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Second, we use this description in the framework of bilinear control systems to charac-
terise reachable sets of coherently controllable quantum systems with switchable coupling
to a thermal bath. The core problem reduces to studying a hybrid control system (“toy
model”) on the standard simplex allowing for two types of evolution: (i) instantaneous per-
mutations and (ii) a one-parameter semigroup of d-stochastic maps. We generalise upper
bounds of the reachable set of this toy model invoking new results on thermomajorisation.
Using tools of control theory we fully characterise these reachable sets as well as the set of
stabilisable states as exemplified by exact results in qutrit systems.
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Dedicated to the memory of Andrzej Kossakowski.

It is a pleasure to contribute to honour Andrzej Kossakowski as key figure
in laying and triggering the now classical groundwork (around [54, 55, 35,
34, 33], see [17]) that completely characterises the infinitesimal generators of
(Markovian) quantum maps in finite dimensions. His towering work contin-
ues to be a well of inspiration. With the recent focus in quantum dynamics
now taking “the bath” as quantum thermodynamical resource, here we try to
carry on somewhat in his spirit, in particular when characterising the gener-
ators of Markovian thermal quantum operations0a in a Lie-semigroup frame.

1. Introduction

Linking the well established field of quantum control [21, 26, 32, 51] with
the emerging subject of quantum thermodynamics [9, 61] is quite a novel
and important line of research. Thus in this article we focus on framing
and studying quantum-dynamical control problems with coherent controls and
thermal resources as additional controls1a [7, 28], where the time evolution
of controlled systems is taken to be defined by a controlled gksl-equation.
We build on recent progress in interfacing (non-)Markovian1b processes with
quantum thermodynamics in general [83, 14, 1, 22, 81, 15, 18], and with its
resource-theory approach in particular [36, 8, 64, 72].

To this end, (Lie-)semigroup techniques [40, 42, 44, 58] lend themselves as
a common frame naturally extending to concepts of (i) classical majorisation
and of (ii) thermomajorisation [66] as well as (iii) Markovianity of quantum
maps [27, 78]. Moreover, (iv) the set of reachable states related to a given
initial state of a (Markovian) quantum control system takes the form of a
Lie-semigroup orbit [27, 78].

Studying reachable sets of such control systems is paramount, e.g., to
ensure well-posedness of many (optimal) control tasks. The main question is
whether a desired target state can be prepared given an equation of motion
(plus some control variables) and an initial condition, and how to charac-
terise feasible state transfers in general. Interestingly, the core problem of

0asee Thm. 2 in Sec. 3.1.
1ai.e. with non-unitary controls chosen from the set of thermal operations [48, 46, 11]
1bIn accordance with [92] the (time-dependent) Markovian quantum maps are taken as

those which are infinitesimal CPTP-divisible.
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the resource approach to quantum thermodynamics (as initially sparked by
Brandão et al. [10], Horodecki & Oppenheim [46], as well as Renes [73], and
further pursued in [31, 38, 62, 76, 67, 2, 85]) is similar—namely: given a
fixed background temperature as well as initial and target states of a quan-
tum system, can the former be mapped to the latter in a “thermodynamically
consistent” [53] manner? Here the admissible quantum maps are “thermal
operations” which form the fundamental building block of the resource the-
ory approach to quantum thermodynamics. Roughly speaking, they comprise
operations (assumed to be) performable in arbitrary number without cost. A
precise definition is given in Sec. 3.1., and for a comprehensive introduction
to the general topic see, e.g., the review by Lostaglio [61].

As teasers for the power of combining control theory with “thermal re-
sources” in the sense of allowing for (non-)Markovian processes consider the
following two (known) examples:

(1) Take any closed quantum system with non-trivial Hamiltonian which
can be fully unitarily controlled. Then there always exists a non-
Markovian thermal operation (known as β-swap [62]) such that adding
it to the setup as an additional control allows to generate the ground
state up to arbitrary precision [2], [87, Prop. 4.12] (and thus every state:
use the Schur-Horn theorem to generate the eigenvalues of the target
state on the diagonal, followed by a full dephasing via the β-swap1c).

(2) n-qubit systems with full coherent control plus switchable amplitude
damping (coupling to a bath of temperature T = 0) for one of the
qubits act (up to closure) transitively on the set of all density operators
[7]. The result generalises from qubits to arbitrary qud its and m-level
systems [28].

Hence in these two instances reachability is settled. However, for controlled
Markovian dynamics with thermal resources (e.g., coupling to a bath of tem-
perature 0 < T < ∞) the reachability problem is open and subject of this
work. Here, a fundamental property of thermal processes will be central:
Under thermal operations, diagonal density matrices (in the eigenbasis of
the system Hamiltonian) remain diagonal, meaning diagonal elements (pop-
ulations) evolve independently from off-diagonal ones (coherences), refer also
to Cor. 2. This greatly simplifying property lends itself for studying the
restricted control system on diagonal states, later called “toy model”. Gen-

1cThis only holds unconditionally if e−1/T ≥ 1
2
. For temperatures lower than that the

β-swap has to be implemented as a two-step dephasing thermalisation (i.e. one needs to
be able to implement the dephasing independent of the diagonal action of the β-swap) in
order to get from the ground state to a ball around the maximally mixed state. See also
the Worked Example at the end of Sec. 3.1.



4

eral results and numerical illustrations, as well as analytic results in a low-
dimensional setting will be presented in Secs. 4.1. and 4.2., respectively.

Structure and Main Results. Sec. 2. sets the stage for discussing the dy-
namics of open Markovian systems as incarnations of bilinear control systems
with two types of controls: coherent Hamiltonian ones as well as incoherent
dissipative ones such as switchable thermal operations as brought about by
coupling the quantum system to a thermal bath.

Sec. 3. paves the semigroup background for introducing general concepts
of majorisation (such as d-majorisation, a special case of thermomajorisation)
needed in the context of describing reachability under thermal operations.
Within this framework, Markovian quantum maps come with the particular
structure of Lie semigroups [27, 78], which allows for putting majorisation
and Markovianity on a common ground.

In particular, we give the respective Lie wedges to certain sets of quan-
tum maps such as Gibbs-preserving ones (Gibbs) as well as thermal (TO)
and enhanced thermal operations (EnTO); the corresponding generated Lie
semigroups thus define the respective Markovian counterparts MGibbs, MTO,
and MEnTO. By giving set-inclusions, in Sec. 3.1. we interrelate them all.
As another important result (Thm. 2) one gets an explicit construction for
(possibly all) generators of Markovian thermal operations via temperature-
weighted projections out of a total Hamiltonian (preserving energy of system
and bath) in the Stinespring dilation. With regard to reachable sets of diag-
onal states under such controlled Markovian dynamics, in Sec. 3.3. we recall
the d-majorisation polytope and its properties.

Sec. 4. illustrates the theory of bilinear open quantum control systems,
where the incoherent controls are brought about by Markovian thermal op-
erations. Reachable sets for diagonal states under such operations are char-
acterised by extreme points of the d-majorisation polytope. More precisely,
in n-level systems, the enclosure of the reachable set by a convex set is given
by the convex hull over the permuted extreme points of the d-majorisation
polytope (Thm. 7). Sec. 4.2. discusses three-level systems in detail. By re-
formulating the control system as a differential inclusion, we find an analytic
expression for the set of stabilisable states. Moreover we compute the set of
reachable states for arbitrary initial states, and we deduce the structure of
control sets and their reachability order.

2. Control Setting of Markovian Quantum Dynamics

To fix notations, we write pos1(n) for the convex set of all n× n density
matrices (i.e. all positive semi-definite n×n-matrices of trace one), L(Cn×n)
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for the space of all linear operators acting on complex n × n-matrices, and
CPTP(n) for the convex subset of L(Cn×n) which consists of all completely
positive and trace-preserving maps, also known as quantum channels, quan-
tum maps, or Kraus maps. We prefer to use the term “quantum maps”.

Consider the usual Markovian master equation

ρ̇(t) = −i[H0, ρ(t)]− Γ(ρ(t)) , ρ(0) = ρ0 ∈ pos1(n) (1)

with Γ ∈ L(Cn×n) of gksl-form [35, 60], i.e.

Γ(ρ) :=
∑
k

(
1
2

(
V †k Vkρ+ ρV †k Vk

)
− VkρV †k

)
(2)

and Vk ∈ Cn×n arbitrary to ensure the evolution ρ(t) = e−t(i adH0
+Γ)ρ0 solv-

ing (1) remains in pos1(n) for all t ∈ R+ := [0,∞). Recall (e−t(i adH0
+Γ))t∈R+

is CPTP, hence a (trace norm-)contraction semigroup [71] leaving pos1(n) in-
variant.

In this work, an overarching goal is to characterise control systems Σ ex-
tending Eq. (1) by coherent controls (generated by Hermitian Hj and (piece-
wise constant) uj(t) ∈ R) and by making dissipation bang-bang switchable
in the sense

ρ̇(t) = −i
[
H0 +

m∑
j=1

uj(t)Hj , ρ(t)
]
− γ(t)Γ(ρ(t)) (3)

with γ(t) ∈ {0, 1}. This setting is a typical incarnation of the wide class of
bilinear control systems [49, 29]

ẋ(t) = −
(
A+

∑
j

uj(t)Bj

)
x(t) , x(0) = x0 , (4)

where A denotes an uncontrolled drift, while the control terms2a consist of
(piecewise constant) control amplitudes uj(t) ∈ R and linear control opera-
tors Bj . Here the state x(t) should be thought of as density operator.

A paramount notion in such control systems is the reachable set of x0

at time τ ≥ 0, denoted reach(x0, τ). It is defined as the collection of all
x(τ), where t 7→ x(t) is any solution of (4). Likewise, the reachable set until
time τ is defined as reach[0,τ ](x0) :=

⋃
τ ′∈[0,τ ] reach(x0, τ

′), and the overall

reachable set as reach(x0) :=
⋃
τ ′≥0 reach(x0, τ

′). The latter is mostly used
in this work, where analogously, we write reach(ρ0) for the entire reachable
set of Eq. (3). The system Lie algebra of (4), which provides the crucial tool

2aThe bilinearity of the control terms w.r.t u and x entails the terminology of Eq. (4).
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for analyzing controllability, accessibility, and reachability questions, reads
k := 〈A,Bj | j = 0, . . . ,m 〉Lie.

In particular for closed quantum systems, i.e. systems which do not inter-
act with their environment (Γ=0=B0) one would choose A as i adH0 and Bj
as i adHj , j = 1, . . . ,m to recover the right-hand side of (3). Then it is known
[50, 12, 49, 26] that reach(x0) is given by the orbit of the initial state under the
action of the dynamical systems group K := 〈exp k〉, provided K is a closed
and thus compact subgroup2b of AdSU(n)

∼= {Ū ⊗ U : U ∈ SU(n)} ⊆ SU(n2).
More generally, for open systems undergoing Markovian dissipation which
are driven by coherent controls Bj = i adHj for j = 1, . . . ,m one sets the
operator B0 = Γ to include the environmental interaction. This operator
takes the form of a gksl-dissipator as given in Eq. (2). If B0 is bang-bang
switchable it acts as additional control, and if it is uncontrolled it contributes
to the drift term A = i adH0 . Motivated by recent experimental progress
[43, 95, 16, 93] as described in [7] here we address the first case and refer to
it as Scenario BB in the sequel.

In general, a concise description of reachable sets of Eq. (3) is challenging
in particular in higher-dimensional cases. Although it is known that it always
takes the form of a (Lie-)semigroup orbit, see, e.g., [27] this is usually not
enough to obtain explicit characterisations. Currently there are only a few
scenarios for which reachability is settled: (a) In the unital case Γ(1n) = 0,
one has [4, 96]

reachΣ(ρ0) ⊆ {ρ ∈ Cn×n | ρ ≺ ρ0} . (5)

(b) If in addition Γ is generated by a single normal V , one gets (up to closure)
equality in (5) provided the unitary part of Eq. (3) is controllable and the
switching function γ(t) gives extra control (cf. [7], [84, Prop. 5.2.1] for finite
and [90] for infinite dimensions).

Under the scenario BB above plus the invariance of diagonal states im-
posed by thermal processes (see [61] and Cor. 2 below) as, e.g., implemented
by the gksl-generators V1 and V2 of Eqs. (19) and (20), the closure of the
unitary orbit of diag

(
reachΛ(x0)

)
sits in the closure of reachΣ(U diag(x0)U †).

Here Λ denotes a simplified version of Σ—later called “toy model”—which
will be introduced in Sec. 4.1. Settings beyond thermal relaxation are pursued
with similar techniques, e.g., by [74] at the expense of arriving at conditions
that are hard to verify for higher-dimensional systems.

2bAccording to the above definition, in closed systems the system Lie algebra k is a Lie
subalgebra of the adjoint representation of the special unitary Lie algebra, i.e. k ⊆ adsu(n).
Yet the commutator identity [adH , adH′ ] = ad[H,H′] allows for identifying k with the Lie
subalgebra of su(n) generated by iH0, . . . , iHm. In generic open systems, however, the
gksl-term Γ precludes any similar a-priori simplification of the system Lie algebra k.
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3. Semigroups, Majorisation, and Markovian Quantum
Dynamics

In this section, we introduce background and terminology for unifying
several existing and seemingly different notions in the literature.

Majorisation via Semigroups. First, let us have a closer look at “the”
concept of majorisation from the point-of-view of semigroups. Let Z be a
real or complex finite-dimensional3a vector space and let C ⊆ Z be a closed
and convex subset. Moreover, let B(Z) denote the set of all linear operators
acting on Z and let S(C) be the set of operators in B(Z) which leave C
invariant. Obviously, S(C) is a subsemigroup of B(Z), i.e. S(C) is closed
under multiplication and contains the identity. Finally, let S0 ⊆ S(C) be any
subsemigroup of S(C). Then x ∈ Z is said to be S0-majorised by y ∈ Z
(denoted by x ≺S0 y) if there exists a transformation A ∈ S0 such that
Ay = x holds. This concept was first introduced by Parker and Ram [70] and
is known as semigroup majorisation [66, Ch. 14.C]. A well-studied example
of S0-majorisation is classical vector-majorisation on Rn, where C := {x ∈
Rn+ :

∑n
j=1 xj = 1} ⊂ Rn is the standard simplex and S0 is chosen as the set

of all real doubly-stochastic matrices of size n × n [66, Ch. 1 & 2]. Further
physically relevant examples are discussed in the following sections; here we
summarise some basic properties which result from the above definition.

Proposition 1. Let S(C) be the subsemigroup of B(Z) which leaves C in-
variant and let S0 be any subsemigroup of S(C). Then the following hold:

(i) S(C) is (topologically) closed and convex, and thus simply connected.

(ii) If C is compact and the convex cone C0 := R+ · C generated by C has
non-empty interior, then S(C) is compact.

(iii) Given any y ∈ Z, if S0 is convex or compact, then so is the set
MS0(x) := {y ∈ C : y ≺S0 x} = S0 · x.

Proof. (i) and (iii) are obvious so we only prove (ii). If C is compact, then
so is C′ := [0, 1] · C; in particular C′ ⊆ BK(0) for some K > 0. Moreover, C′
is invariant under S(C) by linearity. Now, by assumption on C0 there exist
x0 ∈ C′ and r > 0 such that Br(x0) ⊆ C′. Thus—given any A ∈ S(C)—for
all ∆ ∈ Br(0) we obtain the estimate

‖A∆‖ = ‖A(∆ + x0)−Ax0‖ ≤ ‖A(∆ + x0)‖+ ‖Ax0‖ ≤ 2K ,

3aThis is just to avoid further technicalities; in principle this approach works in arbitrary
dimensions.
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where we used the invariance of C′ and its boundedness. This shows that
S(C) is bounded by 2Kr (with respect to the operator norm). Together with
closedness from (i) we conclude that S(C) is compact.

The relation ≺S0 induced by S0 is always reflexive and transitive and thus
a preorder on C. In general, however, ≺S0 fails to be anti-symmetric and
hence a partial order, e.g., if S0 contains a subgroup which acts non-trivially
on C. This can always be resolved by a suitable equivalence relation3b such
that the corresponding quotient space provides a natural domain on which
≺S0 becomes an order. In the above example of classical vector-majorisation
such a “natural domain” can be identified with a fixed “Weyl chamber”.

Lie Theory for Semigroups, e.g., Quantum Maps. Next, we elucidate
Markovianity of quantum maps from the perspective of Lie-semigroup theory.
To this end let S be any closed (sub-)semigroup of B(Z) or GL(Z), where
GL(Z) denotes the set of all invertible elements of B(Z). For what follows,
recall that B(Z) is the Lie algebra of GL(Z). Then one defines the concept
of a Lie wedge of S via

L(S) := {A ∈ B(Z) : etA ∈ S for all t ≥ 0} . (6)

Obviously this construction generalises the notion of a Lie (sub-)algebra for
Lie (sub-)groups3c of GL(Z). The natural example of a Lie wedge in relation
to quantum control is the set of all gksl-generators [35, 60] which consti-
tutes the Lie wedge to the semigroup CPTP(n) of all quantum maps [27] (of
dimension n). Here, Z can be taken to be iu(n), the set of all Hermitian
n × n-matrices, and C to be pos1(n). Then CPTP(n) is a compact convex
subsemigroup of S(pos1(n)) ⊂ B(iu(n)).

The following proposition and corollary summarise elementary properties
of the above construction. In particular, part (iv) below justifies calling L(S)
the “tangent cone” of S at the identity.

Proposition 2. Let S be a closed semigroup in B(Z) or GL(Z) and let L(S)
be its Lie wedge. Then the following properties hold:

(i) L(S) is a closed convex cone of B(Z).

(ii) L(S) is invariant under conjugation by arbitrary edge elements, that
is, eAL(S)e−A = L(S) for all A ∈ E(L(S)), where the edge E(L(S)) is
defined as largest subspace contained in L(S).

(iii) E(L(S)) is a Lie subalgebra of B(Z). More precisely, it is the Lie algebra
of E(S), where E(S) denotes the largest subgroup3d of S.

3bx ∼ y :⇐⇒ x ≺S0 y and y ≺S0 x
3cFor simplicity, we drop the prefix “sub” whenever the corresponding superset is obvious.
3dNote that E(S) is also called edge—yet edge of S instead of L(S).
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(iv) The operator A ∈ B(Z) belongs to L(S) if and only if there exists a
C1-curve γ : [0, ε]→ S for some ε > 0 with γ(0) = id, γ̇(0) = A, i.e.

L(S) = {γ̇(0) : γ ∈ C1([0, ε], S) and γ(0) = id} . (7)

For the statements (i), (ii), and (iii) we refer to [42, Prop. 1.14] and [58,
Thm. 4.4]. Statement (iv) can be found in [58, Def. 4.2] (without proof) and
in [40, Prop. V.1.7] (yet under a much more general setting). For complete-
ness, a sketch of a proof is given in App. A. Due to Prop. 2 any subset of
B(Z) featuring property (i) and (ii) (and thus also (iii)) will be called an
(abstract) Lie wedge.

Later we will encounter a scenario where the first derivative of a certain
family of curves is not only in the Lie wedge but rather in its edge. In this
case one can extract further information from higher derivatives:

Corollary 1. Let ε > 0, a closed, convex semigroup S ⊆ B(Z), and a
C2-curve γ : [0, ε] → S with γ(0) = id, γ̇(0) ∈ E(L(S)) be given. Then
γ̈(0) ∈ L(S).

Proof. Let us assume, by way of contradiction, thatA0 := γ̇(0) ∈ E(L(S)) and
B0 := γ̈(0) 6∈ L(S). Since L(S) is closed and convex there exists a separating
linear functional α : B(Z)→ R, i.e. α(B0) < 0 and α(A) ≥ 0 for all A ∈ L(S)
[75, Thm. 3.4]. Because A0 ∈ E(L(S)) we know RA0 ∈ L(S) which forces
α(A0) = 0. Moreover, convexity of S together with Prop. 2 (iv) implies
S − id ⊆ L(S): to see this, simply consider the curve t 7→ tA+ (1− t)id ∈ S
where A ∈ S is arbitrary. With this we obtain the estimate

α(id) ≤ α(id) + α(γ(t)− id) = α
(
γ(t)

)
= α

(
γ(0) + tA0 +

B0

2
t2 + O(t2)

)
= α(id) +

α(B0)

2
t2 + O(t2)

leading to the contradiction α(B0) + O(1) ≥ 0. Thus B0 ∈ L(S) which
concludes the proof.

Now, trivial examples of closed (and path-connected) semigroups of B(Z)
reveal that, in general, semigroups cannot be recovered via the exponen-
tial map from their Lie wedge—in contrast to path-connected subgroups of
B(Z) which are fully characterised by their Lie subalgebras, cf. [94] or [41,
Thm. 9.6.1]. Therefore, the above concept of a Lie wedge naturally suggests
the notion of a Lie semigroup for those closed semigroups S which can be
reconstructed from their Lie wedge in the following sense:

S = 〈exp
(
L(S)

)
〉
SG
. (8)
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Here, the overbar denotes the topological closure3e and 〈exp
(
L(S)

)
〉SG is the

semigroup generated by the set exp
(
L(S)

)
. Notably, the operation 〈 · 〉SG

cannot be avoided as exp
(
L(S)

)
is in general not closed under multiplication.

Conversely, given an (abstract) Lie wedge w in B(Z) does there exist
a Lie semigroup3f S ⊆ GL(Z) such that w = L(S)? Again, contrary to
Lie algebras, the answer is in general no. Therefore, Lie wedges which do
allow for such a representation are called global (in GL(Z)) in the following
theorem. We collect some key results on globality, which will be important
for constructing Markovian counterparts to (enhanced) thermal operations
and Gibbs preserving maps in Eqs. (13), see also Rem. 4. For technical details
and more sophisticated characterisations see [40, Ch. V & VI], [42, Ch. 1],
and [58, Prop. 6.2].

Theorem 1. Given any Lie wedge w ⊆ B(Z) the following statements hold.

(a) If there exists a closed semigroup S of B(Z) or of GL(Z) such that
L(S) = w, then there exists a unique closed Lie semigroup S0 ⊆ S such

that L(S0) = w, i.e. w is global. In particular, S0 = 〈exp
(
L(S)

)
〉
SG
.

Moreover, S0 can be characterised

(i) either as the largest Lie semigroup in S

(ii) or as (the closure of) the reachable set of the identity id of the
bilinear control system3g

Φ̇(t) = L(t)Φ(t) , (9)

where L(t) ∈ L(S) acts as control and the set of admissible controls
can be any set of locally integrable functions which contains at least
all piecewise constant ones.

(b) If there exists a Lie wedge w0 which is global in B(Z) or GL(Z) and
w satisfies w ⊆ w0 as well as w \ E(L(w)) ⊆ w0 \ E(L(w0)) , then w is
global in B(Z) or GL(Z).

The proof is given in App. B.

Remark 1. As L(S) is a convex cone, any “time”-scaling τ 7→ Φ(µτ), µ > 0
of a solution τ 7→ Φ(τ) of (9) is again a solution of (9). Thus one has
reach(id, τ) = S0 for all τ > 0. Yet, a distinction reach[0,τ ](id) 6= S0 (for τ suf-
ficiently small) is brought about for example by restricting L(t) to a bounded

3e In Eq. (8), one can consider either the closure with respect to B(Z) or with respect to
GL(Z) or an even finer topology. The latter case is only of interest if S is not assumed to
be closed in B(Z) or in GL(Z), cf. [40].

3fStrictly speaking, one has to relax the concept of a Lie semigroup slightly by admitting
subgroups which are not necessarily closed with respect to GL(Z), cf. [40] Def. V.1.11 and
footnote 3e .

3gHere (9) can be regarded as the operator lift of system (4).
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spanning set (e.g., L(S) ∩ BK(0) for K > 0), cf. [58]. This allows for intro-
ducing a non-arbitrary physical time parameter: imposing appropriate re-
strictions on the global energy-conserving Hamiltonian (for system and bath
in Stinespring dilation, see Eq. (11)) concomitantly and consistently restricts
the generators of (Markovian) thermal operations to a bounded spanning set
via the constructive projection of Thm. 2. — For qubit thermal operations,
this is explicitly carried out in the Worked Example3h in Sec. 3.1..

Relation to Markovianity of Quantum Maps [27, 78]. These abstract
ideas have concrete implications and a direct link to Kossakowski’s work.
They provide the tools for constructing Markovian counterparts to various
types of quantum maps. Following [27], the well-established gksl-results
can be recast to a characterisation of the Lie wedge of the semigroup CPTP
of all quantum maps (of fixed finite dimension): the set of all infinitesimal
generators −(i adH +Γ) of gksl-form (2) constitutes the (global) Lie wedge
wGKSL of CPTP. It generates the largest Lie semigroup SGKSL contained in
CPTP. Thus SGKSL is given by the closure of all maps which can be written
as finite product of maps e−t(i adH +Γ), t ≥ 0. Equivalently, one may see
SGKSL as the set of quantum maps which can be obtained as solutions to the
operator lifts of (possibly time-dependent) gksl-master equations, cf. (9).
This is why—in anticipation of the proper definitions given in (13) below—
we identify SGKSL with the set of all (time-dependent) Markovian quantum
maps MCPTP. To sum up, one gets

SGKSL = 〈expwGKSL〉SG = MCPTP from wGKSL = L(SGKSL) = L(CPTP) .

The remaining quantum maps which do not belong to the Lie semigroup
SGKSL are called non-Markovian: they cannot be obtained by solutions to the
operator lifts of (possibly time-dependent) gksl-master equations and hence
they are not infinitesimal CPTP-divisible in the sense of [92].

The connection to time-independent Markovian quantum maps is reveal-
ing: Although the set of all time-independent Markovian quantum maps
(i.e. the collection exp(wGKSL) of all one-parameter Lie semigroups) generates
up to closure the entire Lie semigroup SGKSL, the concatenation of two time-
independent Markovian quantum maps does in general not give yet another
time-independent Markovian quantum map3i. These results are summarised
in Tab. 1, further details can be found in [27, 78].

3hOnce a timescale of interest is fixed, such as the dephasing of the off-diagonals (in the
example denoted by x), then the only parameter in the scaled global Hamiltonian 1√

x
Htot

is the bounded ratio of thermalisation of diagonal elements to dephasing u
x
∈ [0, 2

1+ε
].

3iMore precisely, close to the identity the concatenation of two time-independent Marko-
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Table 1: Lie-semigroup properties decide Markovianity type of quantum
maps (QMs) in terms of their infinitesimal generators as detailed in [27, 78].

Markovianity Type structure of QMs inf. generators

time-independenta collection of 1-par. semigroupsd gksl-Lie wedge
time-dependentb largest Lie semigroup SGKSL gksl-Lie wedge

non-Markovianc QMs outside Lie semigroup SGKSL —

a: infinitely resp. b: infinitesimal (and not just infinitely) CP-divisible [92]
c: not infinitesimal CP-divisible [92]
d: generally not closed under concatenation, cf. footnote 3i

3.1. Application to Thermomajorisation

Having settled the foundations, let us apply above semigroup theory to
explicit sets of quantum maps. For understanding how to “use thermal re-
sources to enhance control systems” we make the notion of thermal resources
precise and specify which resources fit into the (Markovian) dynamical picture
of the control framework. As mentioned in the introduction this is the goal
of the resource theory approach to quantum thermodynamics: it formalises
which operations can be carried out at no cost (e.g., work) by defining a
set of operations “allowed” under some basic thermodynamic assumptions.
One set commonly used is the following: given an n-level system with Hamil-
tonian H0 and some fixed background temperature T ∈ (0,∞] the thermal
operations TO(H0, T ) are defined to be [61, 85]{

trB

(
U
(

(·)⊗ e−HB/T

tr(e−HB/T )

)
U †
)

:
m∈N,HB∈iu(m),U∈U(mn)

U(H0⊗1B+1⊗HB)U†=H0⊗1B+1⊗HB

}
. (10)

Here U(m) is the unitary group in m dimensions with its Lie algebra u(m)
being the set of all m×m skew-Hermitian matrices and trB is the partial trace
over the bath, i.e. the unique linear map trB : Cn×n ⊗Cm×m → Cn×n which
satisfies tr(X trB(ρ)) = tr((X ⊗ 1)ρ) for all X ∈ Cn×n, ρ ∈ Cn×n ⊗ Cm×m.

Using the short-hand notation ρ
(T )
B := e−HB/T /tr(e−HB/T ) for the Gibbs

state of the bath and restricting the global unitaries U to the commutant of

vian quantum maps is again a time-independent Markovian quantum map if their gener-
ators are part of a Lie subwedge w of wGKSL taking the special form of a Lie semialgebra:
A Lie wedge w is called Lie semialgebra, if it is locally (i.e. near the origin) closed under
Baker-Campbell-Hausdorff (BCH) multiplication X,Y ∈ w 7→ X ? Y := log(eXeY ). This
requires an open BCH neighbourhood B of the origin such that (w∩B)? (w∩B) ⊆ w [40].
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(H0⊗1B +1⊗HB) to preserve the total energy of system (S) and bath (B),
quantum maps brought about by thermal operations of the form of Eq. (10)
can be envisaged in the spirit of a Stinespring dilation as

ρS(0)⊗ ρ(T )
B ρSB(U)

ρS(0) ρS(U) .

AdU

(2)

trB(3)ιB (1)

TO(H0,T )

(11)

Thus TO(H0, T ) collects all quantum maps Φ which model a three-step pro-
cedure: (1) coupling the system to an arbitrary finite-dimensional bath with
Hamiltonian HB (and temperature T ), followed (2) by a unitary transforma-
tion on the full system which leaves the global energy invariant, and finally
(3) discarding the bath by projecting back onto the system via trB.

Up to now, the description has been “thermostatic” with no explicit
continuous time-parameter involved. When introducing time evolutions by
constructing quantum maps as curves Φ(t) ∈ TO(H0, T ) (see Lem. 2 and
Thm. 2), one may adopt above diagram to a Schrödinger picture by taking
one-parameter groups of time evolutions U(t) [again from the commutant of
(H0 ⊗ 1B + 1 ⊗ HB) to preserve energy of system and bath] as global uni-
taries in (11) to arrive at quantum maps Φ(t) ∈ TO(H0, T ) : ρS(0) 7→ ρS(t)
describing the time evolutions of the system by curves of thermal operations.
As mentioned in Rem. 1 above, the time scaling itself can then be induced
by the choice of global Hamiltonian, see again Thm. 2 below.

Key topological properties of TO(H0, T ) are collected in the following:

Proposition 3. Given H0 ∈ iu(n), T ∈ (0,∞] the following statements hold:

(i) TO(H0, T ) is a bounded, path-connected semigroup with identity.

(ii) TO(H0, T ) is a convex, compact semigroup with identity.

(iii) TO(H0, T ) is a subset of Gibbs(H0, T ) which is defined to be the collec-
tion of all CPTP maps which leave e−H0/T invariant.

(iv) One has [Φ, adH0 ] = 0 for all Φ ∈ TO(H0, T ).

Statements (i) through (iii) can be found in Sec. II of [85] while state-
ment (iv) is Thm. 1 in [63]. Some intuition as to whence condition (iv)
can be gained from the following basic observation: given any system with
Hamiltonian H0 =

∑n
j=1Ej |gj〉〈gj | in state ρ = (〈gj , ρgk〉)nj,k=1 there exists a

thermal operation which mixes ρij and ρkl if and only if Ei − Ej = Ek − El
[85, Rem. 3]. But Ei − Ej , Ek − El ∈ σ(adH0) so the action of any thermal
operation is restricted by the degeneracies of adH0 . In particular, choosing
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i = j or k = l shows that a thermal operation can mix diagonal and off-
diagonal elements only if H0 is degenerate. This turns out to be a special
case of the following (well-known and readily verified) result:

Corollary 2. If H0 has non-degenerate spectrum, then the diagonal and the
off-diagonal (w.r.t any eigenbasis of H0) action of any CPTP map satisfying
the covariance law from Prop. 3 (iv) are strictly separated.

This symmetry is the defining property of what is called the set of en-
hanced thermal operations (sometimes thermal processes) [20]:

EnTO(H0, T ) := {S ∈ Gibbs(n) : [S, adH0 ] = 0} .

Note that the enhanced thermal operations—just like the closure of the ther-
mal operations—form a convex, compact semigroup with identity.

Now a central task in this framework is characterising if some initial state
can be transformed into a given target state by a thermal operation. Thus
one naturally defines thermomajorisation as the majorisation induced by the
semigroup TO(H0, T ) (the latter sometimes denoted CTO(H0, T ) [37]), and
the set of all states thermomajorised by some ρ ∈ pos1(n) is defined as

MH0,T (ρ) := MTO(H0,T )
(ρ) =

{
Φ(ρ) : Φ ∈ TO(H0, T )

}
. (12)

This is also known as (future) thermal cone [63, 52, 24] or, in the case of quasi-
classical states (i.e. states ρ which satisfy [ρ,H0] = 0) as thermal polytope
[2] or thermomajorisation polytope [91]. Note that in (12) we did not choose
TO(H0, T ) but its closure (which is known to make a difference [63]) because
this guarantees “reasonable” mathematical structure: combining Prop. 1
and 3 shows that MH0,T (ρ) is a convex compact subset of pos1(n). Simi-
larly one can define the semigroup majorisation induced by EnTO(H0, T ) and
Gibbs(H0, T ), respectively. While TO(H0, T ) ⊆ EnTO(H0, T ) ⊆ Gibbs(H0, T )
for all H0 ∈ iu(n), T ∈ (0,∞] (Prop. 3) it is known that—although the action
of these sets coincides on the diagonal (cf. Sec. 3.3.)—the corresponding no-
tions of majorisation are strictly different (as long as n > 2 [20, 89]) due to an
explicit counterexample by Ding et al. [25]. Therefore it makes a conceptual
difference whether one defines thermomajorisation via thermal operations,
enhanced thermal operations, or the Gibbs-preserving quantum maps [31].

In a recent approach to unify dynamics of open quantum systems with
quantum thermodynamics, Lostaglio and Korzekwa [64] studied the inter-
section of enhanced thermal operations with (time-dependent) Markovian
quantum maps: they characterised which states can be generated by such
maps in case the initial state ρ is quasi-classical. Their approach was to con-
sider Markovian dynamics (e−tL)t≥0 (i.e. L = i adH0 +Γ with Γ as in (2)) and
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study the thermodynamic restraints the condition (e−tL)t≥0 ⊆ EnTO(H0, T )
imposes on the generator of the system-environment-interaction Γ (which
until now was arbitrary except its gksl-form). They found that such dy-
namics are in EnTO(H0, T ) at all times if and only if3j [L, adH0 ] = 0 and
L(e−H0/T ) = 0, cf. also [53].

Cast into the framework of Lie semigroups what they did translates into
characterising the Lie wedge of EnTO(H0, T ). Accordingly this motivates us
to introduce the following constructive definitions for the Markovian coun-
terparts of the sets above:

MTO(H0, T ) := 〈exp
(
L(TO(H0, T ))

)
〉
SG

MEnTO(H0, T ) := 〈exp
(
L(EnTO(H0, T ))

)
〉
SG

MGibbs(H0, T ) := 〈exp
(
L(Gibbs(H0, T ))

)
〉
SG

(13)

As before, the overbar denotes the closure and 〈 · 〉SG is the semigroup gener-
ated by the set in question. In other words MEnTO(H0, T ) is the collection of
all enhanced thermal operations that are time-dependent Markovian, which
likewise holds for MTO(H0, T ) and MGibbs(H0, T ). Translated to this lan-
guage Lostaglio and Korzekwa studied the semigroup majorisation induced
by MEnTO(H0, T ) in the quasi-classical realm. We provide a sketch of the
sets introduced in this section in Fig. 1.

Remark 2. By definition MTO(H0, T ), MEnTO(H0, T ), MGibbs(H0, T ) con-
tain all propagators of bilinear control systems (Sec. 2.) under the corre-
sponding thermodynamic constraints. This connection allows us to trans-
late results from quantum control theory into this majorisation framework:
for example Prop. 5.2.1 in [84] implies that if e−H0/T is a multiple of the
identity, then the semigroup majorisation induced by Gibbs(H0, T ) and by
MGibbs(H0, T ) coincide. In other words each unital state transfer can also
be realised by unital (time-dependent) Markovian maps.

In the remainder of this section we generalise the result of Lostaglio and
Korzekwa [64] to the more physically motivated set of thermal operations.
We begin studying its Lie semigroup structure by specifying the edge of the
sets defined above:

Lemma 1. Given H0, H ∈ iu(n) and T ∈ (0,∞] the following statements
are equivalent:

(i) [H,H0] = 0

3jThe straightforward identity [Bm, A] =
∑m
k=1 B

m−k[B,A]Bk−1 (m ∈ N) shows that
[B,A] = 0 if and only if [Bm, A] = 0 for all m if and only if [etB , A] = 0 for all t ≥ 0.
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Gibbs

MGibbs

EnTO

id

TOMEnTO

MTO

Fig. 1: (Colour online). Sketch of the semigroups (En)TO and Gibbs, as well
as their Markovian counterparts M(En)TO and MGibbs defined as Lie semi-
groups generated by their corresponding Lie wedges, see also the qubit exam-
ple in Fig. 2 . Note that Markovianity depends on the semigroup, i.e. there
might be elements in EnTO ∩ MGibbs outside of MEnTO. A similar set-
inclusion for elementary thermal operations (ETOs, which in general are a
proper subset of TOs) can be found in [62, Fig. 3].

(ii) (Ade−itH )t≥0 ⊆ TO(H0, T )

(iii) (Ade−itH )t≥0 ⊆ TO(H0, T )

(iv) (Ade−itH )t≥0 ⊆ EnTO(H0, T )

Moreover, if T ∈ (0,∞), then all of the above statements are equivalent to:

(v) Ade−itH (e−H0/T ) = e−H0/T for all t ≥ 0.

Proof. “(i) ⇒ (ii)”: In the definition of the thermal operations (10) choose
m = 1 and U = e−itH . Doing so is allowed as [H,H0] = 0 by assumption.
“(ii) ⇒ (iii) ⇒ (iv)”: Obvious from TO(H0, T ) ⊆ TO(H0, T ) ⊆ EnTO(H0, T )
[63]. “(iv)⇒ (i)”: Evidently, the generator of (Ade−itH )t≥0 is −i adH . By our
previous considerations −i adH ∈ L(EnTO(H0, T )) implies [adH , adH0 ] ≡ 0.
Using [adH , adH0 ] = ad[H,H0] this is equivalent to [H,H0] = λ1 for some
λ ∈ C; but this λ has to vanish as 0 = tr([H,H0]) = λ tr(1) = λn.

Now assume that T < ∞. “(iv) ⇒ (v)”: By definition of EnTO(H0, T ).
“(v) ⇒ (i)”: Differentiating (v) at zero gives [H, e−H0/T ] = 0 so there exists
U ∈ Cn×n unitary such that UHU † and Ue−H0/TU † are both diagonal [45,

Thm. 2.5.5]. But Ue−H0/TU † = e−UH0U†/T so using functional calculus, the
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matrix (−T ) ln
(
e−UH0U†/T

)
= UH0U

† has to be diagonal due to T ∈ (0,∞).
Thus U [H,H0]U † = [UHU †, UH0U

†] = 0, hence (i) follows.

As the inverse of a bijective CPTP map is again CPTP if and only if it is
a unitary map3k [13, Thm. III.2], E(L(CPTP(n))) = {iadH : H ∈ iu(n)}.
But the edge of any subsemigroup of CPTP(n) has to be a subspace of
E(L(CPTP(n))), and the condition for one-parameter groups (Ade−itH )t≥0 to
live in the corresponding semigroup—depending on the temperature T—is
precisely condition (i) from Lem. 1. This immediately yields the following:

Corollary 3. Given H0 ∈ iu(n), T ∈ (0,∞] one finds that E(L(TO(H0, T ))),
E(L(TO(H0, T ))), and E(L(EnTO(H0, T ))) equal {iadH : H ∈ iu(n), [H,H0] =
0}, and if T ∈ (0,∞) the same holds true for E(L(Gibbs(H0, T ))).

The next step is to specify the Lie wedge of the semigroups in question.
This turns out to be almost trivial for the Gibbs-preserving maps and the
enhanced thermal operations:

Lemma 2. Given H0, H ∈ iu(n) and T ∈ (0,∞] one has:

L(Gibbs(H0, T )) = {L ∈ L(Cn×n) : L is of gksl-form and L(e−H0/T ) = 0}
L(EnTO(H0, T )) = {L ∈ L(Cn×n) : L ∈ L(Gibbs(H0, T )) and [L, adH0 ] = 0}

One can see this by taking the condition in Eq. (6) and differentiating at zero
to get back the generator L.

In contrast, specifying the Lie wedge of TO(H0, T ) is more involved. This
is where we make use of Prop. 2 (iv) as well as Cor. 1 which state that elements
of L(S) are characterised via derivatives of certain curves in S starting at the
identity. Thereby introducing a “time” parameter, an obvious way to specify
such curves for the case of TO(H0, T ) is by interpreting the energy-preserving
unitary as endpoint of a curve of unitaries starting at zero in the sense of the
diagram Eq. (11). This is done by choosing Htot such that U = e−iHtot in

trB
(
U
(
(·)⊗ ρ(T )

B

)
U †
)

= trB
(
e−itHtot

(
(·)⊗ ρ(T )

B

)
eitHtot

)∣∣
t=1

.

By definition this curve is in TO(H0, T ) at all times. Such curves and their
first and second derivative have been studied recently by one of us: for all
m ∈ N, H ∈ iu(mn), ω ∈ pos1(m)

trCm
(
e−itH((·)⊗ ω)eitH

)
≡

≡ id−it
[

trω(H), ·
]
− t2

2

m∑
j,k=1

Γ√2rk tr|gk〉〈gj |(H) +O(t3)
(14)

3kActually the map is unitary iff the inverse is positive, cf. [92, Cor. 3] & [88, Prop. 1].
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if ω =
∑m

i=1 ri|gi〉〈gi| for ri ≥ 0 and an orthonormal basis {gi}mi=1 of Cm.
Here, given matrices X ∈ Cm×m, B ∈ Cmn×mn the expression trX(B) is
called “partial trace of B with respect to X” 3l. A proof can be found in [86,
Eq. (5)] or, for the reader’s convenience, in App. C.

Now applying Prop. 2 (iv) to these curves yields the Hamiltonian gen-
erator i[tr

ρ
(T )
B

(Htot), · ] which by Cor. 3 and Eq. (14) is in E(L(TO(H0, T ))).

However, we are interested in the dissipative action of the curve which is
locked away behind the second derivative. This is where we apply Cor. 1:

Theorem 2. Let m ∈ N, HB ∈ iu(m), as well as Htot ∈ iu(mn) be given
such that [Htot, H0 ⊗ 1 + 1⊗HB] = 0. If Φ is the solution to

Φ̇(t) =
(
− i adH −ΓB,tot

)
Φ(t) , Φ(0) = id

with H any element of iu(n) such that [H,H0] = 0 and

ΓB,tot :=
m∑

j,k=1

(
1
2

(
V †jkVjk(·) + (·)V †jkVjk

)
− Vjk(·)V †jk

)
,

Vjk = e−E
′
k/(2T ) tr|gk〉〈gj |(Htot) for all j, k = 1, . . . ,m where

∑m
j=1E

′
j |gj〉〈gj |

is any spectral decomposition of the bath Hamiltonian HB, then (Φ(t))t≥0 is
a continuous one-parameter semigroup in TO(H0, T ).

Proof. Consider γ : [0,∞) → TO(H0, T ), t 7→ trB(e−itHtot((·) ⊗ ρ(T )
B )eitHtot)

and note that γ is well-defined by assumption on HB, Htot. Also γ(0) = id
and γ̇(0) ∈ E(L(TO(H0, T ))) by Eq. (14) & Cor. 3. Thus—because TO(H0, T )
is a compact, convex semigroup (Prop. 3 (ii))—we may apply Cor. 1 to γ
which shows that γ̈(0) ∈ L(TO(H0, T )). If HB =

∑m
j=1E

′
j |gj〉〈gj |, then

e−HB/T =
∑m

j=1 e
−E′j/T |gj〉〈gj | so, again using Eq. (14)

γ̈(0) = − 2

tr(e−HB/T )

m∑
j,k=1

Γ√
e
−E′

k
/T

tr|gk〉〈gj |(Htot)

is in L(TO(H0, T )). But the latter is a convex cone (Prop. 2 (i)) so for all
H ∈ iu(n), [H,H0] = 0

L(TO(H0, T )) 3 −i adH +
tr(e−HB/T )

2
γ̈(0) = −i adH −ΓB,tot (15)

which concludes the proof.

3lMore precisely, trX(B) is set to be the unique n × n-matrix which satisfies
tr(A trX(B)) = tr((A ⊗ X)B) for all A ∈ Cn×n [23, Ch. 9, Lem. 1.1]. Note that this
recovers the “usual” partial trace when setting X = 1.
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Remark 3. Though (tr|gk〉〈gj |(Htot))
† = tr|gj〉〈gk|(Htot), note the “asymme-

try” in the Vjk induced by temperature via the factor e−E
′
k/(2T ). Assuming

T <∞ prevents the dynamics from automatically being unital (i.e. identity-
preserving). It is worth stressing that the temperature-independent pro-
jection tr|gj〉〈gk|(Htot) also preserves the time scaling chosen for the global

energy conserving one-parameter unitary time evolution e−itHtot and takes it
over into scaling the generators of the semigroup TO(H0, T ) to be consistent
with the same time parameter—as anticipated in Rem. 1.

At this point, Andrzej Kossakowski would have insisted that Thm. 2 does not
provide a complete characterisation yet—and rightly so: we have to leave the
converse open for now, but do so at the level of a well supported conjecture.

Conjecture 1. The converse of Thm. 2 holds true, up to taking the closure
of the collection of all these generators.

This conjecture is supported by the following two observations:

• Conjecture 1 holds for general quantum maps, that is, after getting rid of the
commutator relation [Htot, H0⊗1+1⊗HB ] = 0 as well as replacing TO with
CPTP(n). The only difference here is that only full-rank ancilla states are
allowed whereas [86, Thm. 2] uses arbitrary ancilla states. This difference,
however, vanishes in the closure.

• For any H0 ∈ iu(n), T ∈ (0,∞] the collection of all generators described in
Thm. 2 is invariant under conjugation by arbitrary edge elements (i.e. the
necessary condition from Prop. 2 (ii)). Indeed given any H ′ ∈ iu(n) with
[H ′, H0] = 0—hence iadH′ ∈ E(L(TO(H0, T ))) by Cor. 3—one finds

Ade−iH′ ◦
(
− i adH −ΓB,tot

)
◦AdeiH′

= −i[e−iH
′
HeiH

′
, · ]−

m∑
j,k=1

Γ
e−E

′
k
/(2T )e−iH′ tr|gk〉〈gj |(Htot)eiH

′

= −i[e−iH
′
HeiH

′
, · ]−

m∑
j,k=1

Γ
e−E

′
k
/(2T ) tr|gk〉〈gj |((e

−iH′⊗1)Htot(e−iH
′⊗1)†)

.

But this generator is of the form described in Thm. 2 as can be seen by
replacing Htot by (e−iH

′ ⊗ 1)Htot(e
−iH′ ⊗ 1)†, replacing H by e−iH

′
HeiH

′
,

and keeping HB as is. One readily verifies that the new H (Htot) commutes
with H0 (H0 ⊗ 1 + 1 ⊗HB), and thus is a valid generator; this follows from
e−iH

′
H0e

iH′ = e−i adH′ (H0) = 0 which is a direct consequence of [H ′, H0] = 0.

Remark 4. To sum up, we emphasise that the Lie wedges to the quantum
maps Gibbs, EnTO (Lem. 2) and to TO (Thm. 2 and Eq. (15)) are global, as
by Thm. 1 they generate the corresponding Lie semigroups, which in turn
define the respective Markovian counterparts MGibbs, MEnTO, and MTO via
the construction of Eqs. (13). The set inclusions are illustrated in Fig. 1.
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Explicitly scrutinising and visualising the above sets and relations in the
case of qubits will elucidate the concepts introduced in this section concretely.

3.2. Worked Example: Markovian Thermal Operations in Qubits

Let us demonstrate how to arrive from a general non-Markovian (enhanced)
thermal operation via the gksl-generator in its Lie wedge at the correspond-
ing Lie semigroup giving the desired Markovian counterpart to the given
(enhanced) thermal operation as in Eq. (13). We study the simple case of
a single qubit. What is special about two-dimensional systems is twofold:
first, time-independent and time-dependent Markovianity coincide (as ex-
plained at the end of this example), and secondly the thermal operations and
the enhanced thermal operations approximately coincide [47], [85, Thm. 10].
Thus, every thermal operation for H0 := 1

2 diag(−1, 1) acts like(
ρ11 ρ12

ρ21 ρ22

)
7→
(

(1− wε)ρ11 + wρ22 zρ12

z∗ρ21 wερ11 + (1− w)ρ22

)
for some w ∈ [0, 1], z ∈ C such that |z| ≤

√
(1− w)(1− wε) [85, Sec. IV]

with the short-hand ε := e−1/T used henceforth.

Parameterising the Elements in the Lie Wedge
With these stipulations, Lem. 2 then allows to specify the elements in the
Lie wedge of the (enhanced) thermal operations: a linear map L on C2×2 is
a generator of a one-parameter semigroup in EnTO(H0, T ) if and only if

(i) L preserves Hermiticity,

(ii) L is trace-annihilating,

(iii) L is conditionally completely positive ([60, Cor. 1] & [30, Thm. 14.7]),

(1− |Ω〉〈Ω|)
(
(id⊗L)(|Ω〉〈Ω|)

)
(1− |Ω〉〈Ω|) ≥ 0

where Ω = 1√
2

(
1 0 0 1

)>
,

(iv) L(e−H0/T ) = 0, and

(v) [L, adH0 ] = 0.

Property (v) is equivalent to

L

(
ρ11 ρ12

ρ21 ρ22

)
=

(
xρ11 + uρ22 zρ12

yρ21 vρ11 + wρ22

)
for some u, v, w, x, y, z ∈ C (cf. also Cor. 2). Thereby (i), (ii), and (iv)
combined are equivalent to v = −x = ue−1/T , w = −u, and y = z∗ where
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u ∈ R. Finally, evaluating conditional complete positivity yields u ≥ 0 and
2 Re z ≤ −u(1 + ε). Altogether this shows L ∈ L(EnTO(H0, T )) if and only if

L

(
ρ11 ρ12

ρ21 ρ22

)
=

(
u(ρ22 − ρ11ε) (−x+ iω)ρ12

(−x− iω)ρ21 u(ρ11ε− ρ22)

)
for some u ≥ 0, x, ω ∈ R such that 2x ≥ u(1 + ε). Casting this into the
Markovian gksl master equation (1) yields (in superoperator representation)

L = −i addiag(−ω,ω)/2−Γgksl =̂


−εu 0 0 u

0 −x− iω 0 0
0 0 −x+ iω 0
εu 0 0 −u

 .

where the (by assumption well-defined) generators of Γgksl are

V11 =

√
2x− u(1 + ε)

2

(
1 0
0 −1

)
, V12 =

√
u

(
0 1
0 0

)
, V21 =

√
uε

(
0 0
1 0

)
.

Setting V22 = 0, in the language of Thm. 2 this corresponds to HB :=
diag(−1, 1)/2 = H0 and a global Hamiltonian (with u ≥ 0 playing the role
of a scaling parameter later used for fixing the time scale t)

Htot :=


1
2

√
2x− u(1 + ε) 0 0 0

0 0
√
u 0

0
√
u −1

2

√
2x− u(1 + ε) 0

0 0 0 0

 ∈ iu(4) .

Characterising One-Parameter Semigroups in MEnTO(H0, T )

For the one-parameter semigroup of time evolutions (t ≥ 0) one finds

S(t) = etL =̂


1+εe−tu(1+ε)

1+ε 0 0 1−e−tu(1+ε)

1+ε

0 e−(x+iω)t 0 0

0 0 e−(x−iω)t 0
ε(1−e−tu(1+ε))

1+ε 0 0 ε+e−tu(1+ε)

1+ε



=


1− εµt 0 0 µt

0 e−xte−iωt 0 0
0 0 e−xteiωt 0
εµt 0 0 1− µt

 , (16)

where the last identity uses another short-hand µt := (1− e−tu(1+ε))/(1 + ε)
with non-negative times enforcing 0 ≤ µt ≤ 1/(1 + ε). For the action on just
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the vector of diagonal elements of the density operator one gets

G(t) =

(
1− εµt µt
εµt 1− µt

)
,

which resembles the β-swap for a two-level system: Note that S(t) and G(t)
are both Gibbs-stochastic for the entire fictitious parameter rangea µt ∈ [0, 1]
exploited in the β-swap (then including “complex times”b), whereas they are
Markovian only in the positive-time segment µt ∈ [0, 1/(1 + ε)], whence G(t)
derives from a one-parameter semigroup S(t) ∈ MEnTO(H0, T ) of the form
of Eq. (16) and has itself a non-negative determinant.

How the Markovian MTOs Sit in General TOs

More generally, (the superoperator of) any map Φ ∈ TO(H0, T ) is of the form
1− εµ 0 0 µ

0 e−xe−iω 0 0
0 0 e−xeiω 0
εµ 0 0 1− µ

 (17)

for µ ∈ [0, 1], x ≥ 0 so that e−2x ≤ (1 − εµ)(1 − µ) = 1 − µ(1 + ε) + εµ2,
and it is again in MTO(H0, T ) if and only if µ ∈ [0, 1

(1+ε) ] (see [2, 72]) plus

e−2x ≤ 1 − µ(1 + ε). Since ε = e−1/T → 0 for temperatures T → 0+

it is obvious that—in the case of a single qubit—Markovianity becomes no
longer a restriction and MTO(H0, T ) → TO(H0, T ) as T → 0+ (e.g., in the
Hausdorff metric [56, §21.VII]). Not only are these two scenarios equivalent
in terms of state conversion as T → 0+ (as was known for arbitrary finite
dimensions [28, Thm. 1]), but equality also holds on the level of quantum
maps—in the case of qubits, which is new. Whether this holds for qutrits
and higher dimensions is an open question.

Visualisation

By Eqs. (16) & (17) one can visualise the set of (Markovian) qubit thermal
operations. The main tool is the semigroup homomorphism ΨT from the
Hermiticity-preserving linear maps on C2×2 to (R × C, ◦T ) c which acts like
ΨT : Φ 7→ (〈e1,Φ(|e2〉〈e2|)e1〉, 〈e1,Φ(|e1〉〈e2|)e2〉)>, cf. [85, Sec. IV]. One finds

ΨT

(
exp

(
L(TO(H0, T ))

))
=
{( µt

e2πiφ r
√

1−µt(1+ε)

)
: r, φ ∈ [0, 1]; t ∈ [0,∞]

}
.
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This set turns out to be a subsemigroup of (R × C, ◦T ) which implies that
the closure of exp

(
L(TO(H0, T ))

)
is a subsemigroup of TO(H0, T ). One gets

MTO(H0, T ) = 〈exp
(
L(TO(H0, T ))

)
〉
SG

= exp
(
L(TO(H0, T ))

)
,

which shows that MTO(H0, T ) is weakly exponential d. Actually, commutativ-
ity of ◦T for fixed temperature e immediately implies that MTO(H0, T ) is lo-
cally as well as (weakly) exponential and its Lie wedge takes the special form of
a Lie semialgebra, cf. [44, Ch. 1, Thm. A & Ch. 2, Ex. 1.6] and [27, Thm. 2.2].
So—here in the qubit case—the two notions of time-dependent and time-
independent Markovianity coincide. Taking the union of MTO(H0, T ) over
all temperatures one obtains a semigroup MTO(H0) :=

⋃
T∈(0,∞) MTO(H0, T )

which turns out to be both, weakly exponential and locally exponential as
shown in App. E .

Finally let us actually visualise how MTO(H0, T ) sits inside TO(H0, T )
in Fig. 2 (cf. [85, Fig. 2]) for the case of a single qubit. Its upper left panel also
illustrates how for small times µt → 0 the non-Markovian blue cone extends
to the identity map including an infinitesimal region outside the connected
component of the (orange) Markovian Lie semigroup.
Now this becomes obvious by the shapes determined by the outer
curves of the blue (orange) cone in the time direction µt which—up
to rotational symmetry—follow

√
1− µt(1 + ε) + µ2

t ε where µt ∈ [0, 1]
(resp.

√
1− µt(1 + ε) in the Markovian case where µt ∈ [0, 1/(1 + ε)]).

In the lower panel of Fig. 2 the time dependence in µt = (1−e−tu(1+ε))/(1+ε)
formally leads to a time in multiples of the scaling factor u > 0 reading
t[u] = −ln(1− µt(1 + ε))/(1 + ε). Taking “the” preimage of the interval [0, 1]
under this function yields a (partially) complex set: t(µt) is real (orange) for
0 ≤ µt ≤ 1/(1+ε) =: µ∗, i.e. up to its pole at the Markovian limit µ∗, whence
it becomes complex (blue) with constant imaginary part ±π/(1 + ε) in the
non-Markovian segment µ∗ < µt ≤ 1.

ain which S(t) resp. G(t) stabilise the Gibbs state 1
1+ε

diag(1, ε) resp. 1
1+ε

(1, ε)>

bFormally t = −ln(1− µt(1 + ε))/u(1 + ε); recall that for complex ` = |`|eiλ one has
ln(`) = ln(|`|) + iλ, as used in Fig. 2 .

cThe operation ◦T is defined via (µ1, c1) ◦T (µ2, c2) := (µ1 + µ2 − µ1µ2(1 + ε), c1c2).
dA closed subsemigroup S ⊆ B(Z) with Lie wedge L(S) is exponential and weakly ex-

ponential if S = exp(L(S)) and S = exp(L(S)), respectively. It is locally exponential if
there exists a id-neighbourhood basis w.r.t. S consisting of exponential subsets, both being
detailed in [44, 27], refer also to footnote 3e. Note that MTO(H0, T ) is actually exponential
once the closure in Eq. (8) is taken with respect to GL(Z).

eCommutativity is lost for different temperatures, see the comment in App. E .
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Fig. 2: (Colour online). Upper panels: Two aspect angles for the graphs of

ΨT (with ε = 0.6) when restricting the domain to TO(H0, T ) (blue cone), and its

Markovian counterpart MTO(H0, T ) (orange cone), respectively. The yellow “tip”

of the blue (orange) cone corresponds to the respective β-swaps (the “thermal reset”

map ρ 7→ ρGibbs(H0, T )). — Lower panel: The time dependence in µt formally leads

to a time in multiples of the scaling factor u > 0 of t[u], which is real in the Markovian

segment 0 ≤ µt ≤ µ∗, i.e. up to the pole at µ∗ and complex in the non-Markovian

segment µ∗ < µt ≤ 1 as detailed in the text. The critical µ∗ ∈ [ 1
2 , 1] tends to one as

T → 0+, thus illustrating MTO(H0, T )→ TO(H0, T ) in the zero-temperature limit.

To sum up, the worked example discussed here also elucidated that the
single-qubit case is special in as much as

(1) For fixed temperature T (and for the union over all T ) MTO(H0, T )
(resp. MTO(H0)) are generated by Lie semialgebras, respectively.

(2) So here time-independent and time-dependent Markovianity coincide.
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(3) In the zero-temperature limit, Markovian thermal operations even ex-
haust all thermal operations: MTO(H0, T )→ TO(H0, T ) as T → 0+.

Due to statement (2) throughout this example we have been using the term
“Markovian” without further specification.

To avoid misunderstandings, let us emphasise that in the general case (i.e. beyond

single qubits) one has the following: (1) For fixed temperature T (and for the union

over all T ) MTO(H0, T ) (resp. MTO(H0)) need not be generated by Lie semialgebras.

(2) Hence time-independent and time-dependent Markovianity need not coincide in

general. (3) In the zero-temperature limit, the relation between Markovian thermal

operations MTO(H0, T ) and thermal operations TO(H0, T ) is an open problem.

3.3. The Role of d-Majorisation and the Associated Polytope

Let us return to the characterisation of state transitions via (enhanced)
thermal operations for the case of non-degenerate H0 and quasi-classical ini-
tial states ρ, i.e. [ρ,H0] = 0. In this case ρ is diagonal in some basis which
diagonalises H0 so w.l.o.g. ρ = diag(y), H0 = diag(Ei)

n
i=1. It follows

MH0,T (diag(y)) =
{

diag(Ay) : A ∈ Rn×n Gibbs-stochastic
}
,

where ⊆ is due to Cor. 2 and ⊇ is shown in [79] (cf. also [91]). Recall that
A ∈ Rn×n is called Gibbs-stochastic if A is column-stochastic (aij ≥ 0 for all
i, j and all columns of A sum up to 1) and the Gibbs-vector d := (e−Ei/T )ni=1

is a fixed point of A, that is Ad = d [61]. In the mathematics literature such
a matrix is called d-stochastic [66, Ch. 14.B] which motivates defining

Md(y) :=
{
Ay : A ∈ Rn×n d-stochastic

}
as all diagonals of states one can thermodynamically generate (i.e. by TO
and hence by EnTO or of course by Gibbs) starting from diag(y). In other
words the diagonal action of every Gibbs-preserving map (when projecting
onto the diagonal) is a d-stochastic matrix, and every d-stochastic matrix
is the diagonal action of some element of TO. The object Md(y) is known
as d-majorisation polytope [89]. Note that in the high-temperature limit d
becomes the vector of equal weights 1

n(1, . . . , 1)> which recovers the con-
cept of doubly stochastic matrices, leading back to classical majorisation [66,
Ch. 2.B].

There are several ways to characterise the conditions for a d-stochastic
matrix to exist so that it maps one real vector to another. Thus let us start
with the most common one in the physics literature originally defined by
Horodecki and Oppenheim [46]: given any vector of Gibbs weights d ∈ Rn
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with d > 0 as well as some y ∈ Rn, the thermomajorisation curve of y is
defined to be the piecewise linear, continuous curve fully characterised by the
elbow points {

(∑j
i=1 dπ(i),

∑j
i=1 yπ(j)

)
}nj=0. Here, π ∈ Sn is any permutation

such that
yπ(1)

dπ(1)
≥ . . . ≥ yπ(n)

dπ(n)
. Equivalently [89, Rem. 7], this map—which we

denote by thd,y : [0, e>d]→ R where e := (1, . . . , 1)>—satisfies

thd,y(c) = min
{i=1,...,n : di>0}

(( n∑
j=1

max
{
yj −

yi
di
dj , 0

})
+
yi
di
c
)

for all c ∈ [0, e>d]. Together with [89, Prop. 1] one thus gets:

Proposition 4. Let x, y, d ∈ Rn with d > 0 be given. The following state-
ments are equivalent:

(i) There exists a d-stochastic matrix A ∈ Rn×n such that Ay = x. We
denote this by x ≺d y and say that x is d-majorised by y.

(ii) e
>x = e

>y and thd,x(c) ≤ thd,y(c) for all c ∈ [0, e>d].

(iii) e
>x = e

>y, and for all j = 1, . . . , n− 1

j∑
i=1

xπ(i) = thd,x

( j∑
i=1

dπ(i)

)
≤ thd,y

( j∑
i=1

dπ(i)

)
if π ∈ Sn is any permutation such that

xπ(1)

dπ(1)
≥ . . . ≥ xπ(n)

dπ(n)
.

(iv) e
>x = e

>y and ‖dix − yid‖1 ≤ ‖diy − yid‖1 for all i = 1, . . . , n where
‖ · ‖1 is the usual vector 1-norm.

Moreover, if H0 ∈ iu(n), T ∈ (0,∞] are such that H0 is non-degenerate and
d is the vector of Gibbs weights w.r.t. H0 and T , then the above conditions
are equivalent to diag(y) thermomajorising diag(x) w.r.t. H0 and T .

Interestingly, above characterisations extend to the case where entries of the
d-vector are allowed to be zero3m. While (iv) ⇒ (i) is usually proven in-
directly via Farkas’ Lemma [77, Cor. 7.1.d] there also exists a constructive
algorithm which translates two comparable thermomajorisation curves into
a d-stochastic transition matrix [79]. Notably this procedure simplifies con-
siderably if the final state is an extreme point of the d-majorisation polytope
induced by the initial state [2, 91]. Either way this leads to the following
characterisation of the thermomajorisation polytope [89, Thm. 10]:

Md(y) =
{
x ∈ Rn : e>x = e

>y ∧ ∀m∈{0,1}n m>x ≤ thd,y(m
>d)
}

3mMore precisely Prop. 4 continues to hold if the background temperature equals zero
and if the system’s ground state energy is non-degenerate [91].
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This finally justifies calling Md(y) a polytope because any bounded set which
is the intersection of finitely many halfspaces is a convex polytope. From a
geometric point of view, the facets of the polytope Md(y) have universal
orientation given by m>, whereas their location defined by thd,y(m

>d) de-
pends on y and d. In particular, Md(y) being a convex polytope means it
has a finite number of extreme points which in turn generate Md(y) via the
convex hull, cf. [39, Ch. 3]. Remarkably, these can even be computed ana-
lytically [62, 2, 89]: given d, y ∈ Rn with d ≥ 0 define the extreme point map
Ed,y : Sn → Rn on the permutation group Sn via

Ed,y(σ) :=
(
thd,y

( σ−1(j)∑
i=1

dσ(i)

)
− thd,y

( σ−1(j)−1∑
i=1

dσ(i)

))n
j=1

.

For computing the corners of Md(y), in practice one has to go through all
permutations σ ∈ Sn, find the value of the thermomajorisation curve for the
inputs dσ(1), dσ(1) + dσ(2), . . . ,

∑n−1
i=1 dσ(i), and finally arrange the consecutive

differences into a vector ordered according to σ. This procedure turns out to
be quite simple as is nicely illustrated by a straightforward qutrit example,
cf. [91, Example 1]. Interestingly, said example also shows that there exists an
extreme point (corresponding to the trivial permutation) which is maximal
in the polytope in the sense that it majorises all other (extreme) points
classically. For physical systems, this turns out to be a general property
which will be the key to upper bounding the reachable sets in Sec. 4.

Theorem 3. Let y, d ∈ Rn with d > 0 be given. If y ≥ 0, then x ≺ Ed,y(σ) for
all x ∈Md(y) where σ ∈ Sn is any permutation which orders d decreasingly,

that is, dσ(1) ≥ . . . ≥ dσ(n). Moreover d and
Ed,y(σ)

d are ordered likewise3n,
and if y > 0 then Ed,y(σ) > 0.

A proof can be found in [89, Thm. 16 & Rem. 3]. Note that the assump-
tion y ≥ 0 is necessary as a simple counterexample shows [89, Example 4].
Either way, these extreme point techniques break down as soon as one goes
beyond quasi-classical states, regardless of whether one considers the action
of (enhanced) thermal operations or of general Gibbs-preserving maps. The
latter leads to the theory of D-matrix majorisation [87]—where D plays the
role of the Gibbs state of the physical system—which is a generalisation of
classical majorisation. However, requiring maps to only preserve the Gibbs
state dismisses intrinsic thermodynamic symmetries (Prop. 3 (iv)) which is
why we will focus on (enhanced) thermal operations in the sequel.

3nThis means that there exists a permutation π ∈ Sn such that dπ(1) ≥ . . . ≥ dπ(n) and
(Ed,y(σ))π(1)

dπ(1)
≥ . . . ≥ (Ed,y(σ))π(n)

dπ(n)
.
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4. Thermal Operations in Quantum Control by Example

In this section we specify Markovian control problems (3) by explicitly us-
ing Markovian thermal operations as additional control resource in the sense
−Γ ∈ L(TO(H0, T )). Given a Hamiltonian H0 ∈ iu(n) with increasing eigen-
values Ek, the corresponding equilibrium state resulting from coupling to a

bath of temperature T is ρGibbs = e−H0/T

tr(e−H0/T )
∈ pos1(n) where the eigenvalues

of the Gibbs state are collected in the Gibbs vector

d :=
(e−Ek/T )nk=1∑n
k=1 e

−Ek/T
∈ ∆n−1 . (18)

Here, ∆n−1 := {x ∈ Rn+ |
∑n

i=1xi = 1} is the collection of all probability vec-
tors, called standard simplex. As shown in [28], ρGibbs can then be obtained
as the unique fixed point of (1) when choosing the gksl-terms as

V1 = σd+ :=
n−1∑
k=1

√
k(n− k) cos(θk) |k〉〈k + 1| (19)

V2 = σd− :=
n−1∑
k=1

√
k(n− k) sin(θk) |k + 1〉〈k| , (20)

where |k〉 is “the” eigenvector of H0 to the eigenvalue Ek and

θk := arccos
((

1 +
dk+1

dk

)− 1
2

)
∈
(

0,
π

4

]
. (21)

Assuming non-degenerate spectrum of H0, the limiting cases of zero and
infinite temperature can be included:

• Taking the limit T → 0+ yields d = (1, 0, . . . , 0)>, θk → arccos(1) = 0
for all k, as well as σd+ → σ+ =

∑n−1
k=1

√
k(n− k)|k〉〈k+1| and σd− → 0.

• The limit T → ∞ yields d = 1
n(1, . . . , 1)> so θk = π

4 , i.e. cos(θk) =
sin(θk) = 1√

2
.

Confining ourselves to σd+ and σd− with their non-zero entries on the first
off-diagonals is in accordance with the common dipolar selection rules allow-
ing for “one-quantum transitions” (as governed by Wigner’s 3j-symbol) [97,
p. 185 ff.]. This is further motivated by the fact that for spin systems these
generators yield dynamics within the thermal operations:

Corollary 4. Let ∆E > 0, n ∈ N, and T > 0 be given. Defining the system’s
Hamiltonian H0 := diag(0, . . . , n − 1) ·∆E as well as Γd := Γσd+

+ Γσd−
the

generator induced by Eqs. (19) & (20) via Eq. (2), one finds the inclusion
(e−t(i adH +Γd))t≥0 ⊆ TO(H0, T ) for all H ∈ iu(n) such that [H,H0] = 0.
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Proof. We apply Thm. 2 with m = 2, HB = diag(0, 1) ·∆E, and

Htot :=
n−1∑
j=1

√
j(n− j)

1 + e−∆E/T

(
|ej〉〈ej+1| ⊗ |e2〉〈e1|+ |ej+1〉〈ej | ⊗ |e1〉〈e2|

)
.

We may do so because Htot commutes with H0 ⊗ 1 + 1 ⊗ HB as can be
seen easily. Now, said theorem guarantees that the dynamical semigroup

generated by −i adH −
∑2

j,`=1 ΓVj` with Vj` =
√
e−E

′
j/T tr|gj〉〈g`|(Htot) is in

TO(H0, T ). But V11 = V22 = 0 and

V12 = tr|e1〉〈e2|(Htot) =
n−1∑
j=1

√
j(n− j)

1 + e−∆E/T
|ej〉〈ej+1|

V21 =
√
e−∆E/T tr|e2〉〈e1|(Htot) =

n−1∑
j=1

√
j(n− j)e−∆E/T

1 + e−∆E/T
|ej+1〉〈ej | ,

that is, V12 = σd+ and V21 = σd−. This concludes the proof.

Remark 5. The assumption in Cor. 4 that H0 has equidistant eigenvalues is
necessary since otherwise the generator Γd building simply on Eqs. (19) and
(20) is no longer in L(EnTO(H0, T )) for any T > 0 (due to [Γd, adH0 ] 6= 0)4a so
it in particular cannot be in L(TO(H0, T )) anymore. — In the non-equidistant
case one just has to replace the simple uniform σd+ of Eq. (19) accordingly by a
family σd+,1, . . . , σ

d
+,l (l ≥ 2) such that the non-zero entries of V+,l correspond

to the neighbouring levels of H0 of a certain energy distance (and similarly
for σd−) to ensure the resulting −Γ is again in L(TO(H0, T )).

Considering the standard control system (3) with dissipator Γd, Cor. 4
shows that if all coherent controls are compatible with the thermodynamic
framework from Sec. 3.1., i.e. [H0, Hj ] = 0 for all j = 1, . . . ,m (cf. Lem. 1),
then the reachable set of this control problem is automatically upper bounded
by the future thermal cone defined by Eq. (12). Now the richness thermody-
namic control systems have to offer comes from the interplay between thermo-
dynamic dissipation (i.e. −Γ ∈ L(TO(H0, T ))) and general unitary controls
which become an asset due to not stabilising H0. However, this overlap of
different categories comes at the expense of making it more difficult to study.

Recalling from Sec. 3.1. that diagonal elements evolve separately from
off-diagonal ones under (enhanced) thermal operations, in the next section
we study a modified version of control system (3) (with Γ = Γd from Cor. 4)
focussing on diagonal states represented by the standard simplex ∆n−1.

4aTo see this, let n ≥ 3 and let H0 = diag(E1, . . . , En) ∈ iu(n), E1 ≤ . . . ≤ En such that
Ei−Ei+1 6= Ej−Ej+1 for some i, j ∈ {1, . . . , n−1}, i 6= j (i.e. H0 does not have equidistant
eigenvalues). A straightforward computation shows 〈ei+1, [Γd, adH0 ](|ei〉〈ej |)ej+1〉 6= 0.
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4.1. Toy Models by Diagonal States

The idea for reducing reachability problems of (finite-dimensional) Marko-
vian open quantum systems to hybrid control systems on the standard sim-
plex of Rn will be to only include unitary controls in the model which do
not mix the diagonal and the off-diagonal of any state ρ(t)— as the same
holds for all thermal operations (Cor. 2). This means we have to restrict the
coherent controls to generators of (unitary channels induced by) permutation
matrices.

Recalling the bilinear control system (4), now we confine the discussion
to x(t) denoting the vector of diagonal elements of ρ(t) in “the” eigenbasis of
H0. We address a scenario with coherent controls {Bj}mj=1 and a bang-bang

switchable dissipator B0 ∈ L(TO(H0, T )) as motivated by recent experimental
progress [43, 95, 16, 93] and used in [7]. The controls of the toy model shall
amount to permutation matrices acting instantaneously on the entries of
x(t) and a continuous-time one-parameter semigroup (e−tB)t∈R+ of stochastic
maps with a unique fixed point d in ∆n−1. As (e−tB)t∈R+ results from the
restriction of the bang-bang switchable dissipator B0, with abuse of notation
we will denote its infinitesimal generator by B. The “equilibrium state” d is
defined in (18) by system parameters and the absolute temperature T ≥ 0 of
an external bath.

These stipulations suggest the following hybrid/impulsive scenario to de-
fine the toy model ΛB on ∆n−1 ⊂ Rn by

ẋ(t) = −Bx(t) , x(tk) = πkxk , t ∈ [tk, tk+1) ,

x0 ∈ ∆n−1 , xk+1 = e−(tk+1−tk)Bx(tk) , k ≥ 0 .
(22)

Furthermore, 0 =: t0 ≤ t1 ≤ t2 ≤ . . . is an arbitrary switching sequence and
πk are arbitrary permutation matrices. Both the switching points and the
permutation matrices are regarded as controls for (22). For simplicity, we
assume that the switching points do not accumulate on finite intervals. For
more details on hybrid/impulsive control systems see, e.g., [57, 59, 3]. The
reachable sets of (22)

reachΛB (x0) := {x(t) |x(·) is a solution of (22), t ≥ 0}

allow for the characterisation reachΛB (x0) = SΛBx0 , where SΛB ⊆ GL(n,R)
is the (1-norm-)contraction semigroup generated by (e−tB)t∈R+ and the set
of all permutation matrices π.

Recent Results. For the scenario just specified, the state-of-the-art [28]
can be sketched as follows. Take the n-level toy model where the infinitesimal
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generator results from coupling to a bath of temperature T ∈ [0,∞], i.e. one
has B = B(Γd) with Γd from Cor. 4. We denote this particular toy model
by Λd := ΛB(Γd).

Theorem 4. The closure of the reachable set of any initial vector x0 ∈ ∆n−1

under the dynamics of Λe1 exhausts the full standard simplex, i.e.

reachΛe1
(x0) = ∆n−1 .

Moving from a single n-level system (qud it) with x0 ∈ ∆n−1 to a tensor
product of m such n-level systems gives x0 ∈ ∆nm−1 ⊂ (Rn)⊗m. If the bath
of temperature T = 0 is coupled to just one (say the last) of the m qud its, Γ
is generated by V := 1nm−1⊗σ+ and one obtains the following generalisation.

Theorem 5. The statement of Thm. 4 holds analogously for all m-qudit
states x0 ∈ ∆nm−1.

In a first step to generalise the findings from the extreme case T = 0 to
T ∈ (0,∞] we found that general statements about the reachable set of Λd
can only be made under the following assumption

Assumption A: H0 has equidistant energy eigenvalues.

In this case we obtained:

Theorem 6. Assuming A, the reachable set of the thermal state d under
the dynamics of the toy model Λd satisfies reachΛd(d) ⊆ {x ∈ ∆n−1 |x ≺ d} ,
where ‘≺’ refers to classical majorisation. In particular, this is the smallest
convex upper bound for the reachable set one can find.

There are counterexamples to Thm. 6 as soon as H0 no longer has equidistant
eigenvalues [28, Example 3]. This is because assumption A is necessary for
the dynamics of Λd to be thermal operations (see the generalising Rem. 5).

The recent toy-model results of [28] thus extend the diagonal part of the
qubit picture (previously analysed in [7]) to n-level systems, and even more
generally to systems of m qud its. — Next we explore further generalisations
to non-zero temperatures, e.g., by allowing for general initial states x0 instead
of the thermal state d in Thm. 6.

Generalisations. To generalise previous reachability characterisations we
use deeper results on d-majorisation (Sec. 3.3.). For the toy-model dynamics
one gets:

(1) e−tBx0 ∈Md(x0) for all t ≥ 0;

(2) Md(x0) is a convex subset within the simplex ∆n−1,
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which means the dissipative time evolution of any x0 remains within the
convex set of states d-majorised by x0. Beyond pure dissipative evolu-
tion the toy model also allows for permutations π, so one naturally ob-
tains reachΛd(x0) = reachΛd(π(x0)) for all π ∈ Sn. Clearly, the simplex
region Md(x0) intertwines overall permutations π (in the symmetric group
Sn) in the sense πMd(x0) = Mπ(d)(π(x0)). For the maximally mixed state
(d ' e) it boils down to permutation invariance under classical majorisation
πMe(x0) = Me(π(x0)) = Me(x0). This immediately entails a first generali-
sation:

Corollary 5 (generalising Thm. 6). Assuming A those initial states x0 clas-
sically majorised by d (i.e. x0 ∈ Me(d)) remain within Me(d) under the
dynamics of the toy model Λd. In other words reachΛd(x0) ⊆Me(d).

In turn, this is but a special case of the following generalisation to arbitrary
initial states building on some deeper results on d-majorisation (Sec. 3.3.):

Theorem 7. Invoke assumption A. For the toy model Λd with Gibbs state d
corresponding to coupling to a bath of temperature T ∈ (0,∞], the reachable
set of any x0 ∈ ∆n−1 is included in the following convex hull:

reachΛd(x0) ⊆ conv
{
π(z) |π ∈ Sn

}
= Me(z) . (23)

Here, z is any element from the “ordered past cone”4b{
z ∈ ∆n−1 : x0 ≺ z ∧ d and z

d are ordered likewise
}

(24)

which, most importantly, contains an element z > 0 whenever x0 > 0.

The idea of the proof of Eq. (23) is to show that the vector field driving the
dynamics of Λd points inside the classical majorisation polytope Me(z) at
each of its n! extreme points π(z) with π ∈ Sn, see also Fig. 3. Finally, if
x0 > 0 then the existence of a vector z > 0 in Eq. (24) is due to Thm. 3 (as
detailed in the first author’s PhD thesis [84, Thm. 5.1.15]).

We emphasise that—while Thm. 6 becomes trivial in the limit T →∞—
Thm. 7 reproduces the known result that in the high-temperature limit the
reachable set for unital dynamics is upper bounded by all states classically
majorised by the initial state.

Remark 6. One can show that the set (24) of possible extreme points from
Thm. 7 used for an upper bound forms a convex polytope. Thus by means
of convex optimisation one can find an “optimal” majorisation bound in the
sense that z is closest to the fixed point of the dynamics, i.e.4c ‖z − d‖1 =

4bBy definition [24, Def. 3] the (unordered) past cone of a vector x0 is the set of all states
starting from which one can generate x0 via doubly-stochastic matrices.

4cOf course the 1-norm can be replaced by any other function f : ∆n−1 → R+ of interest.
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Fig. 3: (Colour online). Upper left: Evolutions of initial x0 = (0.9, 0.07, 0.03)>

and permutations π(x0) under Γd with V1, V2, θ = π
6 of Eqs. (19)-(21) drive to

fixed point d; upper right panel includes all permutations of trajectories starting

with permutations of d, i.e. x0 = π(d); the red region shows states d-majorised by

x0, blue regions are their permutations; the convex hull over red and blue regions

contains entire reachable set reachΛd(x0); inset gives the vector field to the dissipative

part of the dynamics.

Lower left: For θ = π
5 in (21), as generically, the extreme point z = (0.65, 0.30, 0.05)

>

in red differs from x0 = (0.55, 0.40, 0.05)
>

as well as from d = (0.55, 0.29, 0.16)
>

.

The lower right shows the vector fields under the full dynamics Λd of dissipation and

permutation control with stabilisable points (cp. Sec. 4.2., Fig. 7) in turkish blue.

miny∈(24) ‖y − d‖1. While this is unambiguous if x0 ≺ d or if x0 is in its

own ordered past cone4d, note that for general x0 ∈ ∆n−1 the convex hull of
reachΛd(x0) need not be a majorisation polytope anymore.

Fig. 3 illustrates these general findings for the special case of three-level
systems (again assuming the drift term H0 has equidistant eigenvalues).

4d If x0 ≺ d, then the “optimal” z is d, in the sense that conv(reachΛd
(x0)) = Me(d): on

the one hand conv(reachΛd
(x0)) ⊆ conv(Me(d)) ⊆ Me(d) by Thm. 7 because d is in the

ordered past cone of x0; also Me(d) = conv({πd : π ∈ Sn}) ⊆ conv(reachΛd
(x0)). Similarly

one sees that if x0 is in its own ordered past cone, i.e. d and x0
d

are ordered likewise, then
the “optimal” z (as def. above) is x0 itself.



34

4.2. Explicit Results and Examples for Qutrits

So far, we have given upper bounds for reachable sets of the toy model.
In this section we will explicitly determine the shape of the reachable set and
of the set of stabilisable states for the three-dimensional case d ∈ R3, d > 0.
For this we first introduce some general notions.

It pays off to approach the toy model (22) from a different, but equiv-
alent4e, perspective: instead of letting the permutations act on the states,
leading to discontinuous paths, we let the permutations act on the drift vec-
tor field, leading to the following differential inclusion4f, where—in analogy
to reachB(x)—we write derv(x) for the set of achievable derivatives at x:

ẋ(t) ∈ conv(derv(x(t))), derv(x) := {−πBπ−1x : π ∈ Sn}, (25)

cf. [80]4g for an introduction to this topic. Many ideas work for any matrix
−B which generates a one-parameter semigroup of stochastic matrices and
has unique fixed point d, but for some results we will restrict B to the case
where the generator is of the form given in Eqs. (19) & (20) and the corre-
sponding Hamiltonian has equidistant energies. This ensures that we obtain
sensible formulas, and it is physically motivated, see Rem. 5. As above we
call this Assumption A.

Stabilisable States. The set of stabilisable states stabB is defined to be
all x ∈ ∆n−1 such that 0 ∈ conv(derv(x)). Intuitively, these are the points
in ∆n−1 that, when taken as starting point, one can remain arbitrarily close
to. More precisely we have the following result:

Lemma 3. A state x0 ∈ ∆n−1 is stabilisable if and only if for every ε > 0
and τ > 0 there is a solution x : [0, τ ]→ ∆n−1 to (25) with x(0) = x0 which
remains inside of the ε-ball Bε(x0) ∩∆n−1.

Proof. If x0 is stabilisable, then the constant path x ≡ x0 is a solution to (25).
Conversely, assume that x0 is not stabilisable. Then, by continuity, there is
some δ > 0 and some linear functional β on Rn such that β is less than −δ
on derv(y) for all y in some neighborhood of x0. Hence there is some time
τ > 0 where any solution must leave Bε(x0) for some ε small enough.

4eThe systems are equivalent in the sense that every solution of one system has a corre-
sponding solution in the other system differing only by some (time-dependent) permutation.
Note however that we allow more general controls in the differential inclusion, so that this
equivalence is only approximate in general.

4fBy abuse of notation, π ∈ Sn also denotes the induced permutation matrix.
4gIn particular Thm. 2.3 therein shows the equivalence of control systems and the cor-

responding differential inclusions. Note that taking the convex hull leads to a relaxation
of the differential inclusion, which is still approximately equivalent to the original control
system, see [5, Ch. 2.4, Thm. 2].



35

Remark 7. It is possible to define a control system on the simplex ∆n−1

similar to the toy model (i.e. by projecting (3) onto “the” diagonal) but
allowing for the full unitary control of the system given by Eq. (3). In this
case there is a characterisation of stabilisability in basic Lie-algebraic terms:
Every point in the simplex ∆n−1 is stabilisable if and only if all gksl-terms
Vk can be simultaneously (upper) triangularised [65]. By Lie’s Theorem, this
is equivalent to the Vk generating a solvable Lie algebra. Also be aware of
the special cases if all Vk commute, or one just has a single Vk, such as σd+ of
Eq. (19) in the case T = 0 (i.e. θk = 0 in (21)). As soon as T > 0, however,
the situation gets more involved, as the qutrit example below shows.

If zero is not contained in the convex hull of achievable derivatives at x, then
there must exist some linear functional α on Rn which is negative on derv(x).
Note that while α lives on Rn, only the part parallel to the simplex ∆n−1

matters. Based on this observation, the idea is to consider the “permuted”
functionals απ(x) := −α(πBπ−1x) because, given any x ∈ ∆n−1, if there
exists α such that απ(x) < 0 for all π ∈ Sn, then x cannot be stabilisable.
Conversely, if x is not stabilisable, then there exists some α for which απ(x) <
0 for all π ∈ Sn. Obviously, d as well as all permutations of d are stabilisable.

Let us now focus on the three-dimensional case. We will compute a closed
curve connecting all these points, which will turn out to be the boundary of
the set of stabilisable states: everything (on or) inside the curve will be
stabilisable and everything outside will be non-stabilisable—refer to Fig. 5
below for two examples. Let us, e.g., focus on the part of the boundary curve
between d and τ23 d, where τ23 is the transposition acting on the second
and third element. Note that d and τ23 d are located in neighbouring Weyl
chambers since the elements in d are always increasing or decreasing. The
idea for determining its shape is: for every functional α (in a certain range)
one can compute a point ker(αid)∩ ker(ατ23)∩∆2 with the property that all
points in the simplex “above” it cannot be stabilisable as shown in Fig. 4.
Moreover, due to Assumption A, the curve will always be part of a conic
section. To motivate this approach, note that any point x with απ(x) < 0
for some α and for all π ∈ Sn in contained in an open neighborhood of
non-stabilisable points and hence cannot lie on the boundary. Thus we are
looking for points lying in the kernel of at least one of the απ(x). Moreover,
we really need to find points lying in the intersection of two such kernels,
since otherwise a small perturbation applied to α shows that the point has a
non-stabilisable neighborhood.

Let us now invoke Assumption A so, w.l.o.g., H0 := diag(−1, 0, 1) ·∆E
for some ∆E ∈ R, and thus d = (1, a, a2)/(1 +a+a2) with a = e−∆E/T . The
generators of our dissipative dynamics (19) & (20) are fully characterised by
the (constant) angle θ = arccos( 1√

1+a
) in (21). With this, the generator of
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Fig. 4: (Colour online). Illustration of how to construct the boundary
curves of the set of stabilisable points in the case of a = 0.3. Left: For
α =

(
0 −0.4 −0.6

)
the shaded regions comprise the points where the

functionals απ are negative; highlighted is the intersection of all the neg-
ative regions with the simplex. The points in this region are certainly not
stabilisable. In particular the intersection point of ker(αid) and ker(ατ23) is
marked in red. Right: For three different values of α, parts of ker(αid) and
ker(ατ23) and their intersections are shown. Taken together, these intersec-
tions form the curve given in red, which constitutes a part of the boundary
of the set of stabilisable points.

the toy model takes the form (cf. also [28])

−B =
2

1 + a

−a 1 0
a −1− a 1
0 a −1

 .

Let us go through the construction of the curve for the special (parabolic)
case4h where a = 1

4 . It will turn out that the boundary curve between d and
τ23d is fully determined by the family of functionals4i αλ, λ ∈ [−1

7 ,
1
7 ] where

αλ := −(1
2 + λ)

(
0 0 1

)
− (1

2 − λ)
(
0 1 0

)
, (26)

4hThis is the case where the energy gap |∆E| = ln(4)kBT , where we explicitly write the
Boltzmann constant kB .

4iSince we only care about the component of the functional parallel to the simplex and
since the normalisation does not matter, it suffices to consider a one-parameter family
of functionals. The exact parametrisation and parameter range are chosen for ease of
computation.
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so αλ(x) = λ(x2 − x3) − 1
2(x2 + x3) for all x ∈ R3. In order to compute

ker(αλid)∩ ker(αλτ23
)∩∆2 we find that αλid = αλ ◦ (−B) (up to a global factor,

which we may omit because we have to normalise later on anyway) equals

−(1
2 + λ)

(
0 1

2 −2
)
− (1

2 − λ)
(

1
2 −5

2 2
)

=
(
λ
2 −

1
4 1− 3λ 4λ

)
.

Also αλτ23
= α−λid ◦ τ23 is generated by

(
−λ

2 −
1
4 −4λ 3λ+ 1

)
. With this

we compute ker(αλid) ∩ ker(αλτ23
) to be spanned by “the” vector which is

orthogonal to the normal vector of both αλid and αλτ23
, that is, λ

2 −
1
4

1− 3λ
4λ

×
−λ

2 −
1
4

−4λ
3λ+ 1

 =

 1 + 7λ2

−7
2λ

2 − 3
4λ+ 1

4
−7

2λ
2 + 3

4λ+ 1
4


Intersecting the line generated by this vector with the standard simplex only
introduces a normalising factor since we have: ker(αλid) ∩ ker(αλτ23

) ∩ ∆2 =
1
6(4 + 28λ2,−14λ2− 3λ+ 1,−14λ2 + 3λ+ 1)>. Finally, we reduce the dimen-
sionality of the problem by isometrically embedding4j the simplex ∆2 in R2;
this leads to the (parabolic) boundary curve ( λ√

2
, 1+14λ2
√

6
) where λ ∈ [−1

7 ,
1
7 ].

If a 6= 1
4 we modify the family of functionals αλ introduced previously

by multiplying λ in (26) by 1
2

√
1 + 2a|(3 + 2a)(1 − 4a)|−1/2; however, the

idea and the calculations are analogous. In the hyperbolic4k case a > 1
4 the

boundary curve can be parametrised via(
w
−2λ

λ2 − 1
, u
λ2 + 1

λ2 − 1
+ v

)
where

v − u =

√
2

3

1− a
1 + 2a

, u+ v =

√
2

3

1− a
1− 4a

, w =

√
2(1− a)a√

|(1 + 2a)(3 + 2a)(1− 4a)|
.

For the elliptic case a ∈ (0, 1
4) one finds(
w

2λ

λ2 + 1
, u
λ2 − 1

λ2 + 1
+ v
)
.

This covers the segment of the curve which connects d and τ23d. For the rest
of the boundary curve note that—due to the permutation symmetry—there
are only two different curve segments, cf. Fig. 5. We have just computed
one of them. The other one is obtained by re-arranging the elements of d in
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Fig. 5: (Colour online). Left: The set of stabilisable states for the equidistant
energy case with a = 1

5 . The set is bounded by six conics and contains
the permutations of d. This is the elliptic case, and part of the ellipse is
drawn in red, together with its permuted copies. The blue curve is obtained
analogously by taking the hyperbolic case a = 5 whose fixed point we denote
d′. Right: The same approach gives the boundary of the set of stabilisable
states for a random generator B numerically. NB: In general the bounding
curves need not be conic sections, and one may obtain a convex shape.

reverse order and repeating the calculation. One obtains the same formulas
with a replaced by a−1.

We have seen that for each α we obtain an open (convex) region which
is certainly not stabilisable. Parametrising α in a circular fashion—i.e. α ∈
S2 ∩ {e}⊥ in accordance with footnote 4i—shows that this region moves
continuously around the simplex, and its closure always touches our closed
curve in such a way that each point outside of the curve is part of this region
at some point, implying that all these points outside are non-stabilisable.

It remains to be shown that every point on the boundary or enclosed
within the boundary curve we just computed can in fact be stabilised. We
will only give a hand-wavy explanation; again, each α yields a convex region
which is not stabilisable, and which touches our curve in some point. Two
cases may occur: Either one of the halfplanes on which some απ is negative
lies outside of the majorisation polytope of d, in which case no point inside
our curve is in this halfplane. Otherwise, we are in the case illustrated in

4jAs usual this is done using the partial isometry P =

(
0 −1√

2

1√
2√

2
3

−1√
6

−1√
6

)
.

4kThe unital scenario a = 1 is a special case because then d = e

3
, so the set of stabilisable

points collapses to { e
3
}.
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Fig. 4. Here the convex region of non-stabilisable points given by α, when
intersected with the majorisation polytope of d, is a triangle with vertices
given by two permutations of d and some point on our curve. Since the curve
is always concave, again no point enclosed by the curve lies in the triangle of
non-stabilisable points. The case for arbitrary admissible generators −B in
the qutrit case is analogous, but the large number of parameters makes the
formulas unwieldy. In higher dimensions, the idea of using the functionals
απ to determine non-stabilisable points still applies, but it is unclear how to
analytically compute the resulting shapes of the stabilisable set.

Reachable States. Let us now turn towards the set of reachable states
(or, more precisely, its closure) for some given initial state and any stochastic
generator matrix −B with unique fixed point d ∈ ∆n−1, d > 0. Let us use
the notation y � x to denote that y ∈ reachB(x). Then � is a preorder and
so it induces an equivalence relation ∼ on which it becomes a partial order.
In other words, x ∼ y if and only if x ∈ reachB(y) and y ∈ reachB(x) meaning
there exists an approximately periodic solution through x and y. Note that
up to a viability condition, the equivalence classes [x] of this equivalence
relation correspond to control sets as defined in [19, Def. 3.1.2], and the
induced partial order corresponds to the reachability order [19, Def. 3.1.7].

First we observe that the maximally mixed state can always be reached:

Lemma 4. For all x ∈ ∆n−1, the vectors d and 1
ne are in reachB(x).

Proof. Since d is the unique fixed point of e−tB for t > 0, and since it is at-
tractive4l, d� x for all x ∈ ∆n−1. Similarly, consider B̂ = 1

n!

∑
π∈Sn πBπ

−1.

Then B̂ is invariant under permutations, which implies that B̂e = 0. More-
over 1

ne is the unique fixed point in ∆n−1 since otherwise, by permutation
symmetry there would be an open set of fixed points in ∆n−1, and hence
B̂ ≡ 0. This would imply that B ≡ 0 as one can check by considering the
value of B̂ at the vertices of ∆n−1. As before, the fixed point 1

ne of B̂ is
attractive.

This lemma shows d ∼ 1
ne, and that the equivalence class [d] = [ 1

ne] is an
invariant control set as defined in [19, Def. 3.1.3].

Let us now, again, restrict to the three-dimensional case. It turns out
that this equivalence class is the only one that contains more than a single
point: the idea is that equivalence classes with at least two points lead to

4lThis follows from a basic result on continuous-time Markov chains. Here −B is the
transition rate matrix. It is irreducible (in the sense of [69, p. 111]) since d > 0 is the
unique fixed point. Then [69, Thm. 3.6.2] shows that the corresponding Markov chain is
ergodic, i.e. the unique fixed point is attractive.
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Fig. 6: (Colour online). Left: The left extremal vector field in the case a = 0.3
depicted in the indicated Weyl chamber. The vector field is undefined on the
stabilisable set, and hence this yields another way to compute the set of
stabilisable points. We plotted again the bounding conics of the stabilisable
set and the trajectories bounding the reachable set reachB(d). In this case the
boundary trajectories are obtained by starting at d and permuting B such
that one of the neighbours of d is the unique fixed point. The background
colors show the norm of the left extremal vector field, and its discontinuities
are clearly visible. Right: A zoomed-in picture of the “D”-shaped region
considered in the proof of Lem. 7 again with parameter a = 0.3.

(approximately) periodic solutions which must enclose a stabilisable point.
Since the set of non-stabilsable points is simply connected, when restricting
to a Weyl chamber the periodic solution intersects the set of stabilisable
states, which are all equivalent to 1

3e. A proof can be found in App. D.
For any non-stabilisable state x, it holds that the convex cone generated

by derv(x) is pointed (i.e. its edge is a point). Hence there are two extremal
derivatives at the boundary of the cone, which we will call the left and right
extremal derivatives, as seen from x. The resulting extremal vector fields are
depicted in Fig. 6. More precisely we have the following result.

Lemma 5. On the set ∆2 \ int(stabB) there exist left and right extremal
vector fields. The norm of these vector fields might not be continuous, but
the direction field is locally Lipschitz continuous, except possibly at d (and its
permutations).

Proof. As already mentioned, for any non-stabilisable point x, the convex
cone generated by derv(x) is pointed. On the other hand, if for some x
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Fig. 7: The boundary of the reachable set reachB(d) in the case a = 0.5 is
shown with solid lines, and the boundary of the stabilisable set stabB is shown
using dotted lines (cp. Fig. 3). NB: The curve segments of the boundary of
the reachable set are not straight, though the curvatures are hardly visible.

the convex cone is the plane, then x is in the interior of the stabilisable
set. Hence on the boundary of the stabilisable set, the convex cone is either
pointed or a half space. Either way there is a well defined left and right
extremal derivative, and so the corresponding vector fields are well-defined.
Locally, for x 6= πd the direction field can be seen as a maximum of finitely
many smooth functions, and hence it is locally Lipschitz continuous.

The discontinuities in the norm are important, as they tell us when the
control permutation has to be applied. The shapes of these discontinuities
are non-trivial, and we show an example in Fig. 6.

Now the boundary of the reachable set can be computed using solutions
following the left and right extremal derivatives. By the previous lemma
these solutions exist and are unique. See again Fig. 6 as well as Fig. 7. Note
that the extremal vector fields never vanish where they are defined, and since
they are defined on a contractible domain (if restricted to a Weyl chamber)
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there are no periodic solutions. This relies on the fact that the state space
is two dimensional, see for instance [82, Thm. 6.8.2]. Moreover, given a left
(right) extremal solution, another solution can only cross it from left to right
(right to left); this can be shown as in the proof of [80, Thm. 5.6].

Before we can prove this section’s main result we need the following topo-
logical result about reachable sets:

Lemma 6. Let any x ∈ ∆2 be given. Then reachB(x) is contractible.

Proof. Consider the map F : reachB(x)× [0, 1]→ reachB(x) defined by

F (y, t) =

{
e−B̂f(t)y if t < 1
1
3e else,

where B̂ is defined as in the proof of Lem. 4 and f : [0, 1) → [0,∞) is any
homeomorphism. It follows from the same lemma that F is continuous, and
hence a (strong) deformation retraction.

Lemma 7. Invoke Assumption A and further assume that d ∈ ∆2
↓ where ∆2

↓
denotes the ordered Weyl chamber of the simplex. The left extremal solution
starting from d lies in the complement of the interior of the stabilisable region
and terminates in the boundary of the Weyl chamber in finite time, without
leaving the (classical) majorisation polytope of d. The analogous result holds
for the right extremal solution.

Proof. From Cor. 5 we know that the left extremal solution remains in the
majorisation polytope of d. Let us sketch why this solution cannot enter the
set of stabilisable points in ∆2

↓. Consider the connected region containing
d and τ23d which is bounded by the majorisation polytope and the set of
stabilisable points, and is shaped like a “D” lying on its belly, so let’s call it
D, see right panel of Fig. 6.

First note that since there are no fixed points in D, every solution reaches
the boundary of D in finite time, and by the above it reaches the curved part
of the boundary of D. Now consider the straight part of the boundary,
between d and τ23d. The solutions starting from points close to τ23d will
reach the curved boundary of D on the right side. Hence by continuity
all points on the straight part of the boundary have solutions ending up
on a connected part of the curved boundary. However, as we have seen
before, on the boundary of the set of stabilisable points, the cone generated
by the achievable derivatives is a half plane, and hence the left and right
extremal vector fields point in opposite directions. Therefore in general only
one kind of solution can terminate in each point. By symmetry and the above
connectedness, all left extremal solutions must terminate on the right side
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of D, and analogously for the right extremal solution. As noted above, no
solution can leave the region delimited by the extremal solutions.

Theorem 8. The left and right extremal solutions starting at d separate the
Weyl chamber into two parts, and the inner part containing 1

3e equals the

intersection of reachB(d) = [d] with ∆2
↓.

Proof. Taking the extremal solutions in the ordered Weyl chamber and all
of the permuted copies yields a closed curve surrounding and contained in
reachB(d), i.e. they form the “outer boundary” of the reachable set. By
Lem. 6 reachB(d) is contractible, hence it is equal to the region enclosed by
this curve.

Corollary 6. For every x ∈ stabB it holds that x ∼ d.

Proof. By Lem. 4 it holds that d� x. Thm. 8 shows that reachB(d) is the set
enclosed by the left and right extremal solutions (and their permuted copies)
starting at d and ending in the boundary of the Weyl chamber. Moreover
Lem. 7 shows that this set contains stabB and hence x� d.

For starting points other than d, a similar result holds.

Corollary 7. For any point x outside of [d], we can compute the boundary of
reachB(x) in ∆2

↓ by following the left and right extremal solutions until we hit
either the boundary of the Weyl chamber or [d]. Moreover, the left extremal
solution can only terminate in the right boundary of the Weyl chamber or in
the left boundary of [d] and vice-versa.

Proof. Since d > 0 no solution tends to the boundary of the simplex. Hence
the left and right extremal solutions must terminate in the boundary of the
Weyl chamber or of [d]. The fact that the left extremal solution can only
terminate in the right boundary of the Weyl chamber or in the left boundary
of [d] follows from the fact that integral curves do not intersect and the fact
that on the symmetry lines of the simplex, the cone of achievable derivatives
opens towards 1

3e.

The more general case4m of B not satisfying Assumption A can be treated
with similar methods. Note, however, that many of our arguments rely on the
fact that the state space is two dimensional, and hence it is not clear how to
analytically determine stabilisable and reachable sets in higher dimensions.

4mcp. also Rem. 5
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5. Conclusions

We have analysed quantum control systems with thermal resources, where
one combines coherent unitary controls with a switchable coupling to a ther-
mal bath as additional control. To this end, we have characterised (the clo-
sure of) thermal operations (TO), enhanced thermal operations (EnTO), as
well as Gibbs-preserving maps (Gibbs) within the framework of Lie-semigroup
theory. Thereby we could determine (up to Conj. 1) the structure of the re-
spective semigroups, their Lie wedges as well as their edges. It is important
to note that the Lie wedges in turn define the corresponding Markovian coun-
terparts as the corresponding Lie semigroups, to wit MTO, MEnTO, MGibbs.
A worked qubit example illustrates how Markovian thermal operations sit
inside all thermal operations by means of an explicit parametrisation. In
case of single qubits the Markovian thermal operations MTO even exhaust
the entire set of thermal operations TO in the zero-temperature limit. On
a general scale, Thm. 2 provides an explicit construction for (possibly all)
generators of Markovian thermal operations via temperature-weighted pro-
jections out of a total Hamiltonian (preserving energy of system and bath)
in the Stinespring dilation.

In view of studying reachable sets, the semigroup techniques naturally
match with general concepts of majorisation (d-majorisation). For the evo-
lution of diagonal states under such controlled Markovian dynamics, we have
upper bounded the reachable sets by inclusions within the standard simplex
∆n−1: they can readily be given in terms of the convex hull of extreme points
of the d-majorisation polytope. — Finally, for the qutrit case, we have ex-
plicitly determined and illustrated the geometry of both, the reachable set
and the stabilisable set by techniques of differential inclusion.

6. Outlook

There are several ways to generalise the toy model with all permutations
as controls plus a specific generator of a one-parameter semigroup of thermal
operations:

First one may define again a reduced control system still on the simplex,
but now encapsulating the entire unitary control. While our results for T = 0
(Thms. 4 & 5) immediately carry over into this generalisation6a, it is not
obvious how to adapt our upper bounds (Thm. 7) and if analytic solutions
in the three-dimensional case (Sec. 4.2.) are still obtainable. Studying the
interplay between Markovian operations and general unitary dynamics will
be the subject of future work [65].

6asee also [84, Cor. 5.1.12]
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Next one could allow for arbitrary Markovian thermal operations to-
gether with all unitary maps—the generated semigroup of which we denote
by MTOU(H0, T ) (MTOU in abuse of notation)—and ask for best approx-
imations to the corresponding reachable sets given by the semigroup orbit
MTOU(ρ0), or analogously MEnTOU(ρ0) or MGibbsU(ρ0) on a general scale.
For non-zero temperatures, this question boils down to feasible state trans-
fers under MTO(H0, T ) beyond the simple bath dynamics of Cor. 4. Such
a setting would generalise [64] which itself characterised the reachable set
MEnTO(ρ0) 6b for ρ0 quasi-classical and led to a “Markovian” generalisation
of d-majorisation.

Finally lifting considerations to the operator level, the single-qubit obser-
vation in this work that in the zero-temperature limit Markovian thermal op-
erations converge to general thermal operations MTO(H0, T ) → TO(H0, T )
begs the question what happens in the general case with MTO(H0, T ) as
T → 0+. — Beyond Markovianity, in analogy to above take TOU(H0, T )
(again TOU for short) as the smallest semigroup now embracing all unitary
operations as well as all thermal operations TO(H0, T ). While the reachable
sets TOU(ρ0) are known6c (also see the first teaser of the introduction), TOU

is not yet explored on the level of quantum maps either.

All these generalisations would help to understand how Markovianity in-
terrelates with quantum thermodynamics at large.

6bNote that this would be MEnTOU(ρ0) if one allowed for all unitary maps instead of
just those with H0 as fixed point.

6cTOU acts (approximately) transitively (i) on the set of all density operators for all
T ∈ [0,∞) [87, Prop. 4.12] and (ii) on the set of all states majorised by the initial state if
T =∞ [84, Prop. 5.2.1].
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Appendix A: A Simple Proof of Proposition 2 (iv)

While ⊆ in Eq. (7) is obvious, for ⊇ choose γ ∈ C1 as in the r.h.s. of (7)
with γ̇(0) =: A. Then given any t ≥ 0 sufficiently small we compute

n log
(
γ( tn)

)
= n log

(
id + t

nA+ O( tn)
)

= n
(
t
nA+ O( tn)

)
→ tA

as n → ∞. Be aware that we are allowed to apply the logarithm to γ( tn)
and, more importantly, (γ( tn))n because

‖ id− (γ( tn))n‖ = ‖ id−(id + t
nA+ O( tn))n‖

= ‖ id− id−n
(
t
nA+ O( tn)

)
−
(
n

2

)(
t
nA+ O( tn)

)2 − . . . ‖
≤ ‖At+ nO( tn)‖ · ‖ id +n−1

(
n

2

)(
t
nA+ O( tn)

)
− . . . ‖ ≤ Ct(‖A‖+ ε)

for all n sufficiently large as t was chosen to be suitably small. Here C can
be obtained by a brute force estimate of the remaining terms of the binomial
formula. Now because S is a closed semigroup we are able to conclude that

lim
n→∞

γ
(
t
n

)n
= lim

n→∞
elog

(
(γ(

t
n ))n

)
= lim

n→∞
en log(γ(

t
n )) = etA

is in S. Thus (etA)t≥0 ⊆ S, again due to the semigroup property of S.

Appendix B: Proof of Theorem 1

(a): The result can be found in [40, Thm. V.1.13] (again under a much
more general setting). Here the straightforward proof under our assumptions:
let S ⊆ B(Z) be a closed subgroup and L(S) its Lie wedge. Then S0 is
obviously a closed subsemigroup contained in S and thus L(S0) = L(S). This

implies S0 = 〈exp
(
L(S)

)
〉
SG

= 〈exp
(
L(S0)

)
〉
SG
, i.e. S0 is a Lie subsemigroup.

Moreover, let S′ be any other Lie subsemigroup contained in S. Then one
has L(S′) ⊆ L(S) and thus S′ = 〈exp(L(S′))〉SG ⊆ 〈exp(L(S))〉SG = S0 .
Hence S0 is the largest Lie subsemigroup of S. (i): Moreover, let S′ be any
other Lie subsemigroup contained in S. Then one has L(S′) ⊆ L(S) and
thus S′ = 〈exp(L(S′))〉SG ⊆ 〈exp(L(S))〉SG = S0 . Hence S0 is the largest Lie
subsemigroup of S. (ii): For piecewise constant controls, the reachable set of
the identity obviously coincides with the semigroup generated by exp

(
L(S)).

Moreover, as any locally integrable functions can be (L1-norm) approximated
on bounded intervals by piecewise constant functions, we conclude that the

closure of the reachable set reach(id) equals 〈exp
(
L(S)

)
〉SG = S0.

(b): The case S ⊆ GL(Z) is treated in [40, Cor. VI.5.2]; the case S ⊆ B(Z)
follows readily from the fact that for every Lie subsemigroup the set of its
invertible elements (i.e. S ∩ GL(Z)) is dense in S.
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Appendix C: Proof Idea of Equation (14)

A simple way of verifying (14) is to expand the exponentials:

trCm
(
e−itH((·)⊗ ω)eitH

)
=

∞∑
j,k=0

trCm
((−itH)j

j!
((·)⊗ ω)

(itH)k

k!

)
=

∞∑
j,k=0

(−1)j(it)j+k

j!k!
trCm

(
Hj((·)⊗ ω)Hk

)
=

∞∑
`=0

(it)`
∑̀
j=0

(−1)j

j!(`− j)!
trCm

(
Hj((·)⊗ ω)H`−j)

Therefore the first-order term is−it(trCm(H((·)⊗ω))−trCm((·)⊗ω)H)) which
by [86, Eqs. (14) & (15)] equals −it(trω(H)(·) − (·) trω(H)) = −it adtrω(H).
Similarly, the second-order term comes out to be

t2
(

trCm
(
H((·)⊗ ω)H

)
− 1

2
trω(H)(·)− 1

2
(·) trω(H)

)
. (27)

Defining ΦH := trCm(H((·)⊗ω)H)—which is completely positive—the second

factor from Eq. (27) can be re-written as ΦH −
Φ∗H(1)

2 (·) − (·)Φ∗H(1)
2 . This

is known to be the generator of a quantum-dynamical semigroup, and one
recovers Eq. (2) by choosing the Vj as Kraus operators of ΦH , see [23, Ch. 9,
Thm. 4.2 & Eq. (4.16)]. A straight-forward computation shows that a set of
Kraus operators of ΦH is given by (

√
rk tr|gk〉〈gj |(H))mj,k=1. Altogether this

yields (14).

Appendix D: Periodic Solutions in the Qutrit System

We show that in the qutrit case, periodic solutions enclose a stabilisable
point which—as we will see below—implies that [d] = [1

3e] is the only non-
trivial equivalence class. We work in the setting of Sec. 4.2. using Assumption
A, in particular we think of the control system being given in the form of
the differential inclusion (25).

Lemma 8. Let x : S1 → ∆2 be a smooth, periodic, injective solution of the
differential inclusion with non-vanishing derivative. Then the region enclosed
by x contains a stabilisable point.

Proof. This is a direct generalisation of [5, Ch. 5.2, Thm. 1] which states
that if an upper semicontinuous differential inclusion with non-empty, closed,
convex values is defined on a compact convex set and satisfies a viability
condition, then it has a stabilisable point. By the Schoenfliess Theorem,
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see [68, Ch. 9, Thm. 6], the interior region of x(S1) is homeomorphic to
an open disk, and hence by the Riemann mapping theorem, there is even a
biholomorphism. Now note that since x is an injective immersion and S1 is
compact, it is an embedding, and hence the image is a smooth curve. Thus,
by [6, Thm. 3.1], the Riemann mapping extends to a diffeomorphism of the
closure of the interior region to the closed disk. Finally we can pull back the
differential inclusion to the disk and apply the aforementioned theorem to
find a stabilisable point.

The idea of the result we want to prove is that if two points are equivalent
but distinct, then they must be equivalent to some stabilisable point. To
prove this in general we need the following approximation result.

Lemma 9. Let x 6= y and y � x, and assume that y is not stabilisable. Let
a solution ỹ starting at y be given. Then for every ε > 0 small enough we
can modify the differential inclusion in the region Bε(y) without creating new
stabilisable points and such that there is a smooth solution x̃ starting at x
and ending at y such that the concatenation of x̃ and ỹ is smooth.

Sketch of proof. Using translations and rotations we may assume that y =
(0, 0) and the cone generated by derv(y) is contained in the upper halfplane
and symmetric about the vertical axis. By continuity and assuming that δ is
small enough, there are inner and outer approximations of this cone in Bδ(y)
which are both pointed. We may assume (e.g., by extending x backwards)
that x′(0) lies in the inner approximating cone. We will only modify the
differential inclusion within the lower half of this disk. Now assume that for
some small enough 0 < ε� 1 we have a smooth solution x̃ starting at x that
ends ε-close to y. Then by slightly enlarging the outer cone we may assume
that x̃ enters the unit disk within the negative of the outer cone. One can
see that it is possible to modify the differential inclusion inside BR \ Br for
some 0 < r < R < 1 such that there is a smooth solution entering Br inside
of the inner approximating cone, while making sure that the cone always lies
in the upper halfplane, so that no stabilisable points are created.

Proposition 5. If x 6= y and x ∼ y, then x ∼ 1
3e.

Proof. If x or y is stabilisable, then by Cor. 6 it is equivalent to d and we are
done. Hence we assume that neither x nor y is stabilisable. Let ε > 0 small
enough be given. Since x ∼ y, we may apply Lem. 9 twice to obtain a smooth,
periodic solution passing through x and y for a slightly modified differential
inclusion, which does not introduce new stabilisable points. Without loss of
generality we may assume that this solution is injective and has non-vanishing
derivative. By Lem. 8 it encloses a stabilisable point. However, if we work
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in a Weyl chamber, the non-stabilisable set is simply-connected, and so the
periodic solution intersects the stabilisable region in some point s. Hence
there is a point ε-close to x which is reachable from s (and by Cor. 6 also
from 1

3e). Letting ε go to 0 this shows that x� 1
3e.

Appendix E: Markovian Thermal Single-Qubit Operations with
Different Temperatures

We compute the product of two Markovian thermal operations in the
single-qubit case and show that the result is again Markovian and thermal.
Recall that every thermal qubit operation in MTO(H0, T ) is represented by
three parameters6d: µ, ε ∈ R, c ∈ C. A matrix representation is given by

G(µ, ε, c) =

1− εµ µ 0
εµ 1− µ 0
0 0 c

 . (28)

Considering the productG(µ3, ε3, c3) = G(µ1, ε1, c1)G(µ2, ε2, c2) we find that

µ3 = µ1 + µ2 − µ1µ2(1 + ε1)

ε3µ3 = ε1µ1 + ε2µ2 − µ1µ2(1 + ε1)ε2

as well as c3 = c1c2. Note that this product in general is not commutative.
Actually, in order for (28) to describe a thermal operation recall that

µ, ε ∈ [0, 1] and |c|2 ≤ (1− εµ)(1−µ), and for the operation to be Markovian
the latter condition is replaced by |c|2 ≤ 1− µ(1 + ε).

Lemma 10. Let parameters µ1, ε1, µ2, ε2 ∈ [0, 1], c1, c2 ∈ C be given and set
(µ3, ε3, c3) := (µ1, ε1, c1) · (µ2, ε2, c2). Then the latter is thermal, and if the
initial parameters are Markovian, then so is (µ3, ε3, c3).

Proof. Because the above composition rule on R2 × C is defined via (28),
i.e. µ3 = µ1(1−µ2) + (1− ε1µ1)µ2 and ε3µ3 = ε2µ2(1−µ1) + ε1µ1(1− ε2µ2),
the assumption µ1, ε1, µ2, ε2 ∈ [0, 1] directly implies µ3, ε3 ≥ 0. Next, using
1−µ3 = (1−µ1)(1−µ2)+µ1µ2ε1 and 1−ε3µ3 = (1−ε1µ1)(1−ε2µ2)+ε1µ1µ2

we find 1−µ3 ≥ 0, µ3−µ3ε3 ≥ 0, and |c3|2 ≤ (1−ε3µ3)(1−µ3). Together this
shows that (µ3, ε3, c3) is thermal. Finally, the statement about Markovianity
follows from 1− µ3 − ε3µ3 = (1− µ1 − ε1µ1)(1− µ2 − ε2µ2).

6dStrictly speaking, one has to replace ε by µε since the former leads to an ill-defined
composition rule if µ = 0. However, this special case can easily be dealt with, so for the
sake of simplicity and clarity we will treat ε as independent.



50

Hence the union of MTO(H0, T ) over all T yields a semigroup which we
denote by MTO(H0). One readily verifies that MTO(H0) is weakly exponen-
tial, and it turns out that it is even locally exponential: to see this we need
to find a neighbourhood basis of the identity which is exponential. Since
MTO(H0) decomposes into a stochastic part and a complex part (as shown
above), it suffices to argue for each separately. Indeed the neighbourhood
basis Uk = {(µ, ε, c) ∈ MTO(H0) : µ, εµ, | ln(c)| < 1/k} is exponential, since
the one parameter semigroups in the stochastic part are straight lines and
the image of c under ln forms a halfdisk.
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