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Abstract 

Objectives: The aims of this dissertation were to (1) conduct a scoping review of studies 

on machine learning (ML) in dentistry and appraise their robustness, (2) perform a bench-

marking study to systematically compare various ML algorithms for a specific dental task, 

and (3) evaluate the influence of a ML-based caries detection software on diagnostic 

accuracy and decision-making in a randomized controlled trial.  

 

Methods: The scoping review included studies using ML in dentistry published between 

1st January 2015 and 31st May 2021 on MEDLINE, IEEE Xplore, and arXiv. The risk of 

bias and reporting quality were assessed with the QUADAS‐2 and TRIPOD checklists, 

respectively. In the benchmarking study, 216 ML models were built using permutations of 

six ML model architectures (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyra-

mid Scene Parsing Network, and Mask Attention Network), 12 model backbones of vary-

ing complexities (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, 

VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169, and DenseNet201), and 

three initialization strategies (random, ImageNet, and CheXpert weights). 1,625 dental 

bitewing radiographs were used for training and testing. Five-fold cross-validation was 

carried out and model performance assessed using F1-score. In the clinical trial, each 

one of 22 dentists examined 20 randomly selected bitewing images for proximal caries; 

10 images were evaluated with ML and 10 images without ML. Accuracy in lesion detec-

tion and the suggested treatment were evaluated. 

 

Results: The scoping review included 168 studies, describing different ML tasks, models, 

input data, methods to generate reference tests, and performance metrics, impeding 

comparison across studies. The studies showed considerable risk of bias and moderate 

adherence to reporting standards. In the benchmarking study, more complex models only 

minimally outperformed their simpler counterparts, if at all. Models initialized by ImageNet 

or CheXpert weights outperformed those using random weights (p<0.05). The clinical trial 

demonstrated that dentists using ML showed increased accuracy (area under the receiver 

operating characteristic [mean (95% confidence interval): 0.89 (0.87–0.90)]) compared 

with those not using ML [0.85 (0.83–0.86); p<0.05], primarily due to their higher sensitivity 

[0.81 (0.74–0.87) compared to 0.72 (0.64–0.79); p<0.05]. Notably, dentists using ML also 
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showed a higher frequency of invasive treatment decisions than those not using it 

(p<0.05). 

 

Conclusion: To facilitate comparisons across ML studies in dentistry, a minimum (core) 

set of outcomes and metrics should be developed, and researchers should strive to im-

prove robustness and reporting quality of their studies. ML model choice should be per-

formed on an informed basis, and simpler models may often be similarly capable as more 

complex ones. ML can increase dentists’ diagnostic accuracy but also lead to more inva-

sive treatment. 

 

 

Zusammenfassung 

Ziele: Die Ziele dieser Dissertation waren, (1) ein Scoping-Review von Studien über ma-

schinelles Lernen (ML) in der Zahnmedizin, (2) eine Benchmarking-Studie zum systema-

tischen Vergleich verschiedener ML-Algorithmen für eine bestimmte zahnmedizinische 

Aufgabe, und (3) eine randomisierte kontrollierte Studie zur Bewertung einer ML-basier-

ten Karies-Erkennungssoftware bezüglich diagnostischer Genauigkeit und Einfluss auf 

den Entscheidungsprozess durchzuführen. 

 

Methoden: Das Scoping-Review umfasste Studien über ML in der Zahnmedizin, veröf-

fentlicht vom 1. Januar 2015 bis 31. Mai 2021 auf MEDLINE, IEEE Xplore und arXiv. 

Bias-Risiko und Berichtsqualität wurden mit den Checklisten QUADAS-2 beziehungs-

weise TRIPOD bewertet. In der Benchmarking-Studie wurden 216 ML-Modelle durch Per-

mutationen von sechs Architekturen (U-Net, U-Net++, Feature Pyramid Networks, 

LinkNet, Pyramid Scene Parsing Network und Mask Attention Network), 12 Backbones 

(Res-Net18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, 

DenseNet121, DenseNet161, DenseNet169 und DenseNet201) und drei Initialisierungs-

strategien (zufällige-, ImageNet- und CheXpert-Gewichtungen) erstellt. Zum Training und 

Testen wurden 1.625 Bissflügel-Röntgenaufnahmen genutzt. Es wurde eine fünffache 

Kreuzvalidierung durchgeführt und die Modellleistung anhand des F1-Scores bewertet. 
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In der klinischen Studie untersuchten 22 Zahnärzte jeweils 20 zufällig ausgewählte Biss-

flügelbilder auf Approximalkaries; 10 Bilder wurden mit und 10 Bilder ohne ML ausgewer-

tet. Die Genauigkeit in der Erkennung von Läsionen sowie die abgeleitete Therapieemp-

fehlung wurden bewertet. 

 

Ergebnisse: Das Scoping-Review schloss 168 Studien ein, in denen verschiedene ML-

Aufgaben, Modelle, Eingabedaten, Methoden zur Generierung von Referenztests und 

Leistungsmetriken beschrieben wurden. Die Studien zeigten ein erhebliches Bias-Risiko 

und eine mäßige Einhaltung der Berichtsstandards. In der Benchmarking-Studie hatten 

komplexere Modelle gegenüber einfachen Modellen allenfalls geringe Vorteile. Mit Ima-

geNet- oder CheXpert-Gewichtungen initialisierte Modelle übertrafen solche mit Zufalls-

gewichtungen (p<0,05). In der klinischen Studie erreichten Zahnärzte mit ML eine höhere 

Genauigkeit bei der Kariesdetektion (Receiver-Operating-Charakteristik [Mittelwert (95 % 

Konfidenzintervall) 0,89 (0,87–0,90)]) als ohne ML [0,85 (0,83–0,86); p<0,05], hauptsäch-

lich aufgrund höherer Sensitivität [0,81 (0,74–0,87) verglichen mit 0,72 (0,64–0,79); 

p<0,05]. Zahnärzte mit ML wählten auffallend häufiger invasive Behandlungen als ohne 

ML (p<0,05). 

 

Schlussfolgerung: Zur besseren Vergleichbarkeit von ML-Studien in der Zahnmedizin, 

sollten Core Outcomes und Metriken definiert sowie Robustheit und Berichtsqualität ver-

bessert werden. Die Entwicklung von ML-Modellen sollte auf informierter Basis erfolgen, 

bei oft ähnlicher Leistung von einfacheren und komplexeren Modellen. ML kann die diag-

nostische Genauigkeit erhöhen, aber auch zu mehr invasiven Behandlungen führen.
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1   Introduction 

1.1   Artificial intelligence – What it is and how it applies to healthcare 

Artificial intelligence (AI) is the development of computer programs to be able to carry out 

tasks that normally require human intelligence, such as visual perception, decision mak-

ing, and problem solving [1]. Machine learning (ML) is a branch of AI that involves training 

computer algorithms to learn patterns from data and then make predictions. In ML, it is 

not the human who defines the rules that a computer follows to fulfil certain tasks; instead, 

the computer itself learns rules from the data provided to it [2]. Examples of this in our 

daily lives include virtual assistants like Siri and Alexa, photograph filters on social media, 

algorithms that suggest online content tailored to our interests, navigation maps, autocor-

rect functions for messages, speech-to-text converters, language translation apps, chat-

bots, and self-driving cars, to name a few [3]. AI is also being used in industries such as 

finance, transportation, and healthcare, with an ever-increasing impact on our lives. The 

potential for AI to change how we work, live, and communicate is enormous, and is ex-

pected to become even more critical in the future. 

In healthcare, ML is being used to improve patient outcomes and diagnosis [4, 5]. It can 

help physicians detect conditions such as cancer, heart disease, and neurological disor-

ders earlier and more accurately, with medical imaging being a significant area of focus 

[3, 5, 6]. ML-based analysis of medical imaging has been successfully employed to help 

interpret medical scans with more precision, thereby reducing the chances of missed di-

agnoses or incorrect treatments. A range of medical fields are using ML, for example, 

dermatology, ophthalmology, radiology, and dentistry, where it has achieved similar or 

higher accuracy than experienced clinicians [5-8]. According to a recent report, the mar-

ket value for AI and ML in healthcare has been projected to increase by more than seven-

fold between the years 2023 and 2028 up to USD 102.7 billion [9].  

In the dental clinic, many tasks can be performed by ML with greater precision and fewer 

errors than human counterparts; from booking and coordinating appointments to assisting 

with clinical diagnosis and treatment planning [10, 11]. ML algorithms can analyze large 

datasets of dental images (e.g., photographs, radiographs, three-dimensional [3-D] 

scans, and transillumination images), detect patterns, and provide insights into diagnosis, 

treatment, and prevention [12]. Thus, they reduce the need for manual analysis and allow 
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dentists to focus on other areas of patient care [12]. In addition, using an ML software 

may aid dentists in boosting their performance, for example, by increasing the chance of 

detecting caries lesions early, resulting in improved patient outcomes and reduction in 

dental care expenditure [13].  

 

1.2   Use of machine learning in dental research 

1.2.1  Existing literature 

The use of big data and improvements in computer science technology has led to an 

explosion of studies using ML in medicine in the last decade [11]. The number of publi-

cations alone tells a story: it doubled in the last decade, from 162,444 in 2010 to 334,497 

in 2021 [14]. A similar surge in publications has been observed in dental research, re-

flecting the growing interest in this field [2, 15].  

Since ML can be used for various dental tasks, the literature covers a wide range of ap-

plications, for example, prediction of dental complications after the extraction of a third 

molar, tooth classification and outlining on images such as photographs or radiographs, 

cephalometric landmark detection, and dental pathology detection [7]. Different clinical 

applications or research aims necessitate different types of ML models because they in-

volve distinct types of data, decision-making processes, and clinical outcomes [16]. For 

instance, some applications may require high accuracy rates with low tolerance for false 

positive (FP) or false negative (FN) cases, while others may prioritize interpretability to 

enable clinical decision-making. Thus, an ML model can be understood to be a highly 

specific model that is built for a specific task, which in turn needs to be built with specific 

algorithms pertaining to the task. Moreover, in order to evaluate how well the ML model 

has accomplished the given task, a plethora of performance metrics can be used, which 

are again specific to the nature of the task.  

As a consequence, studies in the field of dentistry using ML can differ widely [7]. There is 

significant heterogeneity in the study designs, clinical applications, ML models, data, and 

performance metrics, which hinders comparing studies and evaluating their consistency 

and robustness [11]. Additionally, variation has been reported in the quality of ML studies 

in medicine with respect to the risk of bias and reporting of the methods and results [17]. 
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It is likely that similar variance in quality and replicability also exists for dental ML studies 

[18] but their comprehensive objective evaluation has not been carried out so far. Reviews 

are regarded as a vital component of evidence-based medicine. Conducting such a com-

prehensive overview of the existing literature and appraising the robustness of the studies 

could facilitate highlighting their strengths and weaknesses and identify future research 

needs.  

1.2.2  Current methodological trends of machine learning in dentistry 

The basic features of an ML model are: 

Architecture: The arrangement pattern of the basic building blocks of a ML model defines 

its architecture. Examples widely used in the field are U-neural network (U-Net), U-Net++, 

and LinkNet. 

Backbone: For certain complex tasks, specialized building blocks are added to the model 

structure which form its foundation and hence are called a backbone. Examples are Re-

sidual neural network (ResNet) and Visual Geometry Group (VGG).  

Complexity level: ML models can have different levels of complexity or depth, which cor-

respond to the size of the model, i.e., the number of building blocks used.  

Initialization: This is akin to giving a ML model a head-start for a given task, by providing 

it with some basic information relevant to the task, for example, about photographs or 

radiographs. It can be thought of as learning to play the cello. If one already knows how 

to play the violin, learning the cello would be easier because some of the skills and 

knowledge one already has can be transferred. This technique in the context of ML is 

called ‘transfer learning’; Figure 1. 
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Figure 1: Representation of the concept of transfer learning in the context of machine learning 

and how it differs from traditional machine learning. In transfer learning, the model to be trained 

for a new task is supplied with information from another model which was trained for a different 

but related task. Source: modified from https://towardsdatascience.com/a-comprehensive-hands-

on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a Ac-

cessed on 25th January 2023. 

 

A major weakness in ML research in dentistry is the considerable heterogeneity among 

the existing studies, much of which stems from the different types of ML models currently 

in use [2, 11, 19-22]. Building an ML model to accomplish a specific task involves choos-

ing an architecture, backbone, complexity level or size, and initialization strategy from the 

numerous options available. Without a guiding framework available, researchers tend to 

arbitrarily select the popular options, often without empirical evidence of their suitability 

for the task at hand [23]. The utter number of possible configurations of ML components 

impedes systematic and comprehensive comparisons of the existing studies’ findings and 

identifying the best approach for a particular task in dentistry [11, 12].  

Thus, it is important to systematically compare the different model configurations on one 

data set. Such an evaluation is called ‘benchmarking’ which has a couple of advantages. 

First, it provides guidance for researchers in the model building process, which can im-

prove efficiency by enabling the development of high-performing models, in shorter times, 

and at lower computational costs. Second, it can help establish standards for ML research 

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
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in dentistry, making it easier to compare and replicate results across different studies. 

However, in the dental field such benchmarking initiatives are scarce [24].  

1.2.3  Clinical usefulness of machine learning for dentists 

Another main weakness of the dental ML field is the lack of clinical prospective compari-

sons [7]. The implications of this are that despite the strong advances in ML methodology 

over the recent years, the effectiveness and applicability of ML models in a real-world 

clinical setting remain unclear [2, 7]. Randomized controlled clinical trials are essential for 

proving generalizability and accuracy of ML systems but also for assessing their impact 

on diagnostic and decision-making processes as well as the resulting treatment deci-

sions, health gains, and costs [25].  

 

1.3   Research aims 

1.3.1  Scoping review of research literature on machine learning in dentistry 

As discussed, a systematic assessment of the body of evidence on ML in dentistry is 

required to quantify the extent of heterogeneity among the available studies as well as 

appraise their consistency and robustness. Such an evaluation would facilitate highlight-

ing the current strengths and weaknesses of the existing studies and identifying future 

research needs. The primary aim of the scoping review was to evaluate the overall body 

of existing research literature on ML in dentistry with regards to the clinical and ML tasks, 

models, kinds of datasets, and metrics used to evaluate the performance of the models. 

The secondary aim was to examine the robustness of the studies, focusing on the risk of 

bias and reporting quality.  

1.3.2  Benchmark machine learning models for a specific dental task 

As described earlier, there is a plethora of options available from which one can construct 

an ML model for a certain task but there is a lack of a proper framework which compares 

the various options and guides a researcher with these decisions. The aim of this study 

was to systematically compare, i.e., benchmark the possible configurations of various 

model architectures, backbones, complexity levels, and initialization strategies on one 

data set. The different models were evaluated on the dental task of outlining various parts 

of a tooth as seen on a radiograph, such as enamel, dentin, pulp, fillings, and prosthetic 
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crowns. This dental task was chosen because ML models have demonstrated superior 

performance on it. Furthermore, the tooth structures in question can be easily identified 

even by dentists with less experience and thus the establishment of the reference test 

would be considered valid.  

The hypothesis was that the performances of models would improve with their complexity 

level and the implementation of transfer learning. The results from this study could inform 

dental researchers about suitable model structures for their experiments, contribute to 

evidence-based ML model building in the dental field, and help establish standards for 

research.  

1.3.3  Evaluate a machine learning software in a randomized clinical trial 

As discussed, there is a lack of studies that demonstrate the true usefulness of ML sys-

tems in a clinical setting. Hence it is important to generate evidence on the diagnostic 

accuracy and applicability of ML systems in the hands of dentists. The aim of the ran-

domized controlled clinical trial was to quantify the differences in performance of dentists 

in the absence versus presence of assistance by an ML software in the task of detecting 

proximal caries on bitewing radiographs. For this dissertation, the analysis has been ex-

tended beyond the publication [26] to evaluate the performance of the ML software by 

itself for the given task. Furthermore, the influence of the ML software on the treatment 

decisions made by the dentists was examined. 

The hypothesis was that dentists using ML would be more accurate than those not using 

ML. The results from this clinical trial could demonstrate the prospective usefulness and 

impact of ML software on dental diagnostics and treatments in a real-world setting. 
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2   Methods 

2.1   Scoping review 

2.1.1  PICOS question 

The research question was framed according to the Participants Intervention Comparison 

Outcome and Study (PICOS) strategy and was as follows: “Which ML practices are being 

employed by studies in dentistry and what are their methodological quality and findings?” 

[18] 

• Population: All kinds of population-level data with a dental or oral component [18]. 

• Intervention/Comparison: ML techniques applied with a dental or oral focus for the 

diagnosis, management, or prognosis of dental conditions or improving data quality 

[18].  

• Outcome: Performance evaluation of the ML models in terms of certain metrics, for 

example, accuracy, intersection-over-union, sensitivity, precision, area under the re-

ceiver operating characteristic (AUROC), F indices, specificity, negative predictive 

value (NPV), rank‐N recognition rate, error estimates, correlation coefficients, etc. [18] 

• Study design type: All kinds of studies except reviews, editorials, and technical stand-

ards, with no language restrictions [18]. 

2.1.2 Search strategy 

The search strategy was designed with the aim to identify all studies meeting the eligibility 

criteria in accordance with the objectives of the review. The varying publication norms 

among different academic disciplines were taken into consideration. The review [18] did 

not restrict the inclusion of studies with respect to the target study population, outcome of 

interest, or the context in which ML was used. It aimed to include all original studies re-

lated to dentistry and ML, as long as they did not contain major reporting errors, such as 

failing to define the type of ML used, inadequately describing the dataset employed, or 

omitting explicit reporting of the study findings. 

Three electronic databases (MEDLINE via PubMed, Institute of Electrical and Electronics 

Engineers Xplore, and arXiv) were used. The archiving database arXiv was used in an 

effort to also include grey literature. This included studies that did not go through a formal, 

but a non‐formal peer-review process and then were updated after peer‐review [18]. 
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The search terms used were ‘deep learning’, ‘artificial intelligence’, ‘machine learning’, 

‘convolutional neural network’, ‘dental’ and ‘teeth’. The search strategies for all the three 

databases are defined below [18]: 

• Database MEDLINE/PubMed  

(“deep learning” OR “artificial intelligence” OR “machine learning” OR “convolutional neu-

ral network”) AND (“dental” OR “teeth) 

• Database Institute of Electrical and Electronics Engineers Xplore  

(((“Document Title”:“deep learning” OR “artificial intelligence” OR “machine learning” OR 

“convolutional neural network”) OR (“Keywords”:“deep learning” OR “artificial intelligence” 

OR “machine learning” OR “convolutional neural network”)) AND ((“Document Title”: 

“dental” OR “teeth) OR (“Keywords”:“dental” OR “teeth))) 

• Database arXiv  

“deep learning” OR “artificial intelligence” OR “machine learning” OR “convolutional neu-

ral network” AND “dental” OR “teeth  

 

The following inclusion criteria [18] were applied: 

(1) Studies with a dental/oral focus, including technical papers. 

(2) Studies employing ML. 

(3) Studies published between 1st January 2015 and 31st May 2021, as the aim was to 

gather recent studies and specifically include the most rapidly evolving ML era at pre-

sent. 

Owing to the lack of randomized controlled trials on ML in dentistry the scoping review 

was expanded to include non-randomized studies in order to gain a comprehensive over-

view of the field. 

The inclusion of the studies was decided by two reviewers in consensus. All studies found 

to be potentially eligible were assessed in full text against the inclusion criteria. All the 

included and excluded studies were listed along with justification for exclusion for the 

excluded studies. 
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2.1.3  Data collection 

Data extraction was performed by three reviewers and then finally reviewed by one of 

them. In case of disagreements, a consensus process was used. 

The extracted data was recorded using a formerly validated Excel document. Study char-

acteristics included country, publication year, study aim, clinical field, type of input data 

(covariates, photographs, or radiographs; two-dimensional [2-D] or 3-D imagery), data 

source and size, type of ML model, reference test (i.e., how the ground truth was defined), 

comparators (e.g., current standard of care, clinicians, etc.), and model performance met-

rics along with their values. No assumptions were made regarding missing or unclear 

data [18]. 

2.1.4  Assessment of risk of bias in the individual studies 

The risk of bias was examined using the QUADAS‐2 tool in four domains [27]. First, the 

risk of bias in data selection was examined with regard to inappropriate exclusions, case-

control study design, and patient enrolment strategy. Second, the risk of bias in the index 

test was examined with regard to the independence of the measurement from the refer-

ence test and pre-specification of thresholds. Third, the risk of bias in the reference test 

was examined for its validity of assessing the ground truth and the independence of its 

measurement from the index test. Fourth, the risk of bias in flow and timing was examined 

regarding whether there was an appropriate interval between the index and reference 

tests, whether the reference test was used for all participants, whether the same refer-

ence test was used for all participants, and whether all participants were included in the 

analysis. The impact of the risk of bias in the individual studies on the overall results of 

the review was assessed and discussed.  

Using the same tool, applicability concerns, i.e., how specific methods used by the studies 

influenced the generalizability of their results, were evaluated in three domains. First, ap-

plicability concerns in data selection were examined regarding a potential mismatch be-

tween the included participants and the review question. Second, applicability concerns 

in the index test were examined regarding a potential mismatch between the test, its con-

duct, or its interpretation and the review question. Third, applicability concerns in the ref-

erence test were examined regarding a potential mismatch between the target condition 

as defined by the reference test and the review question [18].  
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2.1.5  Assessment of reporting quality of the individual studies 

Observance of reporting guidelines was assessed using the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) tool, a 22‐

item checklist that provides guidelines for reporting of prediction studies [18, 28]. TRIPOD 

has been used for similar assessments of studies in other medical fields [17, 29]. 

2.1.6  Data synthesis 

Initially, a meta‐analysis was planned for all studies included in the review; however only 

10% of studies reported complete confusion matrices that could be used for such an 

analysis. Furthermore, these few studies differed from each other in terms of clinical re-

search question/task, type of input data, model architecture, inferences from the results, 

etc, [18] thus making a meta-analysis not feasible. Hence, a narrative synthesis was per-

formed instead, displaying which ML tasks were used in different clinical fields of dentis-

try, namely restorative dentistry and endodontics, oral medicine, oral radiology, orthodon-

tics, oral surgery and implantology, periodontology, prosthodontics, and general dentistry. 

For this dissertation, the analysis was expanded beyond the publication [18] to construct 

confusion matrices for studies which presented their metrics as described ahead.  

When sensitivity, specificity, precision, and sample size were available: 

1 1 1 1 TP  n 

1-Sensitivity 0 0 -Sensitivity TN = 0 

0 1-Specificity -Specificity 0 FP  0 

1-Precision 0 -Precision 0 FN  0 

 

When sensitivity, specificity, accuracy, and sample size were available: 

1 1 1 1 TP  n 

1-Sensitivity 0 0 -Sensitivity TN = 0 

0 1-Specificity -Specificity 0 FP  0 

1/Accuracy 1/Accuracy 0 0 FN  n 

where TP = number of true positive, TN = number of true negative, FP = number of false 

positive, FN = number of false negative, and n = sample size. 
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Combining the studies who properly reported their confusion matrices along with those 

whose confusion matrices were reconstructed, resulted in a total of 29 studies. Among 

these studies, 19 studies performed classification tasks, four studies each performed ob-

ject detection and semantic segmentation tasks, and two studies performed instance seg-

mentation tasks. Since the number of studies in the latter three groups were too few for 

a meaningful analysis, only the classification studies were used to estimate the mean 

sensitivity and exact binomial 95% confidence interval for each study and displayed in a 

forest plot. All data management and statistical analyses were performed with R (version 

4.0.3, www.r-project.org) [30]. 

2.1.7  Reporting protocol and ethics statement 

The review methods were decided upon before the commencement of the scoping review 

to reduce the risk of bias. The study protocol was registered with PROSPERO (registra-

tion number CRD42021288159). Reporting of the review followed the Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. In accordance 

with the guidelines of the Charité Promotionsbüro, this scoping review was appraised 

using the checklist A Measurement Tool to Assess Systematic Reviews (AMSTAR) 2 and 

it achieved a very high rating. From a total of 16 items in the checklist, 13 items were 

applicable to this scoping review, out of which 12 items (92%) were rated with a ‘yes’. 

The item rated with ‘no’ referred to the reporting of the sources of funding for the individual 

studies included in the review. 

Ethics approval was not sought because the review was based exclusively on published 

literature [18]. 

 

2.2    Benchmarking study 

The aim was to systematically compare the various configurations of different model ar-

chitectures, backbones, complexity levels, and initialization strategies for the task of out-

lining tooth structures on bitewing radiographs. 

http://www.r-project.org/
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2.2.1  Model components 

Six architectures were selected: U-Net, U-Net++, Feature Pyramid Networks, LinkNet, 

Pyramid Scene Parsing Network, and Mask Attention Network. These networks were se-

lected as they allow to employ the same backbones (i.e., ResNet, VGG, and DenseNet) 

with varying levels of complexity. 12 different levels of model complexity were used: Res-

Net18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, Dense-

Net121, DenseNet161, DenseNet169, and DenseNet201. The numeric value at the end 

of the model's name indicates the complexity level. Three different initialization strategies 

were evaluated, i.e., random weights initialization, initialization based on ImageNet data, 

and initialization based on CheXpert data.  

Thus, a total of 216 model configurations were evaluated. Figure 2 represents the study 

design. All models were trained under a five-fold cross-validation scheme, also depicted 

in Figure 2, which is a technique to evaluate the performance of a model on a limited 

dataset. The basic idea is to divide the dataset into two parts: a training set on which the 

model is trained and a testing set on which the model’s performance is evaluated [31]. 

For example, in a five‐fold cross‐validation, the dataset is randomly divided into five equal 

parts. The model is trained on four parts and tested on the remaining part. This process 

is repeated five times, so that each part is used as the testing set exactly once. The results 

from each iteration/fold are then averaged to obtain a more robust estimate of the model's 

performance and prevent undue data-related influence on the models.  
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Figure 2: Illustration of the benchmarking study design. Model setups were based on different 

architectures, backbones, complexity levels, and initialization strategies (top) and five-fold cross-

validation with varying train, test, and validation sets for each iteration/fold (bottom). Exemplary 

input bitewing radiograph (left) and the output image containing markings of the different tooth 

structures (right). The numbers below the names of the different backbone groups represent the 

various complexity levels. Abbreviation: VGG, visual geometry group. Source: modified from Fig-

ure 1, publication L. Schneider, L. Arsiwala-Scheppach, J. Krois, H. Meyer-Lueckel, K.K. 

Bressem, S.M. Niehues, F. Schwendicke, Benchmarking Deep Learning Models for Tooth Struc-

ture Segmentation, J Dent Res (101, 11) pp. 1343-1349. Copyright © 2022 International Associ-

ation for Dental Research and American Association for Dental, Oral, and Craniofacial Research. 

doi: 10.1177/00220345221100169. Image rights for reuse in dissertation held by authors of the 

publication, including Lubaina T. Arsiwala-Scheppach, under Open Access category and license 

CC-BY NC 4.0 as per publisher policy. Additionally, kind permission for reuse was obtained from 

the publisher Sage Publications. 

 

2.2.2  Data used 

1,625 dental bitewing radiographs were used, each displaying up to nine teeth. One den-

tist annotated the parts of a tooth, such as enamel, dentin, pulp, fillings, and prosthetic 
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crowns, on the radiographs using an in-house custom-built annotation tool. These anno-

tations served as the reference test [32]. A second dentist reviewed the accuracy of these 

annotations. Both dentists were calibrated for the annotation process. Images containing 

implants, bridges, or root canal fillings accounted for less than one percent of the total 

images and hence were excluded. It should be noted that enamel, dentin, and pulp were 

present in all images whereas fillings and crowns were less frequent (80% and 20% im-

ages, respectively). To suit the requirements of the ML models, the images and annota-

tions were resized to a fixed input size. 

2.2.3  Statistical analysis 

The performance of the models was primarily quantified by the F1-score which was cal-

culated as described by Forman and Scholz [33]. The different model configurations re-

garding architectures and initialization strategies were ranked by their performance i.e., 

F1-score and compared using the Wilcoxon rank-sum test. Additionally, the relationship 

between model complexity and performance was examined by the Spearman’s correla-

tion metric. As a sensitivity analysis, model performance was evaluated on the less prev-

alent classes of fillings (80%) and crowns (20%). Owing to the skewed distribution of the 

data, non-parametric statistical tests were used. The p values were adjusted by the Ben-

jamini–Hochberg method to account for multiple testing. The level of significance was set 

to p<0.05. Statistical analyses were performed with R (version 4.0.3, www.r-project.org) 

[30].    

2.2.4  Reporting protocol and ethics statement 

Two reporting protocols were followed for this study: the Standards for Reporting Diag-

nostic Accuracy (STARD) guidelines [34] and the Checklist for Artificial Intelligence in 

Dental Research [35]. The study was approved by the Ethics Committee of the Charité 

(EA4/102/14 and EA4/080/18) [36]. 

 

2.3   Clinical trial  

2.3.1  Study design 

A randomized controlled non-blinded clustered cross-over superiority trial was conducted 

with an allocation ratio of 1:1.  

http://www.r-project.org/
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Randomization: Seven blocks of 20 radiographs each were randomly generated using 

randomize.org from a collection of 140 radiographs. Each dentist then randomly received 

one of these seven blocks. The sequence of radiographs in each block was also randomly 

determined and was identical for every dentist. Of the 20 radiographs to be viewed, half 

of them were randomly assigned to be viewed by the dentist with assistance from the ML 

software and the other half without. Owing to the nature of the intervention it was not 

possible to blind the dentists regarding which image belonged to which trial group. Figure 

3 represents the study design of the trial. 

 

 

Figure 3: Flowchart of the randomized clinical trial. From 140 bitewing radiographic images, seven 

blocks of 20 images were randomly generated. Each of the 22 dentists randomly assessed one 

block, with images being randomly allocated to the intervention (with machine learning software) 

or control group in a 1:1 allocation ratio. Different colors on the bitewing images indicate different 

findings, e.g., blue indicates fillings, crowns, or root-canal fillings, while red indicates caries le-

sions. Abbreviation: AI, artificial intelligence. Source: Figure 1, publication S. Mertens, J. Krois, 

A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detection: Randomized 

trial, J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Image rights for reuse in dis-

sertation held by authors of the publication, including Lubaina T. Arsiwala, as per publisher Else-

vier policy. 

 

140 bitewings

Randomized 1 set of 

bitewings to 1 dentists

Randomly 

allocated bitewings to AI 

(test) or not (control)

(ratio 1:1)

Evaluation

7 sets of 20 random

bitewings

n=22 dentists

Outcomes:

• Accuracy

• Treatment decision

• Confidence

• Gaze patterns
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2.3.2  Sample size 

The sample size for the trial was based on a prior study [25] which used the same ML 

software. The study design was a clustered trial where approximately 20 tooth surfaces 

were visible per radiograph and to account for this, the ‘design effect’ was estimated. The 

formula used to estimate the design effect was 1 + (cluster size - 1) * intraclass correlation 

coefficient, where the intraclass correlation coefficient was assumed to be 0.2, based on 

a prior study [37]. Thus, a cluster size of 20 surfaces resulted in a design effect of 4.8. A 

trial with 95% power and an ‘alpha’ value of 0.05 would require 1280 tooth surfaces to be 

included. Thus, for the present trial, the number of surfaces required was 1280 * 4.8 = 

6144. Since each dentist was assigned to examine 20 radiographs (i.e., 400 surfaces), a 

minimum of 16 dentists had to be recruited. Note that in the protocol, recruitment of 20 

dentists was planned and finally 22 were recruited. There were no predetermined stop-

ping rules or interim analyses. 

2.3.3  Data used 

Study participants were recruited and the trial was conducted from October 2020 to Jan-

uary 2021. The participating dentists worked at Charité – Universitätsmedizin Berlin den-

tal hospital or in private clinics in Berlin and thus the trial was conducted at these loca-

tions. Care was taken to ensure standardization of study conditions at all locations as 

follows: For the participants from private clinics, the study investigator brought the monitor 

screen used in the trial at the Charité dental hospital to their clinic and the experiment 

was carried out in a dimly lit room in the clinic, similarly as conducted at the Charité dental 

hospital. Participants were excluded if they were no longer clinically active, had less than 

two years of clinical experience, or had no regular experience of caries detection. Written 

informed consent was obtained from all participating dentists. Participants’ characteristics 

such as age and gender were used for descriptive analyses. 

The 140 bitewing radiographs of permanent teeth used in the trial were from patients 

treated between the years 2016 and 2018 at Charité – Universitätsmedizin Berlin dental 

hospital under an ethics approved protocol (EA4/080/18). Bitewing radiographs of the 

permanent dentition were included if, at minimum, the crowns of one dental arch were 

discernible. The radiographs were generated using machines produced by Dentsply Si-

rona or Dürr Dental companies.  
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The reference test was established by four dentists independently outlining proximal car-

ies lesions on all radiographic images using an in-house customised annotation software 

in dimly lit rooms using diagnostic screens under standardized conditions. All annotations 

were reviewed and modified, if necessary, by a fifth dentist who could consult the other 

four dentists. The union of areas annotated by all dentists for each lesion constituted the 

reference standard; this is a popular method for generating a reference standard when a 

“hard” reference like histopathological examination is unavailable.  

The caries lesions were classified into enamel lesion, early dentin lesion within the outer 

1/3 of the dentin, or advanced dentin lesion expanding deeper than that, by two inde-

pendent dentists in consensus.  

2.3.4  Trial intervention 

The intervention was an ML-based software for viewing radiographs in order to classify 

teeth and outline fillings and caries lesions on bitewing radiographs (dentalXrai Pro 1.0.4, 

dentalXrai Ltd., Berlin, Germany). The software could display the original radiograph and 

an augmented version with pathology detections by the ML software shown as overlays 

(see Figure 3 for examples of augmented radiographs). With respect to caries detection, 

the ML software indicated whether a caries lesion was present or absent for every sur-

face. At least one week prior to the study, all dentists received a handbook of the ML 

software to be used during the trial and were advised to gain familiarity with the software 

by using it to analyse a minimum of four bitewing radiographs. The control group consti-

tuted the conventional radiographic detection of proximal caries without any aid from the 

ML software.  

The intervention was applied as described: First, each dentist was assigned to a randomly 

chosen block of 20 bitewing radiographs, half of which were randomly assigned to be 

viewed along with the ML software and the other half without. In the ML group, dentists 

had the option to enable or disable the ML software as per their choice. Dentists verbally 

reported their diagnoses of proximal caries and their accompanying treatment decisions 

to the study assistant.  

2.3.5  Outcomes 

The primary outcomes were AUROC, accuracy, F1-score, sensitivity, specificity, positive 

predictive value (PPV), and NPV. These were calculated for both groups of the trial, i.e., 
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dentists without ML and dentists with ML. For this dissertation, the analysis was expanded 

beyond the publication [26] to include the aforementioned primary outcomes for the ML 

software alone (i.e., without a dentist). 

The secondary outcome focused on the treatment decision assigned by the dentists for 

each proximal surface, i.e., the number of no treatment, non-invasive (e.g., fluoride var-

nish), micro-invasive (e.g., caries infiltration) or invasive (e.g., filling) treatments. Since 

the secondary outcomes were derived from data provided by dentists, they could not be 

calculated for the ML software. 

2.3.6  Statistical analysis 

First, the design effect was estimated to account for the clustered trial design as described 

earlier. In addition to this, clustering by dentists was accounted for as every dentist was 

present in both groups of the trial. Thus, a combined design effect was estimated and 

applied to all analyses. The AUROC of all dentists stratified by trial group were plotted to 

facilitate comparison. For this dissertation, the comparison was extended beyond the 

publication [26] to include the performance of the ML software too. Also, a paired scatter-

plot was created to highlight the differences in sensitivity and specificity for each dentist 

across the two groups of the trial. The number of surfaces assigned to each type of treat-

ment was calculated. Furthermore, additional analysis was incorporated into this disser-

tation: the inter-rater agreement between the dentists for detecting caries lesions, using 

the Fleiss kappa metric. The two-sided t-test, chi-squared test, and Fisher’s exact test 

were used to compare the results between the trial groups. The level of significance was 

set at p<0.05. No deviation from the trial protocol occurred. All analyses were conducted 

for the total dataset (i.e., overall) and stratified by caries depth. All data management and 

statistical analyses were performed with R (version 4.0.3, www.r-project.org) [30].    

2.3.7  Reporting protocol and ethics statement 

The trial was registered at the Deutsches Register Klinischer Studien (DRKS00022357) 

and was ethically approved by the Charité – Universitätsmedizin Berlin (EA/144/20). Re-

porting of the trial followed the Consolidated Standards of Reporting Trials using Artificial 

Intelligence (CONSORT-AI) checklist and the Checklist for Artificial Intelligence in Dental 

Research [18, 35, 38].

http://www.r-project.org/
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3.   Results 

3.1   Scoping review 

3.1.1  Individual study characteristics 

183 studies were identified, out of which 168 (92%) studies were included; Figure 4 [18]. 

The included studies [13, 25, 31, 32, 39-202] and their characteristics are listed in Table 

1 and the excluded studies along with justifications for exclusion are provided in Table 2. 

The included studies were published from 1st January 2015 to 31st May 2021 (median 

year: 2019), with their annual numbers increasing steadily as depicted in Figure 5 (for 

year 2021, data only until May was available) [18]. The studies were from 40 countries 

(Figure 6) and employed various types of input data, e.g., 2-D data (radiographs: 42% 

studies, photographs, or other types: 16% studies), 3-D data (radiographs: 18% studies, 

non‐radiographs: 4% studies), survey data: 10% studies, and combinations of different 

kinds of data (9% studies) [18]. 97% studies used institutional data e.g., universities, hos-

pitals, and private practices, whereas 3% studies used the National Health and Nutrition 

Examination Survey, M3BE database, 2013 Nationwide Readmissions Database of the 

USA, and the National Institute of Dental and Craniofacial Research dataset [18].   
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Figure 4: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

study flow diagram of the scoping review on machine learning in dentistry. 168 studies were 

screened and included in the scoping review. Abbreviation: ML, machine learning. Source: 

modified from Figure 1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. 

Krois, F. Schwendicke, Machine Learning in Dentistry: A Scoping Review, J Clin Med 12(3) 

(2023), doi: 10.3390/jcm12030937. Image rights held by authors of the publication, including 

Lubaina T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy. 
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Table 1: Studies included in the scoping review on machine learning in dentistry along with their characteristics (n=168).  

No. 

[Ci-

ta-

tion] 

Year Study aim Data type and size ML model Reference test Model metrics 

1 

[39] 

2015 Determine the most appropriate 

dental filling and monitor it. 

4,336 charts, notes, and 

radiographs of fillings 

Bayesian network and 

Multilayer Perceptrons 

An expert saw the subjects an-

nually for follow-up 

Longevity error in years 

2 

[40] 

2015 Automatic landmark detection on 

3-D CBCT images 

30 3-D CBCT images Knowledge-based algo-

rithm  

Manual landmark plotting by 3 

orthodontists 

Overall mean error, overall land-

mark detection accuracy  

3 

[41] 

2015 Evaluate accuracy of 3-D cepha-

lometric measurements by a 

knowledge-based algorithm 

30 3-D CBCT images 

transformed to DICOM 

format  

Knowledge-based algo-

rithm 

21 cephalometric landmarks 

identified manually by three or-

thodontists 

Mean error in measurements, 

mean error of distance ratios, in-

ter-observer correlation 

4 

[42] 

2015 Automatic identification of the 

oral transfer phase of deglutition 

2,058 swallow and 3,248 

non-swallow pressure 

measures & time periods 

Deep neural network 

[Time-delay ANN] 

A trained speech and lan-

guage therapist marked the 

onset and offset of oral activity 

Accuracy, receiver operating 

characteristic, mean squared er-

ror 

5 

[43] 

2015 Differentiate osteoporotic pa-

tients from normal patients 

2-D panoramic radiograph 

and bone mineral density 

of 141 females 

Not deep-learning [naïve 

Bayes classifier, k-nearest 

neighbor, SVM] 

The subjects were classified 

according to the World Health 

Organization  

Receiver operating characteris-

tic, sensitivity, specificity, accu-

racy    

6 

[44] 

2015 Biofilm quantification independ-

ent of grader perceptual bias 

2-D quantitative light-in-

duced fluorescence im-

ages (maybe n=470) 

Not deep learning [Gauss-

ian Markov random field 

model] 

To define clean areas, images 

were deemed clean by two ex-

pert graders 

Confusion matrix, consistency 

7 

[45] 

2016 Diagnosis of extractions 2-D lateral cephalograms 

of 156 patients 

Non-deep learning neural 

network  

Treatment plans were made by 

1 orthodontic specialist 

Success rate 

8 

[46] 

2016 Diagnose females with osteopo-

rosis 

2-D dental panoramic ra-

diographs of 141 females 

Hybrid genetic swarm 

fuzzy classifier 

Dual-energy X-ray absorptiom-

etry and WHO guidelines on 

classification 

Accuracy, sensitivity, specificity, 

PPV, NPV, likelihood ratio 

9 

[47] 

2016 Predict if patient has teeth peri-

apical lesion or not and its type 

using ML techniques 

201 2-D dental x-ray im-

ages 

Feed Forward Neural Net-

works, K-Nearest Neigh-

bor Classifier  

Not mentioned explicitly Accuracy of classifier on two-

class dataset, on four-class da-

taset 
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10 

[48] 

2016 Tooth segmentation and classifi-

cation 

3-D MicroCT-images of 3 

mandibular molars (each 

tooth had 256 slices and 

280 regions of interest) 

Pulse coupled CNN   Experienced dentists manually 

labeled tooth structures to 

identify different regions in a 

segmented mask.  

Relative error, correlation coeffi-

cient, mean absolute difference 

of volumes, similarity index, sen-

sitivity, specificity  

11 

[49] 

2017 Stage lower third molar develop-

ment for age estimation 

400 2-D panoramic radio-

graphs 

CNN [AlexNet] Two observers decided about 

the stages. If necessary, a 

third observer 

Rank-N recognition rate, intra-

class correlation, accuracy, line-

arly weighted Cohen´s kappa, 

confusion matrix 

12 

[50] 

2017 Osteoporosis detection using 

various methods on radiography 

454 2-D dental panoramic 

radiographs 

Decision tree and SVM  Radiographs classified by 

bone mineral density (T-score) 

Accuracy, sensitivity, specificity, 

mean of textural features  

13 

[51] 

2017 Classify quantitative light-in-

duced fluorescence images to 

determine dental plaque level 

427 quantitative light-in-

duced fluorescence im-

ages 

CNN [ResNet] 3 ground truths derived from 3 

different plaque-scoring sys-

tems 

F1-score 

14 

[52] 

2017 Diagnose vertical root fractures 

in intact and endodontically 

treated teeth 

240 2-D periapical dental 

radiographs and 3-D 

CBCT images 

Non-deep learning neural 

network as a perceptron 

[Daubechies 3 wavelet 

transform, Gabor filters] 

Teeth were evaluated under a 

microscope for presence/ab-

sence of a fracture 

Accuracy, sensitivity and specifi-

city 

15 

[53] 

2017 Prediction of oral cancer risk in 

patients with oral leukoplakia 

Exfoliative cytology, histo-

pathology and clinical data 

from 364 patients 

SVM, SVMfull, k-nearest 

neighbors, peaks-closed 

and peaks-random forest  

Clinical data, exfoliative cytol-

ogy, histopathology, and fol-

low-up data were collected. 

Sensitivity, specificity, area under 

the curve 

16 

[54] 

2017 Investigate the application of 

deep CNN for classifying types of 

teeth on CBCTs 

52 3-D CBCT images 

(35,259 regions were clas-

sified in 7 tooth types)   

CNN [AlexNet (Caffe 

framework)] 

The smallest bounding box for 

each tooth was manually 

placed on the CT volume 

Classification accuracy, effect of 

augmentation on accuracy 

17 

[55] 

2017 Teeth detection in dental pano-

ramic radiographs with CNN 

2-D dental panoramic ra-

diographs from 100 peo-

ple 

CNN [modified version of 

AlexNet where multi-class 

classification is performed] 

Each tooth in the images was 

delineated by a dentist 

Accuracy for tooth class detec-

tion  

18 

[56] 

2017 Classification of dental diseases 

using CNN 

251 Radio Visiography x-

ray images 

CNN [VGG-16 (for trans-

fer learning)] 

Images were labeled by den-

tists and radiologists 

Accuracy 
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19 

[57] 

2017 Development of an ANN to clas-

sify dental cusps with sufficient 

accuracy 

3-D surface scans of 129 

dental casts (full arches) 

from 69 participants 

Non-deep learning neural 

network (Cusp Distance & 

Range Image Method) 

Manual classification of cusps 

by an investigator using the 

modified FDI scheme 

Correct classification 

20 

[58] 

2017 Segmentation of gingival dis-

eases from oral images 

405 2-D intra-oral color-

augmented fluorescent 

images  

CNN [Auto-encoders] A dentist drew bounding boxes 

around inflamed gingiva and 

gave a modified gingival index 

AUROC, precision, recall  

21 

[59] 

2017 Detection of tooth caries over 3000 2-D bitewing ra-

diographs 

Fully CNN [not mentioned] Annotations by dentists after 

clinical verification of caries 

Recall, precision, F1 score  

22 

[60] 

2017 22 methods were compared to 

analyze and improve dental age 

estimation in children 

976 2-D panoramic X-rays Not deep learning [22 

models were used] 

Teeth were divided into 14 

sub-stages and assigned a nu-

merical value 

Mean absolute error, Root mean 

squared error  

23 

[61] 

2017 Classify periapical cyst and kera-

tocystic odontogenic tumor 

50 3-D CBCT images from 

50 patients 

Deep neural network [De-

tails not mentioned] 

Experts classified and manu-

ally marked the lesions 

Accuracy, F1-score, confusion 

matrix (not presented) 

24 

[62] 

2018 Estimate positioning error of pa-

tient´s dental arch and correct 

the panoramic image 

5166 pairs of 2-D dental 

panoramic radiographs 

and it's deviation value    

CNN [Built on own] Reconstruction with dental 

arch in predefined position 

Mean absolute error, Maximum 

absolute error 

25 

[63] 

2018 Mandible segmentation on a 

valid ground truth dataset 

20 3-D CT data sets Fully CNN [with 32s, 16s, 

and 8s separately] 

Generated by 2 clinical experts 

manually 

All networks: Dice coefficient; 

Best trained model: accuracy  

26 

[31] 

2018 Classify normal, abscessed, and 

impacted teeth 

60 2-D periapical dental 

radiographs  

Not deep-learning   from dataset Accuracy of all models in differ-

ent set-ups of images 

27 

[64] 

2018 Interactive segmentation of pan-

oramic radiographs 

2-D dental panoramic ra-

diographs (maybe 5) 

Conditional spatial fuzzy 

C-means clustering algo-

rithm [Gaussian Kernel-

based] 

Manual generation of ground 

truth of 5 images by one doc-

tor. 

Misclassification error, relative 

foreground area  

28 

[65] 

2018 Laser speckle image segmenta-

tion of tooth surface to detect 

early-stage caries 

2-D laser speckle images, 

data size not mentioned 

Not deep learning [K-

means clustering algo-

rithm] 

Evaluation of samples (original 

treated teeth) by one trained 

odontologist 

Accuracy in segmentation 
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29 

[66] 

2018 Find the determinant location 

factors of an inserted implant, 

which influence implant survival 

Explanatory variables, 

survival, and complication 

of 53 patients (59 cases) 

Not deep learning [Deci-

sion tree, SVM] 

A prosthodontist evaluated the 

implants and categorized them 

according to chart records 

Accuracy  

30 

[67] 

2018 Identification of unknown people 

by comparing ante- and post-

mortem panoramic radiographs  

43467 2-D dental pano-

ramic radiographs from 

24545 persons 

Speeded Up Robust Fea-

tures + random sampling 

consensus algorithms 

Given by dataset Number of matching points, de-

tection rate  

31 

[68] 

2018 Classify head and neck CT for 

presence of dental artifacts  

1417 2-D panoramic radi-

ographs 

Mask R-CNN [ResNet101 

+region proposal network] 

Annotation of the mouth, no 

additional information 

Accuracy, F1-score, precision, 

recall, specificity 

32 

[69] 

2018 Usage of a multi-stream deep 

learning framework for teeth-

brushing (activity) recognition 

2-D brush photos and 

data from smart bracelets 

of 74 people 

CNN [VGG-19] Data samples are manually la-

beled according to Bass brush-

ing method 

Accuracy of classifying 16 differ-

ent movements of Bass teeth-

brushing (confusion matrix) 

33 

[70] 

2018 Predict BRONJ occurrence in at-

risk patients 

125 patient parameters 

(41 cases and 84 controls) 

Logistic regression, SVM, 

Decision tree, ANN, Ran-

dom Forest 

Standard definition of BRONJ 

was used 

AUROC, sensitivity, specificity 

34 

[71] 

2018 Diagnose and predict periodon-

tally compromised teeth 

1740 2-D periapical radio-

graphs 

CNN [VGG-19] 3 calibrated periodontists de-

termined the severity of perio-

dontally compromised teeth 

Diagnostic & predictive accuracy, 

sensitivity, specificity, PPV, NPV, 

AUROC, confusion matrix 

35 

[72] 

2018 Evaluation of the efficacy of deep 

CNN algorithms for detection and 

diagnosis of dental caries on per-

iapical radiographs 

3000 2-D periapical radio-

graphs 

CNN [Inception V3, 

GoogLeNet] 

All images were revalidated 

and dental caries were distin-

guished from non-dental caries 

by 4 calibrated dentists 

Diagnostic accuracy, sensitivity, 

specificity, PPV, NPV, AUROC  

36 

[73] 

2018 Classify incisor, canine, premolar 

and molar 

3-D dental CT of 200 teeth 

(50 from each category) 

Extreme learning machine 

[1-hidden layer network] 

From dataset Sensitivity of each class, entire 

accuracy 

37 

[74] 

2018 Detect and quantify cracks using 

high-resolution CBCT images 

42 3-D high resolution 

scans 

Not deep learning  [SVM] Given by own dataset Absolute maximum wavelet coef-

ficient, AUROC, discrimin- ative 

sensitivity and specificity 

38 

[75] 

2018 Screen high-risk populations for 

oral cancer 

170 autoflourescence and 

white light image pairs 

CNN [MatConNet] Labeled by oral oncology spe-

cialists  

Accuracy, sensitivity, specificity 
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39 

[76] 

2018 Assess the need for orthodontic 

treatment in patients with perma-

nent dentition 

15 variables and need of 

orthodontic treatment from 

1000 patient datasets 

Not deep learning [Bayes-

ian network] 

Stated need for orthodontic 

treatment mentioned in the 

hospital system 

Accuracy, specificity, sensitivity, 

kappa, AUROC  

40 

[77] 

2018 Automated clinical quality evalu-

ation for decision making 

196 2-D dental periapical 

radiograph pairs 

CNN [modified 

GoogLeNet] 

3 dentists classified cases 

based on clinical observation 

Test accuracy, F1-score, recall, 

precision, confusion matrix 

41 

[78] 

2018 Predict self-reported tooth mobil-

ity in urban Latinos 

4623 Latinos with 9 social 

variables 

Neural network  [Mul-

tilayer Perceptron] 

Self-reported by participants Predictive accuracy, AUROC, in-

terpretability, applicability 

42 

[79] 

2018 A) Locate each present tooth 3-D CBCT images from 

1274 studies 

Combinations [Fully CNN: 

V-Net] 

Annotated by 4 specialists and 

entering a tooth number 

Accuracy  

B) Detect common conditions   [CNN: DenseNet] Annotated by 5 specialists AUROC  

43 

[80] 

2018 Analyze the determinants that af-

fect presence or absence of car-

ies/restorations 

105 dietary and demo-

graphic features from 

9812 subjects 

Deep neural network [Built 

on own] 

Given by database Accuracy, loss function, AUROC, 

processing time, PPV, NPV 

44 

[81] 

2018 Teeth recognition using label tree 

and cascade network structure 

1000 dental periapical ra-

diographs 

CNN [3 CNNS using 

VGG-16] 

Annotations with bounding 

boxes and label the 32 teeth  

Precision, recall, F-score 

45 

[82] 

2019 Real-time recognition of dental 

instruments using deep learning  

631 images of 11 objects  CNN [Shot Multibox De-

tector network, MobileNet] 

Images were annotated by the 

researchers 

Accuracy, precision, recall, true 

negative rate 

46 

[83] 

2019 Age estimation using CNN on 

dental panoramic X-rays 

2575 2-D dental panora-

mic radiographs 

CNN [Capsule-net which 

is built on own] 

Given by dataset Average accuracy, recall, preci-

sion, F1-score 

47 

[84] 

2019 Detect periodontal disease using 

smartphones and ML techniques 

2-D gingival images from 

30 subjects 

SVM   Given by dataset (cases were 

diagnosed by dentist) 

Accuracy, sensitivity, specificity 

48 

[85] 

2019 Detect decay on dental X-ray im-

ages to predict the needed treat-

ment 

120 periapical and 116 

panoramic radiographs 

CNN   Manual cropping of teeth by a 

dental expert and classification 

as per the needed treatment 

Accuracy 

49 

[86] 

2019 Localize dental lesions in near-

infrared transillumination images  

217 near-infrared transillu-

mination images 

Fully CNN [similar to U-

Net, inspired by VGG16] 

Reference segmentation maps 

from dental experts 

Overall intersection over union 

for 5-class, AUROC  

50 

[87] 

2019 Detect and number teeth in den-

tal periapical films 

1250 2-D dental digital pe-

riapical films 

Faster R-CNN, Deep NN 

[Inception Resnet version 

2 (for Faster R-CNN)] 

1 dentist framed each intact 

tooth and provided a corre-

sponding tooth number 

Mean intersection over union to 

obtain precisions and recalls, 

boxes detected 
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51 

[88] 

2019 Improve the precision of dental 

hard tissue segmentation 

20000 2-D intraoral im-

ages from 40 videos 

Sparse representation-ba-

sed classifier  

Manually labeling dental tissue 

type pixel by pixel 

Precision, recall, and their har-

monic average 

52 

[89] 

2019 Label teeth and identify root ca-

nal 

250 2-D dental panoramic 

radiographs 

2 CNNs comprised the ge-

nerative adversarial net-

work 

A dentist marked each tooth 

and the gap between them 

Accuracy, structural similarity in-

dex after every iteration 

53 

[90] 

2019 Diagnose orthognathic surgery 

cases 

12 measurements and 6 

indices from 316 patients 

Not deep learning [Built on 

own] 

1 orthodontist decided the 

treatment plans  

Decision-making success rates  

54 

[91] 

2019 Tooth instance segmentation and 

identification from CBCT images 

20  3-D CBCT images Mask R-CNN [3-D region 

proposal network] 

Annotation with a tooth-level 

bounding box, mask, & label 

Accuracy, Dice similarity coeffi-

cient  

55 

[92] 

2019 Segmentation of mental foramen 1000 2-D dental panora-

mic radiographs 

Fully CNN [U-Net] Annotation by radiologists Dice similarity coefficient 

56 

[93] 

2019 Develop a complete identification 

system to aid dental forensics 

without the use of radiation 

Top view images of the 

teeth in the upper and 

lower jaw from 30 persons 

Recurrent Neural Network 

[Built on own] 

Given by dataset Percent match, reliability, confu-

sion matrix, accuracy to compute 

the correct area 

57 

[94] 

2019 Segmentation of alveolar bone  50 2-D intraoral ultra-

sound images of 8 man-

dibular incisors  

Fully CNN [U-Net] Delineation by an orthodontist, 

medical physicist, and biomed-

ical engineer 

Dice coefficient, sensitivity, spec-

ificity, Hausdorff distance 

58 

[32] 

2019 Detect apical lesions on pano-

ramic dental radiographs 

2001 segments from 85 2-

D panoramic radiographs 

CNN [Built on own] Majority vote of 6 dentists on 

manually cropped segments. 

AUROC, sensitivity, specificity, 

PPV, NPV 

59 

[95] 

2019 Investigate a 3-D single image 

super-resolution method based 

on tensor factorization 

3-D CBCT of 13 single 

teeth 

Tensor factorization State-of-the-art iterative de-

convolution technique with 

low-rank regularization 

Mean of absolute difference in 

Feret and Area, Dice coefficient, 

time, peak signal-to-noise ratio 

60 

[96] 

2019 Resolution enhancement of 2-D 

CBCT image slices of ex vivo 

teeth 

5680+1824 2-D CBCT 

slices of 17 ex vivo teeth 

& in vivo microCT images 

CNN [inspired by U-Net 

and subpixel networks] 

micro-CT images were used 

as ground truth  

Peak signal-to-noise ratio, mean 

squared error, structure similarity 

index, Dice coefficient, mean dif-

ference: Feret, area, and volume 
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61 

[97] 

2019 Propose DL metal segmentation 

method for metal artifact reduc-

tion in dental CT 

1000 3-D CBCT images 

and projection images 

from 4 patients 

Fully CNN [U-Net] Manually segmented metal re-

gions on the training images 

using Adobe Photoshop CS6 

Relative error, sum of square dif-

ference, normalized absolute dif-

ference, Jaccard index, Dice sim-

ilarity index 

62 

[98] 

2019 Classification of root morphology 

of mandibular first molars on 

panoramic radiographs 

3-D dental CBCT and 2-D 

panoramic radiographs of 

760 mandibular first molar 

CNN [AlexNet and Goog-

leNet (DIGITS library on 

Caffe framework)] 

Observations performed by a 

radiologist 

Diagnostic accuracy, sensitivity, 

specificity, PPV, NPV, area un-

der the curve  

63 

[99] 

2019 Address low-dose artifacts in 

dental CT-scanning 

24024 3-D dental CT im-

age pairs (high-dose and 

low-dose)  

Generative adversarial 

network, CNN 

Blind reader study with 20 

groups of images 

Signal-to-noise ratio, structural 

similarity, image quality metrics, 

test time 

64 

[100] 

2019 Select the most relevant varia-

bles to classify the presence and 

absence of root caries 

Medical, dental, and phys-

iological measures from 

5135 people 

Not deep learning model Oral examination by experts 

using a decayed, missing, and 

filled surface index 

Accuracy, sensitivity, specificity, 

AUROC, features that are asso-

ciated with root caries 

65 

[101] 

2019 Gender estimation from pano-

ramic dental x-ray images 

4155 2-D dental panora-

mic radiographs 

CNN [VGG16] Given by dataset Accuracy 

66 

[102] 

2019 Detect atherosclerotic carotid 

plaques on orthopantomograms 

65 2-D dental panoramic 

radiographs 

Faster R-CNN [Resnet-

101] 

2 oral medicine & maxillofacial 

radiologists marked lesions 

Accuracy, sensitivity, specificity, 

AUROC 

67 

[103] 

2019 Automatic detection of athero-

sclerotic carotid plaques in pano-

ramic images 

65 2-D dental panoramic 

radiographs 

Faster R-CNN [Resnet-

101] 

2 oral medicine & maxillofacial 

radiologists jointly marked le-

sions 

Sensitivity, specificity, receiver 

operating characteristic 

68 

[104] 

2019 Survival prediction of oral squa-

mous cell carcinoma patients 

255 patient medical re-

cords 

Deep neural network 

[DeepSurv (Multi-layer 

feed forward network)] 

Given by hospital's medical 

records and according to a 

cancer staging manual 

Prediction accuracy (Harrell’s c-

index) 

69 

[105] 

2019 Detect periodontal bone loss on 

identified teeth in panoramic den-

tal radiographs  

12179 2-D dental panora-

mic radiographs 

Fully CNN [U-shaped ar-

chitecture] 

5 dental hygienists marked le-

sions independently (moni-

tored by a dentist) and num-

bered the tooth 

F1-score, AUROC, sensitivity, 

specificity, PPV, NPV 
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70 

[106] 

2019 Detect Sjögren's syndrome in 

praotid and submandibular sali-

vary glands 

200 patients resulted in 

8000 augmented 2-D ul-

trasonography images  

CNN [VGG16] According to the Japanese cri-

teria and American-European 

Consensus Group  

Accuracy, sensitivity, specificity, 

AUROC 

71 

[107] 

2019 Compute and improve semantic 

segmentation of dental pano-

ramic images  

1500 2-D dental pano-

ramic radiographs (10 cat-

egories) 

Fully CNN [U-Net] Annotators outlined teeth at 

certain anchor points and inter-

polated between them. 

Accuracy, specificity, precision, 

sensitivity, Dice score  

72 

[108] 

2019 Detection of periodontal bone 

loss (PBL) on panoramic dental 

radiographs 

85 2-D panoramic images 

cropped into 1737 single-

tooth segments  

CNN [a seven-layer feed-

forward CNN] 

3 examiners independently de-

termined 3 points on each 

tooth to estimate PBL percent   

Accuracy, area under the curve, 

F1-score, sensitivity, specificity, 

PPV, NPV 

73 

[109] 

2019 Detect osteoporosis on dental 

panoramic radiographs 

1268 2-D dental panora-

mic radiographs  

CNN [AlexNet] 2 oral and maxillofacial radiolo-

gists independently diagnosed 

osteoporosis  

Confusion matrix, accuracy, pre-

cision, recall, F1 score, AUROC 

74 

[110] 

2019 Propose a 3-stage approach to 

recognize tooth-marked tongue 

641 2-D tongue photo-

graphs 

CNN (feature extractor), 

multiple-instance SVM 

(MI-SVM; classifier) 

[VGG-16 (CNN)] 

Positive case: marked by tradi-

tional Chinese medicine practi-

tioners. Negative case: gene-

rated by an algorithm  

Accuracy, true positive rate, true 

negative rate 

75 

[111] 

2019 Explore a smart dental system 

for in-home dental healthcare 

12600 clinical images Mask R-CNN [ResNet-50-

C4] 

Training sets were calibrated 

by 20 dental disease experts 

Diagnosis accuracy, sensitivity, 

specificity, mean diagnosis time 

76 

[112] 

2019 Optimization of PointNet++ to im-

prove classification results 

3-D point cloud data of 

12311 CAD models 

CNN [PointNet++] Not applicable Accuracy of different objects 

77 

[113] 

2019 Biological gender estimation 

based on deep learning 

4000 2-D dental panora-

mic radiographs 

CNN [DenseNet201, Ince-

ptionResNetV2, VGG16, 

VGG19, ResNet50, Xcep-

tion] 

Given by dataset Mean accuracy for different 1) 

networks, 2) attention, 3) number 

of filters, and 4) number of units 

78 

[114] 

2019 Bone segmentation in CBCT 

scans affected by metal artifacts 

20 3-D CBCT images Mixed-scale dense CNN  Global thresholding and post-

processing by a medical engi-

neer 

Mean Dice similarity coefficients, 

mean absolute deviations 
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79 

[115] 

2019 Investigate the effect of different 

augmentation methods on a 

MapReduce-like model 

820 dental front oral 

images 

CNN [AlexNet, generative 

adversarial network for 

augmentation] 

8 pocket depths of tooth meas-

ured by a few dentists 

Accuracy, sensitivity, specificity, 

receiver operating characteristic 

80 

[116] 

2019 Detect and classify occlusal car-

ies 

88 in vivo dental images  Mask R-CNN [Based on 

Feature Pyramid Network 

and ResNet101] 

Superpixels comprising dental 

lesions were marked by the 

Dental Annotator version 1.5.1 

Classification: micro F-measure 

(Accuracy); Precision / Recall / 

F-measure for each class 

81 

[117] 

2019 Diagnose maxillary sinusitis on 

dental panoramic radiographs 

920 image patches from 

2-D panoramic, CT, and 

CBCT images 

CNN [AlexNet (with DIG-

ITS library, Caffe frame-

work)] 

Lesions were verified by their 

appearances on CT or CBCT  

Accuracy, sensitivity, specificity, 

AUROC, PPV, NPV 

82 

[118] 

2019 Describe the impact of orthog-

nathic treatment on facial attrac-

tiveness and age look 

2164 pre- and post-treat-

ment photographs from 

146 patients 

CNN [VGG-16] Age labels and attractiveness 

scores were derived from da-

tasets used 

Differences between real and ap-

parent age, and real and appar-

ent attractiveness 

83 

[119] 

2019 Evaluate facial attractiveness of 

treated cleft patients & controls 

60 frontal and left-profile 

images from 30 patients   

CNN [VGG-16] 
 

Mean difference, co-efficient of 

variation in rating  

84 

[120] 

2019 Automatically detect the type of 

lesion in periapical x-rays 

534 2-D periapical radio-

graphs   

CNN [Alexnet] Labeled by experienced radiol-

ogist and dentist 

Classification accuracy 

85 

[121] 

2019 Facilitate diagnosis and treat-

ment by providing easy access to 

the International Association for 

Dental Traumatology (IADT) 

guideline 

32 forms filled according 

to IADT guideline 

Deep neural network [Mul-

tilayer perceptron, Kstar, 

instance-based k-classi-

fier, sequential minimal 

optimization, logistic re-

gression] 

Own dataset curated accord-

ing to the rules given in IADT 

guideline 

Accuracy of classification, kappa, 

root mean square error, mean 

absolute error  

86 

[122] 

2019 Explore ensemble and deep 

learning for real-time sensors in 

smart toothbrush devices 

1.44 million instances and 

144,000 features each for 

10 individuals 

Details on depth of mod-

els not mentioned   

The smart toothbrush saved 

the correct tooth and surface 

brushed labels in a database 

Accuracy, precision, recall, F1-

score, training time, prediction 

time, model size (bytes) 

87 

[123] 

2019 Segmenting and classifying tooth 

types on 3-D dental models 

600 3-D dental models 3-D CNN [O-CNN] Given by dataset Accuracy, specificity, recall, 

macro -accuracy, -specificity, 

and -recall 
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88 

[124] 

2019 Detect and number teeth on pan-

oramic radiographs 

1574 2-D dental panora-

mic radiographs 

Faster R-CNN: VGG-16 5 radiologists numbered and 

marked all teeth (FDI system) 

Sensitivity, precision, specificity 

89 

[125] 

2019 Automated high-performance 

segmentation of third molars and 

inferior alveolar nerve canal 

81 2-D digital panoramic 

radiographs  

Fully CNN [based on U-

Net] 

Regions were manually seg-

mented and labelled; another 

observer refined them 

Dice coefficient, Jaccard index, 

sensitivity, specificity              

90 

[126] 

2019 Differentiate post-cancer from 

healthy muscle coordination 

MRI scans with time i.e., 

4D data of 26 subjects 

CNN  From dataset Accuracy 

91 

[127] 

2019 3-D dental model/ mesh segmen-

tation 

1200 3-D dental meshes 2 separate CNNs   Manually labeled dental 

meshes provided by company  

Accuracy, mean errors 

92 

[128] 

2019 Predict the debonding probability 

of CAD/CAM crowns 

8640 2-D images of 3-D 

stereolithography die 

models 

CNN [Built on their own] Labels of 'trouble-free' and 

'debonding' were assigned to 

each crown/die 

Predictive accuracy probability, 

precision, recall, F-measure, AU-

ROC, mean calculate time 

93 

[129] 

2019 Correlation of systemic health 

conditions with periodontal dis-

ease 

1215 2-D intraoral flu-

orescent images  

CNN [Auto-encoders] Physicians independently as-

signed localized and image-

wide modified gingival indices 

Area under the curve, true and 

false positive rates, precision, re-

call, mean intersection over un-

ion 

94 

[130] 

2020 Automatic detection and classifi-

cation of dental restorations 

83 2-D dental panoramic 

radiographs (738 dental 

restorations) 

Not deep learning [Cubic 

SVM with Error-Correcting 

Output Codes] 

1 oral medicine specialist iden-

tified and labeled the existing 

dental restorations 

Accuracy, detection rate, sensi-

tivity, specificity, PPV, NPV 

95 

[131] 

2020 Automatic detection of periodon-

tal disease in orthodontic pa-

tients 

134 intraoral images 

which were split into 804 

regions 

Faster R-CNN [2 models, 

each used ResNet-50] 

Gingiva was annotated and la-

beled by dentists using the Löe 

and Silness gingival index 

Detection accuracy, precision, 

recall, mean average precision 

96 

[132] 

2020 Compute mandibular indices for 

detecting the thinning and deteri-

oration of mandibular bone 

370 2-D dental panoramic 

radiographs 

Fuzzy K-means classifica-

tion algorithm to identify 

artificial structures  

2 dentists applied a semi-auto-

matic process to define the re-

quired lines and points 

Distances between relevant 

points  

97 

[133] 

2020 Fully automated third molar de-

velopment staging (localization, 

segmentation, and classification) 

400 2-D panoramic radio-

graphs 

CNN + Fully CNN [Locali-

zation: YOLO-like CNN. 

Segmentation: U-Net-like 

Staging by three observers. 

Same as in de Tobel 2017 

Mean absolute error, mean Eu-

clidean distance, precision, re-

call, Dice score, accuracy, linear 
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CNN. Classification: 2 

CNNs] 

weighted Cohen´s kappa, time 

for analysis 

98 

[25] 

2020 Detection of caries lesions of dif-

ferent radiographic extension on 

bitewing radiographs 

3686 bitewing radiographs Fully CNN [U-Net] Images were annotated and la-

beled by 3 dentists and re-

viewed by a 4th dentist 

Accuracy, sensitivity, specificity, 

F1, PPV, NPV, Matthew´s corre-

lation 

99 

[134] 

2020 Detect and classify/ stage perio-

dontal bone loss of each individ-

ual tooth 

340 2-D dental panoramic 

radiographs 

Mask R-CNN [Based on a 

feature pyramid network 

and ResNet101] 

Oral and maxillofacial radiolo-

gists manually delineated the 

relevant areas 

Accuracy, Dice score, Jaccard 

index, Pearson correlation, mean 

absolute difference, intraclass 

correlation 

100 

[135] 

2020 Assess maxillary variation in uni-

lateral canine impaction 

96 3-D CBCT images Learning-based multi-

source IntegratioN frame 

worK for Segmentation  

36 CBCT images manually 

segmented 

Average dice ratio, intraclass 

correlation, difference in volume  

101 

[136] 

2020 Segment individual teeth in den-

tal CBCT images 

25 3-D CBCT images 

(more than 770 teeth) 

Fully CNN [modified V-net 

architecture] 

Each tooth was manually seg-

mented and morphological op-

erations generated the refer-

ence image 

Jaccard similarity coefficient, 

Dice similarity coefficient, relative 

volume difference, average sym-

metric surface distance 

102 

[137] 

2020 1) Pose-aware volume-of-interest 

realignment 

175 3-D CBCT images CNN: Modified VGG-16 to 

output a 6D tensor 

Manual annotation and classifi-

cation of CBCT images ac-

cording to percentage of metal 

artifacts by clinical experts 

 

  

  

2) Tooth detection Modified Faster R-CNN 

(Region proposal network) 

Average precision, overlapping 

ratio, object include ratio  

3) Individual segmentation net-

work 

CNN: Adopted the base 

architecture of 3-D U-Net 

F1 score, aggregated Jaccard in-

dex, precision, sensitivity, 

Hausdorff distance, average 

symmetric surface distance 

103 

[138] 

2020 Investigate how 24 oral and max-

illofacial surgeons assess the 

presence of periapical radiolu-

cencies 

3099 2-D dental panora-

mic radiographs 

Fully CNN [U-Net] Pulp vitality was tested using 

thermal and percussion tests 

Mean true positive rate (TPR), 

precision, F1 score, positive pre-

dictive value (PPV), area under 
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PPV-TPR curve based on Rie-

mann summation 

104 

[139] 

2020 Automatic human identification 

system 

15,868 2-D dental panora-

mic radiographs  

CNN   5 bony landmarks were la-

beled manually 

Accuracy, recall, precision, F1-

score, true and false rates, AU-

ROC, cumulative match curve  

105 

[140] 

2020 Diagnose various periodontal 

diseases 

300 patients and 11 vari-

ables 

Not deep learning [SVM] The professional’s diagnosis Accuracy, hypervolume under 

manifold value 

106 

[141] 

2020 Predict disease-free survival in 

patients with oral squamous cell 

carcinoma 

3 planes of 18F-fluorode-

oxyglucose PET images 

from 113 patients 

CNN [ResNet-101] From patients’ medical records Accuracy, sensitivity, specificity, 

PPV, NPV 

107 

[142] 

2020 Evaluate the relationship be-

tween mandibular third molar 

and the mandibular canal 

600 2-D dental panoramic 

radiographs 

CNN [AlexNet, 

GoogleNet, VGG-16] 

Radiologists marked the rela-

tionship of the roots and ca-

nals in all images  

Accuracy, time, storage space, 

sensitivity, specificity, AUROC, 

intra- and inter-CNN consistency  

108 

[143] 

2020 Detect vertical root fracture on 

panoramic radiographs 

300 2-D dental panoramic 

radiographs 

CNN [DetectNet (with DI-

GITS version 5.0)] 

Detection: 2 radiologists and 1 

endodontist. Marked by 1 radi-

ologist 

Recall. precision, F measures  

109 

[144] 

2020 Dental caries diagnosis using a 

back-propagation neural network 

for classification 

105 intra-oral digital radio-

graphy images  

Non-deep learning neural 

network as a perceptron 

[Back-propagation net-

work] 

Caries was annotated by a 

dentist.  

False positive rate, accuracy, 

AUROC, precision recall curve 

area, learning rate, momentum, 

precision, recall, F measure, 

Matthew’s correlation coefficient 

110 

[145] 

2020 Risk prediction of unmet dental 

care needs in USA 

33,929 participants and 

237 variables  

decision tree classifier 

[Built on own] 

Given by dataset/ survey re-

sponses 

Accuracy, sensitivity, specificity, 

precision, area under the curve 

111 

[146] 

2020 Predict patients at risk of all-

cause dental 30-day hospital re-

admission 

Variables data on 11,341 

cases 

Decision Tree, SVM, k-

nearest neighbor, ANN, 

logistic regression  

Given by dataset  Area under the curve, accuracy, 

sensitivity, specificity, precision 

112 

[147] 

2020 Automatic localization of the 

mandibular canal 

637 3-D CBCT scans from 

594 patients 

Fully CNN [similar to U-

Net] 

Annotation by 2 medical pro-

fessionals 

Dice similarity coefficient, recall, 

precision, average symmetric 
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surface distance, mean curve 

distance, Hausdorff distance 

113 

[148] 

2020 Determine whether CNNs can 

judge soft tissue profiles requir-

ing orthognathic surgery using 

facial photographs alone 

2-D front and right facial 

photos + posteroanterior 

and lateral cephalometry 

from 822 patients 

CNN [VGG19] 2 orthodontists, 3 maxillofacial 

surgeons, and 1 maxillofacial 

radiologist classified patients 

into Groups I and II 

Accuracy, precision, recall, and 

F1 scores 

114 

[149] 

2020 Person authentication with deep 

learning technique 

750 2-D hand radiographs CNN [k-nearest neighbor 

and SVM] 

Given by dataset Percentage of cross-validation 

accuracy 

115 

[150] 
2020 

Detection and segmentation of 

the mental foramen 

112 2-D dental panoramic 

radiographs 

Fully CNN [U-Net] Oral medicine specialists with 

training in radiology 

Dice similarity, recall, precision, 

true and false positive rates 

116 

[151] 

2020 Investigation of automated fea-

ture detection, segmentation, 

and quantification of common 

findings in radiographs 

206 2-D periapical radio-

graphs 

Computer vision, CNN + 

Fully CNN [U-Net, Xnet, 

SegNet] 

Labeling by 2 oral pathologists 

and 1 endodontist. One expert 

labelled and the other 2 ac-

cepted or rejected them.  

Mean intersection over union, 

Dice coefficient 

117 

[152] 

2020 Develop a fully automated ceph-

alometric analysis 

2075 lateral 2-D cephalo-

grams 

CNN [stacked hourglass 

network] 

2 orthodontists corrected and 

marked new landmarks 

point to point error, successful 

detection and classification rate 

118 

[153] 

2020 Automatically identify and clas-

sify skeletal malocclusions 

218 3-D CBCT CNN [VGG 16 and addi-

tionally Inception-V3] 

Manual ground truth creation 

by clinical experts 

Accuracy, precision, recall, F1 

score 

119 

[154] 

2020 Identify 4 different types of im-

plant fixture systems 

801 2-D periapical radio-

graphs 

CNN [SqueezeNet, 

GoogLeNet, ResNet-18, 

MobileNet-v2, ResNet-50 ] 

From patient records Accuracy, precision, recall, F1 

score for each network 

120 

[155] 

2020 Creation an automated cephalo-

metric X-ray analysis 

1792 cephalometric 

images 

CNN [Built on own] 6 orthodontists and 6 in-train-

ing orthodontists marked 18 

landmarks 

Pearson product–moment corre-

lation, Bland–Altman plots  

121 

[156] 

2020 Identify how swallow sounds cor-

respond to swallowing and how 

swallow times differ by viscosity 

226 subjects gave rise to 

1859 swallows and 2021 

noise samples 

CNN  Videofluoroscopic swallow im-

ages labelled by 2 medical 

professionals 

Change in swallow duration 
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122 

[157] 

2020 Classify maxillary impacted su-

pernumerary teeth in patients 

with fully erupted incisors 

550 2-D dental panoramic 

radiographs 

CNN [AlexNet, VGG-16, 

DetectNet] 

Images reviewed by 2 radiolo-

gists 

Accuracy, sensitivity, specificity, 

AUROC, recall, precision, F-

measure 

123 

[158] 

2020 Mandibular canal detection using 

a deep CNN 

102 3-D CBCT images Fully CNN [2-D SegNet, 2-

D and 3-D U-Net] 

2 researchers traced the canal. 

An oral and maxillofacial radi-

ologist reviewed vague cases 

Pixel-, global-, class-accuracy, 

mean intersection of union 

124 

[159] 

2020 Reduce metal artifact for sino-

gram and dental CT images 

3-D CT of 33 teeth phan-

toms with metal implants 

Fully CNN Sinograms and CT images 

from teeth phantoms without 

metal implants 

Root-mean-square error, struc-

tural similarity 

125 

[160] 

2020 Automated tooth segmentation 

using individual annotation 

864 images from 50 2-D 

dental panoramic radio-

graphs  

Mask R-CNN [ResNet-101 

] 

1 oral radiologist performed 

annotated teeth on 30 training 

panoramic radiographs  

F1 score, mean intersection of 

union, visual analysis 

126 

[161] 

2020 Identification and classification of 

dental implant systems 

10,770 cropped images 

from 2-D panoramic and 

periapical radiographs 

CNN [GoogLeNet Incep-

tion-v3] 

Regions of interest manually 

cropped and labeled by 3 peri-

odontology residents  

Sensitivity, specificity, AUROC, 

confusion matrix  

127 

[162] 

2020 Detection and diagnosis of odon-

togenic cysts 

1,140 2-D panoramic radi-

ographs and 986 3-D 

CBCT 

CNN [GoogLeNet Incep-

tion-v3] 

Histopathological examinations 

by an oral pathologist 

AUROC, sensitivity, specificity, 

confusion matrix with and without 

normalization 

128 

[163] 

2020 Classification of dental implant 

systems on panoramic and peri-

apical radiographs 

7,146 2-D dental pano-

ramic and 4,834 periapical 

radiographs 

CNN [Built on own] Manual classification by 5 peri-

odontal residents and con-

firmed by 3 periodontists  

AUROC, standard error, Youden 

index, sensitivity, specificity 

129 

[164] 

2020 Locate cephalometric landmarks 

with confidence regions 

400 2-D lateral cephalo-

grams 

CNN [Bayesian CNN] A junior and senior orthodon-

tist independently annotated 

Mean landmark error, successful 

detection rate, confusion matrix 

130 

[165] 

2020 Classify specific osteoporosis 

features in dental radiographs 

680 2-D dental panoramic 

radiographs 

CNN [CNN3, VGG-16] T-Score for osteoporosis de-

tection 

Accuracy, sensitivity, specificity, 

receiver operating characteristic, 

precision recall curve  

131 

[166] 

2020 Tooth segmentation on CBCT 

images for dental implant plan-

ning 

102 3-D CBCT datasets 

(each dataset has 264 to 

727 2-D image slices) 

Fully CNN  [U-Net + 

dense block + spatial 

dropout] 

Manually classification of 

images  

Recall, precision, Dice score 
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132 

[167] 

2020 Identification of tongue color, fur 

color, crack, and tooth mark in 

traditional Chinese medicine 

2-D tongue photos from 

200 subjects 

CNN [YOLO V3 optimized 

for this study for classifica-

tion task] 

2 Traditional Chinese Medicine 

diagnostic experts 

Accuracy rate, precision rate, re-

call rate 

133 

[168] 

2020 Automatic tooth root segmenta-

tion on CBCT images 

1521 3-D CBCT images CNN [A combination of 

Recurrent neural network 

+ Attention U-Net] 

CBCT images were classified 

into 3 classes 

Intersection over union, average 

precision and recall rate, Dice 

similarity coefficient, average 

symmetrical surface distance 

134 

[169] 

2020 Intelligent dental plaque segmen-

tation using oral endoscope im-

ages 

607 oral endoscopic 

images 

CNN+HKS+LBP, random 

forest [DeepLabV3+] 

Dentists cropped and marked 

plaque regions referring to 

post-stained images 

Super-pixel accuracy, training 

time, intersection over union, out-

of-bag error curves 

135 

[170] 

2020 Automated tooth labeling on raw 

dental surfaces 

Raw maxillary surfaces 

acquired by 3-D intraoral 

scanners of 30 subjects 

CNN [MeshSegNet an ex-

tension of PointNet] 

Segmentations done by a resi-

dent guided by experienced 

dentists 

Dice similarity coefficient, sensi-

tivity, positive predictive value 

136 

[171] 

2020 Automated teeth recognition from 

panoramic images 

1000 2-D dental panora-

mic radiographs 

Faster R-CNN [ResNet-

101, ResNet-50] 

Each tooth with proper roots 

and shape was labelled 

F1 score, precision, recall, mean 

average precision  

137 

[172] 

2020 Predict difficulty level of endo-

dontic cases and decide about a 

referral 

500 filled American Asso-

ciation of Endodontist En-

dodontic Case Difficulty 

Assessment Forms and 

radiographs  

2 ML algorithms were 

used, out of which 1 was a 

deep neural network  

Assessment of forms by 2 en-

dodontists, in case of conflict 

third endodontist´s opinion was 

taken 

Accuracy, sensitivity, specificity, 

precision 

138 

[173] 

2020 Personal identification with 

paired orthopantomographs ob-

tained in relatively short period 

30 pairs of orthopantomo-

graphs from 30 partici-

pants 

CNN [VGG16, ResNet50, 

Inception-v3, Xception, In-

ceptionResNet-v2, Mo-

bileNet-v2] 

From the university hospital Detection accuracy, precision, 

recall 

139 

[174] 

2020 Automated third molar stage allo-

cation for age estimation 

400 2-D panoramic radio-

graphs 

CNN [DenseNet201] 2 observers staged FDI 38 

with modified Demirjian scale. 

Another observer reviewed 

cases of disagreement. 

Accuracy, mean absolute differ-

ence, linearly weighted Cohen´s 

kappa 



Results 39 

140 

[175] 

2020 Recognize dental defect using 

Adaptive CNN and Bag of Visual 

Word  

447 2-D panoramic 

images  

Adaptive CNN [pre-trained 

VGG16] 

Images were labeled and 

sorted by dentists based on 

3rd molar appearance 

Accuracy 

141 

[176] 

2020 Identify CT slices for head and 

neck cancer with dental artifacts 

1164 axial slices in pairs 

from 44 CT scans 

Model for kernel L2-Was-

serstein distance  

CT slices were classified by a 

medical imaging expert  

Prediction rate, computation time 

142 

[177] 

2020 Detection, localization, and vol-

ume determination of periapical 

pathosis on CBCT 

3900 3-D CBCT images Fully CNN [U-Net-like ar-

chitecture] 

Annotations by maxillofacial 

radiologists and automatically 

examined to eliminate errors 

Reliability of correctly detecting a 

periapical lesion, recall, preci-

sion, F-measure 

143 

[178] 

2020 Automatic detection of trabecular 

landmarks 

108 dental panoramic ra-

diographs 

CNN [statistic shape mo-

del] 

8 osteoporotic regions anno-

tated by dentists 

Loss of 5-fold cross validation, 

mean and median loss 

144 

[179] 

2020 Detection of caries lesions in 

Near-Infrared-Light Transillumi-

nation images 

226 NILT images of single 

tooth segments 

CNN [Resnet18, Res-

next50] 

Caries annotated by 2 dentists  Accuracy, AUROC, sensitivity, 

specificity, PPV, NPV 

145 

[180] 

2020 Automated segmentation of 

CBCT images and detection of 

periapical lesions 

20 3-D CBCT images 3-D CNN [multi-label U-

Net] 

Segmentation performed and 

revised by 1 maxillofacial radi-

ologist, 1 endodontist, and 1 

senior graduate in radiology 

honors program 

Sensitivity, specificity, PPV, 

NPV, DICE index 

146 

[181] 

2020 Classify and clarify the accuracy 

of different dental implant brands 

8859 image segments 

from 6513 2-D dental pan-

oramic radiographs 

CNN [VGG16, VGG19] Electronic medical records and 

dental implant usage ledger of 

the department 

Accuracy, precision, recall, re-

ceiver operating characteristic, 

F1-score, gradient-weighted 

class activation maps  

147 

[182] 

2020 Automatic and accurate segmen-

tation and identification of individ-

ual teeth 

100 3-D digital dental 

casts  

CNN [feature steered 

graph CNN which used 

FeaStNet] 

Given by dataset Labeling accuracy, Dice similarity 

coefficient  

148 

[183] 

2020 Classify partially edentulous den-

tal arches for designing remova-

ble partial dentures 

1184 oral photographs of 

dental arches  

CNN [ResNet152 (using 

Tensorflow, Keras deep 

learning libraries)] 

Arch types judged by authors Diagnostic accuracy, precision, 

recall, F-measures, AUROC, per-

centage of correct predictions 
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149 

[184] 

2020 Tongue region and landmark de-

tection 

1838 2-D tongue photo-

graphs 

CNN [combination of Im-

age Pyramid, Coarse-Net, 

Fine-Net, Refine-Net] 

Labeled by 2 primary physi-

cians and a resident physician 

Precision, recall, accuracy, F1-

score, intersection over union, 

mean error rate, failure rate 

150 

[185] 

2020 Identify periodontally compromi-

sed teeth 

100 2-D digital dental pa-

noramic radiographs 

Faster R-CNN [ResNet-

101] 

Annotations by 3 periodonto-

logy experts 

Average precision and recall 

rate, sensitivity, specificity, F-

score 

151 

[186] 

2020 Estimate the chronological age of 

a subject from panoramic image 

2289 2-D dental panora-

mic radiographs 

CNN [Built on own] Images were labelled with the 

subject’s date of birth and the 

date of image 

Absolute error, coefficient of de-

termination, accuracy, area un-

der the interquartile coefficient of 

receiver operating characteristic  

152 

[187] 

2020 Automatic segmentation of man-

dibular molar and predict its 

eruption potential 

838 2-D panoramic radio-

graphs 

CNN [ResNet-101] Human reference measure-

ments 

Accuracy, Bland Altman plot, in-

tersection over union, recall, 

Hausdorff distance, analysis 

time, precision 

153 

[188] 

2020 Recognition of tooth-marked 

tongue 

1548 2-D tongue photo-

graphs each in 2 datasets 

CNN [ResNet34] Classification by 3 traditional 

Chinese medicine practitioners 

Accuracy, sensitivity, specificity 

154 

[189] 

2020 Predict Children’s Oral Health 

Status Index (COHSI) score and 

referral for treatment needs 

(RFTN) 

Short-form survey re-

sponses from 545 families 

Extreme gradient boost-

ing, Naïve Bayesian algo-

rithms 

A dental exam to evaluate the 

clinical oral health outcomes 

summarized as COHSI score 

and RFTN 

Residual mean square error, cor-

relation, sensitivity, specificity  

155 

[190] 

2020 Classify dental artifacts status 1538 head and neck CT 

images 

3-D CNN   Classification by an observer  Area under precision recall 

curve, precision, recall  

156 

[191] 

2020 Dental artifact detection for CT 2112 head and neck CT 

images 

CNN  A single observer  Receiver operating characteristic 

157 

[192] 

2020 Presentation of a novel strategy 

to combine bounding box anno-

tations from multiple clinicians 

2155 oral cavity images  Combinations [ResNet-

101 (image classification), 

Faster R-CNN (object de-

tection)] 

800 images annotated by 3-7 

clinicians; the remaining 1355 

images annotated by 1 clini-

cian 

F1-Score, precision, recall 
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158 

[193] 

2020 Evaluate diagnostic performance 

of CNN You Only Look Once 

(YOLO) v2 

1603 2-D dental panora-

mic radiographs 

CNN [YOLO v2] Histopathologic diagnosis Precision, recall, accuracy, F1 

score, average time to evaluate 

test datasets, confusion matrix 

159 

[194] 

2020 Detect plaque on primary teeth 886 tooth photos CNN [DeepLab network, 

DeepLabV3+] 

Plaque-disclosing agent used 

and identified by a researcher 

Mean intersection-over-union  

160 

[195] 

2020 Automatic detection of dental 

caries from oral photos 

3932 oral photos  CNN [VGG-16] Labeled by 1 of 3 dentists by 

clinical visual-tactile exam 

AUROC, Free-Response re-

ceiver operating characteristic 

161 

[196] 

2020 Perform segmentation and lesion 

detection on CBCT images 

100 3-D CBCT images CNN [Fully convolutional 

Densenet with some mod-

ifications (which is essen-

tially a U-Net)] 

Manual and semi-automatic 

segmentation; revised by 1 

oral and maxillofacial radiolo-

gist, 1 endodontist, and 1 sen-

ior graduate in radiology hon-

ors program 

detection accuracy, precision, re-

call (DICE index calculated but 

not presented numerically) 

162 

[197] 

2020 Automatic tooth detection and 

segmentation 

100 dental front photos Mask R-CNN [deeper 

ResNet101+ Feature Pyr-

amid Network] 

Image labeling tool used to 

form multiple polygons around 

teeth 

Pixel accuracy 

163 

[198] 

2021 Predict global five-year survival 

in oral cancer and its cancer re-

currence 

Variables from 416 pati-

ents 

Logistic regression, K-

nearest neighbor, Naïve 

Bayes, Decision tree, 

Random Forest classifier 

Histological diagnosis of oral 

squamous cell carcinoma 

Receiver operating characteris-

tic, accuracy, sensitivity, specific-

ity, F1 score 

164 

[199] 

2021 Tooth detection and segmenta-

tion 

153 2-D panoramic radio-

graphs 

CNN [DeepLab-v3, Res-

Net-101] 

A dentomaxillofacial radiologist 

labeled and segmented each 

tooth 

Accuracy, time, sensitivity, recall, 

F1-score, precision, intersection 

over union, Hausdorff distances 

165 

[200] 

2021 Predict genetic risk of nonsyn-

dromic oral clefts 

Nucleotide sequences 

from 1588 participants 

Non-deep learning neural 

network as a perceptron  

Known from dataset  Accuracy, error rate, interactions 

of nucleotide sequences 

166 

[201] 

2021 Detect and classify teeth for au-

tomatic filing of dental charts 

100 2-D dental panoramic 

radiographs 

CNN [DetectNet, ResNet] A dental radiologist localized 

and classified each tooth 

Accuracy, detection sensitivity, 

number of false positives 
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167 

[13] 

2021 Compare cost-effectiveness of 

proximal caries detection with 

versus without AI 

3686 bitewing radiographs Fully CNN [U-Net] 4 dentists marked carious le-

sions 

Accuracy, sensitivity, specificity, 

effectiveness, cost, incremental 

cost-effectiveness ratio  

168 

[202] 

2021 Automatic detection system for 

numbering teeth 

1125 2-D dental bitewing 

radiographs 

Faster R-CNN [Inception 

v2 (COCO)] 

A radiologist annotated images 

and with tooth numbers 

Accuracy, confusion matrix, F1 

score, precision, sensitivity 

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; AUROC, area under the receiver operating characteristic; BRONJ, bisphosphonate related osteonecrosis of 

the jaw; CBCT, cone beam computed tomography; CNN, convolutional neural network; FDI, Federation Dentaire Internationale; ML, machine learning; NPV, negative predictive 

value; PPV, positive predictive value; SVM, support vector machine; VGG, visual geometry group. 

Source: modified from Table S1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in 

Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina 

T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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Table 2: Studies excluded from the scoping review on machine learning in dentistry along with the reason for exclusion (n=15). 

No.  

[Citation] 

Reason for exclusion from the scoping review 

1 [203] Poor methodology/ reporting 

• Reference test for the training and validation datasets was generated by only one professional expert, who was not formally 

trained in dentistry but was a biomedical engineer. 

• The validation set was also utilized during training to determine when to stop the parameter update to prevent overfitting. 

2 [7] A review article 

3 [204] Not an oral health topic 

4 [205] A review article 

5 [206] A systematic review article 

6 [207]  No machine learning method used 

7 [208] No machine learning method used 

8 [209] Poor methodology/ reporting 

• Labeled bounding boxes were generated by a software tool to serve as the reference test for the training dataset but were not 

checked for errors by a human expert. 

• Model architecture not adequately described, for example, number of convolutional layers. 

• Some results are shown via images which have poor resolution. 

• Absence of the ‘Discussion’ section of the paper. Hence placing the results in the context of the previous and current research 

is lacking. 

9 [210] A conceptual review article 

10 [211] Not an oral health topic   

11 [212] Poor methodology/ reporting  
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• The paper does not discuss how its specific research question is tied to the larger context of oral health in USA. 

• The study used 6 deep neural network models for variable selection but no further details are given. 

• The study also used 10 data mining algorithms, whose names are listed but no further details are provided. 

12 [213] A supplement article (similar to a review article) 

13 [214] Not an oral health topic   

14 [215] Poor methodology/ reporting 

• The authors selected 19 feature variables or elements that characterize orthodontic problems and are assumed to be important 

in extraction decisions based on existing orthodontic literature. But these 19 variables or elements are not named or described 

further.  

• Performance metrics, such as accuracy and error rate, were measured and reported via bar-charts but were not specified in the 

text. This hampered the evaluation of the results and their interpretation. 

15 [216] A review article 

Source: modified from Table S2, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in 

Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina 

T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy.
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Figure 5. Temporal trend in number of publications included in the scoping review on machine 

learning in dentistry between 1st January 2015 and 31st May 2021. Source: own representation. 

 

 

Figure 6: Geographical trend in number of publications included in the scoping review on machine 

learning in dentistry between 1st January 2015 and 31st May 2021. Source: modified from Figure 

S1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Ma-

chine Learning in Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 

10.3390/jcm12030937. Image rights held by authors of the publication, including Lubaina T. Arsi-

wala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy. 
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85% studies split their datasets into training and testing subsets, while 59% studies cre-

ated validation subsets too [18]. The median size of training datasets was 450 (range: 12 

- 1,296,000) and of test datasets was 126 (range: 1 - 144,000) [18]. Half of the studies 

evaluated ML model performance on a hold‐out dataset while the other half used cross‐

validation [18].  

65% studies artificially increased their input data by using methods like image augmen-

tation [18]. Only 20% studies externally validated their model’s performance [18]. 73% 

studies used experts to establish the reference test (i.e., how the ground truth was de-

fined): one expert in 18% studies, two to three experts in 11% studies each, four to five 

experts in 2% studies each, six to eight experts in 1% studies each, 12 and 20 experts in 

0.5% studies each, and no information on number of experts in 27% studies [18]. 22% 

studies established the reference test from their datasets (e.g., age and diagnosis from 

medical records) and 1% studies used software- generated reference test [18]. The re-

maining 4% studies did not report on how the reference test was generated [18]. 

Of all studies, 70% used complex ML models, such as convolutional neural networks; 

further details are available in the publication [18]. Another 22% studies used simple ML 

models, such as random forest classifier and support vector machine [18]. In addition, 6% 

studies used various model combinations and 2% studies did not report information on 

the model structure [18]. Both, the complex and simple models were used more frequently 

by studies in restorative dentistry and endodontics, oral medicine, and non‐specific field 

or general dentistry [18]; Table 3. Additionally, the simple models were often used by 

studies in orthodontics and periodontology [18]. Finally, 20% studies compared their 

model’s performance to human experts [18]. 
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Table 3: Number of studies included in the scoping review on machine learning in each field of dentistry, stratified by the types of machine learning 

models used (n=168). 

Field of dentistry, n 

(%) 

Models not using deep learning Models using deep learning   

Classifier 

model 

Support 

Vector Ma-

chine 

Neural net-

works with-

out deep 

learning 

Other mod-

els without 

deep learn-

ing 

Non-convolu-

tional neural 

networks 

Convolutional 

neural net-

works 

Combination 

models 

Inadequate 

model de-

tails  

n 10 4 7 16 7 111 10 3 

Restorative dentistry 

and endodontics 

2 (20%) 2 (50%) 2 (29%) 1 (6%) 2 (29%) 14 (13%) 1 (10%) 1 (33%) 

Oral medicine 2 (20%) 0 (0%) 0 (0%) 5 (31%) 2 (29%) 14 (13%) 2 (20%) 0 (0%) 

Oral radiology 0 (0%) 0 (0%) 0 (0%) 2 (13%) 0 (0%) 8 (7%) 1 (10%) 0 (0%) 

Orthodontics 1 (10%) 0 (0%) 3 (43%) 3 (19%) 0 (0%) 10 (9%) 0 (0%) 1 (33%) 

Oral surgery and im-

plantology 

1 (10%) 0 (0%) 0 (0%) 1 (6%) 1 (14%) 14 (13%) 0 (0%) 0 (0%) 

Periodontology 0 (0%) 2 (50%) 1 (14%) 1 (6%) 0 (0%) 13 (12%) 1 (10%) 1 (33%) 

Prosthodontics 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2%) 0 (0%) 0 (0%) 

Others (non-specific 

field, general dentis-

try) 

4 (40%) 0 (0%) 1 (14%) 3 (19%) 2 (29%) 36 (32%) 5 (50%) 0 (0%) 

Source: modified from Table S3, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in 

Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina 

T. Arsiwala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy. 
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3.1.2  Risk of bias in the individual studies 

Risk of bias was assessed in four domains, namely data selection, index test, reference 

standard, and flow and timing. It was found to be high for most studies with respect to 

data selection and reference standard [18]; Table 4. Concerns about the applicability of 

a study’s methods and results were found to be high for most studies with respect to data 

selection [18]. 

 

Table 4. Evaluation of risk of bias in studies included in the scoping review (n=168) on machine 

learning in dentistry using the QUADAS-2 tool.  

No. [Cita-

tion] 

Data selection: risk 

of bias/ applicability 

concerns 

Index test: risk of 

bias/ applicability 

concerns 

Reference standard: 

risk of bias/ applica-

bility concerns 

Flow and tim-

ing: risk of bias 

1 [39] high/high low/high high/high low 

2 [40] low/low low/low low/low low 

3 [41] high/low low/low low/low low 

4 [42] low/low low/high high/high low 

5 [43] low/low low/low low/low low 

6 [44] high/high low/high high/high low 

7 [45] high/high low/low high/low low 

8 [46] low/low low/high low/low low 

9 [47] low/low low/low low/high low 

10 [48] high/high low/low high/low low 

11 [49] high/high low/low high/high low 

12 [50] high/low high/low high/low low 

13 [51] low/high low/low high/high low 

14 [52] high/high high/low low/low low 

15 [53] low/low high/low low/low low 

16 [54] high/low low/low high/low low 

17 [55] high/high low/low high/low low 

18 [56] high/low low/low high/low low 

19 [57] high/high low/low high/low low 

20 [58] high/high low/high high/low low 
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21 [59] high/high high/high high/high low 

22 [60] low/low low/low low/low low 

23 [61] low/high low/low low/high low 

24 [62] high/high low/low low/low low 

25 [63] low/low low/low low/low low 

26 [31] high/high low/low high/low low 

27 [64] high/high low/low high/low low 

28 [65] high/high low/low high/low low 

29 [66] high/high high/low high/low low 

30 [67] low/low low/low low/low low 

31 [68] high/low high/low low/low low 

32 [69] low/high low/high low/high low 

33 [70] low/low high/low high/low low 

34 [71] high/high low/high low/high low 

35 [72] high/low low/low low/low low 

36 [73] high/high low/low low/low low 

37 [74] high/high low/high low/high low 

38 [75] low/low low/low high/low low 

39 [76] low/high low/low high/low high 

40 [77] low/high low/low low/low low 

41 [78] high/low low/high high/low low 

42 [79] high/high low/low low/low high 

43 [80] low/low low/high low/high low 

44 [81] high/high low/low high/low low 

45 [82] high/high low/high high/low low 

46 [83] high/high low/low high/high low 

47 [84] high/high high/high high/high low 

48 [85] low/high low/low high/high low 

49 [86] low/high low/low high/high low 

50 [87] low/low low/low high/low high 

51 [88] high/high low/low high/low low 

52 [89] low/high low/high high/high low 

53 [90] high/high high/high high/high low 

54 [91] high/high low/low high/low low 

55 [92] low/high low/low high/low low 
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56 [93] high/high low/high low/high low 

57 [94] low/high low/low low/low high 

58 [32] low/low low/low low/low low 

59 [95] high/high low/low low/low low 

60 [96] low/low low/low low/low low 

61 [97] low/high low/low high/low low 

62 [98] low/low low/low high/low low 

63 [99] low/low low/low low/low low 

64 [100] low/low low/low low/low low 

65 [101] low/low low/low low/low low 

66 [102] high/high high/low high/low low 

67 [103] high/low high/low high/low low 

68 [104] high/low high/low high/low low 

69 [105] high/low high/low low/low low 

70 [106] low/low low/low low/low low 

71 [107] low/low low/low high/low low 

72 [108] low/low low/low low/low low 

73 [109] high/low low/low high/low low 

74 [110] low/low low/low low/low high 

75 [111] high/high low/low low/low low 

76 [112] high/high high/low low/low low 

77 [113] low/low low/low low/low low 

78 [114] high/high high/high high/high low 

79 [115] high/high high/high high/high low 

80 [116] high/high low/low high/low low 

81 [117] low/low low/low high/low low 

82 [118] low/high low/low high/high low 

83 [119] low/low low/low low/low high 

84 [120] high/high high/low high/high low 

85 [121] low/high high/low high/high low 

86 [122] high/high low/high low/high low 

87 [123] high/high low/low low/low low 

88 [124] low/high low/high high/high low 

89 [125] low/high low/high high/high low 

90 [126] low/high low/low low/high low 
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91 [127] high/high low/low high/low low 

92 [128] low/low low/low low/low low 

93 [129] high/low low/high high/high low 

94 [130] low/low low/low high/low low 

95 [131] high/high low/high high/low low 

96 [132] low/high low/low low/high low 

97 [133] low/low low/low high/low low 

98 [25] low/low low/low low/low low 

99 [134] high/high high/low high/low low 

100 [135] low/low low/low high/low low 

101 [136] low/low low/low high/low low 

102 [137] high/low high/low high/high low 

103 [138] high/high low/low low/high high 

104 [139] low/high low/low low/low low 

105 [140] low/low low/low low/low low 

106 [141] low/low low/low low/low low 

107 [142] high/high high/low high/low low 

108 [143] high/low high/low low/low low 

109 [144] high/high low/low high/low low 

110 [145] low/low low/low low/low low 

111 [146] low/low low/high high/high low 

112 [147] low/low low/low high/low low 

113 [148] high/high high/low low/low low 

114 [149] low/low low/low low/low low 

115 [150] low/high low/low high/low low 

116 [151] high/high low/low low/high low 

117 [152] high/low high/low high/low high 

118 [153] high/high low/low high/low low 

119 [154] low/low high/low low/low low 

120 [155] high/low low/low low/low low 

121 [156] high/high low/low high/low high 

122 [157] high/low high/low high/low low 

123 [158] high/high low/low high/low low 

124 [159] high/high low/low high/low high 

125 [160] low/high high/low high/low low 
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126 [161] high/low high/low low/low low 

127 [162] high/low high/low high/low low 

128 [163] high/low high/high low/low low 

129 [164] low/high low/high high/low low 

130 [165] high/low low/low low/low low 

131 [166] high/low low/high high/high low 

132 [167] low/low low/low high/low low 

133 [168] high/high low/low high/low low 

134 [169] high/high low/low low/low low 

135 [170] high/high low/low high/low low 

136 [171] high/high high/low high/low low 

137 [172] high/high low/low high/low low 

138 [173] high/low high/low low/low low 

139 [174] high/high low/low high/low low 

140 [175] high/high low/high high/high low 

141 [176] high/high low/high high/high low 

142 [177] low/high low/low high/high low 

143 [178] high/high low/high high/high low 

144 [179] high/low low/low high/low low 

145 [180] low/low low/high high/high low 

146 [181] low/low high/low low/low low 

147 [182] low/high low/low low/low low 

148 [183] high/high high/low high/low high 

149 [184] low/low low/low low/low low 

150 [185] low/high low/high low/high low 

151 [186] high/low low/high low/low low 

152 [187] low/low high/low high/low high 

153 [188] high/low low/low low/high low 

154 [189] low/low low/high low/high low 

155 [190] high/low low/low high/low low 

156 [191] low/low low/low high/low low 

157 [192] low/high low/high high/high high 

158 [193] low/low low/low low/low low 

159 [194] low/low low/low high/low low 

160 [195] low/high high/low high/high low 
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161 [196] high/high low/low low/low low 

162 [197] low/low low/low high/low low 

163 [198] low/low low/low low/low low 

164 [199] low/low low/low high/low low 

165 [200] low/low low/low low/low low 

166 [201] high/high high/high high/high low 

167 [13] high/high high/low low/low low 

168 [202] high/high low/low high/low low 

Source: Table 1, publication L.T. Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. 

Schwendicke, Machine Learning in Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 

10.3390/jcm12030937. Data rights held by authors of the publication, including Lubaina T. Arsi-

wala-Scheppach, under license CC BY 4.0 as per publisher MDPI policy. 

 

3.1.3  Reporting quality of the individual studies 

Overall adherence to the TRIPOD checklist was 33.3%, with less than 50% studies ad-

hering to 18 out of 22 domains [18]; Figure 7. Adherence was below 10% for sample size 

calculation, handling of missing data, differences between development and validation 

data, and details on study participants [18]. In particular, less than 20% studies ade-

quately defined their predictors and outcomes, stratification by risk groups, presented the 

full prediction model and provided information on supplementary resources, such as study 

protocol, web calculator, or data sets [18]. Less than 40% studies adequately reported 

their data sources, participant eligibility, statistical methods (specifically, details on model 

refinement), model results, study limitations, and model performance in development 

data, and any other validation data [18]. 
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Figure 7: Percentage of studies included in the scoping review (n=168) on machine learning in 

dentistry that adhered to each of the 22 domains of the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist. Less than half of the 

included studies showed high reporting quality. Source: modified from Figure 2, publication L.T. 

Arsiwala-Scheppach, A. Chaurasia, A. Muller, J. Krois, F. Schwendicke, Machine Learning in 

Dentistry: A Scoping Review, J Clin Med 12(3) (2023), doi: 10.3390/jcm12030937. Image rights 

held by authors of the publication, including Lubaina T. Arsiwala-Scheppach, under license CC 

BY 4.0 as per publisher MDPI policy. 
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3.1.4  Model performance metrics 

A total of 42 different metrics were used by the studies to evaluate model performance, 

while some of which could be grouped together, e.g., the different correlation coefficients 

could be combined; such grouping resulted in 26 distinct classes [18]. The most com-

monly reported metrics were accuracy, sensitivity, area under the receiver operating char-

acteristic, specificity, precision, and intersection-over-union [18]. Figure 8 graphically 

shows the relative proportion of studies which used the different metrics, stratified by ML 

task. Also, the mean sensitivity values were generally high (≥0.80) in the studies perform-

ing classification tasks whose confusion matrices were either presented or reconstructed 

from the available data; Figure 9. 
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Figure 8: Treemap of performance metrics used in the studies included in the scoping review (n=168) on machine learning in dentistry stratified  
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by type of machine learning task. The size of each box is proportional to the number of studies included in the scoping review that used that 

particular metric for a machine learning task. Most studies reported multiple metrics. Abbreviations: Abs diff, mean or normalized absolute differ-

ence; AUC PRC, area under the precision-recall curve; CM, confusion matrix; Cons., model consistency (intra-CNN or inter-CNN consistency); 

CV, coefficient of variation; Diff., differences/distances be-tween volumes, surfaces, or points; FPR, false positive rate; ICC, correlation coeffi-

cients; ICER, incremental cost-effectiveness ratio; IoU, intersection over union; MAD, mean absolute difference; MAP, mean average precision; 

matr, matrix; NPV, negative predictive value; RMSE, root mean squared error; ROC, receiver operating characteristic; SSD, sum of squared 

difference; SSI, structural similarity index; YI, Youden’s index. Key (for non-abbreviated terms): Fail, failure rate; Rank, Rank-N recognition rate; 

Time, time taken for analysis. Source: own representation. 
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Figure 9: Forest plot displaying the mean (95% confidence interval) sensitivity of the studies 

(n=19) performing classification tasks whose confusion matrices were either reported or re-con-

structed from the available data, out of the 168 studies included in the scoping review on machine 

learning in dentistry. Source: own representation. 

 

3.2   Benchmarking study 

The performances of the various model configurations are depicted in Figure 10. ML ar-

chitectures of U-Net++, U-Net, and LinkNet achieved a high F1-score of 0.86 (median; 

value has been rounded up) and outperformed their counterparts [36]. Models using the 

backbones of VGG group achieved a high F1-score of 0.85 (median) and outperformed 

the ResNet group [36]. Models initialized with ImageNet or CheXpert datasets outper-

formed models initialized with random weights (p< 0.001) [36]. Examination of all the 216 

model combinations revealed that the highest performances was achieved by models 

consisting of U-Net++ or LinkNet architectures and ResNet or DenseNet backbones [36]. 
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Figure 10: Boxplots showing the distributions of F1-scores of the different machine learning model 

configurations evaluated in the benchmarking study stratified by model architectures (A), back-

bone groups (B), and initialization strategies (C). The highest median F1-scores were attained by 

the architectures of U-Net++, U-Net, and LinkNet, backbone of visual geometry group, and mod-

els initialized with ImageNet or CheXpert datasets. Source: own representation. 

 

A weak positive correlation between a model’s complexity level and its performance was 

observed with r = 0.32 (p<0.001) [36]. 

Class imbalance: As a sensitivity analysis, model performance was evaluated on the less 

prevalent classes of fillings (80%) and crowns (20%). In general, the models’ performance 

was inversely proportional to class frequencies [36].  

 

3.3   Clinical trial 

Six female and 16 male dentists participated with an average age of 38 years (range: 27 

to 60 years) [26].  
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The performance metrics are displayed in Table 5. The overall mean (95% confidence 

interval) AUROC of dentists was higher in the ML group [0.89 (0.87-0.90)] than in the 

without ML group [0.85 (0.83-0.86)], p<0.05 [26]. The AUROC of all dentists stratified by 

trial group demonstrated that sensitivity was higher in the ML group [0.81 (0.74-0.87)] 

than in the without ML group [0.72 (0.64-0.79)], p<0.05 [26]; Figures 11 and 12. Higher 

values of AUROC, F1-score, and sensitivity in the ML group were observed for enamel 

caries but not dentin lesions [26]. For most dentists, an increase in sensitivity when using 

the ML software came at no or very limited decrease in specificity when compared to their 

own performance in the without ML group [26]; Figure 13. On comparing the dentists in 

either group of the trial with the ML software by itself, the latter had higher AUROC, ac-

curacy, F1-score, specificity, and positive predictive value; Figures 11 and 12. 

The inter-rater agreement between the dentists for detecting caries lesions when not us-

ing the ML software showed an expected trend. When stratified by depth of caries lesion, 

the inter-rater agreement was as follows; absence of caries lesion: 0.18, enamel caries: 

0.03, early dentin caries: 0.14, advanced dentin caries: 0.47. 
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Table 5: Performance of dentists with and without support of a machine learning software and by the machine learning software by itself in the 

randomized clinical trial for detection of proximal caries lesions on bitewing radiographs. Mean and 95% confidence interval values shown. Com-

parisons between dentists with and without support of the machine learning software using the t-test where p<0.05 are indicated in bold. 

Clinical trial 

group 

Depth of 

caries lesion 
AUROC Accuracy F1- score Sensitivity Specificity 

Positive predic-

tive value 

Negative pre-

dictive value 

Dentists 

without 

machine 

learning 

Overall 
0.85  

(0.83, 0.86) 

0.93  

(0.92, 0.95) 

0.76  

(0.73, 0.78) 

0.72  

(0.64, 0.79) 

0.97  

(0.96, 0.98) 

0.80  

(0.72, 0.86) 

0.95  

(0.94, 0.97) 

Enamel 

caries 

0.81  

(0.78, 0.83) 

0.94  

(0.92, 0.95) 

0.64  

(0.60, 0.68) 

0.64  

(0.53, 0.74) 

0.97  

(0.96, 0.98) 

0.67  

(0.56, 0.77) 

0.97  

(0.95, 0.98) 

Early dentin 

caries 

0.89  

(0.86, 0.91) 

0.96  

(0.95, 0.97) 

0.65  

(0.60, 0.71) 

0.81  

(0.66, 0.91) 

0.97  

(0.96, 0.98) 

0.55  

(0.42, 0.68) 

0.99  

(0.98, 1.00) 

Advanced 

dentin caries 

0.92  

(0.89, 0.96) 

0.97  

(0.95, 0.98) 

0.58  

(0.46, 0.71) 

0.87  

(0.66, 0.97) 

0.97  

(0.96, 0.98) 

0.42  

(0.28, 0.57) 

1.00  

(0.99, 1.00) 

Dentists 

with ma-

chine 

learning 

Overall 
0.89  

(0.87, 0.90) 

0.94  

(0.93, 0.96) 

0.81  

(0.78, 0.84) 

0.81  

(0.74, 0.87) 

0.97  

(0.95, 0.98) 

0.82  

(0.75, 0.88) 

0.97  

(0.95, 0.98) 

Enamel car-

ies 

0.86  

(0.84, 0.88) 

0.95  

(0.93, 0.96) 

0.73  

(0.68, 0.77) 

0.75  

(0.65, 0.83) 

0.97  

(0.95, 0.98) 

0.71  

(0.61, 0.80) 

0.97  

(0.96, 0.98) 

Early dentin 

caries 

0.92  

(0.90, 0.94) 

0.96  

(0.95, 0.97) 

0.70  

(0.63, 0.77) 

0.86  

(0.73, 0.95) 

0.97  

(0.95, 0.98) 

0.57  

(0.44, 0.69) 

0.99  

(0.99, 1.00) 

Advanced 

dentin caries 

0.95  

(0.92, 0.97) 

0.97  

(0.95, 0.98) 

0.59  

(0.51, 0.67) 

0.91  

(0.72, 0.99) 

0.97  

(0.95, 0.98) 

0.42  

(0.28, 0.57) 

1.00  

(0.99, 1.00) 

Artificial in-

telligence 
Overall 

0.91  

(0.89, 0.93) 

0.97  

(0.96, 0.97) 

0.88  

(0.86, 0.89) 

0.83  

(0.79, 0.86) 

0.99  

(0.98, 0.99) 

0.94  

(0.91, 0.96) 

0.97  

(0.96, 0.98) 
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Abbreviation: AUROC, area under the receiver operating characteristic. 

Source: modified from Table 1, publication S. Mertens, J. Krois, A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detec-

tion: Randomized trial, J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation held by authors of the 

publication, including Lubaina T. Arsiwala, as per publisher Elsevier policy. 
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Figure 11: Receiver operating characteristic of the dentists with machine learning software (red), 

dentists without machine learning software (blue) and the machine learning software by itself 

(grey) as evaluated in the randomized clinical trial for detecting proximal caries lesions on bitewing 

radiographs. Mean (solid black lines) and 95% confidence intervals (coloured areas within the 

dotted lines) of the curves are shown. Abbreviation: ML, machine learning. Source: modified from 

Figure 2 (a), publication S. Mertens, J. Krois, A.G. Cantu, L.T. Arsiwala, F. Schwendicke, Artificial 

intelligence for caries detection: Randomized trial, J Dent 115 (2021) 103849, doi: 

10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation held by the authors of publica-

tion, including Lubaina T. Arsiwala, as per publisher Elsevier policy. 
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Figure 12: Comparisons of the sensitivity and specificity in detecting proximal caries lesions on 

bitewing radiographs in the randomized clinical trial between dentists with machine learning (red), 

dentists without machine learning (blue), and the machine learning software by itself (grey). Mean 

(numbers atop the bars) and 95% confidence intervals (black whisker lines on the bars) of the 

estimates are shown. Abbreviation: ML, machine learning. Source: own representation. 
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Figure 13: Differences in sensitivity and specificity of each dentist (points) across the two groups 

of the randomized clinical trial, i.e., with machine learning software (red) and without it (blue) for 

the detection of proximal caries lesions on bitewing radiographs. The top image shows the entire 

X- and Y-axes. The bottom image has zoomed-in where the data points are concentrated (out-

lined by a red box) hence note the extent of the X- and Y-axes. Each pair of data points belonging 

to an individual dentist is connected by a black line to highlight the dentist-wise change in sensi-

tivity and specificity between the two groups of the clinical trial. For most dentists, an increase in 

sensitivity when aided by the machine learning software came at no or very limited decrease in 

specificity when compared to their own performance without any such support. Abbreviation: ML, 

machine learning. Source: modified from Figure 2 (b), publication S. Mertens, J. Krois, A.G. 

Cantu, L.T. Arsiwala, F. Schwendicke, Artificial intelligence for caries detection: Randomized trial, 

J Dent 115 (2021) 103849, doi: 10.1016/j.jdent.2021.103849. Data rights for reuse in dissertation 

held by authors of the publication, including Lubaina T. Arsiwala, as per publisher Elsevier policy. 
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When comparing treatment decisions between the trial groups, the use of ML was found 

to increase the likelihood of the dentists’ decision to non-invasively treat enamel caries 

(increase of 4%; p<0.05) as well as the decision to treat them invasively (increase of 7%; 

p<0.05) [26]. A similar shift was observed for early dentin caries, where the likelihood of 

invasive treatments increased by 11%; p<0.05 [26]. 
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4.   Discussion 

4.1   Short summary of results 

The research literature on ML in dentistry contains a large variety of clinical applications 

which demand a wide range of input data types, ML methodology, and performance met-

rics [7, 18]. The number of studies in the field is growing exponentially, however, many of 

them are hampered by considerable risk of bias and poor reporting quality [18]. This het-

erogeneity and paucity of robust evidence implies that despite an abundance of scientific 

evidence, we are faced with limited comparability across the studies [18].  

To characterize the emerging patterns in the included studies, we first needed to examine 

the nature of clinical tasks which were tackled using ML. A plethora of research aims was 

present; from detecting artifacts in images to examining the usefulness of transfer learn-

ing, from categorizing different dental conditions to supporting decision-making and as-

sessing cost-effectiveness of healthcare systems [18]. Classification tasks were the most 

common (51%) and can be used for diagnosing dental anomalies on images which is vital 

for early detection and successful treatment [18]. However, over the years, ML methods 

have improved their image classification performance at the cost of increased model com-

plexity and opacity [217]. The inability to explain ML’s methods and decisions has boosted 

the development of the field of explainable AI [18]; discussed in detail further ahead. Sec-

ond, in the field of restorative dentistry and endodontics, the trend is starting to move 

away from traditional tasks, e.g., caries detection and classification of teeth in photo-

graphs or radiographs, to more complex ones. For instance, recent studies have investi-

gated ML for diagnosing more subtle features like tooth cracks, performing image seg-

mentation to detect early-stage caries, localizing lesions in near-infrared transillumination, 

characterizing root morphology, volumetric analysis, formulating treatment plans, and 

even assessing the cost-effectiveness of healthcare systems [8, 52, 65, 74, 85, 86, 98, 

177]. 

An important reason behind the poor comparability across research studies is the high 

number of different ML model configurations in use. The abundance of model options 

combined with a scarcity of initiatives to benchmark them makes it challenging for re-

searchers to select appropriate models [218]. The benchmarking study aimed to address 

this issue by conducting a systematic comparison of different model configurations for the 
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specific task of outlining parts of a tooth on bitewing radiographs. ML combinations that 

attained the highest performance for this task consisted of U-Net++ or LinkNet architec-

tures and ResNet or DenseNet backbones [36]. VGG backbones demonstrated con-

sistency and stability across different model configurations [36]. Complex models per-

formed slightly better, if at all, than simpler alternatives and were not highly efficient on 

imbalanced datasets [36]. The benchmarking study tested the hypothesis that model per-

formance would be positively correlated to its complexity. While the results showed that 

this hypothesis was accepted, it must be highlighted that the large increases in model 

complexity, which came at the cost of larger computing demands, resulted in small im-

provements in performance [36]. It should be noted that lower computing demands allow 

for high resolution of input images which may be important for several dental applications 

[36]. Additionally, as hypothesized, the process of transfer learning improved model per-

formance [36]. 

Another weakness of the existing literature on ML in dentistry is the lack of prospective 

clinical comparisons. The randomized clinical trial described here attempted to address 

this issue. It revealed that the ML software outperformed the dentists and when used by 

the dentists, can improve their sensitivity in identifying enamel carious lesions [26]. How-

ever, the hypothesis of the clinical trial could only be partially accepted because the ML 

software did not improve the specificity of the dentists or impact their diagnostic abilities 

for advanced lesions [26]. This could be attributed to the ML software's ability to diagnose 

caries by learning from multiple experts, which acted as an extra pair of eyes for the 

dentists and bolstered their sensitivity for incipient lesions [26]. These improvements in 

performances varied across the individual dentists [26]. On the other hand, the dentists 

did not require much assistance from the software to identify advanced lesions because 

they were more conspicuous on radiographs. These aspects of performance were also 

reflected in the inter-rater agreement between the dentists; the agreement was the lowest 

for enamel lesions and gradually increased with the depth of the caries lesions. Addition-

ally, using ML increased the treatment severity for the detected lesions; significantly more 

enamel caries lesions were detected and then assigned non-invasive treatments or, for a 

notable proportion of the lesions, invasive treatments [26]. 
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4.2   Interpretation of results 

The three studies presented here are generally consistent with the findings of other stud-

ies. First, the heterogeneity in the studies included by other reviews prevented them from 

performing meta-analyses [11, 12, 19-22]. Second, most reviews reported that included 

individual studies had risk of bias and poor reporting quality [8, 11, 20, 22, 219-221]. 

Third, studies have noted that the superiority of ML models in one domain does not nec-

essarily transfer to other domains [222]. Fourth, transfer learning has been shown to im-

prove model performance [222]. Fifth, a clinical study has demonstrated that an ML soft-

ware performed significantly better than dentists in detecting caries and suggested that 

its use may improve dentists’ accuracy and sensitivity, especially for enamel caries le-

sions [25]. Finally, using ML increased the treatment intensity for a notable proportion of 

enamel lesions to invasive therapy which is in line with the fact that dentists continue to 

manage early lesions restoratively as demonstrated by a meta-analysis [223]. 

Nonetheless, some results were not consistent with other studies. First, most other re-

views included far fewer studies than the scoping review described herein because they 

focussed on specific dental topics and thus had more restrictive inclusion criteria [8, 12, 

19, 21, 22, 219-221, 224]. Second, the use of ML software in the clinical trial did not 

improve dentists’ accuracy for advanced lesions, as suggested by a previous study [25]. 

The potential reason for this may be that advanced lesions show prominent radiographic 

changes which the dentists could identify even without ML support. Lastly, the dentists in 

the clinical trial exhibited higher sensitivity than that reported by a meta-analysis of over 

100 studies [225]. This suggests that the dentists in the clinical trial were particularly ac-

curate owing to possible selection bias or performance bias. 

 

4.3   Embedding the results into the current state of research 

The scoping review aimed to make ML studies in dentistry more robust and contribute to 

bridging the knowledge gap in the research field by identifying areas of fallacy in the cur-

rent literature and suggesting methods to overcome them [18]. First, reporting of results 

that are generalizable is one of the cornerstones of high-quality research [2, 220, 226]. 

Hence, researchers should strive to generate data from multiple centres which may add 

diversity in terms of geographic location, racial, social, and economic status [220, 226]. 
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Also, using a variety of types of data sources to create richer datasets could allow for 

cross-checking the data integrity and leveraging information from different sources [226]. 

Furthermore, the studies usually did not provide access to their data, except for those 

which used open databases, thus resulting in difficulties in replication of results [226]. 

Researchers are urged to follow the journals’ data sharing guidelines in order to promote 

study replicability [18]. There may be concerns towards data sharing and privacy, for ex-

ample, when anonymization of data is difficult [227]. Here, options like federated learning 

which eliminate the need to share data, as explained in Figure 14, should be encouraged 

[227]. Normally, in AI, data is collected from different local sources and sent to a central 

server for training an AI model. However, in federated learning, the data stays on the local 

devices or sources. Instead of sending the data to a central server, the AI model is sent 

to the local devices. Each device trains the model using its own data, and only their model 

is returned to the central server, which combines all the individual models into one up-

dated model [227]. Thus, the personal data remains private and secure, which is useful 

for situations where privacy is important, like in healthcare or financial applications. 
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Figure 14: Representation of the concept of federated learning in the context of machine learning 

and how it differs from traditional central learning. In federated learning, the need to share data 

between institutions of universities is eliminated. Source: own representation.  
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Second, the high number of metrics used to measure model performance further exacer-

bated the limited comparability between studies [18]. It is crucial to define a standardized 

set of outcome metrics for specific dental subtasks in ML that encompasses diagnostic 

and clinical usefulness, prevalence of outcome, and various aspects of model perfor-

mance. Also, studies examining the value of ML when used by dentists compared to the 

current standard of care are needed [2].  

Third, the generation of reference tests (i.e., establishment of the ground truth) merits 

discussion. Overall, the studies included in the review used a variety of methods to es-

tablish reference tests but many did not provide further details [18]. It was concerning to 

note that a few studies had their reference test developed by only one expert, which is 

not ideal considering the variance in experts’ annotations [8]. Additionally, datasets used 

to evaluate model performance should be standardized and heterogeneous to ensure 

balanced datasets and generalizability [18, 221, 228]. One approach is to establish 

benchmarking datasets that are publicly available, as attempted by the International Tel-

ecommunication Union (ITU) together with the World Health Organization (WHO) [18]. 

The ITU/WHO has set up a focus group to define the standards of AI applications in 

medicine and one of its subgroups is ‘Dental Diagnostics and Digital Dentistry’ [229].  

Fourth, the quality of existing literature on ML in dentistry was poor to moderate [18]. The 

risk of bias arising from ML methods and data was insufficiently addressed, e.g., biases 

in data, leakage of data, or overfitting of the model. Furthermore, many studies failed to 

externally validate their models which is important as it speaks to the generalizability of 

the results [2, 221]. Generally, most studies tested applications, built models, and con-

cluded that ML can learn and predict. However, general reporting without details hinders 

study replication [18]. Researchers are strongly advised to adhere to the published check-

lists on study conduct and reporting [35].  

Current guidelines require rigorous and comprehensive planning, conducting, and report-

ing of ML studies in dentistry [35]. A crucial component of these guidelines is the hypoth-

esis-driven selection of the ML model. Researchers must select a model architecture, 

backbone, complexity level, and initialization strategy specific for their study. However, 

the abundance of options for models combined with a lack of their comprehensive com-

parisons often result in researchers struggling to identify an ML model suitable for their 

specific requirements [36]. With many researchers defaulting to choosing the popularly 

known models, there is a lack of hypothesis-driven model selection. The benchmarking 
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study aimed to address this knowledge gap by conducting a systematic comparison of 

various ML model configurations in order to provide guidance on ML design and thus 

contribute to evidence-based building of ML models in the field. 

The clinical trial adds to the research field by providing empirical evidence of a prospec-

tive clinical comparison of an ML software. It highlighted the promising potential of com-

bining dentists with a high-performing ML software in a real-world clinical setting to 

achieve diagnostic capabilities superior to the dentists alone [26]. However, the height-

ened sensitivity to enamel caries came with a higher proportion of them being assigned 

to invasive treatments [26]. These findings indicate the need to validate ML applications 

prospectively; ML for health should meet the criteria of evidence-based care and re-

searchers in ML in dentistry should critically and comprehensively evaluate ML solutions 

[2]. 

 

4.4   Strengths and weaknesses of the studies 

The scoping review presented herein has several noteworthy features. First, it is the most 

comprehensive overview of ML in dentistry comprising of 168 studies [18]. Second, the 

review is potentially generalizable to other studies as it covers the diversity in research 

questions, ML models, model performance metrics, and challenges related to risk of bias 

and poor reporting quality. Third, and as a limitation, no randomized controlled trials were 

included because none were available, which should be noted while interpreting the re-

sults [18]. Fourth, while the TRIPOD checklist was used to examine the reporting quality 

of the individual studies, it has not been specifically validated for ML applications [17]. 

Nevertheless, previous studies have employed it to assess ML models as it was originally 

designed for assessing clinical prediction tools, which are comparable to ML models [17]. 

Last, this review did not examine the clinical usability of the reviewed ML models as it 

was outside the scope of the study aim [18].  

The benchmarking study has a few limitations. First, the specific task of outlining parts of 

a tooth on radiographs and evaluation of a certain set of ML models may restrict the 

generalizability of the results to similar outlining-related tasks or model structures [36]. 

Second, the use of data generated from different machines may have influenced the re-

sults [36]. Additionally, radiographs containing rare features, e.g., bridges, implants, and 
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root canal fillings were excluded. However, these limitations do not undermine the study 

results since the primary aim was to benchmark models rather than build clinically useful 

or highly accurate ones [36]. Last, the study did not explore the possibility of more efficient 

restructuring of complex models that could reduce computing resources [36].  

The clinical trial has several strengths and limitations. First, it is one of the few clinical 

randomized controlled trials in the field of dentistry which utilized an array of outcomes to 

carefully quantify the influence of ML [26]. Second, and as a limitation, the trial was not 

entirely conducted in a clinical setting but in a simulated clinical environment [26]. While 

this offered the advantage of controlling and standardizing the setup to a certain extent, 

it should be noted when interpreting the results. In a real clinical setup, there are other 

diagnostic options available and several factors affecting treatment decisions beyond the 

diagnoses (e.g., dentists’ experience and armamentarium, patients’ expectations, and 

costs) [26]. Third, the radiographs and participating dentists were selected from only two 

machines and one clinical center, respectively, and thus the results may have reduced 

generalizability [26]. Additionally, the participating dentists were younger than the aver-

age German dentist, primarily practicing in an urban environment, and exhibited higher 

accuracy than reported in other studies [26]. Fourth, the reference test was defined by 

human experts, a method that may have limited robustness; and additional validation 

using histology was not possible [26].  

 

4.5   Implications for practice and/or future research 

In the field of dentistry, ML studies should aim to reduce the risk of bias and improve 

adherence to reporting standards, thereby allowing for their replication and improving ro-

bustness, transparency, and generalizability of their findings [2, 7, 18, 221]. A minimum 

(core) set of outcomes and metrics for model performance should be established to facil-

itate comparisons across studies [18]. Future research should aim to showcase how ML 

can improve the quality and efficiency of patient care, as attempted by the clinical trial 

described herein [2, 7, 18]. Researchers may benefit from applying the concept of transfer 

learning when building ML models for dental radiographic analysis and considering less 

complex models as alternatives if computing resources and time needed to develop the 
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models are constraints [36, 222, 230]. However, researchers must note that models de-

veloped on non-dental data sets may not perform similarly well on dental data sets [36, 

222]. In clinical practice, ML has the potential to improve dentists’ diagnostic performance, 

especially for detecting enamel caries lesions and should be pursued in future studies 

along with the implications of the nature of treatments thus assigned [26]. Furthermore, 

as the influence of ML may differ among dentists it warrants further investigation in order 

to advance towards personalized dental practice [26]. 

ML applications can enhance clinician-patient communication [2]. For example, ML soft-

ware can generate an augmented version of the original image with the pathology being 

highlighted in color, as depicted in Figure 2. This can help patients to better understand 

their condition and thus the treatment plan [2]. However, it is essential that the ML soft-

ware conveys its results in an easy-to-understand manner and not in technical or meth-

odological jargon [2]. The most recent example of ChatGPT, an AI application that can 

generate meaningful language text, can be effectively used in this context [231].  

Simulation is another AI application omnipresent in our everyday life. For example, au-

tonomous driving relies heavily on simulations. As a real-world test drive on all the roads 

in the world, approximately 8.8 billion miles, is a significant challenge, simulation is a 

potential solution for this [2]. Simulation is not widely used in dentistry as of yet [2]. The 

dental pharmaceutical industry invests millions of dollars in the drug development process 

but often drug trials do not achieve the desired targets. Simulation of these processes 

where the experiments are run by a computer is a potential alternative to advance the 

drug trials [232]. The idea here is to capitalize on the ability of AI to analyze big data to 

identify previously unknown molecular characteristics and interactions and thus, predict 

the properties of the drug under trial [232]. 

All the implications of AI in dentistry discussed until now, namely faster, earlier, and more 

accurate disease diagnosis and thus less expensive treatment plans, efficient manage-

ment of workflow in clinics, and better communication with patients can all come together 

and contribute to the bigger picture of better understanding an individual’s healthcare 

needs [7]. This provides the basis for advancing personalized dentistry which is currently 

in its nascent stages [19]. Its imminent obstacle is the unavailability of data which is nei-

ther standardized nor linkable to other data sources [2]. Resolving such issues would go 

a long way in advancing personalized dentistry. 
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Furthermore, AI has been recently introduced in dental education and so far, its use has 

been limited to aid teaching of operative dentistry and craniofacial anatomy [233]. The 

integration of AI in dental education holds several implications for the field. First, AI tech-

nologies can enhance the learning experience by providing interactive and personalized 

educational resources [234]. Virtual simulations and augmented reality tools can allow 

students to practice dental procedures in a risk-free environment, improving their skills 

and confidence. One of my previous studies has demonstrated that augmented vision 

helped motivate dental students in learning to detect proximal caries lesions on bitewing 

radiographs [234]. Second, AI can facilitate students to access vast amounts of dental 

knowledge and research. Third, AI can assist in assessments and evaluations by auto-

mating tasks such as grading and feedback generation, saving time for educators and 

providing timely and objective assessments for all students. Overall, the adoption of AI in 

dental education has the potential to revolutionize teaching and learning methods, im-

prove clinical competence, and promote continuous professional development in the den-

tal field. Future studies should further explore how the promising potential of AI can be 

tapped for education. 

Last, it is hard to interpret the process used by most AI systems to arrive at a final decision 

due to the inherently complex structure of the model. Thus, AI applications are usually 

regarded as ‘black boxes’ i.e., users cannot fully comprehend the criteria used by the AI 

to generate a certain result [7, 219]. This has boosted the field of explainable AI where 

attempts are made towards unravelling the underlying decision systems employed by AI 

models [18]. Advancements in explainable AI will certainly improve the transparency of 

the models and thus help clinicians to trust AI more. The clinical trial described in this 

dissertation also collected data on the eye movements of the dentists while they exam-

ined the bitewing radiographic images, as indicated in Figure 3. Figure 15 depicts an 

example of a dentist’s eye movements in this trial. Analysing this data could help to un-

derstand how the dentists extract relevant information from the images. These insights 

can then be transferred to AI models, enabling them to better replicate and augment hu-

man expertise. Consequently, this advancement may contribute to the development of 

improved AI-supported diagnostic tools and progress further towards explainable AI.  

 



Discussion 77 

 

Figure 15: An exemplary gaze pattern of a participating dentist while detecting proximal caries 

lesions on bitewing radiographs in the randomized clinical trial. The observed gaze pattern is 

characteristic of the task assigned to the dentist and it shows that the dentist employed a system-

atic search strategy i.e., examining the proximal surfaces of the teeth in one jaw before moving 

on to the opposite jaw. Source: own representation.
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5.   Conclusions  

ML techniques have been widely used in dentistry for a variety of tasks and have em-

ployed a diverse set of models and metrics to evaluate their performance [18]. The exist-

ing literature showed a considerable risk of bias as well as limited adherence to reporting 

guidelines [18]. While the focus of many studies was on developing ML models, their 

generalizability, robustness, or clinical usefulness was infrequently presented [18]. ML 

researchers are encouraged to adopt the practice of selecting models based on their 

hypothesis and optimizing their model structures with regards to transfer learning, model 

complexity, and computing resources [36]. Empirical evidence from a randomized con-

trolled trial suggested that ML software can bolster dentists’ performance in clinical diag-

nostic tasks and this advantage should be leveraged and explored further [26]. In my 

current research projects, I aim to expand on these results by investigating how the ML 

software influenced the visual search strategies used by the dentists which led to better 

diagnostic performance. Understanding how dentists extract information from radio-

graphic images may serve in building improved ML-supported tools, improving transpar-

ency of the models, and thus fostering trust and acceptance of ML systems by clinicians. 
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Abstract of Master thesis 

 

Periodontal disease measures and risk of incident peripheral artery disease: The 

Atherosclerosis Risk in Communities (ARIC) Study 

 

Background: The association of periodontal disease with atherosclerotic cardiovascular 

diseases is well known, but not specifically with incident peripheral artery disease (PAD). 

Therefore, we studied the associations of periodontal disease with incident PAD in a pop-

ulation-based setting. 

Methods: Among 9,793 participants (aged 53-75 years) without prevalent PAD, self-re-

ported history of periodontal disease was ascertained. Of these, 5,872 participants un-

derwent full-mouth examinations from which periodontal status was defined using the US 

Centers for Disease Control and Prevention-American Academy of Periodontology (CDC-

AAP) definition. We quantified the association of periodontal disease with incident PAD 

(defined by hospital admission diagnosis or procedures) using multivariable Cox regres-

sion models. 

Results: During a median follow-up of 20.1 years, 360 participants (3.6%) developed 

PAD. In models accounting for potential confounders including diabetes and smoking 

pack-years, there was higher hazard of PAD in participants with self-reported tooth loss 

because of periodontal disease (hazard ratio:1.54 [95% CI:1.20-1.98]), history of perio-

dontal disease treatment (1.37 [1.05-1.80]), and periodontal disease diagnosis (1.38 

[1.09-1.74]), compared to their respective counterparts. The clinical measure of periodon-

tal disease (n = 5,872) was not significantly associated with incident PAD in the fully ad-

justed model (e.g., 1.53 [0.94-2.50] in CDC-AAP-defined severe periodontal disease ver-

sus no disease). 

Conclusion: We observed a modest association of self-reported periodontal disease, 

especially when resulting in tooth loss, with incident PAD in the general population. None-

theless, a larger study with the clinical measure of periodontal disease is warranted. 

Citation: Arsiwala LT, Mok Y, Yang C, Ishigami J, Selvin E, Beck JD, Allison MA, Heiss 

G, Demmer RT, Matsushita K. Periodontal disease measures and risk of incident pe-
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dontol. 2022 Jul;93(7):943-953. doi: 10.1002/JPER.21-0342.  
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