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Abstract. In this work we investigate Stinespring dilations of quantum-dynamical semi-
groups, which are known to exist by means of a constructive proof given by Davies in the
early 70s. We show that if the semigroup describes an open system, that is, if it does not
consist of only unitary channels, then the evolution of the dilated closed system has to be
generated by an unbounded Hamiltonian; subsequently the environment has to correspond
to an infinite-dimensional Hilbert space, regardless of the original system. Moreover, we
prove that the second derivative of Stinespring dilations with a bounded total Hamiltonian
yields the dissipative part of some quantum-dynamical semigroup – and vice versa. In par-
ticular this characterizes the generators of quantum-dynamical semigroups via Stinespring
dilations.

1. Introduction

Completely positive maps, which are among the fundamental objects in
modern quantum physics and quantum information theory, admit the follow-
ing central representations: the Choi [8] or Choi-Jamio lkowski [18] matrix,
the operator-sum form using Kraus operators [20], and the Stinespring repre-
sentation [35]. Each of these comes with their own advantages; to name just a
few: complete positivity is checked most easily via the Choi matrix, the task
of numerically generating random quantum maps is done most efficiently via
random Kraus operators [22], and the Stinespring dilation has a direct phys-
ical interpretation which can also be applied to certain experimental setups
[4, 15]. Details regarding these representations can be found in Appendix
A, and for the reader’s convenience we sketched the relation between these
concepts in Figure 1. For more details on these representations from the
point of view of quantum information theory we refer to [28, Ch. 8.2] & [16,
Ch. 4.2 ff.].

Note that when we say Stinespring dilation we do not mean the general
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Choi-Jamio lkowski Kraus Stinespring
diagonalize
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first “block-column”
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Fig. 1: Interconversion scheme between the Choi-Jamio lkowski matrix, the
Kraus operators, and the Stinespring representation.

theorem for completely positive maps but rather the special form it gets
if the map in question Φ is not only completely positive but also trace-
preserving. Loosely speaking there then exists an environment such that the
action of Φ can be written as the restriction of some unitary action on the
larger (closed) system, cf. (10) in Appendix A. While this result does not
involve the notion of time, fifty years ago it was Davies who first proved that
an analogous result holds if Φ is replaced by a dynamical process (Φt)t≥0,
assuming it acts on a finite-dimensional system and is “memory-less” [10].
Note that every such dynamical process is a semigroup of contractions so
there always exists a one-parameter unitary group which is a dilation of
the original semigroup [36, Ch. I, Theorem 8.1 & Ch. III.9]. However the
strength of Davies’ result is that his dilation admits more structure, and that
his proof is constructive. Recently Burgarth et al. have improved Davies’
result by explicitly constructing a dilation of the same type which can even
be dynamically decoupled [7], complementing a result of Gough and Nurdin
that there also exist dilations which cannot be dynamically decoupled [14].

Although quantum processes which have a “memory” are of interest in
modern quantum theory [43, 31, 2, 30, 34] the fundamental importance of
memory-less processes as well as their simple, yet rich mathematical struc-
ture encourages us to further investigate Davies’ result and, more generally,
investigate if, when, and how such processes can be cast into the framework
of Stinespring dilations.

2. Main Results

While our main results revolve around quantum dynamics in finite dimen-
sions, we will need general Hilbert spaces as well as (operators on) operators
on such spaces as auxiliary objects. Thus to set the framework – orienting
ourselves towards [27, Ch. 15 & 16] – given a real or complex Hilbert space
K we denote the bounded linear operators on K by B(K), and B1(K) is the
collection of all trace-class operators on K, i.e. all compact operators1 on K

1A linear map A between normed spaces is called compact if the closure of the image
of the closed unit ball under A is compact. Now if A operates between Hilbert spaces over
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the singular values of which sum up to a finite value. Topological structure
on those spaces is induced by their “defining” norms: B(K) is a Banach space
together with the usual operator norm ‖ · ‖∞ and B1(K) becomes a Banach
space when equipped with the trace norm ‖·‖1 which is defined as the sum of
the singular values of the input operator. The name “trace class” is justified
by the fact that it is meaningful to define the trace of such operators in the
usual way, that is, as

∑

i∈I〈fi, (·)fi〉 with (fi)i∈I any orthonormal basis of the
underlying Hilbert space. The trace then has the same properties as in finite
dimensions, it is a continuous linear form on B1(K), and, most importantly,
the trace class is a two-sided ideal in the bounded operators. A subset of the
trace class most important for quantum theory are the states, which are de-
fined as the positive semi-definite trace-class operators of trace one. Finally,
going one level higher we will also be concerned with linear maps between
the bounded operators or between trace classes. As these are linear maps
between normed spaces the natural choice to quantify boundedness is via
the operator norm induced by the norms on domain and co-domain. Similar
to [29] we will denote the operator norm of linear maps between trace class
operators (bounded operators) by ‖ · ‖1→1 (‖ · ‖∞→∞).

Having established notation let us now come to this work’s two main
objects: given a map Φ from [0,∞) into the linear maps on C

n×n

• one calls Φ a quantum-dynamical semigroup (for short: qds) if it is
a one-parameter semigroup (Φ(t) ◦ Φ(s) = Φ(t + s) for all s, t ≥ 0)
of completely positive (cf. Appendix A) trace-preserving maps which
is strongly continuous at zero2. For convenience we will henceforth
write Φt := Φ(t), as well as cptp(n) for the collection of all completely
positive trace-preserving linear maps on C

n×n. Now the generators of
such semigroups have been classified by the celebrated result of Gorini,
Kossakowski, Sudarshan, and Lindblad [13, 23]. They showed that Φ
is a qds if and only if there exists H ∈ C

n×n Hermitian as well as a
finite collection of matrices {Vj}j∈J ⊂ C

n×n such that Φt = etL for all
t ≥ 0 where L = −i adH −Γ and

Γ =
∑

j∈J

(1

2

(

V ∗
j Vj(·) + (·)V ∗

j Vj
)

− Vj(·)V ∗
j

)

. (1)

the same field, then compactness is equivalent to a representation A =
∑

n∈N sn|fn〉〈gn|,
N ⊆ N where {fn}n∈N , {gn}n∈N are orthonormal systems in the respective Hilbert space
and {sn}n∈N ⊂ (0,∞) are the unique singular values of A [27, Prop. 16.3].

2This means limt→0+ ‖Φ(t)(A) − A‖1 = 0 for all A ∈ C
n×n. However, while this is

the standard formulation of continuity of quantum-dynamical semigroups, because we are
concerned with operators Φt which have finite-dimensional domain this is the same as usual
norm continuity limt→0+ ‖Φ(t) − idn ‖1→1 = 0 [37, Prop. 2.1.20 (iv,b)].



[Author and title] 4

Sometimes we refer to qdss as (time-independent) Markovian, cf. [42].

• we call Φ a Stinespring curve if there exists a complex Hilbert space
K, a self-adjoint operator H on K, and a state ω on K such that

Φt ≡ trK
(

eiHt
(

(·) ⊗ ω
)

e−iHt
)

(2)

for all t ≥ 0. Here trK : B1(Cn ⊗ K) → C
n×n is the usual partial

trace over K, that is, trK(A) is the unique n× n matrix which satisfies
tr(B trK(A)) = tr((B ⊗ 1K)A) for all B ∈ C

n×n. Moreover we call a
Stinespring curve type I if there exists a bounded self-adjoint operator
H such that (2) holds, and type II otherwise.

The aim of this article is to clarify the relation between these two concepts.
After all, the Stinespring dilation theorem for cptp maps (cf. Eq. (10) in
Appendix A) shows that every quantum map can be interpreted as the re-
striction of a larger closed system where the latter consists of the original
system together with a sufficiently large environment. Thus is it most rea-
sonable to assume that this interpretation continues to hold if the (stationary)
quantum map is replaced by a suitable dynamical process.

Our first result (Theorem 1 below) shows that, while finite-dimensional
quantum-dynamical semigroups are known to be Stinespring curves, they
are of type I (if and) only if they describe a closed system. In other words
casting a dynamical (Markovian) open system interaction into the Stinespring
framework forces the dynamics of the larger closed system to be generated
by an unbounded Hamiltonian. In particular the environment used for such
a Stinespring dilation has to be infinite-dimensional. We remark it has been
argued that purely exponential decay (i.e. Markovian dynamics) can only
occur if the Hamiltonian of system plus environment is unbounded below
and above [1]. However this has been shown to only be partially true as a
dilation for the example of qubit phase damping has been constructed where
the overall (unbounded) Hamiltonian is positive, hence bounded from below
[6].

Thus while not entirely new, we nonetheless state the following as a the-
orem; on the one hand it serves to clarify the relation between our two main
objects, and on the other hand our rather simple proof will motivate our
second main result.

Theorem 1. Every finite-dimensional quantum-dynamical semigroup is a
Stinespring curve. Moreover, it is of type I if and only if it is unitary at all
times.

Proof idea. The existence result was first due to Davies [10], see also [11,
Ch. 9.4]. The only non-trivial statement left to show is that if a qds (Φt)t≥0
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is at the same time a type I Stinespring curve (i.e. (2) holds for some bounded
operator H), then Φt has to be unitary for all t ≥ 0. Our strategy is to
differentiate (2):

d

dt
Φt

∣

∣

∣

t=0
= trK

( d

dt
eiHt

∣

∣

∣

t=0
((·) ⊗ ω)e−iH·0

)

+ trK
(

eiH·0((·) ⊗ ω)
d

dt
e−iHt

∣

∣

∣

t=0

)

= trK
(

iH((·) ⊗ ω)
)

+ trK
(

((·) ⊗ ω)(−iH)
)

.

This works because trK is a continuous linear operator and because H is
bounded. At this point note that the linear map X 7→ trK

(

iH((X ⊗ ω)
)

(resp. X 7→ trK
(

(X⊗ω)(−iH)
)

) on C
n×n is nothing but the left (resp. right)

multiplication with the matrix i trω(H) (resp. −i trω(H)), cf. Lemma 2 in
Appendix B. Here trω(H) is the Hermitian n× n matrix which satisfies

tr
(

trω(H)X
)

= tr
(

H(X ⊗ ω)
)

for all X ∈ C
n×n (called “partial trace of H with respect to ω”), cf. also [11,

Ch. 9, Lemma 1.1]. Therefore d
dtΦt|t=0 ≡ i[trω(H), · ]. But by assumption

(Φt)t≥0 is a qds so its derivative at zero is its gksl-generator L [13, 23],
hence Φt ≡ eit adtrω(H) = eit trω(H)(·)e−it trω(H) showing that Φt is a unitary
channel for all t ≥ 0. The detailed proof can be found in Appendix B.

Put simply, the reason why quantum-dynamical semigroups which de-
scribe an open system have to be type II Stinespring curves is that the first
derivative of type I curves corresponds to closed system dynamics. More
precisely the first derivative of (2) – assuming type I – is given by i adtrω(H)

which on the other hand has to be the generator of the semigroup itself. We
emphasize that Theorem 1 continues to hold for Markovian dynamics on any
time-interval [0, tf ], tf > 0 because our argument relies on a quantity that is
local (at time zero).

So far we did not see any dissipative effects of Stinespring curves. How-
ever, such curves—by design—model the interaction with an environment so
there have to be irreversible parts to its action. This has to do with the
well-known fact that the closed system part is first order in t, while actual
environment interaction appears only from the second derivative onward.
This is what the following result will be about: not only does the second
derivative of type I Stinespring curves look like the generator of a (purely
dissipative) qds, but every such semigroup is the second derivative of some
type I Stinespring curve:

Theorem 2. Given any n ∈ N the following statements hold.
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(i) For every type I Stinespring curve Φ there exists a set {Vj}j∈J ⊂ C
n×n

with |J | ≤ min{rk(ω) dim(K), n2} such that

Φ̈0 = −
∑

j∈J
ΓVj . (3)

(ii) Given {Vj}j∈J ⊂ C
n×n finite there exists a type I Stinespring curve Φ

such that (3) holds. Moreover the ancilla Hilbert space can be chosen
finite-dimensional.

Proof idea. We only sketch the ideas; the full proof is given in Appendix C.
(i): Like in the proof of Theorem 1 one computes that the second deriva-

tive of Φt at zero equals − trω(H2)(·) − (·) trω(H2) + 2 trK
(

H((·) ⊗ ω)H
)

.

This translates to Φ̈0 = −
∑

(j,k)∈J×N ΓVjk with Vjk :=
√

2rk tr|gk〉〈gj |(H)
for all j ∈ J , k ∈ N which, as a side note, resembles the Kraus opera-
tors of type I Stinespring curves, cf. [5, Eq. (3.42)]. Here

∑

k∈N rk|gk〉〈gk|
is any decomposition of the ancilla state ω with N ⊆ N, rk > 0, and
{gk}n∈N is an orthonormal system in K which we complete to an orthonor-
mal basis {gj}j∈J of K. In particular Φ̈0 can be written as the sum of at
most |J × N | = rk(ω) dim(K) dissipative terms. On the other hand the
above expression for Φ̈0 yields Ψ ∈ L(Cn×n) completely positive such that
Φ̈0 = Ψ − 1

2Ψ∗(1)(·) − (·)12Ψ∗(1). In particular Ψ admits Kraus operators

{Vj}ℓj=1, ℓ ≤ n2 which implies Φ̈0 = −
∑ℓ

j=1 ΓVj . Thus Φ̈0 can always be

decomposed into at most n2 dissipative terms.
(ii): We adapt the strategy commonly used to convert the Kraus rep-

resentation into a Stinespring dilation, i.e. collecting all {Vj}j∈J into one
“column” of a bigger matrix (cf. also Appendix A). More precisely define

H :=
1√
2

m−1
∑

j=1

(

Vj ⊗ |ej+1〉〈e1| + V ∗
j ⊗ |e1〉〈ej+1|

)

∈ C
n×n ⊗ C

m×m (4)

where m := |J | + 1. Obviously H is a Hermitian matrix so – in addition
to setting ω := |e1〉〈e1| – it generates a type I Stinespring curve. Now a
straightforward computation shows that this curve satisfies (3).

Another way to view this result is that generators of quantum-dynamical
semigroups can be characterized via type I Stinespring curves (resp. their
second derivative at zero). After all, one needs not all differentiable but only
Stinespring curves to approximate any type of Markovian dynamics close to
the identity. As a corollary, combining (the proofs of) our two main theorems
one for all Hamiltonians H ∈ B(Cn ⊗K) and all states ω =

∑

k∈N rk|gk〉〈gk|
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on K finds that

trK
(

eiHt((·) ⊗ ω)e−iHt
)

≡

≡ id + it[trω(H), · ] − t2

2

∑

(j,k)∈J×N
Γ√

2rk tr|gk〉〈gj |(H) + O(t3) .
(5)

Specifically, given H0 ∈ C
n×n Hermitian and {Vj}mj=1 ⊂ C

n×n for some m ∈
N, subtracting H0⊗|e1〉〈e1| from (4) yields a type I Stinespring curve (Φt)t≥0

with first derivative −i adH0 and second derivative −∑m
j=1 ΓVj at zero, i.e.

Φt ≡ id − it[H0, · ] −
t2

2

m
∑

j=1

ΓVj + O(t3) .

Finally, it should come at no surprise that this construction is highly non-
unique: given a Hamiltonian H and a set of generating Vj ’s there can in fact
exist uncountably many different Stinespring curves which have −i adH0 as
their first and −∑j ΓVj as their second derivative. This is best illustrated
by means of an easy example:

3. A Qubit Example

Let us consider a simple qubit dephasing process Φt := etL generated by
a single Lindblad operator V = diag(0, 1) via (1), that is, L = −ΓV and

Φt(A) = Φt

(

a11 a12
a21 a22

)

=

(

a11 e−
t
2a12

e−
t
2 a21 a22

)

.

Our goal now is to find type I Stinespring curves the second derivative of
which reproduces the generator of Φt. We start with the following Ansatz:

Ψ : [0,∞) → cptp(n)

A 7→ trCm

(

eiHt(A⊗ |e1〉〈e1|)e−iHt
)

,

that is, the finite-dimensional ancilla is in the pure state |e1〉〈e1|, but m ∈ N

as well as the Hamiltonian H ∈ C
2m×2m are arbitrary for now. The proof of

Theorem 2 shows that Ψ̈(0) = −∑m
j=1 ΓVj with Vj =

√
2 tr|e1〉〈ej |(H) for all

j = 1, . . . ,m 1. Because we only have one Lindblad operator V which is even
Hermitian the simplest choice is m = 1 and H = 1√

2
V so

Ψt

(

a11 a12
a21 a22

)

= e
iV t√

2

(

a11 a12
a21 a22

)

e
− iV t√

2 =

(

a11 e
− it√

2 a12

e
it√
2a21 a22

)

. (6)

1Actually one could replace ej by any gj as long as {gj}
m
j=1 is an orthonormal basis of

C
m with g1 = e1. However, we stick to the standard basis for simplicity.
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This curve has the desired properties because

Ψ̈0

(

a11 a12
a21 a22

)

=

(

0 −1
2a12

−1
2a21 0

)

= Φ̈0

(

a11 a12
a21 a22

)

.

However, the first derivative of Ψt does not yet match the Hamiltonian part
of our initial L. We can fix this by setting m = 2; then we get two dissipative
terms generated by V1 =

√
2 tr|e1〉〈e1|(H) and V2 =

√
2 tr|e1〉〈e2|(H). We can

either choose V1 = V and V2 = 0 (which again yields (6)) or we can choose
V1 = 0, V2 = V . A direct computation shows that for the latter case H has
to be of the form

H =











0 0 0 0
0 a 0 b

0 0 0 1√
2

0 b∗ 1√
2

c











(7)

where a, c ∈ R, b ∈ C can be arbitrary. These parameters may yield different
overall curves, but they do not affect the first and second derivative of Ψt at
zero. For example choosing a = b = c = 0 yields

Ψt(A) = trK











a11 0 cos( t√
2
)a12 −i sin( t√

2
)a12

0 0 0 0

cos( t√
2
)a21 0 (cos( t√

2
))2a22 − i

2 sin(
√

2t)a22

i sin( t√
2
)a21 0 i

2 sin(
√

2t)a22 (sin( t√
2
))2a22











=

(

a11 a12 cos( t√
2
)

a21 cos( t√
2
) a22

)

(8)

which obviously has the correct first and second derivative at zero. At this
point, a few remarks are in order:

• It is quite easy to see that this particular Ψ cannot be of gksl-form
simply because Ψt fails to be bijective whenever t = π√

2
+

√
2πk for

some k ∈ N0. Moreover Ψt is p-divisible (cf. [31]) for 0 ≤ t ≤ π√
2

but

fails to be p-divisible for π√
2
< t <

√
2π, etc. which further showcases

its non-Markovian behavior, refer also to [9].

• The previous observation is an incarnation of the quantum recurrence
theorem [3, 33] (cf. also [41, 19]): a one-parameter unitary group in
finite dimensions revisits any given point in time either exactly or at
least norm-approximately. This is another hint as to why Stinespring
curves with finite-dimensional environments cannot model Markovian
open system interactions: because eiHt – and thus the induced Stine-
spring curve – eventually revisits the identity, the dissipative effects
have to be reversed at some point. But this violates Markovianity.
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• From (7) we can easily construct another curve which differs from (8)
only in the third (and any higher) derivative. For this choose a = c = 0
and b = 1√

2
in (7); then Ψt(A) equals

(

a11 + a22(sin( t2))4 a12(cos( t2))2 − i sin(t)(cos(t)−1)

2
√
2

a22

a21(cos( t2))2 + i sin(t)(cos(t)−1)

2
√
2

a22 a22(1 − (sin( t2)4)

)

,

but
...
Ψ0(A) =

(

0 3i
2
√
2
a22

− 3i
2
√
2
a22 0

)

while the third derivative of (8) vanishes at zero. This also showcases
non-uniqueness of our construction: each value of b yields a different
curve2 which nonetheless has the same first and second derivative at
zero.

4. Conclusions and Outlook

We investigated how a dynamical version of Stinespring’s dilation theorem
interacts with the notion of quantum-dynamical semigroups. In doing so we
found that if a Stinespring curve which models non-trivial environment inter-
action at the same time is (time-independent) Markovian, then the dynamics
of system plus environment have to be generated by an unbounded—and thus
infinite-dimensional—Hamiltonian. This complements known results about
how bounded Hamiltonians can only generate sub-exponential decay. More-
over we gave an explicit – albeit non-unique – construction for converting the
dissipative part of a qds into (the second derivative of) a Stinespring curve,
and we showed that every qds arises this way.

From here there are two rather obvious directions to pursue: First, based
on our improved understanding of how qds and Markovianity interact one
may attempt to generalize Davies’ existence result [10] from finite dimensions
to norm-continuous (or even strongly continuous) qds in infinite dimensions.
Second, Stinespring’s dilation theorem as well as the notion of Stinespring
curves are essential for quantum thermodynamics: they are used to define
the so-called thermal operations which are the fundamental building block of
the resource theory approach to quantum thermodynamics [24, 38]. While
studying the intersection between Markovianity and quantum thermodynam-
ics is a quite recent field [25] our results suggest that already the definition of
thermal operations holds valuable insights in this direction. Indeed we will
explore this in future work [40].

2For a = c = 0 and general b ∈ R one finds
...
Ψ0(A) = − 3

2
bσy · a22.
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Appendix A: Relation Between Choi-Jamio lkowski, Kraus, and

Stinespring

Given m,n ∈ N and Φ : Cn×n → C
m×m linear we say Φ is completely

positive if Φ ⊗ idk (or idk ⊗Φ) for all k ∈ N maps positive semi-definite
matrices to positive semi-definite matrices. Equivalently, the Choi matrix

C(Φ) =

n
∑

j,k=1

|ej〉〈ek| ⊗ Φ(|ej〉〈ek|) ∈ C
mn×mn

is positive semi-definite [8, Thm. 1], and Choi’s proof explicitly constructs
a set of Kraus operators: first decompose C(Φ) =

∑

i |ψi〉〈ψi| into pairwise
orthogonal vectors {ψi}i ⊂ C

n ⊗ C
m, then set Ki := vec−1(ψi) where

vec : Cm×n → C
n ⊗ C

m

X 7→
n
∑

i=1

ei ⊗Xei

is the vectorization isomorphism [26, Ch. 2.4] and its inverse is given by
vec−1(ψ) = (〈ej ⊗ ei, ψ〉)m,ni=1,j=1. This also shows that if, conversely, {Ki}i is
an arbitrary set of Kraus operators of Φ, i.e. Φ ≡∑iKi(·)K∗

i , then C(Φ) =
∑

i vec(Ki) vec(Ki)
∗.

Now for the Stinespring dilation. In its original form (assuming finite-
dimensions and working in the Schrödinger picture), given a linear, com-
pletely positive map Φ : Cn×n → C

m×m it states that there exists ℓ ∈ N and
U0 : Cm → C

n ⊗ C
ℓ (that is, U0 ∈ C

nℓ×m) such that [17, Thm. 6.9]

Φ ≡ trCℓ

(

U0(·)U∗
0 ) (9)

with trCℓ : Cn×n⊗C
ℓ×ℓ → C

n×n being the usual partial trace. Starting from
a set of Kraus operators {Ki}ℓi=1 ⊂ C

m×n of Φ define U0 : Cm → C
n ⊗ C

ℓ
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via U0x :=
∑ℓ

i=1(Kix) ⊗ ei [17, Eq. (6.20) ff.] because then

trCℓ

(

U0|x〉〈y|U∗
0 ) = trCℓ

(

|U0x〉〈U0y|) =
ℓ
∑

i,j=1

trCℓ

(

Ki|x〉〈y|K∗
j ⊗ |ei〉〈ej |)

=
ℓ
∑

i,j=1

〈ej , ei〉Ki|x〉〈y|K∗
j =

ℓ
∑

i=1

Ki|x〉〈y|K∗
i = Φ(|x〉〈y|)

for all x, y ∈ C
n. This shows (9) because the rank-1 operators span C

n×n.
Conversely if Φ is of the form (9), then {Ki}ℓi=1 is a set of Kraus operators
of Φ where Kiy :=

∑n
j=1〈ej ⊗ ei, U0y〉ej ∈ C

m for all y ∈ C
n, i = 1, . . . , ℓ.

Now this theorem takes a special form if Φ additionally is trace-preserving;
this is precisely when the operator U0 in (9) is an isometry [17, Thm. 6.9]. In
this case Φ “can be extended to the evolution of an open system interacting
with an environment” [17, Thm. 6.18]. More precisely let Φ : Cn×n → C

m×m

be completely positive and trace-preserving, and let d := lcm(m,n) be the
least common multiple of m and n. Then this version of Stinespring’s theorem
(cf. [39, Coro. 1]) guarantees the existence of a number ℓ ∈ N and a unitary
matrix U ∈ C

dℓ×dℓ such that

Φ ≡ tr
Cdℓ/m

(

U((·) ⊗ |e1〉〈e1|)U∗) . (10)

Note that if m = n, then d = m = n so this result reproduces the common
formulation of Stinespring’s theorem for quantum maps [17, Thm. 6.18]. As
for the construction: starting again from a set of Kraus operators {Ki}ℓ

′
i=1

of Φ, constructing U amounts to collecting the Ki “in the first column” of a
larger matrix and filling up the rest of U such that it becomes unitary. More
precisely [17, Eq. (6.23)] we define ℓ := ℓ′ · dn and

U0 :=
ℓ′
∑

i=1

d
n
∑

j=1

Ki ⊗ |e1〉〈ej | ⊗ |ei〉〈e1| ⊗ |ej〉〈e1|

∈ C
m×n ⊗C

d
m
× d

n ⊗ C
ℓ′×ℓ′ ⊗ C

d
n
× d

n ≃ C
dℓ×dℓ ,

and notice that

U∗
0U0 =

ℓ′
∑

i=1

d
n
∑

j=1

K∗
iKi ⊗ |ej〉〈ej | ⊗ |e1〉〈e1| ⊗ |e1〉〈e1|

=
(

ℓ′
∑

i=1

K∗
iKi

)

⊗ 1 d
n
⊗ |e1〉〈e1| = 1d ⊗ |e1〉〈e1| ∈ C

d×d ⊗ C
ℓ×ℓ
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as the Kraus operators of Φ satisfy
∑ℓ

i=1K
∗
iKi = 1n due to trace-preservation

[17, Coro. 6.13]. In other words the “first d columns” of U0 form an orthonor-
mal system in C

dℓ which can be completed to an orthonormal basis of Cdℓ.
We fill up the remaining “columns” of U0 with these additional vectors to ob-
tain a unitary matrix1 U ∈ C

dℓ×dℓ. Now (10) holds because for all A ∈ C
n×n,

B ∈ C
m×m

tr
(

B tr
Cdℓ/m

(

U(A⊗ |e1〉〈e1|)U∗))

= tr
(

(B ⊗ 1 d
m
⊗ 1ℓ)U(A⊗ |e1〉〈e1| ⊗ |e1〉〈e1|)U∗)

=
ℓ′
∑

i=1

d
n
∑

j=1

tr
(

(B ⊗ 1 d
m

)(Ki ⊗ |e1〉〈ej |)(A⊗ |e1〉〈e1|)(K∗
i ⊗ |ej〉〈e1|)

)

=

ℓ′
∑

i=1

tr(BKiAK
∗
i )

d
n
∑

j=1

〈ej , e1〉 = tr(BΦ(A)) .

This procedure is reversible, as well: starting from (10), first decompose U
into “blocks” via U =

∑ℓ
i,j=1Uij ⊗ |ei〉〈ej | with Uij ∈ C

d×d. Then a set

of Kraus operators of Φ is given by {Kij}(d/m),ℓ
i=1,j=1 ⊂ C

m×n where Kijy :=
∑m

k=1〈ek⊗ ei, Uj1(y⊗ e1)〉ek for all i = 1, . . . , dm , j = 1, . . . , ℓ, and all y ∈ C
n.

Appendix B: Proof of Theorem 1

First we need a result about derivatives of generalized Stinespring curves:

Lemma 1. Given any complex Hilbert space K, any operator B ∈ B(Cn⊗K),
and any bounded linear map E : Cn×n → B1(Cn ⊗K) one has

d

dt
trK

(

eBtE(·)e−Bt
)

= trK
(

eBtBE(·)e−Bt
)

+ trK
(

eBtE(·)(−B)e−Bt
)

.

Proof. To ease notation we introduce the bilinear map

Λ : B(Cn ⊗K) × B(Cn ⊗K) → (Cn×n → C
n×n)

(B1, B2) 7→ trK
(

B1E(·)B2

)

.

1More precisely we arrange the new vectors into matrices Uii′jj′ ∈ C
d×d with indices

i, i′ = 1, . . . , ℓ′, j, j′ = 1, . . . , d
n

– but (i′, j′) 6= (1, 1) – such that

U =
ℓ′∑

i=1

d

n∑

j=1

Ki ⊗ |e1〉〈ej | ⊗ |ei〉〈e1| ⊗ |ej〉〈e1| +
ℓ′∑

i,i′=1

d

n∑

j,j′=1
(i′,j′) 6=(1,1)

Uii′jj′ ⊗ |ei〉〈ei′ | ⊗ |ej〉〈ej′ |

is unitary.
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so we have to show that

lim
h→0

∥

∥

∥

Λ(eB(t+h), e−B(t+h)) − Λ(eBt, e−Bt)
h

− Λ(eBtB, e−Bt) − Λ(eBt,−Be−Bt)
∥

∥

∥

1→1
= 0 .

The expression inside the norm can be re-written as

Λ(eB(t+h),e−B(t+h))∓Λ(eBt,e−B(t+h))−Λ(eBt,e−Bt)
h

± Λ(eBtB, e−B(t+h)) − Λ(eBtB, e−Bt) − Λ(eBt,−Be−Bt)

=
Λ(eB(t+h), e−B(t+h)) − Λ(eBt, e−B(t+h))

h
− Λ(eBtB, e−B(t+h)) (11)

+ Λ(eBtB, e−B(t+h)) − Λ(eBtB, e−Bt) (12)

+
Λ(eBt, e−B(t+h)) − Λ(eBt, e−Bt)

h
− Λ(eBt,−Be−Bt) . (13)

Bounding each of these three differences is straightforward: for (11) one finds

∥

∥

∥

Λ(eB(t+h), e−B(t+h)) − Λ(eBt, e−B(t+h))

h
− Λ(eBtB, e−B(t+h))

∥

∥

∥

1→1

=
∥

∥

∥
Λ
(eB(t+h) − eBt

h
− eBtB, e−B(t+h)

)∥

∥

∥

1→1

≤
∥

∥

∥

(eB(t+h) − eBt

h
− eBtB

)

E(·)e−B(t+h)
∥

∥

∥

1→1

≤
∥

∥

∥

eB(t+h) − eBt

h
− eBtB

∥

∥

∥

∞
‖E‖1→1‖e−B(t+h)‖∞

≤ ‖eBt‖∞
∥

∥

∥

eBh − 1

h
−B

∥

∥

∥

∞
‖E‖1→1‖e−Bt‖∞‖e−Bh‖∞ .

In the third line we used that every cptp map between trace classes – which
includes the partial trace – has operator norm one. This is a well-known
consequence of the Russo-Dye theorem [32], cf. also [39, Prop. 2]. Then in the
fourth and fifth line we used that ‖XY Z‖1 ≤ ‖X‖∞‖Y ‖1‖Z‖∞ for suitable
objects X,Y,Z [27, Lemma 16.6.6]. Similarly, (13) is upper bounded in norm

by ‖eBt‖∞‖E‖1→1‖e
−Bh−1
h +B‖∞‖e−Bt‖∞ , and for (12) we compute

∥

∥Λ(eBtB, e−B(t+h)) − Λ(eBtB, e−Bt)
∥

∥

1→1

≤ ‖eBt‖∞‖B‖∞‖E‖1→1‖e−Bt‖∞‖e−Bh − 1‖∞ .
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Combining these estimates yields

∥

∥

∥

Λ(eB(t+h), e−B(t+h)) − Λ(eBt, e−Bt)
h

− Λ(eBtB, e−Bt) − Λ(eBt,−Be−Bt)
∥

∥

∥

1→1

≤
(∥

∥

∥

eBh − 1

h
−B

∥

∥

∥

∞
‖e−Bh‖∞ +

∥

∥

∥

e−Bh − 1

h
+B

∥

∥

∥

∞

+ ‖B‖∞‖e−Bh − 1‖∞
)

‖eBt‖∞‖e−Bt‖∞‖E‖1→1 .

But this expression vanishes as h → 0 because E is bounded and because
d
dte

±Bt|t=0 = ±B in norm due to B being bounded.

Now computing the derivative of (Φt)t≥0 at zero is a mere application of
Lemma 1: choosing B = iH and E(·) = (·) ⊗ ω we find that Φ̇0 given by
the map X 7→ trK

(

iH(X ⊗ ω)
)

+ trK
(

(X ⊗ ω)(−iH)
)

on C
n×n. Note that

this map is well defined because X ⊗ ω is in C
n×n ⊗ B1(K) ≃ B1(Cn ⊗ K)

[21, p. 34], hence the argument of trK : B1(Cn ⊗ K) → B1(Cn) ≃ C
n×n is

trace class, as well. All that is left is to cast the expression we obtained into
a more familiar form:

Lemma 2. Given n ∈ N, a Hilbert space K, as well as B ∈ B(Cn ⊗ K),
A ∈ B1(K), and X ∈ C

n×n the following statements hold.

(i) Defining trA(B) as the unique n × n matrix which for all X ∈ C
n×n

satisfies tr(trA(B)X) = tr(B(X ⊗ A)), called “partial trace of B with
respect to A”, the map trA : B(Cn ⊗ K) → C

n×n, B 7→ trA(B) is the
dual of ιA : Cn×n → B1(Cn⊗K), X 7→ X⊗A. Thus trA is well-defined,
and is completely positive identity-preserving if and only if A is a state.

(ii) (trA(B))∗ = trA∗(B∗)

(iii) One has
trK

(

B(X ⊗A)
)

= trA(B)X (14)

and
trK

(

(X ⊗A)B
)

= X trA(B) . (15)

(iv) Given any orthonormal basis {gj}nj=1 of Cn one has

trA(X) =

n
∑

j,k=1

tr(AXkj)|gj〉〈gk|

where Xjk are the “blocks” of X, i.e. X =
∑n

j,k=1 |gj〉〈gk| ⊗Xjk.
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Proof. (i): See [11, Ch. 9, Lemma 1.1] or [39, Ch. II.B]. (ii): For all X ∈ C
n×n

tr
(

X(trA(B))∗
)

= tr
(

X∗ trA(B)
)

= tr((X∗ ⊗A)B) = tr((X ⊗A∗)B∗) = tr
(

X trA∗(B∗)
)

.

(iii). Obviously, given any X1,X2 ∈ C
n×n one has X1 = X2 if and only if

tr(ωX1) = tr(ωX2) for all ω ∈ C
n×n. Thus (14) follows from

tr
(

ω trK
(

B(X ⊗A)
))

= tr
(

(ω ⊗ 1)B(X ⊗A)
)

= tr
(

(Xω ⊗A)B
)

= tr
(

Xω trA(B)) = tr
(

ω trA(B)X) ,

and (15) is proven analogously. Finally, (iv) is readily verified.

Therefore

d

dt
Φt

∣

∣

∣

t=0
= trω(iH)(·) + (·) trω(−iH) = i

[

trω(H), ·
]

.

On the other hand Φ by assumption is a quantum-dynamical semigroup so
d
dtΦt|t=0 equals its gksl-generator [13, 23]. Therefore

Φt ≡ et adtrω(iH) = eit trω(H)(·)e−it trω(H)

meaning that Φt is a unitary channel for all t ≥ 0. Here we used that trω(H)
is Hermitian because H and ω are self-adjoint (Lemma 2 (ii)).

Appendix C: Proof of Theorem 2

Applying Lemma 1 multiple times (with B = iH as well as E = (·) ⊗ ω,
E = iH((·) ⊗ ω), and E = ((·) ⊗ ω)(−iH), respectively) – together with
Lemma 2 (iii) – shows that the second derivative of any type I Stinespring
curve at zero is given by

trK
(

(iH)2((·) ⊗ ω)
)

+ trK
(

((·) ⊗ ω)(−iH)2
)

+ 2 trK
(

(iH)((·) ⊗ ω)(−iH)
)

= − trK
(

H2((·) ⊗ ω)
)

− trK
(

((·) ⊗ ω)H2
)

+ 2 trK
(

H((·) ⊗ ω)H
)

= − trω(H2)(·) − (·) trω(H2) + 2 trK
(

H((·) ⊗ ω)H
)

(16)

(i): We decompose ω =
∑

k∈N rk|gk〉〈gk| for some N ⊆ N, rk > 0, and
some orthonormal system {gk}n∈N in K [27, Prop. 16.2]. We complete the
latter to an orthonormal basis {gj}j∈J of K (i.e. N ⊆ J) [27, Prop. 12.6] and
claim that Φ̈0 = −∑(j,k)∈J×N ΓVjk where Vjk :=

√
2rk tr|gk〉〈gj |(H) for all

j ∈ J , k ∈ N . In order to prove this we need the following lemma regarding
partial traces:
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Lemma 3. As in Lemma 2 let tr(·) denote the partial trace with respect to a
given trace class operator. For all Hilbert spaces H,K the following hold:

(i) For all B ∈ B(H ⊗ K) and all ψ, φ ∈ K one has tr|ψ〉〈φ|(B) = ι∗φBιψ
and B ⊗ |ψ〉〈φ| = ιψBι

∗
φ where, here and henceforth, ιy : H → H ⊗ K

for any y ∈ K is the map x 7→ x⊗ y.

(ii) If {gj}j∈J is any orthonormal basis of K, then
∑

j∈J ιgj ι
∗
gj = 1H⊗K in

the strong operator topology.

Proof. (i): For all x, y ∈ H

〈x, ι∗φBιψy〉 = 〈ιφx,Bιψy〉 = 〈(x⊗ φ), B(y ⊗ ψ)〉
= tr

(

|y ⊗ ψ〉〈x⊗ φ|B
)

= tr
(

(|y〉〈x| ⊗ |ψ〉〈φ|)B
)

= tr
(

|y〉〈x| tr|ψ〉〈φ|(B)
)

= 〈x, tr|ψ〉〈φ|(B)y〉 .

The second equality follows, e.g., from duality (see also Lemma 2).
(ii): It suffices to verify this equality on pure tensors as the span of those

is dense in H⊗K. Indeed for all x ∈ H, y ∈ K one finds

(

∑

j∈J
ιgj ι

∗
gj

)

(x⊗ y) =
∑

j∈J
ιgj〈gj , y〉x

=
∑

j∈J
〈gj , y〉(x⊗ gj) = x⊗

(

∑

j∈J
〈gj , y〉gj

)

= x⊗ y .

In the last step we used the basis expansion formula [27, Prop. 12.4].

Now given any A,B ∈ C
n×n, applying (16) yields

tr
(

BΦ̈0(A)
)

= − tr
(

B trω(H2)A
)

− tr
(

BA trω(H2)
)

+ 2 tr
(

B trK
(

H(A⊗ ω)H
))

= − tr
(

(AB ⊗ ω)H2
)

− tr
(

(BA⊗ ω)H2
)

+ 2 tr
(

(B ⊗ 1)H(A⊗ ω)H
)

= − tr
(

(A⊗ ω)(B ⊗ 1)H2
)

− tr
(

(B ⊗ 1)(A⊗ ω)H2
)

+ 2 tr
(

(B ⊗ 1)H(A⊗ ω)H
)

.

Inserting the expansions ω =
∑

k∈N rk|gk〉〈gk| as well as 1K =
∑

j∈J |gj〉〈gj |
[27, Prop. 12.4], and making use of Lemma 3 we find that the previous
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expression is equal to

∑

(j,k)∈J×N
rk

(

− tr
(

(A⊗ |gk〉〈gk|)(B ⊗ |gj〉〈gj |)H2
)

− tr
(

(B ⊗ |gj〉〈gj |)(A ⊗ |gk〉〈gk|)H2
)

+ 2 tr
(

(B ⊗ |gj〉〈gj |)H(A⊗ |gk〉〈gk|)H
)

)

=
∑

(j,k)∈J×N
rk

(

− tr
(

ιgkAι
∗
gk
ιgjBι

∗
gjH

2
)

− tr
(

ιgjBι
∗
gj ιgkAι

∗
gk
H2
)

+ 2 tr
(

ιgjBι
∗
gjHιgkAι

∗
gk
H
)

)

.

One readily verifies ι∗xιy = 〈x, y〉1n meaning the first two terms simplify to

−
∑

k∈N
rk tr

(

ιgkABι
∗
gk
H2
)

−
∑

k∈N
rk tr

(

ιgkBAι
∗
gk
H2
)

= −
∑

k∈N
rk tr

(

ABι∗gkH
2ιgk

)

−
∑

k∈N
rk tr

(

BAι∗gkH
2ιgk

)

= −
∑

(j,k)∈J×N
rk tr

(

ABι∗gkHιgj ι
∗
gjHιgk

)

−
∑

(j,k)∈J×N
rk tr

(

BAι∗gkHιgj ι
∗
gjHιgk

)

.

Here we used a more general cyclicity property of the trace [12, Lemma 3.1]
as well as Lemma 3 (ii). At this point we are almost done; all that is left
is showing that tr(BΓVjk(A)) (with Vjk =

√
2rk tr|gk〉〈gj |(H) as above) for all

j ∈ J , k ∈ N equals

rk tr(ABι∗gkHιgj ι
∗
gjHιgk) + rk tr(BAι∗gkHιgj ι

∗
gjHιgk)

− 2rk tr(Bι∗gjHιgkAι
∗
gk
Hιgj ) .

(17)
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Using Lemma 2 (i) and Lemma 3, expression (17) comes out to be

rk tr
(

AB tr|gj〉〈gk |(H) tr|gk〉〈gj |(H)
)

+ rk tr
(

BA tr|gj〉〈gk|(H) tr|gk〉〈gj |(H)
)

− 2rk tr
(

B tr|gk〉〈gj |(H)A tr|gj〉〈gk |(H)
)

= rk tr
(

AB
(

tr|gk〉〈gj |(H)
)∗

tr|gk〉〈gj |(H)
)

+ rk tr
(

BA
(

tr|gk〉〈gj |(H)
)∗

tr|gk〉〈gj |(H)
)

− 2rk tr
(

B tr|gk〉〈gj |(H)A
(

tr|gk〉〈gj |(H)
)∗)

=
1

2
tr(ABV ∗

jkVjk) +
1

2
tr(BAV ∗

jkVjk) − tr(BVjkAV
∗
jk)

=
1

2
tr(BV ∗

jkVjkA) +
1

2
tr(BAV ∗

jkVjk) − tr(BVjkAV
∗
jk)

which by (1) is tr(BΓVjk(A)) as desired. Finally, defining Ψ ∈ L(Cn×n) via

Ψ(A) := 2 trK
(

H(A⊗ ω)H
)

by (16) yields Φ̈0 = Ψ − 1
2Ψ∗(1)(·) − (·)12Ψ∗(1).

Because Ψ is completely positive (as composition of completely positive
maps) it admits Kraus operators {Vj}ℓj=1 such that ℓ ≤ n2 [8, Rem. 6].

Thus Φ̈0 = −∑ℓ
j=1 ΓVj which shows that the number of dissipative terms of

Φ̈0 can be upper bounded by n2 — as well as |J ×N | = rk(ω) dim(K).
(ii): Given a finite set of matrices {Vj}j∈J (w.l.o.g. {V1, . . . , V|J |}) ⊂ C

n×n

define m := |J | + 1 as well as

H :=
1√
2

m−1
∑

j=1

(

Vj ⊗ |ej+1〉〈e1| + V ∗
j ⊗ |e1〉〈ej+1|

)

∈ C
n×n ⊗ C

m×m .

Because H is a Hermitian matrix, Φ(t) := trCm(eiHt((·)⊗ |e1〉〈e1|)e−iHt) is a
type I Stinespring curve. What we have to show now is that the this curve’s
second derivative at zero equals −

∑

j∈J ΓVj
.

Writing νj := Vj ⊗ |ej+1〉〈e1| + V ∗
j ⊗ |e1〉〈ej+1| for all j = 1, . . . ,m − 1,

using (16) one finds

Φ̈(0) =

m−1
∑

j,k=1

(

− 1

2
tr|e1〉〈e1|(νjνk)(·) −

1

2
(·) tr|e1〉〈e1|(νjνk)

+ trCm

(

νj((·) ⊗ |e1〉〈e1|)νk
)

)

.

The first two expressions simplify due to

tr|e1〉〈e1|(νjνk) = tr|e1〉〈e1|(VjV
∗
k ⊗ |ej+1〉〈ek+1| + V ∗

j Vk ⊗ |e1〉〈e1|δjk)
= VjV

∗
k tr

(

|e1〉〈e1, ej+1〉〈ek+1|
)

+ δjkV
∗
j Vk tr

(

|e1〉〈e1, e1〉〈e1|
)

= δjkV
∗
j Vk
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for all j, k = 1, . . . ,m− 1. Similarly one finds

trCm

(

νj((·) ⊗ |e1〉〈e1|)νk
)

= trCm

(

Vj(·)V ∗
k ⊗ |ej+1〉〈ek+1|

)

= δjkVj(·)V ∗
k .

Combining all of this yields

Φ̈(0) =

m−1
∑

j,k=1

(

− 1

2
δjkV

∗
j Vk(·) − 1

2
(·)δjkV ∗

j Vk + δjkVj(·)V ∗
k

)

= −
|J |
∑

j=1

(1

2

(

V ∗
j Vj(·) + (·)V ∗

j Vj
)

− Vj(·)V ∗
j

)

= −
∑

j∈J
ΓVj

which concludes the proof.
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62 (2021), 062201.

23. Lindblad, G., Commun. Math. Phys. 48 (1976), 119.

24. Lostaglio, M., Rep. Prog. Phys. 82 (2019), 114001.

25. Lostaglio, M. and Korzekwa, K., Phys. Rev. A 106 (2022), 012426.

26. Magnus, J. and Neudecker, H., Matrix Differential Calculus with Applications in
Statistics and Econometrics, Wiley & Sons, Chichester, 2007, 3 ed.

27. Meise, R. and Vogt, D., Introduction to Functional Analysis, Oxford Graduate Texts
in Mathematics, Oxford University Press, Oxford, 1997.

28. Nielsen, M. and Chuang, I., Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, 2010, 10th anniversary ed.
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