained with fluorescent anti-CD3 antibody is 

corrected.  

Compared to primary antibody image illumination correction, where the fluorescent image was 

subtracted by the previous bleaching image and then divided by the mean-normalized 

background estimation, secondary antibody fluorescent images were subtracted by their 

primary fluorescent image (two steps before) and then divided by the mean normalized 

background estimation. In this way, all signals introduced by this pre-staining step were 

removed, leaving only the secondary antibody intensity information.  

Polynomial background estimation based on the fluorescent bleaching image reflected the 

spherical aberration caused by the lens and the liquid level on top of tissue sample, but with 

enhanced noise in the image corners. Local SNR in these regions remained the same, due to 

the multiplicative illumination correction value. If the fluorescence signal was previously 

separable from the background, this fact holds true also after the illumination correction. 

3.3.3. All in focus projection 

Tissue sample preparation and the positioning of the sample under the microscope can cause 

variations of the focal plane, due to tilted table adjustments, wavy like tissue contact to the 

coverslip, uneven sample thickness, or object positions distribution within thicker tissue sample 

slides.  
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Figure 25 Sketch of tilted sample. Light green: illumination distribution, green: cells, red: focal plane, orange: 
liquid level, violet: sample, blue: coverslip 

For these reasons, multiple images over the entire range of depth along the major focal plane 

(red line in Figure 25) were acquired, most of the time by the diameter of one nucleus, +/- 5 

µm respectively. The so-called image stack contained three-dimensional information of the 

investigated tissue sample, which increased the opportunity for the sample to be in focus. 

Next, an all-in-focus algorithm (based on “extended depth-of-field” (Pertuz et al., 2013)) was 

applied to project the depth information back into a two-dimensional image to compensate the 

tilted sample.  

 

Figure 26 Workflow overview of best focus calculation 

The workflow of the best in focus calculation (Figure 26) was split into three parts. Within the 

first step, the entire image stack was transversally divided in a 32 by 32 grid (64px by 64px). 

Here, the axial index of the best focus was found in each tiny stack by taking the maximum 

standard deviation index of the inspected slices when testing the background corrected mean 

intensity value in parallel. If the local mean intensity value was higher than the global mean 

intensity value of the whole image stack, the focus index was assigned for the second step. 

Tiny stacks which did not fulfilled the criteria were assumed to be background and are therefore 

rejected from the following interpolation step. Within the interpolation (second) step, a “least 
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square fitting” algorithm was applied to fit a second order polynomial plane through all possible 

indices, which was used to create a two dimensional focus map at the same lateral size of the 

input image stack. Instead of simple two dimensional plane estimation, second order 

polynomial plane estimation was applied, to improve possible image distortion or tissue 

bending caused by altered liquid levels. The values in this map were focal plane indices. In the 

third and last step, the values from the input image stack at the calculated focal planes were 

collected. Due to the one micrometer step width of every layer, intensity values around an axial 

Gaussian distribution with standard deviation of 1 were weighted, which reflected the intensity 

spreading initialized by the system PSF. A normalized weighted sum along the axial axis at 

the end generated the best in focus projected image.  

The projected images reflected the sample content and eliminated the out of focus regions. In 

case of superimposed objects, the most likely focal plane index was chosen, based on the 

focus measure by standard deviation.    

3.4. Image analysis of MELC data 

Multi parameter images acquired with MELC contain separated information distributed in 

various dimensions, if every different fluorescent staining is defined as a dimension. In a 

combinatorial way, the information enables deeper insights than the single dimensions alone 

and retains the possibility to answer complex biological questions on a spatial localized protein 

level. Extraction of relevant information out of the images requires object detection, which 

makes quantification, expression level comparison, cell communication and tissue dependent 

hypothesis testing possible in the first place. 

3.4.1. Image segmentation 

In this work, one of the first segmentation pipelines was created in “CellProfiler” to identify 

stromal cell networks and cell subsets (Holzwarth et al., 2018) in six different MELC run image 

data sets from mouse bone marrow. Relying on image preprocessing, expression levels were 

comparable (as tested by signal to noise transformation). Therefore, manual threshold-based 

image binarization/segmentation of the network architecture could be applied and single cell 

object detection was performed via automated watershed segmentation based on the Otsu 

threshold calculation. 

For quality control of the automated cell recognition pipeline, six trained raters were randomly 

selected and asked to count cells within MELC images, in which B220 and ckit stained cells 

represented the objects. The raters counted three different images, to compare the count 

performance under divergent conditions to those obtained by “CellProfiler” pipeline.   
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Figure 27 Trained raters vs. automated segmentation validation, (Holzwarth, Köhler et. Al 2018) with permission 
from John Wiley and Sons (Sep, 05, 2022) 

The automated cell segmentation resulted in an average cell count within the range of trained 

raters in all cases (Figure 27), however there was a high variability in counting of each trained 

rater. 

 

Figure 28 ilastik - CellProfiler segmentation, from left to right: probability maps of nuclei, (summed) membrane 
and extra cellular matrix staining, segmentation result, scale bar 100 µm  

Compared to the used data set, other MELC data showed that tissue sample integrity or 

staining quality affects the intensity distribution within the single objects and thus throughout 

the entire images. Traditional watershed segmentation requires a homogenous signal 

contribution to identify single cell objects. Using the application “ilastik”, which uses a random 

forest algorithm, we could train the software to recognize nuclei, membrane, and extracellular 

matrix areas in our MELC images. Upon training, ilastik produced probability maps for each of 

the assigned pixels and related groups (classes), which were then used for further 

segmentation in CellProfiler (Figure 28Figure 29Figure 44). In order to obtain membrane and 

extra-cellular matrix segmentation, summed images of stainings related to the predefined cell 

region were used for training, to include all possible areas of fluorescent signal types.  

Based on nuclei identification throughout adjusted watershed segmentation, cells positive for 

one particular staining could be found via manual thresholding within single membrane or 

nucleated regions, depending on the mean fluorescence intensity of the marker within these 

cell areas.  
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Figure 29 segmentation improvement, from left to right: original image input, global otsu thresholded watershed 
segmentation (found objects in cyan), ilastik and CellProfiler segmentation workflow (found objects in magenta), 

scale bar 50 µm 

The combination of ilastik and CellProfiler showed an improvement in the segmentation quality. 

The number of counted cells increased approximately 8%, while the shape of the objects and 

clumped object separation improved as well (Figure 29). 

3.4.2. Cell type identification – phenotypic classification 

Compared to conventional microscope systems with a fixed number of fluorescent channels, 

MELC allows for the acquisition of a theoretically unlimited number of images of the same field 

of view using diverse fluorescent-labeled antibodies. With increasing number of stainings, the 

chance of identifying a specific functional cell type increases. Therefore, a “marker specified 

searching” plugin for ImageJ/Fiji was developed to find user defined cell types within 

segmented images. 

As a test, the developed plugin was used for identification of B cells, plasma cells, T helper 

cells, cytotoxic T cells and ckit+ progenitor cells within different image stacks from mouse bone 

marrow (3.4.1). Only objects with nuclei were analyzed. The single combinations taken for 

different cell types are shown in Table 3. 

Table 3 cell type combination matrix 

Cell Type B220 CD138 CD4 CD8 ckit nuclei 

B cell             

plasma cell             

T helper cell             

cytotoxic T cell             

ckit+             

The green highlighted boxes are interpreted as objects present in the image of the staining of 

interest, while the orange ones are interpreted as no object at the desired image location and 

staining. Only the cell objects fulfilling the criteria of present or absent objects in the chosen 

combination were counted and visualized in the image stack. 
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Figure 30 workflow of "marker specified searching" plugin applied on MELC images, validated by FACS. (A) 
Depicted MELC images of bone marrow from mouse, where red and green outlines represented identified objects. 
Green objects indicating found cells and related cell type (ckit+, nuclei+) including all other objects with no 
expression (Lin-); scale bars 100 µm (adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley 
and Sons (Sep, 05, 2022) 

Within six image stacks the single cell type frequencies were counted. The data obtained by 

MELC were compared with FACS data of the same organs to verify segmentation and 

combinatorial cell type identification via “marker specified searching” at the same time (Figure 

30). All frequencies showed no significantly differences, as shown in Table 4. 

Table 4 frequency comparison of cell type identification MELC vs. FACS 

Cell Type frequency MELC [%] frequency FACS [%] 

B cell 28.14 ± 5.81 37.80 ± 1.23 

plasma cell 0.042 ± 0.12 0.044 ± 0.01 

T helper cell 0.54 ± 0.16 0.67 ± 0.06 

cytotoxic T cell 0.72 ± 0.08 0.65 ± 0.08 

ckit+ 7.57 ± 2.29 8.72 ± 0.64 

The differences in B-cell abundance may have been caused by heterogeneous expression of 

B220 and higher variance in segmentation accuracy, but this tolerance of trained raters was 

taken into account and adjusted for cell identification (3.4.1). 

During the cell type identification algorithm development, a manual gating strategy like in FACS 

analysis was applied based on single cell measured mean intensity to identify known cell types 

in a supervised manner within MELC image data sets. By manual gating, a combination of 

allowed minimum and maximum intensity (set by experts) of the single channel expression 

levels is determined. This extended colocalization analysis tests for appearance of objects and 

their intensity profile at the same time, allowing further characterization within the found cell 

types, and finding sub-populations. Throughout five human tonsil MELC data sets, a total of 

6391 ± 350 cells could be identified and classified out of a 53 marker panel.  
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Figure 31 representative 53 marker MELC run panel for ILC identification and localization, scale bar 100 µm 
(Pascual-Reguant et al., 2021) 

Besides the main cell types, such as B cells, plasma cells, T helper cells, cytotoxic T cells, 

myeloid cells and endothelial cells, we could identify rare innate lymphoid cells (ILCs) as 

demonstrated by the color code in Figure 31. In order to annotate a cell as ILC, the membrane 

surrounding a nucleus should have a high expression level of CD45 and CD127, and a low or 

non-existing level of the lineage (lin) panel (CD19, CD20, CD14, CD123, CD141 and FcεRIα 

(Pascual-Reguant et al., 2021)). This specific cell type only occurred in 0.15-0.50 % of 

analyzed data.  

Next to the predefinition of known marker combinations a t-distribution stochastic neighbor 

embedding (t-SNE) by support of principal component analysis was applied to the whole data 

sets. This resulted in an automated identification workflow that replaced the time-consuming 

and potentially biased manual work of MELC users. The mean fluorescence intensities of 

different runs and markers were normalized to ensure comparability and interpretation of the 

data. Applied hierarchical clustering pre-structured similar related cell signals in a tree like 

relationship. Furthermore, k-means clustering offered at various cut-off levels major cell types, 

their sub-population and ILC population as well. Analysis was interactively performed within 

the application Orange. 
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Figure 32 Dimensionality reduction (t-SNE maps) of (a) intensity profile clustering results  vs (c) pre-defined cell 
types and (b) heatmap indicating sufficient overlap of manual and unsupervised clustering (Pascual-Reguant et 

al., 2021) 

The automated and manual gating strategy are compared in Figure 32, validating the main cell 

type identification (germinal center B cells, B cells, myeloid 1/2, fibroblasts, endothelial cells, 

plasma cells, T cells). The expectation of rare cell type identification was confirmed as well, by 

the appearance of a spatially separated cluster cells bearing markers characteristic of ILCs. 

Cell type identification of the clustered cells was supported by heatmap representation of the 

used markers and found clusters. Heatmap representation promotes cell type subpopulation 

characterization as well, by visual co-expression of related cell and class signals. Increasing 

the number of clusters or reanalyzing only the desired populations can reveal additional 

relationships. Based on object features, like size, mean fluorescence intensity or location, the 

unique identifier makes a representation of clustered cells within the source images possible, 

supporting neighborhood analysis and visualization in tissue context.    

3.4.3. Neighborhood Analysis 

In addition to object identification, quantification and phenotypic classification of single-cell 

images, the spatial relationship of the objects in relation to neighboring signals improves the 

understanding of cell communication and its specific localization. In addition to that, multi-

channel images of the same area support visualizing differences of similar stainings.     
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In order to investigate the spatial distribution of specific cells, a neighborhood analysis workflow 

was generated, applied and tested on stromal markers, i.e. CXCL12, BP-1, VCAM-1 and LpR. 

Images are part of MELC data sets used in 3.4.1.  

 

Figure 33 spatial distribution analysis workflow, (A) CXCL12 input image, (B) segmentation result, colored in blue 
outlines, (C) neighborhood regions (yellow) and central cell (red), (D) stromal matrix intensity distribution, scale 
bar 50 µm; (adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 

2022  

Here, CXCL12-producing stromal cells were used as central object to create two different 

circular regions with respect to the stromal cell soma: the proximal region with a radius of 0-10 

µm and the distal region with a radius of 10-25 µm, as shown in Figure 33. Distance choices 

were made by assuming an average cell diameter of 10 µm and a calculated average half 

distance between adjacent stromal cell somata. 

 

Figure 34 (top) stromal marker pixel density comparison, (bottom) colocalization analysis comparison; (adopted 
from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 2022) 

Within each proximal and distal region, the pixel density was calculated to compare signal 

contribution of the markers on a single cell level, twelve images in total were taken from 
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different samples. Here, pixel density is defined as the ratio of pixel count belonging to a certain 

object to the whole object-based area related pixel count. The difference from proximal and 

distal pixel density was calculated for every object and summarized for each image, visualized 

in Figure 34. Negative values highlight a larger distal signal distribution, positive values 

highlight a larger proximal signal distribution, and values around zero indicate no preferential 

signal distribution. In case of the GFP, BP-1 and LpR the main signal contribution occurs in 

proximal region, whereas signals from VCAM-1 seem more homogenously spread. 

 

Figure 35 Working principle of randomness test. (A) colocalization of two binary masks, (B) calculated overlap in 
dependency to image transformation (rotation and flipping), (C) graph representation of calculated overlaps; 

(adopted from Holzwarth, Köhler et. Al 2018) with permission from John Wiley and Sons (Sep, 05, 2022) 

As an additional test for dissimilar signal contribution of the different stromal markers, I applied 

colocalization analysis followed by a randomness test, to validate the results. Here, binary 

masks were created out of the segmented images (similar to binary stromal marker images, 

Figure 35A), which were used to calculate the overlap in dependency to a rotated or flipped 

version of the images (Figure 35B).  Out of every possible image (stromal marker) combination, 

the overlap can be represented in a graph (Figure 35C).  

 

Figure 36 (A) example overlap images of one dataset from binary masks used for colocalization analysis, (B) 
summarized results plots of randomness test for all datasets; (adopted from Holzwarth, Köhler et. Al 2018) with 

permission from John Wiley and Sons (Sep, 05, 2022) 
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Even if all stainings are considered to be stromal markers, their heterogeneous spatial signal 

distribution could be shown within colocalization analysis (Figure 36A). Since calculated 

overlap (blue circles) is “non-zero”, partial co-expression indicates stroma localization. The 

subsequent randomness test verified that the observed colocalization was significantly higher 

compared to random positioning (black dots, Figure 36B). Negative control colocalization test 

(red circles, overlap of same markers from different data sets, Figure 36B) verified independent 

image data handling.  

Altogether, these results indicate that the complex compartment of stromal markers within 

bone marrow is heterogeneously distributed, which was validated by colocalization analysis 

and the test of randomness. 

Out of the tonsil data from 3.4.2, the rare ILC population was taken to test neighborhood 

analysis in between the semi-automatically found cell type objects, tissue related architecture 

signals from vessels and extra cellular matrix (ECM). 

 

Figure 37 Neighborhood analysis of ILC population out of tonsil data set. A) absolute count on cell types of 74 ILC 
neighborhoods, B) separation of ILC neighborhood compared to whole area count on different cell types, C) 

localization of vessel and fiber signal in ILC neighborhood, (Pascual-Reguant et al., 2021) 

Compared to the entire tonsil area imaged, ILC neighborhood analysis showed differences in 

frequencies from specific cell type quantification in the specific ILC niches (Figure 37). While 

there were higher amount of plasma cells (PC), T helper (Th) cells and myeloid cells found in 

the neighborhood, the numbers of B cells and cytotoxic T cells (Tc) were lower. Based on multi 

parameter spatial data, the vicinity of ILCs to vessels could be confirmed in 70 % of all ILC 

neighborhoods, in case of ILC in near distance to fibronectin fibers 80 % of all cases. 

In summary, with the help of neighborhood analysis the micro-environmental characterization 

of specific cell types in a spatial domain extended colocalization analysis and showed the need 

of multi parameter image data, enabling cell communication observations. 
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3.5. Spatial Transcriptomics data analysis 

Within a tissue remodeling study of human lungs, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), 12 post-mortem samples were measured by ST. 

Along disease progression, these 12 samples were classified by disease duration into four 

groups, namely control (non-COVID-19-related pneumonia), acute (up to 15 days of disease 

duration), chronic (more than 15 day) and prolonged (in between 7 to 15 weeks).  

3.5.1. Preprocessing ST data 

After the sequencing, the data was demultiplexed and transferred into fastq format. In 

combination with the aligned microscopy images sequence, fiducial detection and unique 

molecular identifier (UMI) counting was performed via the software “Space Ranger”, 

referenced by human transcriptome (GRCH38-2020-A). Tissue detection and alignment were 

performed manually via the interactive software “Loupe Browser” before, since automated 

detection and alignment are not implemented for multichannel/multilayer fluorescence 

microscopy images.  

 

Figure 38 depicted images of a chronic case, (left) LSM image of human lung sample, (right) unique molecular 
identifier (UMI) count per spot, blue low UMI count, red high UMI count, scale bar 1mm  

For each individual area captured, there was a results folder, some automated analysis, a web 

summary, and a “*.cloupe” file to interactively browse the results in the “Loupe Browser”. In the 

Loupe Browser the UMI count in every spot can be visualized (Figure 38), as well as the 

general quality statistics. Besides automated analysis, the most important files are those 

containing the featured barcode matrices, aligned spot positions and related images, which 

are required for downstream analysis. 
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3.5.2. Data Integration 

Sample heterogeneity and technical artifacts, such as sequencing depth or detected gene 

counts make every single ST experiment unique. In order to investigate all 31801 found 

barcoded spatial spots covered by tissue at the same time, data integration was required. For 

this purpose an R script was written with the support of the Seurat package (Hao et al., 2021), 

which is a toolkit allowing single cell genomics analysis, especially with spatial related data.  

 

Figure 39 Violin plots of total gene count averaged per spot (nFeature), total amount of molecules averaged per 
spot (nCount) and relative mitochondiral gene amaount per spot [%] averaged (percent.mt) in dependency of 

samples, data already filtered 

Filtering at the beginning ensured further analysis on only differentially expressed genes, 

where every spot contained 250 genes and less than 13 % of mitochondrial content (Figure 

39). For every sample single spot variability was stabilized by SCTransform normalization 

(Hafemeister & Satija, 2019) and related captured areas as well. In this way, the local 

expression values were comparable to each other and true biological spot variation remained 

independent of the absolute number of genes or sequencing depth. Based on median variable 

feature rank across all datasets, 3000 top selected features were used to integrate data. 

 

Figure 40 Raw data gene expression in comparison to SCTransform integrated gene expression of prominent 
fibrosis related genes 
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The expression values for prominent fibrosis related genes were used to visualize effect of 

SCTransform normalization and integration compared to raw data set in dependency of their 

disease sample identifier (Figure 40). At this stage every single sample can be interpreted as 

acquired with same sequencing depth. An increase of these fibrotic genes count along disease 

progression during SARS-CoV-2 infection supports hypothesis of ongoing lung fibrosis. 

3.5.3. Dimensionality reduction and clustering 

The amount of data from ST experiments makes manual single spot investigation time 

demanding and possibly biased. Therefore, dimensionality reduction and clustering were 

applied as an automated, objective and reproducible analysis pipeline, which was added to the 

integration R script to perform cell type identification and related gene contribution investigation 

of single spots. 

 

Figure 41 dimensionality reduction (TSNE and UMAP) applied to raw and integrated data. Color code of clusters 
in left panel from “Raw data” represents each of the 12 samples. On the right side of “Raw data” and “Integrated 
data” panel color code represents the four disease phase related samples. Color code of left panel “Integrated 

data” represents 12 major cell types as in heatmap (right). 

Principle component analysis (PCA) reduced the normalized gene expression matrix 

dimensionality down to the top 50 components, which were used for shared nearest 

neighborhood (SNN) clustering initialization, followed by t-distribution stochastic neighbor 

embedding (t-SNE) and uniform manifold approximation and projection (UMAP) visualization 

(Figure 41). Along the various cluster resolutions and nearest neighbor settings calculations, 

heatmap representation was used to determine final values (resolution set to 0.3 at 30 PCA 

dimensions) to identify the 12 major cell types within the data. Because of the high gene count, 

only the top 25 ranked differentially expressed genes of every found cluster were taken, and 

displayed on the heatmap representation.  
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Both dimensionality reduction visualizations demonstrated the need for integration. In case of 

raw data, the differences between samples were found and clustered. In case of integrated 

data, similar expressed gene expression profiles were clustered together, as confirmed by 

heatmap representation. Compared to t-SNE, UMAP calculation was faster and preserved 

inner data structure at default values better. With a higher perplexity value, t-SNE could 

achieve similar data structure visualization, but at the expense of computation time. 

3.5.4. Gene set enrichment analysis 

Gene set enrichment analysis (GESA) is one way to analyze gene related diseases in a 

compact way. Here, a whole set of a priori defined genes that drive a disease or tissue state 

are tested and compared simultaneously, in this specific case along the four disease 

progression groups of SARS-CoV-2 infection.  

 

Figure 42 Gene Set Enrichment Analysis (GSEA) of Spatial Transcriptomic (ST) data. (A) Enrichment plots of 
GOBP_BLOOD_VESSEL_REMODELING pathway along disease progression (control, acute, chronic, prolonged). 
(B) Dot plot of selected pathways, color coded in their normalized enrichment scores (NES) and leading edge counts 
(LEC). (C) localization of NES from two pathways within example images of two disease stages in combination with 

related clusters found and annotation of vessels, airways, fibrosis areas (adopted from Mothes et al., 2022) 

First GSEA was applied only on the expression data from all samples grouped by disease 

phase, resulting in four enrichment plots for every pathway, e.g. shown in Figure 42A were 

blood vessel remodeling gene set was taken. The highest enrichment scores (ES) (peak value 

of the plot) were normalized and combined in a dot plot (Figure 42B), allowing multiple pathway 

observations on a small visualization scale. Dot sizes were adjusted to the number of leading-

edge counted genes (number of genes until peak of ES is reached). Within the tissue 

remodeling study, the up- or down regulation of gene sets could be found. Out of the four 
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example pathways in Figure 42B, the disease phase dependent tissue remodeling could be 

explained. We found that the broad dysfunction of the endothelial barrier at the beginning of 

the infection leads to vessel remodeling attempts linked to progressive tissue fibrosis.    

Since the ST data also had spatial parameters, single sample gene set enrichment analysis 

(ssGSEA) was applied to localize pathway based enriched spots within the microscopy images 

(Figure 42C). Here, the comparison of the two disease phase groups acute and prolonged 

showed enriched expression in clusters 5 and 9, which was verified by annotation of specialist 

pathologists. Cluster 5 spots contained transcripts, including highly expressed actin alpha 2 

(ACTA2), indicating that they were located around medium-sized vessels. Cluster 9 spots 

contained the highest expression of transcripts related to endothelial identity and complement 

activation. Due to fibrosis in the annotated areas, these results suggested that fibrosis starting 

in these vessel remodeled areas. 

Overall applied GSEA and ssGSEA supported the identification and localization of gene set 

driven disease pathways within ST experiments. 

3.6. Added value of correlative MELC and ST analysis 

Within the same tissue remodeling study of human lungs, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), consecutive slides of the same 14 post-mortem 

samples were also measured by a 44 markers panel MELC, 32 FOV. The samples were split 

by disease progression into four groups as well, namely control (non-COVID-19-related 

pneumonia), acute (up to 15 days of disease duration), chronic (more than 15 day) and 

prolonged (in between 7 to 15 weeks). To obtain both protein and transcriptional information, 

we employed a combination of MELC and ST that complement each other, on serial sections. 

Thereby, MELC provides a single-cell resolution using a panel of fluorochrome-conjugated 

antibodies that specifically bind to proteins of interest, whereas ST enables higher throughput 

to capture the whole transcriptome employing spatially resolved barcoded mRNA capture 

probes that hybridize with tissue sections. Both techniques have their own advantages and 

limitations, and the combination of these two techniques allowed us to gain a more 

comprehensive understanding of tissue remodeling in SARS-CoV-2 infected human lungs. 
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Figure 43 marker panel overview of one representative sample and cell quantification (with additional Kruskal-
Wallis statistic), fibrosis score obtained by pathohistological examination of several lung sections from each donor 

based on Elastica van Gieson staining with trend line via nonparametric Spearman correlation; image size 665 
µm x 665 µm; (adopted from Mothes et al., 2022) 

After image acquisition and image preprocessing, cells were segmented and quantified (Figure 

43). An increase of fibrosis score, total cell numbers and immune cells (CD45 positive cells) 

were observed in prolonged cases. As before, mean fluorescent signals were taken for 

unsupervised clustering and dimensionally reduction representation for further cell type 

identification via heatmap visualization. Instead of t-SNE, uniform manifold approximation and 

projection (UMAP) was used, because of the calculation speed and a better preservation of 

the data’s global structure within the dimensionally reduction map. Furthermore, all analysis 

steps after segmentation and mean fluorescence intensity measurement were combined and 

applied in the previously created ST analysis pipelines within “R”. Here the data integration 
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scripts from ST experiments were adapted to MELC data, allowing for visualization, 

functionalities and comparisons in the same environment. 

 

Figure 44 Uniform Manifold Approximation and Projection (UMAP) of identified cell types (A) and disease groups 
(B) out of 14 samples imaged via MELC. (C) Dot plot representation of identified cell clusters along marker profile 

expression (adopted from Mothes et al., 2022) 

The main clusters found are shown color coded in Figure 44A. Additional to cell type 

identification, group independent data handling was tested and visualized by Figure 44B, 

where the same UMAP was used for disease group coloring. Besides heatmap representation, 

dot plots represent not only the existence of desired markers in clusters and their average 

expression level by color, they visualizes the expressed frequencies in size as well (Figure 

44C). Therefore, the main contributing markers considered to their clusters verified the data 

integration.  

 

Figure 45 Quantification results of endothelial cells, epithelial cells and fibroblasts inside the found clusters 
dependent on disease progression. Data from 32 samples analyzed by two-way ANOVA with Fisher’s LSD test, 

(adopted from Mothes et al., 2022) 
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With respect to clustered cells, quantification of absolute cell numbers (Figure 45) showed an 

increase of endothelial cells, epithelial cells and fibroblasts along disease progression.  

 

Figure 46 representative MELC images from smooth muscle actin (αSMA) in blue, CD31 in cyan, pancytokeratin 
(PCK) in magenta and ER-TR7 in yellow in an example field of view (FOV) in lung tissue at different disease 

stages, scale bar 100 µm (Mothes et al., 2022) 

In line with the increase of fibrosis associated cells, stainings of αSMA and ER-TR7 showed 

an allocated clumping and higher contribution of marker specific signal within later disease 

stages on a single cell level (Figure 46). Epithelial tissue remodelling caused by structural 

changes were visualized by PCK staining. 

Altogether, applying ST analysis to MELC data confirmed and disclosed a dysregulated 

immune response due to COVID-19 infection, resulting in a cascade of processes initializing 

and ending in tissue remodeling. The combination of both spatial multiplex methods benefited 

from the created R script, which ranged from a high number of parameters (genes) in case of 

ST, to single cell resolution in case of MELC. 

3.7. LSFM image data analysis 

The low numerical aperture cylindrical lenses architecture creating the light sheet in this 

microscope results in a much longer light path, which increases the probability of light 

scattering through the differentially distributed refractive index and related tissue density. This 

also increases the likelihood of artifacts. This becomes evident in femoral and tibia bones, in 

the context of a bone regeneration model, where characterization of fluorescence-stained cells 

in contrast to their unspecific signal was affected. 
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Figure 47 LSFM measured tibia from reporter mouse illustrates stripe artifact along all fluorescence channels, red 
boxes indicates enlarged area (images at the bottom), scale bar 200 µm, depicted images from layer z=275 

The images with enhanced stripes in Figure 47 were taken from a test data set, where a 

CX3CR1-GFP x Cdh5 GFP-TdTomato reporter mouse’s tibia was imaged at a voxel resolution 

of 0.755x0.755x3.000 µm³, final image size 2560x1280x719 px³ for each fluorescence 

channel. Stripes occurred along all six illumination directions, being related to the angles of the 

three laser beams that form the light-sheet from left and right sides. Due to the heterogeneous 

tissue-based refractive index distribution and related refractive indices, the stripes showed no 

regularity, and appeared dependent on tissue layers at different positions.   

In order to investigate the staining performance and related image quality along different 

measurements of young and old mice within the bone regeneration model, signal to noise ratio 

(SNR) calculations should be used, but this required stripe free images. For this, a stripe 

suppression workflow, which preserves the main signal, had to be developed. Morphological 

filter operations would have handled the image locations differently depending on existing 

stripes. Because of this, image processing was shifted to the Fourier domain, since it was 

expected that repetitive stripes would be associated with specific frequencies that are 

dominant in the Fourier spectrum. 
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Figure 48 2D FFT and histogram of the depicted images at layer z=275, calculated and displayed in ImageJ/Fiji 

Numerous stripes had similar angles. After two-dimensional fast Fourier transformation (2D 

FFT), stripes contributed frequencies highlighted in the same angular direction (Figure 48). 

Due to FFT calculations, the angles were rotated by 90°. Histograms of the different 

fluorescence channel images showed the three areas of the acquired tissue sample. Low 

values represented the overall background signal. The midrange intensity values or second 

peak illustrated the hard tissue (cortex) surrounding the soft bone marrow tissue. The last very 

broad spread peak contained all the tissue related signals (endosteal bone and bone marrow), 

including the stripes information, which caused a broaden distribution. 

 

 Figure 49 filter masks for each stripe angle 

Stripe suppression in the Fourier domain was created based on the device-related properties 

and the measured angles within the image data. The central area of the FFT image contain 

the most important low frequencies to reconstruct the image. This region needs to be 

untouched by the filter. However, high frequencies are also important to recover edges within 

the images. Due to similar signal height of the outer frequencies in the FFT images, a band 

pass filter design was chosen. Filter masks are represented in Figure 49. 

In case of the low frequency band, the size of a circular area radius was calculated based on 

a Gaussian fit of the 45° line values of the FFT image. These values minimally contributed to 

the stripe-associated frequencies. The estimated standard deviation (sigma) was taken as the 

diameter for this region. In case of the high frequency band cut-off, the doubled standard 

deviation width estimation of a Gaussian fit along stripes values were used. In contrast to single 
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line selection and multiplication at the stripe angles with zero, a continuous Gaussian 

decreasing line function with increasing sigma in the direction of image boarders was used to 

avoid the aliasing (Gibbs phenomenon) artifacts after back transformation in real space, 

inverse FFT. The line width was adjusted to the light-sheet size, by increasing sigma the 

function recovered the scattered angle tolerance. All measurements and values are taken from 

the absolute FFT magnitude images and scaled logarithmically. Each angled stripe 

suppression was performed sequentially. 

 

Figure 50 LSFM measured tibia from reporter mouse after FFT destriping approach along all fluorescence 
channels, red boxes indicates enlarged area (images at the bottom show striped illumination function), scale bar 

200 µm, depicted images from layer z=275 

The test images showed less striped signal within the tissue after the application of the FFT 

destriping approach (Figure 50). The subtraction difference between the original and the 

destriped images represented the striped illumination functions.  
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Figure 51 Enlarged area around the tissue sample's edge show additional stripes by filter mask, scale bars 50 µm 

A closer look to the tissue sample’s edges showed additional stripes that were produced by 

the FFT filter mask (Figure 51). They were found around high intensity structures as well. In 

case of the test image data set not only single angled stripes occurred, which resulted in a 

complex mixture of stripe signals due to higher harmonics of the original stripe frequencies. 

Application to other datasets was used to confirm the main working principle that provides 

stripe suppressed images. 

 

Figure 52 depicted images of LSFM measurements of two reporter mouse’s femoral bone, scale bars 200 µm 
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Stripe suppression by directional FFT filtering of the LSFM measurements of femoral bone 

from two different reporter mice (Cdh5+tdTomato and Prx1+-RFP) in Figure 52 with predefined 

parameters showed a better destriping result compared to the tibia data set. Stripes of several 

micrometer thickness (top area of Figure 52 within Prx1+RFP data set) were not fully 

suppressed, which resulted in a smoothed long waved illumination function. However, signal 

preservation along the central mean line along this illumination function was still given. Image 

data sets were acquired using the same microscope parameters.  

 

Figure 53 enlarged areas (387x387 µm²) of red boxed regions of previous figure 

The relatively sharp stripe signal and constant orientation of the stripe signal resulted in a 

better differentiation between the imaged tissue sample and the artifacts. The underlying signal 

of cellular and vascular structures were preserved (Figure 53). The Gibbs phenomenon around 

the edges was still present, but to a much lower extent. The mean intensity background signal 

distribution outside the tissue showed no clear difference after FFT filtering. These results 

indicate a relationship between the applied filter mask mean amplitude offset dependency. The 

image destriping performance was considered to be sufficient for further image analysis, as 

subsequent SNR calculation or object identification was no longer influenced by the stripe 

artefacts. 

In order to calculate the SNR, object identification was required to differentiate signals from 

structural components, tissue background or area outside the sample. Therefore, a random 

forest algorithm within the application ilastik was trained to classify pixels by manual annotation 

in the destriped test images. The classified pixels were used to identify necessary mean object 

intensities and standard deviation values of the images. In addition, the destriping approach 

performance could be quantified. 
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Figure 54 pixel classification result masks from reporter mice, where blue indicates probability of outer tissue 
signal, green represents tissue area and red shows main vascular or cellular probability 

Out of the generated probability maps (Figure 54), objects of the desired classes were created 

by simple thresholding. Because of the three classes (background, tissue, objects), pixels of 

the related object classes were taken at a probability higher than 66 % and used for mean 

intensity (µ) measurements or standard deviation (σ) calculation in the destriped images and 

original input images, respectively. Due to average SNR calculation, no further object 

separation of single cells or vessels was required. 

Table 5 PSNR, SNR and SBR measurements from original and destriped images  

sample layer PSNR_orig PSNR_destr SNR_orig SNR_destr SBR_orig SBR_destr 

160101 Z0250 13,61 13,45 6,92 6,87 1,30 1,29 

160101 Z0300 13,74 13,50 7,29 7,25 1,29 1,27 

160101 Z0350 17,46 17,08 7,66 7,65 1,22 1,21 

160101 Z0400 19,16 18,74 7,63 7,63 1,24 1,22 

160101 Z0435 18,81 18,43 8,06 8,10 1,24 1,22 

160101 Z0450 17,62 17,34 8,44 8,49 1,24 1,22 

160101 Z0500 12,97 12,81 7,03 7,01 1,27 1,26 

AVG  16,20 15,91 7,58 7,57 1,26 1,24 

stdDev  2,46 2,37 0,51 0,54 0,03 0,03 

sample layer PSNR_orig PSNR_destr SNR_orig SNR_destr SBR_orig SBR_destr 

170717 Z0150 6,71 6,59 6,74 6,89 1,16 1,13 

170717 Z0175 10,52 10,31 5,54 5,48 1,13 1,10 

170717 Z0200 12,58 12,21 5,25 5,22 1,10 1,07 

170717 Z0225 13,96 13,62 5,36 5,34 1,09 1,07 

170717 Z0235 13,38 13,09 5,31 5,32 1,08 1,06 

170717 Z0250 13,31 12,93 5,15 5,16 1,06 1,04 

170717 Z0275 11,48 11,03 6,11 6,10 1,04 1,02 

AVG  11,71 11,40 5,64 5,64 1,10 1,07 

stdDev  2,32 2,24 0,54 0,58 0,04 0,03 
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Calculation of the features: 

𝑃𝑒𝑎𝑘 𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑃𝑆𝑁𝑅) =  
µ𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑁𝑅) =  
µ𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑡𝑖𝑠𝑠𝑢𝑒
 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑎𝑡𝑖𝑜 (𝑆𝐵𝑅) =  
µ𝑠𝑖𝑔𝑛𝑎𝑙

µ𝑡𝑖𝑠𝑠𝑢𝑒
 

Several destriped images of the two data sets were depicted and used to calculate the signal 

relations based on the three object classes (Table 5). The measurements seem to be 

independent of existing stripes, indicating that stripe structures are a result of interference, 

illumination enhancement and the suppression around tissue’s local mean intensity. Further 

SNR measurements at different disease phases (imaged tissue sample at different points in 

time in a bone regeneration model) showed no loss in signal performance. However, destriping 

was essential for object identification and related quantification, neighborhood analysis, or 

single voxel analysis.  

 

Figure 55 segmentation comparison of striped and destriped depicted Cdh5+tdTomato vascular image. Red 
outlines illustrate objects found in striped image, whereas green outlines represent objects found in destriped 

image, scale bars 200 µm 

In order to show the influence of the stripes during segmentation, the top images of the 

vascular system and cells in both cases (striped and destriped) were segmented using the 

developed object identification workflow (Figure 55). Thereby, random forest training within the 

application ilastik was performed on each image case individually to guarantee best probability 

map calculation and increase segmentation performance. Due to similar signal of stripes and 

objects, results showed that objects found in the striped images cross real object boundaries, 

while objects were separated from tissue background signal in the destriped images. As shown 

in the SNR calculation, found objects can then be used for real signal measurements and 

further cell-object-based communication analysis.  
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4. Discussion and future prospects 

Developments in recent years have highlighted the importance of image data analysis and 

associated reliable data pre-processing - a task that cannot be achieved without a thorough 

understanding of the physics behind the microscopic image. The principle of image acquisition 

in fluorescence microscopy is general and applicable to microscope-based methods such as 

MELC, LSM or LSFM, and results in a matrix-structured representation of the extracted 

features - the images. In addition, recent developments have made it possible to combine the 

detection of differentially expressed genes by sequencing with spatial information, such as ST. 

The information obtained from each device differs in system-dependent characteristics. 

Therefore, each analysis pipeline is unique to its device characteristics and conditions (Miura 

& Sladoje, 2019), so the pre-processing should be adapted to the data acquisition scheme, 

where physical aspects lead to image aberrations. However, images and their associated data 

provide a solid foundation for quantifying biologically relevant data. 

In this thesis, image data from various microscopy techniques were used to create supervised- 

and unsupervised bioimage analysis workflows validating biological questions, which were 

conceptually developed on the improved MELC system. Independent of single cell or tissue 

structures, features such as morphology, signal distribution and localization are present in 

these multi-parameter data sets. Additional hardware-related image artifacts could also be 

identified, categorized, suppressed, or removed. Furthermore, the application of signal-

dependent classification in MELC and ST-related data enabled linkage at the protein and 

transcriptional level in biological tissues. Conceptually, the bioimage data analysis workflows 

created in the different projects followed the same scheme: data acquisition, pre-processing, 

object identification, classification and representation of the results. Based on the biological 

question and available data, a possible object interaction realized by neighborhood analysis 

was applied.  

4.1. Seeded region growing and DFT shape descriptors for analysis of 
microglia in LSM images 

Compared to other acquisition methods that require a detailed artifact model description for 

image data preparation, LSM images within the dementia model could be pre-processed by 

maximum intensity projections to sufficiently enhance object details while reducing noise. 

Since these images were acquired with only one fluorescent channel, image registration was 

not necessary. 

Simultaneously with improvement of the MELC system and the associated image analysis, a 

self-written “Seeded Region Growing” (SRG) algorithm as part of the 

“MELC_Evaluation_Toolbox” was used to extract microglial objects via GFP detected 
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expression from these LSM images. Due to the SRG algorithm used, the fine structures could 

be found better. With the objects, the complex shapes of the microglia in different aging mouse 

brain samples could be described by closed object contours, avoiding the use of the ImageJ/Fiji 

PlugIn “ABsnake” (Andrey & Boudier, 2007) as used in “SHADE” (Kriegel et al., 2018b), where 

contour features were smoothed due to the object shape fitting model. In addition, the PlugIn 

enabled the identification and extraction of all microglia and associated outlines in one image, 

whereas SHADE required individual object images. Even if the class Microglia is defined by 

the object itself, the loss of processes with increasing age was described using the DFT shape 

descriptors. Thereby the reduction of the complex shape information to a set of 20 coefficients 

was used to observe differences, store and represent the results in a compact way (Radbruch 

et al., 2017). Furthermore, these descriptors could also be used to train machine learning 

models for cluster analysis and group based information (Kriegel et al., 2018a). 

4.2. Enhanced MELC analysis workflow for spatially automated 
phenotypic classification and cellular communication investigation  

Among other things, MELC imaging is affected by mechanical tolerances and therefore 

requires image pre-processing. Image registration, compared to similar automated or manual 

imaging methods (Eng et al., 2022; Gut et al., 2018; Lin et al., 2015; Wählby et al., 2002), 

ensures that the signal contribution of each pixel detected by different stainings originates from 

the same location. Thereby, the application of the phase cross correlation (Guizar-Sicairos et 

al., 2008) using phase contrast images allowed image registration accuracy down to subpixel 

resolution, in this case by a tenth of the pixels size due to FFT based computation. Compared 

to segmentation based methods of fluorescence stainings, or those in ST data pre-processing 

(fiducial image alignment), which rely on pattern recognition, an increase of ten times higher 

accuracy was obtained. Artefacts originating from the excitation illumination function 

interaction with the tissue sample were also observed in MELC image data sets. Even when 

the updated lens and camera adapter were corrected for possible spherical distortions, the 

changing liquid level on the sample during the cyclic measurement caused additional optics-

related light focusing and thus a change in the illumination function. These effects were 

eliminated by adapted “flat field correction” algorithm (Herman, 1980). Here, the subtraction of 

the previous bleaching image from the current fluorescence image removed resting signal and 

dark image offset, where regression based cubic spline interpolation was used to flatten the 

illumination function based on the bleaching image. Due to a self-designed and printed sample 

holder or sample preparation, possible tissue sample tilting or bending was corrected by an 

“all in focus projection”. Contrary to “extended depth of field” (Pertuz et al., 2013), standard 

deviation focus measurements were used to find the best tilted focal plane and project only the 
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signal related to the PSF of the system into a final two-dimensional image. In this way out of 

focus regions did not contribute to the final projection. 

In case of nucleated cells or structural signal distributed over the image, the application 

“CellProfiler” was introduced as modularized segmentation tool, which allowed microscope 

users upon training the interactive creation and fine tuning of identification and measurement 

pipelines. Based on the image pre-processing, a watershed segmentation by manual 

thresholding was sufficient, which led to similar counting results in terms of variance compared 

to trained raters (Holzwarth et al., 2018). Nevertheless, the possibility of longer measurements 

due to external light source usage and the extension of fluorescent markers along MELC 

experiments, an increase in intensity distribution variance was observed. In order to improve 

segmentation accuracy related to signal variability, the application “ilastik” was introduced 

(Schapiro et al., 2017), to pre-classify the image pixels in relation to nuclei, extra cellular matrix, 

background or other structures. In addition to ilastik, the imageJ/Fiji PlugIn “Trainable WEKA 

segmentation” (Arganda-Carreras et al., 2017) should also be mentioned, which works in a 

similar way in principle, but was not used here. By conversion of real valued measurements to 

featured variables through different sized image filters, a random forest model could be trained, 

where class labels were set manually by drawing based on the desired images of a single 

fluorescence channels. In case of fluorescence images representing same class regions by 

staining, summed images were used to increase the probability of detection. Using the 

resulting probability maps as input for image segmentation in CellProfiler, the object count 

within the images could be increased by about eight percent. The additional resolution 

improvement of the MELC system by 60% laterally and 250 % axially, achieved by replacing 

the camera and objective lens also supported the segmentation performance. 

In case of objects from MELC, data sets contained distributed information along several protein 

levels, which enabled the phenotypical classification of similarly shaped objects. It thereby 

allowed cell differentiation at a higher degree, compared to other physical limited fluorescence 

microscopy or morphology based methods (Fekri-Ershad, 2021; Kriegel et al., 2018b). The 

first steps in cell classification development were adopted from the idea of binary decision trees 

and were part of the “MELC_Evaluation_Toolbox”. Here, colocalization of signals was used to 

distinguish individual cell objects. In addition to the identification of colocalizing objects, mean 

or median fluorescence intensity measurements of the objects in desired images of various 

markers using CellProfiler increased the level of subpopulation differentiation, as shown by 

others (Gerner et al., 2012; Schapiro et al., 2017). In accordance to FACS analysis, manual 

gated signal evaluation and object classification within microscopy images lead to identification 

of major cell types in tissue samples of mouse, e.g. bone marrow, and human, e.g. tonsil, but 

also in rare cellular subsets such as ILCs, which occurred in 0.15-0.50 % of the analyzed data 

(Holzwarth et al., 2018; Mothes et al., 2023; Pascual-Reguant et al., 2021). With the constantly 

Discussion and future prospects 



Discussion and future prospects 

69 
 

growing number of possible marker combinations, the individual step sequences for manual 

gating also grew. In order to circumvent this, dimensionality reductions such as PCA, t-SNE 

and UMAP followed by clustering analysis were used to create an unsupervised, automated 

workflow reducing the risk of biased data handling and project the complex structured data in 

to a two dimensional map. The resulting cell class clusters were still set by manual 

interpretation of experts, but could show in comparison to manual gated data sufficient overlap, 

especially in case of rare cell subsets, which were also promoted by heatmap representation 

revealing other cell subpopulations. In addition to single cell analysis including phenotypically 

classification and colocalization, neighborhood analysis was applied to extend the micro 

environmental characterization of specific cell types in a spatial domain, which enabled the 

investigation of cell communication processes. Thereby the heterogeneously distribution of 

stromal markers within mouse bone marrow could be shown (Holzwarth et al., 2018), as well 

as the near distance of ILCs to vessels and fibronectin fibers (Pascual-Reguant et al., 2021). 

Validation of the distribution results from applied neighborhood analysis were confirmed by a 

randomness test. In contrast to a previous method (Zehentmeier et al., 2014) in which 

individual objects in the microscopic images were randomly positioned multiple times, the 

approach along the Stroma marker and ILC projects used image transformations, such as 

rotation or flipping, as a combinatorial computational basis for possible colocalizations. In that 

way, calculation time could be decreased and the relation to other tissue sample images 

containing different stainings or objects could be shown. 

4.3. Comprehensive workflow for object characterization and phenotypic 
identification in Spatial Transcriptomics 

Objects from ST experimental datasets benefit from the workflow developed by MELC, 

including pre-processing and object characterization, which is even more necessary due to the 

number of expressed genes (Hao et al., 2021). It should be noted that the objects (spots) in 

ST were given by the method itself and could contain multiple cells due to their size (55µm in 

diameter), but also had to be aligned due to their unique barcoded fiducials.  

In contrast to MELC datasets, where Min-Max, SNR or arcsinh normalization and 

transformation of mean-object-signals were sufficient for phenotypic classification along 

different measurements, ST data sets exhibited high variance not only per measurement but 

due to data acquisition per spot. For this reason, data normalization was performed via 

SCTransform to improve visibility of highly differentially expressing genes and remove outliers 

by harmonization of Pearson residuals (Hafemeister & Satija, 2019). Furthermore, 

normalization was required for whole data integration, which enabled the investigation of 

pathomechanisms in all 12 SARS-CoV-2 post-mortem human lung samples at a time. Besides 

the upregulation of endothelial and fibrosis related genes found in later disease phases, 
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ssGSEA was applied to localize pathway based enriched spots within the microscopy images 

suggesting that fibrosis starts in these vessel remodeled areas. ST analysis was confirmed by 

MELC and disclosed a dysregulated immune response due to COVID-19 infection, resulting in 

a cascade of processes initializing and ending in tissue remodeling (Mothes et al., 2023) 

4.4. Improved object identification accuracy through FFT-based filtering 
for stripe artifact suppression in LSFM measurements 

The spatial to frequency domain conversion was also used for stripe artifact suppression in 

LSFM measurements, because in the centered frequency domain, similarly oriented stripe 

signals accumulate along the axes of the incident laser beams and can be directly filtered while 

preserving the main signal. In contrast to compressed sensing methods (Schwartz et al., 2019), 

where eliminated frequencies were reconstructed by total variation minimization, the filter was 

designed, based on known device properties and estimated tissue sample interactions. Other 

“wavelet”- or “non-subsampled contourlet” transformation based stripe elimination methods 

(Kang et al., 2015; Li et al., 2015; Liang et al., 2016; Münch et al., 2009) follow the same 

concept in core, but with prior consideration of the transformation axes and aliasing effect 

reduction by Gaussian weighted distributions. Furthermore, the calculation time increased to 

several minutes per image due to the different transformation steps, which led to an additional 

exclusion criterion. However, these methods showed no beneficial increase in stripe 

suppression compared to the self-designed FFT filter mask, which results allowed to improve 

segmentation performance.  

4.5. Standardized analysis pipelines for data integration of multiple 
complementary spatial technologies - augmenting access to 
information 

Overall, the pre-processing of the image data in all projects ensured the removal of artifacts 

and signal enhancement through the application of system-specific analysis pipelines related 

to physical image formation. Although the individual algorithms used differed in their 

application, they were all necessary for the subsequent image segmentation step. 

In order to perform quantitative image analysis, the identification of objects within microscopy 

images was essential. Therefore, different segmentation tools and algorithms were applied to 

obtain single cell objects or structures from image data. Combining system specific pre-

processed data, semi-automated feature conversion in ilastik and object identification in 

CellProfiler in one workflow enabled quantitative image analysis across projects (Mothes et al., 

2023; Pascual-Reguant et al., 2021), and allowed users of different microscopes (LSM, LSFM, 

etc.) the chance of object related feature extraction (such as mean fluorescence intensity 
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values, location information or morphology related properties) upon a short image analysis 

introduction. 

Once the objects were found, they had to be phenotypically identified. Using the workflow 

developed and adapted in "R", even rare subsets could be identified. The combination of the 

two spatial multiplexing methods contributed significantly. The advantages of both methods, 

the high number of parameters (genes) and the observation of the whole tissue in the case of 

ST with the single cell resolution at the protein level in the case of MELC benefited from the 

applied dimension reduction and cluster analysis. This also allowed simultaneous validation 

within the data. With the help of the developed image analysis workflow, it is thus possible to 

structure a lot of information from different imaging techniques data and extract features. 

The last optionally applied neighborhood analysis made it possible to capture the 

communication between objects and the relation to their spatial arrangement within large 

measurement data. Another reason why spatial imaging is necessary is that it allows objects 

to be observed within their "natural" environment. Especially since neighborhood analysis can 

also be applied to live cell imaging. Based on located and identified objects, their spatial 

relation to the environment.  

4.6. Prospects for future multiplexing projects 

Multiplexing as part of microscopy, or as part of spatial localized gene expression detection, is 

a continuously evolving field in biology, medicine or bioimage data analysis. Thereby, the 

associated development of hardware and software solutions is an ongoing process as well. 

With improving resolutions, increasing number of parameters and advanced algorithms, the 

insights to functional biological processes may become visible at higher degree of detail in 

future. This is why I will introduce some thoughts and ideas for future projects in the next 

paragraphs. 

One example refers to the MELC system. Typically a measurement requires roughly one hour 

for each cycle, because of incubation time, image acquisition, bleaching time and pipetting. 

This time increases with the raising number of FOV. If the sample could imaged and bleached 

along the entire sample in one cycle, the information content and related time could be 

improved. Therefore the excitation light has to be applied at all positions of the sample equally. 

Unfortunately, the required amount of light is limited by the system and an increase of power 

could also result in phototoxic or destructive processes in the tissue sample. An alternating 

laser, which randomly bleaches certain regions could be a solution. Additional to this, spectral 

unmixing, as utilized in Rakhymzhan et al., 2021, could also be used, to reduce the bleaching 

time and decompose the different signals by that. Furthermore, the applied image registration 

could be extended and applied right at the beginning of the MELC run, which would allow to 
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relocate and reuse an already used cover slide, because of the tissue preservation after each 

MELC run.  

As another example, object identification by use of convolutional neuronal networks could 

replace semi-automated image segmentation workflows via ilastik and CellProfiler, based on 

pre-trained models, as shown in Du et al., 2021, where nuclei were found and used to quantify 

human cells from skin and confirm FACS experiments, similar to 3.4.1. Due to the fact, that 

the segmentation results were best for nuclei only, the ImageJ/Fiji Plugin “StarDist” (Schmidt 

et al., 2018) was not used in the presented projects. Newer pre-trained models, such as 

“Cellpose” (Stringer et al., 2021) also allow the detection of other structural objects and could 

improve the image segmentation in later projects. However, the use of these models require 

besides common objects, like nuclei, the re-training with annotated image data from the utilized 

microscopes. On the other hand, pixel based classification of all available parameters of a 

location would avoid any segmentation approaches and could highlight differences at sub 

cellular resolution. 

Finally, an idea for a future project that requires all the tools developed and used in this work 

could be the investigation, characterization and classification of epithelial or endothelial cells 

around vessels in already available data sets from infected human lungs in terms of disease 

progression and tissue remodeling caused by SARS-CoV-2 infection. In contrast to the nicely 

oriented and aligned cell distribution of such cells in the control data sets, a disruption 

associated with dysfunction in relation to lung fibrosis was visually seen by using LSFM, MELC 

and ST (Mothes et al., 2023) at later disease progressions. Combining image segmentation, 

morphology classification via DFT shape descriptors and neighborhood analysis could further 

validate the results and would allow a closer look into the cellular communication processes. 

In addition, the extension of the existing two-dimensional algorithms to three-dimensional 

applications with regard to LSM, LSFM and MELC could increase the information content 

obtained. 
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5. Summary 

Title:  Bioimage analysis linking information at protein and transcriptional level in 

tissues 

The optical resolution by human eyes is limited. This is why microscopes were invented, to 

enable the observation of smaller objects through a specific arrangement of optical 

components, as well as the investigation of biological processes regarding disease or 

treatment. Through the microscope’s eye, the camera, images of various tissue stainings can 

be digitalized and stored on computers. At this time, image interpretation is often performed 

by the investigator. Manual annotation or counting is a subjective process by the observer, 

time consuming and therefore perhaps biased. Additional physical limitations increase the 

chance of misinterpretation regarding aberrations or other distortion artifacts, as well as 

complexity, which increases by the growing number of available parameters from the same 

location, notably in spatial gene expression detection. Bioimage analysis, as a newly emerging 

field in recent years, combines data analysis and imaging methods related to the study of 

biological processes and has led me to this work, where image data from various microscopy 

techniques were used to create supervised- and unsupervised bioimage analysis workflows 

validating biological questions in tissue samples from mouse and human, which were 

conceptually developed on the MELC system. Thereby, the MELC-system was improved to its 

overall image quality regarding resolution (laterally 60%, axial 250%), duration of MELC-

experiments (reduction of heat and related drying of tissue sample, increase of detectable 

fluorescence signals) and signal evaluation (artifact removal). The application of system 

related artifact removal algorithms, such as image registration, illumination correction, image 

projections or destriping were part of required image pre-processing, which standardized 

subsequent image segmentation in ilastik and CellProfiler. Classification of found objects or 

cells benefited from clustering or dimensionality reduction methods simplifying complexity of 

multi parameter data sets. The application of neighborhood analysis supported the 

investigation with regard to spatial localizations and interaction. Based on quantitative image 

analysis workflows developed, including image pre-processing, image segmentation, object 

identification, classification and representation of the results, a general path from image 

acquisition to meaningful data evaluation as tool for users could was realized in case of LSM, 

MELC and LSFM data. Furthermore, the application of MELC and ST linked the information 

obtained between the protein and transcriptional level. In this way several observations were 

made, which helped to answer questions in immunology and neuroscience. Segmented LSM 

images of microglia from aging mice revealed the morphological changes and loss of 

processes during the course of dementia, using DFT descriptors as a compact way to describe 

complex shapes. The distribution of the complex compartment of stromal markers in the bone 
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marrow of mice was heterogeneous, which can provide insights into their roles in 

hematopoiesis and immune cell development. Supervised and unsupervised image analysis 

workflows identified rare ILC populations in MELC images of mouse tonsils. In addition, their 

location around vessels and fibronectin fibers was detected by neighborhood analysis. Finally, 

SARS-CoV-2-induced tissue remodeling was observed in human lung samples from MELC 

and ST experiments.   
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6. Zusammenfassung 

Titel:  Biobildanalyse, die Informationen auf Protein- und Transkriptionsebene in 

Geweben verknüpft 

Die optische Auflösung des menschlichen Auges ist begrenzt. Deshalb wurden Mikroskope 

erfunden, um die Beobachtung kleinerer Objekte durch eine bestimmte Anordnung optischer 

Komponenten sowie die Untersuchung biologischer Prozesse im Hinblick auf Krankheit oder 

Behandlung zu ermöglichen. Mit Hilfe des Auges des Mikroskops, der Kamera, können Bilder 

von verschiedenen Gewebefärbungen digitalisiert und auf Computern gespeichert werden. Zu 

diesem Zeitpunkt wird die Bildinterpretation häufig vom Untersucher selbst vorgenommen. Die 

manuelle Markierung oder Zählung ist ein subjektiver Prozess des Beobachters, zeitaufwändig 

und daher möglicherweise voreingenommen. Zusätzliche physikalische Begrenzungen 

erhöhen das Risiko von Fehlinterpretationen in Bezug auf Aberrationen oder andere 

Verzerrungsartefakte sowie die Komplexität, die durch die wachsende Anzahl verfügbarer 

Parameter am selben Ort zunimmt, insbesondere bei der Erkennung der räumlichen 

Genexpression. Die Biobild-Analyse, ein in den letzten Jahren neu aufkommender Bereich, 

kombiniert Datenanalyse und bildgebende Verfahren zur Untersuchung biologischer Prozesse 

und hat mich zu dieser Arbeit geführt, bei der Bilddaten aus verschiedenen 

Mikroskopietechniken verwendet wurden, um überwachte und unüberwachte Biobild-Analyse-

Arbeitsabläufe zur Validierung biologischer Fragen in Gewebeproben von Maus und Mensch 

zu erstellen, die konzeptionell auf dem MELC-System entwickelt wurden. Dabei wurde das 

MELC-System hinsichtlich seiner Gesamtbildqualität in Bezug auf Auflösung (lateral 60%, 

axial 250%), Dauer der MELC-Experimente (Reduktion der Hitze und damit verbundener 

Trocknung der Gewebeprobe, Erhöhung der detektierbaren Fluoreszenzsignale) und 

Signalauswertung (Artefaktentfernung) verbessert. Die Anwendung systembezogener 

Algorithmen zur Beseitigung von Artefakten, wie Bildregistrierung, Beleuchtungskorrektur, 

Bildprojektionen oder Entstreifung waren Teil der erforderlichen Bildvorverarbeitung, die die 

anschließende Bildsegmentierung in ilastik und CellProfiler standardisierte. Die Klassifikation 

der gefundenen Objekte oder Zellen profitierte von Clustering- oder Dimensionali-

tätsreduktionsverfahren, die die Komplexität der mehrparametrigen Datensätze vereinfachten. 

Die Anwendung von Nachbarschaftsanalysen unterstützte die Untersuchung im Hinblick auf 

räumliche Lokalisierungen und Interaktionen. Basierend auf den entwickelten quantitativen 

Bildanalyse-Workflows, die Bildvorverarbeitung, Bildsegmentierung, Objektidentifikation, 

Klassifikation und Ergebnisdarstellung umfassen, konnte im Falle von LSM-, MELC- und 

LSFM-Daten ein allgemeiner Weg von der Bildaufnahme bis zur aussagekräftigen 

Datenauswertung als Werkzeug für die Nutzer realisiert werden. Darüber hinaus wurden durch 

die Anwendung von MELC und ST die gewonnenen Informationen zwischen der Protein- und 
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der Transkriptionsebene verknüpft. Auf diese Weise konnten mehrere Beobachtungen 

gemacht werden, die zur Beantwortung von Fragen in der Immunologie und den 

Neurowissenschaften beitragen. Segmentierte LSM-Bilder von Mikroglia aus alternden 

Mäusen zeigten die morphologischen Veränderungen und den Verlust von Prozessen im 

Verlauf der Demenz, wobei DFT-Deskriptoren als kompakte Methode zur Beschreibung 

komplexer Formen verwendet wurden. Die Verteilung des komplexen Kompartiments 

stromaler Marker im Knochenmark von Mäusen war heterogen, was Einblicke in ihre Rolle bei 

der Hämatopoese und der Entwicklung von Immunzellen geben kann. Durch überwachte und 

nicht überwachte Bildanalyse-Arbeitsabläufe wurden seltene ILC-Populationen in MELC-

Bildern von Mäusemandeln identifiziert. Darüber hinaus wurde ihre Lage in der Nähe von 

Gefäßen und Fibronektinfasern durch Nachbarschaftsanalyse ermittelt. Schließlich wurde in 

menschlichen Lungenproben aus MELC- und ST-Experimenten ein SARS-CoV-2-induzierter 

Gewebeumbau beobachtet. 

  



77 
 

7. References 

Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen 
Wahrnehmung: II. Die dioptrischen Bedingungen der Leistung des Mikroskops. Archiv Für 
Mikroskopische Anatomie, 9(1), 418–440. https://doi.org/10.1007/BF02956174 

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). 
Molecular Biology of the Cell. Garland Science.  

Andrey, P., & Boudier, T. (2007). Adaptive active contours ( snakes ) for the segmentation of 
complex structures in biological images. 

 https://www.researchgate.net/publication/252008688_Adaptive_active_contours_snakes
_for_the_segmentation_of_complex_structures_in_biological_images#fullTextFileConte
nt (last opend May, 25th 2023) 

Anuta, P. E. (1970). Spatial Registration of Multispectral and Multitemporal Digital Imagery 
Using Fast Fourier Transform Techniques. IEEE Transactions on Geoscience 
Electronics, 8(4), 353–368. https://doi.org/10.1109/TGE.1970.271435 

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & 
Seung, H. S. (2017). Trainable Weka Segmentation: A machine learning tool for 
microscopy pixel classification. Bioinformatics, 33(15), 2424–2426. 
https://doi.org/10.1093/bioinformatics/btx180 

Barnes, R., Lehman, C., & Mulla, D. (2014). Priority-flood: An optimal depression-filling and 
watershed-labeling algorithm for digital elevation models. Computers and Geosciences, 
62, 117–127. https://doi.org/10.1016/j.cageo.2013.04.024 

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, 
J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., 
Zhang, C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). Ilastik: Interactive 
Machine Learning for (Bio)Image Analysis. Nature Methods, 16(12), 1226–1232. 
https://doi.org/10.1038/s41592-019-0582-9 

Beucher, S., & Lantuejoul, C. (1979). Use of Watersheds in Contour Detection. In International 
Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation (pp. 
12–21). http://www.citeulike.org/group/7252/article/4083187 

Boas, D. A., Pitris, C., & Ramanujam, N. (2016). Handbook of Biomedical Optics. CRC Press. 
https://books.google.de/books?id=lEUECp8OHWEC 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 
https://doi.org/10.1023/A:1010933404324 

Burger, W., & Burge, M. J. (2016). Digital Image Processing (second Edition). Springer Verlag. 

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, 
D. A., Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P., & Sabatini, D. M. (2006). 
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. 
Genome Biology, 7(10). https://doi.org/10.1186/gb-2006-7-10-r100 

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Ensemble Machine Learning. Ensemble 
Machine Learning, January. https://doi.org/10.1007/978-1-4419-9326-7 

 



78 
 

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, 
M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., & 
Zupan, B. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning 
Research, 14, 2349–2353. http://jmlr.org/papers/v14/demsar13a.html 

Eng, J., Bucher, E., Hu, Z., Zheng, T., Gibbs, S. L., Chin, K., & Gray, J. W. (2022). A framework 
for multiplex imaging optimization and reproducible analysis. Communications Biology, 
5(1), 1–11. https://doi.org/10.1038/s42003-022-03368-y 

Ertel, W. (2011). Introduction to Artificial Intelligence Series editor (second Edition). Springer.  

F.R.S., K. P. (1901). LIII. On lines and planes of closest fit to systems of points in space. The 
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 
559–572. https://doi.org/10.1080/14786440109462720 

Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I., & Tutz, G. (2016). Statistik | Der Weg zur 
Datenanalyse. In Springer Spektrum (Springer Verlag). 

Feigenbaum, E. A., & Simon, H. A. (1961). Performance of a Reading Task by an Elementary 
Perceiving and Memorizing Program. RAND Corporation. 

Fekri-Ershad, S. (2021). Cell phenotype classification using multi threshold uniform local 
ternary patterns in fluorescence microscope images. Multimedia Tools and Applications, 
80(8), 12103–12116. https://doi.org/10.1007/s11042-020-10321-w 

Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J., & Germain, R. N. (2012). Histo-Cytometry: 
A Method for Highly Multiplex Quantitative Tissue Imaging Analysis Applied to Dendritic 
Cell Subset Microanatomy in Lymph Nodes. Immunity, 37(2), 364–376. 
https://doi.org/10.1016/j.immuni.2012.07.011 

Gerstner, A. O. H., Trumpfheller, C., Racz, P., Osmancik, P., Tenner-Racz, K., & Tárnok, A. 
(2004). Quantitative histology by multicolor slide-based cytometry. Cytometry Part A, 
59A(2), 210–219. https://doi.org/10.1002/cyto.a.20054 

Giesen, C., Wang, H. A. O., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schüffler, 
P. J., Grolimund, D., Buhmann, J. M., Brandt, S., Varga, Z., Wild, P. J., Günther, D., & 
Bodenmiller, B. (2014). Highly multiplexed imaging of tumor tissues with subcellular 
resolution by mass cytometry. Nature Methods, 11(4), 417–422. 
https://doi.org/10.1038/nmeth.2869 

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing. Prentice Hall.  

Goodman, J. W. (2005). Introduction to Fourier Optics. THE McGRAW-HILL COMPANIES, 
INC.  

Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image 
registration algorithms. Optics Letters, 33(2), 156. https://doi.org/10.1364/OL.33.000156 

Gut, G., Herrmann, M. D., & Pelkmans, L. (2018). Multiplexed protein maps link subcellular 
organization to cellular states. Science, 361(6401). 
https://doi.org/10.1126/science.aar7042 

Hafemeister, C., & Satija, R. (2019). Normalization and variance stabilization of single-cell 
RNA-seq data using regularized negative binomial regression. Genome Biology, 20(1), 
1–15. https://doi.org/10.1186/s13059-019-1874-1 

References



References 

79 
 

HANSER, B. M., GUSTAFSSON, M. G. L., AGARD, D. A., & SEDAT, J. W. (2004). Phase-
retrieved pupil functions in wide-field fluorescence microscopy. Journal of Microscopy, 
216(1), 32–48. https://doi.org/10.1111/j.0022-2720.2004.01393.x 

Hao, Y., Hao, S., Andersen-Nissen, E., III, W. M. M., Zheng, S., Butler, A., Lee, M. J., Wilk, A. 
J., Darby, C., Zagar, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. P., Jain, J., 
Srivastava, A., Stuart, T., Fleming, L. B., Yeung, B., … Satija, R. (2021). Integrated 
analysis of multimodal single-cell data. Cell. https://doi.org/10.1016/j.cell.2021.04.048 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. In 
Revista Espanola de las Enfermedades del Aparato Digestivo (Vol. 26, Issue 4). Springer 
New York. https://doi.org/10.1007/978-0-387-84858-7 

Herman, G. T. (1980). Image Reconstruction from Projections: The Fundamentals of 
Computerized Tomography. Academic Press.  

Heumann, C., Schomaker, M., & Shalabh. (2016). Introduction to Statistics and Data Analysis. 
In Journal of Association of Physicians of India (Vol. 64, Issue July). Springer International 
Publishing. https://doi.org/10.1007/978-3-319-46162-5 

Hinton, G., & Roweis, S. (2003). Stochastic neighbor embedding. Advances in Neural 
Information Processing Systems. 

Holzwarth, K., Köhler, R., Philipsen, L., Tokoyoda, K., Ladyhina, V., Wählby, C., Niesner, R. 
A., & Hauser, A. E. (2018). Multiplexed fluorescence microscopy reveals heterogeneity 
among stromal cells in mouse bone marrow sections. Cytometry Part A, 93(9), 876–888. 
https://doi.org/10.1002/cyto.a.23526 

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. 
Journal of Educational Psychology, 24(6), 417. 

Im, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An Introduction to Performing 
Immunofluorescence Staining. Methods in Molecular Biology (Clifton, N.J.), 1897(1), 
299–311. https://doi.org/10.1007/978-1-4939-8935-5_26 

Kamentsky, L., Jones, T. R., Fraser, A., Bray, M. A., Logan, D. J., Madden, K. L., Ljosa, V., 
Rueden, C., Eliceiri, K. W., & Carpenter, A. E. (2011). Improved structure, function and 
compatibility for cellprofiler: Modular high-throughput image analysis software. 
Bioinformatics, 27(8), 1179–1180. https://doi.org/10.1093/bioinformatics/btr095 

Kang, W., Yu, S., Seo, D., Jeong, J., & Paik, J. (2015). Push-broom-type very high-resolution 
satellite sensor data correction using combined wavelet-fourier and multiscale non-local 
means filtering. Sensors (Switzerland), 15(9), 22826–22853. 
https://doi.org/10.3390/s150922826 

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A., 
& Cseresnyes, Z. (2018a). Cell shape characterization and classification with discrete 
Fourier transforms and self-organizing maps. Cytometry Part A, 93(3), 323–333. 
https://doi.org/10.1002/cyto.a.23279 

Kriegel, F. L., Köhler, R., Bayat-Sarmadi, J., Bayerl, S., Hauser, A. E., Niesner, R., Luch, A., 
& Cseresnyes, Z. (2018b). Morphology-Based Distinction Between Healthy and 
Pathological Cells Utilizing Fourier Transforms and Self-Organizing Maps. Journal of 
Visualized Experiments : JoVE, 140. https://doi.org/10.3791/58543 

 



 

80 
 

Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. 
https://doi.org/10.1007/978-3-319-63913-0 

Lakowicz, J. R. (2013). Principles of Fluorescence Spectroscopy. Springer US.  

Li, C. ., Yang, H. ., Cai, Y. ., & Song, B. (2015). Image Denoising Algorithm Based on Non-
Subsampled Contourlet Transform and Bilateral Filtering. Proceedings of the International 
Conference on Computer Information Systems and Industrial Applications, 18(Cisia), 
666–669. https://doi.org/10.2991/cisia-15.2015.182 

Liang, X., Zang, Y., Dong, D., Zhang, L., Fang, M., Yang, X., Arranz, A., Ripoll, J., Hui, H., & 
Tian, J. (2016). Stripe artifact elimination based on nonsubsampled contourlet transform 
for light sheet fluorescence microscopy. Journal of Biomedical Optics, 21(10), 106005. 
https://doi.org/10.1117/1.jbo.21.10.106005 

Lichtman, J. W., & Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods, 2(12), 
910–919. https://doi.org/10.1038/nmeth817 

Lin, J. R., Fallahi-Sichani, M., & Sorger, P. K. (2015). Highly multiplexed imaging of single cells 
using a high-throughput cyclic immunofluorescence method. Nature Communications, 6, 
1–7. https://doi.org/10.1038/ncomms9390 

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of MultiVariate 
Observations. In L. M. Le Cam & J. Neyman (Eds.), Proc. of the fifth Berkeley Symposium 
on Mathematical Statistics and Probability (Vol. 1, pp. 281–297). University of California 
Press. 

Masters, B. R. (2008). History of the optical microscope in cell biology and medicine. ELS. 

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. http://arxiv.org/abs/1802.03426 (last opened May, 
25th 2023) 

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K. W., 
Doan, M., Ding, L., Rafelski, S. M., Thirstrup, D., Wiegraebe, W., Singh, S., Becker, T., 
Caicedo, J. C., & Carpenter, A. E. (2018). CellProfiler 3.0: Next-generation image 
processing for biology. PLOS Biology, 16(7), e2005970. 
https://doi.org/10.1371/journal.pbio.2005970 

Miura, K., & Sladoje, N. (2019). Bioimage Data Analysis Workflows. Springer International 
Publishing.  

Moses, L., & Pachter, L. (2022). Museum of spatial transcriptomics. Nature Methods, 19(5), 
534–546. https://doi.org/10.1038/s41592-022-01409-2 

Mothes, R., Pascual-Reguant, A., Koehler, R., Liebeskind, J., Liebheit, A., Bauherr, S., 
Dittmayer, C., Laue, M., Manitius, R. von, Elezkurtaj, S., Durek, P., Heinrich, F., Heinz, 
G. A., Guerra, G. M., Obermayer, B., Meinhardt, J., Ihlow, J., Radke, J., Heppner, F. L., 
… Hauser, A. E. (2022). Local CCL18 and CCL21 expand lung fibrovascular niches and 
recruit lymphocytes, leading to tertiary lymphoid structure formation in prolonged COVID-
19. MedRxiv, 2022.03.24.22272768. https://doi.org/10.1101/2022.03.24.22272768 

 

 

References



References 

81 
 

Mothes, R., Pascual-Reguant, A., Koehler, R., Liebeskind, J., Liebheit, A., Bauherr, S., 
Philipsen, L., Dittmayer, C., Laue, M., von Manitius, R., Elezkurtaj, S., Durek, P., Heinrich, 
F., Heinz, G. A., Guerra, G. M., Obermayer, B., Meinhardt, J., Ihlow, J., Radke, J., … 
Hauser, A. E. (2023). Distinct tissue niches direct lung immunopathology via CCL18 and 
CCL21 in severe COVID-19. Nature Communications, 14(1), 791. 
https://doi.org/10.1038/s41467-023-36333-2 

Münch, B., Trtik, P., Marone, F., & Stampanoni, M. (2009). Stripe and ring artifact removal with 
combined wavelet-Fourier filtering. EMPA Activities, 17(2009-2010 EMPA ACTIVITIES), 
34–35. https://doi.org/10.1364/oe.17.008567 

Narasimha Murty, M., & Krishna, G. (1980). A computationally efficient technique for data-
clustering. Pattern Recognition, 12(3), 153–158. https://doi.org/10.1016/0031-
3203(80)90039-4 

Olsen, T. K., & Baryawno, N. (2018). Introduction to Single‐Cell RNA Sequencing. Current 
Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.57 

Otsu, N., Smith, P. L., Reid, D. B., Environment, C., Palo, L., Alto, P., & Smith, P. L. (1979). A 
Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on 
Systems, Man, and Cybernetics, C(1), 62–66. 

Pascual-Reguant, A., Köhler, R., Mothes, R., Bauherr, S., Hernández, D. C., Uecker, R., 
Holzwarth, K., Kotsch, K., Seidl, M., Philipsen, L., Müller, W., Romagnani, C., Niesner, 
R., & Hauser, A. E. (2021). Multiplexed histology analyses for the phenotypic and spatial 
characterization of human innate lymphoid cells. Nature Communications, 12(1), 1–15. 
https://doi.org/10.1038/s41467-021-21994-8 

Pertuz, S., Puig, D., Garcia, M. A., & Fusiello, A. (2013). Generation of All-in-Focus Images by 
Noise-Robust Selective Fusion of Limited Depth-of-Field Images. IEEE Transactions on 
Image Processing, 22(3), 1242–1251. https://doi.org/10.1109/TIP.2012.2231087 

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. 
https://doi.org/10.1007/bf00116251 

Radbruch, H., Mothes, R., Bremer, D., Seifert, S., Köhler, R., Pohlan, J., Ostendorf, L., 
Günther, R., Leben, R., Stenzel, W., Niesner, R. A., & Hauser, A. E. (2017). Analyzing 
nicotinamide adenine dinucleotide phosphate oxidase activation in aging and vascular 
amyloid pathology. Frontiers in Immunology, 8(JUL), 1–12. 
https://doi.org/10.3389/fimmu.2017.00844 

Rakhymzhan, A., Acs, A., Hauser, A. E., Winkler, T. H., & Niesner, R. A. (2021). Improvement 
of the similarity spectral unmixing approach for multiplexed two-photon imaging by linear 
dimension reduction of the mixing matrix. International Journal of Molecular Sciences, 
22(11). https://doi.org/10.3390/ijms22116046 

Reinartz, J., Bruyns, E., Lin, J. Z., Burcham, T., Brenner, S., Bowen, B., Kramer, M., & 
Woychik, R. (2002). Massively parallel signature sequencing (MPSS) as a tool for in-
depth quantitative gene expression profiling in all organisms. Briefings in Functional 
Genomics and Proteomics, 1(1), 95–104. https://doi.org/10.1093/bfgp/1.1.95 

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & 
Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. 
BMC Bioinformatics, 18(1), 1–26. https://doi.org/10.1186/s12859-017-1934-z 



 

82 
 

S., L. R. S. R. (1896). XV. On the theory of optical images, with special reference to the 
microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science, 42(255), 167–195. https://doi.org/10.1080/14786449608620902 

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating 
inhibitors. Proceedings of the National Academy of Sciences of the United States of 
America, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 

Schapiro, D., Jackson, H. W., Raghuraman, S., Fischer, J. R., Vito, R., Zanotelli, T., Schulz, 
D., Giesen, C., Catena, R., & Varga, Z. (2018). Europe PMC Funders Group miCAT : A 
toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data. 
14(9), 873–876. https://doi.org/10.1038/nmeth.4391.miCAT 

Schapiro, D., Jackson, H. W., Raghuraman, S., Fischer, J. R., Zanotelli, V. R. T., Schulz, D., 
Giesen, C., Catena, R., Varga, Z., & Bodenmiller, B. (2017). HistoCAT: Analysis of cell 
phenotypes and interactions in multiplex image cytometry data. Nature Methods, 14(9), 
873–876. https://doi.org/10.1038/nmeth.4391 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, 
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., 
Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for 
biological-image analysis. Nature Methods, 9(7), 676–682. 
https://doi.org/10.1038/nmeth.2019 

Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell detection with star-convex 
polygons. Lecture Notes in Computer Science (Including Subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 11071 LNCS, 265–273. 
https://doi.org/10.1007/978-3-030-00934-2_30 

Schubert, W., Bonnekoh, B., Pommer, A. J., Philipsen, L., Böckelmann, R., Malykh, Y., 
Gollnick, H., Friedenberger, M., Bode, M., & Dress, A. W. M. (2006). Analyzing proteome 
topology and function by automated multidimensional fluorescence microscopy. Nature 
Biotechnology, 24(10), 1270–1278. https://doi.org/10.1038/nbt1250 

Schubert, W., Gieseler, A., Krusche, A., Serocka, P., & Hillert, R. (2012). Next-generation 
biomarkers based on 100-parameter functional super-resolution microscopy TIS. New 
Biotechnology, 29(5), 599–610. https://doi.org/https://doi.org/10.1016/j.nbt.2011.12.004 

Schwartz, J., Jiang, Y., Wang, Y., Aiello, A., Bhattacharya, P., Yuan, H., Mi, Z., Bassim, N., & 
Hovden, R. (2019). Removing Stripes, Scratches, and Curtaining with Non-Recoverable 
Compressed Sensing. Microscopy and Microanalysis, 25(S2), 174–175. 
https://doi.org/10.1017/s1431927619001600 

Shih, F. Y., & Cheng, S. (2005). Automatic seeded region growing for color image 
segmentation. Image and Vision Computing, 23(10), 877–886. 
https://doi.org/https://doi.org/10.1016/j.imavis.2005.05.015 

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., Giacomello, 
S., Asp, M., Westholm, J. O., Huss, M., Mollbrink, A., Linnarsson, S., Codeluppi, S., Borg, 
Å., Pontén, F., Costea, P. I., Sahlén, P., Mulder, J., Bergmann, O., … Frisén, J. (2016). 
Visualization and analysis of gene expression in tissue sections by spatial 
transcriptomics. Science, 353(6294), 78–82. https://doi.org/10.1126/science.aaf2403 

 

References



References 

83 
 

Stirling, D. R., Swain-Bowden, M. J., Lucas, A. M., Carpenter, A. E., Cimini, B. A., & Goodman, 
A. (2021). CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics, 
22(1), 1–11. https://doi.org/10.1186/s12859-021-04344-9 

Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist algorithm 
for cellular segmentation. Nature Methods, 18(1), 100–106. 
https://doi.org/10.1038/s41592-020-01018-x 

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, 
B. B., Siddiqui, A., Lao, K., & Surani, M. A. (2009). mRNA-Seq whole-transcriptome 
analysis of a single cell. Nature Methods, 6(5), 377–382. 
https://doi.org/10.1038/nmeth.1315 

Umbaugh, S. E. (2017). Digital Image Processing and Analysis: Applications with MATLAB 
and CVIPtools. CRC Press. https://books.google.de/books?id=ZflADwAAQBAJ 

van der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine 
Learning Research, 9(86), 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html 

Wählby, C., Erlandsson, F., Bengtsson, E., & Zetterberg, A. (2002). Sequential 
immunofluorescence staining and image analysis for detection of large  numbers of 
antigens in individual cell nuclei. Cytometry, 47(1), 32–41. 

Zehentmeier, S., Roth, K., Cseresnyes, Z., Sercan, Ö., Horn, K., Niesner, R. A., Chang, H. D., 
Radbruch, A., & Hauser, A. E. (2014). Static and dynamic components synergize to form 
a stable survival niche for bone marrow plasma cells. European Journal of Immunology, 
44(8), 2306–2317. https://doi.org/10.1002/eji.201344313 

Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of 
transparent objects. Physica, 9(7), 686–698. https://doi.org/10.1016/S0031-
8914(42)80035-X 

Zernike, F. (1955). How I Discovered Phase Contrast. Science, 121(3141), 345–349. 
https://doi.org/10.1126/science.121.3141.345 

  



84 
 

8. Appendix – Source codes 

8.1. Source codes 

8.1.1. SHADE – Fiji/imageJ PlugIn 
/* 
 * SHADE  (Shape Data Evaluation) plugin for ImageJ/Fiji 
 *  
 * Copyright (C) 2017 Ralf Köhler(1), Fabian Kriegel(2) and Dr. Zoltán Cseresnyés 
 *  
 * (1) German Rheumatism Research Centre Berlin, Immune Dynamics 
 * (2) German Federal Institute for Risk Assessment, Department of Chemical and  
 * Product Safety 
 * (3) Hans Knöll Institute Jena, Applied Systems Biology 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation  
 * (http://www.gnu.org/licenses/gpl.txt ) 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 *  
 * You should have received a copy of the GNU General Public 
 * License along with this program.  If not, see http://gnu.org/licenses/gpl.html 
 *  
 * */ 
 
import java.awt.Polygon; 
import java.io.File; 
 
import ij.IJ; 
import ij.ImagePlus; 
import ij.Prefs; 
import ij.gui.GenericDialog; 
import ij.gui.PolygonRoi; 
import ij.gui.Roi; 
import ij.gui.WaitForUserDialog; 
import ij.measure.Measurements; 
import ij.measure.ResultsTable; 
import ij.plugin.PlugIn; 
import ij.plugin.filter.Analyzer; 
import ij.plugin.frame.RoiManager; 
import ij.process.ImageConverter; 
import ij.process.ImageProcessor; 
 
/* 
 * This Plugin was developed to characterize the shape in 2D projections of 3D  
 * cell images recorded with a two photon microscope in discrete fourier  
 * transformed components. In just a few components (we used 20) the whole shape  
 * can be saved and reproduced within a small memory usage. Special shape  
 * properties are visible insight these values. With all components a database  
 * can be build creating machine learning approaches. 
 *  
 * For more information you can read in following publication: 
 * Cell shape characterization and classification with discrete 
 * Fourier transforms and Self-Organizing Maps - Fabian L. Kriegel et al.;  
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 * (Cytometry, Part A) 
 *  
 * */ 
  
public class SHADE_  implements PlugIn { 
     
        //initialize the global variables 
        boolean checkbatch, checkintermediate, checkSave, checkDarkBackground; 
        double numbergradient, iterationnumber, dilatations; 
        int checkintermediate_wert; 
        String dir2, imageName; 
        ResultsTable bigResultsTable = new ResultsTable(); 
         
    public void run(String arg) { 
 
        //graphical user interface for user defined values 
        GenericDialog gd = new GenericDialog("SHADE");  

  // open Dialogwindow with Title "SHADE"  
         
        gd.addMessage("Set up the SHADE for finding edges"); 
        gd.addMessage("------------------------------------------"); 
        //gd.addCheckbox("Step-by-Step-Mode (manualy saving) ?",false); 
        gd.addNumericField("Enter gradient threshold  ",40,0); 
        gd.addNumericField("Enter number of iterations",25,0); 
        gd.addNumericField("Number of dilatations", 10, 0); 
        gd.addCheckbox("Dark Background?", false); 
        gd.addCheckbox("Do you want to see the intermediate results ?", true); 
        gd.addCheckbox("Do you want to save Result Tables?", true); 
        gd.showDialog(); 
 
        if(gd.wasCanceled()) return;   
   
        numbergradient = gd.getNextNumber(); 
        iterationnumber = gd.getNextNumber(); 
        dilatations = gd.getNextNumber(); 
        checkDarkBackground = gd.getNextBoolean(); 
        checkintermediate = gd.getNextBoolean(); 
        checkSave = gd.getNextBoolean(); 
 
        if(checkintermediate==true)  
        checkintermediate_wert=1;  
        else checkintermediate_wert=0; 
         
        // get directory of single cell images (tif file format required) 
        String dir1 = IJ.getDirectory("Choose Source Folder");  
        if(dir1 == null) return; 
        String[] list1 = new File(dir1).list(); 
        if(list1 == null) return; 
        IJ.log("image source folder: "+dir1); 
         
        // get saving directory if option is checked 
        if(checkSave==true){ 
            dir2 = IJ.getDirectory("Choose Results saving folder"); 
            IJ.log("Results Table saving folder: "+dir2); 
        } 
         
        int[] roiLoc = new int[4]; 
         
        // loop through every image and process 
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        for (int l = 0; l < list1.length; l++) { 
             
            if(list1[l].endsWith(".tif")){ 
             
                IJ.open(dir1+list1[l]); 
             
                ImagePlus img = IJ.getImage(); 
                imageName = img.getShortTitle(); 
             
                // first image is used to get user defined ROI 
                if(!ROIisSet(roiLoc)) roiLoc = getInputROI(img); 
                img.setRoi(roiLoc[0],roiLoc[1],roiLoc[2],roiLoc[3]); 
             
                //run absnake plugin with preprocessed images 
                startPreprocess(img); 
                ResultsTable rt = new ResultsTable(); 
                rt = getABSnakeCoordsAndCalc(img.getTitle()); 
             
                if(checkintermediate==true) 
                rt.show("Results of : " + list1[l]); 
             
                if(checkSave==true) 
                rt.save(dir2+"Results_of_DFT_calc_"+(l+1)+"_"+imageName+".csv"); 
                IJ.run("Close All", ""); 
            } 
        }       
        bigResultsTable.show("All DFT components"); 
        if(checkSave==true) bigResultsTable.save(dir2 

+"Result_collection_of_all_DFT_calculations.csv"); 
        IJ.error("DFT calculations are done"); 
    } 
     
    // check if ROI is set in a first image event 
    public boolean ROIisSet(int[] roiLoc){ 
         
        if(roiLoc[0]>0 && roiLoc[1]>0 && roiLoc[2]>0 && roiLoc[3]>0){ 
            return true; 
        } 
        return false; 
    } 
     
    // create ROI only around cell -> uninteresting parts will be cropped 
    public int[] getInputROI(ImagePlus img) { 
         
        ResultsTable rt = new ResultsTable(); 
        int measurements = Measurements.RECT; 
        Analyzer analyzer = new Analyzer(img, measurements, rt); 
        int[] roiPosition = new int[4]; 
                 
        new WaitForUserDialog("First Image Event", "draw " 
                + "rectangle surounding cell !\n" 
                + "then you can go on by clicking 'OK' ").show(); 
         
        RoiManager rm = RoiManager.getInstance();  
        if(rm==null) rm = new RoiManager(); 
        rm.addRoi(img.getRoi()); 
        analyzer.measure(); 
        roiPosition[0] = (int)rt.getValue("BX", 0); 
        roiPosition[1] = (int)rt.getValue("BY", 0); 
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        roiPosition[2] = (int)rt.getValue("Width", 0); 
        roiPosition[3] = (int)rt.getValue("Height", 0); 
        img.deleteRoi(); 
        rm.select(0); 
        rm.runCommand(img,"Deselect"); 
        rm.runCommand(img,"Delete"); 
         return roiPosition; 
    } 
// crop image, make selection and run absnake plugin adding results to ROI manager 
    public void startPreprocess(ImagePlus img){ 
         
        ImagePlus inputImg = img.crop(); 
        img.close(); 
        ImageConverter cv = new ImageConverter(inputImg); 
        cv.convertToGray8(); 
         
            if (!checkDarkBackground) { 
                IJ.setAutoThreshold(inputImg, "RenyiEntropy"); 
            } 
            else { 
                IJ.setAutoThreshold(inputImg,  "RenyiEntropy dark"); 
            } 
             
        Prefs.blackBackground = false; 
        IJ.run(inputImg, "Convert to Mask", ""); 
         
        ImagePlus duplImg = inputImg.duplicate(); 
        ImageProcessor ipDupl = duplImg.getProcessor(); 
 
        for(int i = 0; i<dilatations; i++) { 
            ipDupl.dilate(); 
        } 
         
        inputImg.deleteRoi(); 
        duplImg.deleteRoi(); 
        IJ.run(duplImg, "Create Selection" ,"");   
        Roi roi = duplImg.getRoi(); 
         
        Polygon p = roi.getPolygon(); 
        inputImg.setRoi(new PolygonRoi(p.xpoints,p.ypoints,p.npoints,Roi.POLYGON))
; 
 
        duplImg.close(); 
        RoiManager rm = RoiManager.getInstance();  
        if(rm==null) rm = new RoiManager(); 
        rm.addRoi(inputImg.getRoi()); 
        inputImg.show(); 
         
        IJ.run("ABSnake", "gradient_threshold=" 

+numbergradient+" number_of_iterations=" 
        +iterationnumber+" step_results_show =" 

+checkintermediate_wert+" draw_color=Red save_coords"); 
         
        rm.select(0); 
        rm.runCommand(img,"Deselect"); 
        rm.runCommand(img,"Delete"); 
         
        inputImg.close(); 
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    } 
 
// read results from absnake txt file, calculate DFT components  
// and add to Results Table 
    public ResultsTable getABSnakeCoordsAndCalc(String imageTitle) {      
        String pathfile = "ABSnake-r1-z1.txt";  
        String filestring = IJ.openAsString(pathfile);  
        String[] rows = filestring.split("\n"); 
        //String[] title_row = rows[0].split("\\s+");   
         
        float[] num = new float[rows.length];  
        float[] x = new float[rows.length]; 
        float[] y = new float[rows.length]; 
        float[] z = new float[rows.length]; 
        float[] xcal = new float[rows.length]; 
        float[] ycal = new float[rows.length]; 
     
            for (int r=1; r<rows.length; r++)   
            {                                    
            String[] data = rows[r].split("\\s+");  
            String number = data[0]; 
            num[r] = Float.parseFloat(number); 
            String xvalue = data[1]; 
            x[r] = Float.parseFloat(xvalue); 
            String yvalue = data[2]; 
            y[r] = Float.parseFloat(yvalue); 
            String zvalue = data[3]; 
            z[r] = Float.parseFloat(zvalue); 
            String xcali = data[4]; 
            xcal[r] = Float.parseFloat(xcali); 
            String ycali = data[5]; 
            ycal[r] = Float.parseFloat(ycali); 
                 
            } 
         
        int n = x.length;  
        double[] oreal = new double[n]; 
        double[] oimag = new double[n]; 
        double[] oAmpl = new double[n]; 
        String[] natemp = new String[20]; 
        double[] toreal = new double[20]; 
        double[] toimag = new double[20]; 
        double[] toAmpl = new double[20]; 
        double[] tnumber = new double[20]; 
        String name = "Fourier-Parameter"; 
         
            for (int k = 0; k < n; k++)  
            {   
            double creal = 0; 
            double cimag = 0; 
             
            for (int t = 0; t < n; t++) {   
                creal = creal  
+ x[t]*Math.cos(2*Math.PI * t * k / n) + y[t]*Math.sin(2*Math.PI * t * k / n); 
                cimag = cimag  
+ -x[t]*Math.sin(2*Math.PI * t * k / n) + y[t]*Math.cos(2*Math.PI * t * k / n); 
                } 
             
            oreal[k] = creal; 
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            oimag[k] = cimag; 
            oAmpl[k] = Math.sqrt(creal*creal + cimag*cimag); 
            } 
 
        double[] timepoint = new double [19]; double time = 0; 
             
            for (int ti=0; ti<19; ti++) 
            {   timepoint[ti] = time ; time = time+1;   } 
 
        ResultsTable frt = new ResultsTable(); 
 
            for (int temc=1; temc < 20; temc++){ 
                 
            toreal[temc]=oreal[temc];  
            toimag[temc]=oimag[temc]; 
            toAmpl[temc]=oAmpl[temc]; 
            natemp[temc]=name; 
            tnumber[temc]=temc+1; 
 
            String real_value = String.valueOf(toreal[temc]); 
            String imag_value = String.valueOf(toimag[temc]); 
            String ampl_value = String.valueOf(toAmpl[temc]); 
             
            bigResultsTable.incrementCounter(); 
            bigResultsTable.addValue("Real", real_value); 
            bigResultsTable.addValue("Imag", imag_value); 
            bigResultsTable.addValue("Ampl", ampl_value); 
            bigResultsTable.addValue("file name", imageTitle); 
            frt.incrementCounter(); 
            frt.addValue("Real", real_value); // (first column, value column(r)) 
            frt.addValue("Imag", imag_value); 
            frt.addValue("Ampl", ampl_value); 
             
            }    
 
            bigResultsTable.incrementCounter(); 
            bigResultsTable.addValue("Real", 0); 
            bigResultsTable.addValue("Imag", 0); 
            bigResultsTable.addValue("Ampl", 0); 
        //frt.show("Results"); 
        return frt; 
    } 
     
} 
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8.1.2. MELC Evaluation Toolbox – Fiji/imageJ PlugIn 
MELC_EvaluationToolbox (main class) 
import ij.IJ; 
import ij.ImagePlus; 
import ij.gui.GenericDialog; 
import ij.plugin.PlugIn; 
 
public class MELC_EvaluationToolbox_ implements PlugIn { 
         
    ImagePlus img; 
     
    public void run(String arg) { 
 
        ImagePlus img = IJ.getImage(); 
        getUserInputAndDetect(img); 
                 
    } 
     
    void getUserInputAndDetect(ImagePlus inputImage){ 
         
        String[] anySizeChoice = {"yes","no"}; 
         
        GenericDialog gd = new GenericDialog("give me some input"); 
        gd.addNumericField("sigma (unsharp mask): ", 3, 2); 
        gd.addNumericField("weight factor: ", 0.75, 2); 
        gd.addNumericField("mean factor: ", 1.25, 2); 
        gd.addNumericField("min Diameter [px]:" , 10, 1); 
        gd.addNumericField("max Diameter [px]:", 30, 1); 
        //gd.addChoice("fill holes", holesChoice, "no"); 
        //gd.addChoice("use watershed", watershedChoice, "no"); 
        gd.addChoice("show any size", anySizeChoice, "no"); 
        gd.showDialog(); 
         
        if(gd.wasCanceled()) return; 
         
        detector d = new detector(inputImage); 
        d.setParams((int)gd.getNextNumber(), (float)gd.getNextNumber(),  
                    gd.getNextNumber(), (int)gd.getNextNumber(),  

(int)gd.getNextNumber(), gd.getNextChoice()); 
        d.detectNuclei(); 
         
        if(d.anySizeChoice == "no"){ 
            d.show(); 
        } 
        else d.showAnySizeCells(); 
         
     } 
    } 
 

cell class 
import java.util.ArrayList; 
import java.awt.Point; 
import ij.gui.PointRoi; 
 
public class cell extends MELC_EvaluationToolbox_ { 
 
     
    int minx, miny, maxx, maxy; 
    int startX, startY; 
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    int centerX, centerY; 
    int area; 
     
    ArrayList<Point> points; 
    ArrayList<Integer> intensities; 
    ArrayList<Point> borderPoints; 
    //PointRoi cellRoi; 
     
    cell(int x, int y){ 
         
        minx = x; 
        miny = y; 
        maxx = x; 
        maxy = y; 
                 
        centerX = x; 
        centerY = y; 
 
        points = new ArrayList<Point>(); 
        points.add(new Point(x,y)); 
         
        intensities = new ArrayList<Integer>(); 
         
        borderPoints = new ArrayList<Point>(); 
         
        area = 1; 
         
    } 
     
    void add(int x, int y){ 
         
        Point p = new Point(x,y); 
        points.add(p); 
         
        minx = Math.min(minx, x); 
        miny = Math.min(miny, y); 
        maxx = Math.max(maxx, x); 
        maxy = Math.max(maxy, y); 
         
        centerX = (minx + maxx) / 2; 
        centerY = (miny + maxy) / 2; 
 
        area += 1; 
    } 
     
    void add(int x, int y, int intensity){ 
         
        Point p = new Point(x,y); 
        points.add(p); 
         
        minx = Math.min(minx, x); 
        miny = Math.min(miny, y); 
        maxx = Math.max(maxx, x); 
        maxy = Math.max(maxy, y); 
                 
        centerX = (minx + maxx) / 2; 
        centerY = (miny + maxy) / 2; 
         
        intensities.add(intensity); 
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        area += 1; 
     } 
    int mean(){ 
         
        int m = 0; 
        double meanIntensity = 0; 
         
        for(int i : intensities){ 
             
            m += i; 
        } 
         
        meanIntensity = m/intensities.size(); 
        return (int)meanIntensity; 
    } 
     
    int area(){ 
         
        return area; 
    } 
     
    boolean contains(int x, int y){ 
         
        boolean contain = false; 
         
        for (Point p : points){ 
             
            if(p.x == x && p.y == y){ 
                 
                contain = true; 
                break; 
            } 
        } 
        return contain; 
    } 
     
    ArrayList<Point> getOutline(){ 
         
        Point pn, pe, ps, pw; // north, east, south, west 
         
        for(Point p : points){ 
     
            pn = new Point(p.x,p.y+1); 
            pe = new Point(p.x+1,p.y); 
            ps = new Point(p.x,p.y-1); 
            pw = new Point(p.x-1,p.y); 
             
            if(!points.contains(pn) || !points.contains(pe) || 
                    !points.contains(ps) || !points.contains(pw)){ 
                 
                Point pp = new Point(p.x, p.y); 
                borderPoints.add(pp); 
                 
            } 
                 
        } 
        return borderPoints; 
    } 
} 
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detector class 
import java.awt.Color; 
import java.awt.Point; 
import java.util.ArrayList; 
import java.util.Collections; 
 
import ij.IJ; 
import ij.ImagePlus; 
import ij.Prefs; 
import ij.gui.Overlay; 
import ij.gui.PointRoi; 
import ij.gui.Roi; 
import ij.measure.Measurements; 
import ij.measure.ResultsTable; 
import ij.plugin.filter.Analyzer; 
import ij.plugin.filter.Convolver; 
import ij.plugin.filter.ParticleAnalyzer; 
import ij.process.ImageProcessor; 
 
public class detector extends MELC_EvaluationToolbox_{ 
 
    ImagePlus img, maskImage, voronoiImage, outlineImage; 
    ImageProcessor ip, maskIP, voronoiIP, outlineImageP; 
    int sigma, minArea, maxArea, startPointIndex, minDiameter, maxDiameter; 
    float weight; 
    double meanTollerance, distLimit, backgroundMin; 
    boolean holes = false; 
    boolean watershed = false; 
    String anySizeChoice; 
    ArrayList<cell> cells = new ArrayList<cell>(); 
    ArrayList<Point> startPoints = new ArrayList<Point>(); 
    cell c; 
     
     
    detector(ImagePlus inputImage){ 
         
        img = inputImage; 
        ip = img.getProcessor(); 
        sigma = 3; 
        weight = 0.75f; 
        meanTollerance = 1.5; 
        maxArea = 0; 
         
    } 
     
    void setParams(int sigma, float weight,  

double meanTollerance, int minDiameter,  
            int maxDiameter, String anySizeChoice){ 
         
        this.sigma = sigma; 
        this.weight = weight; 
        this.meanTollerance = meanTollerance; 
        this.minDiameter = minDiameter; 
        this.maxDiameter = maxDiameter; 
        this.anySizeChoice = anySizeChoice; 
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        minArea = (int)((minDiameter * minDiameter)*Math.PI/4); 
        maxArea = (int)((maxDiameter * maxDiameter)*Math.PI/4); 
         
        calcDistLimit(maxDiameter); 
        IJ.log("------------------------------------------"); 
        IJ.log("set Parameters : "); 
        IJ.log("input image           : " + img.getTitle()); 
        IJ.log("sigma  (unsharp mask) : " + sigma); 
        IJ.log("weight (unsharp mask) : " + weight); 
        IJ.log("min diameter          : " + minDiameter); 
        IJ.log("max diameter          : " + maxDiameter); 
        IJ.log("min area              : " + minArea); 
        IJ.log("max area              : " + maxArea); 
        IJ.log("any size choice       : " + anySizeChoice); 
        IJ.log("------------------------------------------"); 
    } 
     
    void detectNuclei(){ 
         
        IJ.showStatus("looking for seeds..."); 
        getStartPositions(img); 
        createMask(); 
        //analyseMask(); 
    } 
     
    void detectMembrane(Roi[] nucleiRoi, ArrayList<Point> centers, 

 double[] minNeighborDist){ 
         
        // new version with additional Roi[] Array 
        // comming from the allowed centers you should start at boundary 
        // pixels of this roi and let it grow, to avoid center segmentation 
         
        startPoints = centers; 
        backgroundMin = 0; 
        Overlay ovl = new Overlay(); 
        startPointIndex = 0; 
        maskImage = IJ.createImage("Membrane Mask",  

img.getWidth(), img.getHeight(), 1, 8); 
        maskIP = maskImage.getProcessor(); 
        voronoiImage = IJ.createImage("Voronoi Mask",  

img.getWidth(), img.getHeight(), 1, 8); 
        voronoiIP = voronoiImage.getProcessor(); 
        //voronoi image has to be build by placing all the positiv starting points 
        //inside empty image 
         
        for(Point sPoint : startPoints){ 
             
            voronoiIP.set(sPoint.x, sPoint.y, 255); 
        } 
         
        IJ.run(voronoiImage, "Convert to Mask", ""); 
        IJ.run(voronoiImage, "Voronoi", ""); 
         
        for(Point p : startPoints){ 
             
            PointRoi pr = new PointRoi(p.x,p.y); 
            pr.setPointType(2); 
            ovl.add(pr); 
            distLimit = minNeighborDist[startPointIndex]; 
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            c = new cell(p.x,p.y); 
            c.add(p.x,p.y,ip.get(p.x, p.y)); 
            grow4N(p.x, p.y); 
            //cells.add(c); 
            startPointIndex++; 
        } 
        getCellOutlines(); 
        maskImage.setOverlay(ovl); 
        maskImage.show(); 
    } 
     
    void createMask(){ 
         
        maskImage = IJ.createImage("Nuclei Mask", img.getWidth(),  

img.getHeight(), 1, 8); 
        maskIP = maskImage.getProcessor(); 
        startPointIndex = 0; 
        IJ.showStatus("cell regions grow..."); 
         
        for(Point p : startPoints){ 
             
            IJ.showProgress(startPointIndex+1, startPoints.size()); 
            IJ.showStatus("cell regions grow..."); 
            c = new cell(p.x,p.y); 
            c.add(p.x,p.y,ip.get(p.x, p.y)); 
            grow4N(p.x, p.y); 
            cells.add(c); 
            startPointIndex++; 
        } 
         
        if(holes){ 
            IJ.run(maskImage, "Fill Holes", ""); 
        } 
         
        if(watershed){ 
            IJ.run(maskImage, "Watershed",""); 
        } 
        //get the real cell objects after cleanup from maskImage 
        getCellOutlines(); 
   
    } 
     
    ImagePlus getMask(){ 
         
        return maskImage; 
    } 
     
    void getStartPositions(ImagePlus img){ 
         
        // basic idea of this function is to get the start pixel map for  
        // a region growing algorithm. To extend image signal it is filtered 
        // with unsharp mask filter. At next thresholding creates binary image 
        // where we calculate the ultimate points (max eroded distance map). 
        // every pixel bigger 0 is a starting position 
         
        ImagePlus imp = img.duplicate(); 
        ImageProcessor impIP = imp.getProcessor(); 
 
        //IJ.run(imp, "Mean...", "radius=2"); 
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        IJ.run(imp, "Gaussian Blur...", "sigma=2"); 
        IJ.run(imp, "Unsharp Mask...", "radius="+sigma+" mask="+ weight); 
        IJ.setAutoThreshold(imp, "Otsu dark"); 
        Prefs.blackBackground = true; 
        backgroundMin = imp.getDisplayRangeMin(); 
        IJ.log("lower backround value : " + backgroundMin); 
        IJ.run(imp, "Convert to Mask", ""); 
        IJ.run(imp, "Ultimate Points", ""); 
        for(int x=1;x<imp.getWidth()-1;x++){ 
            for(int y=1;y<imp.getHeight()-1;y++){ 
                 
                int[] intensity = imp.getPixel(x, y);//.getPixel(x,y); 
                 
                if(intensity[0]>=1){ 
                     
                    startPoints.add(new Point(x,y)); 
                    impIP.set(x, y, 255); 
                } 
            } 
        } 
        IJ.run(imp, "Convert to Mask", ""); 
         
        IJ.log("I found " + startPoints.size() + " start positions"); 
         
        cleanUpStartPoints(); 
         
        IJ.log("I cleaned start positions up to : " + startPoints.size()); 
         
        voronoiImage = IJ.createImage("Voronoi Mask", img.getWidth(),  

img.getHeight(), 1, 8); 
        voronoiIP = voronoiImage.getProcessor(); 
         
        //voronoi image has to be build by placing all the positiv starting points 
        //inside empty image 
         
        for(Point sPoint : startPoints){ 
             
            voronoiIP.set(sPoint.x, sPoint.y, 255); 
        } 
         
        IJ.run(voronoiImage, "Convert to Mask", ""); 
        IJ.run(voronoiImage, "Voronoi", ""); 
    } 
     
    void cleanUpStartPoints(){ 
         
        //ArrayList<Point> deletableStartPoints = new ArrayList<Point>(); 
         
        int startPointsLength = startPoints.size(); 
         
        //for(int s1 = 0; s1 < startPointsLength; s1++){ 
        for(int s1 = startPointsLength - 1; s1 >= 0; s1--){  
            Point p = startPoints.get(s1); 
             
            //for(int s2 = 0; s2 < startPointsLength; s2++){ 
            for(int s2 = startPointsLength - 1; s2 >= 0; s2--){ 
                Point pp = startPoints.get(s2); 
                double measuredDist = dist(p.x,p.y,pp.x,pp.y); 
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                if((int)measuredDist <= minDiameter && (int)measuredDist != 0){ 
                     
                    //deletableStartPoints.add(pp); 
                    startPoints.remove(pp); 
                    //startPoints.set(s2, new Point(0,0)); 
                    startPoints.add(new Point(0,0)); 
                } 
            } 
        } 
         
        for(int loc = startPoints.size()-1; loc >= 0; loc--){ 
             
            Point zP = startPoints.get(loc); 
             
            if(startPoints.contains(new Point(0,0))){ 
                startPoints.remove(zP); 
            } 
             
        } 
                 
        Overlay ovl = new Overlay(); //startPositions 
         
        for(Point ppp : startPoints){ 
             
            PointRoi pRoi = new PointRoi(ppp.x,ppp.y); 
            pRoi.setPointType(2); 
            ovl.add(pRoi); 
             
        } 
         
        img.setOverlay(ovl); 
        img.show(); 
         
    } 
     
    void grow4N(int x, int y){ 
         
         
        boolean noBorders = checkBorders(x,y); 
        boolean m = checkMean(x,y); 
        boolean d = checkDistance(x,y); 
        boolean s = isSet(x,y); 
        boolean neighborhoodReached = checkNeighborhood(x,y); 
         
        if(!s && d && m && noBorders && !neighborhoodReached){ 
             
            maskIP.set(x, y, 255); 
            c.add(x, y, ip.get(x, y)); 
            grow4N(x+1,y); 
            grow4N(x-1,y); 
            grow4N(x,y+1); 
            grow4N(x,y-1); 
        } 
    } 
     
    void grow8N(int x, int y){ 
         
         
        boolean noBorders = checkBorders(x,y); 
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        boolean m = checkMean(x,y); 
        boolean d = checkDistance(x,y); 
        boolean s = isSet(x,y); 
        boolean neighborhoodReached = checkNeighborhood(x,y); 
         
        if(!s && d && m && noBorders && !neighborhoodReached){ 
             
            maskIP.set(x, y, 255); 
            c.add(x, y, ip.get(x, y)); 
            grow8N(x+1,y); 
            grow8N(x-1,y); 
            grow8N(x,y+1); 
            grow8N(x,y-1); 
             
            grow8N(x+1,y+1); 
            grow8N(x-1,y+1); 
            grow8N(x+1,y-1); 
            grow8N(x-1,y-1); 
        } 
    } 
     
    boolean checkBorders(int x, int y){ 
         
        if(x<ip.getWidth()-1 && x>1 && y<ip.getHeight()-1 && y>1){ 
            return true; 
        } 
        else return false; 
         
    } 
     
    boolean checkDistance(int x, int y){ 
         
        //check if the distance is not to far away 
        Point p = startPoints.get(startPointIndex); 
        double d = dist(x,y,p.x,p.y); 
         
        if(d>distLimit){ 
            return false; 
        } 
        else return true; 
         
    } 
     
    boolean isSet(int x, int y){ 
         
        try { 
            int intens = maskIP.get(x, y); 
            if(intens>0){ 
            return true; 
            } 
            else return false; 
        }  
        catch (ArrayIndexOutOfBoundsException e) { 
 
        return false; 
        } 
         
    } 
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    boolean checkMean(int x, int y){ 
         
        double mean = 0;     
        //IJ.log("mean : " + c.mean()); 
         
        try {        
            mean += (double)ip.get(x, y); 
            mean += (double)ip.get(x+1,y); 
            mean += (double)ip.get(x-1,y); 
            mean += (double)ip.get(x,y+1); 
            mean += (double)ip.get(x,y-1); 
            mean = (mean*meanTollerance)/5; 
            //IJ.log("current mean : " + mean); 
             
            if(mean >= backgroundMin &&  c.mean() <= mean){ 
                 
                return true; 
            } 
            else return false; 
             
        } 
         
        catch (ArrayIndexOutOfBoundsException e) { 
            return false; 
        } 
         
    } 
     
    boolean checkNeighborhood(int x, int y){ 
         
        // to accelerate computation create voronoi map and check if x,y 
        // is touching the voronoi border 
         
        boolean neighborReached = false; 
         
        if(voronoiIP.get(x, y) > 1){ 
            neighborReached = true; 
        } 
         
        return neighborReached; 
    } 
     
    public static double dist(int x1, int y1, int x2, int y2){ 
         
        double d = Math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)); 
        return d; 
    } 
     
    void calcDistLimit(int maxArea){ 
         
        //distLimit = Math.sqrt(maxArea*4/Math.PI); 
        distLimit = maxDiameter;///2; 
    } 
     
     
    void getCellOutlines(){ 
         
        ImagePlus borderImage = IJ.createImage("border mask", img.getWidth(),  

img.getHeight(), 1, 8); 
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        ImageProcessor borderIP = borderImage.getProcessor(); 
         
        for(cell cc : cells){ 
     
            ArrayList<Point> outlinePixels = cc.getOutline(); 
            //IJ.log("outlinePixels size : " + cc.borderPoints.size()); 
             
            for(Point p : outlinePixels){ 
                 
                borderIP.set(p.x, p.y, 255); 
            } 
        } 
         
        borderImage.show(); 
         
    } 
    void show(){ 
                         
        IJ.log("total cell in cells array : " + cells.size()); 
        int cellCount = 0; 
         
        for(cell cc : cells){ 
             
            if(cc.area >= minArea && cc.area <= maxArea){ 
                 
                cellCount += 1; 
                 
            } 
             
            else{ 
                 
                for(int i = 0; i<cc.points.size(); i++){ 
                     
                    Point p = cc.points.get(i); 
                    maskIP.set(p.x, p.y, 0); 
                } 
            } 
 
        } 
         
        IJ.log("cells in alowed size : " + cellCount); 
        maskImage.show(); 
    } 
     
    void showAnySizeCells(){ 
     
        IJ.log("total cell in cells array : " + cells.size()); 
        int cellCount = 0; 
         
        for(cell cc : cells){ 
             
            if(cc.area >1){ 
                 
                cellCount += 1; 
            } 
        } 
         
        IJ.log("cells in any size (bigger than 1 px) : " + cellCount); 
        maskImage.show(); 
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    } 
 
    void analyseMask(){ 
         
        int options = ParticleAnalyzer.ADD_TO_MANAGER+ 

ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES+ 
ParticleAnalyzer.INCLUDE_HOLES+ 
ParticleAnalyzer.CLEAR_WORKSHEET; 

        int measurements = Measurements.AREA+Measurements.CENTROID+ 
Measurements.CIRCULARITY; 

        ResultsTable rt = new ResultsTable(); 
        ParticleAnalyzer pa = new ParticleAnalyzer(options,measurements,rt,  
            (double) minArea, (double) maxArea); 
        pa.analyze(maskImage); 
         
        rt.show("measurements of found objects"); 
    } 
} 

Plot2CH 
import java.awt.Button; 
import java.awt.Color; 
import java.awt.Panel; 
import java.awt.Point; 
import java.awt.Rectangle; 
import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
 
import ij.CompositeImage; 
import ij.IJ; 
import ij.ImagePlus; 
import ij.ImageStack; 
import ij.WindowManager; 
import ij.gui.GUI; 
import ij.gui.GenericDialog; 
import ij.gui.Overlay; 
import ij.gui.Plot; 
import ij.gui.Roi; 
import ij.plugin.frame.PlugInFrame; 
import ij.process.ImageProcessor; 
 
public class Plot_2CH extends PlugInFrame implements ActionListener { 
     
    // defining global variables 
    ImagePlus origImage; 
    ImagePlus gatedCellImage; 
    String[] roiPositions; 
    int[] roiPositionsNumber; 
    String[] stainingList; 
    int[] stainingListNumber; 
    Roi[] rois; 
    float[][] plotValues; 
    Overlay plotOvlContainer; 
         
    String[] plotChoice; 
    ImagePlus img; 
    ImageStack ims; 
     
    Panel panel; 
    Button b1,b2; 
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    String title = "Plot_2CH"; 
    WindowManager wm; 
     
    public Plot_2CH(){ 
         
        // create little panel with buttons for plotting and gating tool 
        super("Plot_2CH"); 
        this.setTitle("Plot 2 CH"); 
        this.setSize(200,200); 
        panel = new Panel(); 
        b1 = new Button("plot"); 
        b1.addActionListener(this); 
        b2 = new Button("get gated cells"); 
        b2.addActionListener(this); 
        panel.add(b1); 
        panel.add(b2); 
        this.add(panel); 
        GUI.center(this);//panel.setVisible(true); 
    } 
    public void actionPerformed(ActionEvent e){ 
         
        // button pressed action observation 
         
        if(e.getSource() == this.b1){    
            initImagesAndPlot(); 
        } 
         
        if(e.getSource() == this.b2){ 
            showGatedCells(); 
        } 
    } 
     
    public void run(String arg) { 
        // main function for ImageJplugin 
        img = IJ.getImage(); 
        ims = img.getImageStack(); 
        origImage = img; 
             
            if(!checkInput(img)){ 
                IJ.error("make sure your segmented images are in a stack"); 
                return; 
            } 
            else{ 
                //initImages(); 
                Plot_2CH p2ch = new Plot_2CH(); 
                p2ch.setVisible(true); 
            } 
        } 
     
    void initImagesAndPlot(){ 
         
        // initialize images, extract two channels, plot their mean intensity 
         
        //get input from user which channels should be plotted 
        //select stack positions, get rois of these stainings, plot them 
        img = IJ.getImage(); 
        ims = img.getImageStack(); 
        origImage = img; 
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        Overlay ovl = img.getOverlay(); 
        rois = ovl.toArray(); 
        roiPositions = new String[rois.length]; 
        roiPositionsNumber = new int[rois.length]; 
        stainingList = new String[img.getNSlices()]; 
        stainingListNumber = new int[img.getNSlices()]; 
         
        for(int i = 0; i<rois.length; i++){ 
         
             roiPositions[i] = ims.getShortSliceLabel(rois[i].getPosition()); 
             roiPositionsNumber[i] = i; 
             //IJ.log("roiPosition : " + roiPositions[i]); 
        } 
         
        for(int j=0; j<stainingList.length; j++){ 
             
            stainingList[j] = ims.getShortSliceLabel(j+1); 
            stainingListNumber[j] = j; 
            //IJ.log("stainingList : " + stainingList[j]); 
        } 
         
        plotChoice = get2CH(); // get the string which ch should be plotted 
         
        if(plotChoice[0].equals("-1") && plotChoice[1].equals("-1")){ 
            return; 
        } 
        else{ 
            plot(plotChoice); 
        } 
    } 
     
    boolean checkInput(ImagePlus img){ 
 
        // plugin requires segmented image stack 
        boolean check; 
        int sliceNum = img.getNSlices(); 
        Overlay ovl = img.getOverlay(); 
         
        if(sliceNum <= 1 || ovl == null){ 
            check = false; 
        } 
        else check = true; 
 
        return check; 
         
    } 
    String[] get2CH(){ 
         
        // ask user which ch he would like to plot against each other 
        String[] userChoice = new String[2]; 
         
        GenericDialog gd =  

new GenericDialog("Which Channels you would like to plot?"); 
        gd.addChoice("CH 1 :", stainingList, stainingList[0]); 
        gd.addChoice("CH 2 :", stainingList, stainingList[1]); 
        gd.showDialog(); 
         
        if(gd.wasCanceled()){ 
            userChoice[0] = "-1"; 
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            userChoice[1] = "-1"; 
        } 
         
        if(gd.wasOKed()){ 
            userChoice[0] = gd.getNextChoice(); 
            userChoice[1] = gd.getNextChoice(); 
        } 
         
        return userChoice; 
         
    } 
     
    void plot(String[] plotChoice){ 
         
        // plot the values of the two channels 
        plotValues = getPlotValues(plotChoice); 
 
        Plot p = new Plot("plot of "+ plotChoice[0] +  

" and " + plotChoice[1], plotChoice[0], plotChoice[1]); 
        p.addPoints(plotValues[0], plotValues[1], Plot.CROSS); 
        p.show(); 
 
    } 
    float[][] getPlotValues(String[] plotChoice){ 
         
        // extract the objects out of the stack and calculate their mean intensity 
        // and create an image to show only the two channels and their selected  

 // cell objects 
         
        int countedRoi = 1; 
        int stackPos1 = 0; 
        int stackPos2 = 0; 
         
        for(int s = 0; s < stainingList.length; s++){ 
             
            if(plotChoice[0] == stainingList[s]){ 
                stackPos1 = stainingListNumber[s]; 
            } 
             
            if(plotChoice[1] == stainingList[s]){ 
                stackPos2 = stainingListNumber[s]; 
            } 
        } 
         
        ImagePlus imp = origImage.duplicate();//new ImagePlus("duplicated stack"); 
        ImageStack ims = imp.getImageStack(); 
        ImageProcessor ip1 = ims.getProcessor(stackPos1+1); 
        ImageProcessor ip2 = ims.getProcessor(stackPos2+1); 
         
        for(int i = 0; i<rois.length; i++){ 
             
            if(plotChoice[0].equals(roiPositions[i])){ 
                countedRoi += 1; 
            } 
        } 
         
        float[][] plotValues = new float[2][countedRoi]; 
        float meanValue1, meanValue2, area; 
        int roiCount = 0; 
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        plotOvlContainer = new Overlay(); 
         
        for(int j = 0; j<rois.length; j++){ 
             
            meanValue1 = 0; 
            meanValue2 = 0; 
            area = 0; 
             
            if(plotChoice[0].equals(roiPositions[j])){   
             
                plotOvlContainer.add(rois[j]); 
                 
                for(Point p : rois[j]){ 
                     
                    meanValue1 += ip1.getf(p.x,p.y); 
                    meanValue2 += ip2.getf(p.x, p.y); 
                    area += 1; 
                } 
                 
                plotValues[0][roiCount] = meanValue1/area; 
                plotValues[1][roiCount] = meanValue2/area; 
                roiCount++; 
            } 
        } 
 
        ImageStack ims2 = new ImageStack(ip1.getWidth(),ip1.getHeight()); 
        ims2.addSlice(ip1); 
        ims2.addSlice(ip2); 
        gatedCellImage = new ImagePlus("gated cell image", ims2); 
        plotOvlContainer.setStrokeColor(Color.YELLOW); 
        gatedCellImage.setOverlay(plotOvlContainer); 
        //IJ.run(gatedCellImage, "Make Composite", "display=Composite");         
         
        CompositeImage ci = new CompositeImage(gatedCellImage); 
        ci.setMode(CompositeImage.COMPOSITE); 
        //ci.show(); 
        gatedCellImage = ci; 
        gatedCellImage.show(); 
         
        return plotValues; 
         
    } 
     
    void showGatedCells(){ 
     
        // gating tool inside the plot 
         
        ImagePlus pw; 
        Roi plotRoi; 
        Roi[] cellRois; 
        Rectangle r; 
        double xOrigin, yOrigin, xWidth, yHeigth; 
     
        IJ.selectWindow("plot of "+ plotChoice[0] + " and " + plotChoice[1]); 
        pw = IJ.getImage(); 
        plotRoi = pw.getRoi(); 
         
        if(plotRoi == null){ 
            IJ.error("Create a gate, please"); 



106 
 

            return; 
        } 
         
        r = plotRoi.getBounds(); 
         
        //calculating the real position of the bounding rect in the scaled  

 //plot image 
         
        xOrigin = pw.getCalibration().xOrigin; 
        yOrigin = pw.getCalibration().yOrigin; 
        xWidth = pw.getCalibration().pixelWidth; 
        yHeigth = pw.getCalibration().pixelHeight; 
         
        cellRois = plotOvlContainer.toArray(); 
        Overlay gatedCellsOvl = new Overlay(); 
         
        for(int i = 0; i < plotValues[0].length-1; i++){ 
             
            double plotValueX = Math.round(plotValues[0][i]); 
            double plotValueY = Math.round(plotValues[1][i]); 
            int count = 0; 
             
            for(Point p : plotRoi){ 
                 
                double px = Math.round(((double)p.x - xOrigin)*xWidth); 
                double py = Math.round((yOrigin - (double)p.y)*yHeigth); 
                 
                if(plotValueX == px && plotValueY == py && count == 0){ 
                     
                    //IJ.log("plot x : " + Math.round(plotValues[0][i])); 
                    //IJ.log("plot y : " + Math.round(plotValues[1][i])); 
                    //IJ.log("p.x    : " + px); 
                    //IJ.log("p.y    : " + py); 
                    //IJ.log("match " + (count+1+i)); 
                     
                    gatedCellsOvl.add(cellRois[i]); 
                     
                    count++; 
 
                } 
            } 
 
        } 
         
        gatedCellsOvl.setStrokeColor(Color.YELLOW); 
        gatedCellImage.setOverlay(gatedCellsOvl); 
        gatedCellImage.updateAndDraw(); 
    } 
     
 
} 
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8.1.3. markerSpecifiedSearching – Fiji/imageJ PlugIn 

import java.awt.Color; 
import java.awt.Point; 
import java.awt.Rectangle; 
import java.util.ArrayList; 
 
import ij.IJ; 
import ij.ImagePlus; 
import ij.ImageStack; 
import ij.gui.GenericDialog; 
import ij.gui.Overlay; 
import ij.gui.Roi; 
import ij.measure.ResultsTable; 
import ij.plugin.PlugIn; 
 
public class markerSpecifiedSearching implements PlugIn { 
     
    Roi[] rois; 
    boolean[] countedRoi; 
    boolean[] markerValues; 
    String[] imageNames; 
    String[] imageList; 
    ImagePlus resultImage; 
     
    ArrayList<ArrayList<Integer>> neighborCollection; 
    ArrayList<ArrayList<String>> neighborCollectionNames; 
     
    public void run(String arg) { 
         
        ImagePlus img = IJ.getImage(); 
        ImageStack ims = img.getImageStack(); 
        resultImage = img.duplicate(); 
         
        if(!checkInput(img)){ 
            IJ.error("make sure your segmented images are in a stack"); 
        } 
        else { 
             
            Overlay ovl = img.getOverlay(); 
            rois = ovl.toArray(); 
            imageNames = new String[rois.length]; 
            imageList = new String[img.getNSlices()]; 
            countedRoi = new boolean[rois.length]; 
             
            for(int i = 0; i<rois.length; i++){ 
             
                 imageNames[i] = ims.getShortSliceLabel(rois[i].getPosition()); 
                 countedRoi[i] = false; 
            } 
            for(int j=0; j<imageList.length; j++){ 
                 
                imageList[j] = ims.getShortSliceLabel(j+1); 
          
            } 
             
            markerValues = new boolean[imageList.length]; 
            markerValues = getMarkerCombination(); 
            int gdCanceldCount = 0; 
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            for(int k = 0; k < markerValues.length; k++){ 
                 
                if(!markerValues[k]) 
                gdCanceldCount += 1; 
            } 
             
            if(markerValues.length == gdCanceldCount) return; 
             
            searchMarkerCombination(); 
        }                       
    } 
     
    boolean checkInput(ImagePlus img){ 
         
        boolean check; 
        int sliceNum = img.getNSlices(); 
        Overlay ovl = img.getOverlay(); 
         
        if(sliceNum <= 1 || ovl == null){ 
            check = false; 
        } 
        else check = true; 
         
        return check; 
    } 
     
    boolean[] getMarkerCombination(){ 
         
        boolean[] markerValue = new boolean[imageList.length]; 
         
        //IJ.log("get user information about allowed marker combination..."); 
        GenericDialog gd = new GenericDialog("Set Marker Combination"); 
        gd.addMessage("checkbox checked means positive"); 
        gd.addMessage("checkbox unchecked means negative"); 
     
        for(int i=0; i<imageList.length; i++){ 
             
            gd.addCheckbox(imageList[i], false); 
        } 
        gd.showDialog(); 
        for(int j=0; j<imageList.length; j++){ 
             
            if(gd.wasCanceled()){ 
                markerValue[j] = false; 
            } 
            else{ 
                markerValue[j] = gd.getNextBoolean(); 
            } 
             
        } 
         
        return markerValue; 
    } 
     
    void searchMarkerCombination(){ 
         
        //IJ.log("search for marker combination...");        
        IJ.showStatus("looking for positiv combinations..."); 
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        neighborCollection = new ArrayList<ArrayList<Integer>>();        
        neighborCollectionNames = new ArrayList<ArrayList<String>>(); 
        //IJ.log("look for combinations..."); 
         
        for(int i=0; i<rois.length;i++){ 
             
            IJ.showProgress(i+1, rois.length); 
            IJ.showStatus("looking for positiv combinations..."); 
            //Roi selectedRoi = rois[i]; 
            boolean gotNeighbors = false; 
            ArrayList<Integer> foundNeighbors = new ArrayList<Integer>(); 
            ArrayList<String> neighborNames = new ArrayList<String>(); 
             
            for(int j=0; j<rois.length;j++){ 
                 
                //IJ.log("compare with roi " + j); 
                //Roi roiCandidate = rois[j]; 
                boolean isCandidate = false; 
                 
                if(checkCenterDist(rois[i],rois[j])){ 
                 
                    for(Point p : rois[j]){ 
                     
                        if(rois[i].contains(p.x, p.y)){ 
                            isCandidate = true; 
                            //IJ.log("roi " + j + " is candidate"); 
                            break; 
                        } 
                    } 
                 
                    if(isCandidate && !countedRoi[j]){ 
                     
                        gotNeighbors = true; 
                        setCounted(j); 
                        foundNeighbors.add(j); 
                        neighborNames.add(imageNames[j]); 
                        //IJ.log("roi : " + i); 
                        //IJ.log("add " +imageNames[j]); 
                     
                    } 
                } 
            } 
             
            if(gotNeighbors){ 
                 
                foundNeighbors.add(0, i); 
                neighborNames.add(0, imageNames[i]); 
                neighborCollection.add(foundNeighbors); 
                neighborCollectionNames.add(neighborNames); 
            //  IJ.log("add neighbors from roi " + i + " to " + imageNames[i]); 
            } 
             
            resetCountedRoi(); 
        } 
 
        proveMatches(); 
         
    } 
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    void setCounted(int roiIndex){ 
         
        countedRoi[roiIndex] = true; 
         
    } 
     
    void resetCountedRoi(){ 
         
        for(int i = 0; i<countedRoi.length; i++){ 
             
            countedRoi[i] = false; 
        } 
    } 
     
    boolean checkCenterDist(Roi roi1, Roi roi2){ 
         
        boolean isNear = false; 
        double distance = 0; 
        double doubleWidth, doubleHeight; 
         
        Rectangle rect1 = roi1.getBounds(); 
        Rectangle rect2 = roi2.getBounds(); 
         
        distance = dist(rect1.x, rect1.y, rect2.x, rect2.y); 
        doubleWidth = (double) (rect1.width+rect2.width); 
        doubleHeight = (double) (rect1.height+rect2.height); 
         
        if(doubleWidth > distance || doubleHeight > distance){ 
             
            isNear = true; 
        } 
         
        return isNear; 
    } 
     
    double dist(int x1, int y1, int x2, int y2){ 
         
        double d = Math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)); 
        return d; 
    } 
     
    void proveMatches(){ 
                 
        for(int i=neighborCollectionNames.size()-1; i>=0; i--){   
             
            ArrayList<String> list = neighborCollectionNames.get(i); 
            boolean[] checkValues = new boolean[markerValues.length]; 
            int c = 0; 
 
            for(int j=0; j<markerValues.length; j++){ 
                             
                if(list.contains(imageList[j])){ 
                    checkValues[j] = true; 
                } 
                else{ 
                    checkValues[j] = false; 
                }     
            } 
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            for(int k=0; k<markerValues.length; k++){ 
                                 
                if(markerValues[k] == checkValues[k]) { 
                     
                    c += 1; 
                } 
            } 
                         
            if(c != markerValues.length){ 
     
                neighborCollection.remove(i); 
                neighborCollectionNames.remove(i); 
            } 
        }        
        if(neighborCollection.isEmpty()){ 
           IJ.error("Sorry, but I have not found any of your marker combination"); 
        } 
        else{ 
             
            showMarkerCombinations(); 
        } 
             
    } 
     
    void showMarkerCombinations(){ 
         
        Overlay rOvl = resultImage.getOverlay(); 
        Roi[] rRois = rOvl.toArray(); 
         
        //IJ.log("showMarkerCombination..."); 
         
         
        for(int i=0; i<neighborCollectionNames.size(); i++){ 
             
            ArrayList<Integer> list = neighborCollection.get(i); 
          //IJ.log("got list : " + neighborCollection.get(i)); 
          //IJ.log("neighborCollectionNames : " + neighborCollectionNames.get(i)); 
 
            for(int e : list){ 
                 
                rRois[e].setStrokeColor(Color.green); 
                rOvl.add(rRois[e]); 
            } 
 
        } 
         
        int[] totalCellCount = new int[imageList.length]; 
        int[] matches = new int[imageList.length]; 
        double[] matchRate = new double[imageList.length]; 
         
        for(int j=0; j<imageList.length; j++){ 
             
            for(int k=0; k<rRois.length; k++){ 
                 
                if(rRois[k].getPosition() == (j+1)){ 
                     
                    totalCellCount[j] += 1;  
                     
                    if(rRois[k].getStrokeColor() == Color.green){ 
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                        matches[j] += 1; 
                    } 
                } 
            } 
            matchRate[j] = ((double)matches[j]/(double)totalCellCount[j])*100; 
        } 
         
        ResultsTable rt = new ResultsTable(); 
         
        for(int m=0; m<imageList.length; m++){ 
             
            rt.incrementCounter(); 
            rt.addValue("staining", imageList[m]); 
            rt.addValue("cell count", totalCellCount[m]); 
            rt.addValue("matches", matches[m]); 
            rt.addValue("%",matchRate[m]); 
        } 
        rt.show("Marker Searching Result"); 
         
        resultImage.setTitle("Marker Searching Result"); 
        resultImage.setOverlay(rOvl); 
        resultImage.show(); 
 
    } 
     
} 
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8.1.4. DFT Coefficient Calculation of object outlines – ImageJ Macro 
// getCoordinatesAndPlotDFT2 
// This Macro reads ROIs and calculates the discrete fourier transformation (DFT) 
// discriptors, plots and if you want save them, based on SHADE 
 
Dialog.create("getCoordinatesAndPlotDFT2"); 
Dialog.addMessage("please make sure you have an opened image &\n"+ 
                  "at least one selected cell in ROI Manager !\n"); 
Dialog.addNumber("how many DFT Discriptors you need?", 20); 
Dialog.addCheckbox("save your results?", false); 
Dialog.addCheckbox("show intermediate results", false); 
Dialog.addMessage("--------------------------------------------"); 
Dialog.addCheckbox("animate surface positions of ROI?", false); 
Dialog.addMessage(" wanring, this choice slows your process down"); 
Dialog.show(); 
 
DFTCount = Dialog.getNumber(); 
saving = Dialog.getCheckbox(); 
intermediate = Dialog.getCheckbox(); 
animation = Dialog.getCheckbox(); 
 
name=getInfo("image.filename"); 
imageDir = getInfo("image.directory"); 
path = imageDir+"DFT_calculation_cell"; 
 
origImage = getTitle(); 
origHeight = getHeight(); 
origWidth = getWidth(); 
 
run("ROI Manager..."); 
cellCount = roiManager("count"); 
 
for (cell=0; cell<cellCount; cell++) { 
 
    roiManager("select",cell); 
    Roi.getCoordinates(x, y); 
    roiName = Roi.getName; 
    n = x.length; 
 
    if (animation == true) { 
        run("Point Tool...", "type=Dot color=Yellow size=Medium show counter=0"); 
        for (i=0; i<n; i++){ 
        IJ.log("x :" + x[i] + "; y: " + y[i]); 
        makePoint(x[i], y[i]); 
        wait(50); 
        } 
     
    } 
     
    oreal = newArray(n); 
    oimag = newArray(n); 
    oAmpl = newArray(n); 
    natemp = newArray(DFTCount); 
    toreal = newArray(DFTCount); 
    toimag = newArray(DFTCount); 
    toAmpl = newArray(DFTCount); 
    tnumber = newArray(DFTCount); 
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    for (k = 0; k < n; k++) { 
   
        creal = 0; 
        cimag = 0; 
 
        for (t = 0; t < n; t++) {   
 
            creal = creal + x[t]*cos(2*PI * t * k / n) +  

y[t]*sin(2*PI * t * k / n); 
cimag = cimag + x[t]*sin(2*PI * t * k / n) +  

y[t]*cos(2*PI * t * k / n); 
        } 
        oreal[k] = creal; 
        oimag[k] = cimag; 
        oAmpl[k] = sqrt(creal*creal + cimag*cimag); 
         
    } 
    for (temc=1; temc < DFTCount; temc++){ 
        toreal[temc]=oreal[temc]; 
        toimag[temc]=oimag[temc]; 
        toAmpl[temc]=oAmpl[temc]; 
        natemp[temc]=roiName+"_image_"+name; 
        tnumber[temc]=temc+1; 
    } 
     
    roreal = Array.concat(roreal,toreal); 
    roimag = Array.concat(roimag,toimag); 
    roAmpl = Array.concat(roAmpl,toAmpl); 
    rname = Array.concat(rname,natemp); 
    rnumber = Array.concat(rnumber,tnumber); 
    Array.show("Results (row numbers)",roreal,roimag,roAmpl,rname,rnumber); 
 
    if (intermediate == true) { 
        Plot.create(name+" cell["+cell+"]->real","Timepoint","Value",toreal); 
        Plot.show(); 
 
        Plot.create(name+" cell["+cell+"]->imaginary","Timepoint","Value",toimag); 
        Plot.show(); 
 
        Plot.create(name+" cell["+cell+"]->Amplitude","Timepoint","Value",toAmpl); 
        Plot.show(); 
 
        waitForUser("next cell?"); 
    } 
 
} 
 
    if(saving==true){ 
 
        selectWindow("Results"); 
        saveAs("Results",path+"_DFT_results_of"+name+".xls"); 
        //IJ.log("Results of calculations are saved "+ 
        //"("+path+"_DFT_results_of"+name+".xls)"); 
        waitForUser("Results of calculations are saved\n "+ 
        "("+path+"_DFT_results_of"+name+".xls)"); 
    } 
 
waitForUser("Process completed!"); 
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8.1.5. MELC registration scripts – Python  
# MELC_image_registration_GUI 
#----------------------------- 
import tkinter as tk 
from tkinter import filedialog 
import MELC_run_reader 
import registrate_MELC_run 
 

class Main_Window: 
 
    # constructor of the main gui 
    def __init__(self): 
 
        self.melc_dict = {} 
        self.melc_run_info = MELC_run_reader 
 
        self.master = tk.Tk() 
        self.master.title("MELC run registration") 
        # self.master.geometry("300x450+5+10") 
        self.frame = tk.Frame(self.master) 
 
        self.file_loc_label = tk.Label(self.master, text= 

"directory").grid(row=0, column=0, rowspan=1, columnspan=1) 
        self.path_entry = tk.Entry(self.master, width=40) 
        self.path_entry.insert(0, "melkIni path") 
        self.path_entry.grid(row=0, column=1, rowspan=1, columnspan=2) 
 
        self.browse_button = tk.Button(self.master, text="browse",  

command=self.set_ini_file).grid(row=0, column=4,  
rowspan=1, columnspan=1) 

 
        self.sec_label = tk.Label(self.master,  

text="marker list, select secondary markers").grid(row=1, column=2) 
 
        self.list_box = tk.Listbox(self.master,  

width=40, height=20, selectmode='multiple') 
        self.list_box.grid(row=2, column=2) 
 
        self.run_button = tk.Button(self.master, text="RUN",  

command=self.start_melc_registration).grid(row=4,  
column=4, rowspan=2, columnspan=2) 

        #print(self.master.grid_size()) 
 
        self.master.mainloop() 
 
    def set_ini_file(self): 
 
        ini_file_path = filedialog.askdirectory() 
        self.path_entry.delete(0, len(self.path_entry.get())) 
        self.path_entry.insert(0, ini_file_path) 
        self.melc_run_info = self.get_MELC_run_info() 
 
    def get_MELC_run_info(self): 
 
        melc_run_dir = self.path_entry.get() 
        melc_run_path = melc_run_dir+'/inifile/melkIni.xml' 
        mri = MELC_run_reader.MELC_run_reader(melc_run_path) 
        self.melc_dict = mri.MELC_dict 
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        count = 0 
        for i in self.melc_dict: 
 
            self.list_box.insert(count, self.melc_dict[i]["marker name"]) 
            count += 1 
 
        return mri 
 
    def start_melc_registration(self): 
 
        secondary_markers =  

[self.list_box.get(i) for i in self.list_box.curselection()] 
 
        print("start processing...") 
        print("") 
 
        for image_set in self.melc_run_info.MELC_dict: 
 
            secondary = "no" 
 

if self.melc_run_info.MELC_dict[image_set]["marker name"] in secondary
_markers: 

                secondary = self.melc_run_info.MELC_dict[image_set]["secondary"] = 
"yes" 

 
            f_channel = self.melc_run_info.MELC_dict[image_set]['channel'] 
            f_exposure = self.melc_run_info.MELC_dict[image_set]['exposure time'] 
            step = int(self.melc_run_info.MELC_dict[image_set]['inc step']) 
 
            for image_set2 in self.melc_run_info.MELC_dict: 
 
                f_channel2 =  

self.melc_run_info.MELC_dict[image_set2]['channel'] 
                f_exposure2 =  

self.melc_run_info.MELC_dict[image_set2]['exposure time'] 
                previous_step =  

(int(self.melc_run_info.MELC_dict[image_set2]['inc step'])) 
 
 
                if f_channel == f_channel2 and  

f_exposure == f_exposure2 and  
(step-2) == previous_step and  
secondary == "yes": 

 
                    self.melc_run_info.MELC_dict[image_set]\ 

['previous bleach image'] =  
self.melc_run_info.MELC_dict[image_set2]['marker name'] +  
'_' + f_exposure2 + '_' + f_channel2 + '_' +  
self.melc_run_info.MELC_dict[image_set2]['inc step'] 

                    # print(step,previous_step) 
 

        registrate_MELC_run.registrate_MELC_run(self.melc_run_info) 
 

start_main_window = Main_Window() 
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# MELC_run_reader – python script to parse MELC run XML file 
#----------------- 
import xml.etree.ElementTree as ET 
import os 
''' 
MELC_run_reader read the melkIni.xml file and creates a dictionary, 
containing every step 
''' 
class MELC_run_reader: 
    # some global variables 
    web_prefix = '' 
    MELC_dict = {} 
 
    def __init__(self, path): 
 
        self.path = path 
        self.melc_run_dir = self.path[0:-(len('/inifile/melkIni.xml'))] 
 
        # parsing xml to element tree 
        inifile = ET.ElementTree() 
        inifile = ET.parse(path) 
        inifile_root = inifile.getroot() 
 
        global web_prefix 
        web_prefix = self.check_and_get_web_prefix(inifile_root.tag) 
 
        # extract file format, stack size, max shift [x y] for registration 
        self.fluorescence_prefix = inifile_root.find((web_prefix + 'runSetting/' +
 web_prefix + 'fluorescenceImagePrefix')).text 
        self.bleach_prefix = inifile_root.find((web_prefix + 'runSetting/' +  
web_prefix + 'bleachImagePrefix')).text 
        self.phase_prefix = inifile_root.find((web_prefix + 'runSetting/' +  
web_prefix + 'phaseImagePrefix')).text 
        self.bleach_phase_prefix = inifile_root.find((web_prefix + 'runSetting/' +
 web_prefix + 'phaseBleachImagePrefix')).text 
 
        self.file_format = inifile_root.find((web_prefix + 'runSetting/' +  
web_prefix + 'imageFormat')).text 
 
        self.stack_range_m = inifile_root.find((web_prefix + 'runSetting/' +  
web_prefix + 'visualFieldConfig/' + web_prefix + 'stack/' + web_prefix +  
'imageCountNegative')).text 
        self.stack_range_p = inifile_root.find((web_prefix + 'runSetting/' +  
web_prefix + 'visualFieldConfig/' + web_prefix + 'stack/' + web_prefix +  
'imageCountPositive')).text 
 
        self.max_shift_x = inifile_root.find((web_prefix + 'autofocus/' +  
web_prefix + 'autofocusStep/' + web_prefix + 'function/' + web_prefix +  
'correlation/' + web_prefix + 'maxShiftX')).text 
        self.max_shift_y = inifile_root.find((web_prefix + 'autofocus/' +  
web_prefix + 'autofocusStep/' + web_prefix + 'function/' + web_prefix +  
'correlation/' + web_prefix + 'maxShiftY')).text 
 
        self.reference_image = self.get_reference_image() 
        self.reference_image_exposure_time = inifile_root.find((web_prefix +  
'runSetting/' + web_prefix + 'exposureTime')).text 
        self.reference_image_channel = inifile_root.find(web_prefix +  
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'runSetting/' + web_prefix + 'phaseFilter').attrib["name"] 
        self.reference_image_size = inifile_root.find((web_prefix + 'autofocus/' +
 web_prefix + 'autofocusStep/' + web_prefix + 'roiSize')).text 
        self.MELC_dict = self.get_MELC_dict(inifile_root) 
 
        print('') 
        print('melc run directory : ', self.melc_run_dir) 
        print('-------------') 
        print('file prefixes') 
        print('-------------') 
        print('fluorescence_prefix : ', self.fluorescence_prefix) 
        print('bleach_prefix : ', self.bleach_prefix) 
        print('phase_prefix : ', self.phase_prefix) 
        print('bleach_prefix : ', self.bleach_phase_prefix) 
        print('') 
        print('file format : ' + self.file_format) 
        print('') 
        print('reference image : ', self.reference_image) 
        print('reference image exposure time : ',  

self.reference_image_exposure_time) 
        print('reference image channel : ', self.reference_image_channel) 
        print('reference image size [%] : ', self.reference_image_size) 
        print('') 
        print('stack size : ' + str(int(self.stack_range_m) + 1 +  

int(self.stack_range_p)) + ' [' + self.stack_range_m + ' ; ' +  
self.stack_range_p + ' ]')  # adding one, because of central position 

        print('') 
        print('max shift [x y] : [' + self.max_shift_x + ' ; ' +  

self.max_shift_y + ']') 
        print('') 
        print('your MELC run in detail:') 
        print('-----------------------\n') 
        self.show_MELC_dict(self.MELC_dict) 
 
 
    def get_reference_image(self): 
 
        all_files = os.listdir((self.melc_run_dir) + '/source/') 
        matched = [i for i in all_files if ("_RefImage" in i and  

i.endswith(self.file_format))] 
        # print(matched) 
        return matched 
 
 
    def check_and_get_web_prefix(self, tag): 
        ''' 
        checking some atribute naming of the nodes inside the parsed xml 
        ''' 
 
        if len(tag) > 7: 
            return tag[0:-7] 
        else: 
            return '' 
 
 
    def show_MELC_dict(self, MELC_dict): 
 
        for melc_step in MELC_dict: 
            print(melc_step + ': ') 
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            for i in MELC_dict[melc_step]: 
                print(i + ' : ' + MELC_dict[melc_step][i]) 
            print('------------------------------------') 
 
 
    def get_MELC_dict(self, inifile_root): 
        ''' 
        returns dictionary containing staining step information 

  melc_step_info = {image_set_1 : {inc step, channel, marker name, expsure  
  time, previous bleach image, secondary?}} 

        ''' 
        inc_step_dict = {} 
        inc_step_count = 1 
        image_set_count = 1 
 
        for inc_step in inifile_root.iter((web_prefix) + 'incStep'): 
 
            channel_step = inc_step.iter((web_prefix) + 'channelStep') 
            channel_step_count = 1 
 
            inc_step_prefix = '00' 
 
            if inc_step_count >= 10 and inc_step_count < 100: 
                inc_step_prefix = '0' 
 
            if inc_step_count >= 100 and inc_step_count < 1000: 
                inc_step_prefix = '' 
 
            for e in channel_step: 
                # print(e.tag, e.attrib) 
                name = e.find((web_prefix) + 'marker') 
                exposure_time = e.find((web_prefix) + 'exposureTime') 
                channel = e.find((web_prefix) + 'fluorescenceFilter') 
 
                image_set_text = 'image_set_' + str(image_set_count) 
                inc_step_dict[image_set_text] = { 
                    "inc step": inc_step_prefix + str(inc_step_count), 
                    "channel step": str(channel_step_count), 
                    "marker name": name.attrib['name'], 
                    "channel": channel.attrib['name'], 
                    "exposure time": exposure_time.text, 
                    "previous bleach image": "", 
                    "secondary": "no" 
                } 
 
                image_set_count += 1 
                channel_step_count += 1 
 
            inc_step_count += 1 
 
        # add previous bleach image staining to each incStep 
 
        for inc in inc_step_dict: 
 
            f_channel = inc_step_dict[inc]['channel'] 
            f_exposure = inc_step_dict[inc]['exposure time'] 
            step = int(inc_step_dict[inc]['inc step']) 
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            if step == 1: 
                inc_step_dict[inc]['previous bleach image'] =  
inc_step_dict[inc]['marker name'] + '_' + f_exposure + '_' + f_channel +  
'_' + inc_step_dict[inc]['inc step'] 
 
            else: 
 
 
                for inc2 in inc_step_dict: 
 
                    f_channel2 = inc_step_dict[inc2]['channel'] 
                    f_exposure2 = inc_step_dict[inc2]['exposure time'] 
                    previous_step = (int(inc_step_dict[inc2]['inc step'])) 
 
                    if f_channel == f_channel2 and f_exposure == f_exposure2 and  
step > previous_step: 
                        inc_step_dict[inc]['previous bleach image'] =  
inc_step_dict[inc2]['marker name'] + '_' + f_exposure2 + '_' + f_channel2 + '_' + 
inc_step_dict[inc2]['inc step'] 
                        # print(step,previous_step) 
 
                if inc_step_dict[inc]['previous bleach image'] == "": 
                    inc_step_dict[inc]['previous bleach image'] =  
inc_step_dict[inc]['marker name'] + '_' + f_exposure + '_' + f_channel + '_' +  
inc_step_dict[inc]['inc step'] 
 
        return inc_step_dict 
 
 
# registrate_MELC_run - main syript with functions to registrate MELC run 
#------------------------------------------------------------------------ 
import os 
import imageio 
import numpy as np 
import matplotlib.image as mpimg 
from skimage.feature import register_translation 
from scipy.ndimage import shift 
from scipy import ndimage 
from scipy import interpolate 
 
def read_images(image_list): 
 
    image_container = [] 
 
    for i in image_list: 
        image_container.append(imageio.imread(i).astype('float')) 
 
    loaded_images = np.array(image_container, dtype='float') 
 
    return loaded_images 
 

def createSuffix(m, p, file_format): 
    if m < 0: 
        steps = abs(m) + p 
 
    if m > 0: 
        steps = p - m 
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    suffix = [None] * (steps + 1) 
    posCount = 0 
 
    for s in range(m, p + 1): 
 
        if s > 0: 
            suffix[posCount] = '_p' + str(s) + file_format 
            posCount += 1 
 
        if s == 0: 
            suffix[posCount] = file_format 
            posCount += 1 
 
        if s < 0: 
            suffix[posCount] = '_m' + str(abs(s)) + file_format 
            posCount += 1 
 
    return suffix 
 
def find_iamge_shift(ref_image, image): 
 
    ref_image_center_y = int(ref_image.shape[0] / 2) 
    ref_image_center_x = int(ref_image.shape[1] / 2) 
 
    image_center_y = int(image.shape[0] / 2) 
    image_center_x = int(image.shape[1] / 2) 
 
    image = image[(image_center_y - ref_image_center_y):(image_center_y +  
ref_image_center_y), (image_center_x - ref_image_center_x):(image_center_x +  
ref_image_center_x)] 
 
    shift_xy, error, diffphase = register_translation(ref_image, image, 10) 
    return shift_xy 
 
def get_interpolation_measure(input_image_b): 
 
    dims = input_image_b.shape 
 
    step_x = int(dims[1] / 8) 
    step_y = int(dims[0] / 8) 
 
    x_measure = [] 
    y_measure = [] 
    z_measure = [] 
 
    for sx in range(0, dims[1] + 1, step_x): 
        for sy in range(0, dims[0] + 1, step_y): 
 
            rx1 = int(sx - step_x / 2) 
            ry1 = int(sy - step_y / 2) 
            rx2 = int(sx + step_x / 2) 
            ry2 = int(sy + step_y / 2) 
 
            if rx1 < 0: 
                rx1 = 0 
            if rx2 > dims[1]: 
                rx2 = dims[1] 
            if ry1 < 0: 
                ry1 = 0 
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            if ry2 > dims[0]: 
                ry2 = dims[0] 
 
            mean_value = np.min(input_image_b[ry1:ry2, rx1:rx2]) 
 
            x_measure.append(sx) 
            y_measure.append(sy) 
            z_measure.append(mean_value) 
 
    return x_measure, y_measure, z_measure 
 

def get_polynomial_interpolation(xs, ys, zs): 
 
    tmp_A = [] 
    tmp_b = [] 
 
    for i in range(len(xs)): 
 
        #under mac os float is normaly taken by default...under windows we have to
 tell explicity 
        tmp_A.append([float(xs[i]*xs[i]), float(ys[i]*ys[i]), float(xs[i]*ys[i]), 
float(xs[i]), float(ys[i]), 1.]) 
        tmp_b.append(zs[i]) 
 
    b = np.transpose(tmp_b) 
    A = np.array(tmp_A) 
 
    fit = np.linalg.inv((np.transpose(A) @ A)) @ np.transpose(A) @ b 
    errors = b - A @ fit 
    residual = np.linalg.norm(errors) 
 
    print("solution:") 
    print("%f x^2 + %f y^2 + %f x*y + %f x + %f y + %f = z" % (fit[0], fit[1], fit
[2], fit[3], fit[4], fit[5])) 
    print("errors:") 
    print("mean : " + str(np.mean(errors))) 
    print("min : " + str(np.min(errors))) 
    print("max : " + str(np.max(errors))) 
    print("residual:") 
    print(residual) 
 
    return fit, errors, residual 
 

def focus_measure(input_images): 
 
    dims = input_images.shape 
    global_mean = np.mean(input_images) 
    step_x = int(dims[2] / 16) 
    step_y = int(dims[1] / 16) 
 
    x = [] 
    y = [] 
    z = [] 
 
    for sx in range(0, dims[2] + 1, step_x): 
        for sy in range(0, dims[1] + 1, step_y): 
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            rx1 = int(sx - (step_x / 2)) 
            ry1 = int(sy - (step_y / 2)) 
            rx2 = int(sx + (step_x / 2)) 
            ry2 = int(sy + (step_y / 2)) 
 
            if rx1 < 0: 
                rx1 = 0 
            if rx2 > dims[2]: 
                rx2 = dims[2] 
            if ry1 < 0: 
                ry1 = 0 
            if ry2 > dims[1]: 
                ry2 = dims[1] 
            local_mean = np.mean(input_images[:, ry1:ry2, rx1:rx2]) 
            std_means = np.zeros(dims[0]) 
 
            for szx in range(dims[0]): 
                std_means[szx] = np.std(input_images[szx, ry1:ry2, rx1:rx2]) 
 
            max_index_x = np.argmax(std_means) 
 
            if local_mean >= global_mean: 
                x.append(sx) 
                y.append(sy) 
                z.append(max_index_x) 
 
    return x, y, z 
 
def focus_measure2(input_images): 
    dims = input_images.shape 
 
    fm = np.zeros(dims) 
 
    for i in range(fm.shape[0]): 
        fm[i, :, :] = input_images[i, :, :] - ndimage.gaussian_filter(input_images
[i, :, :], sigma=9) 
        fm[fm < 0] = 0 
        fm[i, :, :] =  ndimage.gaussian_filter(fm[i, :, :], sigma=9) 
 
    # global_mean = np.mean(input_images) 
    global_mean = np.mean(fm) 
    step_x = int(dims[2] / 32) 
    step_y = int(dims[1] / 32) 
 
    x = [] 
    y = [] 
    z = [] 
 
    for sx in range(0, dims[2] + 1, step_x): 
        for sy in range(0, dims[1] + 1, step_y): 
 
            rx1 = int(sx - (step_x / 2)) 
            ry1 = int(sy - (step_y / 2)) 
            rx2 = int(sx + (step_x / 2)) 
            ry2 = int(sy + (step_y / 2)) 
 
            if rx1 < 0: 
                rx1 = 0 
            if rx2 > dims[2]: 
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                rx2 = dims[2] 
            if ry1 < 0: 
                ry1 = 0 
            if ry2 > dims[1]: 
                ry2 = dims[1] 
 
            # local_mean =np.mean(input_images[:, ry1:ry2, rx1:rx2]) 
            local_mean = np.mean(fm[:, ry1:ry2, rx1:rx2]) 
            std_means = np.zeros(dims[0]) 
 
            for szx in range(dims[0]): 
                # std_means[szx] = np.std(input_images[szx, ry1:ry2, rx1:rx2]) 
                std_means[szx] = np.std(fm[szx, ry1:ry2, rx1:rx2]) 
 
            max_index_x = np.argmax(std_means) 
 
            if local_mean >= global_mean: 
                x.append(sx) 
                y.append(sy) 
                z.append(max_index_x) 
 
    return x, y, z 
 

def get_focus_map_fit(xs, ys, zs): 
 
    print(len(xs)) 
    print(len(ys)) 
    print(len(zs)) 
 
    tmp_A = [] 
    tmp_b = [] 
 
    for i in range(len(xs)): 
 
        tmp_A.append([xs[i], ys[i], 1]) 
        tmp_b.append(zs[i]) 
 
    b = np.transpose(tmp_b) 
    A = np.array(tmp_A) 
    fit = np.linalg.inv((np.transpose(A) @ A)) @ np.transpose(A) @ b 
    errors = b - A @ fit 
    residual = np.linalg.norm(errors) 
 
    print("solution:") 
    print("%f x + %f y + %f = z" % (fit[0], fit[1], fit[2])) 
    print("errors:") 
    print("mean : " + str(np.mean(errors))) 
    print("min : " + str(np.min(errors))) 
    print("max : " + str(np.max(errors))) 
    print("residual:") 
    print(residual) 
 
    return fit, errors, residual 
 

def gauss(x, a, b, c, d): 
    return a + (b-a)*np.exp(-(x-c)**2./(2.*d**2)) 
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def registrate_MELC_run(melc_run_info): 
""" 
here the whole magic happens and the raw images from melc run are processed (align
ed, subtracted, corrected and projected) 
To Do ! 
 
- registrate phase and bleach_phase images -
> translate with the values fluorescent images (if possible, correct for chromatic
 shift xyz !!!) 
    - subtract the registrated images 
    - flat field correction ? 
    - z stack projection for all in focus 
 """ 
 
    print("") 
    print("started...") 
    print("") 
 
    # create directory inside melc run directory 
 
    subtracted_images_dir = melc_run_info.melc_run_dir +  
'/results/subtracted_images' 
    best_focus_dir = melc_run_info.melc_run_dir +  
'/results/best_focus_images' 
    # print("dir : ", subtracted_images_dir) 
 
    if not os.path.exists(subtracted_images_dir): 
 
        try: 
            os.mkdir(subtracted_images_dir) 
        except OSError: 
            print("could not create subtracted_images directory") 
        else: 
            print("Error: subtracted_images folder is not created...") 
 
    else: 
        print("folder subtracted_images allready created") 
 
    if not os.path.exists(best_focus_dir): 
 
        try: 
            os.mkdir(best_focus_dir) 
        except OSError: 
            print("could not create best_focus_images directory") 
        else: 
            print("Error: best_focus_images folder is not created...") 
 
    else: 
        print("folder best_focus_images allready created") 
 
    # create list of all z positions 
    position_suffix = createSuffix(-
int(melc_run_info.stack_range_m), int(melc_run_info.stack_range_p),  
melc_run_info.file_format) 
    # print(position_suffix) 
 
    # aligning/registrating images based on reference phase contrast image  
    # via cross correlation 
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    ph_ref_image = imageio.imread(melc_run_info.melc_run_dir + "/source/" + melc_r
un_info.reference_image[0]).astype('float') 
    #ph_ref_image = np.array(ph_ref_image) 
    # plt.imshow(ph_ref_image) 
    # plt.show() 
 
    for ms in melc_run_info.MELC_dict: 
 
        image_stack = [] 
        inc_step = melc_run_info.MELC_dict[ms]["inc step"] 
        channel_step = melc_run_info.MELC_dict[ms]["channel step"] 
        marker_name = melc_run_info.MELC_dict[ms]["marker name"] 
        marker_fexp_time = melc_run_info.MELC_dict[ms]["exposure time"] 
        marker_f_channel = melc_run_info.MELC_dict[ms]["channel"] 
        previous_bleach_image=melc_run_info.MELC_dict[ms]["previous bleach image"] 
        ph_exposure_time = melc_run_info.reference_image_exposure_time 
        ph_channel = melc_run_info.reference_image_channel 
 
        if channel_step == "1": 
            ph_image = imageio.imread(melc_run_info.melc_run_dir + "/source/p_" + 
marker_name + '_' + ph_exposure_time + '_' + ph_channel + '_' + inc_step +  
melc_run_info.file_format).astype('float') 
            phb_image = imageio.imread(melc_run_info.melc_run_dir +  
"/bleach/pb_" + marker_name + '_' + ph_exposure_time + '_' + ph_channel + '_' +  
inc_step + melc_run_info.file_format).astype('float') 
 
        shift_p = find_iamge_shift(ph_ref_image, ph_image) 
        shift_pb = find_iamge_shift(ph_ref_image, phb_image) 
 
        step = 0 
 
        for z in position_suffix: 
 
            if melc_run_info.MELC_dict[ms]["secondary"] == "no": 
                f_image = imageio.imread(melc_run_info.melc_run_dir +  
"/source/o_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +  
'_' + inc_step + z).astype('float') 
                b_image = imageio.imread(melc_run_info.melc_run_dir +  
"/bleach/b_" + previous_bleach_image + z).astype('float') 
                fb_image = imageio.imread(melc_run_info.melc_run_dir +  
"/bleach/b_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +  
'_' + inc_step + z).astype('float') 
                print(marker_name + '_' + marker_fexp_time + '_' +  
marker_f_channel + '_' + inc_step + z + ' - ' + previous_bleach_image + z) 
            else: 
                f_image = imageio.imread(melc_run_info.melc_run_dir +  
"/source/o_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +  
'_' + inc_step + z).astype('float') 
                b_image = imageio.imread(melc_run_info.melc_run_dir +  
"/source/o_" + previous_bleach_image + z).astype('float') 
                fb_image = imageio.imread(melc_run_info.melc_run_dir +  
"/bleach/b_" + marker_name + '_' + marker_fexp_time + '_' + marker_f_channel +  
'_' + inc_step + z).astype('float') 
                print(marker_name + '_' + marker_fexp_time + '_' +  
marker_f_channel + '_' + inc_step + z + ' - ' + previous_bleach_image + z) 
 
            # now, that we have our target images, we can at fist align them,  
            # afterwards we subtract 
            f_image = shift(f_image, shift_p, mode='nearest') 
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            b_image = shift(b_image, shift_pb, mode='nearest') 
            fb_image = shift(fb_image, shift_pb, mode='nearest') 
 
            fb_image = ndimage.gaussian_filter(fb_image, sigma=3, mode='nearest') 
            subtracted = f_image - b_image 
            subtracted[subtracted < 0] = 0.0 
 
            x_measure, y_measure, z_measure = get_interpolation_measure(fb_image) 
 
            dims = subtracted.shape 
 
            grid_x, grid_y = np.mgrid[0:dims[1]:1, 0:dims[0]:1] 
            grid_z2 = interpolate.griddata((x_measure, y_measure), z_measure,  
(grid_x, grid_y), method='cubic') 
 
            subtracted = subtracted/(grid_z2.T/np.mean(grid_z2)) 
            image_stack.append(subtracted_images_dir + '/o_' + marker_name + '_' +
 marker_fexp_time + '_' + marker_f_channel + '_' + inc_step + z[:-3] + 'tiff') 
             
            subtracted[subtracted>(2**16)-1] = (2**16)-1 
            imageio.imwrite(subtracted_images_dir + '/o_' + marker_name + '_' +  
marker_fexp_time + '_' + marker_f_channel + '_' + inc_step +  
z[:-3] + 'tiff', subtracted.astype('uint16'), format='TIFF') 
            step += 1 
 
        print(ms + " of " + str(len(melc_run_info.MELC_dict)) +  
" are registered and subtracted") 
 

        # calculating best focus image, to remove tilt in image 
        images_for_best_focus = read_images(image_stack) 
        dims = images_for_best_focus.shape 
 
        xf, yf, zf = focus_measure2(images_for_best_focus) 
        fit, errors, residual = get_polynomial_interpolation(xf, yf, zf) 
 
         
        x_pos = np.arange(0, dims[2], 1) 
        y_pos = np.arange(0, dims[1], 1) 
 
        xx, yy = np.meshgrid(x_pos, y_pos) 
 
        focus_map_new =xx*xx*fit[0]+yy*yy*fit[1]+xx*yy*fit[2]+ 
xx*fit[3]+yy*fit[4]+fit[5] 
        focus_map_new[focus_map_new<0] = 0 
        focus_map_new[focus_map_new>dims[0]] = dims[0]-1 
 
        indices_array = np.zeros(dims) 
 
        for ind in range(dims[0]): 
            indices_array[ind, :, :] += ind 
 
        sigma = 1 
        gauss_along_z = gauss(indices_array, 0., 1., focus_map_new, sigma) 
        fim = np.sum(images_for_best_focus * gauss_along_z, axis=0) 
        best_focus_image = (fim / np.sum(gauss_along_z, axis=0))# * 2 ** 16 
        best_focus_image = best_focus_image-np.min(best_focus_image) 
        best_focus_image[best_focus_image>(2**16)-1] = (2**16)-1 
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        imageio.imwrite(best_focus_dir + '/' + marker_name + '_' +  
marker_fexp_time + '_' + marker_f_channel + '_' + inc_step + '.tiff',  
best_focus_image.astype('uint16'), format='TIFF') 
 
        print("and best focus image is calculated") 
 
    print("registration done...") 
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8.1.6. MELC data integration and unsupervised clustering – R 
# MELC data integration and visualization 
# loading the libraries 
library(Seurat) 
library(data.table) 
library(dplyr) 
library(ggplot2) 
library(Rtsne) 
library(uwot) 
library(doParallel) 
library(missForest) 
library(missRanger) 
 
# define file location and read the data, saved in variable "df" 
# if dataset was loaded from saved dataset.R paths can differ...have look to  
# envrionment variable 
maindir <- choose.dir() 
filename <- "Lungs_rawData.csv" # choose.files(default = maindir) 
df <- fread(paste(maindir, filename, sep = "/"), encoding="UTF-8") # read the csv 
 
# prepare folder for analysis results 
save.path <- paste(maindir,paste(substr(filename,0,nchar(filename)-
4),"_analysis/"), sep = "/") 
dir.create(save.path) 
  
# sometimes different meta data headers inside  csv files (mainly the first two  
# rows), therefore we have to to extract only the important data and convert to  
# numeric values, otherwise numbers are interpreted as strings 
df.values <- sapply(df[3:nrow(df),c(1:43)], as.numeric)  
df.disease.state <- sapply(df[3:nrow(df),`disease state`], as.factor) 
df.sampleIDs <- sapply(df[3:nrow(df),SourceID], as.factor) 
df.object.ids <- 1:(nrow(df)-2) 
rownames(df.values) <- df.object.ids 
df.posX <- sapply(df[3:nrow(df),"Location_Center_X"], as.numeric) 
df.posY <- sapply(df[3:nrow(df),"Location_Center_Y"], as.numeric) 
df.CellID <- sapply(df[3:nrow(df),"ObjectNumber"], as.numeric) 
 
# sometimes you miss markers in different experiments, so combining experiment dat
a from different MELC runs will create empty values inside the large data table.  
# Imputing the data will fill the empty spaces...here we can use, e.g. missRanger 
df.values.imputed <- missRanger(as.data.frame(df.values), verbose = 2) 
 
#clipping values to be in same ratio, alternatively arcsinh transformation can be 
used instead 
 
for(sID in unique(df.sampleIDs)){ 
  df.sample <- df.values.imputed[df.sampleIDs == sID,] 
  for(marker in colnames(df.sample)){ 
     
    q5 <- quantile(unlist(df.sample[[marker]]), probs = 0.05) 
    q95 <- quantile(unlist(df.sample[[marker]]), probs = 0.95) 
     
    df.sample[[marker]] <- scales::rescale(df.sample[[marker]],  

to = c(0, 1), from = c(q5,q95)) 
    df.sample[df.sample[[marker]] <= 0,marker] <- 0 
     
    if(max(df.sample[[marker]]) > 0){ 
      df.sample[df.sample[[marker]] >= 1,marker] <- 1 
    } 
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  } 
 
  # here we need some back propagation or new df 
  if(exists("df.sample.rescale")){ 
   df.sample.rescale <- rbind(df.sample.rescale,df.sample, make.row.names = FALSE)
         
  } else { 
    df.sample.rescale <- df.sample   
  } 
} 
 
# rotate the whole table and create a Seurat Object (SO) 
# ...our MELC data are now interpreted as single cell seq data, so we can use all 
functionality like there 
df.values.T <- t(df.sample.rescale) 
colnames(df.values.T) <- df.object.ids 
SO = CreateSeuratObject(df.values.T) 
SO$sampleID <- df.sampleIDs 
SO$disease <- df.disease.state 
 
SO.list <- SplitObject(SO, split.by = "sampleID") 
 
for(i in 1:length(SO.list)){ 
  SO.list[[i]] <- FindVariableFeatures(SO.list[[i]], 
                                       selection.method = "vst", 
                                       nfeatures = 2000, verbose = FALSE) 
} 
 
anchors <- FindIntegrationAnchors(object.list = SO.list) 
SO.integrated <- IntegrateData(anchorset = anchors) 
 
# mean centering and stdDev scaling the expression values makes them comparable 
SO.integrated <- FindVariableFeatures(SO.integrated, selection.method = "vst", mea
n.cutoff = c(0, 1), verbose = TRUE) # necessary function for dimRed 
SO.integrated <- ScaleData(SO.integrated, do.center = TRUE, do.scale = TRUE, verbo
se=TRUE) 
# create meta data for later grouping or splitting 
Idents(SO.integrated) <- "disease" 
 
# dimensionality reduction 
SO.integrated <- RunPCA(SO.integrated, npcs = 20, verbose = FALSE) # perform PCA 
SO.integrated <- RunUMAP(SO.integrated, reduction = "pca", dims = 1:20) 
Idents(SO.integrated) <- SO.integrated$sampleID 
UMAPPlot(SO.integrated) 
 
# visualization of dimension reductions, saving plots 
png(filename=paste(save.path, "UMAP_44PC_13dims.png"), width = 529, height = 435) 
print(UMAPPlot(SO.integrated, label = FALSE)) 
dev.off()  
 
df.markers <- rownames(df.values.T) 
 
for (i in 1:length(df.markers)) { 
    png(filename = paste(save.path, df.markers [i],  

"_featurePlot_44pc_16dims.png"), width = 350, height = 300) 
    print(FeaturePlot(SO.integrated, features = df.markers [i], reduction =  

"umap", label = FALSE,  cols = c("yellow", "darkred"))) 
    dev.off()   
} 
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# perform clustering 
SO.integrated <- FindNeighbors(SO.integrated, dims = 1:16, reduction = "pca") 
SO.integrated <- FindClusters(SO.integrated, resolution = c(0.18)) 
# plotting the clustered data 
Idents(SO.integrated) <- SO.integrated@meta.data$RNA_snn_res.0.18 
UMAPPlot(SO.integrated, label = TRUE) 
 
# saving the clustered UMAP 
png(filename = paste(save.path, "UMAP_clusters_res018a.png"),width=529,height=435) 
print(UMAPPlot(SO.integrated, label = TRUE)) 
dev.off() 
# saving data table 
data_res018 <- df.values.imputed 
data_res018$UMAP_1 <- SO@reductions$umap@cell.embeddings[, "UMAP_1"] 
data_res018$UMAP_2 <- SO@reductions$umap@cell.embeddings[, "UMAP_2"] 
data_res018$posX <- df.posX 
data_res018$posY <- df.posY 
data_res018$disease_state <- df.disease.state 
data_res018$object_id <- df.object.ids 
data_res018$cluster <- SO@meta.data$RNA_snn_res.0.18 
data_res018$sourceID <- df.sampleIDs 
data_res018$cellID <- df.CellID 
write.table(data_res018, file = paste(save.path, 

"imputed_data_44PC_16dims_clustered_res_0.18.csv"),  
 quote = FALSE, sep = ",", row.names = FALSE) 
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8.1.7. MELC Neibghborhood test and Randomization - Matlab  
Main script reading CellProfiler output and perform neighborhood analysis 
close all; 
path='/Volumes/RALFSDATA/02_B220_ckit_kappa_prox_dist_measurement/'; 
 
%import measurements from CXCL12 somata and proximity within distance 0-
%30 pixels fromsomata edge 
 
[ImageNumber_somata1,ObjectNumber_somata1,MeanIntensity_Bcells_prox,... 
MeanIntensity_Bprogenitors_prox,MeanIntensity_CXCL12_prox,... 
MeanIntensity_kappa_prox] = import_textfiles2([path,'CXCL12_proximity.txt']); 
 
%import measurements from CXCL12 distal region at distance 31-100 pixels from 
%somata edge 
 
[ImageNumber_somata,ObjectNumber_somata,MeanIntensity_Bcells_dist,... 
MeanIntensity_Bprogenitors_dist,MeanIntensity_CXCL12_dist,... 
MeanIntensity_kappa_dist] = import_textfiles2([path,'CXCL12_distal.txt']); 
 
num_images=max(ImageNumber_somata); 
 
%plot raw intensity data 
Mean_Intensities=[MeanIntensity_Bprogenitors_prox';... 
MeanIntensity_Bprogenitors_dist';MeanIntensity_Bcells_prox';... 
MeanIntensity_Bcells_dist';MeanIntensity_CXCL12_prox';... 
MeanIntensity_CXCL12_dist';MeanIntensity_kappa_prox';MeanIntensity_kappa_dist']; 
 
figure; 
imagesc(Mean_Intensities); 
title('raw data, mean intensities in CXCL12 somata surrounding','FontSize',20); 
set(gca,'YTick',1:8); 
set(gca,'YTickLabel',{'CXCL12 at 0-30 pix';'CXCL12 at 31-100';... 
'BP at 0-30 pix';'BP at 31-100';'LpR at 0-30 pix';'LpR at 31-100';... 
'VCam at 0-30 pix';'VCam at 31-100'},'FontSize',16); 
xlabel('Cell ID'); 
 
diff_Bpro=MeanIntensity_Bprogenitors_prox-MeanIntensity_Bprogenitors_dist; 
diff_Bcell=MeanIntensity_Bcells_prox-MeanIntensity_Bcells_dist; 
diff_CXCL12=MeanIntensity_CXCL12_prox-MeanIntensity_CXCL12_dist; 
diff_kappa=MeanIntensity_kappa_prox-MeanIntensity_kappa_dist; 
 
diff_Bpro(diff_Bpro == 0) = NaN; 
diff_Bcell(diff_Bcell == 0) = NaN; 
diff_CXCL12(diff_CXCL12 == 0) = NaN; 
diff_kappa(diff_kappa == 0) = NaN; 
 
%all_diff=[diff_Bpro';diff_Bcell';diff_CXCL12';diff_kappa']; 
%labeltext={'B Progenitor';'B cell';'CXCL12';'kappa'}; 
all_diff=[diff_Bpro';diff_Bcell';diff_kappa']; 
labeltext={'B Progenitor';'B cell';'kappa'}; 
bins=-0.41:0.02:0.41; 
figure; hold on; 
m=nanmean(all_diff'); 
s=nanstd(all_diff'); 
subplot(615) 
errorbar(m,s,'kx'); 
set(gca,'FontSize',16); 
set(gca,'XTick',1:3); 
set(gca,'XTickLabel',labeltext); 



134 
 

hold on;  
set(gca,'FontSize',16); plot([0.5 3.5],[0 0],'k--'); ylim([-0.2 0.2]); 
title('Mean and standard deviation, per stain.'); 
 
subplot(614);hold on; 
set(gca,'FontSize',16); 
[a,b]=hist(diff_Bpro,bins); 
plot(b,a,'g-'); 
[a,b]=hist(diff_Bcell,bins); 
plot(b,a,'r-'); 
%[a,b]=hist(diff_CXCL12,bins); 
%plot(b,a,'c-'); 
[a,b]=hist(diff_kappa,bins); 
plot(b,a,'b-'); 
title('all data pooled'); 
legend(labeltext,'FontSize',16); 
axis([-0.31 0.31 0 130]); 
ylabel('number of cells');  
xlabel('distal (<0) vs proximal (>0)'); 
%plot intensity differences per image 
for i=1:num_images 
     
    current_data=find(ImageNumber_somata==i); 
    aa=[-0.31 0.31 0 25]; 
    set(gca,'FontSize',16); 
     
    %subplot(611); hold on; 
    %[a,b]=hist(diff_CXCL12(current_data),bins); 
    %title('CXCL12, per image'); 
    %plot(b,a,'c-');ylabel('number of cells'); 
    %axis(aa);xlabel('distal (<0) vs proximal (>0)'); 
    %set(gca,'FontSize',16); 
     
    subplot(611); hold on; 
    [a,b]=hist(diff_Bpro(current_data),bins); 
    title('B Progenitor, per image'); 
    plot(b,a,'g-');ylabel('number of cells'); 
    axis(aa);xlabel('distal (<0) vs proximal (>0)'); 
    set(gca,'FontSize',16); 
     
    subplot(612); hold on; 
    [a,b]=hist(diff_Bcell(current_data),bins); 
    title('B cell, per image'); 
    plot(b,a,'r-');ylabel('number of cells'); 
    axis(aa);xlabel('distal (<0) vs proximal (>0)'); 
    set(gca,'FontSize',16); 
     
    subplot(613); hold on;     
    [a,b]=hist(diff_kappa(current_data),bins); 
    title('kappa, per image'); 
    plot(b,a,'b-');ylabel('number of cells'); 
    axis(aa);xlabel('distal (<0) vs proximal (>0)'); 
    set(gca,'FontSize',16); 
end     
 
%measure true and random colocalization per image pair 
%pairs ordered CXCL12:BP, CXCL12:LpR, CXCL12:VCam, BP:LpR, BP:VCam, LpR:VCam 
%and data ordered Observed white:Mean of random white:Std of random white, 
%where white is proportion of colocalized image pixels. This means 3*6 
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%values. Also extracting measurements for a 'negative control' consisting 
%of a pair where the first image comes from dataset 1, and the second image 
%comes from dataset 2. this makes num_images*3*6=18 for rand_coloc and 18 for cont
rol_rand_coloc 
rand_coloc=zeros(num_images,18); 
for i=1:num_images 
    if i==1%create controls 
        CXCL12_1=imread(['CXCL12_cells00',num2str(1),'.tiff']); 
        Bcells_1 = imread(['B_cells00',num2str(1),'.tiff']); 
        Bpro_1=imread(['B_progenitor_cells00',num2str(1),'.tiff']); 
        kappa_1=imread(['kappa_cells00',num2str(1),'.tiff']); 
        Bcells_2 = imread(['B_cells00',num2str(2),'.tiff']); 
        Bpro_2=imread(['B_progenitor_cells00',num2str(2),'.tiff']); 
        kappa_2=imread(['kappa_cells00',num2str(2),'.tiff']); 
        [ow1,mr1,sr1]=calc_white_pix_n_randomize(CXCL12_1,Bcells_2); 
        [ow2,mr2,sr2]=calc_white_pix_n_randomize(CXCL12_1,Bpro_2); 
        [ow3,mr3,sr3]=calc_white_pix_n_randomize(CXCL12_1,kappa_2); 
        [ow4,mr4,sr4]=calc_white_pix_n_randomize(Bcells_1,Bpro_2); 
        [ow5,mr5,sr5]=calc_white_pix_n_randomize(Bcells_1,kappa_2); 
        [ow6,mr6,sr6]=calc_white_pix_n_randomize(Bpro_1,kappa_2); 
        control_rand_coloc(i,:)=[ow1,mr1,sr1,ow2,mr2,sr2,ow3,mr3,sr3,ow4,mr4,sr4,o
w5,mr5,sr5,ow6,mr6,sr6]; 
 
    end     
    
    if i<10 
        CXCL12=imread(['CXCL12_cells00',num2str(i),'.tiff']); 
        Bcells = imread(['B_cells00',num2str(i),'.tiff']); 
        Bpro=imread(['B_progenitor_cells00',num2str(i),'.tiff']); 
        kappa=imread(['kappa_cells00',num2str(i),'.tiff']); 
    end 
    if i>=10 
        CXCL12=imread(['CXCL12_cells0',num2str(i),'.tiff']); 
        Bcells = imread(['B_cells0',num2str(i),'.tiff']); 
        Bpro=imread(['B_progenitor_cells0',num2str(i),'.tiff']); 
        kappa=imread(['kappa_cells0',num2str(i),'.tiff']); 
    end 
    [ow1,mr1,sr1]=calc_white_pix_n_randomize(CXCL12,Bcells); 
    [ow2,mr2,sr2]=calc_white_pix_n_randomize(CXCL12,Bpro); 
    [ow3,mr3,sr3]=calc_white_pix_n_randomize(CXCL12,kappa); 
    [ow4,mr4,sr4]=calc_white_pix_n_randomize(Bcells,Bpro); 
    [ow5,mr5,sr5]=calc_white_pix_n_randomize(Bcells,kappa); 
    [ow6,mr6,sr6]=calc_white_pix_n_randomize(Bpro,kappa); 
    rand_coloc(i,:)=[ow1,mr1,sr1,ow2,mr2,sr2,ow3,mr3,sr3,ow4,mr4,sr4,ow5,mr5,sr5,o
w6,mr6,sr6]; 
end 
 
figure; 
aa=[-1 10 -0.05 0.2]; 
plot_labels={'CXCL12:B cells';'CXCL12:B progenitor cells';'CXCL12:kappa';'B cells:
B Progenitor cells';'B cells:kappa';'B progenitor cells:kappa'}; 
%we want a 'stair-case' distribution of plots: 
plot_order=[331 334 337 335 338 339]; 
for p=1:6 
    i=p+(p-1)*2;%to step cossectly in the results matrix 
    subplot(plot_order(p)); 
    plot(rand_coloc(:,i),'o','markerSize',12);%CXCL12,BP true overlap 
    hold on; 
    errorbar(rand_coloc(:,i+1),rand_coloc(:,i+2),'k.','LineWidth',2); 
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    plot(0,control_rand_coloc(i),'o','markerSize',12); 
    errorbar(0,control_rand_coloc(i+1),control_rand_coloc(i+2),'k.','LineWidth',2) 
    set(gca,'XTick',0:2:13); 
    set(gca,'XTickLabel',{'nc','2','4','6','8','10','12' },'FontSize',20); 

%negative bontrol 
    title(plot_labels(p));xlabel('dataset');axis(aa); 
    ylabel('colocalization'); ylim([-0.05 0.1]); 
end 
legend('observed colocalization',... 
 'colocalization at randomization, with 2 standard deviations', 'negative control,
 measuring colocalization across datasets 1&2'); 

 
calc overlab function 
function [pOL,p1,p2]=calc_overlap(I1,I2) 
num_I1_pix=length(find(I1>0)); 
num_I2_pix=length(find(I2>0)); 
num_OL_pix=length(find(I1.*I2>0)); 
 
pOL=num_OL_pix/(num_I1_pix+num_I2_pix-num_OL_pix); 
p1=(num_I1_pix-num_OL_pix)/(num_I1_pix+num_I2_pix-num_OL_pix); 
p2=(num_I2_pix-num_OL_pix)/(num_I1_pix+num_I2_pix-num_OL_pix); 

randomization test 
 
function [ow,mr,two_times_sr]=calc_white_pix_n_randomize(I1,I2) 
%NOTE; the program returns the standard deviation multiplied by 2!!! 
I2orig=I2; 
%here, 'randomization' is by flipping and rotating square images. 
%keep I1 fixed, rotate I2, both images have to be square 
 
%original, before rotating 
 
[pOLl(1),p1l(1),p2l(1)]=calc_overlap(I1,I2); 
 
%a first rotation 
I2=rot90(I2); 
[pOLl(2),p1l(2),p2l(2)]=calc_overlap(I1,I2); 
%a second rotation 
I2=rot90(I2); 
[pOLl(3),p1l(3),p2l(3)]=calc_overlap(I1,I2); 
%a third rotation 
I2=rot90(I2); 
[pOLl(4),p1l(4),p2l(4)]=calc_overlap(I1,I2); 
%flip 
I2=flip(I2orig); 
[pOLl(5),p1l(5),p2l(5)]=calc_overlap(I1,I2); 
%flip+a first rotation 
I2=rot90(I2); 
[pOLl(6),p1l(6),p2l(6)]=calc_overlap(I1,I2); 
%flip+a second rotation 
I2=rot90(I2); 
[pOLl(7),p1l(7),p2l(7)]=calc_overlap(I1,I2); 
%flip+a third rotation 
I2=rot90(I2); 
[pOLl(8),p1l(8),p2l(8)]=calc_overlap(I1,I2); 
 
%observed white 
ow=pOLl(1); 
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%mean white after randomizations 
mr=mean(pOLl(2:8)); 
%standard deviation of white after randomizations 
two_times_sr=2*std(pOLl(2:8)); 
 
import text files from CellProfiler output 
function [ImageNumber,ObjectNumber,Intensity_MeanIntensity_B_cells_binary,... 
Intensity_MeanIntensity_B_progenitors_binary,... 
Intensity_MeanIntensity_CXCL12_somata_processes_binary,... 
Intensity_MeanIntensity_kappa_cells_binary] =... 
import_textfiles(filename, startRow, endRow) 
 
%IMPORTFILE Import numeric data from a text file as column vectors. 
%   [IMAGENUMBER,OBJECTNUMBER,INTENSITY_MEANINTENSITY_BP_CELLS_BINARY, 
%   INTENSITY_MEANINTENSITY_CXCL12_SOMATA_PROCESSES_BINARY, 
%   INTENSITY_MEANINTENSITY_LPR_CELLS_BINARY, 
%   INTENSITY_MEANINTENSITY_VCAM_CELLS_BINARY] 
%   = IMPORTFILE(FILENAME) Reads data from text file FILENAME for the 
%   default selection. 
% 
%   [IMAGENUMBER,OBJECTNUMBER,INTENSITY_MEANINTENSITY_BP_CELLS_BINARY, 
%   INTENSITY_MEANINTENSITY_CXCL12_SOMATA_PROCESSES_BINARY, 
%   INTENSITY_MEANINTENSITY_LPR_CELLS_BINARY, 
%   INTENSITY_MEANINTENSITY_VCAM_CELLS_BINARY] 
%   = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data from rows STARTROW 
%   through ENDROW of text file FILENAME. 
% 
% Example: 
%   [ImageNumber,ObjectNumber,Intensity_MeanIntensity_BP_cells_binary,... 
%   Intensity_MeanIntensity_CXCL12_somata_processes_binary,... 
%   Intensity_MeanIntensity_LpR_cells_binary,... 
%   Intensity_MeanIntensity_VCam_cells_binary] = ... 
%   importfile('CXCL12_proximity.txt',1, 1411); 
% 
%    See also TEXTSCAN. 
 
% Auto-generated by MATLAB on 2018/04/30 16:04:02 
 
%% Initialize variables. 
delimiter = '\t'; 
if nargin<=2 
    startRow = 2; 
    endRow = inf; 
end 
 
%% Read columns of data as strings: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%s%s%s%s%s%s%[^\n\r]'; 
 
%% Open the text file. 
fileID = fopen(filename,'r'); 
 
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the code 
% from the Import Tool. 
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dataArray = textscan(fileID, formatSpec, endRow(1)-
startRow(1)+1, 'Delimiter', delimiter, 'HeaderLines', startRow(1)-
1, 'ReturnOnError', false); 
 
for block=2:length(startRow) 
    frewind(fileID); 
    dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-... 
startRow(block)+1, 'Delimiter', delimiter, 'HeaderLines', startRow(block)-... 
1, 'ReturnOnError', false); 
 
    for col=1:length(dataArray) 
        dataArray{col} = [dataArray{col};dataArrayBlock{col}]; 
    end 
end 
 
%% Close the text file. 
fclose(fileID); 
 
%% Convert the contents of columns containing numeric strings to numbers. 
% Replace non-numeric strings with NaN. 
raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 
 
for col=1:length(dataArray)-1 
    raw(1:length(dataArray{col}),col) = dataArray{col}; 
end 
 
numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 
 
for col=[1,2,3,4,5,6] 
    % Converts strings in the input cell array to numbers. Replaced non-numeric 
    % strings with NaN. 
    rawData = dataArray{col}; 
 
    for row=1:size(rawData, 1); 
      % Create a regular expression to detect and remove  

% non-numeric prefixes and suffixes. 
        regexstr = '(?<prefix>.*?)(?<numbers>... 
([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|... 
([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)'; 
        try 
            result = regexp(rawData{row}, regexstr, 'names'); 
            numbers = result.numbers; 
             
            % Detected commas in non-thousand locations. 
            invalidThousandsSeparator = false; 
            if any(numbers==','); 
                thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$'; 
                if isempty(regexp(numbers, thousandsRegExp, 'once')); 
                    numbers = NaN; 
                    invalidThousandsSeparator = true; 
                end 
            end 
            % Convert numeric strings to numbers. 
            if ~invalidThousandsSeparator; 
                numbers = textscan(strrep(numbers, ',', ''), '%f'); 
                numericData(row, col) = numbers{1}; 
                raw{row, col} = numbers{1}; 
            end 
        catch me 
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        end 
    end 
end 
 

%% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw);  
% Find non-numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 
 
%% Allocate imported array to column variable names 
ImageNumber = cell2mat(raw(:, 1)); 
ObjectNumber = cell2mat(raw(:, 2)); 
Intensity_MeanIntensity_B_cells_binary = cell2mat(raw(:, 3)); 
Intensity_MeanIntensity_B_progenitors_binary = cell2mat(raw(:, 4)); 
Intensity_MeanIntensity_CXCL12_somata_processes_binary = cell2mat(raw(:, 5)); 
Intensity_MeanIntensity_kappa_cells_binary = cell2mat(raw(:, 6)); 
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8.1.8. MELC Neighborhood Analysis – R  
# perform neighborhood analysis on MELC data 
 
library(data.table) 
library(ggplot2) 
library(dplyr) 
 
# load the data and extract meta data 
path_to_file <- choose.dir() 
input_data <- choose.files() 
 
print("...read file") 
#df_input <- fread(paste0(path_to_file,input_data), encoding="UTF-8") 
df_input <- fread(input_data, encoding = "UTF-8") 
# if data has some weird stuff in the first rows, delete !!! 
num_of_rows <- nrow(df_input) 
df_input <- df_input[seq(1,num_of_rows),] 
marker.list <- colnames(df_input)[1:43] 
 
#combining the different FOVs by Patient IDs 
patientID_long <- df_input$sourceID 
#inspect different patient IDs and build list for renaming 
fovs <- unique(df_input$sourceID) # we also need fovs later in other calculations 
 
#creating short names containing only patient ID 
patientID <- fread(input_meta_data, encoding = "UTF-8") 
 

#renaming Patient IDs 
for(st in patientID) { 
 df_input$sourceID[grepl(st,df_input$sourceID)] <- st 
} 
 
#updating fovs 
fovs <- unique(df_input$sourceID) 
 
#define which seed cells create the niches and where to put them in table 
inspection_object <- "neutrophils" 
inspection_column <- "Clusters" 
print(paste("...set inspection object to", inspection_object)) 
#defining the radius of neighborhood 
radius.px <- 32 
 
#looking for neighbors, create extra columns for each cluster (n1, n2, n3, ....) 
# take a cell, calc distance to neighbor, except target cell 
# add the colum of desired neighbor by 1 if neighbor is found 
# caution...go dataset vice through ....faster 
# adding neighbor columns to big data frame 
# (nX) := sum of neighboring cell(s) which is of cluster X 
clusters.list <- unique(df_input[[inspection_column]]) 
colnames.neighbors <- paste0("n",clusters.list) 
df_input[,colnames.neighbors] <- 0 
 
df_with_neighbors <- data.frame() 
neighbors.table <- data.frame() 
df_summary <- data.frame(fovs) 
colnames(df_summary) <- "FOV" 
df_summary[,colnames.neighbors] <- 0 
df_diseaseStates <- data.frame() 
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print(paste("start to look for neighbors in radius of", radius.px, "px")) 
 
# calculating distances vectorized, monitoring via progressbar 
pb <- txtProgressBar(min = 1, max = length(fovs), style = 3) 
 

for(d in 1:length(fovs)){ 
   
  setTxtProgressBar(pb, value = d) 
  a.dataset <- df_input[df_input$sourceID %in% fovs[d],] 
  df_diseaseStates <- rbind(df_diseaseStates, unique(a.dataset$disease_state)) 
   
  for(i in 1:nrow(a.dataset)) { 
     
    center.point.cluster <- a.dataset[[i,inspection_column]] 
     
    # this if statement makes sure, only the desired cluster of cell is counted 
    # to analyse all the cells and their possible neighbor clusters ommit the if  
    # statement 
     
    if(center.point.cluster != inspection_object){ 
      next 
    } 
     
    x1 <- as.numeric(a.dataset$posX[i]) 
    x2 <- as.numeric(a.dataset$posX) 
    y1 <- as.numeric(a.dataset$posY[i]) 
    y2 <- as.numeric(a.dataset$posY) 
     
    distances <- ((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1)) 
     
    neighbors <- a.dataset[distances <= (radius.px*radius.px),] 
     
    for(j in 1:nrow(neighbors)){ 
       
      neighbor.cluster <- neighbors[[j,inspection_column]] 
      a.dataset[[i,paste0("n",neighbor.cluster)]] <-  

a.dataset[[i,paste0("n",neighbor.cluster)]]+1 
    } 
    # remove seed cell count 
    a.dataset[[i,paste0("n",center.point.cluster)]] <-  

a.dataset[[i,paste0("n",center.point.cluster)]]-1 
    neighbors.table <- rbind(neighbors.table, neighbors) 
    } 
   
  df_with_neighbors <- rbind(df_with_neighbors,a.dataset) 
   
  #creating summary --> counting the cell's clusters in their niche in each FOV 
   
  for(k in colnames(df_summary)[seq(2,length(colnames(df_summary)))]) { 
     
    cells.with.neighbors <- a.dataset[[k]] 
    df_summary[[d,k]] <- length(cells.with.neighbors[cells.with.neighbors > 0]) 
     
  } 
} 
 
colnames(df_diseaseStates) <- "diseaseStates" 



142 
 

colnames(df_summary) <- c("FOV",clusters.list) 
close(pb) 
print("...just saving the neighborhood analysis output table") 
 
write.table(df_summary, file = paste0(path_to_file,"neighbor_analysis_of_",  
inspection_object, "_in_", radius.px, "_px_", input_data), 
            quote = FALSE, sep = ",", row.names = FALSE) 
 
#---------------------------------------------------------------------------------
---------------------------------------------------- 
#calculating the distribution of every niche in % or absulute numbers 
 
df_freq <- subset(df_with_neighbors,  

df_with_neighbors[[inspection_column]] == inspection_object,  
select = colnames.neighbors) 

df_freq_row_sum <- rowSums(df_freq) 
 
#ignoring zero niche counts 
df_freq <- df_freq[df_freq_row_sum != 0,] 
 
df_sourc_diseaseSt_subset <- subset(df_with_neighbors,  df_with_neighbors[[inspect
ion_column]] == inspection_object, select = c("sourceID", "disease_state", "object
_id")) 
df_sourc_diseaseSt_subset <- df_sourc_diseaseSt_subset[df_freq_row_sum != 0,] 
df_freq <- cbind(df_sourc_diseaseSt_subset,df_freq) 
colnames(df_freq) <- c("SourceID","diseaseState", "object_id", clusters.list) 
 
write.table(df_freq, file = paste0(path_to_file, 

"single_niche_abs_neighbor_count_of_", inspection_object, "_in_", radius.px, 
  "_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE) 
 
df_freq_avg <- data.frame(fovs,df_diseaseStates) 
df_freq_avg[,clusters.list] <- 0 
 
for(i in 1:length(fovs)){ 
  freqs_fov <- df_freq[df_freq$SourceID %in% fovs[i]] 
  freq_means <- colMeans(subset(freqs_fov, select = clusters.list)) 
 
  for(j in 1:length(freq_means)){ 
    df_freq_avg[[i,clusters.list[j]]] <- freq_means[j] 
  } 
 
} 
 
# writung mean frequencies of neighbors to table 
colnames(df_freq_avg) <- c("SampleID", "diseaseState",clusters.list) 
 
write.table(df_freq_avg, file = paste0(path_to_file,"niche_frequency_of_",  

inspection_object, "_in_", radius.px, 
      "_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE) 
 
#--------------------------------------------------------------------------------
# calculate the mean fluorescence intensity per niche and per cell cluster 
#-------------------------------------------------------------------------------- 
# what we would like to show is, e.g. the frequency of T cells dependent on diseas
e state from 
# endothelia niches and grouped by FOV/PatientID 
 
for (i in 3:length(colnames(df_freq_avg))) { 
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  print(paste("...saving plot ", "distribution_plot_of_", gsub("[[:punct:]]",  

" ", colnames(df_freq_avg)[i]), "_in_",  inspection_object, 
"_niche_within_", radius.px, "px.png")) 

 
  df_test <- data.frame(df_freq_avg[[1]], df_freq_avg[[2]], df_freq_avg[[i]]) 
  colnames(df_test) <- c("SampleID", "diseaseState", colnames(df_freq_avg)[i]) 
  df_test$diseaseState <- factor(df_test$diseaseState, levels =  

c("control", "acute", "chronic", "prolonged")) 
 
  colname.df_test <- colnames(df_freq_avg)[i] 
 
  df_dotplot <- data.frame(df_freq[[1]], df_freq[[2]],df_freq[[i]]) 
  colnames(df_dotplot) <- c("SampleID", "diseaseState", colnames(df_freq)[i]) 
  df_dotplot$diseaseState <- factor(df_dotplot$diseaseState, levels = c("control",
 "acute", "chronic", "prolonged")) 
 
 
  # violin plot with dots 
  # dot plot calculation at different place...other loop because of df_freq ... 
  # deleted , dotsize = 0.8, binwidth = 2 
  data_summary <- function(x) { 
    m <- mean(x) 
    ymin <- m-sd(x) 
    ymax <- m+sd(x) 
    return(c(y=m,ymin=ymin,ymax=ymax)) 
  } 
 
  # trim argument in geom_violin allows or not allows the distribution from  
  # violin to be cut 
  # creating the violin plot 
  v <- ggplot(df_dotplot, aes(x=diseaseState, fill=factor(SampleID),  

y=df_dotplot[[3]])) + geom_violin(trim = FALSE) 
  v <- v + stat_summary(fun.data = data_summary) + theme_minimal() 
 
  # adding the labels inside the plot 
  tit <- paste0("distribution plot of ", gsub("[[:punct:]]", "",  

colnames(df_freq_avg)[i]), " in ",  inspection_object, 
             " niche within ", radius.px, "px") 
  xtit <- "Disease State" 
  ytit <- paste0("rel. Frequency of ", colname.df_test) 
 
  v <- v + labs(title = tit , x = xtit, y = ytit) 
 

  png(filename = paste0(path_to_file, "distribution dotPlot of ",  
gsub("[[:punct:]]", "", colnames(df_freq_avg)[i]), " in ",   
inspection_object," niche within ", radius.px, "px.png"),  
width = 10, height = 5, res = 144, units = "in") 

 
  print(v) 
  dev.off() 
 
} 
 
print("...completed") 
 
#-------------------------------------------------------------------------------- 
# trial area to calculate the mean fluorescence intensity per niche and per  
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# cell cluster to have the overall average 
 
unique_objID <- duplicated(neighbors.table$object_id) 
all_niche_cells_wo_0n <- neighbors.table[!unique_objID,] 
 
MFI.table <- as.data.frame(marker.list) 
colnames(MFI.table) <- "marker" 
MFI.table[["niche"]] <- rep(inspection_object,length(marker.list)) 
MFI.table[["disease phase"]] <- rep("",length(marker.list)) 
MFI.table[["sourceID"]] <- rep("",length(marker.list)) 
MFI.table[,clusters.list] <- 0 
df_for_selection <- data.frame(patientID,df_diseaseStates) 
MFI.table.final <- data.frame() 
for(i in 1:dim(df_for_selection)[1]){ 
     
    MFI.table[["disease phase"]] <- rep(df_for_selection[i,2], length(marker.list)
)     
    MFI.table[["sourceID"]] <- rep(df_for_selection[i,1], length(marker.list)) 
     
    ds_subset <- as.data.frame(subset(all_niche_cells_wo_0n,  

all_niche_cells_wo_0n$disease_state == df_for_selection[i,2] & 
             all_niche_cells_wo_0n$sourceID == df_for_selection[i,1])) 
       
      for(cl in clusters.list) { 
         
        dsc_subset <- as.data.frame(subset(ds_subset, ds_subset$Clusters == cl)) 
        marker.means <- colMeans(dsc_subset[,marker.list]) 
        MFI.table[[cl]] <- marker.means 
      } 
     
    MFI.table.final <- rbind(MFI.table.final,MFI.table) 
 
} 
 
MFI.table.final[is.na(MFI.table.final)] <- "" 
 
write.table(MFI.table.final, file = paste0(path_to_file,"niche_means_of_",  

inspection_object, "_in_", radius.px, 
"_from_", input_data), quote = FALSE, sep = ",", row.names = FALSE) 
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8.1.9. ST data integration and clustering analysis script – R  
# ST data integration script 
# loading necessary packages/libraries 
library(Seurat) 
library(SeuratData) 
library(ggplot2) 
library(patchwork) 
library(dplyr) 
library(future) 
 
# set environment parameters to reduce calculation time 
fgmS <- 6000*1024^2 
plan("multiprocess", workers = 2) 
options(future.globals.maxSize = fgmS) 
plan() 
 
# define data and results location 
maindir <- choose.dir() 
savedir <- maindir+"/analysis_results" 
 
# some meta data to each sample 
meta_data <- read.csv(file=choose.files(),sep = ";") 
 
experiment <- meta_data$experiment 
sample_ID <- meta_data$sample_ID 
 
# filter values from meta data, requires data pre-observation 
nFeaturef <- meta_data$nfeature_filter_value 
percent.mtf <- meta_data$percent_mtf_filter_value 
 
variable.features.list <- c() 
barcode.list <- c() 
 
#load ST data and create Seurat Object 
 
for (i in 1:length(experiment)) { 
   
  ddf <- paste0(maindir,"/single_outs/", experiment[i], "/outs") 
  SO <- Load10X_Spatial(data.dir = ddf, filename = "filtered_feature_bc_matrix.h5"
) 
  SO[["percent.mt"]] <- PercentageFeatureSet(SO, pattern = "^MT-") 
  SO <- subset(SO, subset = nFeature_Spatial > nFeaturef[i] &  

percent.mt < percent.mtf[i] & nCount_Spatial > 1) 
 

  SO@meta.data$experiment = rep(experiment[i],length(colnames(x = SO))) 
  SO@meta.data$sample_ID = rep(sample_ID[i],length(colnames(x = SO))) 
  barcode.list <- c(barcode.list, 

gsub("-1", paste0("-",i), rownames(SO@meta.data))) 
  SO@meta.data$barcodes <- gsub("-1", paste0("-",i), rownames(SO@meta.data)) 
  if(exists("SO_all")){ 
    SO_all <- merge(SO_all, SO) 
  } else { 
    SO_all <- SO 
  } 
} 
 
# first check to see if data is loaded correctly 
Idents(SO_all) <- SO_all@meta.data$sample_ID 
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VlnPlot(SO_all, features = c("nFeature_Spatial", "nCount_Spatial", "percent.mt"), 
ncol = 3) 
 
plot1 <- FeatureScatter(SO_all, feature1 = "nCount_Spatial",  

feature2 = "percent.mt") 
plot2 <- FeatureScatter(SO_all, feature1 = "nCount_Spatial",  

feature2 = "nFeature_Spatial") 
plot1 + plot2 
 

# data integration based on SCT transform 
SubsetSO.list <- SplitObject(SO_all, split.by = "sample_ID") 
 
for(i in 1:length(SubsetSO.list)){ 
  SubsetSO.list[[i]] <- SCTransform(SubsetSO.list[[i]],  

assay = "Spatial", verbose = TRUE) 
  DefaultAssay(SubsetSO.list[[i]]) <- "SCT" 
} 
 
SO.features <- SelectIntegrationFeatures(object.list = SubsetSO.list,  

nfeatures = 3000) 
SubsetSO.list <- PrepSCTIntegration(object.list = SubsetSO.list,  

anchor.features = SO.features, verbose = TRUE) 
SO.anchors <- FindIntegrationAnchors(object.list = SubsetSO.list,  

normalization.method = "SCT", anchor.features = SO.features, verbose = TRUE) 
SO.integrated <- IntegrateData(anchorset = SO.anchors,  

normalization.method = "SCT", verbose = TRUE) 
 
# dimension reduction and clustering based on different resolutions 
SO.integrated <- RunPCA(SO.integrated, verbose = FALSE) 
SO.integrated <- FindNeighbors(SO.integrated, dims = 1:30) 
res <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) 
SO.integrated <- FindClusters(SO.integrated, verbose = FALSE, resolution = res) 
SO.integrated <- RunUMAP(SO.integrated, dims = 1:30) 
SO.integrated <- RunTSNE(SO.integrated, reduction = "pca", dims = 1:30) 
 
# data visualization to check parameters, if necessary, rerun previous section wit
h different parameters 
DimPlot(SO.integrated, reduction = "umap", group.by = c("ident", "sample_ID")) 
DimPlot(SO.integrated, reduction = "tsne", group.by = c("ident", "sample_ID")) 
 
# exporting clustered data 
 
Out = as.data.frame(cbind(Barcode = SO.integrated@meta.data$barcodes, 
                    SO.integrated@meta.data$integrated_snn_res.0.1,  
                    SO.integrated@meta.data$integrated_snn_res.0.2, 
                    SO.integrated@meta.data$integrated_snn_res.0.3, 
                    SO.integrated@meta.data$integrated_snn_res.0.4, 
                    SO.integrated@meta.data$integrated_snn_res.0.5, 
                    SO.integrated@meta.data$integrated_snn_res.0.6, 
                    SO.integrated@meta.data$integrated_snn_res.0.7, 
                    SO.integrated@meta.data$integrated_snn_res.0.8)) 
 
colnames(Out) <- c("Barcode",paste0("ClusterRes",res)) 
write.table(Out,file = paste0(savedir,"/clustered_cells_allSamples1234.csv"),  

quote = F, sep = ",", row.names = F) 
                     
# dimensionality reductions export 
umap.table <- cbind(SO.integrated@meta.data$barcodes, 
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 SO.integrated@reductions$umap@cell.embeddings[,1], 
 SO.integrated@reductions$umap@cell.embeddings[,2]) 

colnames(umap.table) <- c("Barcode", "UMAP_1", "UMAP_2") 
write.table(umap.table, file=paste0(savedir, "/umap_allSamples1234.csv"),  

quote = F, sep = ",", row.names = F) 
 
tsne.table <- cbind(SO.integrated@meta.data$barcodes,  

SO.integrated@reductions$tsne@cell.embeddings[,1],  
SO.integrated@reductions$tsne@cell.embeddings[,2]) 
 

colnames(tsne.table) <- c("Barcode", "tSNE_1", "tSNE_2") 
write.table(tsne.table, file=paste0(savedir,"/tsne_allSamples1234.csv"),  

quote = F, sep = ",", row.names = F) 
 
 
  

mailto:SO.integrated@reductions$umap@cell.embeddings[,1
mailto:SO.integrated@meta.data$barcodes
mailto:SO.integrated@reductions$tsne@cell.embeddings[,1
mailto:SO.integrated@reductions$tsne@cell.embeddings[,2
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8.1.10. ST GSEA script – R  
# perform group based Gene Set Enrichment Analysis (GSEA) 
library(Seurat) 
library(dplyr) 
library(tidyverse) 
library(presto) 
library(msigdbr) 
library(fgsea) 
library(ggplot2) 
 
#loading the Seurat Object / here we load the SO of the integrated data set contai
ning all rounds of ST experiment 
SO <- readRDS(choose.files()) 
gene.sets.list <- read.csv(choose.files()) 
save.path <- choose.dir() 
dir.create(save.path) 
 
#add meta data column with disease phase 
experiments <- unique(SO$experiment) 
disease.phase <- c("chronic","chronic","prolonged","acute","control","control",  
                   "chronic","control","prolonged","prolonged","acute","acute") 
df.ed <- cbind.data.frame(experiments,disease.phase) 
SO$disease_phase <- rep("", length(SO$experiment)) 
 
for(i in 1:length(df.ed$experiments)){ 
  SO$disease_phase[SO$experiment==df.ed$experiments[i]] <- df.ed$disease.phase[i]  
} 
 
#perform a fast Wilcoxon rank sum test 
ST.genes <- wilcoxauc(SO,  

"disease_phase", assay = "scale.data", seurat_assay = "integrated") 
head(ST.genes) 
 
#here we see all the gene count for every group of experiment 
dplyr::count(ST.genes, group) 
 
# overview of all Molecular Signatures Database collections 
msigdbr_species() 
 
stepC <- 1 
steps <- length(unique(gene.sets.list$lib))*length(unique(SO$disease_phase))* 

length(gene.sets.list$pathway) 
fgseaRes_all <- data.frame() 
 
for(l in unique(gene.sets.list$lib)){ 
  # we focus on human species 
  m_df<- msigdbr(species = "Homo sapiens", category = l) 
  fgsea_sets <- m_df %>% split(x = .$gene_symbol, f = .$gs_name) 
  gs <- filter(gene.sets.list, species == "Homo sapiens", lib == l)[["pathway"]] 
  for(dp in unique(SO$disease_phase)) { 
       # select only the feature and auc columns for fgsea,  

# which statistics to use idepends on user specifications 
    disease.genes <- ST.genes %>% 
      dplyr::filter(group == dp) %>% 
      #dplyr::filter(logFC >= 0.25) %>% 
      dplyr::filter(padj < 0.05) %>% 
      arrange(logFC) %>%  
      #arrange(padj) %>% 
      dplyr::select(feature, avgExpr) 
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    ranks<- deframe(disease.genes) 
    #head(ranks) 
     
    # run GSEA and export results 
    fgseaRes<- fgseaMultilevel(fgsea_sets, stats = ranks,  

nPermSimple = 10000, minSize = 1) 
    fgseaRes$leadingEdge <- apply(fgseaRes[,"leadingEdge", drop=F], 

1, function(x) paste(unlist(x), sep = ", ", collapse = ", ")) 
    fgseaRes$leadingEdge <- gsub(", ", ";", fgseaRes$leadingEdge) 
    write.table(fgseaRes, file = paste0(save.path,"/fgseaResults_", l, "_", 

dp,".csv"), quote = FALSE, sep = ",", row.names = FALSE) 
    fgseaRes$diseasePhase <- rep(dp,dim(fgseaRes)[1]) 
    fgseaRes_all <- rbind(fgseaRes_all,fgseaRes) 
  } 
   
} 
 
# dotplot creation with Pathway Selection 
pathway.selection <- read.csv(choose.files()) 
 
fgseaRes_PSelection <- fgseaRes_all[fgseaRes_all$pathway %in%  

pathway.selection$pathway,] 
pathway.list <- annas.selection$pathway[c(2,3,4,5,15,24,37,1,6,8)] 
fgseaRes_PSelection2 <- fgseaRes_PSelection[fgseaRes_PSelection$pathway %in%  

pathway.list,] 
 
fgseaRes_PSelection2$diseasePhase <- factor(fgseaRes_PSelection2$diseasePhase,  

levels = c("control", "acute", "chronic","prolonged")) 
 
#manual dotplot creation, exporting via R Studio 
dplot <- ggplot(fgseaRes_AnnasSelection2, aes(x=diseasePhase, y=pathway, 

size=size,color=NES)) + geom_point(alpha=1, stroke = 2) +  
theme_classic() + theme(text = element_text(size=16)) 

dplot = dplot+ 
scale_color_gradient(low = "grey90",  high = "darkblue", space = "Lab") 

dplot 
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8.1.11. ST ssGSEA script – R  
# perform single sample Gene Set Enrichment Analysis (ssGSEA) 
 
library(escape) 
library(dittoSeq) 
library(SingleCellExperiment) 
library(Seurat) 
library(SeuratObject) 
library(dplyr) 
library(ggplot2) 
 
#loading the data and gene sets we would like to investigate 
results.path <- choose.dir() 
gene.sets.list <- read.csv(choose.files()) # list of gene sets "*.csv" 
SO.spatial <- readRDS(choose.files()) # saved integrated Seurat object "*.rds" 
 
names(SO.spatial@images) <- paste0("slide_",unique(SO.spatial$experiment)) 
 
#add meta data column with disease phase 
experiments <- unique(SO.spatial$experiment) 
disease.phase <- c("chronic","chronic","prolonged","acute","control","control",  
                   "chronic","control","prolonged","prolonged","acute","acute") 
df.ed <- cbind.data.frame(experiments,disease.phase) 
SO.spatial$disease_phase <- rep("", length(SO.spatial$experiment)) 
 
for(i in 1:length(df.ed$experiments)){ 
  SO.spatial$disease_phase[SO.spatial$experiment == df.ed$experiments[i]] <-  

df.ed$disease.phase[i]  
} 
 
#visualizing only one image in e.g. SpatialFeaturePlot to check right loading 
gene_feature <- "CCL18" # gene to check on spatial plot 
image_title <- "slide_" # add desired image title based on naming 
SpatialFeaturePlot(SO.spatial, features = gene_feature, images = image_title) 
 
#loop through the gene sets and perform ssGSEA on each spot  
start_time <- Sys.time() 
 
for(s in unique(gene.sets.list$species)){ 
   
  for(l in unique(gene.sets.list$lib)){ 
     
    gs <- filter(gene.sets.list, species == s, lib == l)[["pathway"]] 
    #print(gs) 
    GS.selected <- getGeneSets(species = s, 
                               library = l, 
                               gene.sets = gs) 
    ES.selected <- enrichIt(obj = GetAssayData(SO.spatial, slot = "scale.data"),  

gene.sets = GS.selected, groups = 1000, cores = 20) 
    # adding the enrichment scores to Seurat Object 
    for(i in colnames(ES.selected)){ 
      SO.spatial[[i]] <- ES.selected[[i]] 
    } 
  } 
} 
 
end_time <- Sys.time() 
measured.time <- end_time - start_time 
measured.time 
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# now we have all our enrichment scores, we should plot them as a feature 
# plot to the single images, based on their pathway we have to make sure, that  
# each image in one pathway gets the same color scale in a fixed range 
 
steps <- length(names(SO.spatial@images))*length(gene.sets.list$pathway) 
stepC <- 1 
 
for(p in gene.sets.list$pathway){ 
   
  if(!(p %in% names(SO.spatial@meta.data))){ 
    next 
  } 
   
  save.path <- paste0(results.path,"/",p) 
  dir.create(save.path) 
  q5 <- quantile(unlist(SO.spatial[[p]]), probs = 0.05) 
  q95 <- quantile(unlist(SO.spatial[[p]]), probs = 0.95) 
   
  for(img in names(SO.spatial@images)){ 
     
    print(paste("saving image ", stepC, "of", steps)) 
    sfp.name <- paste0(save.path, "/enrichment_fplot_", p, "_", img,  ".svg") 
    svg(sfp.name) 
    print(SpatialFeaturePlot(SO.spatial, features = p,  

images = img, min.cutoff = q5, max.cutoff = q95,  
image.alpha = 0, pt.size.factor = 2)+ 
ggplot2::scale_fill_gradient2(low = "white",  
mid = "lightblue",high = "darkblue")) 

    dev.off() 
    stepC <- stepC+1 
     
  } 
} 
 
# saving the Seurat Object with single pathway related enrichment scores 
saveRDS(SO.spatial, file =  

paste0(results.path,"/SO_spatial_1234_gsea_escape_filtered.rds")) 
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8.1.12. LSFM destriping script – Python  
import os 
import sys 
import tkinter as tk 
from tkinter import filedialog 
import numpy as np 
from scipy import ndimage 
from scipy.optimize import curve_fit 
from skimage import io 
from skimage import img_as_float 
from skimage import draw 
import pylab 
 

def get_min_lenght_of_list_elements(values_list): 
     
    ''' 
    get minimum length of all lists inside list 
     
    Parameters 
    ---------- 
    values_list : list of lists 
 
    Returns 
    ------- 
    minimum length 
 
    ''' 
 
    min_len = len(values_list[0]) 
     
    for i in values_list: 
         
        if (len(i)<min_len): 
             
            min_len = len(i) 
     
    return min_len 
 

 

def getEdgePoints(img_width, img_height, theta): 
     
    ''' 
    calculating the endpoints (2D) of a line, starting from image center  
    to image border 
     
    Parameters 
    ---------- 
    img_width : horizontal size of a 2D array 
    img_heigth : vertical size of a 2D array 
    theta : angle of line in degree, where 0° is at img_width,img_height//2... 
            rotating angles anticlockwise 
    Returns 
    ------- 
    y, x coordinate of image border points 
 
    ''' 
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    x0 = img_width//2 
    y0 = img_height//2 
     
    x_edge = -1 
    y_edge = -1 
     
    angle_ratio = img_height/img_width 
     
    if ((theta >= 0) and (theta <= np.degrees(np.arctan(angle_ratio)))): 
         
        x_edge = img_width-1 
        y_edge = y0-x0*np.tan(np.radians(theta)) 
         
    if ((theta > np.degrees(np.arctan(angle_ratio))) and  

(theta <= 180-(np.degrees(np.arctan(angle_ratio))))): 
         
        t = 90-theta 
        x_edge = x0+y0*np.tan(np.radians(t)) 
        y_edge = 0 
         
    if ((theta > 180-(np.degrees(np.arctan(angle_ratio)))) and  

(theta <= np.degrees(np.arctan(angle_ratio))+180)): 
         
        t = 180-theta 
        x_edge = 0 
        y_edge = y0-x0*np.tan(np.radians(t)) 
         
    if ((theta > np.degrees(np.arctan(angle_ratio))+180) and  

(theta <= 360-(np.degrees(np.arctan(angle_ratio))))): 
         
        t = 270-theta 
        x_edge = x0-y0*np.tan(np.radians(t)) 
        y_edge = img_height-1         
         
    if ((theta > 360-(np.degrees(np.arctan(angle_ratio)))) and  

(theta <= 360)): 
         
        t = 360-theta 
        x_edge = img_width-1 
        y_edge = y0+x0*np.tan(np.radians(t)) 
 

    return y_edge, x_edge 
def angular_linePlot(image, angle, getValues = False, showPlot = True): 
     
    ''' 
    create line selection starting and ending from image borders at a given angle 
     
    Parameters 
    ---------- 
    image : 2D array, created image, so working with raw values 
    angle: angle of line in degree, where 0° is at img_width,img_height//2 
    ...rotating angles anticlockwise 
    getValues : optional, returns values of line selection measurement if True 
    showPlot : optional, visualize plot on image and diagram if True 
 
    Returns 
    ------- 
    values from line plot if getValues=True 
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     ''' 
    h,w = image.shape 
    #y0 = h//2 
    #x0 = w//2 
    y0, x0 = getEdgePoints(w, h, angle+180) 
    y1, x1 = getEdgePoints(w, h, angle) 
     
    lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False) 
    values = image[lin] 
     
    if(showPlot): 
         
        y, x = np.linspace(y0,y1,len(values),endpoint=False),  

np.linspace(x0,x1,len(values),endpoint=False) 
        p_min = np.percentile(image,0.1) 
        p_max = np.percentile(image,99.9) 
         
        fig, axes = pylab.subplots(ncols=2) 
        axes[0].imshow(image, cmap="gray", vmin=p_min, vmax=p_max) 
        axes[0].plot(x,y,'r-') 
        axes[0].axis('image') 
         
        axes[1].plot(values) 
         
        pylab.show() 
     
    if(getValues): 
         
        return values 
 

def fft_angular_linePlot(fft_image, angle, getValues = False, showPlot = True): 
     
    ''' 
    create line selection starting and ending from image borders at a given angle 
     
    Parameters 
    ---------- 
    fft_image : 2D array, created for fft image, so values are scaled by 20*log 
    angle: angle of line in degree, where 0° is at img_width,img_height//2... 
    rotating angles anticlockwise 
    getValues : optional, returns values of line selection measurement if True 
    showPlot : optional, visualize plot on image and diagram if True 
 
    Returns 
    ------- 
    values from line plot if getValues=True 
 
    ''' 
    h,w = fft_image.shape 
    #y0 = h//2 
    #x0 = w//2 
    y0, x0 = getEdgePoints(w, h, angle+180) 
    y1, x1 = getEdgePoints(w, h, angle) 
     
    lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False) 
    values = fft_image[lin] 
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    if(showPlot): 
         
        y, x = np.linspace(y0,y1,len(values),endpoint=False),  

np.linspace(x0,x1,len(values),endpoint=False) 
        p_min = np.percentile(20*np.log(np.abs(fft_image)+1),0.1) 
        p_max = np.percentile(20*np.log(np.abs(fft_image)+1),99.9) 
         
        fig, axes = pylab.subplots(ncols=2) 
        axes[0].imshow(20*np.log(np.abs(fft_image)+1), cmap="gray",  

vmin=p_min, vmax=p_max) 
        axes[0].plot(x,y,'r-') 
        axes[0].axis('image') 
         
        axes[1].plot(20*np.log(np.abs(values)+1)) 
         
        pylab.show() 
     
    if(getValues): 
         
        return values 
     
 
def set_fft_angular_linePlot_values(fft_image, angle, values): 
     
    ''' 
    set values of a line selection within fft image at a given anggle 
    image do not have to be complex...other types supported as well 
     
    Parameters 
    ---------- 
    fft_image : 2D array, created for fft image, so values are scaled by 20*log 
    angle: angle of line in degree, where 0° is at img_width,img_height//2... 
    rotating angles anticlockwise 
    values : values to set at single pixel line selection 
 
    ''' 
    h,w = fft_image.shape 
    #y0 = h//2 
    #x0 = w//2 
    y0, x0 = getEdgePoints(w, h, angle+180) 
    y1, x1 = getEdgePoints(w, h, angle) 
     
    lin = draw.line_nd((y0,x0),(y1,x1), endpoint=False) 
    fft_image[lin] = values 
     
    return fft_image 
     
def rescale_freqlist_to_same_shape(freq_list): 
         
    ''' 
     
    bring single angle measurements to one rectangular array by interpolation 
    of different lengths of measurements 
     
    Parameters 
    ---------- 
    freq_list : list of single angle measurements 
 
    Returns 
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    ------- 
    rectangular shaped array with interpolated measurements 
 
    ''' 
     
    list_len = len(freq_list) 
    max_len = 0 
     
    for i in freq_list: 
        length = len(i) 
         
        if length>max_len: 
            max_len = length 
             
    freq_img = np.zeros((list_len,max_len)) 
     
    for j in range(list_len): 
 
        freq_img[j,:] = np.interp(np.linspace(0,len(freq_list[j])-1, 

num=max_len),np.arange(len(freq_list[j])),freq_list[j]) 
         
    return freq_img 
 

def get_doG_bandpass(image_shape, sd1, sd2, normalize = True): 
 
    ''' 
    create band pass filter mask by difference of two gaussians 
     
    Parameters 
    ---------- 
    image_shape : size of image mask as tuple 
    sd1 : standard deviation of 1st gaussian 
    sd2 : standard deviation of 2nd gaussian 
    normalize : True/False for normalization by devision of mask's max value 
 
    Returns 
    ------- 
    band pass filter mask image 
 
    ''' 
     
    iy, ix = image_shape 
    cy, cx = iy//2, ix//2 
    x = np.linspace(0, ix, ix) 
    y = np.linspace(0, iy, iy) 
    X, Y = np.meshgrid(x, y) 
    if (sd1 == 0): 
         
        g_mask_sd2 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd2**2)) 
        g_mask_sd2 = g_mask_sd2-g_mask_sd2.min() 
        g_mask_sd2 = g_mask_sd2/g_mask_sd2.max() 
         
        g_mask_diff = g_mask_sd2 
         
    else:     
        g_mask_sd1 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd1**2)) 
        g_mask_sd2 = np.exp(-((X-cx)**2+(Y-cy)**2)/(2*sd2**2)) 
        g_mask_sd1 = g_mask_sd1-g_mask_sd1.min() 
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        g_mask_sd2 = g_mask_sd2-g_mask_sd2.min()        
        g_mask_sd1 = g_mask_sd1/g_mask_sd1.max() 
        g_mask_sd2 = g_mask_sd2/g_mask_sd2.max() 
     
        g_mask_diff = g_mask_sd2-g_mask_sd1 
     
    if (normalize): 
        g_mask_diff /= g_mask_diff.max() 
        #g_mask_diff[g_mask_diff < 0] = 0 
         
    return g_mask_diff 
 

def get_MSE(img1,img2): 
     
    ''' 
    calculate mean squared error of two different images 
     
    Parameters 
    ---------- 
    img1, img2 : images  
 
    Returns 
    ------- 
    mean squared error value 
 
    ''' 
    h,w = img1.shape 
    squared_diff = (img2-img1)**2 
    return (1/(h*w))*np.sum(squared_diff) 
 

def make_spreaded_gaussian_line(img_shape, theta, sigma, sigma_tol=0.01): 
         
    ''' 
    creates line with gaussian gradient at given angle 
     
    Parameters 
    ---------- 
    img_shape : tuple of image mask's size 
    theta : angle of line 
    sigma : standard deviation offset value 
    sigma_tol : spreading of sigma along angled axis 
 
    Returns 
    ------- 
    image filter mask with gaussian line function 
    ''' 
    vs,us = img_shape 
    vc, uc = vs//2, us//2 
    x = np.linspace(-uc, uc, us) 
    y = np.linspace(-vc, vc, vs) 
    V,U = np.meshgrid(x, y) 
         
    u_ = U*np.cos(np.radians(theta))+V*np.sin(np.radians(theta))  
    w = sigma_tol*(np.sqrt(U**2+V**2))+sigma 
     
    mask = 1-np.exp((-0.5*u_**2)/(w**2)) 
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    return mask 
 

def gauss(data, offset, amplitude, mean, sigma): 
         
    ''' 
    gaussian line function 
     
    Parameters 
    ---------- 
    data : one dimensional array with values 
    offset : minimum value of gaussian function 
    amplitude : maximum value of gaussian function 
    mean : location of maximum value 
    sigma : standard deviation, defining width of gaussian peak 
 
    Returns 
    ------- 
    gaussian function based on given parameters 
 
    ''' 
     
    return offset+(amplitude-offset)*np.exp(-(data-mean)**2/(2*sigma**2)) 
 

def get_gaussian_fit_of_line(line_values, show_plot=False): 
     
    ''' 
    calculate fit function of gaussian estimation 
     
    Parameters 
    ---------- 
    line values : values along a line selection to fit  
    show_plot : optional parameter to visualize result of fit 
 
    Returns 
    ------- 
    fitting parameters 
 
    ''' 
     
    x_data = np.arange(line_values.shape[0]) 
    offset_guess = 0 
    amplitude_guess = np.max(line_values) 
    mean_guess = np.mean(x_data) 
    sigma_v = line_values > amplitude_guess/2 
    sigma_guess = 2*np.sum(sigma_v) 
 
    popt, pcov = curve_fit(gauss, x_data, line_values,  

p0=[offset_guess,amplitude_guess,mean_guess,sigma_guess]) 
     
    if(show_plot): 
         
        pylab.plot(x_data, line_values, label="data") 
        pylab.plot(x_data, gauss(x_data,*popt),label="fit") 
        pylab.legend() 
        pylab.show() 
 
    return popt, pcov 
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def readjust_intensity_range(image,new_min,new_max): 
     
    ''' 
    image intensity range transformation 
     
    Parameters 
    ---------- 
    image : array containing the image intensity values 
    new_min : minimum value of new intensity range 
    new_max : maximum value of new intensity range 
 
    Returns 
    ------- 
    transformed image with new intensity range 
 
    ''' 
     
    alow = image.min() 
    ahigh = image.max() 
     
    return (new_min + (image-alow)*(new_max-new_min)/(ahigh-alow)) 
 

def get_padding_size(image): 
     
    ''' 
    calculate required pixel distances for padding image, so that image can 
    be placed in squre with size of power by two...avoiding ringing artifacts 
     
    Parameters 
    ---------- 
    image : image data to extract shape information 
 
    Returns 
    ------- 
    width and height related pixel (half-) distances 
 
    ''' 
     
    h, w = image.shape 
     
    v = 0 
     
    if w > h: 
        v = w 
    else: 
        v = h 
         
    pv = np.ceil(np.log2(v)) 
     
    return (int(((2**pv)-h)//2), int(((2**pv)-w)//2)) 
 

# define image location 
# asking user for directory - where are the images? 
root = tk.Tk() 
root.withdraw() 
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dir_path = filedialog.askdirectory() 
 
if (dir_path == "" or dir_path == ()): 
    print("no selection...exiting script!") 
    sys.exit() 
 
print("selected directory") 
print(dir_path) 
image_list = [] 
 
for (dirpath, dirnames, filenames) in os.walk(dir_path): 
 
    image_list.extend(filenames) 
    break 
 
# # create destriping folder 
results_folder_path = os.path.join(dir_path,"destriped/") 
os.mkdir(results_folder_path) 
   
for selected_img in image_list:   
     
    # load image and display the image cliped to the first and last percentile 
    img = img_as_float(io.imread(os.path.join(dir_path,selected_img),key=0)) 
    print(selected_img) 
    #img = img_as_float(io.imread(img_path+img_name)) 
     
    #check if power of two 
    ph_offset, pw_offset = get_padding_size(img) 
    img = np.pad(img,((ph_offset,ph_offset),(pw_offset,pw_offset)),'linear_ramp') 
    img_min = img.min() 
    img_max = img.max() 
    img_mean = img.mean() 
    img_h, img_w = img.shape 
    img_cy, img_cx = img_h//2, img_w//2 
     
    # # image plot for development 
    # p_min = np.percentile(img,0.5) 
    # p_max = np.percentile(img,99.5) 
    # pylab.imshow(img, cmap="gray", vmin=p_min, vmax=p_max) 
    # pylab.colorbar() 
    # pylab.show() 
     
    # Take the 2-dimensional DFT and centre the frequencies 
    fftimage = np.fft.fft2(img) 
    fftimage = np.fft.fftshift(fftimage) 
    p_min = np.percentile(np.log(np.abs(fftimage)+1),0.1) 
    p_max = np.percentile(np.log(np.abs(fftimage)+1),99.9) 
    # image plot for development 
    # #pylab.imshow(np.log(np.abs(ftimage[img_cy-512:img_cy+512, 
    # img_cx-512:img_cx+512])+1), cmap="gray", vmin=p_min, vmax=p_max) 
    # pylab.imshow(np.log(np.abs(fftimage)+1)) 
    # pylab.colorbar() 
    # pylab.show() 
     
    #io.imsave('fft_from_stripy_image.tif', np.log(np.abs(fftimage)+1)) 
     
    # calc center region fit, which should be uneffected of destriping 
     
    central_line_values = fft_angular_linePlot(fftimage, 0,  
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getValues=True, showPlot=False) 
    popt_fft, pcov_fft =  

get_gaussian_fit_of_line(np.log(np.abs(central_line_values)+1)) 
     
    angles = [99.5, 80.5, 90] # device related angles 
 
    fftimage_orig = np.copy(fftimage) 
    img_dupl = np.copy(img) 
    img_dupl2 = np.copy(img) 
     
    for a in angles: 
         
        fftimage = np.fft.fft2(img_dupl) 
        fftimage = np.fft.fftshift(fftimage) 
        filter_mask = abs(make_spreaded_gaussian_line(fftimage.shape, a,  

2*3.4, 0.048)-1) # 0.048 is total angular difference in px 
         
        central_line_values2 = fft_angular_linePlot(fftimage_orig, a,  

getValues=True, showPlot=False) 
        popt_fft2, pcov_fft2 =  

get_gaussian_fit_of_line(np.log(np.abs(central_line_values2)+1)) 
         
        filter_mask *= get_doG_bandpass(fftimage.shape, round(popt_fft[3])/2,  

2*popt_fft2[3]) 
     
        # testing different weights...mean association not found so far 
        #weight = popt_fft2[1]/popt_fft[1] 
        weight = 1 
        filter_mask = np.abs((filter_mask*weight)-1) 
        #io.imsave("filter_mask_"+str(int(a))+".tif",filter_mask) 
        #print(popt_fft) 
        #print(popt_fft2) 
         
        fftimage *= filter_mask 
        img_dupl = np.abs(np.fft.ifft2(np.fft.ifftshift(fftimage))) 
         
    # #image plot after destriping for development 
    # pylab.imshow(img_dupl[ph_offset:img_h-ph_offset,pw_offset:img_w-pw_offset]) 
    # pylab.colorbar() 
    # pylab.show() 
    
    #mean squared (difference) error for development 
    #print(get_MSE(img*2**16-1, img_dupl*2**16-1)) 
    # save image in results folder 
    #io.imsave('results_test/destriped_'+img_name, (img_dupl[ph_offset:img_h-
ph_offset,pw_offset:img_w-pw_offset])*2**16-1) 
    io.imsave(os.path.join(results_folder_path,selected_img),  

np.uint16((img_dupl[ph_offset:img_h-ph_offset, 
pw_offset:img_w-pw_offset])*2**16-1)) 
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8.1.13. SNR calculation of stripy and destriped LSFM images 
 """ 
Calculate SNR values based on ilastik’s probability maps 
""" 
import pandas as pd 
import numpy as np 
from skimage import io 
import matplotlib.pyplot as plt 
from matplotlib.colors import LinearSegmentedColormap 
 
def show_prob_maps(prob_maps): 
  
    colors_R = [(0, 0, 0), (1, 0, 0)] # first color is black, last is red 
    cm_r = LinearSegmentedColormap.from_list("Custom", colors_R, N=256) 
     
    colors_G = [(0, 0, 0), (0, 1, 0)] # first color is black, last is green 
    cm_g = LinearSegmentedColormap.from_list("Custom", colors_G, N=256) 
     
    colors_B = [(0, 0, 0), (0, 0, 1)] # first color is black, last is blue 
    cm_b = LinearSegmentedColormap.from_list("Custom", colors_B, N=256) 
     
    plt.imshow(prob_maps[:,:,0], cmap=cm_r, alpha=0.33) 
    plt.imshow(prob_maps[:,:,1], cmap=cm_g, alpha=0.33) 
    plt.imshow(prob_maps[:,:,2], cmap=cm_b, alpha=0.33) 
    plt.title("probability input maps") 
    plt.show() 
     
def show_image(image, img_title="", color="gray", p_low=1, p_high=99): 
     
    p_l = np.percentile(image,p_low) 
    p_h = np.percentile(image,p_high) 
     
    plt.imshow(image, cmap=color, vmin=p_l, vmax=p_h) 
    plt.colorbar() 
    plt.title(img_title) 
    plt.show() 
     
def get_mean_std_of_probmap(image,prob_map,threshold=0.66): 
     
    prob_th_ids = prob_map > threshold 
    obj_mean = (image[prob_th_ids]).mean() 
    obj_std = (image[prob_th_ids]).std() 
     
    return obj_mean, obj_std 
 
# load image data 
img_path = "H:/LightSheet/160101_depicted_examples_results/" 
img_path2 = "H:/LightSheet/160101_depicted_examples/" 
 
# define microscope related image naming 
date = "16-01-01" 
device = "UltraII" 
channel = "C01" 
stage = "xyz-Table " 
file_suffix = ".ome.tif" 
 
# select image layers to calculate SNRs 
layers = ["Z0250","Z0300","Z0350","Z0400","Z0435","Z0450","Z0500"] 
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empty_array = np.zeros(len(layers)) 
# prepare results table 
idx = 0 
snr_data = pd.DataFrame({"layer" : layers, 
                         "PSNR_orig" : empty_array, 
                         "PSNR_destr" : empty_array, 
                         "SNR_orig" : empty_array, 
                         "SNR_destr" : empty_array, 
                         "SBR_orig" : empty_array, 
                         "SBR_destr" : empty_array}) 
 
for z in layers: 
     
    # read the image data 
    filename_orig = img_path2+date+"_"+device+"_"+channel+"_"+stage+str(z)+ 

file_suffix 
    filename_destriped = img_path+"destriped_"+date+"_"+device+"_"+channel+ 

"_"+stage+str(z)+file_suffix 
    filename_prob = img_path+"destriped_"+date+"_"+device+"_"+channel+"_"+ 

stage+str(z)+".ome_Probabilities.tif" 
     
    orig_img = io.imread(filename_orig) 
    destriped_img = io.imread(filename_destriped) 
    prob_map = io.imread(filename_prob) 
     
    mus = [] 
    stds = [] 
     
    # calculate features 
    for i in range(prob_map.shape[2]): 
         
        mu_orig, stdDev_orig =  

get_mean_std_of_probmap(orig_img, prob_map[:,:,i]) 
        mu_destr, stdDev_destr =  

get_mean_std_of_probmap(destriped_img, prob_map[:,:,i]) 
        mus.append(mu_orig) 
        stds.append(stdDev_orig) 
        mus.append(mu_destr) 
        stds.append(stdDev_destr) 
         
    # set values in table 
    snr_data["PSNR_orig"][idx] = mus[0]/stds[4] 
    snr_data["PSNR_destr"][idx] = mus[1]/stds[5] 
     
    snr_data["SNR_orig"][idx] = mus[0]/stds[2] 
    snr_data["SNR_destr"][idx] = mus[1]/stds[3] 
     
    snr_data["SBR_orig"][idx] = mus[0]/mus[2] 
    snr_data["SBR_destr"][idx] = mus[1]/mus[3] 
     
    idx += 1 
 
print(snr_data) 
 
# save the results table 
snr_data.to_csv(img_path+"SNR_results.csv") 
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