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Abstract

Objectives: The aims of this dissertation were to (1) conduct a scoping review of studies
on machine learning (ML) in dentistry and appraise their robustness, (2) perform a bench-
marking study to systematically compare various ML algorithms for a specific dental task,
and (3) evaluate the influence of a ML-based caries detection software on diagnostic

accuracy and decision-making in a randomized controlled trial.

Methods: The scoping review included studies using ML in dentistry published between
1st January 2015 and 31st May 2021 on MEDLINE, IEEE Xplore, and arXiv. The risk of
bias and reporting quality were assessed with the QUADAS-2 and TRIPOD checklists,
respectively. In the benchmarking study, 216 ML models were built using permutations of
six ML model architectures (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyra-
mid Scene Parsing Network, and Mask Attention Network), 12 model backbones of vary-
ing complexities (ResNetl18, ResNet34, ResNet50, ResNet1l01, ResNetl52, VGGL13,
VGG16, VGG19, DenseNet121, DenseNetl161, DenseNet169, and DenseNet201), and
three initialization strategies (random, ImageNet, and CheXpert weights). 1,625 dental
bitewing radiographs were used for training and testing. Five-fold cross-validation was
carried out and model performance assessed using F1-score. In the clinical trial, each
one of 22 dentists examined 20 randomly selected bitewing images for proximal caries;
10 images were evaluated with ML and 10 images without ML. Accuracy in lesion detec-

tion and the suggested treatment were evaluated.

Results: The scoping review included 168 studies, describing different ML tasks, models,
input data, methods to generate reference tests, and performance metrics, impeding
comparison across studies. The studies showed considerable risk of bias and moderate
adherence to reporting standards. In the benchmarking study, more complex models only
minimally outperformed their simpler counterparts, if at all. Models initialized by ImageNet
or CheXpert weights outperformed those using random weights (p<0.05). The clinical trial
demonstrated that dentists using ML showed increased accuracy (area under the receiver
operating characteristic [mean (95% confidence interval): 0.89 (0.87-0.90)]) compared
with those not using ML [0.85 (0.83—0.86); p<0.05], primarily due to their higher sensitivity
[0.81 (0.74-0.87) compared to 0.72 (0.64-0.79); p<0.05]. Notably, dentists using ML also



showed a higher frequency of invasive treatment decisions than those not using it
(p<0.05).

Conclusion: To facilitate comparisons across ML studies in dentistry, a minimum (core)
set of outcomes and metrics should be developed, and researchers should strive to im-
prove robustness and reporting quality of their studies. ML model choice should be per-
formed on an informed basis, and simpler models may often be similarly capable as more
complex ones. ML can increase dentists’ diagnostic accuracy but also lead to more inva-

sive treatment.

Zusammenfassung

Ziele: Die Ziele dieser Dissertation waren, (1) ein Scoping-Review von Studien Uber ma-
schinelles Lernen (ML) in der Zahnmedizin, (2) eine Benchmarking-Studie zum systema-
tischen Vergleich verschiedener ML-Algorithmen fur eine bestimmte zahnmedizinische
Aufgabe, und (3) eine randomisierte kontrollierte Studie zur Bewertung einer ML-basier-
ten Karies-Erkennungssoftware beziglich diagnostischer Genauigkeit und Einfluss auf

den Entscheidungsprozess durchzufihren.

Methoden: Das Scoping-Review umfasste Studien Uber ML in der Zahnmedizin, verof-
fentlicht vom 1. Januar 2015 bis 31. Mai 2021 auf MEDLINE, IEEE Xplore und arXiv.
Bias-Risiko und Berichtsqualitat wurden mit den Checklisten QUADAS-2 beziehungs-
weise TRIPOD bewertet. In der Benchmarking-Studie wurden 216 ML-Modelle durch Per-
mutationen von sechs Architekturen (U-Net, U-Net++, Feature Pyramid Networks,
LinkNet, Pyramid Scene Parsing Network und Mask Attention Network), 12 Backbones
(Res-Net18, ResNet34, ResNet50, ResNet101, ResNetl52, VGG13, VGG16, VGG19,
DenseNet121, DenseNet161, DenseNet169 und DenseNet201) und drei Initialisierungs-
strategien (zufallige-, ImageNet- und CheXpert-Gewichtungen) erstellt. Zum Training und
Testen wurden 1.625 Bissfliigel-Rontgenaufnahmen genutzt. Es wurde eine flinffache

Kreuzvalidierung durchgefiihrt und die Modellleistung anhand des F1-Scores bewertet.



In der klinischen Studie untersuchten 22 Zahnarzte jeweils 20 zufallig ausgewahlte Biss-
fligelbilder auf Approximalkaries; 10 Bilder wurden mit und 10 Bilder ohne ML ausgewer-
tet. Die Genauigkeit in der Erkennung von Lasionen sowie die abgeleitete Therapieemp-

fehlung wurden bewertet.

Ergebnisse: Das Scoping-Review schloss 168 Studien ein, in denen verschiedene ML-
Aufgaben, Modelle, Eingabedaten, Methoden zur Generierung von Referenztests und
Leistungsmetriken beschrieben wurden. Die Studien zeigten ein erhebliches Bias-Risiko
und eine maRige Einhaltung der Berichtsstandards. In der Benchmarking-Studie hatten
komplexere Modelle gegeniber einfachen Modellen allenfalls geringe Vorteile. Mit Ima-
geNet- oder CheXpert-Gewichtungen initialisierte Modelle Ubertrafen solche mit Zufalls-
gewichtungen (p<0,05). In der klinischen Studie erreichten Zahnérzte mit ML eine héhere
Genauigkeit bei der Kariesdetektion (Receiver-Operating-Charakteristik [Mittelwert (95 %
Konfidenzintervall) 0,89 (0,87-0,90)]) als ohne ML [0,85 (0,83-0,86); p<0,05], hauptsach-
lich aufgrund hoherer Sensitivitat [0,81 (0,74-0,87) verglichen mit 0,72 (0,64-0,79);
p<0,05]. Zahnarzte mit ML wéhlten auffallend haufiger invasive Behandlungen als ohne
ML (p<0,05).

Schlussfolgerung: Zur besseren Vergleichbarkeit von ML-Studien in der Zahnmedizin,
sollten Core Outcomes und Metriken definiert sowie Robustheit und Berichtsqualitat ver-
bessert werden. Die Entwicklung von ML-Modellen sollte auf informierter Basis erfolgen,
bei oft ahnlicher Leistung von einfacheren und komplexeren Modellen. ML kann die diag-

nostische Genauigkeit erhdhen, aber auch zu mehr invasiven Behandlungen fuhren.
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1 Introduction

1.1  Artificial intelligence — What it is and how it applies to healthcare

Artificial intelligence (Al) is the development of computer programs to be able to carry out
tasks that normally require human intelligence, such as visual perception, decision mak-
ing, and problem solving [1]. Machine learning (ML) is a branch of Al that involves training
computer algorithms to learn patterns from data and then make predictions. In ML, it is
not the human who defines the rules that a computer follows to fulfil certain tasks; instead,
the computer itself learns rules from the data provided to it [2]. Examples of this in our
daily lives include virtual assistants like Siri and Alexa, photograph filters on social media,
algorithms that suggest online content tailored to our interests, navigation maps, autocor-
rect functions for messages, speech-to-text converters, language translation apps, chat-
bots, and self-driving cars, to name a few [3]. Al is also being used in industries such as
finance, transportation, and healthcare, with an ever-increasing impact on our lives. The
potential for Al to change how we work, live, and communicate is enormous, and is ex-

pected to become even more critical in the future.

In healthcare, ML is being used to improve patient outcomes and diagnosis [4, 5]. It can
help physicians detect conditions such as cancer, heart disease, and neurological disor-
ders earlier and more accurately, with medical imaging being a significant area of focus
[3, 5, 6]. ML-based analysis of medical imaging has been successfully employed to help
interpret medical scans with more precision, thereby reducing the chances of missed di-
agnoses or incorrect treatments. A range of medical fields are using ML, for example,
dermatology, ophthalmology, radiology, and dentistry, where it has achieved similar or
higher accuracy than experienced clinicians [5-8]. According to a recent report, the mar-
ket value for Al and ML in healthcare has been projected to increase by more than seven-
fold between the years 2023 and 2028 up to USD 102.7 billion [9].

In the dental clinic, many tasks can be performed by ML with greater precision and fewer
errors than human counterparts; from booking and coordinating appointments to assisting
with clinical diagnosis and treatment planning [10, 11]. ML algorithms can analyze large
datasets of dental images (e.g., photographs, radiographs, three-dimensional [3-D]
scans, and transillumination images), detect patterns, and provide insights into diagnosis,

treatment, and prevention [12]. Thus, they reduce the need for manual analysis and allow
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dentists to focus on other areas of patient care [12]. In addition, using an ML software
may aid dentists in boosting their performance, for example, by increasing the chance of
detecting caries lesions early, resulting in improved patient outcomes and reduction in

dental care expenditure [13].

1.2 Use of machine learning in dental research

1.2.1 Existing literature

The use of big data and improvements in computer science technology has led to an
explosion of studies using ML in medicine in the last decade [11]. The number of publi-
cations alone tells a story: it doubled in the last decade, from 162,444 in 2010 to 334,497
in 2021 [14]. A similar surge in publications has been observed in dental research, re-
flecting the growing interest in this field [2, 15].

Since ML can be used for various dental tasks, the literature covers a wide range of ap-
plications, for example, prediction of dental complications after the extraction of a third
molar, tooth classification and outlining on images such as photographs or radiographs,
cephalometric landmark detection, and dental pathology detection [7]. Different clinical
applications or research aims necessitate different types of ML models because they in-
volve distinct types of data, decision-making processes, and clinical outcomes [16]. For
instance, some applications may require high accuracy rates with low tolerance for false
positive (FP) or false negative (FN) cases, while others may prioritize interpretability to
enable clinical decision-making. Thus, an ML model can be understood to be a highly
specific model that is built for a specific task, which in turn needs to be built with specific
algorithms pertaining to the task. Moreover, in order to evaluate how well the ML model
has accomplished the given task, a plethora of performance metrics can be used, which
are again specific to the nature of the task.

As a consequence, studies in the field of dentistry using ML can differ widely [7]. There is
significant heterogeneity in the study designs, clinical applications, ML models, data, and
performance metrics, which hinders comparing studies and evaluating their consistency
and robustness [11]. Additionally, variation has been reported in the quality of ML studies

in medicine with respect to the risk of bias and reporting of the methods and results [17].
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It is likely that similar variance in quality and replicability also exists for dental ML studies
[18] but their comprehensive objective evaluation has not been carried out so far. Reviews
are regarded as a vital component of evidence-based medicine. Conducting such a com-
prehensive overview of the existing literature and appraising the robustness of the studies
could facilitate highlighting their strengths and weaknesses and identify future research

needs.

1.2.2 Current methodological trends of machine learning in dentistry
The basic features of an ML model are:
Architecture: The arrangement pattern of the basic building blocks of a ML model defines

its architecture. Examples widely used in the field are U-neural network (U-Net), U-Net++,
and LinkNet.

Backbone: For certain complex tasks, specialized building blocks are added to the model
structure which form its foundation and hence are called a backbone. Examples are Re-

sidual neural network (ResNet) and Visual Geometry Group (VGG).

Complexity level: ML models can have different levels of complexity or depth, which cor-

respond to the size of the model, i.e., the number of building blocks used.

Initialization: This is akin to giving a ML model a head-start for a given task, by providing
it with some basic information relevant to the task, for example, about photographs or
radiographs. It can be thought of as learning to play the cello. If one already knows how
to play the violin, learning the cello would be easier because some of the skills and
knowledge one already has can be transferred. This technique in the context of ML is

called ‘transfer learning’; Figure 1.
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Traditional machine learning Transfer learning
versus

VRN =8 o 25
| | — ﬁﬁm S, — Q@}

Task 1

lKnowIedge
 Detaset v Ul I e
( atase ! - _ ':. ataset _ {é,}
SR Qe | — O

Task 2

Learning of a new task
relies on a previously
learned but related task

Here, Task 1 and 2 are different but related to each other

Figure 1: Representation of the concept of transfer learning in the context of machine learning
and how it differs from traditional machine learning. In transfer learning, the model to be trained
for a new task is supplied with information from another model which was trained for a different

but related task. Source: modified from https://towardsdatascience.com/a-comprehensive-hands-

on-quide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a Ac-

cessed on 25th January 2023.

A major weakness in ML research in dentistry is the considerable heterogeneity among
the existing studies, much of which stems from the different types of ML models currently
inuse [2, 11, 19-22]. Building an ML model to accomplish a specific task involves choos-
ing an architecture, backbone, complexity level or size, and initialization strategy from the
numerous options available. Without a guiding framework available, researchers tend to
arbitrarily select the popular options, often without empirical evidence of their suitability
for the task at hand [23]. The utter number of possible configurations of ML components
impedes systematic and comprehensive comparisons of the existing studies’ findings and
identifying the best approach for a particular task in dentistry [11, 12].

Thus, it is important to systematically compare the different model configurations on one
data set. Such an evaluation is called ‘benchmarking’ which has a couple of advantages.
First, it provides guidance for researchers in the model building process, which can im-
prove efficiency by enabling the development of high-performing models, in shorter times,

and at lower computational costs. Second, it can help establish standards for ML research


https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
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in dentistry, making it easier to compare and replicate results across different studies.

However, in the dental field such benchmarking initiatives are scarce [24].

1.2.3 Clinical usefulness of machine learning for dentists

Another main weakness of the dental ML field is the lack of clinical prospective compari-
sons [7]. The implications of this are that despite the strong advances in ML methodology
over the recent years, the effectiveness and applicability of ML models in a real-world
clinical setting remain unclear [2, 7]. Randomized controlled clinical trials are essential for
proving generalizability and accuracy of ML systems but also for assessing their impact
on diagnostic and decision-making processes as well as the resulting treatment deci-

sions, health gains, and costs [25].

1.3 Research aims

1.3.1 Scoping review of research literature on machine learning in dentistry

As discussed, a systematic assessment of the body of evidence on ML in dentistry is
required to quantify the extent of heterogeneity among the available studies as well as
appraise their consistency and robustness. Such an evaluation would facilitate highlight-
ing the current strengths and weaknesses of the existing studies and identifying future
research needs. The primary aim of the scoping review was to evaluate the overall body
of existing research literature on ML in dentistry with regards to the clinical and ML tasks,
models, kinds of datasets, and metrics used to evaluate the performance of the models.
The secondary aim was to examine the robustness of the studies, focusing on the risk of

bias and reporting quality.

1.3.2 Benchmark machine learning models for a specific dental task

As described earlier, there is a plethora of options available from which one can construct
an ML model for a certain task but there is a lack of a proper framework which compares
the various options and guides a researcher with these decisions. The aim of this study
was to systematically compare, i.e., benchmark the possible configurations of various
model architectures, backbones, complexity levels, and initialization strategies on one
data set. The different models were evaluated on the dental task of outlining various parts

of a tooth as seen on a radiograph, such as enamel, dentin, pulp, fillings, and prosthetic
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crowns. This dental task was chosen because ML models have demonstrated superior
performance on it. Furthermore, the tooth structures in question can be easily identified
even by dentists with less experience and thus the establishment of the reference test
would be considered valid.

The hypothesis was that the performances of models would improve with their complexity
level and the implementation of transfer learning. The results from this study could inform
dental researchers about suitable model structures for their experiments, contribute to
evidence-based ML model building in the dental field, and help establish standards for

research.

1.3.3 Evaluate a machine learning software in a randomized clinical trial

As discussed, there is a lack of studies that demonstrate the true usefulness of ML sys-
tems in a clinical setting. Hence it is important to generate evidence on the diagnostic
accuracy and applicability of ML systems in the hands of dentists. The aim of the ran-
domized controlled clinical trial was to quantify the differences in performance of dentists
in the absence versus presence of assistance by an ML software in the task of detecting
proximal caries on bitewing radiographs. For this dissertation, the analysis has been ex-
tended beyond the publication [26] to evaluate the performance of the ML software by
itself for the given task. Furthermore, the influence of the ML software on the treatment

decisions made by the dentists was examined.

The hypothesis was that dentists using ML would be more accurate than those not using
ML. The results from this clinical trial could demonstrate the prospective usefulness and

impact of ML software on dental diagnostics and treatments in a real-world setting.
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2 Methods

2.1 Scoping review

2.1.1 PICOS question

The research question was framed according to the Participants Intervention Comparison
Outcome and Study (PICOS) strategy and was as follows: “Which ML practices are being
employed by studies in dentistry and what are their methodological quality and findings?”
[18]

e Population: All kinds of population-level data with a dental or oral component [18].

¢ Intervention/Comparison: ML techniques applied with a dental or oral focus for the
diagnosis, management, or prognosis of dental conditions or improving data quality
[18].

e Outcome: Performance evaluation of the ML models in terms of certain metrics, for
example, accuracy, intersection-over-union, sensitivity, precision, area under the re-
ceiver operating characteristic (AUROC), F indices, specificity, negative predictive
value (NPV), rank-N recognition rate, error estimates, correlation coefficients, etc. [18]

e Study design type: All kinds of studies except reviews, editorials, and technical stand-

ards, with no language restrictions [18].

2.1.2 Search strategy

The search strategy was designed with the aim to identify all studies meeting the eligibility
criteria in accordance with the objectives of the review. The varying publication norms
among different academic disciplines were taken into consideration. The review [18] did
not restrict the inclusion of studies with respect to the target study population, outcome of
interest, or the context in which ML was used. It aimed to include all original studies re-
lated to dentistry and ML, as long as they did not contain major reporting errors, such as
failing to define the type of ML used, inadequately describing the dataset employed, or

omitting explicit reporting of the study findings.

Three electronic databases (MEDLINE via PubMed, Institute of Electrical and Electronics
Engineers Xplore, and arXiv) were used. The archiving database arXiv was used in an
effort to also include grey literature. This included studies that did not go through a formal,

but a non-formal peer-review process and then were updated after peer-review [18].
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The search terms used were ‘deep learning’, ‘artificial intelligence’, ‘machine learning’,
‘convolutional neural network’, ‘dental’ and ‘teeth’. The search strategies for all the three

databases are defined below [18]:

e Database MEDLINE/PubMed
(“deep learning” OR “artificial intelligence” OR “machine learning” OR “convolutional neu-
ral network”) AND (“dental” OR “teeth)

e Database Institute of Electrical and Electronics Engineers Xplore

(("Document Title™:“deep learning” OR “artificial intelligence” OR “machine learning” OR
“convolutional neural network™) OR (“Keywords”:“deep learning” OR “artificial intelligence”
OR “machine learning” OR “convolutional neural network”)) AND ((“Document Title”:

“‘dental” OR “teeth) OR (“Keywords”:“dental” OR “teeth)))

e Database arXiv
“deep learning” OR “artificial intelligence” OR “machine learning” OR “convolutional neu-
ral network” AND “dental” OR “teeth

The following inclusion criteria [18] were applied:

(1) Studies with a dental/oral focus, including technical papers.

(2) Studies employing ML.

(3) Studies published between 1st January 2015 and 31st May 2021, as the aim was to
gather recent studies and specifically include the most rapidly evolving ML era at pre-

sent.

Owing to the lack of randomized controlled trials on ML in dentistry the scoping review
was expanded to include non-randomized studies in order to gain a comprehensive over-

view of the field.

The inclusion of the studies was decided by two reviewers in consensus. All studies found
to be potentially eligible were assessed in full text against the inclusion criteria. All the
included and excluded studies were listed along with justification for exclusion for the

excluded studies.
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2.1.3 Data collection

Data extraction was performed by three reviewers and then finally reviewed by one of

them. In case of disagreements, a consensus process was used.

The extracted data was recorded using a formerly validated Excel document. Study char-
acteristics included country, publication year, study aim, clinical field, type of input data
(covariates, photographs, or radiographs; two-dimensional [2-D] or 3-D imagery), data
source and size, type of ML model, reference test (i.e., how the ground truth was defined),
comparators (e.g., current standard of care, clinicians, etc.), and model performance met-
rics along with their values. No assumptions were made regarding missing or unclear
data [18].

2.1.4 Assessment of risk of bias in the individual studies

The risk of bias was examined using the QUADAS-2 tool in four domains [27]. First, the
risk of bias in data selection was examined with regard to inappropriate exclusions, case-
control study design, and patient enrolment strategy. Second, the risk of bias in the index
test was examined with regard to the independence of the measurement from the refer-
ence test and pre-specification of thresholds. Third, the risk of bias in the reference test
was examined for its validity of assessing the ground truth and the independence of its
measurement from the index test. Fourth, the risk of bias in flow and timing was examined
regarding whether there was an appropriate interval between the index and reference
tests, whether the reference test was used for all participants, whether the same refer-
ence test was used for all participants, and whether all participants were included in the
analysis. The impact of the risk of bias in the individual studies on the overall results of

the review was assessed and discussed.

Using the same tool, applicability concerns, i.e., how specific methods used by the studies
influenced the generalizability of their results, were evaluated in three domains. First, ap-
plicability concerns in data selection were examined regarding a potential mismatch be-
tween the included participants and the review question. Second, applicability concerns
in the index test were examined regarding a potential mismatch between the test, its con-
duct, or its interpretation and the review question. Third, applicability concerns in the ref-
erence test were examined regarding a potential mismatch between the target condition

as defined by the reference test and the review question [18].
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2.1.5 Assessment of reporting quality of the individual studies

Observance of reporting guidelines was assessed using the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) tool, a 22-
item checklist that provides guidelines for reporting of prediction studies [18, 28]. TRIPOD
has been used for similar assessments of studies in other medical fields [17, 29].

2.1.6 Data synthesis

Initially, a meta-analysis was planned for all studies included in the review; however only
10% of studies reported complete confusion matrices that could be used for such an
analysis. Furthermore, these few studies differed from each other in terms of clinical re-
search question/task, type of input data, model architecture, inferences from the results,
etc, [18] thus making a meta-analysis not feasible. Hence, a narrative synthesis was per-
formed instead, displaying which ML tasks were used in different clinical fields of dentis-
try, namely restorative dentistry and endodontics, oral medicine, oral radiology, orthodon-

tics, oral surgery and implantology, periodontology, prosthodontics, and general dentistry.

For this dissertation, the analysis was expanded beyond the publication [18] to construct

confusion matrices for studies which presented their metrics as described ahead.

When sensitivity, specificity, precision, and sample size were available:

1 1 1 1 (TP ) n )
1-Sensitivity 0 0 -Sensitivity TN = 0

0 1-Specificity  -Specificity 0 FP 0
1-Precision 0 -Precision 0 _ FN . 0 )

When sensitivity, specificity, accuracy, and sample size were available:

1 1 1 1 (TP ) Con )
1-Sensitivity 0 0 -Sensitivity TN = 0

0 1-Specificity -Specificity 0 FP 0
1/Accuracy 1/Accuracy 0 0 _ FN ) . n

where TP = number of true positive, TN = number of true negative, FP = number of false

positive, FN = number of false negative, and n = sample size.



Methods 14

Combining the studies who properly reported their confusion matrices along with those
whose confusion matrices were reconstructed, resulted in a total of 29 studies. Among
these studies, 19 studies performed classification tasks, four studies each performed ob-
ject detection and semantic segmentation tasks, and two studies performed instance seg-
mentation tasks. Since the number of studies in the latter three groups were too few for
a meaningful analysis, only the classification studies were used to estimate the mean
sensitivity and exact binomial 95% confidence interval for each study and displayed in a
forest plot. All data management and statistical analyses were performed with R (version

4.0.3, www.r-project.org) [30].

2.1.7 Reporting protocol and ethics statement

The review methods were decided upon before the commencement of the scoping review
to reduce the risk of bias. The study protocol was registered with PROSPERO (registra-
tion number CRD42021288159). Reporting of the review followed the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. In accordance
with the guidelines of the Charité Promotionsburo, this scoping review was appraised
using the checklist A Measurement Tool to Assess Systematic Reviews (AMSTAR) 2 and
it achieved a very high rating. From a total of 16 items in the checklist, 13 items were
applicable to this scoping review, out of which 12 items (92%) were rated with a ‘yes’.
The item rated with ‘no’ referred to the reporting of the sources of funding for the individual

studies included in the review.

Ethics approval was not sought because the review was based exclusively on published
literature [18].

2.2  Benchmarking study

The aim was to systematically compare the various configurations of different model ar-
chitectures, backbones, complexity levels, and initialization strategies for the task of out-

lining tooth structures on bitewing radiographs.


http://www.r-project.org/
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2.2.1 Model components

Six architectures were selected: U-Net, U-Net++, Feature Pyramid Networks, LinkNet,
Pyramid Scene Parsing Network, and Mask Attention Network. These networks were se-
lected as they allow to employ the same backbones (i.e., ResNet, VGG, and DenseNet)
with varying levels of complexity. 12 different levels of model complexity were used: Res-
Netl8, ResNet34, ResNet50, ResNetl01, ResNet152, VGG13, VGG16, VGG19, Dense-
Netl121, DenseNet161, DenseNet169, and DenseNet201. The numeric value at the end
of the model's name indicates the complexity level. Three different initialization strategies
were evaluated, i.e., random weights initialization, initialization based on ImageNet data,

and initialization based on CheXpert data.

Thus, a total of 216 model configurations were evaluated. Figure 2 represents the study
design. All models were trained under a five-fold cross-validation scheme, also depicted
in Figure 2, which is a technigue to evaluate the performance of a model on a limited
dataset. The basic idea is to divide the dataset into two parts: a training set on which the
model is trained and a testing set on which the model's performance is evaluated [31].
For example, in a five-fold cross-validation, the dataset is randomly divided into five equal
parts. The model is trained on four parts and tested on the remaining part. This process
is repeated five times, so that each part is used as the testing set exactly once. The results
from each iteration/fold are then averaged to obtain a more robust estimate of the model's

performance and prevent undue data-related influence on the models.
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Backbone Residual neural network VGG DenseNet
Architecture 18 (34|50 (101 | 152 |13 16| 19 | 121 | 161 | 169 | 201 Initialization
U-Net CheXpert
U-Net++ ImageNet
Feature Pyramid Random
Network
LinkNet

Pyramid Scene Parsing
Network

Mask Attention Network

Fold 1 _ ‘ ‘—- ‘ Model ‘ — Fl-score
R o I o [ [
Fold 3 -:I:- - — Fl-score —
Fold 4 I:I:_ — — Fl-score
Input | Fold5 I:_ | — [Model| — F1-score | outout

pu

1625 images

‘ Test ‘ ‘ Train ‘ ‘ Validate ‘

Five-fold cross-validation

Figure 2: lllustration of the benchmarking study design. Model setups were based on different
architectures, backbones, complexity levels, and initialization strategies (top) and five-fold cross-
validation with varying train, test, and validation sets for each iteration/fold (bottom). Exemplary
input bitewing radiograph (left) and the output image containing markings of the different tooth
structures (right). The numbers below the names of the different backbone groups represent the
various complexity levels. Abbreviation: VGG, visual geometry group. Source: modified from Fig-
ure 1, publication L. Schneider, L. Arsiwala-Scheppach, J. Krois, H. Meyer-Lueckel, K.K.
Bressem, S.M. Niehues, F. Schwendicke, Benchmarking Deep Learning Models for Tooth Struc-
ture Segmentation, J Dent Res (101, 11) pp. 1343-1349. Copyright © 2022 International Associ-
ation for Dental Research and American Association for Dental, Oral, and Craniofacial Research.
doi: 10.1177/00220345221100169. Image rights for reuse in dissertation held by authors of the
publication, including Lubaina T. Arsiwala-Scheppach, under Open Access category and license
CC-BY NC 4.0 as per publisher policy. Additionally, kind permission for reuse was obtained from
the publisher Sage Publications.

2.2.2 Data used

1,625 dental bitewing radiographs were used, each displaying up to nine teeth. One den-

tist annotated the parts of a tooth, such as enamel, dentin, pulp, fillings, and prosthetic
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crowns, on the radiographs using an in-house custom-built annotation tool. These anno-
tations served as the reference test [32]. A second dentist reviewed the accuracy of these
annotations. Both dentists were calibrated for the annotation process. Images containing
implants, bridges, or root canal fillings accounted for less than one percent of the total
images and hence were excluded. It should be noted that enamel, dentin, and pulp were
present in all images whereas fillings and crowns were less frequent (80% and 20% im-
ages, respectively). To suit the requirements of the ML models, the images and annota-

tions were resized to a fixed input size.

2.2.3 Statistical analysis

The performance of the models was primarily quantified by the F1-score which was cal-
culated as described by Forman and Scholz [33]. The different model configurations re-
garding architectures and initialization strategies were ranked by their performance i.e.,
F1-score and compared using the Wilcoxon rank-sum test. Additionally, the relationship
between model complexity and performance was examined by the Spearman’s correla-
tion metric. As a sensitivity analysis, model performance was evaluated on the less prev-
alent classes of fillings (80%) and crowns (20%). Owing to the skewed distribution of the
data, non-parametric statistical tests were used. The p values were adjusted by the Ben-
jamini—Hochberg method to account for multiple testing. The level of significance was set
to p<0.05. Statistical analyses were performed with R (version 4.0.3, www.r-project.org)
[30].

2.2.4 Reporting protocol and ethics statement

Two reporting protocols were followed for this study: the Standards for Reporting Diag-
nostic Accuracy (STARD) guidelines [34] and the Checklist for Artificial Intelligence in
Dental Research [35]. The study was approved by the Ethics Committee of the Charité
(EA4/102/14 and EA4/080/18) [36].

2.3 Clinical trial

2.3.1 Study design

A randomized controlled non-blinded clustered cross-over superiority trial was conducted

with an allocation ratio of 1:1.


http://www.r-project.org/
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Randomization: Seven blocks of 20 radiographs each were randomly generated using
randomize.org from a collection of 140 radiographs. Each dentist then randomly received
one of these seven blocks. The sequence of radiographs in each block was also randomly
determined and was identical for every dentist. Of the 20 radiographs to be viewed, half
of them were randomly assigned to be viewed by the dentist with assistance from the ML
software and the other half without. Owing to the nature of the intervention it was not
possible to blind the dentists regarding which image belonged to which trial group. Figure
3 represents the study design of the trial.

140 bitewings |

v

7 sets of 20 random
bitewings

v
Randomized 1 set of
bitewingsto 1 dentists

Q
1 [
o
(!
Randomly Q
allocated bitewings to Al 5
(test) or not (control) -
(ratio 1:1) [
FO‘W
Outcomes: -
* Accuracy -
+ Treatment decision poy
« Confidence
Evaluation + Gaze patterns n=22 dentists

Figure 3: Flowchart of the randomized clinical trial. From 140 bitewing radiographic images, seven
blocks of 20 images were randomly generated. Each of the 22 dentists randomly assessed one
block, with images being randomly allocated to the intervention (with machine learning software)
or control group in a 1:1 allocation ratio. Different colors on the bitewing images indicate different
findings, e.g., blue indicates fillings, crowns, or root-canal fillings, while red indicates caries le-
sions. Abbreviation: Al, artificial intelligence. Source: Figure 1, publication S. Mertens, J. Krois,
A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detection: Randomized
trial, J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Image rights for reuse in dis-
sertation held by authors of the publication, including Lubaina T. Arsiwala, as per publisher Else-

vier policy.
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2.3.2 Sample size

The sample size for the trial was based on a prior study [25] which used the same ML
software. The study design was a clustered trial where approximately 20 tooth surfaces
were visible per radiograph and to account for this, the ‘design effect’ was estimated. The
formula used to estimate the design effect was 1 + (cluster size - 1) * intraclass correlation
coefficient, where the intraclass correlation coefficient was assumed to be 0.2, based on
a prior study [37]. Thus, a cluster size of 20 surfaces resulted in a design effect of 4.8. A
trial with 95% power and an ‘alpha’ value of 0.05 would require 1280 tooth surfaces to be
included. Thus, for the present trial, the number of surfaces required was 1280 * 4.8 =
6144. Since each dentist was assigned to examine 20 radiographs (i.e., 400 surfaces), a
minimum of 16 dentists had to be recruited. Note that in the protocol, recruitment of 20
dentists was planned and finally 22 were recruited. There were no predetermined stop-

ping rules or interim analyses.

2.3.3 Data used

Study participants were recruited and the trial was conducted from October 2020 to Jan-
uary 2021. The participating dentists worked at Charité — Universitatsmedizin Berlin den-
tal hospital or in private clinics in Berlin and thus the trial was conducted at these loca-
tions. Care was taken to ensure standardization of study conditions at all locations as
follows: For the participants from private clinics, the study investigator brought the monitor
screen used in the trial at the Charité dental hospital to their clinic and the experiment
was carried out in a dimly lit room in the clinic, similarly as conducted at the Charité dental
hospital. Participants were excluded if they were no longer clinically active, had less than
two years of clinical experience, or had no regular experience of caries detection. Written
informed consent was obtained from all participating dentists. Participants’ characteristics

such as age and gender were used for descriptive analyses.

The 140 bitewing radiographs of permanent teeth used in the trial were from patients
treated between the years 2016 and 2018 at Charité — Universitatsmedizin Berlin dental
hospital under an ethics approved protocol (EA4/080/18). Bitewing radiographs of the
permanent dentition were included if, at minimum, the crowns of one dental arch were
discernible. The radiographs were generated using machines produced by Dentsply Si-

rona or DUrr Dental companies.
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The reference test was established by four dentists independently outlining proximal car-
ies lesions on all radiographic images using an in-house customised annotation software
in dimly lit rooms using diagnostic screens under standardized conditions. All annotations
were reviewed and modified, if necessary, by a fifth dentist who could consult the other
four dentists. The union of areas annotated by all dentists for each lesion constituted the
reference standard; this is a popular method for generating a reference standard when a

“hard” reference like histopathological examination is unavailable.

The caries lesions were classified into enamel lesion, early dentin lesion within the outer
1/3 of the dentin, or advanced dentin lesion expanding deeper than that, by two inde-

pendent dentists in consensus.

2.3.4 Trial intervention

The intervention was an ML-based software for viewing radiographs in order to classify
teeth and outline fillings and caries lesions on bitewing radiographs (dentalXrai Pro 1.0.4,
dentalXrai Ltd., Berlin, Germany). The software could display the original radiograph and
an augmented version with pathology detections by the ML software shown as overlays
(see Figure 3 for examples of augmented radiographs). With respect to caries detection,
the ML software indicated whether a caries lesion was present or absent for every sur-
face. At least one week prior to the study, all dentists received a handbook of the ML
software to be used during the trial and were advised to gain familiarity with the software
by using it to analyse a minimum of four bitewing radiographs. The control group consti-
tuted the conventional radiographic detection of proximal caries without any aid from the

ML software.

The intervention was applied as described: First, each dentist was assigned to a randomly
chosen block of 20 bitewing radiographs, half of which were randomly assigned to be
viewed along with the ML software and the other half without. In the ML group, dentists
had the option to enable or disable the ML software as per their choice. Dentists verbally
reported their diagnoses of proximal caries and their accompanying treatment decisions

to the study assistant.

2.3.5 Outcomes

The primary outcomes were AUROC, accuracy, F1-score, sensitivity, specificity, positive

predictive value (PPV), and NPV. These were calculated for both groups of the trial, i.e.,
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dentists without ML and dentists with ML. For this dissertation, the analysis was expanded
beyond the publication [26] to include the aforementioned primary outcomes for the ML

software alone (i.e., without a dentist).

The secondary outcome focused on the treatment decision assigned by the dentists for
each proximal surface, i.e., the number of no treatment, non-invasive (e.g., fluoride var-
nish), micro-invasive (e.g., caries infiltration) or invasive (e.g., filling) treatments. Since
the secondary outcomes were derived from data provided by dentists, they could not be
calculated for the ML software.

2.3.6 Statistical analysis

First, the design effect was estimated to account for the clustered trial design as described
earlier. In addition to this, clustering by dentists was accounted for as every dentist was
present in both groups of the trial. Thus, a combined design effect was estimated and
applied to all analyses. The AUROC of all dentists stratified by trial group were plotted to
facilitate comparison. For this dissertation, the comparison was extended beyond the
publication [26] to include the performance of the ML software too. Also, a paired scatter-
plot was created to highlight the differences in sensitivity and specificity for each dentist
across the two groups of the trial. The number of surfaces assigned to each type of treat-
ment was calculated. Furthermore, additional analysis was incorporated into this disser-
tation: the inter-rater agreement between the dentists for detecting caries lesions, using
the Fleiss kappa metric. The two-sided t-test, chi-squared test, and Fisher's exact test
were used to compare the results between the trial groups. The level of significance was
set at p<0.05. No deviation from the trial protocol occurred. All analyses were conducted
for the total dataset (i.e., overall) and stratified by caries depth. All data management and

statistical analyses were performed with R (version 4.0.3, www.r-project.org) [30].

2.3.7 Reporting protocol and ethics statement

The trial was registered at the Deutsches Register Klinischer Studien (DRKS00022357)
and was ethically approved by the Charité — Universitatsmedizin Berlin (EA/144/20). Re-
porting of the trial followed the Consolidated Standards of Reporting Trials using Artificial
Intelligence (CONSORT-AI) checklist and the Checklist for Artificial Intelligence in Dental
Research [18, 35, 38].


http://www.r-project.org/

Results 22

3. Results

3.1 Scoping review

3.1.1 Individual study characteristics

183 studies were identified, out of which 168 (92%) studies were included; Figure 4 [18].
The included studies [13, 25, 31, 32, 39-202] and their characteristics are listed in Table
1 and the excluded studies along with justifications for exclusion are provided in Table 2.
The included studies were published from 1st January 2015 to 31st May 2021 (median
year: 2019), with their annual numbers increasing steadily as depicted in Figure 5 (for
year 2021, data only until May was available) [18]. The studies were from 40 countries
(Figure 6) and employed various types of input data, e.g., 2-D data (radiographs: 42%
studies, photographs, or other types: 16% studies), 3-D data (radiographs: 18% studies,
non-radiographs: 4% studies), survey data: 10% studies, and combinations of different
kinds of data (9% studies) [18]. 97% studies used institutional data e.g., universities, hos-
pitals, and private practices, whereas 3% studies used the National Health and Nutrition
Examination Survey, M3BE database, 2013 Nationwide Readmissions Database of the

USA, and the National Institute of Dental and Craniofacial Research dataset [18].
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Results
Identification of studies via databases
() | Search terms (deep learning OR artificial intelligence OR machine
5 learning OR convolutional neural network) AND (dental OR teeth)
% | | Records identified from:
2| | MEDLINE via PubMed (n = 664 studies)
2| | arXiv (n = 9 studies)
S Institute of Electrical and Electronics Engineers Xplore (n = 100
__J | studies)
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(n = 183 studies)
Reports sought for retrieval
(n = 183 studies)
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@ Reports assessed for eligibility
(n = 183 studies)
Reports excluded (n = 15)
¢ Review/supplemental papers
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_— e Non-oral health topics (n = 3)
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Figure 4: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

study flow diagram of the scoping review on machine learning in dentistry. 168 studies were

screened and included in the scoping review. Abbreviation: ML, machine learning. Source:

modified from Figure 1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J.

Krois, F. Schwendicke, Machine Learning in Dentistry: A Scoping Review, J Clin Med 12(3)
(2023), doi: 10.3390/jcm12030937. Image rights held by authors of the publication, including
Lubaina T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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Table 1: Studies included in the scoping review on machine learning in dentistry along with their characteristics (n=168).

No. | Year Study aim Data type and size ML model Reference test Model metrics
[Ci-
ta-
tion]
1 2015 | Determine the most appropriate 4,336 charts, notes, and Bayesian network and An expert saw the subjects an- | Longevity error in years
[39] dental filling and monitor it. radiographs of fillings Multilayer Perceptrons nually for follow-up
2 2015 | Automatic landmark detection on | 30 3-D CBCT images Knowledge-based algo- Manual landmark plotting by 3 | Overall mean error, overall land-
[40] 3-D CBCT images rithm orthodontists mark detection accuracy
3 2015 | Evaluate accuracy of 3-D cepha- | 30 3-D CBCT images Knowledge-based algo- 21 cephalometric landmarks Mean error in measurements,
[41] lometric measurements by a transformed to DICOM rithm identified manually by three or- | mean error of distance ratios, in-
knowledge-based algorithm format thodontists ter-observer correlation
4 2015 | Automatic identification of the 2,058 swallow and 3,248 Deep neural network A trained speech and lan- Accuracy, receiver operating
[42] oral transfer phase of deglutition | non-swallow pressure [Time-delay ANN] guage therapist marked the characteristic, mean squared er-
measures & time periods onset and offset of oral activity | ror
5 2015 | Differentiate osteoporotic pa- 2-D panoramic radiograph | Not deep-learning [naive The subjects were classified Receiver operating characteris-
[43] tients from normal patients and bone mineral density Bayes classifier, k-nearest | according to the World Health tic, sensitivity, specificity, accu-
of 141 females neighbor, SVM] Organization racy
6 2015 | Biofilm quantification independ- 2-D quantitative light-in- Not deep learning [Gauss- | To define clean areas, images | Confusion matrix, consistency
[44] ent of grader perceptual bias duced fluorescence im- ian Markov random field were deemed clean by two ex-
ages (maybe n=470) model] pert graders
7 2016 | Diagnosis of extractions 2-D lateral cephalograms Non-deep learning neural | Treatment plans were made by | Success rate
[45] of 156 patients network 1 orthodontic specialist
8 2016 | Diagnose females with osteopo- | 2-D dental panoramic ra- Hybrid genetic swarm Dual-energy X-ray absorptiom- | Accuracy, sensitivity, specificity,
[46] rosis diographs of 141 females | fuzzy classifier etry and WHO guidelines on PPV, NPV, likelihood ratio
classification
9 2016 | Predict if patient has teeth peri- 201 2-D dental x-ray im- Feed Forward Neural Net- | Not mentioned explicitly Accuracy of classifier on two-
[47] apical lesion or not and its type ages works, K-Nearest Neigh- class dataset, on four-class da-
using ML techniques bor Classifier taset
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10 2016 | Tooth segmentation and classifi- | 3-D MicroCT-images of 3 Pulse coupled CNN Experienced dentists manually | Relative error, correlation coeffi-
[48] cation mandibular molars (each labeled tooth structures to cient, mean absolute difference
tooth had 256 slices and identify different regions in a of volumes, similarity index, sen-
280 regions of interest) segmented mask. sitivity, specificity
11 2017 | Stage lower third molar develop- | 400 2-D panoramic radio- | CNN [AlexNet] Two observers decided about Rank-N recognition rate, intra-
[49] ment for age estimation graphs the stages. If necessary, a class correlation, accuracy, line-
third observer arly weighted Cohen’s kappa,
confusion matrix
12 2017 | Osteoporosis detection using 454 2-D dental panoramic | Decision tree and SVM Radiographs classified by Accuracy, sensitivity, specificity,
[50] various methods on radiography | radiographs bone mineral density (T-score) | mean of textural features
13 2017 | Classify quantitative light-in- 427 quantitative light-in- CNN [ResNet] 3 ground truths derived from 3 | Fl-score
[51] duced fluorescence images to duced fluorescence im- different plaque-scoring sys-
determine dental plaque level ages tems
14 2017 | Diagnose vertical root fractures 240 2-D periapical dental Non-deep learning neural | Teeth were evaluated under a | Accuracy, sensitivity and specifi-
[52] in intact and endodontically radiographs and 3-D network as a perceptron microscope for presence/ab- city
treated teeth CBCT images [Daubechies 3 wavelet sence of a fracture
transform, Gabor filters]
15 2017 | Prediction of oral cancer risk in Exfoliative cytology, histo- | SVM, SVMfull, k-nearest Clinical data, exfoliative cytol- Sensitivity, specificity, area under
[53] patients with oral leukoplakia pathology and clinical data | neighbors, peaks-closed ogy, histopathology, and fol- the curve
from 364 patients and peaks-random forest low-up data were collected.
16 2017 | Investigate the application of 52 3-D CBCT images CNN [AlexNet (Caffe The smallest bounding box for | Classification accuracy, effect of
[54] deep CNN for classifying types of | (35,259 regions were clas- | framework)] each tooth was manually augmentation on accuracy
teeth on CBCTs sified in 7 tooth types) placed on the CT volume
17 2017 | Teeth detection in dental pano- 2-D dental panoramic ra- CNN [modified version of Each tooth in the images was Accuracy for tooth class detec-
[55] ramic radiographs with CNN diographs from 100 peo- AlexNet where multi-class | delineated by a dentist tion
ple classification is performed]
18 2017 | Classification of dental diseases | 251 Radio Visiography x- CNN [VGG-16 (for trans- Images were labeled by den- Accuracy
[56] using CNN ray images fer learning)] tists and radiologists
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19 2017 | Development of an ANN to clas- | 3-D surface scans of 129 Non-deep learning neural | Manual classification of cusps | Correct classification
[57] sify dental cusps with sufficient dental casts (full arches) network (Cusp Distance & | by an investigator using the

accuracy from 69 participants Range Image Method) modified FDI scheme
20 2017 | Segmentation of gingival dis- 405 2-D intra-oral color- CNN [Auto-encoders] A dentist drew bounding boxes | AUROC, precision, recall
[58] eases from oral images augmented fluorescent around inflamed gingiva and

images gave a modified gingival index

21 2017 | Detection of tooth caries over 3000 2-D bitewing ra- | Fully CNN [not mentioned] | Annotations by dentists after Recall, precision, F1 score
[59] diographs clinical verification of caries
22 2017 | 22 methods were compared to 976 2-D panoramic X-rays | Not deep learning [22 Teeth were divided into 14 Mean absolute error, Root mean
[60] analyze and improve dental age models were used] sub-stages and assigned a nu- | squared error

estimation in children merical value
23 2017 | Classify periapical cyst and kera- | 50 3-D CBCT images from | Deep neural network [De- | Experts classified and manu- Accuracy, Fl-score, confusion
[61] tocystic odontogenic tumor 50 patients tails not mentioned] ally marked the lesions matrix (not presented)
24 2018 | Estimate positioning error of pa- 5166 pairs of 2-D dental CNN [Built on own] Reconstruction with dental Mean absolute error, Maximum
[62] tient’s dental arch and correct panoramic radiographs arch in predefined position absolute error

the panoramic image and it's deviation value
25 2018 | Mandible segmentation on a 20 3-D CT data sets Fully CNN [with 32s, 16s, Generated by 2 clinical experts | All networks: Dice coefficient;
[63] valid ground truth dataset and 8s separately] manually Best trained model: accuracy
26 2018 | Classify normal, abscessed, and | 60 2-D periapical dental Not deep-learning from dataset Accuracy of all models in differ-
[31] impacted teeth radiographs ent set-ups of images
27 2018 | Interactive segmentation of pan- | 2-D dental panoramic ra- Conditional spatial fuzzy Manual generation of ground Misclassification error, relative
[64] oramic radiographs diographs (maybe 5) C-means clustering algo- truth of 5 images by one doc- foreground area

rithm [Gaussian Kernel- tor.
based]

28 2018 | Laser speckle image segmenta- 2-D laser speckle images, | Not deep learning [K- Evaluation of samples (original | Accuracy in segmentation
[65] tion of tooth surface to detect data size not mentioned means clustering algo- treated teeth) by one trained

early-stage caries rithm] odontologist
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29 2018 | Find the determinant location Explanatory variables, Not deep learning [Deci- A prosthodontist evaluated the | Accuracy
[66] factors of an inserted implant, survival, and complication | sion tree, SVM] implants and categorized them
which influence implant survival of 53 patients (59 cases) according to chart records
30 2018 | Identification of unknown people | 43467 2-D dental pano- Speeded Up Robust Fea- | Given by dataset Number of matching points, de-
[67] by comparing ante- and post- ramic radiographs from tures + random sampling tection rate
mortem panoramic radiographs 24545 persons consensus algorithms
31 2018 | Classify head and neck CT for 1417 2-D panoramic radi- | Mask R-CNN [ResNet101 | Annotation of the mouth, no Accuracy, F1-score, precision,
[68] presence of dental artifacts ographs +region proposal network] | additional information recall, specificity
32 2018 | Usage of a multi-stream deep 2-D brush photos and CNN [VGG-19] Data samples are manually la- | Accuracy of classifying 16 differ-
[69] learning framework for teeth- data from smart bracelets beled according to Bass brush- | ent movements of Bass teeth-
brushing (activity) recognition of 74 people ing method brushing (confusion matrix)
33 2018 | Predict BRONJ occurrence in at- | 125 patient parameters Logistic regression, SVM, | Standard definition of BRONJ AUROC, sensitivity, specificity
[70] risk patients (41 cases and 84 controls) | Decision tree, ANN, Ran- | was used
dom Forest
34 2018 | Diagnose and predict periodon- 1740 2-D periapical radio- | CNN [VGG-19] 3 calibrated periodontists de- Diagnostic & predictive accuracy,
[71] tally compromised teeth graphs termined the severity of perio- | sensitivity, specificity, PPV, NPV,
dontally compromised teeth AUROC, confusion matrix
35 2018 | Evaluation of the efficacy of deep | 3000 2-D periapical radio- | CNN [Inception V3, All images were revalidated Diagnostic accuracy, sensitivity,
[72] CNN algorithms for detection and | graphs GoogLeNet] and dental caries were distin- specificity, PPV, NPV, AUROC
diagnosis of dental caries on per- guished from non-dental caries
iapical radiographs by 4 calibrated dentists
36 2018 | Classify incisor, canine, premolar | 3-D dental CT of 200 teeth | Extreme learning machine | From dataset Sensitivity of each class, entire
[73] and molar (50 from each category) [1-hidden layer network] accuracy
37 2018 | Detect and quantify cracks using | 42 3-D high resolution Not deep learning [SVM] Given by own dataset Absolute maximum wavelet coef-
[74] high-resolution CBCT images scans ficient, AUROC, discrimin- ative
sensitivity and specificity
38 2018 | Screen high-risk populations for 170 autoflourescence and | CNN [MatConNet] Labeled by oral oncology spe- | Accuracy, sensitivity, specificity
[75] oral cancer white light image pairs cialists
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39 2018 | Assess the need for orthodontic 15 variables and need of Not deep learning [Bayes- | Stated need for orthodontic Accuracy, specificity, sensitivity,
[76] treatment in patients with perma- | orthodontic treatment from | ian network] treatment mentioned in the kappa, AUROC

nent dentition 1000 patient datasets hospital system
40 2018 | Automated clinical quality evalu- | 196 2-D dental periapical CNN [modified 3 dentists classified cases Test accuracy, F1-score, recall,
[77] ation for decision making radiograph pairs GoogLeNet] based on clinical observation precision, confusion matrix
41 2018 | Predict self-reported tooth mobil- | 4623 Latinos with 9 social | Neural network [Mul- Self-reported by participants Predictive accuracy, AUROC, in-
[78] ity in urban Latinos variables tilayer Perceptron] terpretability, applicability
42 2018 | A) Locate each present tooth 3-D CBCT images from Combinations [Fully CNN: | Annotated by 4 specialists and | Accuracy
[79] 1274 studies V-Net] entering a tooth number

B) Detect common conditions [CNN: DenseNet] Annotated by 5 specialists AUROC
43 2018 | Analyze the determinants that af- | 105 dietary and demo- Deep neural network [Built | Given by database Accuracy, loss function, AUROC,
[80] fect presence or absence of car- | graphic features from on own] processing time, PPV, NPV

ies/restorations 9812 subjects
44 2018 | Teeth recognition using label tree | 1000 dental periapical ra- | CNN [3 CNNS using Annotations with bounding Precision, recall, F-score
[81] and cascade network structure diographs VGG-16] boxes and label the 32 teeth
45 2019 | Real-time recognition of dental 631 images of 11 objects CNN [Shot Multibox De- Images were annotated by the | Accuracy, precision, recall, true
[82] instruments using deep learning tector network, MobileNet] | researchers negative rate
46 2019 | Age estimation using CNN on 2575 2-D dental panora- CNN [Capsule-net which Given by dataset Average accuracy, recall, preci-
[83] dental panoramic X-rays mic radiographs is built on own] sion, F1-score
a7 2019 | Detect periodontal disease using | 2-D gingival images from SVM Given by dataset (cases were | Accuracy, sensitivity, specificity
[84] smartphones and ML techniques | 30 subjects diagnosed by dentist)
48 2019 | Detect decay on dental X-ray im- | 120 periapical and 116 CNN Manual cropping of teeth by a | Accuracy
[85] ages to predict the needed treat- | panoramic radiographs dental expert and classification

ment as per the needed treatment
49 2019 | Localize dental lesions in near- 217 near-infrared transillu- | Fully CNN [similar to U- Reference segmentation maps | Overall intersection over union
[86] infrared transillumination images | mination images Net, inspired by VGG16] from dental experts for 5-class, AUROC
50 2019 | Detect and number teeth in den- | 1250 2-D dental digital pe- | Faster R-CNN, Deep NN 1 dentist framed each intact Mean intersection over union to
[87] tal periapical films riapical films [Inception Resnet version | tooth and provided a corre- obtain precisions and recalls,

2 (for Faster R-CNN)] sponding tooth number boxes detected
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51 2019 | Improve the precision of dental 20000 2-D intraoral im- Sparse representation-ba- | Manually labeling dental tissue | Precision, recall, and their har-
[88] hard tissue segmentation ages from 40 videos sed classifier type pixel by pixel monic average
52 2019 | Label teeth and identify root ca- 250 2-D dental panoramic | 2 CNNs comprised the ge- | A dentist marked each tooth Accuracy, structural similarity in-
[89] nal radiographs nerative adversarial net- and the gap between them dex after every iteration
work
53 2019 | Diagnose orthognathic surgery 12 measurements and 6 Not deep learning [Built on | 1 orthodontist decided the Decision-making success rates
[90] cases indices from 316 patients own] treatment plans
54 2019 | Tooth instance segmentation and | 20 3-D CBCT images Mask R-CNN [3-D region Annotation with a tooth-level Accuracy, Dice similarity coeffi-
[91] identification from CBCT images proposal network] bounding box, mask, & label cient
55 2019 | Segmentation of mental foramen | 1000 2-D dental panora- Fully CNN [U-Net] Annotation by radiologists Dice similarity coefficient
[92] mic radiographs
56 2019 | Develop a complete identification | Top view images of the Recurrent Neural Network | Given by dataset Percent match, reliability, confu-
[93] system to aid dental forensics teeth in the upper and [Built on own] sion matrix, accuracy to compute
without the use of radiation lower jaw from 30 persons the correct area
57 2019 | Segmentation of alveolar bone 50 2-D intraoral ultra- Fully CNN [U-Net] Delineation by an orthodontist, | Dice coefficient, sensitivity, spec-
[94] sound images of 8 man- medical physicist, and biomed- | ificity, Hausdorff distance
dibular incisors ical engineer
58 2019 | Detect apical lesions on pano- 2001 segments from 85 2- | CNN [Built on own] Majority vote of 6 dentists on AUROC, sensitivity, specificity,
[32] ramic dental radiographs D panoramic radiographs manually cropped segments. PPV, NPV
59 2019 | Investigate a 3-D single image 3-D CBCT of 13 single Tensor factorization State-of-the-art iterative de- Mean of absolute difference in
[95] super-resolution method based teeth convolution technique with Feret and Area, Dice coefficient,
on tensor factorization low-rank regularization time, peak signal-to-noise ratio
60 2019 | Resolution enhancement of 2-D 5680+1824 2-D CBCT CNN [inspired by U-Net micro-CT images were used Peak signal-to-noise ratio, mean
[96] CBCT image slices of ex vivo slices of 17 ex vivo teeth and subpixel networks] as ground truth squared error, structure similarity
teeth & in vivo microCT images index, Dice coefficient, mean dif-
ference: Feret, area, and volume
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61 2019 | Propose DL metal segmentation | 1000 3-D CBCT images Fully CNN [U-Net] Manually segmented metal re- | Relative error, sum of square dif-
[97] method for metal artifact reduc- and projection images gions on the training images ference, normalized absolute dif-
tion in dental CT from 4 patients using Adobe Photoshop CS6 ference, Jaccard index, Dice sim-
ilarity index
62 2019 | Classification of root morphology | 3-D dental CBCT and 2-D | CNN [AlexNet and Goog- | Observations performed by a Diagnostic accuracy, sensitivity,
[98] of mandibular first molars on panoramic radiographs of | leNet (DIGITS library on radiologist specificity, PPV, NPV, area un-
panoramic radiographs 760 mandibular first molar | Caffe framework)] der the curve
63 2019 | Address low-dose artifacts in 24024 3-D dental CT im- Generative adversarial Blind reader study with 20 Signal-to-noise ratio, structural
[99] dental CT-scanning age pairs (high-dose and network, CNN groups of images similarity, image quality metrics,
low-dose) test time
64 2019 | Select the most relevant varia- Medical, dental, and phys- | Not deep learning model Oral examination by experts Accuracy, sensitivity, specificity,
[100] bles to classify the presence and | iological measures from using a decayed, missing, and | AUROC, features that are asso-
absence of root caries 5135 people filled surface index ciated with root caries
65 2019 | Gender estimation from pano- 4155 2-D dental panora- CNN [VGG16] Given by dataset Accuracy
[101] ramic dental x-ray images mic radiographs
66 2019 | Detect atherosclerotic carotid 65 2-D dental panoramic Faster R-CNN [Resnet- 2 oral medicine & maxillofacial | Accuracy, sensitivity, specificity,
[102] plagues on orthopantomograms radiographs 101] radiologists marked lesions AUROC
67 2019 | Automatic detection of athero- 65 2-D dental panoramic Faster R-CNN [Resnet- 2 oral medicine & maxillofacial | Sensitivity, specificity, receiver
[103] sclerotic carotid plaques in pano- | radiographs 101] radiologists jointly marked le- operating characteristic
ramic images sions
68 2019 | Survival prediction of oral squa- 255 patient medical re- Deep neural network Given by hospital's medical Prediction accuracy (Harrell's c-
[104] mous cell carcinoma patients cords [DeepSurv (Multi-layer records and according to a index)
feed forward network)] cancer staging manual
69 2019 | Detect periodontal bone loss on 12179 2-D dental panora- | Fully CNN [U-shaped ar- 5 dental hygienists marked le- | F1-score, AUROC, sensitivity,
[105] identified teeth in panoramic den- | mic radiographs chitecture] sions independently (moni- specificity, PPV, NPV
tal radiographs tored by a dentist) and num-
bered the tooth
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70 2019 | Detect Sjogren's syndrome in 200 patients resulted in CNN [VGG16] According to the Japanese cri- | Accuracy, sensitivity, specificity,
[106] praotid and submandibular sali- 8000 augmented 2-D ul- teria and American-European AUROC
vary glands trasonography images Consensus Group
71 2019 | Compute and improve semantic 1500 2-D dental pano- Fully CNN [U-Net] Annotators outlined teeth at Accuracy, specificity, precision,
[107] segmentation of dental pano- ramic radiographs (10 cat- certain anchor points and inter- | sensitivity, Dice score
ramic images egories) polated between them.
72 2019 | Detection of periodontal bone 85 2-D panoramic images | CNN [a seven-layer feed- | 3 examiners independently de- | Accuracy, area under the curve,
[108] loss (PBL) on panoramic dental cropped into 1737 single- | forward CNN] termined 3 points on each F1-score, sensitivity, specificity,
radiographs tooth segments tooth to estimate PBL percent | PPV, NPV
73 2019 | Detect osteoporosis on dental 1268 2-D dental panora- CNN [AlexNet] 2 oral and maxillofacial radiolo- | Confusion matrix, accuracy, pre-
[109] panoramic radiographs mic radiographs gists independently diagnosed | cision, recall, F1 score, AUROC
osteoporosis
74 2019 | Propose a 3-stage approach to 641 2-D tongue photo- CNN (feature extractor), Positive case: marked by tradi- | Accuracy, true positive rate, true
[110] recognize tooth-marked tongue graphs multiple-instance SVM tional Chinese medicine practi- | negative rate
(MI-SVM; classifier) tioners. Negative case: gene-
[VGG-16 (CNN)] rated by an algorithm
75 2019 | Explore a smart dental system 12600 clinical images Mask R-CNN [ResNet-50- | Training sets were calibrated Diagnosis accuracy, sensitivity,
[111] for in-home dental healthcare C4] by 20 dental disease experts specificity, mean diagnosis time
76 2019 | Optimization of PointNet++ to im- | 3-D point cloud data of CNN [PointNet++] Not applicable Accuracy of different objects
[112] prove classification results 12311 CAD models
77 2019 | Biological gender estimation 4000 2-D dental panora- CNN [DenseNet201, Ince- | Given by dataset Mean accuracy for different 1)
[113] based on deep learning mic radiographs ptionResNetV2, VGG16, networks, 2) attention, 3) number
VGG19, ResNet50, Xcep- of filters, and 4) number of units
tion]
78 2019 | Bone segmentation in CBCT 20 3-D CBCT images Mixed-scale dense CNN Global thresholding and post- Mean Dice similarity coefficients,
[114] scans affected by metal artifacts processing by a medical engi- | mean absolute deviations
neer
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79 2019 | Investigate the effect of different | 820 dental front oral CNN [AlexNet, generative | 8 pocket depths of tooth meas- | Accuracy, sensitivity, specificity,
[115] augmentation methods on a images adversarial network for ured by a few dentists receiver operating characteristic

MapReduce-like model augmentation)]
80 2019 | Detect and classify occlusal car- | 88 in vivo dental images Mask R-CNN [Based on Superpixels comprising dental | Classification: micro F-measure
[116] ies Feature Pyramid Network | lesions were marked by the (Accuracy); Precision / Recall /
and ResNet101] Dental Annotator version 1.5.1 | F-measure for each class
81 2019 | Diagnose maxillary sinusitis on 920 image patches from CNN [AlexNet (with DIG- Lesions were verified by their Accuracy, sensitivity, specificity,
[117] dental panoramic radiographs 2-D panoramic, CT, and ITS library, Caffe frame- appearances on CT or CBCT AUROC, PPV, NPV
CBCT images work)]
82 2019 | Describe the impact of orthog- 2164 pre- and post-treat- CNN [VGG-16] Age labels and attractiveness Differences between real and ap-
[118] nathic treatment on facial attrac- | ment photographs from scores were derived from da- parent age, and real and appar-
tiveness and age look 146 patients tasets used ent attractiveness
83 2019 | Evaluate facial attractiveness of 60 frontal and left-profile CNN [VGG-16] Mean difference, co-efficient of
[119] treated cleft patients & controls images from 30 patients variation in rating
84 2019 | Automatically detect the type of 534 2-D periapical radio- CNN [Alexnet] Labeled by experienced radiol- | Classification accuracy
[120] lesion in periapical x-rays graphs ogist and dentist
85 2019 | Facilitate diagnosis and treat- 32 forms filled according Deep neural network [Mul- | Own dataset curated accord- Accuracy of classification, kappa,
[121] ment by providing easy access to | to IADT guideline tilayer perceptron, Kstar, ing to the rules given in IADT root mean square error, mean
the International Association for instance-based k-classi- guideline absolute error
Dental Traumatology (IADT) fier, sequential minimal
guideline optimization, logistic re-
gression]
86 2019 | Explore ensemble and deep 1.44 million instances and | Details on depth of mod- The smart toothbrush saved Accuracy, precision, recall, F1-
[122] learning for real-time sensors in 144,000 features each for | els not mentioned the correct tooth and surface score, training time, prediction
smart toothbrush devices 10 individuals brushed labels in a database time, model size (bytes)
87 2019 | Segmenting and classifying tooth | 600 3-D dental models 3-D CNN [O-CNN] Given by dataset Accuracy, specificity, recall,
[123] types on 3-D dental models macro -accuracy, -specificity,
and -recall
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88 2019 | Detect and number teeth on pan- | 1574 2-D dental panora- Faster R-CNN: VGG-16 5 radiologists numbered and Sensitivity, precision, specificity
[124] oramic radiographs mic radiographs marked all teeth (FDI system)
89 2019 | Automated high-performance 81 2-D digital panoramic Fully CNN [based on U- Regions were manually seg- Dice coefficient, Jaccard index,
[125] segmentation of third molars and | radiographs Net] mented and labelled; another sensitivity, specificity
inferior alveolar nerve canal observer refined them
90 2019 | Differentiate post-cancer from MRI scans with time i.e., CNN From dataset Accuracy
[126] healthy muscle coordination 4D data of 26 subjects
91 2019 | 3-D dental model/ mesh segmen- | 1200 3-D dental meshes 2 separate CNNs Manually labeled dental Accuracy, mean errors
[127] tation meshes provided by company
92 2019 | Predict the debonding probability | 8640 2-D images of 3-D CNN [Built on their own] Labels of 'trouble-free' and Predictive accuracy probability,
[128] of CAD/CAM crowns stereolithography die 'debonding’ were assigned to precision, recall, F-measure, AU-
models each crown/die ROC, mean calculate time
93 2019 | Correlation of systemic health 1215 2-D intraoral flu- CNN [Auto-encoders] Physicians independently as- Area under the curve, true and
[129] conditions with periodontal dis- orescent images signed localized and image- false positive rates, precision, re-
ease wide modified gingival indices | call, mean intersection over un-
ion
94 2020 | Automatic detection and classifi- | 83 2-D dental panoramic Not deep learning [Cubic 1 oral medicine specialist iden- | Accuracy, detection rate, sensi-
[130] cation of dental restorations radiographs (738 dental SVM with Error-Correcting | tified and labeled the existing tivity, specificity, PPV, NPV
restorations) Output Codes] dental restorations
95 2020 | Automatic detection of periodon- | 134 intraoral images Faster R-CNN [2 models, Gingiva was annotated and la- | Detection accuracy, precision,
[131] tal disease in orthodontic pa- which were split into 804 each used ResNet-50] beled by dentists using the Lée | recall, mean average precision
tients regions and Silness gingival index
96 2020 | Compute mandibular indices for 370 2-D dental panoramic | Fuzzy K-means classifica- | 2 dentists applied a semi-auto- | Distances between relevant
[132] detecting the thinning and deteri- | radiographs tion algorithm to identify matic process to define the re- | points
oration of mandibular bone artificial structures quired lines and points
97 2020 | Fully automated third molar de- 400 2-D panoramic radio- | CNN + Fully CNN [Locali- | Staging by three observers. Mean absolute error, mean Eu-
[133] velopment staging (localization, graphs zation: YOLO-like CNN. Same as in de Tobel 2017 clidean distance, precision, re-
segmentation, and classification) Segmentation: U-Net-like call, Dice score, accuracy, linear
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CNN. Classification: 2 weighted Cohen’s kappa, time
CNNs] for analysis
98 2020 | Detection of caries lesions of dif- | 3686 bitewing radiographs | Fully CNN [U-Net] Images were annotated and la- | Accuracy, sensitivity, specificity,
[25] ferent radiographic extension on beled by 3 dentists and re- F1, PPV, NPV, Matthew’s corre-
bitewing radiographs viewed by a 4th dentist lation
99 2020 | Detect and classify/ stage perio- | 340 2-D dental panoramic | Mask R-CNN [Based on a | Oral and maxillofacial radiolo- | Accuracy, Dice score, Jaccard
[134] dontal bone loss of each individ- | radiographs feature pyramid network gists manually delineated the index, Pearson correlation, mean
ual tooth and ResNet101] relevant areas absolute difference, intraclass
correlation
100 | 2020 | Assess maxillary variation in uni- | 96 3-D CBCT images Learning-based multi- 36 CBCT images manually Average dice ratio, intraclass
[135] lateral canine impaction source IntegratioN frame segmented correlation, difference in volume
worK for Segmentation
101 2020 | Segment individual teeth in den- | 25 3-D CBCT images Fully CNN [modified V-net | Each tooth was manually seg- | Jaccard similarity coefficient,
[136] tal CBCT images (more than 770 teeth) architecture] mented and morphological op- | Dice similarity coefficient, relative
erations generated the refer- volume difference, average sym-
ence image metric surface distance
102 2020 | 1) Pose-aware volume-of-interest | 175 3-D CBCT images CNN: Modified VGG-16 to | Manual annotation and classifi-
[137] realignment output a 6D tensor cation of CBCT images ac-
2) Tooth detection Modified Faster R-CNN cording to percentage of metal | Average precision, overlapping
(Region proposal network) | artifacts by clinical experts ratio, object include ratio
3) Individual segmentation net- CNN: Adopted the base F1 score, aggregated Jaccard in-
work architecture of 3-D U-Net dex, precision, sensitivity,
Hausdorff distance, average
symmetric surface distance
103 2020 | Investigate how 24 oral and max- | 3099 2-D dental panora- Fully CNN [U-Net] Pulp vitality was tested using Mean true positive rate (TPR),
[138] illofacial surgeons assess the mic radiographs thermal and percussion tests precision, F1 score, positive pre-
presence of periapical radiolu- dictive value (PPV), area under
cencies
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PPV-TPR curve based on Rie-
mann summation

104 2020 | Automatic human identification 15,868 2-D dental panora- | CNN 5 bony landmarks were la- Accuracy, recall, precision, F1-
[139] system mic radiographs beled manually score, true and false rates, AU-
ROC, cumulative match curve
105 2020 | Diagnose various periodontal 300 patients and 11 vari- Not deep learning [SVM] The professional’s diagnosis Accuracy, hypervolume under
[140] diseases ables manifold value
106 | 2020 | Predict disease-free survival in 3 planes of 18F-fluorode- | CNN [ResNet-101] From patients’ medical records | Accuracy, sensitivity, specificity,
[141] patients with oral squamous cell oxyglucose PET images PPV, NPV
carcinoma from 113 patients
107 2020 | Evaluate the relationship be- 600 2-D dental panoramic | CNN [AlexNet, Radiologists marked the rela- Accuracy, time, storage space,
[142] tween mandibular third molar radiographs GoogleNet, VGG-16] tionship of the roots and ca- sensitivity, specificity, AUROC,
and the mandibular canal nals in all images intra- and inter-CNN consistency
108 | 2020 | Detect vertical root fracture on 300 2-D dental panoramic | CNN [DetectNet (with DI- Detection: 2 radiologists and 1 | Recall. precision, F measures
[143] panoramic radiographs radiographs GITS version 5.0)] endodontist. Marked by 1 radi-
ologist
109 2020 | Dental caries diagnosis using a 105 intra-oral digital radio- | Non-deep learning neural | Caries was annotated by a False positive rate, accuracy,
[144] back-propagation neural network | graphy images network as a perceptron dentist. AUROC, precision recall curve
for classification [Back-propagation net- area, learning rate, momentum,
work] precision, recall, F measure,
Matthew’s correlation coefficient
110 2020 | Risk prediction of unmet dental 33,929 participants and decision tree classifier Given by dataset/ survey re- Accuracy, sensitivity, specificity,
[145] care needs in USA 237 variables [Built on own] sponses precision, area under the curve
111 2020 | Predict patients at risk of all- Variables data on 11,341 Decision Tree, SVM, k- Given by dataset Area under the curve, accuracy,
[146] cause dental 30-day hospital re- | cases nearest neighbor, ANN, sensitivity, specificity, precision
admission logistic regression
112 2020 | Automatic localization of the 637 3-D CBCT scans from | Fully CNN [similar to U- Annotation by 2 medical pro- Dice similarity coefficient, recall,
[147] mandibular canal 594 patients Net] fessionals precision, average symmetric
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surface distance, mean curve
distance, Hausdorff distance

113 2020 | Determine whether CNNs can 2-D front and right facial CNN [VGG19] 2 orthodontists, 3 maxillofacial | Accuracy, precision, recall, and
[148] judge soft tissue profiles requir- photos + posteroanterior surgeons, and 1 maxillofacial F1 scores

ing orthognathic surgery using and lateral cephalometry radiologist classified patients

facial photographs alone from 822 patients into Groups | and Il
114 2020 | Person authentication with deep | 750 2-D hand radiographs | CNN [k-nearest neighbor Given by dataset Percentage of cross-validation
[149] learning technique and SVM] accuracy
115 2020 Detection and segmentation of 112 2-D dental panoramic | Fully CNN [U-Net] Oral medicine specialists with Dice similarity, recall, precision,
[150] the mental foramen radiographs training in radiology true and false positive rates
116 2020 | Investigation of automated fea- 206 2-D periapical radio- Computer vision, CNN + Labeling by 2 oral pathologists | Mean intersection over union,
[151] ture detection, segmentation, graphs Fully CNN [U-Net, Xnet, and 1 endodontist. One expert | Dice coefficient

and quantification of common SegNet] labelled and the other 2 ac-

findings in radiographs cepted or rejected them.
117 2020 | Develop a fully automated ceph- | 2075 lateral 2-D cephalo- | CNN [stacked hourglass 2 orthodontists corrected and point to point error, successful
[152] alometric analysis grams network] marked new landmarks detection and classification rate
118 2020 | Automatically identify and clas- 218 3-D CBCT CNN [VGG 16 and addi- Manual ground truth creation Accuracy, precision, recall, F1
[153] sify skeletal malocclusions tionally Inception-V3] by clinical experts score
119 2020 | Identify 4 different types of im- 801 2-D periapical radio- CNN [SqueezeNet, From patient records Accuracy, precision, recall, F1
[154] plant fixture systems graphs GoogLeNet, ResNet-18, score for each network

MobileNet-v2, ResNet-50 ]
120 2020 | Creation an automated cephalo- | 1792 cephalometric CNN [Built on own] 6 orthodontists and 6 in-train- Pearson product-moment corre-
[155] metric X-ray analysis images ing orthodontists marked 18 lation, Bland—Altman plots
landmarks

121 | 2020 | Identify how swallow sounds cor- | 226 subjects gave rise to CNN Videofluoroscopic swallow im- | Change in swallow duration
[156] respond to swallowing and how 1859 swallows and 2021 ages labelled by 2 medical

swallow times differ by viscosity noise samples professionals
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122 2020 | Classify maxillary impacted su- 550 2-D dental panoramic | CNN [AlexNet, VGG-16, Images reviewed by 2 radiolo- | Accuracy, sensitivity, specificity,
[157] pernumerary teeth in patients radiographs DetectNet] gists AUROC, recall, precision, F-

with fully erupted incisors measure
123 2020 | Mandibular canal detection using | 102 3-D CBCT images Fully CNN [2-D SegNet, 2- | 2 researchers traced the canal. | Pixel-, global-, class-accuracy,
[158] a deep CNN D and 3-D U-Net] An oral and maxillofacial radi- mean intersection of union
ologist reviewed vague cases
124 2020 | Reduce metal artifact for sino- 3-D CT of 33 teeth phan- Fully CNN Sinograms and CT images Root-mean-square error, struc-
[159] gram and dental CT images toms with metal implants from teeth phantoms without tural similarity
metal implants
125 | 2020 | Automated tooth segmentation 864 images from 50 2-D Mask R-CNN [ResNet-101 | 1 oral radiologist performed F1 score, mean intersection of
[160] using individual annotation dental panoramic radio- ] annotated teeth on 30 training | union, visual analysis
graphs panoramic radiographs
126 | 2020 | Identification and classification of | 10,770 cropped images CNN [GoogLeNet Incep- Regions of interest manually Sensitivity, specificity, AUROC,
[161] dental implant systems from 2-D panoramic and tion-v3] cropped and labeled by 3 peri- | confusion matrix
periapical radiographs odontology residents
127 2020 | Detection and diagnosis of odon- | 1,140 2-D panoramic radi- | CNN [GoogLeNet Incep- Histopathological examinations | AUROC, sensitivity, specificity,
[162] togenic cysts ographs and 986 3-D tion-v3] by an oral pathologist confusion matrix with and without
CBCT normalization
128 2020 | Classification of dental implant 7,146 2-D dental pano- CNN [Built on own] Manual classification by 5 peri- | AUROC, standard error, Youden
[163] systems on panoramic and peri- ramic and 4,834 periapical odontal residents and con- index, sensitivity, specificity
apical radiographs radiographs firmed by 3 periodontists
129 2020 | Locate cephalometric landmarks | 400 2-D lateral cephalo- CNN [Bayesian CNN] A junior and senior orthodon- Mean landmark error, successful
[164] with confidence regions grams tist independently annotated detection rate, confusion matrix
130 2020 | Classify specific osteoporosis 680 2-D dental panoramic | CNN [CNN3, VGG-16] T-Score for osteoporosis de- Accuracy, sensitivity, specificity,
[165] features in dental radiographs radiographs tection receiver operating characteristic,
precision recall curve
131 2020 | Tooth segmentation on CBCT 102 3-D CBCT datasets Fully CNN [U-Net + Manually classification of Recall, precision, Dice score
[166] images for dental implant plan- (each dataset has 264 to dense block + spatial images
ning 727 2-D image slices) dropout]
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132 2020 | Identification of tongue color, fur | 2-D tongue photos from CNN [YOLO V3 optimized | 2 Traditional Chinese Medicine | Accuracy rate, precision rate, re-
[167] color, crack, and tooth mark in 200 subjects for this study for classifica- | diagnostic experts call rate

traditional Chinese medicine tion task]
133 2020 | Automatic tooth root segmenta- 1521 3-D CBCT images CNN [A combination of CBCT images were classified Intersection over union, average
[168] tion on CBCT images Recurrent neural network | into 3 classes precision and recall rate, Dice
+ Attention U-Net] similarity coefficient, average
symmetrical surface distance
134 2020 | Intelligent dental plague segmen- | 607 oral endoscopic CNN+HKS+LBP, random Dentists cropped and marked Super-pixel accuracy, training
[169] tation using oral endoscope im- images forest [DeepLabV3+] plaque regions referring to time, intersection over union, out-
ages post-stained images of-bag error curves
135 2020 | Automated tooth labeling on raw | Raw maxillary surfaces CNN [MeshSegNet an ex- | Segmentations done by a resi- | Dice similarity coefficient, sensi-
[170] dental surfaces acquired by 3-D intraoral tension of PointNet] dent guided by experienced tivity, positive predictive value
scanners of 30 subjects dentists
136 2020 | Automated teeth recognition from | 1000 2-D dental panora- Faster R-CNN [ResNet- Each tooth with proper roots F1 score, precision, recall, mean
[171] panoramic images mic radiographs 101, ResNet-50] and shape was labelled average precision
137 2020 | Predict difficulty level of endo- 500 filled American Asso- | 2 ML algorithms were Assessment of forms by 2 en- | Accuracy, sensitivity, specificity,
[172] dontic cases and decide about a | ciation of Endodontist En- | used, out of which 1 was a | dodontists, in case of conflict precision
referral dodontic Case Difficulty deep neural network third endodontist’s opinion was
Assessment Forms and taken
radiographs
138 2020 | Personal identification with 30 pairs of orthopantomo- | CNN [VGG16, ResNet50, | From the university hospital Detection accuracy, precision,
[173] paired orthopantomographs ob- graphs from 30 partici- Inception-v3, Xception, In- recall
tained in relatively short period pants ceptionResNet-v2, Mo-
bileNet-v2]
139 2020 | Automated third molar stage allo- | 400 2-D panoramic radio- | CNN [DenseNet201] 2 observers staged FDI 38 Accuracy, mean absolute differ-
[174] cation for age estimation graphs with modified Demirjian scale. ence, linearly weighted Cohen’s
Another observer reviewed kappa
cases of disagreement.
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140 2020 | Recognize dental defect using 447 2-D panoramic Adaptive CNN [pre-trained | Images were labeled and Accuracy
[175] Adaptive CNN and Bag of Visual | images VGG16] sorted by dentists based on
Word 3rd molar appearance
141 2020 | Identify CT slices for head and 1164 axial slices in pairs Model for kernel L2-Was- | CT slices were classified by a Prediction rate, computation time
[176] neck cancer with dental artifacts | from 44 CT scans serstein distance medical imaging expert
142 2020 | Detection, localization, and vol- 3900 3-D CBCT images Fully CNN [U-Net-like ar- Annotations by maxillofacial Reliability of correctly detecting a
[177] ume determination of periapical chitecture] radiologists and automatically periapical lesion, recall, preci-
pathosis on CBCT examined to eliminate errors sion, F-measure
143 | 2020 | Automatic detection of trabecular | 108 dental panoramic ra- CNN [statistic shape mo- 8 osteoporotic regions anno- Loss of 5-fold cross validation,
[178] landmarks diographs del] tated by dentists mean and median loss
144 2020 | Detection of caries lesions in 226 NILT images of single | CNN [Resnetl8, Res- Caries annotated by 2 dentists | Accuracy, AUROC, sensitivity,
[179] Near-Infrared-Light Transillumi- tooth segments next50] specificity, PPV, NPV
nation images
145 | 2020 | Automated segmentation of 20 3-D CBCT images 3-D CNN [multi-label U- Segmentation performed and Sensitivity, specificity, PPV,
[180] CBCT images and detection of Net] revised by 1 maxillofacial radi- | NPV, DICE index
periapical lesions ologist, 1 endodontist, and 1
senior graduate in radiology
honors program
146 2020 | Classify and clarify the accuracy | 8859 image segments CNN [VGG16, VGG19] Electronic medical records and | Accuracy, precision, recall, re-
[181] of different dental implant brands | from 6513 2-D dental pan- dental implant usage ledger of | ceiver operating characteristic,
oramic radiographs the department F1-score, gradient-weighted
class activation maps
147 2020 | Automatic and accurate segmen- | 100 3-D digital dental CNN [feature steered Given by dataset Labeling accuracy, Dice similarity
[182] tation and identification of individ- | casts graph CNN which used coefficient
ual teeth FeaStNet]
148 2020 | Classify partially edentulous den- | 1184 oral photographs of CNN [ResNet152 (using Arch types judged by authors Diagnostic accuracy, precision,
[183] tal arches for designing remova- | dental arches Tensorflow, Keras deep recall, F-measures, AUROC, per-
ble partial dentures learning libraries)] centage of correct predictions
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149 2020 | Tongue region and landmark de- | 1838 2-D tongue photo- CNN [combination of Im- Labeled by 2 primary physi- Precision, recall, accuracy, F1-
[184] tection graphs age Pyramid, Coarse-Net, | cians and a resident physician | score, intersection over union,
Fine-Net, Refine-Net] mean error rate, failure rate
150 2020 | Identify periodontally compromi- 100 2-D digital dental pa- Faster R-CNN [ResNet- Annotations by 3 periodonto- Average precision and recall
[185] sed teeth noramic radiographs 101] logy experts rate, sensitivity, specificity, F-
score
151 2020 | Estimate the chronological age of | 2289 2-D dental panora- CNN [Built on own] Images were labelled with the | Absolute error, coefficient of de-
[186] a subject from panoramic image | mic radiographs subject’s date of birth and the termination, accuracy, area un-
date of image der the interquartile coefficient of
receiver operating characteristic
152 2020 | Automatic segmentation of man- | 838 2-D panoramic radio- | CNN [ResNet-101] Human reference measure- Accuracy, Bland Altman plot, in-
[187] dibular molar and predict its graphs ments tersection over union, recall,
eruption potential Hausdorff distance, analysis
time, precision
153 | 2020 | Recognition of tooth-marked 1548 2-D tongue photo- CNN [ResNet34] Classification by 3 traditional Accuracy, sensitivity, specificity
[188] tongue graphs each in 2 datasets Chinese medicine practitioners
154 2020 | Predict Children’s Oral Health Short-form survey re- Extreme gradient boost- A dental exam to evaluate the Residual mean square error, cor-
[189] Status Index (COHSI) score and | sponses from 545 families | ing, Naive Bayesian algo- | clinical oral health outcomes relation, sensitivity, specificity
referral for treatment needs rithms summarized as COHSI score
(RFTN) and RFTN
155 2020 | Classify dental artifacts status 1538 head and neck CT 3-D CNN Classification by an observer Area under precision recall
[190] images curve, precision, recall
156 | 2020 | Dental artifact detection for CT 2112 head and neck CT CNN A single observer Receiver operating characteristic
[191] images
157 2020 | Presentation of a novel strategy 2155 oral cavity images Combinations [ResNet- 800 images annotated by 3-7 F1-Score, precision, recall
[192] to combine bounding box anno- 101 (image classification), | clinicians; the remaining 1355
tations from multiple clinicians Faster R-CNN (object de- | images annotated by 1 clini-
tection)] cian
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158 2020 | Evaluate diagnostic performance | 1603 2-D dental panora- CNN [YOLO v2] Histopathologic diagnosis Precision, recall, accuracy, F1
[193] of CNN You Only Look Once mic radiographs score, average time to evaluate

(YOLO) v2 test datasets, confusion matrix
159 2020 | Detect plaque on primary teeth 886 tooth photos CNN [DeepLab network, Plaque-disclosing agent used Mean intersection-over-union
[194] DeepLabV3+] and identified by a researcher
160 2020 | Automatic detection of dental 3932 oral photos CNN [VGG-16] Labeled by 1 of 3 dentists by AUROC, Free-Response re-
[195] caries from oral photos clinical visual-tactile exam ceiver operating characteristic
161 2020 | Perform segmentation and lesion | 100 3-D CBCT images CNN [Fully convolutional Manual and semi-automatic detection accuracy, precision, re-
[196] detection on CBCT images Densenet with some mod- | segmentation; revised by 1 call (DICE index calculated but
ifications (which is essen- | oral and maxillofacial radiolo- not presented numerically)
tially a U-Net)] gist, 1 endodontist, and 1 sen-
ior graduate in radiology hon-
ors program
162 2020 | Automatic tooth detection and 100 dental front photos Mask R-CNN [deeper Image labeling tool used to Pixel accuracy
[197] segmentation ResNet101+ Feature Pyr- | form multiple polygons around
amid Network] teeth
163 2021 | Predict global five-year survival Variables from 416 pati- Logistic regression, K- Histological diagnosis of oral Receiver operating characteris-
[198] in oral cancer and its cancer re- ents nearest neighbor, Naive squamous cell carcinoma tic, accuracy, sensitivity, specific-
currence Bayes, Decision tree, ity, F1 score
Random Forest classifier
164 2021 | Tooth detection and segmenta- 153 2-D panoramic radio- | CNN [DeepLab-v3, Res- A dentomaxillofacial radiologist | Accuracy, time, sensitivity, recall,
[199] tion graphs Net-101] labeled and segmented each F1-score, precision, intersection
tooth over union, Hausdorff distances
165 2021 | Predict genetic risk of nonsyn- Nucleotide sequences Non-deep learning neural | Known from dataset Accuracy, error rate, interactions
[200] dromic oral clefts from 1588 participants network as a perceptron of nucleotide sequences
166 2021 | Detect and classify teeth for au- 100 2-D dental panoramic | CNN [DetectNet, ResNet] | A dental radiologist localized Accuracy, detection sensitivity,
[201] tomatic filing of dental charts radiographs and classified each tooth number of false positives
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167 2021 | Compare cost-effectiveness of 3686 bitewing radiographs | Fully CNN [U-Net] 4 dentists marked carious le- Accuracy, sensitivity, specificity,
[13] proximal caries detection with sions effectiveness, cost, incremental
versus without Al cost-effectiveness ratio
168 2021 | Automatic detection system for 1125 2-D dental bitewing Faster R-CNN [Inception A radiologist annotated images | Accuracy, confusion matrix, F1
[202] numbering teeth radiographs v2 (COCO)] and with tooth numbers score, precision, sensitivity

value; PPV, positive predictive value; SVM, support vector machine; VGG, visual geometry group.

Abbreviations: Al, artificial intelligence; ANN, artificial neural network; AUROC, area under the receiver operating characteristic; BRONJ, bisphosphonate related osteonecrosis of
the jaw; CBCT, cone beam computed tomography; CNN, convolutional neural network; FDI, Federation Dentaire Internationale; ML, machine learning; NPV, negative predictive

Source: modified from Table S1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in
Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina
T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.




Results

43

Table 2: Studies excluded from the scoping review on machine learning in dentistry along with the reason for exclusion (n=15).

No. Reason for exclusion from the scoping review
[Citation]
1[203] Poor methodology/ reporting
o Reference test for the training and validation datasets was generated by only one professional expert, who was not formally
trained in dentistry but was a biomedical engineer.
e The validation set was also utilized during training to determine when to stop the parameter update to prevent overfitting.
2 [7] A review article
3 [204] Not an oral health topic
4 [205] A review article
5[206] A systematic review article
6 [207] No machine learning method used
7 [208] No machine learning method used
8 [209] Poor methodology/ reporting
e Labeled bounding boxes were generated by a software tool to serve as the reference test for the training dataset but were not
checked for errors by a human expert.
o Model architecture not adequately described, for example, number of convolutional layers.
e Some results are shown via images which have poor resolution.
o Absence of the ‘Discussion’ section of the paper. Hence placing the results in the context of the previous and current research
is lacking.
9 [210] A conceptual review article
10 [211] | Not an oral health topic
11 [212] | Poor methodology/ reporting
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e The paper does not discuss how its specific research question is tied to the larger context of oral health in USA.
e The study used 6 deep neural network models for variable selection but no further details are given.

e The study also used 10 data mining algorithms, whose names are listed but no further details are provided.

12 [213] | A supplement article (similar to a review article)
13 [214] | Not an oral health topic

14 [215] | Poor methodology/ reporting

e The authors selected 19 feature variables or elements that characterize orthodontic problems and are assumed to be important
in extraction decisions based on existing orthodontic literature. But these 19 variables or elements are not named or described
further.

e Performance metrics, such as accuracy and error rate, were measured and reported via bar-charts but were not specified in the
text. This hampered the evaluation of the results and their interpretation.

15 [216] | Areview article

Source: modified from Table S2, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in
Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina
T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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Figure 5. Temporal trend in number of publications included in the scoping review on machine

learning in dentistry between 1st January 2015 and 31st May 2021. Source: own representation.
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Figure 6: Geographical trend in number of publications included in the scoping review on machine

learning in dentistry between 1st January 2015 and 31st May 2021. Source: modified from Figure
S1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Ma-
chine Learning in Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi:
10.3390/jcm12030937. Image rights held by authors of the publication, including Lubaina T. Arsi-
wala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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85% studies split their datasets into training and testing subsets, while 59% studies cre-
ated validation subsets too [18]. The median size of training datasets was 450 (range: 12
- 1,296,000) and of test datasets was 126 (range: 1 - 144,000) [18]. Half of the studies
evaluated ML model performance on a hold-out dataset while the other half used cross-
validation [18].

65% studies artificially increased their input data by using methods like image augmen-
tation [18]. Only 20% studies externally validated their model's performance [18]. 73%
studies used experts to establish the reference test (i.e., how the ground truth was de-
fined): one expert in 18% studies, two to three experts in 11% studies each, four to five
experts in 2% studies each, six to eight experts in 1% studies each, 12 and 20 experts in
0.5% studies each, and no information on number of experts in 27% studies [18]. 22%
studies established the reference test from their datasets (e.g., age and diagnosis from
medical records) and 1% studies used software- generated reference test [18]. The re-

maining 4% studies did not report on how the reference test was generated [18].

Of all studies, 70% used complex ML models, such as convolutional neural networks;
further details are available in the publication [18]. Another 22% studies used simple ML
models, such as random forest classifier and support vector machine [18]. In addition, 6%
studies used various model combinations and 2% studies did not report information on
the model structure [18]. Both, the complex and simple models were used more frequently
by studies in restorative dentistry and endodontics, oral medicine, and non-specific field
or general dentistry [18]; Table 3. Additionally, the simple models were often used by
studies in orthodontics and periodontology [18]. Finally, 20% studies compared their

model’s performance to human experts [18].
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Table 3: Number of studies included in the scoping review on machine learning in each field of dentistry, stratified by the types of machine learning

models used (n=168).

Field of dentistry, n

Models not using deep learning

Models using deep learning

field, general dentis-
try)

(%) Classifier Support Neural net- Other mod- | Non-convolu- | Convolutional | Combination | Inadequate

model Vector Ma- | works with- els without | tional neural neural net- models model de-
chine out deep deep learn- networks works tails
learning ing

n 10 4 7 16 7 111 10 3

Restorative dentistry | 2 (20%) 2 (50%) 2 (29%) 1 (6%) 2 (29%) 14 (13%) 1 (10%) 1 (33%)

and endodontics

Oral medicine 2 (20%) 0 (0%) 0 (0%) 5 (31%) 2 (29%) 14 (13%) 2 (20%) 0 (0%)

Oral radiology 0 (0%) 0 (0%) 0 (0%) 2 (13%) 0 (0%) 8 (7%) 1 (10%) 0 (0%)

Orthodontics 1 (10%) 0 (0%) 3 (43%) 3 (19%) 0 (0%) 10 (9%) 0 (0%) 1 (33%)

Oral surgery and im- | 1 (10%) 0 (0%) 0 (0%) 1 (6%) 1 (14%) 14 (13%) 0 (0%) 0 (0%)

plantology

Periodontology 0 (0%) 2 (50%) 1 (14%) 1 (6%) 0 (0%) 13 (12%) 1 (10%) 1 (33%)

Prosthodontics 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2%) 0 (0%) 0 (0%)

Others (non-specific 4 (40%) 0 (0%) 1 (14%) 3 (19%) 2 (29%) 36 (32%) 5 (50%) 0 (0%)

Source: modified from Table S3, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in
Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina
T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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3.1.2 Risk of bias in the individual studies

Risk of bias was assessed in four domains, namely data selection, index test, reference

standard, and flow and timing. It was found to be high for most studies with respect to

data selection and reference standard [18]; Table 4. Concerns about the applicability of

a study’s methods and results were found to be high for most studies with respect to data

selection [18].

Table 4. Evaluation of risk of bias in studies included in the scoping review (n=168) on machine

learning in dentistry using the QUADAS-2 tool.

No. [Cita- | Data selection: risk Index test: risk of | Reference standard: | Flow and tim-
tion] of bias/ applicability bias/ applicability | risk of bias/ applica- | ing: risk of bias
concerns concerns bility concerns
1 [39] high/high low/high high/high low
2 [40] low/low low/low low/low low
3 [41] high/low low/low low/low low
4[42] low/low low/high high/high low
51[43] low/low low/low low/low low
6 [44] high/high low/high high/high low
7 [45] high/high low/low high/low low
8 [46] low/low low/high low/low low
9 [47] low/low low/low low/high low
10 [48] high/high low/low high/low low
11 [49] high/high low/low high/high low
12 [50] high/low high/low high/low low
13 [51] low/high low/low high/high low
14 [52] high/high high/low low/low low
15 [53] low/low high/low low/low low
16 [54] high/low low/low high/low low
17 [55] high/high low/low high/low low
18 [56] high/low low/low high/low low
19 [57] high/high low/low high/low low
20 [58] high/high low/high high/low low
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21 [59] high/high high/high high/high low
22 [60] low/low low/low low/low low
23 [61] low/high low/low low/high low
24 [62] high/high low/low low/low low
25 [63] low/low low/low low/low low
26 [31] high/high low/low high/low low
27 [64] high/high low/low high/low low
28 [65] high/high low/low high/low low
29 [66] high/high high/low high/low low
30 [67] low/low low/low low/low low
31 [68] high/low high/low low/low low
32 [69] low/high low/high low/high low
33 [70] low/low high/low high/low low
34 [71] high/high low/high low/high low
35[72] high/low low/low low/low low
36 [73] high/high low/low low/low low
37 [74] high/high low/high low/high low
38 [75] low/low low/low high/low low
39 [76] low/high low/low high/low high
40 [77] low/high low/low low/low low
41[78] high/low low/high high/low low
42 [79] high/high low/low low/low high
43 [80] low/low low/high low/high low
44 [81] high/high low/low high/low low
45 [82] high/high low/high high/low low
46 [83] high/high low/low high/high low
47 [84] high/high high/high high/high low
48 [85] low/high low/low high/high low
49 [86] low/high low/low high/high low
50 [87] low/low low/low high/low high
51 [88] high/high low/low high/low low
52 [89] low/high low/high high/high low
53 [90] high/high high/high high/high low
54 [91] high/high low/low high/low low
551[92] low/high low/low high/low low
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56 [93] high/high low/high low/high low
57 [94] low/high low/low low/low high
58 [32] low/low low/low low/low low
59 [95] high/high low/low low/low low
60 [96] low/low low/low low/low low
61 [97] low/high low/low high/low low
62 [98] low/low low/low high/low low
63 [99] low/low low/low low/low low
64 [100] low/low low/low low/low low
65 [101] low/low low/low low/low low
66 [102] high/high high/low high/low low
67 [103] high/low high/low high/low low
68 [104] high/low high/low high/low low
69 [105] high/low high/low low/low low
70 [106] low/low low/low low/low low
71 [107] low/low low/low high/low low
72 [108] low/low low/low low/low low
73 [109] high/low low/low high/low low
74 [110] low/low low/low low/low high
75 [111] high/high low/low low/low low
76 [112] high/high high/low low/low low
77 [113] low/low low/low low/low low
78 [114] high/high high/high high/high low
79 [115] high/high high/high high/high low
80 [116] high/high low/low high/low low
81 [117] low/low low/low high/low low
82 [118] low/high low/low high/high low
83 [119] low/low low/low low/low high
84 [120] high/high high/low high/high low
85 [121] low/high high/low high/high low
86 [122] high/high low/high low/high low
87 [123] high/high low/low low/low low
88 [124] low/high low/high high/high low
89 [125] low/high low/high high/high low
90 [126] low/high low/low low/high low
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91 [127] high/high low/low high/low low
92 [128] low/low low/low low/low low
93 [129] high/low low/high high/high low
94 [130] low/low low/low high/low low
95 [131] high/high low/high high/low low
96 [132] low/high low/low low/high low
97 [133] low/low low/low high/low low

98 [25] low/low low/low low/low low
99 [134] high/high high/low high/low low
100 [135] low/low low/low high/low low
101 [136] low/low low/low high/low low
102 [137] high/low high/low high/high low
103 [138] high/high low/low low/high high
104 [139] low/high low/low low/low low
105 [140] low/low low/low low/low low
106 [141] low/low low/low low/low low
107 [142] high/high high/low high/low low
108 [143] high/low high/low low/low low
109 [144] high/high low/low high/low low
110 [145] low/low low/low low/low low
111 [146] low/low low/high high/high low
112 [147] low/low low/low high/low low
113 [148] high/high high/low low/low low
114 [149] low/low low/low low/low low
115 [150] low/high low/low high/low low
116 [151] high/high low/low low/high low
117 [152] high/low high/low high/low high
118 [153] high/high low/low high/low low
119 [154] low/low high/low low/low low
120 [155] high/low low/low low/low low
121 [156] high/high low/low high/low high
122 [157] high/low high/low high/low low
123 [158] high/high low/low high/low low
124 [159] high/high low/low high/low high
125 [160] low/high high/low high/low low
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126 [161] high/low high/low low/low low
127 [162] high/low high/low high/low low
128 [163] high/low high/high low/low low
129 [164] low/high low/high high/low low
130 [165] high/low low/low low/low low
131 [166] high/low low/high high/high low
132 [167] low/low low/low high/low low
133 [168] high/high low/low high/low low
134 [169] high/high low/low low/low low
135 [170] high/high low/low high/low low
136 [171] high/high high/low high/low low
137 [172] high/high low/low high/low low
138 [173] high/low high/low low/low low
139 [174] high/high low/low high/low low
140 [175] high/high low/high high/high low
141 [176] high/high low/high high/high low
142 [177] low/high low/low high/high low
143 [178] high/high low/high high/high low
144 [179] high/low low/low high/low low
145 [180] low/low low/high high/high low
146 [181] low/low high/low low/low low
147 [182] low/high low/low low/low low
148 [183] high/high high/low high/low high
149 [184] low/low low/low low/low low
150 [185] low/high low/high low/high low
151 [186] high/low low/high low/low low
152 [187] low/low high/low high/low high
153 [188] high/low low/low low/high low
154 [189] low/low low/high low/high low
155 [190] high/low low/low high/low low
156 [191] low/low low/low high/low low
157 [192] low/high low/high high/high high
158 [193] low/low low/low low/low low
159 [194] low/low low/low high/low low
160 [195] low/high high/low high/high low
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161 [196] high/high low/low low/low low
162 [197] low/low low/low high/low low
163 [198] low/low low/low low/low low
164 [199] low/low low/low high/low low
165 [200] low/low low/low low/low low
166 [201] high/high high/high high/high low
167 [13] high/high high/low low/low low
168 [202] high/high low/low high/low low

Source: Table 1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F.
Schwendicke, Machine Learning in Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi:
10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina T. Arsi-
wala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.

3.1.3 Reporting quality of the individual studies

Overall adherence to the TRIPOD checklist was 33.3%, with less than 50% studies ad-
hering to 18 out of 22 domains [18]; Figure 7. Adherence was below 10% for sample size
calculation, handling of missing data, differences between development and validation
data, and details on study participants [18]. In particular, less than 20% studies ade-
guately defined their predictors and outcomes, stratification by risk groups, presented the
full prediction model and provided information on supplementary resources, such as study
protocol, web calculator, or data sets [18]. Less than 40% studies adequately reported
their data sources, participant eligibility, statistical methods (specifically, details on model
refinement), model results, study limitations, and model performance in development

data, and any other validation data [18].
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Figure 7: Percentage of studies included in the scoping review (n=168) on machine learning in
dentistry that adhered to each of the 22 domains of the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist. Less than half of the
included studies showed high reporting quality. Source: modified from Figure 2, publication L.T.
Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in
Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Image rights
held by authors of the publication, including Lubaina T. Arsiwala-Scheppach, under license CC

BY 4.0 as per publisher MDPI policy.
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3.1.4 Model performance metrics

A total of 42 different metrics were used by the studies to evaluate model performance,
while some of which could be grouped together, e.g., the different correlation coefficients
could be combined; such grouping resulted in 26 distinct classes [18]. The most com-
monly reported metrics were accuracy, sensitivity, area under the receiver operating char-
acteristic, specificity, precision, and intersection-over-union [18]. Figure 8 graphically
shows the relative proportion of studies which used the different metrics, stratified by ML
task. Also, the mean sensitivity values were generally high (=0.80) in the studies perform-
ing classification tasks whose confusion matrices were either presented or reconstructed

from the available data; Figure 9.
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Figure 8: Treemap of performance metrics used in the studies included in the scoping review (n=168) on machine learning in dentistry stratified
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by type of machine learning task. The size of each box is proportional to the number of studies included in the scoping review that used that
particular metric for a machine learning task. Most studies reported multiple metrics. Abbreviations: Abs diff, mean or normalized absolute differ-
ence; AUC PRC, area under the precision-recall curve; CM, confusion matrix; Cons., model consistency (intra-CNN or inter-CNN consistency);
CV, coefficient of variation; Diff., differences/distances be-tween volumes, surfaces, or points; FPR, false positive rate; ICC, correlation coeffi-
cients; ICER, incremental cost-effectiveness ratio; loU, intersection over union; MAD, mean absolute difference; MAP, mean average precision;
matr, matrix; NPV, negative predictive value; RMSE, root mean squared error; ROC, receiver operating characteristic; SSD, sum of squared
difference; SSI, structural similarity index; Y, Youden’s index. Key (for non-abbreviated terms): Falil, failure rate; Rank, Rank-N recognition rate;

Time, time taken for analysis. Source: own representation.
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Figure 9: Forest plot displaying the mean (95% confidence interval) sensitivity of the studies
(n=19) performing classification tasks whose confusion matrices were either reported or re-con-
structed from the available data, out of the 168 studies included in the scoping review on machine

learning in dentistry. Source: own representation.

3.2 Benchmarking study

The performances of the various model configurations are depicted in Figure 10. ML ar-
chitectures of U-Net++, U-Net, and LinkNet achieved a high F1-score of 0.86 (median;
value has been rounded up) and outperformed their counterparts [36]. Models using the
backbones of VGG group achieved a high F1-score of 0.85 (median) and outperformed
the ResNet group [36]. Models initialized with ImageNet or CheXpert datasets outper-
formed models initialized with random weights (p< 0.001) [36]. Examination of all the 216
model combinations revealed that the highest performances was achieved by models

consisting of U-Net++ or LinkNet architectures and ResNet or DenseNet backbones [36].
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Figure 10: Boxplots showing the distributions of F1-scores of the different machine learning model
configurations evaluated in the benchmarking study stratified by model architectures (A), back-
bone groups (B), and initialization strategies (C). The highest median F1-scores were attained by
the architectures of U-Net++, U-Net, and LinkNet, backbone of visual geometry group, and mod-
els initialized with ImageNet or CheXpert datasets. Source: own representation.

A weak positive correlation between a model's complexity level and its performance was
observed with r = 0.32 (p<0.001) [36].

Class imbalance: As a sensitivity analysis, model performance was evaluated on the less
prevalent classes of fillings (80%) and crowns (20%). In general, the models’ performance

was inversely proportional to class frequencies [36].

3.3 Clinical trial

Six female and 16 male dentists participated with an average age of 38 years (range: 27
to 60 years) [26].
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The performance metrics are displayed in Table 5. The overall mean (95% confidence
interval) AUROC of dentists was higher in the ML group [0.89 (0.87-0.90)] than in the
without ML group [0.85 (0.83-0.86)], p<0.05 [26]. The AUROC of all dentists stratified by
trial group demonstrated that sensitivity was higher in the ML group [0.81 (0.74-0.87)]
than in the without ML group [0.72 (0.64-0.79)], p<0.05 [26]; Figures 11 and 12. Higher
values of AUROC, F1-score, and sensitivity in the ML group were observed for enamel
caries but not dentin lesions [26]. For most dentists, an increase in sensitivity when using
the ML software came at no or very limited decrease in specificity when compared to their
own performance in the without ML group [26]; Figure 13. On comparing the dentists in
either group of the trial with the ML software by itself, the latter had higher AUROC, ac-

curacy, F1-score, specificity, and positive predictive value; Figures 11 and 12.

The inter-rater agreement between the dentists for detecting caries lesions when not us-
ing the ML software showed an expected trend. When stratified by depth of caries lesion,
the inter-rater agreement was as follows; absence of caries lesion: 0.18, enamel caries:

0.03, early dentin caries: 0.14, advanced dentin caries: 0.47.
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Table 5: Performance of dentists with and without support of a machine learning software and by the machine learning software by itself in the

randomized clinical trial for detection of proximal caries lesions on bitewing radiographs. Mean and 95% confidence interval values shown. Com-

parisons between dentists with and without support of the machine learning software using the t-test where p<0.05 are indicated in bold.

Clinical trial Depth of o o Positive predic- Negative pre-
_ _ AUROC Accuracy F1- score Sensitivity Specificity _ o
group caries lesion tive value dictive value
0.85 0.93 0.76 0.72 0.97 0.80 0.95
Overal (0.83,0.86) | (0.92,0.95) | (0.73,0.78) (0.64, 0.79) (0.96, 0.98) (0.72, 0.86) (0.94, 0.97)
Dentists Enamel 0.81 0.94 0.64 0.64 0.97 0.67 0.97
without caries (0.78,0.83) | (0.92,0.95) | (0.60, 0.68) (0.53, 0.74) (0.96, 0.98) (0.56, 0.77) (0.95, 0.98)
machine Early dentin 0.89 0.96 0.65 0.81 0.97 0.55 0.99
learning caries (0.86,0.91) | (0.95,0.97) | (0.60,0.71) (0.66, 0.91) (0.96, 0.98) (0.42, 0.68) (0.98, 1.00)
Advanced 0.92 0.97 0.58 0.87 0.97 0.42 1.00
dentin caries | (0.89, 0.96) | (0.95,0.98) | (0.46, 0.71) (0.66, 0.97) (0.96, 0.98) (0.28, 0.57) (0.99, 1.00)
0.89 0.94 0.81 0.81 0.97 0.82 0.97
Overal (0.87,0.90) | (0.93,0.96) | (0.78,0.84) (0.74,0.87) (0.95, 0.98) (0.75, 0.88) (0.95, 0.98)
Dentists Enamel car- 0.86 0.95 0.73 0.75 0.97 0.71 0.97
with ma- ies (0.84,0.88) | (0.93,0.96) | (0.68,0.77) (0.65, 0.83) (0.95, 0.98) (0.61, 0.80) (0.96, 0.98)
chine Early dentin 0.92 0.96 0.70 0.86 0.97 0.57 0.99
learning caries (0.90, 0.94) | (0.95,0.97) | (0.63,0.77) (0.73, 0.95) (0.95, 0.98) (0.44, 0.69) (0.99, 1.00)
Advanced 0.95 0.97 0.59 0.91 0.97 0.42 1.00
dentin caries | (0.92,0.97) | (0.95,0.98) | (0.51, 0.67) (0.72, 0.99) (0.95, 0.98) (0.28, 0.57) (0.99, 1.00)
Artificial in- 0.91 0.97 0.88 0.83 0.99 0.94 0.97
telligence Overal (0.89, 0.93) | (0.96,0.97) | (0.86,0.89) (0.79, 0.86) (0.98, 0.99) (0.91, 0.96) (0.96, 0.98)
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Abbreviation: AUROC, area under the receiver operating characteristic.

Source: modified from Table 1, publication S. Mertens, J. Krois, A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detec-
tion: Randomized trial, J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation held by authors of the

publication, including Lubaina T. Arsiwala, as per publisher Elsevier policy.
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Figure 11: Receiver operating characteristic of the dentists with machine learning software (red),
dentists without machine learning software (blue) and the machine learning software by itself
(grey) as evaluated in the randomized clinical trial for detecting proximal caries lesions on bitewing
radiographs. Mean (solid black lines) and 95% confidence intervals (coloured areas within the
dotted lines) of the curves are shown. Abbreviation: ML, machine learning. Source: modified from
Figure 2 (a), publication S. Mertens, J. Krois, A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial
intelligence for caries detection: Randomized trial, J Dent 115 (2021) 103849, doi:
10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation held by the authors of publica-
tion, including Lubaina T. Arsiwala, as per publisher Elsevier policy.
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Figure 12: Comparisons of the sensitivity and specificity in detecting proximal caries lesions on
bitewing radiographs in the randomized clinical trial between dentists with machine learning (red),
dentists without machine learning (blue), and the machine learning software by itself (grey). Mean
(numbers atop the bars) and 95% confidence intervals (black whisker lines on the bars) of the

estimates are shown. Abbreviation: ML, machine learning. Source: own representation.
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Figure 13: Differences in sensitivity and specificity of each dentist (points) across the two groups
of the randomized clinical trial, i.e., with machine learning software (red) and without it (blue) for
the detection of proximal caries lesions on bitewing radiographs. The top image shows the entire
X- and Y-axes. The bottom image has zoomed-in where the data points are concentrated (out-
lined by a red box) hence note the extent of the X- and Y-axes. Each pair of data points belonging
to an individual dentist is connected by a black line to highlight the dentist-wise change in sensi-
tivity and specificity between the two groups of the clinical trial. For most dentists, an increase in
sensitivity when aided by the machine learning software came at no or very limited decrease in
specificity when compared to their own performance without any such support. Abbreviation: ML,
machine learning. Source: modified from Figure 2 (b), publication S. Mertens, J. Krois, A.G.
Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detection: Randomized trial,
J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation

held by authors of the publication, including Lubaina T. Arsiwala, as per publisher Elsevier policy.
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When comparing treatment decisions between the trial groups, the use of ML was found
to increase the likelihood of the dentists’ decision to non-invasively treat enamel caries
(increase of 4%; p<0.05) as well as the decision to treat them invasively (increase of 7%;
p<0.05) [26]. A similar shift was observed for early dentin caries, where the likelihood of

invasive treatments increased by 11%; p<0.05 [26].
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4. Discussion

4.1  Short summary of results

The research literature on ML in dentistry contains a large variety of clinical applications
which demand a wide range of input data types, ML methodology, and performance met-
rics [7, 18]. The number of studies in the field is growing exponentially, however, many of
them are hampered by considerable risk of bias and poor reporting quality [18]. This het-
erogeneity and paucity of robust evidence implies that despite an abundance of scientific

evidence, we are faced with limited comparability across the studies [18].

To characterize the emerging patterns in the included studies, we first needed to examine
the nature of clinical tasks which were tackled using ML. A plethora of research aims was
present; from detecting artifacts in images to examining the usefulness of transfer learn-
ing, from categorizing different dental conditions to supporting decision-making and as-
sessing cost-effectiveness of healthcare systems [18]. Classification tasks were the most
common (51%) and can be used for diagnosing dental anomalies on images which is vital
for early detection and successful treatment [18]. However, over the years, ML methods
have improved their image classification performance at the cost of increased model com-
plexity and opacity [217]. The inability to explain ML’s methods and decisions has boosted
the development of the field of explainable Al [18]; discussed in detail further ahead. Sec-
ond, in the field of restorative dentistry and endodontics, the trend is starting to move
away from traditional tasks, e.g., caries detection and classification of teeth in photo-
graphs or radiographs, to more complex ones. For instance, recent studies have investi-
gated ML for diagnosing more subtle features like tooth cracks, performing image seg-
mentation to detect early-stage caries, localizing lesions in near-infrared transillumination,
characterizing root morphology, volumetric analysis, formulating treatment plans, and
even assessing the cost-effectiveness of healthcare systems [8, 52, 65, 74, 85, 86, 98,
177].

An important reason behind the poor comparability across research studies is the high
number of different ML model configurations in use. The abundance of model options
combined with a scarcity of initiatives to benchmark them makes it challenging for re-
searchers to select appropriate models [218]. The benchmarking study aimed to address
this issue by conducting a systematic comparison of different model configurations for the
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specific task of outlining parts of a tooth on bitewing radiographs. ML combinations that
attained the highest performance for this task consisted of U-Net++ or LinkNet architec-
tures and ResNet or DenseNet backbones [36]. VGG backbones demonstrated con-
sistency and stability across different model configurations [36]. Complex models per-
formed slightly better, if at all, than simpler alternatives and were not highly efficient on
imbalanced datasets [36]. The benchmarking study tested the hypothesis that model per-
formance would be positively correlated to its complexity. While the results showed that
this hypothesis was accepted, it must be highlighted that the large increases in model
complexity, which came at the cost of larger computing demands, resulted in small im-
provements in performance [36]. It should be noted that lower computing demands allow
for high resolution of input images which may be important for several dental applications
[36]. Additionally, as hypothesized, the process of transfer learning improved model per-

formance [36].

Another weakness of the existing literature on ML in dentistry is the lack of prospective
clinical comparisons. The randomized clinical trial described here attempted to address
this issue. It revealed that the ML software outperformed the dentists and when used by
the dentists, can improve their sensitivity in identifying enamel carious lesions [26]. How-
ever, the hypothesis of the clinical trial could only be partially accepted because the ML
software did not improve the specificity of the dentists or impact their diagnostic abilities
for advanced lesions [26]. This could be attributed to the ML software's ability to diagnose
caries by learning from multiple experts, which acted as an extra pair of eyes for the
dentists and bolstered their sensitivity for incipient lesions [26]. These improvements in
performances varied across the individual dentists [26]. On the other hand, the dentists
did not require much assistance from the software to identify advanced lesions because
they were more conspicuous on radiographs. These aspects of performance were also
reflected in the inter-rater agreement between the dentists; the agreement was the lowest
for enamel lesions and gradually increased with the depth of the caries lesions. Addition-
ally, using ML increased the treatment severity for the detected lesions; significantly more
enamel caries lesions were detected and then assigned non-invasive treatments or, for a

notable proportion of the lesions, invasive treatments [26].
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4.2 Interpretation of results

The three studies presented here are generally consistent with the findings of other stud-
ies. First, the heterogeneity in the studies included by other reviews prevented them from
performing meta-analyses [11, 12, 19-22]. Second, most reviews reported that included
individual studies had risk of bias and poor reporting quality [8, 11, 20, 22, 219-221].
Third, studies have noted that the superiority of ML models in one domain does not nec-
essarily transfer to other domains [222]. Fourth, transfer learning has been shown to im-
prove model performance [222]. Fifth, a clinical study has demonstrated that an ML soft-
ware performed significantly better than dentists in detecting caries and suggested that
its use may improve dentists’ accuracy and sensitivity, especially for enamel caries le-
sions [25]. Finally, using ML increased the treatment intensity for a notable proportion of
enamel lesions to invasive therapy which is in line with the fact that dentists continue to

manage early lesions restoratively as demonstrated by a meta-analysis [223].

Nonetheless, some results were not consistent with other studies. First, most other re-
views included far fewer studies than the scoping review described herein because they
focussed on specific dental topics and thus had more restrictive inclusion criteria [8, 12,
19, 21, 22, 219-221, 224]. Second, the use of ML software in the clinical trial did not
improve dentists’ accuracy for advanced lesions, as suggested by a previous study [25].
The potential reason for this may be that advanced lesions show prominent radiographic
changes which the dentists could identify even without ML support. Lastly, the dentists in
the clinical trial exhibited higher sensitivity than that reported by a meta-analysis of over
100 studies [225]. This suggests that the dentists in the clinical trial were particularly ac-

curate owing to possible selection bias or performance bias.

4.3 Embedding the results into the current state of research

The scoping review aimed to make ML studies in dentistry more robust and contribute to
bridging the knowledge gap in the research field by identifying areas of fallacy in the cur-
rent literature and suggesting methods to overcome them [18]. First, reporting of results
that are generalizable is one of the cornerstones of high-quality research [2, 220, 226].
Hence, researchers should strive to generate data from multiple centres which may add

diversity in terms of geographic location, racial, social, and economic status [220, 226].
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Also, using a variety of types of data sources to create richer datasets could allow for
cross-checking the data integrity and leveraging information from different sources [226].
Furthermore, the studies usually did not provide access to their data, except for those
which used open databases, thus resulting in difficulties in replication of results [226].
Researchers are urged to follow the journals’ data sharing guidelines in order to promote
study replicability [18]. There may be concerns towards data sharing and privacy, for ex-
ample, when anonymization of data is difficult [227]. Here, options like federated learning
which eliminate the need to share data, as explained in Figure 14, should be encouraged
[227]. Normally, in Al, data is collected from different local sources and sent to a central
server for training an Al model. However, in federated learning, the data stays on the local
devices or sources. Instead of sending the data to a central server, the Al model is sent
to the local devices. Each device trains the model using its own data, and only their model
is returned to the central server, which combines all the individual models into one up-
dated model [227]. Thus, the personal data remains private and secure, which is useful

for situations where privacy is important, like in healthcare or financial applications.
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Figure 14: Representation of the concept of federated learning in the context of machine learning
and how it differs from traditional central learning. In federated learning, the need to share data

between institutions of universities is eliminated. Source: own representation.
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Second, the high number of metrics used to measure model performance further exacer-
bated the limited comparability between studies [18]. It is crucial to define a standardized
set of outcome metrics for specific dental subtasks in ML that encompasses diagnostic
and clinical usefulness, prevalence of outcome, and various aspects of model perfor-
mance. Also, studies examining the value of ML when used by dentists compared to the

current standard of care are needed [2].

Third, the generation of reference tests (i.e., establishment of the ground truth) merits
discussion. Overall, the studies included in the review used a variety of methods to es-
tablish reference tests but many did not provide further details [18]. It was concerning to
note that a few studies had their reference test developed by only one expert, which is
not ideal considering the variance in experts’ annotations [8]. Additionally, datasets used
to evaluate model performance should be standardized and heterogeneous to ensure
balanced datasets and generalizability [18, 221, 228]. One approach is to establish
benchmarking datasets that are publicly available, as attempted by the International Tel-
ecommunication Union (ITU) together with the World Health Organization (WHO) [18].
The ITU/WHO has set up a focus group to define the standards of Al applications in

medicine and one of its subgroups is ‘Dental Diagnostics and Digital Dentistry’ [229].

Fourth, the quality of existing literature on ML in dentistry was poor to moderate [18]. The
risk of bias arising from ML methods and data was insufficiently addressed, e.g., biases
in data, leakage of data, or overfitting of the model. Furthermore, many studies failed to
externally validate their models which is important as it speaks to the generalizability of
the results [2, 221]. Generally, most studies tested applications, built models, and con-
cluded that ML can learn and predict. However, general reporting without details hinders
study replication [18]. Researchers are strongly advised to adhere to the published check-
lists on study conduct and reporting [35].

Current guidelines require rigorous and comprehensive planning, conducting, and report-
ing of ML studies in dentistry [35]. A crucial component of these guidelines is the hypoth-
esis-driven selection of the ML model. Researchers must select a model architecture,
backbone, complexity level, and initialization strategy specific for their study. However,
the abundance of options for models combined with a lack of their comprehensive com-
parisons often result in researchers struggling to identify an ML model suitable for their
specific requirements [36]. With many researchers defaulting to choosing the popularly
known models, there is a lack of hypothesis-driven model selection. The benchmarking
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study aimed to address this knowledge gap by conducting a systematic comparison of
various ML model configurations in order to provide guidance on ML design and thus

contribute to evidence-based building of ML models in the field.

The clinical trial adds to the research field by providing empirical evidence of a prospec-
tive clinical comparison of an ML software. It highlighted the promising potential of com-
bining dentists with a high-performing ML software in a real-world clinical setting to
achieve diagnostic capabilities superior to the dentists alone [26]. However, the height-
ened sensitivity to enamel caries came with a higher proportion of them being assigned
to invasive treatments [26]. These findings indicate the need to validate ML applications
prospectively; ML for health should meet the criteria of evidence-based care and re-

searchers in ML in dentistry should critically and comprehensively evaluate ML solutions

2.

4.4  Strengths and weaknesses of the studies

The scoping review presented herein has several noteworthy features. First, it is the most
comprehensive overview of ML in dentistry comprising of 168 studies [18]. Second, the
review is potentially generalizable to other studies as it covers the diversity in research
questions, ML models, model performance metrics, and challenges related to risk of bias
and poor reporting quality. Third, and as a limitation, no randomized controlled trials were
included because none were available, which should be noted while interpreting the re-
sults [18]. Fourth, while the TRIPOD checklist was used to examine the reporting quality
of the individual studies, it has not been specifically validated for ML applications [17].
Nevertheless, previous studies have employed it to assess ML models as it was originally
designed for assessing clinical prediction tools, which are comparable to ML models [17].
Last, this review did not examine the clinical usability of the reviewed ML models as it

was outside the scope of the study aim [18].

The benchmarking study has a few limitations. First, the specific task of outlining parts of
a tooth on radiographs and evaluation of a certain set of ML models may restrict the
generalizability of the results to similar outlining-related tasks or model structures [36].
Second, the use of data generated from different machines may have influenced the re-

sults [36]. Additionally, radiographs containing rare features, e.g., bridges, implants, and
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root canal fillings were excluded. However, these limitations do not undermine the study
results since the primary aim was to benchmark models rather than build clinically useful
or highly accurate ones [36]. Last, the study did not explore the possibility of more efficient
restructuring of complex models that could reduce computing resources [36].

The clinical trial has several strengths and limitations. First, it is one of the few clinical
randomized controlled trials in the field of dentistry which utilized an array of outcomes to
carefully quantify the influence of ML [26]. Second, and as a limitation, the trial was not
entirely conducted in a clinical setting but in a simulated clinical environment [26]. While
this offered the advantage of controlling and standardizing the setup to a certain extent,
it should be noted when interpreting the results. In a real clinical setup, there are other
diagnostic options available and several factors affecting treatment decisions beyond the
diagnoses (e.g., dentists’ experience and armamentarium, patients’ expectations, and
costs) [26]. Third, the radiographs and participating dentists were selected from only two
machines and one clinical center, respectively, and thus the results may have reduced
generalizability [26]. Additionally, the participating dentists were younger than the aver-
age German dentist, primarily practicing in an urban environment, and exhibited higher
accuracy than reported in other studies [26]. Fourth, the reference test was defined by
human experts, a method that may have limited robustness; and additional validation

using histology was not possible [26].

4.5 Implications for practice and/or future research

In the field of dentistry, ML studies should aim to reduce the risk of bias and improve
adherence to reporting standards, thereby allowing for their replication and improving ro-
bustness, transparency, and generalizability of their findings [2, 7, 18, 221]. A minimum
(core) set of outcomes and metrics for model performance should be established to facil-
itate comparisons across studies [18]. Future research should aim to showcase how ML
can improve the quality and efficiency of patient care, as attempted by the clinical trial
described herein [2, 7, 18]. Researchers may benefit from applying the concept of transfer
learning when building ML models for dental radiographic analysis and considering less

complex models as alternatives if computing resources and time needed to develop the
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models are constraints [36, 222, 230]. However, researchers must note that models de-
veloped on non-dental data sets may not perform similarly well on dental data sets [36,
222]. In clinical practice, ML has the potential to improve dentists’ diagnostic performance,
especially for detecting enamel caries lesions and should be pursued in future studies
along with the implications of the nature of treatments thus assigned [26]. Furthermore,
as the influence of ML may differ among dentists it warrants further investigation in order

to advance towards personalized dental practice [26].

ML applications can enhance clinician-patient communication [2]. For example, ML soft-
ware can generate an augmented version of the original image with the pathology being
highlighted in color, as depicted in Figure 2. This can help patients to better understand
their condition and thus the treatment plan [2]. However, it is essential that the ML soft-
ware conveys its results in an easy-to-understand manner and not in technical or meth-
odological jargon [2]. The most recent example of ChatGPT, an Al application that can

generate meaningful language text, can be effectively used in this context [231].

Simulation is another Al application omnipresent in our everyday life. For example, au-
tonomous driving relies heavily on simulations. As a real-world test drive on all the roads
in the world, approximately 8.8 billion miles, is a significant challenge, simulation is a
potential solution for this [2]. Simulation is not widely used in dentistry as of yet [2]. The
dental pharmaceutical industry invests millions of dollars in the drug development process
but often drug trials do not achieve the desired targets. Simulation of these processes
where the experiments are run by a computer is a potential alternative to advance the
drug trials [232]. The idea here is to capitalize on the ability of Al to analyze big data to
identify previously unknown molecular characteristics and interactions and thus, predict
the properties of the drug under trial [232].

All the implications of Al in dentistry discussed until now, namely faster, earlier, and more
accurate disease diagnosis and thus less expensive treatment plans, efficient manage-
ment of workflow in clinics, and better communication with patients can all come together
and contribute to the bigger picture of better understanding an individual’s healthcare
needs [7]. This provides the basis for advancing personalized dentistry which is currently
in its nascent stages [19]. Its imminent obstacle is the unavailability of data which is nei-
ther standardized nor linkable to other data sources [2]. Resolving such issues would go

a long way in advancing personalized dentistry.
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Furthermore, Al has been recently introduced in dental education and so far, its use has
been limited to aid teaching of operative dentistry and craniofacial anatomy [233]. The
integration of Al in dental education holds several implications for the field. First, Al tech-
nologies can enhance the learning experience by providing interactive and personalized
educational resources [234]. Virtual simulations and augmented reality tools can allow
students to practice dental procedures in a risk-free environment, improving their skills
and confidence. One of my previous studies has demonstrated that augmented vision
helped motivate dental students in learning to detect proximal caries lesions on bitewing
radiographs [234]. Second, Al can facilitate students to access vast amounts of dental
knowledge and research. Third, Al can assist in assessments and evaluations by auto-
mating tasks such as grading and feedback generation, saving time for educators and
providing timely and objective assessments for all students. Overall, the adoption of Al in
dental education has the potential to revolutionize teaching and learning methods, im-
prove clinical competence, and promote continuous professional development in the den-
tal field. Future studies should further explore how the promising potential of Al can be

tapped for education.

Last, itis hard to interpret the process used by most Al systems to arrive at a final decision
due to the inherently complex structure of the model. Thus, Al applications are usually
regarded as ‘black boxes’ i.e., users cannot fully comprehend the criteria used by the Al
to generate a certain result [7, 219]. This has boosted the field of explainable Al where
attempts are made towards unravelling the underlying decision systems employed by Al
models [18]. Advancements in explainable Al will certainly improve the transparency of
the models and thus help clinicians to trust Al more. The clinical trial described in this
dissertation also collected data on the eye movements of the dentists while they exam-
ined the bitewing radiographic images, as indicated in Figure 3. Figure 15 depicts an
example of a dentist’'s eye movements in this trial. Analysing this data could help to un-
derstand how the dentists extract relevant information from the images. These insights
can then be transferred to Al models, enabling them to better replicate and augment hu-
man expertise. Consequently, this advancement may contribute to the development of

improved Al-supported diagnostic tools and progress further towards explainable Al.
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Figure 15: An exemplary gaze pattern of a participating dentist while detecting proximal caries
lesions on bitewing radiographs in the randomized clinical trial. The observed gaze pattern is
characteristic of the task assigned to the dentist and it shows that the dentist employed a system-
atic search strategy i.e., examining the proximal surfaces of the teeth in one jaw before moving

on to the opposite jaw. Source: own representation.
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5. Conclusions

ML techniques have been widely used in dentistry for a variety of tasks and have em-
ployed a diverse set of models and metrics to evaluate their performance [18]. The exist-
ing literature showed a considerable risk of bias as well as limited adherence to reporting
guidelines [18]. While the focus of many studies was on developing ML models, their
generalizability, robustness, or clinical usefulness was infrequently presented [18]. ML
researchers are encouraged to adopt the practice of selecting models based on their
hypothesis and optimizing their model structures with regards to transfer learning, model
complexity, and computing resources [36]. Empirical evidence from a randomized con-
trolled trial suggested that ML software can bolster dentists’ performance in clinical diag-
nostic tasks and this advantage should be leveraged and explored further [26]. In my
current research projects, | aim to expand on these results by investigating how the ML
software influenced the visual search strategies used by the dentists which led to better
diagnostic performance. Understanding how dentists extract information from radio-
graphic images may serve in building improved ML-supported tools, improving transpar-

ency of the models, and thus fostering trust and acceptance of ML systems by clinicians.
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Abstract: Machine learning (ML) is being increasingly employed in dental research and application.
We aimed to systematically compile studies using ML in dentistry and assess their methodological
quality, including the risk of bias and reporting standards. We evaluated studies employing ML in
dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We
assessed publication trends and the distribution of ML tasks (classification, object detection, seman-
tic segmentation, instance segmentation, and generation) in different clinical fields. We appraised
the risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists,
respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and
employing a broad range of ML models, input data, data sources, strategies to generate reference
tests, and performance metrics. Classification tasks were most common. Forty-two different metrics
were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-
over-union being the most common. We observed considerable risk of bias and moderate adherence
to reporting standards which hampers replication of results. A minimum (core) set of outcome and

outcome metrics is necessary to facilitate comparisons across studies.

Keywords: dental radiography; dentistry; machine learning; neural networks; scoping review

1. Introduction

With the advent of the big data era, machine learning (ML) methods like Support
Vector Machine, Naive Bayesian Classifier, Decision Tree, Random Forest (RF), K-Nearest
Neighbor, and Deep Learning involving Convolutional Neural Network (CNN), etc,,
have been increasingly adopted in fields such as finance, spatial sciences, and speech
recognition [1]. Additionally, in medicine and dentistry, ML has been employed for a
range of applications, for example, image analysis in dermatology, ophthalmology, or ra-
diology, with accuracy values similar or better than that of experienced clinicians [1,2].

In the field of ML, mathematical models are employed to enable computers to learn
inherent structures in data and to use the learned understanding for predicting on new,
unseen data [3]. For deep learning models, specifically CNNs, different types of model
‘architecture’ can be used. A ML workflow involves training the model, where a subset of
the data is used to learn the underlying statistical patterns in the data, and testing it on a
yet unseen, testing data subset. ML models tend to become more accurate, when larger
training datasets are used [4]. Moreover, basic learning parameters are usually optimized
on a separate data subset, referred to as validation data, a process called hyperparameter
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tuning. Testing the model on the test data involves a wealth of performance metrics (ac-
curacy, sensitivity also known as recall, specificity, and F-scores, among others), while the
assessment of a model’s generalizability, achievable via assessing its performance on an
external (independent) dataset, is not frequently performed vyet.

Notably, studies in the field of dental ML can varv widely [1]. Different research
questions translate into different ML tasks, which in turn necessitate different model spec-
ifications. Various input data (numerical, imagery, speech, etc.) can be emploved and var-
ied models (SVM, Extreme Learning Machine, Decision Tree, RF, K-Nearest Neighbor,
Neural Network, etc.) can be used. Datasets of different sizes and partitions (training, test-
ing, and validation sets) can be used, and a range of methods for balancing the input da-
tasets via synthetic data generation can be conducted. Moreover, the reference test can be
established either by having a “hard” ground truth (for example, for imagery, histological
sectioning) or fuzzy labeling schemes (for example, multiple human annotators labeling
the same image), and a variety of performance metrics can be used to evaluate the model’s
performance. These metrics differ with the ML task (classification oz, for imagery, detec-
tion of objects, or segmentation of specific pixels in an image, or even generation of new
images), and can be determined on different hierarchical levels, e.g., patient level, image
level, tooth level, surface level or pixel level. Exemplary metrics are accuracy, the confusion
matrix and (assodated with it) sensitivity (also known as recall), spedificity, positive predictive
value (predsion), and negative predictive value as well as the area-under-the receiver-operat-
ing-characteristics curve (c-statistic). For image segmentation tasks (where each pixel has its
own classification accuracy), the intersection-over-union (IoU), ie., the overlap between la-
beled and predicted pixels (DICE coeffident or Jaccard index), is often used.

As a result, there is significant heterogeneity in the data, tasks, models, and perfor-
mance metrics, which makes it difficult to contrast studies and assess the robustness and
consistency of the emerging body of evidence for ML in dentistry. Additionally, the qual-
ity of ML studies —both with regards to the risk of bias but also the reporting of the meth-
ods and results—has been shown to vary [5], and with a high likelihood such variance in
quality and replicability is also present for dental ML studies.

We aimed fo assess this quality of recent ML studies in dentistry, focusing on risk of
bias and reporting quality, and to characterize the overall body of evidence with regards
to the clinical and ML tasks frequently studied, the model types and underlying datasets,
and the emploved metrics. Having an overview about these aspects and appraising the
consistency and robustness of existing ML studies in our field facilitates to highlight cur-
rent strengths and weaknesses, and to identify future research needs. In comparison with
recent focused reviews on certain clinical tasks (e.g., caries detection on radiographs [6],
cephalometric landmark detection [2], etc.), this scoping review not only mainly targets
clinical applicability and performance in a subfield of dentistry, but captures the overall
picture of ML in our field with a broader focus, and thus a higher mamber of studies are
expected to be included.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria

We screened three electronic databases (MEDLINE via PubMed, Institute of Electri-
cal and Electronics Engineers (IEEE) Xplore, and arXiv). Search terms used were ‘deep
learning’, ‘artificial intelligence’, ‘machine learning’, ‘convolutional neural network’, ‘den-
tal’ and ‘“teeth’. The search strategy for all the three databases used is specified in the Sup-
plementary Materials. No language restrictions were applied. The search was overall de-
signed to account for different publication cultures across disciplines. Reviews, editorials,
and technical standards were excluded.

The following inclusion criteria were applied:

(I) Studies which had a dental/oral focus, induding technical papers.
(2) Studies emploving ML, for example, SVM, RF, Artificial Neural Network, CNN.
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(3) Studies published between 1 January 2015 and 31 May 2021, as we aimed to gather
recent studies and spedifically include deep learning as the most rapidly evolving
ML field at present.

Reporting of this scoping review followed the PRISMA checklist [7,8]. Cur PICO ques-
tion was as follows: Which ML practices are being emploved by studies in dentistry and what
are the methodological quality and findings? The question was constructed according to the
Partidpants Intervention Comparison Outcome and Study (PICOS) strategy.

+  Population: All types of data with a dental or oral component.

+  Intervention/Comparison: ML techniques applied with a dental or oral focus for the
diagnosis, management, prognosis of dental conditions or improving data quality.
Patient-level, tooth-level, surface-level, or pixel-level.

+  Qutcome: Performance evaluation of the ML models in terms of metrics, for example,
accuracy, IoU, sensitivity, precision, area under the receiver operating characteristic,
F indices, spedificity, negative predictive value, rank-N recognition rate, error esti-
mates, correlation coefficients, etc.

+  Study design type: For this review, we considered all kinds of studies except reviews,
editorials, and technical standards, with no language restrictions.

Ethics approval was not sought because this study was based exclusively on pub-
lished literature.

Screening of titles or abstracts was performed by one reviewer (A.C.). Inclusion or
exclusion was decided by two reviewers in consensus (F.5. and A.C.). All papers which
were found to be potentially eligible were assessed in full text against the inclusion crite-
ria. We did not limit the inclusion of studies based on the target study population, out-
come of interest, or the context in which ML was used. All original studies related to den-
tistry and ML, without gross reporting fallacies, such as failure to define the type of ML
used, failure to minimally describe which dataset was employed for training and testing,
and failure to report study findings, were included in this scoping review.

2.2, Data Collection, Items, and Pre-Processing

Data extraction was performed jointly by A.C., AM., and L.T.A.-S. The extracted data
was reviewed by L.T.A.-S. Adjudication in case of any disagreement was performed by
discussion (L.T.A.-S. and J.K.). A pretested Excel spreadsheet was used to record the ex-
tracted data. Study characteristics included country, vear of publication, aim of study and
clinical field, type of input data (covariates or imagery [photographs or radiographs; 2-D
or 3-D imagery]), dataset source, size and partitions (training, test, validation sets), type
of model used and, for deep learning, architecture, augmentation strategies employed,
reference test and its definition, comparators (if available, e.g., current standard of care,
clinicians, etc.), and performance metrics and their values. In each study, all data items
that were compatible with a domain of the extracted data were sought and recorded (e.g.,
all performance metrics, models emploved). No assumptions were made regarding miss-
ing or unclear data.

2.3. Quality Assessment

The risk of bias was assessed using the QUADAS-2 tool in four domains [9]. First,
risk of bias in data selection was assessed using the parameters of ‘inappropriate exclu-
sions’, ‘case-control design’, and ‘consecutive or random patient enrollment’. Second, risk
of bias in the index test was assessed using the parameters of ‘assessment independent of
reference standard and ‘pre-specification of thresholds used’. Third, risk of bias in the
reference standard was assessed using the parameters of ‘validity of reference standard
and ‘assessment independent of index test’. Fourth, risk of bias in the flow and timing was
assessed using the parameters of ‘appropriate interval between index test and reference
standard’, "use of a reference standard for all patients’, ‘use of the same reference standard
for all patients’, and ‘inclusion of all patients in the analysis’. Using the same tool,
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applicability concerns in three domains were also evaluated. First, applicability concerns
for data selection were assessed using the parameter of ‘mismatch between the included
patients and the review question’. Second, applicability concerns for the index test were
assessed via the parameter of ‘mismatch between the test, its conduct, or its interpretation
and the review question’. Last, applicability concerns for the reference standard were as-
sessed via the parameter of ‘mismatch between the target condition as defined by the ref-
erence standard and the review question’. We note that alternatively (or even complimen-
tary), the PROBAST tool [10] could have been used for the same assessment.

Adherence to reporting standards was assessed using the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) tool,
which is a 22-item checklist that provides reporting standards for prediction model stud-
ies [11]. Note that not all studies included were prediction model studies (studies varied
widely in their broader approach, as discussed below), but all involved a mathematical
model (ML) for a specific task, which is why we assumed that this checklist would require
most studies to adhere to the large majority of domains. TRIPOD has been used for similar
purposes in other domains [5]. Risk of bias and adherence to reporting standards were
independently assessed by one reviewer (L.T.A.-5.).

2.4, Data Synthesis

We describe various aspects of the included studies, such as country of origin, type
of input data used, source of datasets, type of ML methods used, etc. We had initially
attempted to conduct a meta-analvsis using the results of the confusion matrices reported
by the included studies; however, out of 168 studies, only 16 (10%) studies presented their
confusion matrices in a way that could be used for analysis and furthermore. These stud-
ies differed from each other in terms of their clinical research question/task, type of input
data, model architecture, etc.

Instead, a narrative synthesis was performed, displaving which ML tasks (i.e., classi-
fication, object detection, semantic segmentation, instance segmentation, and generation)
have been studied in different clinical fields of dentistry namely, restorative dentistry and
endodontics, oral medicine, oral radiclogy, orthodontics, oral surgery and implantology,
periodontology, prosthodontics, and others, i.e., non-specific field or general dentistry.
We briefly explain the different tasks in the following section:

s In ML, classification refers to a predictive modeling problem where a class label is
predicted for a given example of input data. An example is to classify a given hand-
written character as one of the known characters. Algorithms popularly used for clas-
sification in the included studies were logistic regression, k-Nearest Neighbors, De-
cision Trees, Naive Bayes, RF, Gradient Boosting, etc.

*  In object detection tasks, one attempts to identify and locate objects within an image
or video. Specifically, object detection draws bounding boxes around the detected
objects, which allow to locate the said objects. Given the complexity of handling im-
age data, deep learning based on CNNs, such as Region-based CNN, Fast Region-
based CNN, You Only Look Once, Single Shot multiBox Detection, are popularly
used for this task.

* Inimage segmentation tasks, one aims to identify the exact outline of a detected ob-
ject in an image. There are two types of segmentation tasks: semantic segmentation
and instance segmentation. Semantic segmentation classifies each pixel in the image
into a particular class. It does not differentiate between different instances of the same
object. For example, if there are two cats in an image, semantic segmentation gives
the same label, for instance, ‘cat’, to all the pixels of both cats. Instance segmentation
differs from this in the sense that it gives a unique label to every instance of a partic-
ular object in the image. Thus, in the example of an image containing two cats, each
cat would receive a distinct label, for instance, ‘catl” and ‘cat2’. Currently, the most
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popular models for image segmentation are Fully CNNs and their variants like UNet,
DeepLab, PointNet, etc.

s A fifth type of a ML task is a generation task, which is not predictive in nature. Such
tasks involve the generation of new images from the input images, for example, gen-
eration of artifact-free CT images from those containing metal artifacts.

The study protocol was registered after the initial screening stage (PROSPERO reg-
istration no. CRD42021288159).

3. Results
3.1. Study Selection and Characleristics

A total of 183 studies were identified and 168 (92%) studies were included (Figure 1).
The included studies [3,4,12-177] and their characteristics can be found in Table S1. The
excluded studies with reasons for exclusion are listed in Table 52. The included studies
were published between 1 January 2015 and 31 May 2021 (median: 2019), with the number
of published studies increasing each year; 2015: six studies, 2016: four studies, 2017: 13
studies, 2018: 21 studies, 2019: 49 studies, 2020: 68 studies (for 2021, data only until May
was available). The included studies stemmed from 40 countries (Figure 51) and used dif-
ferent kinds of input data, such as 2-D data (radiographs: 42% studies, photographs, or
other kinds of images: 16% studies), 3-D data (radiographic scans: 18% studies, non-radi-
ographic scans: 4% studies), non-image data (survey data: 10% studies, single nucleotide
polymorphism sequences: 1% studies), and combinations of the aforementioned types of
data (9% studies). Further, 97% studies used data from universities, hospitals, and private
practices, whereas 1% studies each used data from the National Health and Nutrition Ex-
amination Survey, M3BE database, 2013 Nationwide Readmissions Database of the USA,
and the National Institute of Dental and Craniofacial Research dataset.

[ Mdentification of studies via datah

Search terms (deep learning OR arificial intelbgence OR machane
learning OR convelutional neasal network) AND (dental O testh)
Records identifred from:

MEDLINE via PubMed (n = 664 studias)

aXiv ir = 5 studies)

IEEE {n = 100 studies)
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=183 studies)

¥
Reparts senaght for retrieval

in = 183 stusdies)

¥
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Reports exchded (n = 15)

= Reviewfsupplesental papers
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methodology (n = 4)

#  Mon-oral health topics (s = 3)
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Figure 1. PRISMA study flow diagram.
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Additionally, 85% studies partitioned their total dataset into training and testing data
subsets, and 59% studies also created validation data subsets from the same data source.
The median size of the training datasets was 450 (range: 12 to 1,296,000 data instances)
and of the test datasets was 126 (range: 1 to 144,000). Nearly half of the studies tested
model performance on a hold-out test dataset while the remaining used cross-validation.
Cross-validation is a resampling method that uses different portions of the data to test
and train a model during each iteration. For example, in a 10-fold cross-validation, the
original dataset is randomly partitioned into 10 subsamples, out of which nine subsamples
are used as training data and one subsample as the test data. Ten iterations of the follow-
ing step are carried out; the model is trained on the nine subsamples designated as train-
ing data and tested on the one subsample of test data; but in each iteration, a different
subsample is chosen to serve as the test data and thus a different combination of subsam-
ples constitutes the training data. Eventually, the final estimation of model performance
is the average of these results.

In addition, 65% studies augmented their input data, mainly the training data, buta
few augmented the testing data, too. Only 20% studies used an external dataset to validate
their model’s performance. The reference test (Le., how the ground truth was defined) was
established by professional experts in 73% studies: one expert in 18% studies, two experts
in 11% studies, three experts in 10% studies, four and five experts in 2% studies each, six
experts in 1% studies, and seven, eight, 12, and 20 experts in 0.5% studies, each. Another
27% studies used experts for establishing the reference test but did not provide details on
the exact numbers. Additionally, 22% studies used information from their datasets as the
reference test (for example, age, diagnosis from medical records) and 1% studies used a
software tool to generate the reference test. The remaining 4% studies did not provide
details on how the reference test was established.

Of all studies, 70% used deep learning models; CNN as dassifiers: 59 studies, CNIN
for other tasks: 14 studies, Faster R-CNN: seven studies, fully CINN: 19 studies, Mask R-
CNN: seven studies, 3-D CNN: three studies, adaptive CINN and pulse-coupled CNN: one
study each, and non-convolutional deep neural networks: seven studies (Table S1). An-
other 22% studies used non-deep learning models; perceptron: four studies, other neural
networks: three studies, other types of models, such as, fuzzy dassifier, SVM, RF, etc.: 30
studies. In addition, 6% studies used various combinations of the aforementioned models
and 2% studies did not provide details of the model architecture employed. Both, models
using and not using deep learning were employved in higher proportions by studies in
restorative dentistry and endodontics, oral medicine, and non-specific field or general
dentistry (Table 53). Additionally, models not using deep learning were frequently em-
ploved by studies in erthodontics and periodontology. Finally, 20% studies compared
their model’s performance with that of human comparators.

3.2, Risk of Bins and Applicability Concerns

The risk of bias was assessed in four domains, namely data selection, index test, ref-
erence standard, and flow and timing. It was found to be high for 54% of the studies re-
garding data selection and for 58% of the studies regarding the reference standard (Table
1). On the other hand, the risk of bias was low for the majority of studies regarding the
index test (77%) and flow and timing (89%). Applicability concerns were found to be high
for 53% of the studies regarding data selection but were low for most studies regarding
the index test (79%) and reference standard (73%).
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Table 1. Evaluation of risk of bias in studies included (n = 168) using the QUADAS-2 tool.

Data Selection: risk Index Test: Risk

Reference

Flow and

Sr. No. of of Standard: Risk of Timine: Risk
[Citation] Bias/Applicability Bias/Applicability Bias/Applicability of I;'ias
Concerns Concerns Concerns
1.[12] high/high low/high high/high low
2.113] low/low low/low low/low low
3.[14] high/low low/low low/low low
4.[15] low/low low/high high/high low
5.[16] low/low low/low low/low low
6. [17] high/high low/high high/high low
7.[18] high/high low/low high/low low
8.[19] low/low low/high low/low low
9. [20] low/low low/low low/high low
10. [21] high/high low/low high/low low
11. [22] high/high low/low high/high low
12. [23] high/low high/low high/low low
13. [24] low/high low/low high/high low
14. [25] high/high high/low low/low low
15. [26] low/low high/low low/low low
1e. [27] high/low low/low high/low low
17. 28] high/high low/low high/low low
18. [29] high/low low/low high/low low
19. [30] high/high low/low high/low low
20. [31] high/high low/high high/low low
21. [32] high/high high/high high/high low
22, [33] low/low low/low low/low low
23.[34] low/high low/low low/high low
24, [35] high/high low/low low/low low
25. [36] low/low low/low low/low low
26. [37] high/high low/low high/low low
27.[38] high/high low/low high/low low
28. [39] high/high low/low high/low low
29. [40] high/high high/low high/low low
30. [41] low/low low/low low/low low
31. [42] high/low high/low low/low low
32. [43] low/high low/high low/high low
33. [44] low/low high/low high/low low
34. [45] high/high low/high low/high low
35. [46] high/low low/low low/low low
36. [47] high/high low/low low/low low
37. [48] high/high low/high low/high low
38. [49] low/low low/low high/low low
39. [50] low/high low/low high/low high
40. [51] low/high low/low low/low low
41. [52] high/low low/high high/low low
42, [53] high/high low/low low/low high
43, [54] low/low low/high low/high low
44, [55] high/high low/low high/low low
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45. [56] high/high low/high high/low low
46. [57] high/high low/low high/high low
47, [58] high/high high/high high/high low
48. [59] low/high low/low high/high low
49. [60] low/high low/low high/high low
50. [61] low/low low/low high/low high
51. [62] high/high low/low high/low low
52. [83] low/high low/high high/high low
53. [64] high/high high/high high/high low
54. [65] high/high low/low high/low low
53. [66] low/high low/low high/low low
56. [67] high/high low/high low/high low
57. [68] low/high low/low low/low high
58. [69] low/low low/low low/low low
59. [70] high/high low/low low/low low
60. [71] low/low low/low low/low low
el. [72] low/high low/low high/low low
62. [73] low/low low/low high/low low
63. [74] low/low low/low low/low low
64, [75] low/low low/low low/low low
63, [76] low/low low/low low/low low
66. [77] high/high high/low high/low low
67. [78] high/low high/low high/low low
68. [79] high/low high/low high/low low
69, [80] high/low high/low low/low low
70. [81] low/low low/low low/low low
71.[82] low/low low/low high/low low
72. [83] low/low low/low low/low low
73.[84] high/low low/low high/low low
74. [85] low/low low/low low/low high
73. [86] high/high low/low low/low low
76. [87] high/high high/low low/low low
77. [88] low/low low/low low/low low
78.[89] high/high high/high high/high low
79.[90] high/high high/high high/high low
80. [91] high/high low/low high/low low
81. [92] low/low low/low high/low low
82. 193] low/high low/low high/high low
83. [94] low/low low/low low/low high
84. [95] high/high high/low high/high low
85. [96] low/high high/low high/high low
86. [97] high/high low/high low/high low
87. [98] high/high low/low low/low low
88. [99] low/high low/high high/high low
89. [100] low/high low/high high/high low
90. [101] low/high low/low low/high low
91. [102] high/high low/low high/low low
92, [103] low/low low/low low/low low
93. [4] high/low low/high high/high low
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94, [104] low/low low/low high/low low
95. [105] high/high low/high high/low low
96. [106] low/high low/low low/high low
97. [107] low/low low/low high/low low
98. [108] low/low low/low low/low low
99. [109] high/high high/low high/low low
100. [110] low/low low/low high/low low
101, [111] low/low low/low high/low low
102. [112] high/low high/low high/high low
103. [113] high/high low/low low/high high
104. [3] low/high low/low low/low low
105, [114] low/low low/low low/low low
106, [115] low/low low/low low/low low
107. [11¢] high/high high/low high/low low
108. [117] high/low high/low low/low low
109. [118] high/high low/low high/low low
110. [119] low/low low/low low/low low
111. [120] low/low low/high high/high low
112, 1121] low/low low/low high/low low
113. [122] high/high high/low low/low low
114. [123] low/low low/low low/low low
115. [124] low/high low/low high/low low
116. [125] high/high low/low low/high low
117. [126] high/low high/low high/low high
118. [127] high/high low/low high/low low
119. [128] low/low high/low low/low low
120. [129] high/low low/low low/low low
121. [130] high/high low/low high/low high
122, [131] high/low high/low high/low low
123. [132] high/high low/low high/low low
124, [133] high/high low/low high/low high
125, [134] low/high high/low high/low low
126. [135] high/low high/low low/low low
127. [136] high/low high/low high/low low
128. [137] high/low high/high low/low low
129. [138] low/high low/high high/low low
130. [139] high/low low/low low/low low
131. [140] high/low low/high high/high low
132, [141] low/low low/low high/low low
133. [147] high/high low/low high/low low
134, [143] high/high low/low low/low low
135. [144] high/high low/low high/low low
136. [145] high/high high/low high/low low
137. [146] high/high low/low high/low low
138. [147] high/low high/low low/low low
139. [148] high/high low/low high/low low
140. [149] high/high low/high high/high low
141. [150] high/high low/high high/high low
142, [151] low/high low/low high/high low
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143. [152] high/high low/high high/high low
144. [153] high/low low/low high/low low
145, [154] low/low low/high high/high low
146. [155] low/low high/low low/low low
147. [156] low/high low/low low/low low
148. [157] high/high high/low high/low high
149, [158] low/low low/low low/low low
150. [159] low/high low/high low/high low
151. [1e0] high/low low/high low/low low
152. [161] low/low high/low high/low high
153. [162] high/low low/low low/high low
154. [163] low/low low/high low/high low
155. [164] high/low low/low high/low low
156. [165] low/low low/low high/low low
157. [166] low/high low/high high/high high
158. [167] low/low low/low low/low low
159. [168] low/low low/low high/low low
160. [169] low/high high/low high/high low
161. [170] high/high low/low low/low low
162. [171] low/low low/low high/low low
163. [172] low/low low/low low/low low
164. [173] low/low low/low high/low low
165. [174] low/low low/low low/low low
166. [175] high/high high/high high/high low
167. [176] high/high high/low low/low low
168. [177] high/high low/low high/low low

3.3. Adherence to Reporting Standards

Overall adherence to the TRIPOD reporting checklist was 33.3%, with 18/22 domains
having an adherence rate less than 50% (Figure 2). Reporting adherence was at or abowve
80% for background and objectives, and potential clinical use of the model and implica-
tions for future research, but below 10% for sample size calculation, handling of missing
data, differences between development and validation data, and details on participants.
In particular, less than 20% of studies adequately defined their predictors and outcomes
(in terms of their blinded assessments), stratification into risk groups, presented the full

prediction model and provided information on supplementary resources, such as study
protocol, web calculator, or data sets. Less than 40% of the studies adequately reported
about their data sources (ie., study dates), participant eligibility, statistical methods (spe-
cifically, details on model refinement), model results (in terms of results from crude mod-
els), study limitations, and results with reference to performance in the development data,

and any other validation data.
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Title
Abstract
Background and objectives
Source of data
Farticipants (Melhods)
Outcomes
Predictors
Sample size
Missing data
Statistical methods
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Development vs. validation
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Made| development
Model specification
Model performance
Model updating
Lirnitations
Interpretations
Implications
Supplementary resources
Funding 67%

0 25 50 75 100

Percentage of included studies with adherence to TRIPOD toal

Figure 2. Reporting adherence of studies (n = 168) to Transparent Reporting of a Multivariable Pre-
diction Model for Individual Prognosis or Diagnosis (TRIPOD) tool.

3.4. Tasks, Metrics, and Findings of the Studies

Based on the nature of the ML task formulated, the 168 included studies could be
classified into five major categories of ML tasks; classification task, n = 85; object detection
task, n = 22; semantic segmentation task, n = 37; instance segmentation task, n = 19; and
generation task, n = 5. Classification tasks were most commonly used in oral medicine
studies (22%), whereas object detection, semantic segmentation, and instance segmenta-
tion tasks, each were most commonly used in non-specific field or general dentistry stud-
ies (36%, 38%, and 58%, respectively), Table 2. Generation tasks, though small in number,
were most commonly used in oral radiology studies (80%).

Table 2. Number of studies in each field of dentistry, stratified by type of machine learning task (n

=168).
Classification Object s ezz"lﬂ:llt::icon Segnlls::::;on Generation
Task Detection Task Task
Task Task
n 85 22 37 19 5
Field of dentistry, n (%)
Resmrzi;iﬂg‘;&y and 13 (15%) 1 (4%) 9 (24%) 2 (11%) 0 (0%)
Oral medicine 19 (22%) 5 (23%) 1(3%) 0 (0%) 0 (0%)
Oral radiology 3 (4%) 0 (0%) 2 (5%) 2 (11%) 4(80%)
Orthodontics 10 (12%) 3 (14%) 1(3%) 3 (15%) 1 (20%)

Oral surgery and implantology 11 (13%) 3 (14%) 3 (8%) 0(0%) 0 (0%)
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Periodontology 9 (11%) 2 (9%) 7 (19%) 1(5%) 0 (0%)
Prosthodontics 2 2%) 0(0%) 0 (0%) 0(0%) 0(0%)

Others (non-specific field, 18 (21%) 8 (36%) 14 (38%) 11 (58%) 0 (0%)

general dentistry)

A total of 42 different metrics were used by the studies to evaluate model perfor-
mance and some of these could be grouped into one class, for example, the various corre-
lation coefficients could be combined. Such grouping (or consolidation) resulted in 26 dis-
tinct classes of metrics. Note that most studies reported multiple metrics. Studies on clas-
sification tasks commeonly reported accuracy, sensitivity, area under the receiver-operat-
ing characteristic, spedficity, and precision, and those on object detection reported on sen-
sitivity, precision, and accuracy. Studies on semantic segmentation reported on IoU and
sensitivity, and those on instance segmentation reported on accuracy, sensitivity, and IoU.
Lastly, studies using generation tasks commonly reported on peak signal-to-noise ratio,
structural similarity index, and relative error. Table 54 shows the number of studies which
used the different metrics, stratified by ML task.

After stratifying the studies by ML task and clinical field of dentistry, we attempted
to evaluate studies that reported on accuracy, or mean average precision, or IoU. A formal
comparison was inhibited by the large variability at the level of dlinical or diagnostic tasks
amongst the studies.

4. Discussion

ML in dentistry is characterized by the availability of a plethora of clinical tasks
which necessitate the use of a wide range of input data types, ML models, performance
metrics, ete. This has given rise to a large body of evidence with limited comparability.
The present scoping review synthesized this evidence and allowed to comprehensively
assess this body. We will begin by discussing our findings in detail.

First, the included studies aimed for different ML tasks on a wide variety of data.
These data then differed once more within specific subtypes (e.g., imagery, with radio-
graphs, scans, photographs, each of them being sub-classified again, and differing in res-
olution, contrast, etc.). Moreover, data usually stemmed from single centers, representing
only a limited population (and diversity in terms of data generation strategy or tech-
nique), all of which likely adversely impacts generalizability of results. The data used
were nearly never available, except for the few studies emploving data from open data-
bases, leading to difficulties in replication of results. Researchers are urged to comply with
journals’ data sharing policies and make their data available upon reasonable request. We
acknowledge that there may be data sharing and privacy concerns across institutions and
countries. Alternatives fo centralized learning of ML models, like federated learning,
which do not require data sharing mav be of relevance espedally for data which are hard
to de-identify [178]. Practices of data linkage and triangulation, i.e., using a variety of data
sources to create a richer dataset, were almost non-existent. Thus, limiting options for ver-
ification of data integrity and increasing the learning output of a ML model by leveraging
information from multiple data sources on hierarchical structures and correlations.

Second, a wide range of outcome measures was used by the included studies. These
can be measured on different levels, such as patient-level, tooth-level, and surface-level,
and while this is relevant for any comparison or synthesis across studies, it was not always
reported on what level the outcomes were assessed. Another issue was the high number
of performance metrics in use, as evident from our results, leading to only a few studies
being comparable to each other. Defining an agreed-upon set of outcome metrics for spe-
cific subtasks in ML in dentistry (e.g., classification, detection, segmentation on images)
along with standards towards the level of outcome assessment seems warranted. This
outcome set should reflect various aspects of performance (e.g., under- and over-detec-
tion), consider the impact of prevalence (e.g., predictive values), and attempt to transport
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not only diagnostic value, but also clinical usefulness. For the latter, studies attempting to
assess the value of ML in the hands of clinicians against the current standard of care are
needed.

Third, the use of reference tests (i.e., how the ground truth was established) warrants
discussion. A wide range of strategies to establish reference tests were employed. In many
studies, no details towards the definition of the reference tests were provided. A few stud-
ies using image data used only one human annotator as the reference test, a decision
which may be criticized given the known wide variability in experts” annotations [2]. Al-
ternative concepts of applying the reference test to training datasets should be employed
and compared to gauge the impact of different approaches and validate the one eventu-
ally selected. Additionally, testing datasets should be standardized and heterogeneous to
ensure class balance and generalizability. One approach is to establish open benchmark-
ing datasets, as attempted by the ITU/WHO Focus Group on Artificial Intelligence for
Health [179].

Fourth, the quality of conducting and reporting ML studies in dentistry remains
problematic. Notably, the specific risks emanating from ML and the underlying data are
insufficiently addressed, e.g., biases, data leakage, or overfitting of the model. Further-
more, many studies suffered from unclear or a lack of validation of their results on exter-
nal datasets. The evaluation of a model’s performance on unseen data is a crucial aspect
as it relates to the generalizability of ML models regarding performance on data from
other sources. Exploration of why some models were not generalizable was even less com-
mon, thus preventing identification of steps required to better the models. Generally, the
majority of studies performed application testing, developed models, and showed that
ML can learn and, in many studies, predict. Understanding why this is, how it could be
improved, what the clinical domain needs, or which safeguards for ML in dentistry are
required, was seldom an issue. General reporting did not allow full replication, as many
details were not presented, and additionally, the display of the model performance re-
mained, as discussed, insufficient. Researchers need to adhere to the published guidelines
on study conduct and reporting [180-182].

In an effort to characterize the emerging pattern in the included studies, first, we
would like to elaborate on the nature of dlinical tasks emploved by the studies. A wide
array of research questions were present; from detecting dental artifacts in images to in-
vestigating the benefits of transfer-learning, from classifying different dental conditions
to aiding in decision-making and assessing cost-effectiveness. Thus, there is evidence of
broadening of avenues where ML could be exploited. As stated earlier, classification tasks
were the most commeon and this may be because diagnosing dental structures or anoma-
lies on images is a vital step towards successful treatment outcomes and prognosis. How-
ever, over the years, ML methods have improved their classification performance on im-
ages at the cost of increased model complexity and opadity [183]. The inability to explain
ML's methods and decisions is one of the contributing factors towards development of
explainable Al ie., a set of processes that allows human users to comprehend and trust
the results created by ML algorithms. Second, more recent studies tended to employ im-
age segmentation models [2,25,39,48,59,60,73,151].

The presented scoping review has a few salient features. First, it is the most compre-
hensive overview on ML in dentistry with 168 studies being included. Second, and as a
limitation, we could not include randomized controlled trials because none were available
and found the included studies to have a considerable risk of bias, both of which should
be considered when interpreting our results. Third, to our knowledge this study is the
first to employ TRIPOD for gauging the reporting quality of studies using ML in dentistry.
TRIFOD is a checklist designed to assess prediction models which has not been validated
spedfically for ML applications [5]. However, previous studies have used it to evaluate
ML models since the quality assessment criteria for clinical prediction tools and ML mod-
els are similar [5]. At present, a TRIPOD-ML tool is under-construction [5]. Fourth, we
included studies until May 2021 only, as the systematic critique of the 168 studies required
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considerable time and effort since then. We acknowledge that inclusion of recently pub-
lished studies may have strengthened our review. Furthermore, we acknowledge that
arXiv, an archiving database, may include studies which did not undergo a formal peer-
review process and this mayv be a limitation for our study. However, studies on arXiv are
reviewed by peers in a non-formal process and updated after peer-review. Last, any clin-
ical usability cannot be inferred from this study because it was not the focus of this com-
prehensive review.

5. Conclusions

In conclusion, we demonstrated that ML has been employed for a large number of
tasks in dentistry, building on a wide range of methods and employving highly heteroge-
neous reporting metrics. As a result, comparisons across studies or benchmarking of the
developed ML models are enly possible to a limited extent. A minimum (core) set of de-
fined outcomes and outcome metrics would help to overcome this and facilitate compar-
isons, whenever appropriate. The overall body of evidence showed considerable risk of
bias as well as moderate adherence to reporting standards. Researchers are urged to ad-
here more closely to reporting standards and plan their studies with even greater scientific
rigor to reduce any risk of bias. Last, the included studies mainly focused on developing
ML models, while presenting their generalizability, robustness, or clinical usefulness was
uncommeon. Future studies should aim to demonstrate that ML positively impacts the
quality and efficiency of healthcare.
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Benchmarking Deep Learning Models
for Tooth Structure Segmentation
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Abstract

A wide range of deep learning (DL) architectures with varying depths are available, with developers usually choosing one or a few of
them for their specific task in a nonsystematic way. Benchmarking (i.e., the systematic comparison of state-of-the art architectures on
a specific task) may provide guidance in the model development process and may allow developers to make better decisions. However,
comprehensive benchmarking has not been performed in dentistry yet. We aimed to benchmark a range of architecture designs for |
specific, exemplary case: tooth structure segmentation on dental bitewing radiographs. We built 72 models for tooth structure (enamel,
dentin, pulp, fillings, crowns) segmentation by combining 6 different DL network architectures (U-Net, U-Net++, Feature Pyramid
Networks, LinkNet, Pyramid Scene Parsing Network, Mask Attention Network) with 12 encoders from 3 different encoder families
(ResMet, VGG, DenseMet) of varying depth (e.g., VGGI3, VGG 6, VGG19). On each model design, 3 initialization strategies (ImageMet,
CheXpert, random initialization) were applied, resulting overall into 216 trained models, which were trained up to 200 epochs with
the Adam optimizer (learning rate = 0.0001) and a batch size of 32. Our data set consisted of 1,625 human-annotated dental bitewing
radiographs. We used a 5-fold cross-validation scheme and quantified model performances primarily by the F1-score. Initialization with
ImageNet or CheXpert weights significantly outperformed random initialization (P < 0.05). Deeper and more complex models did not
necessarily perform better than less complex alternatives. YGG-based models were more robust across model configurations, while
more complex models (e.g., from the ResMet family) achieved peak performances. In conclusion, initializing models with pretrained
weights may be recommended when training models for dental radiographic analysis. Less complex model architectures may be
competitive alternatives if computational resources and training time are restricting factors. Models developed and found superior on
nondental data sets may not show this behavior for dental domain-specific tasks.

Keywords: computer vision, artificial intelligence, segmentation, tooth structures, transfer learning, neural networks

weights (e.g., via transfer learning). (1) Architecture: The
basic unit of an artificial neural network is a neuron, which is a
nonlinear mathematical model inspired by the biological neu-
ron (McCulloch and Pitts 1943). These units are stacked to
build layers that are connected via mathematical operations

Introduction

Deep learning (DL) has been widely employed for image ana-
lytics in dermatology (skin photographs) (Jafari et al. 2016),
ophthalmology (retina imagery) (Son et al. 2020), or pathology
(histological specimens) (Kather et al. 2019). Also in dentistry,
DL classification models have been employed to predict the

modality of radiographs (Cejudo et al. 2021), the presence of
caries lesions (Lee et al. 2018), periodontal bone loss (Krois
et al. 2019), and apical lesions (Ekert et al. 2019) on dental
radiographs. DL segmentation models, which perform a clas-
sification task at the pixel level, were used for the segmenta-
tion of anatomical structures in panoramic images (Cha et al.
2021), apical lesions on cone beam computed tomography
scans (Orhan et al. 2020), periodontal bone loss on panoramic
radiographs (Kim et al. 2019), and caries lesions on bitewings
(Cantu et al. 2020).

Recent guidelines in the field call for rigorous and compre-
hensive planning, conducting, and reporting of DL studies in
dentistry (Schwendicke et al. 2021). One key element in those
guidelines is a hypothesis-driven selection of the DL model
configuration, which includes, among others, its architecture,
its complexity, and the initialization strategy for the model
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with other layers of neurons. The arrangement of these layers
and operations defines the model architecture. Model architec-
tures such as ResNet (He et al. 2016) or VGG (Simonyan and
Zisserman 2015) are widely used in the field of machine learn-
ing. For image segmentation, specialized layers extend the
basic model architectures, which in such a setting are referred
to as backbone. This allows one to plug in different backbones
and benchmark them for image segmentation tasks.
(2) Complexity: Most model architectures are available in dif-
ferent degrees of complexities, which reflects the depth of the
neural network (i.e., the number of layers included and the
number of neurons and connections between them). Deeper
models are more complex as they consist of more parameters
(i.e., connections between neurons). (3) Initialization: The
connections between neurons and layers of neurons, which are
also referred to as model weights, are basically digits that cor-
respond to the strength of the connection. During model train-
ing, these weights are adjusted to find a set of values that are
most suitable to solve the underlying task. Starting with a pre-
defined setting of these weights enhances the efficiency of the
training process and improves model convergence. Using a
predefined setting of weights that stem from a previously
trained neural network provides a meaningful starting point for
the training process. This technique is referred to as transfer
learning (Tan et al. 2018).

The sheer number of possible configurations of model
architecture, including backbones, complexity, and initializa-
tion strategies, impedes systematic and comprehensive com-
parisons of existing study findings (Schwendicke et al. 2019).
One strategy to overcome this issue is to perform benchmark-
ing, which involves the systematic comparison of different
model architectures and model configurations on an identical
data set. Such benchmarking studies provide guidance for
researchers in the model design process, which improves
research efficiency by enabling the development of high-
performing models in a shorter time at lower development
costs. However, in the medical domain and, more so, dentisiry,
benchmarking initiatives are scarce, owing to limited data
availability and high costs for establishing solid and accepted
ground truth labels and annotations. To cope with these diffi-
culties, the ITU/'WHO Focus Group Artificial Intelligence for
Health (FG-AI4H) is developing a standard evaluation process
and benchmarking framework for artificial intelligence (Al)
models in health. The present study will inform this initiative.

In a recent benchmarking study, Bressem et al. (2020)
benchmarked 16 different model architectures for classifica-
tion tasks on 2 openly available chest radiograph data sets:
CheXpert (Irvin et al. 2019) and the COVID-19 Image Data
Collection. They showed that complex and deep models do not
necessary outperform simpler architectures. Similarly, Ke et al.
{2021) addressed the assumption that model architectures that
perform better on the ImageNet data set (Deng et al. 2009), a
popular open-source benchmark data set containing millions of
labeled images, also generally perform better on CheXpert.
This assumption was not found to be valid based on the com-
parison of 16 convolutional architectures on 35 classification
tasks.

In the present study, we aim to expand the studies of Bressem
et al. (2020) and Ke et al. (2021) to a dental segmentation task.
We benchmarked 216 DL models defined by their architecture,
complexity, and initialization strategy. We evaluated these
maodel configurations for a specific dental task: tooth structure
(enamel, dentin, pulpal cavity, fillings, and crowns) segmenta-
tion on dental bitewing radiographs. We deliberately decided to
use this application since first, there is evidence that segmenta-
tion models perform well on this task (Ronneberger et al.
2015a) and, second, there is less ambiguity about the establish-
ment of the ground truth for this task, with tooth structures
being easily discriminated even by nonsenior clinicians. We
expect our results to inform dental researchers about suitable
model configurations for their experiments and aim to contrib-
ute to evidence-guided DL model selection in dental research.

Materials and Methods

Benchmarking Tasks

This analysis 1s based on a segmentation task for tooth struc-
tures on dental bitewing radiographs. Several model develop-
ment aspects were benchmarked. (1) Architecture: First, we
assessed different DL model architectures, since to date, most
neural networks have mainly been benchmarked on openly
available data sets such as ImageNet. However, it is not yet
determined whether the best-performing networks on ImageNet
will also perform best for dental radiographic images. Hence,
we benchmarked architectures such as U-Net (Ronneberger
et al. 2015h), U-Net++ (Zhou et al. 2018), Feature Pyramid
Networks (FPN) (Kirillov et al. 2019), LinkNet (Chaurasia and
Culurciello 2017), Pyramid Scene Parsing Network (PSPNet)
(Zhao et al. 2017}, and Mask A ttention Network (MAnet) (Fan
et al. 2020), among others. These networks were selected, as
they all allow to employ the same established backbones of
varying depths of model layers (ResNet50 [He et al. 2016],
VGGI3 [Simonyan and Zisserman 2015], DenseNetl2]
[Huang et al. 2017]). The depth of the encoder is convention-
ally represented by the digits behind the name of the architec-
ture {e.g., ResNetl8, ResNet34). All model implementations
were taken from the same software package (Yakubovskiy
2020). (2) Complexity: Second, we investigated the model
performances emanating from model complexity. Supposedly,
deeper DL models, which have more trainable parameters, out-
perform shallower alternatives if enough data and computa-
tional resources are available. However, deeper models are
more likely to overfit training data, and model convergence
may not be reached. Furthermore, limited computational
resources imply restrictions regarding image resolution or
batch size; both may negatively affect the model performance.
(3) Initialization: Third, we analyzed different initialization
strategies, such as random weights initialization or initializa-
tion based on pretrained weights from the ImageNet as well as
the CheXpert data set. The latter strategies are referred to as
transfer learning. Thereby, features learned on large, open data
sets are directly transferred to a new task and hence do not
have to be learned from scratch. This technique speeds up
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model convergence and improves model performance.
Initialization with ImageNet is one of the most popular transfer
learning strategies. Even for tasks on medical radiographs,
transferring knowledge from models trained on ImageNet
yields a boost in performance (Ke et al. 2021). However, the
feature space learned on ImageNet differs fundamentally from
medical features of radiographs. ImageNet consists of natural
RGB color images that are classified into more than 20,000
classes, while radiographic images contain grayscale images
and are usually classified in only a few categories. Hence, an
initialization with pretrained models on radiographic images
such as the CheXpert data set (Irvin et al. 2019) may poten-
tially be more suitable for medical segmentation tasks of, for
instance, dental radiographs.

Ethics Statement

This study was ethically approved by the ethics commitiee of
the Charité (EA4/102/14 and EA4/080/18).

Study Design

In the present study, 72 models were built from a combination of
varying architectures and encoder backbones and were each
trained with 3 different initialization strategies on a tooth struc-
ture segmentation task. Each model was trained with 5-fold
cross-validation with varying train, validation, and test sets for
each fold. Hence, for each model run, the data were randomly
split into training, validation, and test data with proportions of
60% (3 folds), 20% (1 fold), and 20% (1 fold), respectively. We
additionally applied a sensitivity analysis and assessed model
performances on underrepresented classes (in our case, fillings
and crowns), as in real life, medical data set class imbalance is
likely the rule and not the exception. Reporting of this study fol-
lows the Standards for Reporting Diagnostic Accuracy guideline
(STARD) (Bossuyt et al. 2015) and the Checklist for Artificial
Intelligence in Dental Research (Schwendicke et al. 2021).

Performance Metrics

Model performances were primarily quantified by the Fl-score,
which captures the harmonic mean of recall (specificity) and
precision (positive predictive value [PPV]). Fl-scores are
computed from the sum of true positives, false positives, and
false negatives over all channels of segmentation masks and
cross-validation folds. This method was described by Forman
and Scholz (2010} and results in unbiased F-scores in cross-
validation schemes. Secondary meirics were accuracy, sensi-
tivity, precision, and intersection of union (Iol). Based on the
distribution of the results, the median was chosen as a descrip-
tive statistic.

Data Set, Sample Size, and Reference Test

The available data set consisted of 1,625 dental bitewing radio-
graphs with a maximum of 8 to 9 teeth per image and is
described in detail in the Appendix. Tooth structures visible on

bitewing radiographs (namely, enamel, dentin, the pulp cavity,
and nonnatural “structures™ like fillings and crowns) were
annotated in a pixel-wise fashion (as masks) by 1 dental expert.
These masks represent the ground truth for each data sample.
In a second iteration, those annotations were reviewed by
another dental expert for validity and correciness. Each anno-
tator independently assessed each image using an in-house
custom-built annotation tool described in Ekert et al. (2019).
All examiners were calibrated and advised on how to perform
the segmentation. Images with implants, bridges, or root canal
fillings were very rare (<1%) and therefore excluded.

Notably, enamel, dentin, and pulpal areas were present in
every radiograph, while fillings and crowns were only avail-
able in 80% and 20% of images, respectively. Images and seg-
mentation masks were resized to a resolution of 224 x 224 to
provide a fixed input size of the images as required by the
model architectures.

Models and Training

As represented in Figure 1, models were built by combining
different model architectures (U-Net, U-Net++, FPN, LinkNet,
PSPNet, MAnet) with backbones from 3 different families
(ResNet, VGG, DenseNet) of different depths (ResNetl8,
ResNet34, ResNet50, ResMNetl0l, ResNetl52, VGGI3,
VGG16, VGG19, DenseNetl21, DenseNetl61, DenseNetl 69,
DenseNet201). This led to a total of 72 model designs, which
were each initialized with 3 different strategies (random,
ImageNet, CheXpert), resulting into 216 trained models in
total. All models were trained under a 5-fold cross-validation
scheme, where the combination of samples in training, valida-
tion, and test set was varied for each fold to achieve a reason-
able estimate of the model performance independent from the
data split. Details on training are described in the Appendix.

Statistical Analysis

Model configurations with respect to initialization strategies
and architectures were ranked according to their median
Fl-score and formally tested for differences between configu-
rations with the nonparametric Wilcoxon rank-sum test. The
nonparametric Spearman’s rank-order correlation was esti-
mated to determine the relationship between complexity and
model performance (Fl-score). To account for multiple com-
parisons, we adjusted the P values using the Benjamini—
Hochberg method (Benjamini and Hochberg 1995). P values
below 0.05 were considered statistically significant. The num-
ber of pairwise comparisons C of conditions & was computed
via equation (1).

o k(x-1) (0

Results

Figure 2 presents an overview of segmentation outpuis gener-
ated by different model architectures in comparison to the
ground truth. Figure 3 shows the Fl-scores of different model
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Figure 1. lllustration of the study design. Model setups were based on different architectures, encoder backbones, and initialization strategies (top)
and 5-fold cross-validation with varying train, validation, and test sets for each fold (bottom). Exemplary bivewing radiograph (left) and tooth structure
components overlaid on an input image (right).

configurations grouped by architecture, backbone family, and
initialization strategy.

(D

2)

(3

)

Architecture: Out of 15 pairwise comparisons of
model architectures, 14 turned out to be statistically
significantly different. U-Net++, U-Net, and LinkNet
achieved a median (interquartile range [IQR]) Fl-score
of 0.86 (0.85, 0.87), (0.84, 0.86), and (0.85, 0.88),
respectively, and outperformed MAnet, PSPNet, and
FPN with statistical significance. Backbones from the
VGG and DenseNet group reached a median (IQR) of
0.85 (0.83, 0.86) and (0.81, 0.86), respectively, while
the ResNet group reached a median (IQR) Fl-score of
0.84 (0.81, 0.86). Models with backbones from the
VGG group outperformed models with backbones of
the ResNet group with statistical significance.
Complexity: We found a statistically significant weak
positive monotonic relationship between the network
size and its performance with » = 0.32 (P < 0.001).
Initialization: Different initialization strategies com-
puted over all architectures and backbones achieved
Fl-scores of 0.86 (0.83, 0.87) (ImageNet), 0.86 (0.83,
0.87) (CheXpert), and 0.83 (0.77, 0.84) (random ini-
tialization). Models initialized with ImageNet or
CheXpert outperformed models initialized with ran-
dom weights (P e < 0.001, Py < 0.001). No
significant difference was observed between ImageNet
and CheXpert (P = 0.85).

Class imbalances: In a sensitivity analysis, the model
performance was evaluated on the minority classes of

filling (80%) and crown (20%). In general, models’
performance was inversely related to class frequencies

(Fig. 4).

(4.1) Architecture: Models based on a VGG back-
bone outperformed models with a ResNet back-
bone on the minority classes of filling (P =
0.009) and crown (P = 0.013). Notably, there
was no statistical difference between the 3 back-
bones on the majority classes of pulpal cavity
and dentin.

{4.2) Complexity: We found a statistically significant
weak positive monotonic relationship between
the network size and its performance for class
dentin (r=0.245, P < 0.001), enamel (r= 0.239,
P < 0.001), filling (r = 0.195, P = 0.004), pulpa
(r = 0218, P < 0.001), and class crown (r =
0.154, P < 0.023).

(4.3) Initialization: Models with ImageNet and
CheXpert initialization consistently outper-
formed models with random initialization. There
was no statistically significant difference
between ImageNet and CheXpert initializations.

Discussion

We benchmarked 216 models defined by their architecture,
complexity, and initialization strategy on a tooth structure seg-
mentation task of dental bitewing radiographs. Several find-
ings require a more detailed discussion.
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First, we aimed to evaluate whether there are
superior model architectures for the tooth segmen-
tation task at hand. We discovered a performance
advantage of models with backbones from the VGG
family over models with backbones from the
ResNet family. Our findings are consistent with
those from Ke et al. (2021), who reported that archi-
tecture improvements reported on ImageNet may
not always be translated to performances on medi-
cal imaging tasks. New model architectures and
model improvements seem to be prone to overfit-
ting on ImageNet data sets. Hence, transferability
of newest Al research resulis into other domains,
here the dental domain, may not be guaranteed.

The statistically significant performance advan-
tage of models with VGG encoder backbones plead
for the usage of VGG encoders, when solid baseline
models are required, which perform reasonably
well across different model configurations and set-
tings. This may be relevant for the implementation
of proof of concepts, for example. The top 10 per-
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Figure 1. Examples of segmented bitewing radiographs. (A) Maive input image. (B)
Ground truth and (C-H) output of tooth structure segmentation by different model
architectures. The red, dark green, light green, gray, and blue colors indicate enamel,
pulp cavity and root canals, dentin, filling, and crown classes, respectively. All models
in this example were builc with a ResNet50 backbone and initialized with pretrained

forming models on the tooth structure segmentation
task were built with backbones from the ResNet
and DenseNet family. Consequently, if the focus is on model
performance, it seems warranted to invest time to find an opti-
mal model configuration based on more complex models (e.g.,
from the ResNet family). If, however, the validation of general
concepts or benchmarking is the focus of the study, VGG-
based models seem a reasonable choice as they are more robust
across model configurations.

Second, one of our objectives evolved around the effect of
the model complexity on the model performance. One of the
key findings was a weak positive relationship between model
depth and model performance. Therefore, we accept our
hypothesis. Notably, however, the number of parameters
increased in large steps, with only incremental improvements
of model performance. Hence, the performance improvement
was oftentimes disproportionate to the increasing demands for
computational resources, training time, or the need to reduce
image resolutions. The largest network in the present study
was MAnet combined with a ResNetl52 backbone, which
reached an Fl-score of 0.85 (0.85, 0.85) over all folds
(ImageNet initialization). LinkNet in combination with a
ResNet50 backbone was 5 times smaller but reached an F-score
of 0.88 (0.88, 0.88) in comparison. It should be highlighted
that lower computational costs allow for input imagery of
higher resolution, which may be relevant for many dental
applications.

Our third objective, aimed to give insights whether initial-
izing with ImageNet or CheXpert, is consistently superior even
when there is a difference in performance between both initial-
ization strategies. We found statistically significant perfor-
mance boosts for models initialized with ImageNet or CheX pert
weights in comparison to a random initialization. These find-
ings are consistent with those from Ke et al. (2021), who
reported that 12 of 16 architectures benefited from an

CheXpert weights. This figure is available in color online.
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Figure 3. Fl-scores stratified by initialization strategy, architecture,
and backbone family based on sample sizes n. Median, interquartile
range, and 95% confidence interval are represented by the white dot,
the black box, and the black line, respectively. Different superscript
letters indicate statistically significant difference (e.g., between U-Net
and LinkMet), while the same superscript letters represent no significant
difference (e.g., between LinkNet and U-Net++) (see Appendix for more
details).

initialization with ImageNet weights for a classification task of
chest radiographs. The comparison of ImageNet and CheXpert
initialization showed no significant differences.

Fourth, we additionally found predictions on the minority
class of filling (80%) to be generally more stable over different
model configurations than predictions on class crowns (20%).
Our results showed that there are superior architectures for
segmenting minority classes (e.g., U-Net, U-Net++, LinkNet),
but choosing a reasonable architecture may not be sufficient to
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Figure 4. Fl-scores of different models in the minority classes, filling
(white) and crown (steel blue), respectively. We stratified the analyses
by initialization strategy, architecture, and backbone family. Median,
interquartile range, and 95% confidence interval are represented by the
white dot, the black box, and the black line, respectively. Results are
based on a sample size n. This figure is available in color online.

overcome class imbalance. Hence, it could be recommended to
address this problem with weighted loss functions (Guerrero-
Peni et al. 2018) or oversampling (Buda et al. 2018).

This study comes with several limitations. First, our results
were based on | specific DL task, a tooth structure segmenta-
tion on bitewing radiographs, and are limited to the examined
model architectures. Hence, we do not claim generalizability
of our findings across other segmentation tasks or over all
existing model architectures. Second, images of our data set
originate from varying machines, which may lead to different
behavior of the models. Furthermore, radiographs with bridges,
implants, and root canal fillings were not considered in the
present study as they were very rare. We accept this as our aim
was to benchmark models and not to build clinically useful
ones in this study. In line with this, we were only aiming at a
model comparison instead of proposing a high-precision
model. Hence, we did not take any actions against the existing
class imbalance and did not perform an extensive hyperparam-
eter search. Finally, we based our analysis of the relationship
between model performances and model complexity exclu-
sively on the number of model parameters. It may be the case
that model architectures with more parameters require less
computational power through more efficient structures of lay-
ers. Furthermore, we did not evaluate the effect of minor dif-
terences in performance within the dental environment or how
computational resources are affected by differences in the
number of parameters of the models.

Conclusion

We benchmarked different configurations of DL models based
on their architecture, backbone, and initialization strategy
regarding their performance on a tooth structure segmentation

task of dental bitewing radiographs to provide guidance for
researchers in their DL model selection process. Regarding the
superiority of certain model architectures, we found that VGG
backbones provided solid baseline models across different
model configurations, while peak performances were reached
through combinations of U-Net++, LinkNet, and ResNet or
DenseNet encoders. Superior architectures did not overcome
class imbalance. Models known to perform better than others on
a nondental data set like ImageNet did not demonstrate such
superiority on our dental imaging task. The analysis of the rela-
tionship between model complexity and performance showed
that deeper models did not necessarily perform better than shal-
low alternatives with lower demands in computational resources.
Finally, we found that transfer learning boosts model perfor-
mance, independent of the origin of transferred knowledge.
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Abstract of Master thesis

Periodontal disease measures and risk of incident peripheral artery disease: The
Atherosclerosis Risk in Communities (ARIC) Study

Background: The association of periodontal disease with atherosclerotic cardiovascular
diseases is well known, but not specifically with incident peripheral artery disease (PAD).
Therefore, we studied the associations of periodontal disease with incident PAD in a pop-

ulation-based setting.

Methods: Among 9,793 participants (aged 53-75 years) without prevalent PAD, self-re-
ported history of periodontal disease was ascertained. Of these, 5,872 participants un-
derwent full-mouth examinations from which periodontal status was defined using the US
Centers for Disease Control and Prevention-American Academy of Periodontology (CDC-
AAP) definition. We quantified the association of periodontal disease with incident PAD
(defined by hospital admission diagnosis or procedures) using multivariable Cox regres-

sion models.

Results: During a median follow-up of 20.1 years, 360 participants (3.6%) developed
PAD. In models accounting for potential confounders including diabetes and smoking
pack-years, there was higher hazard of PAD in participants with self-reported tooth loss
because of periodontal disease (hazard ratio:1.54 [95% CI:1.20-1.98]), history of perio-
dontal disease treatment (1.37 [1.05-1.80]), and periodontal disease diagnosis (1.38
[1.09-1.74]), compared to their respective counterparts. The clinical measure of periodon-
tal disease (n = 5,872) was not significantly associated with incident PAD in the fully ad-
justed model (e.g., 1.53 [0.94-2.50] in CDC-AAP-defined severe periodontal disease ver-

sus no disease).

Conclusion: We observed a modest association of self-reported periodontal disease,
especially when resulting in tooth loss, with incident PAD in the general population. None-

theless, a larger study with the clinical measure of periodontal disease is warranted.

Citation: Arsiwala LT, Mok Y, Yang C, Ishigami J, Selvin E, Beck JD, Allison MA, Heiss
G, Demmer RT, Matsushita K. Periodontal disease measures and risk of incident pe-
ripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) Study. J Perio-
dontol. 2022 Jul;93(7):943-953. doi: 10.1002/JPER.21-0342.
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