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Walker-Wang models are fixed-point models of topological order in 3 + 1 dimensions constructed
from a braided fusion category. For a modular input category M, the model itself is invertible
and is believed to be in a trivial topological phase, whereas its standard boundary is supposed to
represent a 2+1-dimensional chiral phase. In this work we explicitly show triviality of the model by
constructing an invertible domain wall to vacuum as well as a disentangling generalized local unitary
circuit in the case where M is a Drinfeld center. Moreover, we show that if we allow for fermionic
(auxiliary) degrees of freedom inside the disentangling domain wall or circuit, the model becomes
trivial for a larger class of modular fusion categories, namely those in the Witt classes generated by
the Ising UMTC. In the appendices, we also discuss general (non-invertible) boundaries of general
Walker-Wang models and describe a simple axiomatization of extended TQFT in terms of tensors.
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I. INTRODUCTION

Exactly solvable fixed-point models of topological or-
der are a highly successful approach to the study of topo-
logically ordered phases. They provide a way to classify
and study the properties of phases in an exact algebraic
way while still retaining an explicit microscopic descrip-
tion.

Unfortunately, to date, fixed-point models fail to de-
scribe one important class of phases, namely so-called
chiral topological order in 2+1 dimensions, or more pre-
cisely, phases that do not possess a gapped/topological
boundary. Those phases include the integer and frac-
tional quantum Hall states, one of the few topological
phases that have been observed experimentally. Chiral
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intrinsic bosonic topological phases in 2 + 1 dimensions
are those for which the unitary modular tensor category
(UMTC) describing the anyon content is not a Drin-
feld center of a fusion category. It is argued in Ref. [1]
that those chiral phases do not possess any (fixed-point)
commuting-projector Hamiltonians due to their non-zero
thermal Hall conductance. However, this does not rule
out more general discrete fixed-path path integrals as ar-
gued in Ref. [2].

There is a way to resolve the issue of chiral phases, if
we are willing to pay a high price, namely the introduc-
tion of an additional auxiliary dimension. This auxiliary
dimension contains a 3 + 1-dimensional state-sum con-
struction introduced by Crane and Yetter [3], which was
later studied as a Hamiltonian model in the context of
topological phases by Walker and Wang [4], and which
we refer to as the CYWW model. The CYWW model
takes as input a unitary braided fusion category, but for
our purposes the interesting case is when that braided
fusion category is actually modular, and hence a UMTC.
Then the standard “smooth”, or “cone” 2+1-dimensional
boundary [5] of the CYWW model is said to be a model
for the chiral phase whose anyon content is described by
the input UMTC.

Saying that a boundary of a 3 + 1-dimensional model
represents a standalone 2 + 1-dimensional phase only
makes sense if the 3+1-dimensional bulk itself is in a triv-
ial phase. Unfortunately, it is still unknown in how far
exactly this is the case for the modular CYWW model.
One can easily show that the modular CYWW model
is invertible and has no non-trivial 0 + 1-dimensional or
1 + 1-dimensional defects. However, this does not nec-
essarily mean that the model is in a trivial microscopic
phase. Indeed, there are many examples of invertible but
non-trivial phases such as the fermionic Kitaev chain in
1 + 1 dimensions, SPT phases, or the bosonic E8 phase
in 2 + 1 dimensions [6, 7] 1 . In order to show that
the model is actually trivial, we would have to use our
first-principle microscopic definition of choice for a phase,
such as via paths not closing the spectral gap, disentan-
gling (“fuzzy”) local unitary circuits [8, 9], or invertible
domain walls to vacuum.

While the general question of whether and for which
definition the modular CYWW model is indeed trivial
is open, there is evidence that there cannot be an ex-
act local unitary circuit disentangling the CYWW model
if the input UMTC is chiral. Otherwise, as has been
argued in Ref. [10], one could conjugate the CYWW
Hamiltonian with the circuit in the bulk and terminate
it in a light-cone manner near the boundary. This would
yield a commuting-projector Hamiltonian for the chiral
boundary alone, contradicting Ref. [1]. In the first part
of this paper, we show that the converse is true, that is,

1 Note that the Kitaev chain and SPT phases do have non-trivial
codimension-2 defects at the termination of fermion-parity- or
symmetry defects. This is not the case for the E8 phase.

any modular CYWW model whose UMTC is a Drinfeld
center can be disentangled by an exact generalized local
unitary circuit. In a second part we allow for fermionic
auxiliary degrees of freedom and find that this way we
can disentangle a larger class of CYWW models beyond
Drinfeld centers, namely those generated by the Ising
UMTC, stacking, and adding/removing Drinfeld centers.

A rough outline of the remainder of this work is as
follows. In Section II, we revisit state-sum models and
their (invertible) boundaries. In Section III, we define the
modular CYWW model in the bulk. In Section IV, we
define invertible boundaries of CYWW models from La-
grangian modules, which can be found for UMTCs that
are a Drinfeld center. We also show how those invert-
ible boundaries give rise to disentangling generalized lo-
cal unitary circuits. In Section V we find fermionic in-
vertible boundaries for a larger class of UMTCs, namely
the Witt classes of the Kitaev 16-fold way.

In Appendix A we describe how small adaptions of
the structures in the main text yield general topological
boundaries for the CYWW model for braided fusion cat-
egories, constructed from braided modules thereof. Ap-
pendix B puts the methods used in the main text in a
much more general context, showing that all the struc-
tures are examples of tensorial TQFT. In Appendix F,
we revisit the obtained invertible boundaries in a totally
different language, namely that of lattice gauge theory
based on simplicial (super-) cohomology.

II. STATE-SUM MODELS AND INVERTIBLE
BOUNDARIES

State-sum models are partition functions in discrete
spacetime representing microscopic fixed-point mod-
els for topological phases. To this end, we as-
sign discrete variables to different sorts of places
(edges/vertices/corners/etc.) in a triangulation. The
partition function is a sum over all configurations of those
local variables, and each summand consists of a product
of local weights depending on the values of the variables
in a constant-size neighborhood. Equivalently, one can
consider tensor-network path integrals on arbitrary tri-
angulations [11]. The central property of the models is
their invariance under local moves of the triangulation
representing discrete homeomorphisms, such as Pachner
moves, which makes them exactly solvable. While state-
sum models such as those constructed in Refs. [12–14]
are conjectured to cover all phases that possess a topo-
logical (i.e., gapped) boundary, the situation is less clear
for phases without topological boundary [2].

State-sum models exist not only for topological phases
of the bulk, but also for “higher order phases” of arbitrary
types of boundaries, anyons, defects, fusion events, etc.
E.g., for boundaries we define the partition function on
triangulated manifolds with boundary, and show that it
is invariant under attachment/removal of n-simplices to
the boundary (in n spacetime dimensions).
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Sometimes it is interesting to restrict state-sum models
further by demanding their invariance under topology-
changing moves in addition to the topology-preserving
ones. An example for this are models of invertible phases,
which have additional invariance under surgery opera-
tions. If we write Bi for the i-ball and Si for the i-sphere,
those moves are given by

Si ×Bn−i = Bi+1 × Sn−i−1 (1)

in n spacetime dimensions, for all 0 ≤ i ≤ n. This means
we cut out a patch of triangulation with the topology of
the left and paste a patch with the topology of the right,
using that the boundary of both sides is identified with

Si × Sn−i−1 . (2)

Note that for each topology-changing move, it suffices
to impose them for only one particular pair of triangu-
lations/cellulations representing the left- and right-hand
side, sharing the same boundary. Due to the Pachner
move/re-cellulation invariance, pairs of moves with the
same topologies on the left- and on the right-hand side
are equivalent.

Invertible topological phases are sometimes said to lack
“long-range entanglement” since they do not possess non-
trivial lower-dimensional defects such as anyons. How-
ever, invertible models do not have to be in an actually
trivial phase, and important examples are given by the
fermionic Kitaev chain in 1+1 dimensions, or the bosonic
E8 phase in 2 + 1 dimensions (which does not have a
fixed-point description to date though). The common
way to prove triviality of the phase for state-sum models
is to construct an invertible domain wall to the trivial
model (vacuum), or in other words, an invertible bound-
ary. Invertibility of the boundary is a stronger condition
than invertibility of the bulk, but it also corresponds to
invariance of the path integral under topology-changing
moves.

When we deal with partition functions on topological
manifolds with boundaries, it will be necessary to distin-
guish between those physical boundaries and the space
boundaries 2 we might get from cutting out patches. The
space boundary itself has a physical boundary which is
one dimension lower than that of the spacetime bulk.
To denote the topology-changing moves, we introduce
names for a few manifolds with space and/or physical
boundary. Namely, we will write Bsi for an i-ball with
space boundary, Bpi for an i-ball with physical boundary,
Si an i-sphere, and Bpsi for the i-ball whose boundary

2 At the space boundary, we get an open configuration of state-sum
variables, i.e., a “state” on a “spatial surface”. It should be noted
though that we are dealing with a Euclidean spacetime where
there is actually no distinction between space-like and time-like
directions as such. We use the “d + 1” notation only to make
clear what is the spacetime and what the space dimension, but
not to indicate a Lorentzian signature of a metric.

i− 1-sphere is divided into two i− 1-balls, one of which
is space boundary and the other is physical boundary.

Now, the moves for the invertibility of a boundary in n
spacetime dimensions are given by Mi for each 0 ≤ i ≤ n,
which consists in attaching/removing an i-handle to the
physical boundary,

Mi : Si−1 ×Bpsn−i+1 = Bsi ×B
p
n−i . (3)

The space boundary shared by both sides is

Si−1 ×Bpn−i . (4)

For example, in n = 3 spacetime dimensions with i = 2,
we get

M2 : = , (5)

where the physical boundary is dotted in blue and the
space boundary in gray. The left-hand side is a solid
torus where the “inner” half of the boundary is physical,
and the outer half is space boundary. The right-hand
side is a solid cylinder with physical boundary on the
top and bottom and space boundary on the side. The
space boundary itself on both sides is an annulus.

III. THE MODULAR CYWW MODEL

In this section we will introduce the modular CYWW
model focusing on the state-sum description. We will
give a TQFT-style description/definition of UMTCs
which are the input of the construction, such that
the topological invariance and invertibility of the
3 + 1-dimensional model follow from purely geomet-
ric/topological/combinatorial considerations.

A. UMTCs

Unitary modular tensor categories (UMTCs) are
known to describe the anyon statistics of models of topo-
logical order in 2 + 1 dimensions [6]. UMTCs come with
a calculus of string diagrams, and those string diagrams
describe histories of anyon worldlines and their fusion
events in a 2 + 1-dimensional Euclidean spacetime, to
which the UMTC assigns amplitudes. We will work with
a definition of UMTCs that is directly based on this inter-
pretation. To make the main text more digestible, we will
here omit one subtle feature of the full definition, which is
discussed in Appendix B 3, related to the chiral anomaly.
If we would really follow through with the simplified defi-
nition in this section, this would correspond to restricting
to UMTCs with zero chiral central charge, c = 0. We will
discuss the relation of our TQFT-style definition to com-
mon categorical definitions in Appendix A 1, and derive
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our definition from a more general framework of tensorial
TQFT in Appendix B 3.

Formally, a UMTC will be defined as map as-
signing a collection of amplitudes, i.e., an array
with multiple labels/indices, or tensor, to geomet-
ric/combinatorial/topological objects representing space-
time histories. Let us start by defining those topological
objects.

A ribbon manifold is a compact oriented 3-manifold
with a network of embedded ribbon segments. A ribbon
segment is a line embedded into the 3-manifold with a
normal framing and an orientation. 3 A normal framing
is a non-zero section of the normal bundle, or in other
words, a continuous choice of identification of the in-
finitesimal normal circle around each point of the line
with a standard circle. The ends of those ribbon segments
meet at fusion vertices. The fusion vertices are framed as
well, meaning that the infinitesimal sphere around them
is identified with a standard sphere-with-points which we
call the link of the fusion vertex. The points inside the
link themselves carry an orientation, meaning they point
either “inwards” or “outwards”. Those points also carry
a framing, i.e., an identification of an infinitesimal circle
around them with the standard circle.

In this document we will draw ribbon manifolds by
projecting them onto the drawing plane, with the fram-
ing being inside the plane as well. The orientation is
indicated by equipping the lines with arrow directions,
and the framing is assumed to be pointing to the right
when looking along the arrow direction. Vertex links just
differing in the positions of their points can emulate each
other, so we can assume without loss of generality that
all links have their points only along the equator, and
this equator is inside the drawing plane. If the identifica-
tion with the link at a fusion vertices would be ambigu-
ous due to symmetries of the adjacent ribbons and their
directions, we will remove this ambiguity by marking a
“favorite” adjacent ribbon with a tick. An example is
given by

. (6)

The overall 3-manifold will usually be a 3-sphere, oth-
erwise we will describe its topology and the homotopy
classes of cycles of ribbon segments in words.

A (c = 0) UMTCM is a map that associates a tensor
(i.e., a complex multi-index array) to every ribbon man-
ifold, with one ribbon label at every ribbon segment, and
one fusion index at every fusion vertex. More precisely,
ribbon labels are drawn from a fixed finite set, and the

3 Note that contrary to boundaries, codimension-2 submanifolds
cannot be equipped with a standard orientation using the bulk
orientation.

values of the fusion indices correspond to basis vectors in
a finite-dimensional fusion vector space. The (dimension
of the) latter depends on the link of the fusion vertex
and on the values of the labels at the adjacent ribbons.
A UMTC also comes with a quantum dimension di for
each ribbon label i, and

D = (
∑
i

d2
i )

1/2 (7)

is called the total quantum dimension.
A UMTCM has to obey a collection of gluing axioms,

which are commutative diagrams involving twice the map
M, one gluing operation G of ribbon manifolds (such as
a surgery), and one summation/contraction C of tensors,

Ribbon manifold Ribbon manifold

Tensor Tensor

GG

MM MM
CC

. (8)

Concretely, we have the following gluing axioms.

• G is the disjoint union of two ribbon manifolds, and
C is the tensor product of tensors. This axiom does
not exactly fit into Eq. (8) since both G and C are
2-valent, so the left vertical arrow in Eq. (8) should
be M⊗M instead of M.

• For every link L of a fusion vertex, let G be a fusion
0-surgery by gluing two fusion vertices whose links
are L and L̄ (the orientation-reversed copy of L),

Cone(L)× S0 → L×B1 . (9)

Here, Cone(L) is L×[0, 1] with L×0 identified with
a single point, i.e., Cone(L) consists of a small 3-
ball around the fusion vertex. The according C con-
sists of 1) projecting onto the space where pairs of
adjacent ribbons carry the same label, and 2) con-
tracting the two fusion indices. Considering only
the ribbon networks and not the 3-manifold topol-
ogy, the gluing axiom is given by, e.g., for L a 2-
sphere with four points,

∑
α

α α

aaa
bbb

ccc
ddd

aaa
bbb

ccc
ddd

=

aaaa
bbbb

dddd

cccc
. (10)

• G can be a loop 1-surgery,

Cone(S1)× S1 → S1 ×B2 . (11)

Note that Cone(S1) is a 2-ball with a single ori-
ented, framed point in the center, which becomes a
ribbon loop through the product with S1. In other
words, we remove the solid 3-torus neighborhood
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of a ribbon loop and replace it by its complemen-
tary solid 3-torus inside a 3-sphere, or yet in other
words, we cut out the solid torus and paste it again
after applying an S modular transformation to the
boundary. The according C is given by summing
over all ribbon labels a weighted by da/D. Looking
at the ribbon networks only, we have,

∑
a

da
D

aa
= . (12)

• G is a plain 0-surgery without fusion vertices,

B3 × S0 → S2 ×B1 . (13)

C consists in multiplying the overall tensor with
the total quantum dimension D. Since C is invert-
ible, the axiom might also be applied backwards, in
which case G−1 is a 2-surgery. It might be viewed
as a special case of fusion 0-surgery, if we are al-
lowed to insert trivial fusion vertices with no ad-
jacent ribbons at a cost of D1/2. Physically, this
axiom imposes that the ground state degeneracy
on the n− 1-sphere is 1, which explicitly rules out
symmetry-breaking phases.

• Since we are doing quantum physics, the UMTC
has to obey the following unitarity condition.4 G
is given by orientation reversal, and C is given by
complex conjugation.

Note that changing all UMTC tensors by applying a
unitary map (Uabc )βα to every fusion index with adjacent
ribbon labels a, b, and c,

βaaa bbb
ccc

:=
∑
α

(Uabc )βα

α
aaa bbb

ccc . (14)

Such a transformation is sometimes called a gauge trans-
formation, and gauge equivalent UMTCs describe the
same topological phases.

Let us quickly sketch the relation of this definition to
how UMTCs are usually presented in the physics lit-
erature. For more details we refer the reader to Ap-
pendix A 1. In the common presentation of UMTCs,
we assign linear operators to deformations of string dia-
grams, such as the F -matrix to

γ
δ ff

dd

aa bb

cc
=

∑
e,α,β

(F abcd )fγδeαβ α

β
ee

dd

bb cc

aa
. (15)

4 A better name for this might be Hermiticity, since our spacetimes
have an imaginary and not a real time component.

In our language, we connect open ribbons on the left and
right side (one of them orientation-reversed), and obtain
a single ribbon diagram to which we assign F (or other
linear operators) as a tensor,

(F abcd )fγδeαβ =M(

α

βδ

γ
ee

ff

bb

ccaa

dd

) . (16)

Vice versa, the F -move can be performed by simply glu-
ing some vertices of the F ribbon manifold to the corre-
sponding section of another ribbon manifold,

= . (17)

The right-hand side is the disjoint union of the 3-sphere
ribbon manifold in Eq. (16), together with an arbitrary
ribbon manifold X which contains a section that looks
like the right-hand side of Eq. (15). We then perform the
fusion 0-surgery in Eq. (9) to two pairs of vertices as indi-
cated by the red semi-transparent thick dashed lines, and
then the loop 1-surgery in Eq. (11) as indicated by the
semi-transparent red circle on an edge that is part of the
loop. This results in changing the ribbon network of X
as in Eq. (15) without changing the 3-manifold topology
of X.

Note that there can be different “moves” of string dia-
grams like Eq. (15) that yield the same ribbon manifold
after connecting the open ends of the two sides. An ad-
vantage of our presentation is that those moves automat-
ically correspond to the same amplitudes, whereas this
would have to be ensured by additional axioms in the con-
ventional formulation. In general, a tensor-based formu-
lation seems to be more natural than an operator-based
formulation since we are in Euclidean spacetime where
there is no notion of time direction. Our closed-up lan-
guage also makes it much easier to see the precise topo-
logical/geometric interpretation to UMTCs, and in par-
ticular the important role of the embedding 3-manifold
topology, which is at the heart of what Reshetikhin-
Turaev TQFT [15] is about.

B. The state-sum path integral

We will now define the modular CYWW model for a
UMTC M as a state-sum/tensor-network path integral
in 3 + 1 dimensions.

Consider a 3-manifold cellulation C. Let R(C) be the
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3-manifold equipped with the Poincaré dual 1-skeleton 5

of C as a ribbon network. That is, R(C) has one fusion
vertex in the center of every 3-cell of C, and the fusion
vertices of neighboring 3-cells are connected by a ribbon
intersecting the 2-cell separating them. We assume that
each 2-cell and 3-cell is identified with a canonical rep-
resentative, which we will call a branching. The 2-cell
identification is needed to fix the framing of the ribbon
perpendicular to it, and the 3-cell identification is needed
for the framing of the contained fusion vertex. E.g., for a
triangulation, the branching can be determined by what
is commonly known as a branching structure and consists
of a choice of edge directions acyclic at every triangle.
Depending on the branching (structure) we can pick a
convention to “flatten” the fusion vertex in the center of
a 3-cell, such as for a tetrahedron,

0 2

1

3

1̂

0̂2̂

3̂

→ 0̂̂0

2̂̂2

1̂̂1

3̂̂3

. (18)

Here, and in the following, we will draw an underlying
cellulation using dotted lines and “hollow” vertices. If
the branching is orientation reversed, then so is the link
of the fusion vertex. E.g., the boundary of a 4-simplex is
a simple cellulation of a 3-sphere by branching-structure
tetrahedra, to which we associate the following ribbon

5 By this we mean the 1-skeleton of the cellulation Poincaré dual
to C. Also, by “dual i-cell”, we will refer to an i-cell in the dual
cellulation, not an n− i-cell dual to an i-cell of the cellulation.

manifold,

0

1 2

3

40̂

1̂2̂

3̂

4̂

→
0̂1̂

2̂

3̂

4̂

.

(19)

Now, the CYWW model is a state-sum that associates
to each 4-cell X the tensor

M(C(∂X)) , (20)

i.e., the tensor that M assigns to the boundary 3-
cellulation of X with the Poincaré dual ribbon network.
E.g., for a triangulation of a 4-manifold, we would assign
the tensor for Eq. (19) to every 4-simplex.

The indices of those tensors are contracted as follows.
At every 3-cell, there is a pair of fusion indices with
opposite-orientation links from the tensors at the adja-
cent 4-cells, which are contracted. At each 2-cell, there
are ribbon labels a1, a2, . . . from the tensors at the adja-
cent 4-cells. Those are contracted using a δ-tensor (i.e.,
first projected onto the subspace where they all take the
same value, and then summed over), weighted the quan-
tum dimension,

da1

D
δa1,a2,... =

da1

D
·

{
1 if a1 = a2 = . . .

0 otherwise
. (21)

In addition, there is a normalization of 1
D at every edge,

and D at every vertex.

C. Evaluation of the path integral

Let us evaluate the state-sum within a cellulation Y of
a 4-manifold with (space) boundary. We will find that
the evaluation is given by M(R(∂Y )), where ∂Y is the
3-cellulation of the (space) boundary of Y . This can be
shown very directly using the gluing axioms, which imply
that performing the contractions of the state-sum tensors
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is equivalent to gluing operations of the corresponding
ribbon manifolds. The evaluation can be divided into
the following steps.

1. We start with one tensorM(R(∂X)) at every 4-cell
X of Y . Using the disjoint union axiom, we have⊗

X∈C4[Y ]

M(R(∂X)) =M(R(
⋃

X∈C4[Y ]

∂X)) =:M(R0) ,

(22)
writing Ci[Y ] for the set of i-cells of Y . We notice
that as a 3-manifold, R0 is just the boundary of the
neighborhood of the interior dual 0-skeleton of Y ,
a collection of 3-spheres.

2. At each interior 3-cell of Y , we contract a pair of
fusion indices. Calling this contraction C, we have

C(M(R0)) =M(G(R0)) =:M(R1) , (23)

where G is the fusion 0-surgery in Eq. (9) between
every pair of fusion vertices. As a 3-manifold, R1

is the boundary of the neighborhood of the dual 1-
skeleton of Y . At ∂Y , the ribbon network of R1 is
the dual 1-skeleton of the 3-cellulation ∂Y . At each
interior 2-cell of Y , R1 contains a ribbon around the
corresponding non-contractible loop.

3. At every interior 2-cell of Y , we sum over the sur-
rounding ribbon labels a weighted by da/D. Call-
ing this summation C, we have

C(M(R1)) =M(G(R1)) =:M(R2) , (24)

where G is the loop 1-surgery in Eq. (11) around
every ribbon loop of R1. Thus, R2 as a 3-manifold
which is the boundary of the the neighborhood of
the dual 2-skeleton of Y . There are no ribbons in
the bulk of Y , and the ribbon network at ∂Y is the
same as for R1.

4. At every interior 1-cell, there is a normalization of
1/D. Writing C for this normalization, we have

C(M(R2)) =M(G(R2)) =:M(R3) , (25)

where G is the backwards 0-surgery (which is a 2-
surgery) in Eq. (13) at all 1-cells. R3 contains one
disconnected ribbonless 3-sphere for every interior
vertex of Y , which can be canceled by the weight of
D at every vertex, yielding R4. R4 is the same as
R(∂Y ), and thus we find that the evaluation of the
CYWW state-sum on Y is given by M(R(∂Y )).

Since the evaluation of the CYWW model is indepen-
dent of the bulk cellulation, the CYWW model is re-
cellulation invariant, i.e., a topological state-sum fixed-
point model. Since it also does not depend on the topol-
ogy of the bulk, it further follows that the (modular)
CYWW model is invertible.

D. Ground state and Hamiltonian

Since the modular CYWW model is invertible, it has
a unique ground state on any space manifold/cellulation.
This ground state on a 3-cellulation X is simply given
by M(R(X)). More precisely, we need to multiply by
a factor of (di/D)1/2 at each 2-cell, where i is the label
of the ribbon perpendicular to the 2-cell, if we want the
state to be the ground state of a Hermitian Hamiltonian.

Any state-sum construction of a simple enough type
6 yields a commuting-projector Hamiltonian by consid-
ering the state-sum on diamond-shaped cells. On a 3-
cellulation, the standard prescription would result in one
Hamiltonian term at every vertex involving the degrees
of freedom on the 3-cells containing that vertex. How-
ever, the CYWW model has a very specific structure that
allows for a simpler set of local projectors, one at every
edge/dual face. Namely, we take the ribbon loop around
the dual face together with “loose” ribbon segments con-
nected to it, and combine those loose ribbon ends with
an orientation-reversed copy, e.g.,

→ . (26)

The according tensor can be interpreted as a linear op-
erator from the ribbon labels and fusion indices at the
bottom to those at the top, parametrically depending on
the labels of the ribbons connecting bottom and top. If
we normalize each bottom and top ribbon by (di/D)1/2,
then it follows directly from the gluing axioms that this
linear operator is a projector. It can also be easily seen
that the gluing axioms imply that projectors at differ-
ent dual 2-cells commute. Furthermore, the unitarity
condition implies that the projector is Hermitian. The
Hamiltonian is just the sum of the inverses of all such
local projectors.

IV. INVERTIBLE BOUNDARIES FOR
DRINFELD CENTERS

In this section we will define an invertible boundary
for modular CYWW models whose input UMTC is a
Drinfeld center. In this (and only this) case (c.f. Ap-
pendix A 4), there exists an extension of the UMTC to
a categorical structure that also associates amplitudes

6 This includes all established state-sum constructions, but not
those suggested in Ref. [2].
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to manifolds with boundary, and which we will refer to
as a Lagrangian module. We will first give a TQFT-
style definition of those Lagrangian modules, and then
use them to define the invertible boundary. We will for-
mulate the latter first as a state-sum, then in terms of
ground states/Hamiltonians, and finally as a generalized
local unitary circuit disentangling the modular CYWW
model.

A. Lagrangian modules

If a topological model in 2 + 1 dimensions has a topo-
logical boundary, then there can also be anyons trav-
eling inside the boundary. We can consider spacetime
histories containing both bulk and boundary anyons as
well as their fusion events. An assignment of amplitudes
to all those histories yields what is known as a module
category of the UMTC. Imposing all the gluing axioms
restricts that module category further to one that arises
from condensing a Lagrangian commutative Frobenius al-
gebra object inside the UMTC, and thus we will refer to
it as a Lagrangian module. We will here again resort to a
TQFT-style definition via gluing axioms, and comment
more on the relation to existing categorical notions in
Appendix A 4.

We define a boundary ribbon manifold as a 3-manifold
with boundary, and a network of ribbons in the bulk
as well as a network of boundary ribbons within the
boundary. In addition to the fusion vertices in the bulk,
there are boundary fusion vertices where bulk- as well as
boundary ribbons meet. Like any other submanifold, the
boundary fusion vertices are framed, i.e., the infinitesi-
mal “sphere” around each of them is identified with its
link, a disk with points in both bulk and boundary. When
we draw a boundary ribbon manifold, we again project
it to 2 dimensions. We will draw boundary ribbons and
vertices in blue, and think of the bulk as being “behind”
the boundary, e.g.,

. (27)

A Lagrangian module B (containing a UMTCM) is a
map that associates to every boundary ribbon manifold
a tensor, with one label for each boundary ribbon and
one index for each boundary fusion vertex (in addition
to the UMTC labeling in the bulk). Again, the labels
are from a fixed finite set (which is different from the set
of bulk labels), and the dimension of the boundary fusion
indices depends on their link and labeling of the adjacent
ribbons. This contains M by restricting to manifolds
without boundary. A Lagrangian module also contains a

quantum dimension dBi for each boundary ribbon label i,
and like in the bulk, we define

DB = (
∑
i

dBi
2
)1/2 . (28)

There are the following gluing axioms (cf. Eq. (8)) be-
tween gluing operations of the boundary ribbon mani-
folds and contractions of the tensors, in addition to those
for the UMTC.

• G is disjoint union and C is the tensor product.

• For each link L of a boundary fusion vertex, G is
the fusion 1-handle attachment given by gluing two
boundary fusion vertices with links L and L̄,

Cone(L)× S0 → L×Bs1 . (29)

The according C consists in projecting onto the
subspace where the adjacent ribbons carry pairwise
equal labels, and contracting the two fusion indices
themselves. Looking at the ribbon networks, we
have, e.g., for L a disk with two bulk- and two
boundary points,

∑
α

α α

aaa
bbb

ccc
ddd

aaa
bbb

ccc
ddd

=

aaaa
bbbb

dddd

cccc
. (30)

• G is a loop 2-handle attachment which can be ap-
plied to the tubular neighborhood of a boundary
ribbon loop,

Cone(Bp1)× S1 → Bs2 ×B
p
1 . (31)

Note that Cone(Bp1) is Bps2 with a single point
inside the physical-boundary 1-ball, generating a
boundary ribbon in the product with S1. The ac-
cording C is given by summing over all labels a for
this boundary ribbon, weighted by dBa /D

B. On the
level of ribbon networks, this looks like

∑
a

dBa
DB

aa
= . (32)

• G is a plain 1-handle attachment without fusion
vertices,

Bps3 × S0 → Bp2 ×Bs1 . (33)

The according C is given by multiplying the ten-
sor with an overall factor of DB. This is a special
case of the fusion 1-handle attachment if we can
add trivial boundary fusion vertices at a cost of
(DB)1/2. Physically, this imposes that the ground
state degeneracy on the 3-ball is 1, again explicitly
ruling out symmetry-breaking at the boundary.
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B. The invertible-boundary state-sum

Let us now describe the state-sum formulation of the
invertible boundary for a UMTC M and its Lagrangian
module B. Consider a cellulation X of a 3-manifold with
(physical) boundary. Let R(X) denote the manifold X
with a ribbon network that is the dual 1-skeleton in the
bulk, and a boundary ribbon network that is the dual
1-skeleton of the 2-cellulation ∂X. I.e., there is a bound-
ary fusion vertex at the center of every boundary 2-cell,
where one bulk ribbon and a number of boundary rib-
bons meet. A very simple 3-cellulation with boundary is
given by a single 3-cell. E.g., for a cubic 3-cell X (with
dotted lines and hollow vertices), R(X) would look as
follows,

→ . (34)

In order to determine the ordering and arrow directions
of the strings adjacent to a boundary fusion vertex (here
chosen at random), we need to use the branching, i.e.,
the identification of the boundary 2-cells with a canonical
representative. For a branching-structure triangulation,
a possible convention is

0 1

2

→

2̂̂2

0̂̂01̂̂1

. (35)

That is, we complete the triangle to a tetrahedron with
a “−1-vertex” and then use the same convention as for
the bulk fusion vertices of this tetrahedron in Eq. (18).
If we do the same for the ribbon diagram associated to
the 4-simplex, we get a copy of the bulk ribbon network
in Eq. (19) where we replace some of the bulk ribbons by
boundary ribbons,

0 2

1

3 →
0̂

1̂

2̂

3̂

.

(36)
The invertible-boundary state-sum simply associates

to each boundary 3-cell X the tensor B(R(X)). E.g.,

in a branching-structure triangulation, we would have
the tensor in Eq. (36) at every boundary tetrahedron.
For each boundary 2-cell, the two adjacent boundary fu-
sion indices are contracted. At each boundary 3-cell, the
central fusion index is contracted with a fusion index of
the tensor at the adjacent bulk 4-cell. At each bound-
ary 1-cell, the boundary ribbon labels of the surrounding
boundary 3-cell tensors are contracted with a δ-tensor,
weighted by dBa /D

B. At each boundary 0-cell, we multi-
ply by DB.

C. Evaluation of the path integral

Let us now evaluate the state-sum on an arbitrary 4-
manifold cellulation Y with physical boundary X. The
space boundaries of Y and X will be denoted ∂Y and ∂X,
such that ∂X is the physical boundary of ∂Y . We will
find that the evaluation is given by B(R(∂Y )). To show
this, we perform the contractions of the state-sum and
use the fact that they correspond to gluing operations via
the gluing axioms, completely analogous to the procedure
for the bulk in Section III B. Concretely, the steps are as
follows.

• To begin with, we evaluate the state-sum on all
bulk 4-cells as in Section III C, obtaining

M(R4) =M(R(∂Y ∪X)) , (37)

noting that ∂Y ∪X is the full boundary of Y con-
sisting of the physical and space part.

• Then at every 3-cell of X, take the tensor product
with the corresponding state-sum tensor and con-
tract its bulk fusion index with that at the adjacent
bulk 4-cell of Y . Calling this C, we have

C(B(R4)) = B(G(R4)) =: B(R5) , (38)

where G is the disjoint union with 3-ball rib-
bon manifolds followed by gluing them to R4 via
Eq. (9). The resulting R5 is R4 where the neigh-
borhood of the fusion vertex at the center of ev-
ery 3-cell of X has been removed, and replaced
by a physical-boundary 2-sphere whose boundary
ribbon network is the dual 1-skeleton of the 3-cell
boundary. R5 also has one bulk ribbon through
every 2-cell of X, connecting the boundary fusion
vertices at the two holes on both sides.

• Next, at each interior 2-cell of X, we contract two
boundary fusion indices of the neighboring bound-
ary 3-cells, and we sum over the bulk ribbon labels
at this 2-cell. Denoting this contraction by C, we
have

C(B(R5)) = B(G(R5)) =: B(R6) , (39)

where G is given by the 1-handle attachment in
Eq. (29) followed by the loop 1-surgery in Eq. (11)
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at every 2-cell. Both operations together will result
in removing the 1-handle that is the neighborhood
of every bulk ribbon connecting two holes. So R6

as a manifold is X ∪ ∂Y with the neighborhood of
the dual 1-skeleton of X removed. At each dual 2-
cell of X, there is one boundary ribbon loop wind-
ing around the corresponding boundary loop that
is contractible through the bulk. Near ∂X we end
up with a “tunnel system” containing a boundary
ribbon network that is the dual 1-skeleton of the
2-cellulation ∂X.

• Next, at each 1-cell of X, we contract the surround-
ing boundary ribbon labels with a δ-tensor, and we
include the normalization of 1/D from the bulk.
Denoting this contraction by C, we have

C(B(R6)) = B(G(R6)) =: B(R7) , (40)

where G corresponds to the 2-handle attachment
Eq. (31) followed by the backwards plain 0-surgery
in Eq. (13). Both gluing operations together will
have the effect of removing the 2-handle given by
the neighborhood of the 2-cell dual to the 1-cell.
Thus, R7 as a manifold is X ∪ ∂Y with the dual
2-skeleton of X removed, i.e., ∂Y together with
one disjoint ribbon-less 3-ball for every vertex of X.
Those 3-balls can be removed canceling the normal-
ization of DB, yielding a ribbon manifold R8. We
find R8 = R(∂Y ), and thus the evaluation is given
by B(R(∂Y )) as claimed.

So, we have found that evaluating the state-sum on an
arbitrary 4-cellulation Y with physical and space bound-
ary depends only on the space boundary ∂Y (whose phys-
ical boundary is ∂X), and is independent of the space-
time bulk. As a consequence, the defined boundary for B
is recellulation invariant. Since the evaluation does not
depend on the topology either, it follows that this bound-
ary is also invertible since it is invariant under the moves
in Eq. (3).

D. Ground state and Hamiltonian

Since both the modular CYWW and its Lagrangian-
module boundary are invertible, they have a unique
ground state on any space manifold/cellulation with
boundary. Like for the bulk CYWW, this ground state
on a 3-cellulation Y (with physical boundary X) is sim-
ply given by B(R(Y )), multiplied by (dBi /D

B)1/2 for all
boundary ribbon segments with label i and (di/D)1/2 for
all bulk segments.

The local projectors of a commuting-projector Hamil-
tonian are again defined for every dual 2-cell of the 3-
cellulation either in the bulk or at the boundary, i.e., for

every plaquette of the ribbon network. E.g., we have

→ (41)

for a bulk plaquette involving a single boundary rib-
bon, and similarly for plaquettes involving more or only
boundary ribbons.

E. The generalized local unitary circuit

We have shown the triviality of the Drinfeld-center
CYWW model by constructing an invertible boundary
of the corresponding state-sum path integral constructed
from a Lagrangian module B. Another way of showing
that two fixed-point models are in the same phase, which
might be more familiar to the physically inclined reader,
is via a so-called generalized local unitary circuit (gLU
circuit) [8]. Such a gLU circuit is a constant-depth ho-
mogeneous circuit of gLU operators Ix of constant-size
spatial support, mapping a family of ground states A to
another family of ground states B. Each operator Ix does
not need to be unitary but only needs to behave like an
isometry when applied to the current state after applying
all previous gLU operators to A,

I†xIx(
∏
y<x

Iy)A = (
∏
y<x

Iy)A . (42)

Physically speaking, gLU circuits allow both the addi-
tion and removal of disentangled (auxiliary) qubits, as
opposed to local (strictly) unitary circuits.

Any state-sum invertible domain wall of a simple type
7 automatically gives rise to a generalized local unitary
circuit. The gLU conditions follow directly from retrian-
gulation/recellulation invariance. Intuitively, we can glue
patches of state-sum manifolds onto the state to create
islands (0-handles) of B inside A, then connect those 0-
handles by B 1-handles, then fill loops of B 1-handles
by B 2-handles, and so on, till we obtain the B ground
state. E.g., in 1 + 1 dimensions, a “horizontal” invertible
domain wall state-sum (in blue) between A (in gray) and
B (in brown) can be cut into pieces to yield a gLU circuit

7 This includes all established state-sum constructions, e.g., ones
with one tensor per highest-dimensional simplex/cell depending
only on that cell. This is opposed to so-called vertex-liquid mod-
els [2].
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as follows,

= .

(43)
The gLU operators consist of the state-sum evaluated on
the small patches in between, interpreted as operators
from the bottom to the top. They fulfill the gLU prop-
erty, e.g.,

II† = = = . (44)

The second equality holds due to the invertibility axioms
of the domain wall. The first equality is only true if the
geometry of the state-sum construction is simple enough,
which is the case for any established construction includ-
ing the CYWW model. In this case, the right-hand side
is a local projector whose support is a state with two
domain walls, i.e., II† acts trivially on the intermediate
state of the circuit.

In our case, A is the 3+1-dimensional modular CYWW
model, B is the trivial model, and the domain wall is
the invertible Lagrangian-module boundary. The dis-
entangling circuit consists of the following four steps,
in each of which we apply gLU operators in parallel
with non-overlapping spatial support. We start with
the CYWW ground state on a 3-cellulation Y , which is
M(R(Y )) =:M(R0), normalized by (da/D)1/2 at every
dual 2-cell.

In the first step, for each 3-cell C, consider B(R(C)),
such as for a tetrahedron 3-cell,

Iabcdefβγδεα (wxyz)

= (
dBa d

B
b d
B
c d
B
d d
B
e d
B
f

(DB)6
)1/2(

DB

D
)4/2

α

β

γδ

ε
x

y

z w

a

b c

d

e

f .

(45)
As depicted, we interpret this tensor as an operator I
from the single bulk fusion index to the indices of all
boundary ribbons and boundary vertices. The operator
parametrically depends on the bulk ribbon labels, that
is, those are both input and output but their value does
not change. The normalization consists of (dBa /D

B)1/2

for every boundary ribbon label a, and (DB/D)1/2 for
each vertex of the 3-cell. This operator is an isometry,
which follows from performing the gluing operations cor-
responding to I†I. Now we apply the operator I to the
fusion index in the center of each bulk 3-cell of Y . When

we perform the corresponding gluing operations between
R0 and the different R(C), we obtain another ribbon
manifold R1. R1 as a manifold is Y with the dual 0-
skeleton removed, that is, there is a hole in the center of
every 3-cell. On the boundary of each hole we have a rib-
bon network dual to the boundary of the corresponding
3-cell, and for every 2-cell there is a bulk ribbon con-
necting two boundary fusion vertices on the holes of the
adjacent 3-cells.

In the second step, for each 2-cell, consider the follow-
ing “globe” 3-ball boundary ribbon manifold. Along the
equator, we have the ribbon network dual to the bound-
ary of the 2-cell, that is, for an n-gon we divide the equa-
tor into n boundary ribbon segments joined at n fusion
vertices. There are two fusion vertices at the poles, and
“meridian” boundary ribbons connecting all of the equa-
torial fusion vertices with the pole vertices. Finally, there
is a bulk ribbon connecting the two pole vertices. E.g.,
for a 4-gon 2-cell we get

Iabcdαβγδxµν (efghijkl)

= (
dBa d

B
b d
B
c d
B
d

(DB)4
)1/2(

dx
D

)1/2

α β
γ

δ

µ

ν

x a bcd

e
fg h

i jk l

.

(46)
As depicted, we interpret the corresponding Lagrangian-
module tensor as an operator I from the bulk ribbon and
pole vertex labels to the equatorial ribbon and fusion ver-
tex labels, parametrically depending on the meridian rib-
bon labels. The normalization consists of (dBa /D

B)1/2 for
all equatorial boundary ribbon labels a, and (dx/D)1/2

for the bulk ribbon label x. I is an isometry, which fol-
lows from performing the gluing operations correspond-
ing to contracting I†I. At every dual 2-cell, R1 contains
one bulk ribbon segment connecting two boundary fusion
vertices through the bulk, e.g., for a 4-gon,

µ

ν

x
ee ff

hh
gg

ii
jj

ll
kk

. (47)

At each such bulk segment, we apply the operator I as
indicated by the choice of labels. Performing the corre-
sponding gluing operations between R1 and the “globe”
ribbon manifolds, we get a new ribbon manifold R2.
Specifically, we first apply the 1-handle attachment of
Eq. (30) to both µ and ν, and then the 2-handle attach-
ment of Eq. (32) to the resulting x loop. The correspond-
ing R2 as a manifold is Y with the neighborhood of the
dual 1-skeleton removed. At each dual edge of Y we
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have a boundary ribbon winding around the correspond-
ing non-contractible loop. At each dual face, we have a
boundary ribbon winding around the corresponding loop
that is non-contractible inside the boundary, but con-
tractible through the bulk. The loops of each adjacent
pair of dual edge and face intersect once at a 4-valent
fusion vertex.

In the third step, for each 1-cell, consider the ribbon
manifold that looks like the “globe” from the previous
step for the dual 2-cell, just without the bulk ribbon con-
necting the poles. E.g., for a 4-valent 1-cell, we have

Iµνabcdαβγδ(efghijkl)

= (
dadbdcdd

(DB)4
)1/2

α β
γ

δ

µ

ν

a bcd

e
fg

h

i jk l

.
(48)

As depicted, we interpret the associated Lagrangian-
module tensor as an operator I from the equatorial rib-
bon and vertex labels to the pole vertex labels, paramet-
rically depending on the meridian ribbon labels, normal-
ized as shown. This tensor is not an isometry, but still
defines a gLU operator as we will see in a moment. After
the previous step, the ribbon configuration in R2 around
each edge looks like, e.g., for a 4-valent edge,

α β
γ

δ
a

bc

d

ee

ii

ff

jj

hh

ll

gg

kk

, (49)

with bulk 3-manifold on the inside. We apply the oper-
ator I to this configuration as indicated by the labeling.
Performing the corresponding gluing operations between
R2 and all the “globe” ribbon manifolds, we get another
ribbon manifold R3. Specifically, we first apply the 1-
handle attachment of Eq. (30) to the labels α β, γ, and
δ, and then the 2-handle attachment of Eq. (32) to the
resulting loops a, b, c, and d. Finally, we apply the back-
wards plain 0-surgery in Eq. (13). R3 as a 3-manifold is Y
with the dual 2-skeleton removed, i.e., one disconnected
3-ball at every dual 3-cell. On the boundary of each 3-
ball we have the ribbon network dual to the boundary
2-cellulation of the dual 3-cell.

Now imagine applying I† to this resulting state. This
corresponds to gluing the ribbon manifolds in Eq. (48) at
the fusion vertices µ and ν in between the disconnected
3-balls of R3 at the endpoints of every edge, by 1-handle
attachments as in Eq. (30). This will restore the ribbon
manifold R2, and thus I fulfills the gLU condition in
Eq. (42).

After the third step, B(R3) is product state, which
usually is taken as the definition for having “disentan-
gled” a state. If we want, we can apply a last layer of
gLU operators to “remove” the product state and ob-
tain complete vacuum without any degrees of freedom.
The corresponding operator I is the Lagrangian-module
tensor on the dual 3-cell with dual boundary ribbon net-
work, as an operator from all indices to nothing, i.e., the
projector onto each factor of the product state.

In this work we use the mathematically natural formu-
lation where the total Hilbert space of the model is as a
direct sum indexed by the different ribbon label config-
urations. Each summand is the tensor product of fusion
vector spaces at the different fusion vertices, which only
depend locally on the adjacent ribbon labels. In physics,
people might be more used to Hilbert spaces that are
plain tensor products.

A common ad hoc way of arriving at a plain tensor-
product Hilbert space is to simply enlarge the dimensions
of all the vertex fusion spaces to Nmax := maxa,b,cN

ab
c ,

independent of a, b, and c. That is, the enlarged UMTC
tensors equal the original UMTC tensors when all fusion
vertex labels α take values 0 ≤ α < Nab

c , and are equal to
0 if any fusion vertex label takes values Nab

c ≤ α < Nmax.
All the UMTC tensors, as well as the CYWW ground
state, do then live in a tensor-product Hilbert space with
one qu-d-it with d = #anyons at every face dual to a
ribbon, and a qu-d-it with d = Nmax at every volume
dual to a fusion vertex. Note that the enlarged UMTC
tensors still fulfils all the axioms in Section III A and
Section IV A, just not the convention

α βaa
bb

cc

= δα,β ∀a, b, c , (50)

which we would usually impose. We thus see that the
gLU defined in this section is even a gLU on the enlarged
tensor-product Hilbert space, not only on the mathemat-
ical direct-sum space constrained by Nab

c . Note that in
the physics literature, Nmax = 1 is usually assumed such
that we do not need any degrees of freedom at the fusion
vertices, and going to the enlarged Hilbert space sim-
ply means also including ribbon configurations violating
the fusion rules. It can also be directly seen that the
circuit proposed in this section remains gLU after en-
larging the Hilbert space: While the circuit acts as zero
on configurations where any vertex index α takes values
Nab
c ≤ α < Nmax, the circuit is still gLU since the ground

state amplitudes on those values are zero as well.
A mathematically more natural way is to use a

tensor-product Hilbert space with one qu-d-it with d =∑
a,b,cN

ab
c at every fusion vertex only. This qu-d-it can

be thought of as a composite of three ribbon labels a, b,
and c and fusion index of dimension Nab

c . We can as-
sociate each of a, b, and c to one adjacent ribbon, such
that every ribbon has two associated labels, say a and
a′, coming from its two end vertices. Now, the direct-
sum Hilbert space can be identified with the tensor-



13

product Hilbert space where a = a′ at every ribbon.
This leads to an equivalent tensorial definition of UMTCs
and Lagrangian modules with indices only at the ver-
tices. In this case, fusion 0-surgery simply corresponds
to index contraction. For a fusion 0-surgery producing
a loop, we need to insert a weight matrix into the con-
traction (related to the factor da/D in the direct-sum
definition). Loop 1-surgery corresponds to doing noth-
ing. This is equivalent to the bare tensorial TQFT de-
scribed in Appendix B before dimension-reduction block-
diagonalization. All constructions in this paper can be
carried out using those alternative tensorial definitions,
in which case all the occurring Hilbert spaces are again
plain tensor-product spaces.

Note that a disentangling gLU circuit is equivalent to
a proper strict local unitary circuit if we allow for the
addition of auxiliary qu-d-its. To this end, we arbitrarily
extend each generalized/partial isometry I to outside the
local support of the ground state, yielding a full isometry.
If the output dimension of a partial isometry is smaller
than the input dimension, we need to add an auxiliary qu-
d-it for this to be possible. It is unclear whether CYWW
models can be disentangled using an exact strict local
unitary circuit without auxiliary degrees of freedom. A
plausible scenario would be that this works for all abelian
UMTCs, but not the non-abelian ones. Note, however,
that in the context of phases of matter, gLUs are the
natural notion to consider and not strict local unitary
circuits.

F. For Drinfeld centers of UMTCs

If a fusion category F can be extended with a modular
braiding to an UMTC M, then the Drinfeld center of F
is simply given by the tensor/Deligne product [16],

Z(F) =M⊗M . (51)

Then, also the CYWW model for Z(F) is simply given by
a non-interacting stack of the CYWW model forM and
an orientation-reversed copy. The invertible boundary for
this stack is given by the folding boundary, schematically
in 2 dimensions lower,

CYWW(Z(F))

Folding
boundary

CYWW(M)

CYWW(M)

. (52)

The invertibility of the folding boundary follows directly
from the invertibility of the bulk. The same folding
boundary construction in one dimension lower can be
used to obtain a Lagrangian module for Z(F) as follows.
Given a boundary ribbon manifold, we double the bulk,

replace the boundary with a fold, and replace the bound-
ary ribbons by bulk ribbons within the fold. Precompos-
ing/pulling back M with this geometric operation will
yield the Lagrangian module for Z(F) = M⊗M. The
folding boundary for the CYWW model of Z(F) above
is the same as the Lagrangian-module boundary for this
Lagrangian module.

G. Example: Toric code

The toric code UMTC is the Drinfeld center of the
arguably simplest fusion category, namely the Z2 group
category. At the same time, the (untwisted) Z2 cate-
gory, unlike many other simple fusion categories, cannot
be equipped with a modular braiding, and thus does not
belong to the somewhat trivial case described in Sec-
tion IV F. The toric code UMTC has 4 ribbon labels 1,
e, m, ε, with Z2×Z2 fusion rules, i.e., the dimension of a
fusion vertex is 1 if there is an even number of adjacent e
or ε ribbons and an even number of m or ε ribbons, and
0 otherwise.

The amplitude for a labeled ribbon manifold can be
obtained by reducing it to the empty manifold in steps.
Every connected 3-manifold can be obtained from apply-
ing 1-surgeries to a set of framed loops inside the 3-sphere
[17]. Applying the inverse 1-surgeries to the ribbon man-
ifold, we obtain a ribbon 3-sphere with a set of additional
loops. The amplitude is thus obtained by summing the
ribbon 3-sphere amplitudes for all configurations of rib-
bon labels i on the additional loops weighted by di/D.
The amplitude for a ribbon 3-sphere can be further re-
duced as follows. We first remove all 1-labeled ribbon
segments, resolve every ε-labeled ribbon into a pair of e
and m ribbon,

εε →
ee

mm
, (53)

and also define a way to resolve every fusion vertex into
uninterrupted ribbons, e.g.,

ee mm

εε
→ (2)

mm ee
. (54)

Different choices of resolution yield different but gauge
equivalent UMTCs. We also drop the direction and the
framing of the e and m ribbons, such that we obtain a
collection of e and m loops which are disjoint but might
be linked with another. Now we unlink them via

me
= (−1)

e m
. (55)

This corresponds to the fact that the full braiding be-
tween e and m is −1. In the end, we can remove unlinked



14

loops, and the amplitude for a 3-sphere without ribbons
is 1/D = 1/2.

The Lagrangian module is given as follows. There are
two boundary ribbon labels, 1 and e′ with quantum di-
mension 1, soD =

√
2. The fusion rules inside the bound-

ary are Z2, i.e., the dimension of the fusion indices is 1
if there is an even number of adjacent e′ ribbons and 0
otherwise. So the fusion category formed by the bound-
ary ribbons alone is just the Z2 group category whose
Drinfeld center is the toric code UMTC in the bulk. The
non-zero dimensions of the boundary fusion vertices with
one bulk and one boundary ribbon are given by

1 1111 , 1 e′e′ee ,

1 11mm , 1 e′e′εε .
(56)

So physically speaking, the m anyon “condenses” at the
boundary, whereas the e anyon “confines” and turns into
a boundary anyon.

The amplitude for a ribbon network on a 3-ball is again
obtained by reducing it to a bulk network. Namely, we
neglect 1 ribbons, and transform e′ ribbons into e ribbons
pushing them slightly into the bulk,

e′ → e , (57)

and accordingly the condensation vertices,

e′e → (21/2) e . (58)

After this, we end up with a collection of e and m loops,
as well as m segments ending at two boundary vertices.
We unlink them via Eq. (55), and in the end remove
contractible loops or m segments.

The corresponding CYWW model and its invertible
boundary is a state-sum with one Z2×Z2-valued variable
at each 2-cell, and a Z2-valued variable at each boundary
1-cell. We can learn more about the concrete model by
expressing it as a simplicial gauge theory, which we do in
Appendix F 2.

V. FERMIONIC INVERTIBLE BOUNDARIES
FOR KITAEV 16-FOLD WAY WITT CLASSES

In this section we will find fermionic invertible bound-
aries for certain CYWW models beyond those for Drin-
feld center UMTCs. That is, even though the bulk
CYWW model has only purely bosonic degrees of free-
dom, there are fermionic degrees of freedom within the
boundary. As a consequence, the gLU circuit disentan-
gling the bosonic model, which we can construct from
the invertible boundary, uses fermionic auxiliary degrees
of freedom. Concretely, we find that using auxiliary
fermionic degrees of freedom, we can show the trivial-
ity of the CYWW model not only for Drinfeld centers
but additionally for UMTCs in the Witt classes of the
Kitaev 16-fold way.

A. Fermionic Lagrangian modules

A fermionic Lagrangian module is the fermionic ana-
log of a Lagrangian module, and like any fermionic analog
differs from the latter by three points. First, the associ-
ated tensors are fermionic tensors. Second, the ribbon
manifolds carry a spin structure (only inside the bound-
ary). Third, the spin structure interacts with the tensors
according to a spin-statistics relation.

Starting with the first point, a fermionic tensor
(c.f. Ref. [11]) is a tensor whose indices live in super
vector spaces with a super dimension a|b consisting of
an even dimension a and an odd dimension b, such that
every configuration x has an even (0) or odd (1) parity

|x| =

{
0 ∈ Z2 if 0 ≤ x < a

1 ∈ Z2 if a ≤ x < a+ b
. (59)

A fermionic tensor also includes an ordering of its in-
dices, and a distinction between input indices and output
indices. So it is a pair, which we can denote like

(Tabcxyz, bzxȳcā) , (60)

where y and a are input indices, as marked by the bar.
An equivalence of two such pairs is given by transposing
two consecutive indices x and y in the ordering and at
the same time multiplying the tensor by (−1)|x||y|, e.g.,

(Tabcxyz, bzxȳcā) ∼ ((−1)|x||y|Tabcxyz, bzȳxcā) . (61)

Furthermore, the tensor entry is 0 or undefined for index
configurations whose total parity is not 0. To contract
two indices x and ȳ of a fermionic tensor, we first permute
the index ordering such that they appear consecutively
as ȳx, and then contract tensor normally, removing the
indices from the ordering. Last, in order to block two
output indices x and y into a single index (xy) we first
permute the ordering such that they appear consecutively
as xy, but for blocking two input indices x̄ and ȳ into
(xy), they should appear as ȳx̄. An equivalent way to
denote a fermionic tensor is via Grassmann variables θ,

(Tabcxyz, bzxȳcā)

↔ Tabcxyz(θb)
|b|(θz)

|z|(θx)|x|(θy)|y|(θc)
|c|(θa)|a| .

(62)
The basic rules for manipulating expressions with tensors
and Grassmann variables are then

θaθb = −θbθa , (63)

θaθb = θb θa , (64)∑
a

T...a...a...(θa)|a|(θa)|a| =
∑
a

T...a...a... . (65)

Note that for our purpose, the UMTC itself is still non-
fermionic, and accordingly only the boundary fusion in-
dices in the Lagrangian module can carry a non-zero odd
dimension.
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Coming to the second point, let us now discuss how to
define a spin structure inside the 2-dimensional bound-
ary of our ribbon manifolds. To this end we work with
a concrete triangulation/cellulation of the boundary 2-
manifold such that the boundary ribbons coincide with
a subset of the Poincaré dual 1-skeleton of that cellula-
tion. Then a combinatorial spin structure can be imple-
mented using obstruction theory and simplicial/cellular
cohomology as described in Ref. [18]. A spin structure
is a Z2-valued simplicial (or rather, cellular) 1-chain η2

(c.f. Appendix F 1) such that

δη2 = ω2 , (66)

where ω2 is a fixed 0-cycle representing the second Stiefel-
Whitney class. There exist simple formulas computing
the value of ω2 on a vertex depending only on the combi-
natorics of the cellulation in a small neighborhood, such
as for a triangulation in Ref. [19]. In 2 dimensions, a
simple formula can be obtained by choosing a “favorite”
vertex v0(f) of every face f , a favorite vertex v0(e) of
every edge e and we automatically have v0(v) = v for
every vertex v. Then the Z2 weight at a vertex v is given
by

ω2(v) =
∑
f∈C2

δv,v0(f) +
∑
e∈C1

δe,v0(e) +
∑
v∈C0

δv,v0(v) , (67)

where Ci is the set of i-cells, and the formula is mod 2.
E.g., consider the following cellulation with favorite ver-
tices of edges corresponding to outgoing arrows and fa-
vorite vertices of faces marked by putting little angles
into the corresponding corners. The vertices v with
ω2(v) = 1 and edges e with η2(e) = 1 are marked in
green as follows,

η2

ω2 . (68)

Note that ω2 is fixed by the cellulation, whereas η2 can
be chosen freely subject to the constraint δη2 = ω2.

We also need to define how the spin structure behaves
under the gluing operations. To be concrete, we assign
to each possible link for a boundary fusion vertex (or
its orientation-reversed partner) a fixed 2-cell representa-
tive f (or its orientation-reversed partner) in which each
such vertex is contained. At a 1-handle attachment as in
Eq. (29), a cellulation of the new boundary is obtained
by simply gluing the two containing boundary 2-cells f1

and f2 identified with f̄ and f . When doing so, every

pair of edges (e1, e2) of (f1, f2) becomes a single edge e.
The spin structure after the gluing on e is given by

η2(e) = η2(e1) + η2(e2) + ηf1 (e) , (69)

where ηf1 is the 1-chain within the boundary of f repre-
senting the orientation of f , consisting of all “clockwise”

edges. That is, we have δηf1 = ωf1 , where

ωf1 (v) =
∑

e∈C1[f ]

δe,v0(e) +
∑

v∈C0[f ]

δv,v0(v) (70)

is the first Stiefel-Whitney class, a 0-cycle inside the
boundary of f . Accordingly, we find that for a vertex
v originating from gluing the pair of vertices (v1, v2) of
(f1, f2), ω2 is given by

ω2(v) = ω2(v1) + ω2(v2) + ωf1 (v) , (71)

such that Eq. (69) is consistent with Eq. (66).
At a 2-handle attachment as in Eq. (31), the physical

boundary is transformed like

B1 × S1 → S0 ×B2 , (72)

with common boundary S0 × S1 = S1 t S1. This bound-
ary has 4 different spin structures, as each circle can be
bounding or non-bounding. However, only the bounding-
bounding spin structure is possible on the right-hand side
of Eq. (72) since both S1 are the boundary of a B2. So
we can only apply this gluing operation if S1 is bounding
on the left-hand side.

Coming to the third point, we now discuss how the
associated tensors depend on η2 via the spin-statistics
relation. Namely, if we change η2 by η′2 = η2 + df for
a boundary 2-cell f , then the assigned tensor gets mul-
tiplied by (−1)|af |, where af is the configuration of the
boundary fusion index at the center of f (if there is one),
e.g.,

α

= (−1)|α| α .

(73)
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As in the bosonic case, the tensors also depend on the
orientation via Hermiticity/unitarity. The fusion index
inside of a boundary 2-cell f is an output index if f is
identified with its standard representative, and an input
index if f is identified with the orientation-reversed part-
ner thereof. As a consequence, instead of just complex
conjugation, we also need to invert the index ordering in
the Hermiticity condition.

Having defined fermionic tensors and their contraction,
as well as manifolds with spin structures and their glu-
ing operations, the definition of a fermionic Lagrangian
module is a straight-forward modification of the bosonic
case in Section IV A. First, instead of ribbon manifolds,
we take ribbon manifolds with spin structure inside the
boundary, second, instead of tensors we take fermionic
tensors, and third, we impose the spin-statistics relation.

Despite the direct analogy between the bosonic and
fermionic definitions, the instances of fermionic UMTCs
show a new qualitative phenomenon which is not present
in the bosonic case. There, the dimension of a “trivial”
boundary fusion vertex,

aabb , (74)

is δa,b, and we can add such a vertex to an a ribbon at

a cost of (da/D)1/2. In the fermionic case, the fusion
super-dimension is still 0|0 if a 6= b, but it can be either
1|0 or 1|1 if a = b. In Ref. [14], a is referred to as m-
type in the former, and q-type in the latter case. As we
argue at the end of Appendix B 3, this is due to the fact
that there are two irreducible super-algebras, the trivial
one and the Clifford algebra Cl1, as opposed to only the
trivial algebra in the bosonic case. Physically speaking, it
is due to the existence of a non-trivial invertible fermionic
phase in 1 + 1 dimensions, the Kitaev chain.

B. The invertible-boundary state-sum and gLU
circuit

The invertible fermionic-Lagrangian-algebra CYWW
boundary is a straight-forward fermionic analog of the
bosonic case in Section IV B, taking into account the
three differences, fermionic tensors, spin structure, and
spin-statistics relation. For the fermionic tensors, the
CYWW boundary 3-cell tensors are fermionic tensors,
and the fusion indices shared among them can have a
non-zero odd-parity dimension. All indices contracted
inside the bulk or between bulk and boundary are purely
even-parity. Note that in every discrete fermionic parti-
tion function, the fermion parity of a fixed configuration
of indices/state-sum variables yields a Z2-valued simpli-
cial n− 1-cocycle (or 1-cycle) a, and the permutation of
Grassmann variables in the evaluation of the fermionic
tensor-network gives rise to a reordering sign σ[a] [18],
which we discuss in Appendix D.

The spin structure needs to be defined within the 3-
dimensional physical-boundary cellulation, which again
can be done using simplicial/cellular cohomology. This

time, ω2 is a 1-cycle and η2 a 2-chain with δη2 = ω2.
The formula for ω2 on an edge depends on a choice of
a spin structure ηv2 for the boundary of every volume

(representative) v and an orientation ηf1 for the boundary
of every face (representative) f ,

ω2(e) =
∑

e⊂v∈C3

ηv2(e) +
∑

e⊂f∈C2

ηf1 (e) + 1 . (75)

For the spin-statistics relation, the spin structure and
the state-sum have to interact in the following way. For
every boundary 2-cell f in configuration af , we get a sign

(−1)|af |η2(f) (76)

in addition to the contraction of the fermionic tensor net-
work.

Let us discuss how the spin-statistics relation for La-
grangian modules is consistent with the spin-statistics
relation for the fermionic CYWW boundary state-sum.
The state-sum tensor B(R(v)) on a boundary volume v
depends on a spin structure on ∂v, and we choose this
spin structure to be the same as ηv2 in Eq. (75). Further-
more, whether a fermionic index of B(R(v)) at a face f
of v is input or output depends on an orientation of f ,

and we choose this orientation to be the same as ηf1 in
Eq. (75). Now, imagine changing ηv2 on a boundary 3-
cell v by ηv2 = ηv2 + df , for a boundary 2-cell f . Then ω2

of the state-sum changes by ω′2 = ω2 + df , which can be
fixed by changing η′2 = η2 +f . So both the state-sum and
the Lagrangian-module tensor associated to v change by
(−1)|af |. In this sense, the state-sum is independent of
the choice of ηv2 .

When evaluating the CYWW boundary state-sum on
a 4-manifold with physical and space boundary as in Sec-
tion IV C, we apply the 2-handle attachment in Eq. (31)
to a non-contractible ribbon loop around each bound-
ary edge e, in order to get from the ribbon manifold R6

to R7. For this to be possible, we must have a bound-
ing spin structure on the ribbon loop around e, which
is guaranteed by the spin-statistics relation of the state-
sum. Whether the ribbon loop is bounding or not is given
by the value of ω2 on that edge, and having η2(f) = 1 for
f a face containing e effectively changes the spin struc-
ture from bounding to non-bounding. Since dη2 = ω2,
the spin structure at the ribbon loop around e is always
bounding. Thus, the evaluation on a 4-manifold cellula-
tion Y with space boundary ∂Y is simply B(R(∂Y )) as
in the bosonic case.

Note that also the definition of what it means for a
boundary to be invertible has to change in the fermionic
case, by equipping the physical boundary in the moves
in Eq. (3) with a spin structure. For M2 in Eq. (3), the
physical boundary on both sides is

S1 ×B2 ↔ B2 × S1 . (77)

The common space boundary S1 × S1 of this physical
boundary can have four spin structures since each circle
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can be bounding or non-bounding. Eq. (77) can only
hold for the bounding times bounding spin structure as
each circle is the boundary of B2 on either side. The
other moves Mi only allow for a unique spin structure of
the space boundary.

The gLU circuit disentangling the CYWW model re-
sulting from the invertible boundary is a direct fermionic
analog of the bosonic case in Section IV E as well. The
initial ground state is a completely bosonic state. How-
ever, the gLU circuit locally creates pairs of odd-parity
configurations in the beginning, which are then acted
on in intermediate steps and annihilated in the end. It
should be noted though, that the disentangling circuit
depends on a microscopic choice of combinatorial spin
structure, and is in particular only defined on 3-manifolds
that admit a spin structure.

C. Examples: Three-fermion and Ising UMTCs

In this section, we will discuss two simple examples
for fermionic Lagrangian modules, namely for the three-
fermion UMTC as well as the Ising UMTC, giving rise to
invertible boundaries of the corresponding CYWW mod-
els.

a. Three-fermion UMTC Let us start with the
three-fermion UMTC, one of the simplest UMTCs that
are not a Drinfeld center. It has four bulk ribbon la-
bels, 1, f1, f2, f3 whose quantum dimensions are all 1,
so D = 2. The fusion rules are Z2 × Z2, i.e., the dimen-
sion at a (3-valent) fusion vertex is 1 if there is an even
number of adjacent f1 or f3 labels and an even number
of f2 or f3 labels, and 0 otherwise.

As in Section IV G, the amplitude for a labeled ribbon
manifold is determined by the amplitudes of ribbon 3-
spheres. The latter can be reduced to a trivial network
as follows. We first remove all 1-labeled ribbon segments,
resolve every f3-labeled ribbon into a pair of f1 and f2

ribbon,

f3f3 →
f1f1

f2f2

, (78)

and also resolve every fusion vertex into uninterrupted
ribbons, e.g.,

f1f1 f2f2

f3f3

→ (21/2)
f2f2 f1f1

. (79)

Different choices of resolution yield different but gauge
equivalent UMTCs. We obtain a collection of f1 and f2

ribbon loops which are disjoint but might be linked with
another and twisted. We first drop the ribbon directions,

and then unlink the loops and remove the twists by

f1f1 =
f1 f1 ,

f1

= (−1) f1 ,

(80)

the same for f2, as well as

f2f1 = (−1)
f1 f2 . (81)

This corresponds to the fact that the full braiding be-
tween f1 and f2 as well as the twists of f1 and f2 are all
−1. In the end, we can remove unlinked and untwisted
loops, and the empty 3-sphere has amplitude 1/D.

The Lagrangian module is given as follows. There are
two boundary ribbon labels, 1 and β with quantum di-
mension 1, so DB =

√
2. The super-dimension of the

boundary fusion vertices is 1|0 if an even number of ad-
jacent boundary ribbon labels are β, and 0|0 otherwise.
The non-zero super-dimensions of the boundary fusion
vertices with one bulk and one boundary ribbon are given
by

1|0 1111 , 1|0 ββf1f1 ,

0|1 11f2f2 , 0|1 ββf3f3 .
(82)

So physically speaking, we “condense” the f2 anyon, but
we do this with an odd fermion parity, in other words,
condensing f2 yields a fundamental fermion. This is
equivalent to what is known as fermion condensation
[14].

The amplitude for a ribbon network inside a 3-ball is
again obtained by reducing it to a trivial network, which
in the bulk is done via the procedure described above.
At the boundary, we neglect 1 ribbons, ribbon directions,
and push β ribbons slightly into the bulk,

β → f1 , (83)

and accordingly the condensation vertices,

f1 → (21/2) f1 . (84)

Applying then the procedure in the bulk, we end up with
only a collection of f2 segments ending at two odd-parity
boundary vertices. Those segments can be removed,
which however depends on the fermionic index order-
ing and the spin structure within the boundary. To be
concrete, we choose a cellulation of the boundary where
each odd boundary vertex is contained inside a 2-gon cell
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with acyclic edge orientations. A ribbon segment can be
removed if the 2-gons containing its boundary vertices
share an edge that is not part of η,

0 1f2 = , (85)

where the fermionic index ordering was indicated by
the green colored labels. Such a configuration can be
achieved by local recellulations on the boundary, and lo-
cal changes of η taking into account the spin-statistics
relation,

f2
= (−1)

f2
. (86)

The odd fermion parity together with the spin struc-
ture is vital for the Lagrangian module to obey the gluing
axioms. E.g., consider the following consistency condi-
tion,

0 1
f2 = (−1)

0 1

f2

= (−1) 0 1
f2 = 0 1

f2 .

(87)

We start with an f2 segment, which is then twisted in
the bulk yielding a factor of (−1). Since the f2 line ter-
minates on the boundary, the twist can be undone by
a topology-preserving deformation. However, when the
boundary is cellulated, this deformation has to be imple-
mented by local recellulation moves that effectively ro-
tate the 2-gons containing the two fusion vertices against
each other. No matter how we perform those moves, this
will create a pair of ω2 points, move one around the ball
between the fusion vertices, and annihilate them again
(or something equivalent in Z2 cohomology). That is,
by untwisting we create an η loop separating the two fu-
sion vertices, and pulling this η loop through either the
fusion vertex on the left or right yields another factor
of −1. Without spin structure and odd fermion parity
this would yield an inconsistency, corresponding to the
fact that we can only condense bosons, i.e., anyons with
trivial spin.

Furthermore, the spin structure is immediately neces-
sary to cancel reordering signs in the equations coming
from symmetries of the ribbon manifolds. E.g., a 3-ball
with f2 ribbon going from north to south pole (which are
right and left in the diagrams below) is symmetric under
a π rotation around an axis going through the equator.
This rotation changes the ordering of the two odd-parity
boundary fusion vertices on the poles, but also introduces
an η line around the equator. The two contributions can-

cel each other,

0 1
f2 = 1 0

f2

= (−1) 0 1
f2 = 0 1

f2 .

(88)

That η behaves this way can be easily seen by choosing a
triangulation/cellulation of the sphere. E.g., if we choose
a cellulation that is symmetric under the π rotation, then
we get two ω2 = 1 vertices at the two points where the
rotation axis ends at the equator, and η has to connect
those two vertices via one of two sides. Then when we ro-
tate, this side changes such that we add an η loop around
the equator.

Note that the spin structure does not enter in the con-
sistency under mirroring at the equatorial plane. When
doing so, the Hermiticity/unitarity condition tells us that
we have to invert the index ordering (in addition to com-
plex conjugation).

We will revisit the same invertible boundary of the
three-fermion CYWW model from a totally different
perspective in Appendix F 3, namely as a (super-
)cohomology simplicial gauge theory.

b. Ising UMTC Now let us consider the Ising
UMTC, with three ribbon labels, 1, σ, ψ with quantum
dimensions d1 = dψ = 1 and dσ =

√
2, so D = 2. In fact,

“Ising UMTC” refers to a family of 8 different but very
similar UMTCs with the same fusion rules, parametrized
by an odd element ν ∈ Z16 [6]. The fusion dimensions of
3-valent vertices are 1 if the adjacent ribbons have labels
ψ,ψ, 1, or σ, σ, 1, or σ, σ, ψ, and 0 otherwise.

The amplitude for a labeled ribbon 3-sphere (determin-
ing any other ribbon manifold amplitude) is obtained as
follows. First we remove all 1-labeled ribbons, drop the
direction of ψ ribbons, and resolve fusion vertices, e.g.,

σσσσ
ψ → (2−1/4)

σσσσ σσσ
ψ , (89)

such that they are all of the following links,

σσσσ
ψ , σσσσσ (90)

and their orientation-reversed partners.
The ribbon network will then be a collection of σ loops,

ψ loops, and ψ segments connecting different vertices on
σ loops. We can reduce the labeled network to the trivial
network by the following steps. First, we can fuse pairs
of σ loops to a single loop if they are connected by any
ψ segments using the following move,

σσσσ

σσσσ

ψ =

σσ

σσ

σσ

σσ
ψ

+ (21/2)σσ σσ . (91)
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We do this until for every ψ segment its two endpoints are
on the same σ loop. Pairs of direction-changing vertices
on the σ loops can be removed by

σσσσσσ σσ = (21/2) σσ . (92)

For this we might first need to change the favorite ribbon
of one vertex using

σσσσσ = (κσ) σσσσσ , (93)

where

κσ = (−1)ν
2−1 = ±1 (94)

is the Frobenius-Schur indicator of σ. Furthermore, ψ
segments can be moved across direction-changing lines,

σσσσσ σσ
ψ =

σσσσσ σσ
ψ . (95)

We can change the side of a σ ribbon where ψ is attached,

σσ σσ
ψ = (−iν) σσ σσ

ψ
. (96)

Finally we can detach pairs of ψ vertices from the σ
loops via

σσ σσσσ
ψ ψ = (21/2)

σσ

ψ

. (97)

After the previous steps, we obtain a collection of dis-
joint but possibly linked and twisted σ- and ψ loops. The
twists can be removed via

ψ

= (−1) ψ ,

σσ

= (θσ) σσ ,

(98)

where

θσ = e
2πi
16 ν (99)

is the topological twist of σ. Furthermore, any configura-
tion with two linked σ loops has amplitude 0,

σσ σσ = 0 . (100)

Finally, σ and ψ loops can be unlinked yielding a factor
of −1,

σσψ = (−1)ψ
σσ
. (101)

Unlinked ψ loops can be removed, σ loops can be removed
yielding a factor of

√
2, and the amplitude of the empty

3-sphere is 1/D.
We can define a fermionic Lagrangian module for the

Ising UMTC as follows. The boundary fermionic fusion
category has been referred to as C2 in Ref. [14] and has
two boundary ribbon labels 1 and β, with quantum di-
mension dB1 = dBβ = 1, and total quantum dimension

DB = 21/2. 8 The super-dimension at a 3-valent bound-
ary fusion vertex is 1|1 if two of the adjacent ribbon labels
are β, 1|0 if all are 1, and 0|0 otherwise. Accordingly, β
has a Cl1 automorphism algebra. The non-zero super-
dimensions of the boundary fusion indices with one bulk
and one boundary anyon are given by

1|0 1111 , 0|1 11ψψ , 1|1 ββσσ . (102)

The amplitude for a ribbon graph inside a 3-ball can
be obtained by reducing it to the trivial network. First,
at the boundary, we neglect all 1-labeled ribbons, denote
odd-parity boundary fusion vertices by

, (103)

neglect such even-parity vertices at a cost of 21/4, and
resolve odd direction-changing vertices as

→ (21/4) , (104)

and odd condensation vertices as

→ (21/4) . (105)

Then we move β ribbons from the boundary slightly
into the bulk,

ββ → σσ . (106)

Accordingly, also odd-parity-, direction-changing-, and
condensation vertices will be pushed into the bulk,

→ (2−1/2) σσσσ ψ ,

→ σσσσσ ,

σσ → (21/4) σσ .

(107)

For the first replacement, we glue two pairs of vertices
and apply one 1-surgery to the ψ ribbon on the right
instead of gluing two odd-parity vertices on the left. For
the 1-surgery we need to include the normalization of
(dψ/D)1/2 = 2−1/2 on the right.

8 In some conventions, the quantum dimension of β (and any other
anyon with Cl1 automorphism algebra) might include an extra
factor of 21/2. However, for Eq. (32) to hold, we do not include
this factor.
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If we now apply the procedure for the bulk, we will
end up with a collection of ψ segments each ending at
two odd boundary vertices. Those ψ segments can be
removed depending on the spin structure as shown in
Eq. (85) with ψ instead of f2.

Just as for the three-fermion Lagrangian module, the
odd fermion parity for ψ terminating at the boundary is
needed for a consistency condition like Eq. (87). Note
that the fact that a 2-valent β, β fusion vertex can have
either even or odd parity is directly related to the fact
that σ and σ can either fuse to 1 or ψ.

D. Invertible boundaries for a Z16 Witt subgroup

In this section we argue that the fermionic invert-
ible boundary of the Ising CYWW model gives rise to
fermionic invertible boundaries for a large family of mod-
ular CYWW models, namely the Witt classes of Ising and
products thereof. Two UMTCs A and B are said to be
in the same Witt class [20] if the UMTC A ⊗ B̄ has a
Lagrangian module, or equivalently is a Drinfeld center.
Two UMTCs in the same Witt class must have the same
chiral central charge. Vice versa, many known examples
of pairs of UMTCs with the same chiral central charge
belong to the same Witt class, but there exist counter ex-
amples such as the semion and the U(1)4 UMTCs. The
Witt classes form a group under stacking, where the in-
verse of A is the Witt class of the complex conjugate
Ā.

Now assume the UMTC B has a Lagrangian mod-
ule and A is another UMTC in the same Witt class.
Then we can combine the Lagrangian module of A ⊗ B̄
with the Lagrangian module of B, yielding a Lagrangian
module for A. The same holds on the level of CYWW
models, namely combining the invertible boundary for
A ⊗ B̄ with the invertible boundary for B yields an in-
vertible boundary for A. More formally, consider a geo-
metric/topological/combinatorial mapping replacing the
boundary of A by a thin strip of B̄ bulk which on the
one side has a B-boundary and on the other side the
A ⊗ B̄-boundary together with A, for illustration in 2
dimensions lower,

Boundary of
CYWW(A)CYWW(A)

:=

Boundary of
CYWW(A⊗ B̄)

CYWW(A) CYWW(B)

Boundary of
CYWW(B)

.

(108)

Pulling back this mapping onto the level of state-
sums/tensors, we obtain the invertible boundary of the

A CYWW model. This holds for ordinary Lagrangian
modules as well as for fermionic ones. Note that this
construction can be used both directly in 3 + 1 dimen-
sions for the CYWW models, but also in 2+1 dimensions
to get a Lagrangian module of A. All in all, we have
found fermionic invertible boundaries of CYWW models
for any UMTC in the same Witt class as a stack of copies
of the Ising UMTC.

We find that 16 copies of the Ising UMTC are again in
a trivial Witt class, as it can be trivialized by condensing
15 pairs of fermions ψiψi+1 for 0 ≤ i < 14 between dif-
ferent copies, as well as the composite of all σ particles
σ0σ1 · · ·σ15. From the fact that the Ising UMTC has
chiral central charge c = 1

2 we can infer that the Witt
class cannot be trivial for any smaller number of copies.
So the Witt classes generated by copies of Ising form a
Z16 subgroup of the general Witt group. A set of simple
representative UMTCs for those Witt classes are known
under the name Kitaev 16-fold way [6]. We discuss those
UMTCs as well as the relation to fermion condensation
in more detail in Appendix C.

VI. CONCLUSION

In this work, we have derived two main results. First,
we have shown that CYWW models whose input cat-
egory is a Drinfeld center possess an invertible domain
wall to vacuum, which can be reshaped into a disentan-
gling gLU circuit. While we do not expect this result
to be surprising to many experts in the field, an explicit
proof seems to be unknown or unpublished so far. As a
second, perhaps more surprising result, we have shown
that if we allow for fermionic degrees of freedom, we can
find invertible domain walls to vacuum not only for the
trivial Witt class (i.e., Drinfeld centers), but for the Witt
classes containing the Kitaev 16-fold way UMTCs. Those
invertible domain walls yield disentangling gLU circuits
with fermionic auxiliary degrees of freedom, which are
however not uniform on arbitrary triangulations, but de-
pend on a microscopic choice of spin structure.

Throughout this work and in the appendices, we have
also established a general formalism of “tensorial ex-
tended TQFT”, which allows us to give precise and
simple geometric/topological interpretations/definitions
to categorical structures related to the classification of
phases of matter. This approach allows us to derive all re-
sults of this work from purely geometric/topological con-
siderations, and makes it quite easy to derive similar re-
sults. For example, as we show in Appendix (A), adding
an “auxiliary” 4-dimensional bulk to our ribbon mani-
folds yields CYWW models for general braided fusion
categories, and general boundaries thereof for braided
modules.

The main motivation for this work was the study of
topological phases of matter in 3 + 1 dimensions. It is
believed that modular CYWW models are in some sense
trivial as phases of matter in 3 + 1 dimensions, such that
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their 2 + 1-dimensional standard/cone boundary could
be viewed as a standalone microscopic realization of a
chiral phase. However, it is unclear to which extent and
under which definition of a phase this is actually true.
For example, if we were to take exact disentangling gLU
circuits as a definition of a phase (which only makes
sense for fixed-point models), then non-Drinfeld-center
modular CYWW models would actually be in non-trivial
(but invertible) phases, since such a disentangling circuit
would yield a commuting-projector Hamiltonian for a chi-
ral phase contradicting Ref. [1], as argued in Ref. [10]. In
this case, our fermionic gLU circuits lead to an inter-
esting new notion. Namely, the 16-fold way Witt class
CYWW models would represent non-trivial phases “pro-
tected by the absence of fermions”. That is, they can be
disentangled if we have access to fundamental fermions
which can be used as auxiliary degrees of freedom, but
not otherwise.

While the absence of gLU circuits makes it hard to
prove, it still seems likely that general modular CYWW
models are trivial if we pick the proper definition of a
phase. One obvious way to go beyond exact gLU circuits
is to allow for some “exponential tails” in the locality
of the gLU operators, or consider “fuzzy” gLU circuits
which are time evolutions under local Hamiltonians [9].
Those are roughly equivalent to the “standard” defini-
tion via gapped paths through quasi-adiabatic evolution
[8, 21]. While it is possible that going from strict to ap-
proximate locality will trivialize modular CYWW mod-
els, this does not strike as a very elegant and natural

solution. A fixed-point algebraic proof of triviality could
in contrast be given by invertible domain walls which
are state-sums of a more general type as described in
Ref. [2], but their existence is still speculative to date.
As a last phase definition one might consider disentan-
gling quantum cellular automata (QCAs), which have
been shown to exist for many abelian modular CYWW
models [10, 22, 23] and presumably exist for all such mod-
els. However, while a QCA is by definition a locality-
preserving automorphism of the operator algebra of a
many-body model, it is not itself a microscopic local ob-
ject and does in particular not directly give rise to an
invertible domain wall or a gLU circuit, so it is unclear
how well it captures the notion of a phase. Also, it is
questionable whether such QCAs also exist in the non-
abelian case, since they disentangle the full spectrum of
the Hamiltonian and not only its ground state. Certainly,
non-abelian CYWW models do not have a stabilizer de-
scription which is central in Refs. [10, 22, 23].

To summarize, the question of whether general modu-
lar CYWW models are in a trivial phase is still open. In
this work, we have settled the case of UMTCs that are
Drinfeld centers, as well as those in a Witt class of the
Kitaev 16-fold way if we allow for fermionic auxiliaries.
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Appendix A: c 6= 0 UMTCs, braided fusion
categories, and braided modules

In this appendix, we show how to deal with a non-
zero chiral central charge of UMTCs. We also introduce
general braided fusion categories and the correspond-
ing (non-invertible) CYWW model, as well as general
braided modules and the corresponding (non-invertible)
CYWW boundaries.

1. Braided fusion categories and c 6= 0 UMTCs

As indicated, the definition we used in Section III A is
not equivalent to UMTCs in general, but only to ones for
with c = 0. Physically, this is due to the chiral anomaly,
or framing anomaly of the c 6= 0 topological phases. As a
consequence, the amplitude assigned to some spacetime
history does not only depend on the topology, but also
on an additional p1-structure, or equivalently an Atyiah
2-framing of the 3-manifolds. This dependence can be ex-
plicitly seen in Chern-Simons theory, a microscopic field-
theory model for many of those phases.

There are three ways to incorporate c 6= 0 UMTCs
into the definition. The first is to simply equip the rib-
bon manifolds, to which we assign tensors, with a p1-
structure. The second, but probably least elegant, is
to change the domain of the map to projective tensors,
i.e., equivalence classes of tensors up to global phase fac-
tors. The third, and probably most insightful, is to add
a fourth dimension to our ribbon manifolds. That is,
the ribbon manifolds to which we associate tensors are
now 4-manifolds with boundary with a ribbon network
embedded inside the 3-dimensional boundary. 0-surgery
when gluing two fusion vertices in Eq. (9) and in Eq. (13)
is replaced by attaching a 1-handle to the 4-manifolds,
and 1-surgery in Eq. (11) by attaching a 2-handle. In
addition, we add as gluing axiom the invariance under
arbitrary surgery operations of the 4-dimensional bulk,
in other words, the tensor only depends on the cobor-
dism class of the bulk.

Note that cobordism classes of closed 4-manifolds form
a Z group under disjoint union, generated by CP (2) and

its orientation-reversed copy CP (2). Thus, any two 4-
manifolds X and Y with ∂X = ∂Y = M are related by
4-manifold surgery together with disjoint union with k of
copies of CP (2) (or |k| copies of CP (2) if k < 0). Thus,
the tensors for different bulks of the same 3-manifolds
only differ by global scalars,

M(X) =M(Y ) · M(CP (2))k . (A1)

We will see in Section A 3 thatM(CP (2)) is very directly
related to the chiral central charge c of M,

M(CP (2)) = e2πi c8 . (A2)

A topological invariant that exactly determines the
cobordism class of a closed 4-manifold X is the signature

σ(X). According to the Hirzebruch signature theorem,
we have

3σ(X) =
∫
X
p1 , (A3)

where p1 is the first Pontryagin characteristic class, a Z-
valued 4-cocycle that is integrated over the 4-manifold,
i.e., evaluated against the fundamental class. So in gen-
eral, the amplitudes of two 4-dimensional bulks X and Y
with the same boundary ∂X = ∂Y = M are related by
a prefactor

M(X) =M(Y ) · e2πi c24

∫
(XtȲ )/(∂X=∂Y )

p1 . (A4)

This makes it clear why the 4-dimensional bulk can be
replaced with a p1-structure.

Another type of tensorial TQFT (c.f. Appendix B 1)
that is interesting in this context is when we do not im-
pose invariance of the tensors under surgery operations
of 4-manifolds. Then, the tensors might not only depend
on the cobordism class of the bulk, and not only up to
global prefactors. What we get in this case is equiva-
lent to unitary braided fusion categories which are not
necessarily modular.

The CYWW model for a braided fusion category, or
a UMTC with c 6= 0, is completely analogous to Sec-
tion (III). For every 4-manifold X whose boundary ∂X
is cellulated, define R(X) as the ribbon manifold R(∂X)
whose 4-dimensional bulk is that of X. Every 4-cell C
can be interpreted as a 4-sphere with a 3-cellulation as
boundary, and the associated tensor is simply given by
M(R(C)). Analogous to Section III C, the evaluation of
the CYWW model on a 4-cellulation Y isM(R(∂topY )),
where ∂topY is the (space) boundary cellulation together
with the bulk topology of Y (but without the bulk cellula-
tion). Thus, the model is recellulation invariant, but the
evaluation does depend on the bulk topology of Y . How-
ever, in the modular case, it is invariant under surgery
operations on the bulk of Y , and therefore the CYWW
model is invertible. This is no longer true in the general
braided case.

2. Braided modules

We can also add a bulk to the ribbon manifolds in the
definition of Lagrangian modules. That is, we add a 4-
dimensional bulk to the ribbon 3-manifold, but also a
3-dimensional bulk to its 2-dimensional boundary. The
boundary of the bulk 4-manifold is then divided into
the ribbon 3-manifold, and the bulk of the boundary 2-
manifold. A map that assigns tensors to such ribbon
manifolds is equivalent to what we will call a braided
module.

One could also think about imposing invariance under
attaching handles to the 3-dimensional bulk, analogous
to the invariance under surgery of the 4-dimensional bulk
for UMTCs. However, this is equivalent to not having
a bulk at all, since all 4-manifolds with boundary are
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related by handle attachments/removals and accordingly
the 3-dimensional oriented cobordism group is trivial. In
more physical terms, the 2-dimensional boundary of a 3-
dimensional model itself cannot have any chiral anomaly.

Let us now adapt the CYWW boundary from Sec-
tion IV to braided modules. Consider a 4-manifold Ytop

whose boundary is divided into a physical boundary Xtop

and a space boundary ∂Y . Add a 3-cellulation of ∂Y that
restricts to a 2-cellulation of ∂X at its physical boundary.
Define R(Ytop) as the boundary ribbon manifold R(∂Y )
where we add Y and X as bulk. Now, for any 3-cell C,
we can set Ytop to be a 4-ball, Xtop to be a 3-ball, ∂Y to
be the 3-cellulation with a single 3-cell C, and ∂X to be
∂C. With this identification of C with Ytop, the tensor
associated to a boundary 3-cell C is simply R(C). Now,
consider the evaluation of the so-defined CYWW bound-
ary for a braided module B on a 4-cellulation Y with
physical boundary X and space boundary ∂Y . Analo-
gous to Section IV C, we get B(R(Ytop)), where Ytop is
Y without the bulk cellulation, that is, keeping only the
topology of Y and the cellulation of ∂Y . Thus, the evalu-
ation is recellulation invariant, but it does depend on the
bulk topology and is not invertible unless the braided
module is Lagrangian.

A special case of this is when the braided fusion cate-
gory and hence the CYWW bulk is trivial. Then braided
modules associate tensors to ribbon 2-manifolds with 3-
dimensional bulk, and are just fusion categories. The
CYWW boundary is then a 2 + 1-dimensional state-sum
without any (non-trivial) bulk, namely the Turaev-Viro-
Barrett-Westbury state-sum [24, 25] for the fusion cat-
egory. For any braided fusion category B, a particu-
larly simple braided module is the one resulting from
condensing the trivial algebra, where the fusion category
equals B without braiding. This braided module is the
pullback of B along the following simple geometric map-
ping. The bulk of the boundary is mapped to boundary
with no ribbons, and boundary ribbons are mapped to
bulk ribbons. This braided module yields the “smooth”
or “cone” boundary of the CYWW state-sum. For a
UMTC, this is the boundary that is supposed to contain
the (chiral) phase described by the UMTC.

Note that a different characterization of CYWW
boundaries has been proposed in Ref. [26], based on a
commutative Frobenius algebra object inside the unitary
braided fusion category. Such algebra objects are not
equivalent to braided modules. As also stated in Ap-
pendix B 4, they correspond to a tensorial TQFT that is
almost-fully extended at both bulk and boundary. Thus,
the corresponding ribbon manifolds have points in the
boundary where bulk ribbons can end, but no bound-
ary ribbons. In order to yield a topologically invariant
CYWW boundary, those tensorial algebra objects should
also be invariant under plain 2-handle attachments. This
is necessary to make up for the loop 2-handle attach-
ments in Section IV A, which are missing due to the lack
of boundary ribbons. Such algebra objects yield braided
modules via condensation, namely pulling back along a

geometric mapping where boundary ribbons and fusion
vertices are replaced by slightly immersed into the bulk.
Braided modules are more general, since they also al-
low to stack a standalone 2 + 1-dimensional Turaev-Viro
state-sum on top of the boundary, as discussed in the
previous paragraph.

The contribution of the bulk 4-manifold X,

e2πi c24

∫
X
p1 , (A5)

to the amplitude of the UMTC, i.e., the chiral anomaly,
can be represented by a state-sum in 4 dimensions that is
physically trivial in the following sense (c.f. Ref. [2]). It
associates phase factors to the vertices of a triangulation
that only depend on the combinatorics of the surrounding
triangulation. There are no state-sum variables that are
summed over and therefore no degrees of freedom. So,
if the cone boundary of the CYWW model is a micro-
scopic model for the input UMTC, the modular CYWW
model itself can be viewed as a physically non-trivial way
of representing the chiral anomaly. Indeed, it is known
that the CYWW model on a 4-manifold X evaluates to
Eq. (A5) [4].

Let us now interpret the CYWW model as a trivially-
fermionic model, i.e., restrict its definition to spin 4-
manifolds. It is known that for spin 4-manifolds we have

p1 mod 16 = 0 . (A6)

That is, there is a characteristic 1-chain γ such that dγ =
p1 mod 16. Furthermore, on any 4-manifold X, we have∫

X

p1 mod 3 = 3σ(X) mod 3 = 0 , (A7)

which only holds globally for the cohomology class, or
after integration. Thus, if c = n/2 for an integer n,
evaluating the CYWW partition function yields 1 on all
spin 4-manifolds. So as trivially-fermionic UMTCs, half-
integer central-charge UMTCs such as Ising do not have
a chiral anomaly. It is therefore possible to find fermionic
invertible domain walls to (non-anomalous) vacuum.

A UMTC does not fully determine the phase of a
model. Instead, there is an infinite stack of different mi-
croscopic models with the same anyon statistics but in
different phases, described by the chiral central charge c
which is only determined mod 8 by the UMTC. The dif-
ferent models differ by stacking copies of the invertible
E8 phase with c = 8. The bosonic Ising UMTC has cen-
tral charge 1

2 , so the the possible chiral anomaly is given
by

e
2πi
24 ( 1

2 +8n)p1 . (A8)

for different n ∈ Z. If we choose n = 2, then we get

e
2πi
24 ( 1

2 +16)p1 = e2πi11
p1
16 = 1 (A9)

using Eq. (A6). Thus, the Ising UMTC can have a
fermionic realization without chiral anomaly.
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3. Generators for UMTCs

In this section we will, without detailed proof, give a
generating set of fusion vertices, ribbon manifolds, and
gluing axioms for UMTCs. More precisely, we will do
this simultaneously for UMTCs with c = 0, c 6= 0, and
braided fusion categories. We will also describe how our
definitions relate to the common categorical definitions.

We first observe that we can restrict ourselves to a
single link for the fusion vertices, namely a sphere with
three points, two with positive and one with negative
orientation,

, (A10)

together with its orientation-reversed partner. All other
types of fusion vertices can be constructed from this 3-
valent one, e.g., a 4-valent one via

xαβ := (d1/2
x D−1/2)

α β
xx . (A11)

Gluing the 4-valent vertex is equivalent to gluing at α,
β, and applying the loop 1-surgery in Eq. (11) to the
resulting x loop. Also 1-valent vertices can be obtained
via

xαaa := (d1/2
x ) αaa xx . (A12)

Gluing the 4-valent vertex is equivalent to gluing at α,
applying the loop 1-surgery in Eq. (11) to the resulting
x loop, and then applying plain 0-surgery in Eq. (13)
backwards. We notice that the generating links of fusion
vertices are the same as the generating extended mani-
folds of ordinary 2-1-extended TQFT in Eq. (B7), apart
from the fact that we do not need the 1-point sphere as
generator since we have the additional gluing operation
in Eq. (13).

Note that we could even define “singular” fusion ver-
tices, whose link is not a 2-sphere, but, e.g., a torus,

xα

(S1 × S1)
:= (d1/2

x D−1/2) α xx , (A13)

such that instead of gluing a pair of singular vertices, we
glue a pair of 2-valent vertices and then apply the loop
1-surgery.

Furthermore, any ribbon manifold can be obtained via
gluing operations from the following two generating rib-
bon manifolds.

• The tetrahedron,

α
α γ

δ

aa bb

cc

dd

eeff , (A14)

is a ribbon network inside a 3-sphere, which is at
the boundary of a 4-ball in the c 6= 0 or braided
non-modular case. The associated tensor equals
what is conventionally known as F -tensor of the
UMTC/braided fusion category, up to a prefactor,

(
da
D

)−1/2(
de
D

)−1/2F fdbc

aαβ

eδγ . (A15)

We already have explained towards the end of Sec-
tion III A how this ribbon manifold corresponds to
a “move” of string diagrams.

• The braiding, consisting of two fusion vertices con-
nected by three ribbons such that two of them are
exchanged,

α

β

aa bb
cc
, (A16)

again inside the 3-sphere, potentially at the bound-
ary of the 4-ball. The associated tensor is known
as the R-tensor

Rbca
β

α (A17)

for a UMTC/braided fusion category. The well-
known R-move exchanging two ribbons adjacent to
a fusion vertex can be performed by taking the dis-
joint union with Eq. (A16) and then gluing with
one of the vertices.

We notice that the generating ribbon manifolds corre-
spond to the generating axioms of 2-1-extended TQFT
in Appendix B 2. To this end, we combine the two sides
of the axiom. Every vertex of the ribbon manifold corre-
sponds to a generating 2-1 manifold of the axiom with the
same link, and every ribbon corresponds to a gluing of
two vertices of the 2-1 manifold. Specifically, the tetrahe-
dron tensor in Eq. (A14) corresponds to the associativity
axiom in Eq. (B8), and the braiding in Eq. (A16) corre-
sponds to the commutativity axiom in Eq. (B9). So in a
sense, UMTCs or braided fusion categories can be viewed
as a categorification of commutative Frobenius algebras.

One can also show that all the gluing axioms from
Section III A are generated from a finite set of axioms. In
a more conventional extended-TQFT language, a result
along these lines has been derived in Ref. [27]. The most
notable generating axioms are as follows.

• What is known as pentagon equation of fusion cat-
egories yields a gluing axiom with three tetrahedra
on one side and two on the other side. It holds both
with or without the 4-dimensional bulk.

• The hexagon equation involves the tetrahedron and
the braiding, and is the central axiom that makes
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a fusion category into a braided one,

=

= = .

(A18)
It holds both with and without the 4-dimensional
bulk.

• The modularity condition is what conventionally
makes a braided fusion category into a modular
one. Without a 4-dimensional bulk, the gluing ax-
iom is

=

aa bb

∈ S2 × S1,

a ∼ x× S1, b ∼ y × S1

. (A19)

Here “gluing two loops” without any fusion vertices
is a shortcut for first inserting trivial fusion vertices
on the glued loops via Eq. (A32), then gluing those
via Eq. (9), and finally applying the 1-surgery in
Eq. (11) to the resulting single loop. x and y are
any two points of S2. The tensor assigned to the
right-hand side is δa,b which follows from gluing
axioms and a normalization condition. Thus, the
matrix

Sab := a bb , (A20)

commonly known as S-matrix is unitary, SS† =
S†S = 1. The ribbon manifold of S can be glued
from two braidings,

= . (A21)

Now, let us add a 4-dimensional bulk. Gluing
the left-hand side of the modularity condition in
Eq. (A19) yields S2 × B2 as bulk, whereas on the
right-hand side, the bulk that yields the δ-tensor is
B3 × S1. However, those two bulks are still related
by a surgery operation and in the same cobordism
class. So we indeed find that this gluing axiom
holds for UMTCs with both c = 0 and c 6= 0, but
not for more general braided fusion categories.

• The anomaly-freeness condition is a gluing axiom
only for ribbon manifolds without a 4-dimensional
bulk. Consequently, it only holds for UMTCs with
c = 0,

= S3 . (A22)

I.e., we apply the 1-surgery in Eq. (11) to a once-
twisted loop inside the 3-sphere and obtain another
3-sphere. Now, if the left- and right-hand side was
the boundary of a 4-ball and the 1-surgery was a
2-handle attachment, this would result in

CP (2)−B4 , (A23)

i.e., the complex projective plane with the neigh-
borhood of a point removed, c.f. page 47 of Ref. [28].
B4 and the above 4-manifold differ by connected
sum with CP (2), so this gluing axiom does not hold
for general braided fusion categories or for UMTCs
with c 6= 0. Indeed, the tensor assigned to a once-
twisted loop as in Eq. (A22) with label a is given
by

daθa
D

, (A24)

where θa is known as the topological twist of a.
With this, Eq. (A22) becomes∑

a

da
D

daθa
D

=
1

D
, (A25)

and thus c = 0 since c is defined as

e2πi c8 =
∑
a

d2
aθa
D

. (A26)

From this, we can also read off Eq. (A2).

The axioms above do not strictly generate all gluing ax-
ioms in Section III A. For example, it does not suffice to
only impose one single hexagon equation as above, but
we need one version of it for any choice of ribbon direc-
tions (and similar for the pentagon equation). In order
to derive those other versions from a single version, we
can introduce one “auxiliary” fusion vertex,

, (A27)

its orientation-reversed partner, three auxiliary tensors,

, , , (A28)
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and a couple of axioms reversing the direction of certain
ribbons, e.g.,

=

= ,

(A29)

or,

= . (A30)

Note that UMTCs in the literature have a few extra
constraints that are not physically necessary, but also do
not obstruct any interesting examples. Most importantly,
the fusion dimension of a trivial vertex,

aa bb , (A31)

is assumed to be δa,b, and we can add such a fusion vertex
at a cost of a prefactor,

aa aa = (
da
D

)−1/2 aa . (A32)

4. Generators for Lagrangian modules

Analogous to the previous section, we will now de-
scribe sets of generating fusion vertex links, ribbon man-
ifolds, and gluing axioms simultaneously for Lagrangian
and braided modules. At the same time we will discuss
how they are related to known categorical structures.

First, every fusion vertex can be generated from those
with two different links, namely trivalent boundary ver-
tices where three boundary ribbons meet, and condensa-
tion vertices where one bulk and one boundary ribbon
meet,

, . (A33)

Again, we notice that generating boundary fusion vertex
links are the same as the generating extended manifolds
for 2-dimensional open-closed TQFTs in Eq. (B10). The
link of the trivalent vertices is the 3-boundary-point disk
representing the non-commutative Frobenius algebra in
Eq. (B10), and the link of the condensation vertices is the
same as the bulk-boundary-point disk representing the
central homomorphism in Eq. (B10). Note that again, we
do not need the one-point disk since it can be obtained

from the three-point disk through the additional gluing
operation in Eq. (33).

Next, a set of generating boundary ribbon manifolds
is as follows.

• The boundary tetrahedron, a 3-ball with the 1-
skeleton of a tetrahedron as boundary ribbon net-
work,

. (A34)

For a braided module, the 3-ball has a 4-ball as
bulk, and the boundary 2-sphere has a 3-ball as
bulk. The associated tensor is the F -symbol of a
fusion category (without braiding).

• The triple condensation, a 3-ball with one 3-valent
bulk fusion vertex and one 3-valent boundary fu-
sion vertex, such that pairs of adjacent bulk- and
boundary ribbons meet at a condensation fusion
vertex each,

. (A35)

For a braided module, we again have a bulk 4-ball.

• The boundary braiding, a 3-ball with two boundary
fusion vertices sharing two boundary ribbons divid-
ing the boundary into two 2-balls. The third adja-
cent ribbons of both fusion vertices are attached at
different 2-balls so they cannot be connected with
a boundary ribbon. Instead they are connected by
a bulk ribbon via two condensation vertices,

, (A36)

again with a bulk 4-ball in the braided case.

Analogous to UMTCs, the generating ribbon mani-
folds correspond the generating axioms of 2-dimensional
open-closed TQFT described in Appendix B 2. So
the proof that those ribbon manifolds generate all rib-
bon manifolds follows directly from the proof that the
knowledgeable-Frobenius-algebra axioms generate all ax-
ioms of 2-dimensional open-closed TQFT, presented in
Ref. [29]. Specifically, the boundary tetrahedron in
Eq. (A34) corresponds to the associativity axiom for the
non-commutative algebra in open-closed TQFT, involv-
ing two three-point disks on both sides. The triple con-
densation Eq. (A35) corresponds to the homeomorphism
axiom in Eq. (B11). The boundary braiding Eq. (A36)
corresponds to the knowledgeably axiom in Eq. (B12),
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but also the Cardy condition in Ref. [29], which is a dif-
ferent axiom but yields the same when we combine the
left- and right-hand side.

We further conjecture that the full set of axioms can
be derived from the following axioms, in addition to the
pentagon and hexagon equation of the UMTC/braided
fusion category.

• The pentagon equation for the boundary fusion cat-
egory.

• An axiom consisting of four triple condensations,
one bulk tetrahedron, and one boundary tetrahe-
dron,

= . (A37)

This makes the triple condensation a Frobenius al-
gebra object in the tensor (i.e., Deligne) product
of the boundary fusion category and the UMTC
(without braiding).

• An axiom consisting of two triple condensations,
one boundary braiding, and one bulk braiding,

x

z

y

=
x

z

y

=

z

y

x

=

z

y

x

.

(A38)

• All the above gluing axioms hold with and with-
out a 4-dimensional/3-dimensional bulk, and thus
for braided as well as Lagrangian modules. The
following Lagrangian condition is analogous to the

modularity condition for UMTCs in Eq. (A19). It
only holds without the bulk,

=

aa bb

∈ B2 × S1,

a ∼ x× S1, b ∼ y × S1

,

(A39)
where x and y are any two points on the boundary
of B2. It follows from the gluing axioms and a
normalization condition that the tensor assigned to
the right-hand side is δa,b. On the other hand, we
have

=

α α′
aa β β′bb

∈ B1 × S2,

a ∼ B1 × x, b ∼ B1 × y

,

(A40)

where x and y are any two points of S2. Again,
the tensor on the right-hand side is δ(a,α,α′),(b,β,β′).
Thus, the matrix

Lbaαα′ := α α′
aabb (A41)

is unitary, LL† = L†L = 1. Now, consider this rib-
bon manifold with a bulk 4-ball Bbr4 whose bound-
ary is half bulk, half ribbon manifold, using nota-
tion analogous to Bpsi in Section II. Then the gluing
operation on the left-hand side of Eq. (A39) would
yield Br2 × Bb2, whereas the bulk for which we get
the tensor δa,b on the right-hand side is Bbr3 × S1.

To actually prove that all gluing axioms follow from the
above we would have to carry out an analog of Ref. [29]
in one dimension higher, or an analog of Ref. [27] with
boundary, which would clearly exceed the scope of this
paper. Note that to make this fully work, we again need
to add a few small auxiliary fusion vertex links, ribbon
manifolds, and gluing axioms similar to Eq. (A29).

Let us now discuss the connection between our tenso-
rial definition of Lagrangian/braided modules and known
categorical structures. There are many different possible
viewpoints giving rise to equivalent names for those struc-
tures. First, as we noticed, Lagrangian/braided mod-
ules can be viewed as a categorification of knowledgeable
Frobenius algebras. That is, the axioms of the latter
give rise to natural transformations, mapping between
different string diagrams, like the F - or R-tensor. In our
framework, we connect the open ends of the string dia-
grams on both sides to a single string diagram.

As another viewpoint, we have a bulk UMTC (or
braided fusion category) M together with a boundary
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fusion category B, interacting with each other. To study
the interaction, let us define a new fusion vertex link,

→ . (A42)

This corresponds to a bi-functor

. :M×B → B , (A43)

where we do not need the braiding of M and the
monoidal (fusion-category) structure of B. Now, consider
the following ribbon manifold,

. (A44)

Cutting this into two pieces yields, e.g., the following
move of string diagrams,

↔ . (A45)

This defines a natural isomorphism

(M ⊗N) . B →M . (N . B) , (A46)

for all M,N ∈M and B ∈ B. Such a functor is the most
important part of the definition of a module category [30],
which is sometimes also referred to as having B as a M-
module. The functor needs to obey a coherence condition
that looks like the pentagon equation where four of the
tetrahedron tensors are replaced by the functor. Note
that the module category structure does not fully deter-
mine the braided module, since we have used neither the
braiding of M nor the tensor product (i.e., monoidal, or
fusion-category structure) of B. For a module category,
M is just a fusion category and B is a plain category.

In order to study the role of the braiding of M, let us
introduce another boundary fusion vertex link with only
a bulk ribbon attached,

→ . (A47)

The dimension Ai of this new fusion vertex with bulk
ribbon with label i determines a non-necessarily-simple
(isomorphism class of) object(s)

A =
⊕
i

Ai · i (A48)

of the UMTC. Physically speaking, this object contains
all the anyons that can condense at the boundary. Then

we consider the triple condensation of Eq. (A44) without
boundary ribbons,

, (A49)

corresponding to an isomorphism

↔ . (A50)

This isomorphism is an element of⊕
i,j,k

AiAjAk Hom(i⊗ j, k) ' Hom(A⊗A,A) , (A51)

and makes A into an algebra object in the UMTC/braided
fusion category, or in other words, an algebra enriched by
the UMTC, The algebra has to be associative as well as
commutative, which follows from the gluing axioms. It
also has to obey the Frobenius property, which is auto-
matic in our language where there is no distinguished
time direction. In a physics context, the commutativity
ensures that all the condensing anyons are bosons (i.e.,
have topological twist 1) and braid trivially with each
other,

= , = . (A52)

In order to study the role of the tensor product of B,
we can consider the ribbon manifold

(A53)

corresponding to a natural isomorphism

↔ . (A54)

So a braided module corresponds to B being module cat-
egory ofM, which is also consistent with the braiding of
M and the fusion of B.

A Lagrangian module has to obey the extra condition
that L defined in Eq. (A41) is a unitary matrix. A com-
mutative Frobenius algebra is called Lagrangian if its cat-
egory of local modules is trivial. In physics terms, this
means that any anyon that does not condense, braids
non-trivially with a condensing anyon and thus confines.
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The Lagrangian condition in Eq. (A39) and Eq. (A40)
states that the braiding between condensing and bound-
ary anyons is unitary. The boundary anyons are just con-
fined bulk anyons, and the unitarity implies that only the
trivial anyon (which always condenses) can braid trivially
with all confined anyons.

A third approach is to view the UMTC/braided fusion
category as a special case of a fusion 2-category. Fusion
2-categories are equivalent to a type of tensorial TQFT
whose extended manifolds are 3-manifolds with an em-
bedded network of membranes, lines where membranes
meet, and vertices where lines meet, with a 4-dimensional
bulk. That is, it is a TQFT that is 3-2-1-0-extended at
the 3-dimensional boundary and trivial (4-extended) in
the 4-dimensional bulk. From any such fusion 2-category
we can define a 4-3-2-1-0-extended TQFT (i.e., a micro-
scopic lattice model). Braided fusion categories are a
special case of fusion 2-categories with only one mem-
brane label, and so the CYWW model is a special case
of the 4-3-2-1-0-extended fusion 2-category model [13].
A 3-2-1-0-extended boundary of this 4-3-2-1-0-extended
TQFT (i.e., a microscopic model for a boundary) cor-
responds to an enriched fusion category in that fusion
2-category. A braided module is equivalent to a fusion
category enriched in the UMTC.

As a fourth approach is via an operation known as
the Drinfeld center which maps a fusion category B to
a (c = 0) UMTC Z(B) by pulling back the following ge-
ometric mapping from 3-manifolds with bulk ribbons to
3-manifolds with boundary ribbons. Remove the tubu-
lar neighborhood of the bulk ribbons and fusion ver-
tices, and embed a sufficient boundary ribbon network
into the emerging boundary. Specifically, it suffices to
take one boundary ribbon along every tube segment and
one around the non-contractible loop, as well as one fu-
sion vertex at every junction of tube segments. More
precisely, this pullback yields a 3-2-1-extended tensorial
TQFT, which has to be block-diagonalized as described
in Appendix B 3 to get a UMTC. The algebra that we
need to block-diagonalize as in Eq. (B23) is known as tube
algebra. Now, the condensation vertex in Eq. (A33) of a
braided module provides a way to connect a bulk ribbon
of M with a tube of Z(B). Categorically, this defines a
functor from the braided fusion category M to Z(B).

For Lagrangian modules, the gluing axioms without
bulk imply that the functor from M to Z(B) defines
an equivalence of braided fusion categories. Note that
this is analogous to the situation in one dimension lower:
A knowledgeable Frobenius algebra is a commutative
Frobenius algebra and another (not necessarily commu-
tative) Frobenius algebra, together with an isomorphism
between the former and the (commutative) center of the
latter. The whole Lagrangian module can be constructed
from only the boundary fusion category B by pulling
back a geometric mapping. A boundary ribbon mani-
fold (with both bulk and boundary ribbons) is mapped
to a ribbon manifold with ribbons only in the boundary
as follows. Bulk ribbons are replaced by tubes just like

in the Drinfeld center mapping. The boundary is left the
same except that bulk ribbons adjacent to boundary fu-
sion vertices are replaced by boundary ribbons coming
out of holes in the boundary.

Another viewpoint is to think of the fusion category as
a 3-2-1-0-extended TQFT together with a 2-1-0-extended
boundary, namely a state sum known as the Turaev-Viro-
Barrett-Westbury model based on the fusion category to-
gether with its cone boundary (like the “smooth” bound-
ary of the toric code). It is a type of tensorial TQFT that
associates tensors to 3-manifolds with physical and space
boundary, with indices at the space boundary of the bulk
as well as the space boundary of the physical boundary.
The UMTC and its Lagrangian module can be obtained
by pulling back the following geometric operation from
boundary ribbon manifolds to manifolds with physical
and space boundary. We remove a tubular neighborhood
of both the bulk ribbons and the boundary ribbons yield-
ing tubes (in the bulk) and stripes (at the boundary) of
space-boundary. Restricted to the bulk, this mapping is
again the Drinfeld center of the fusion category.

Appendix B: Tensorial TQFT

1. General framework

In this appendix, we propose a simple axiomatization
of what appears to be equivalent to (a generalization of)
extended TQFTs, and which we will refer to as tenso-
rial (extended) TQFT. Roughly, such a tensorial TQFT
is a map from some type of geometric/topological objects
to tensors, subject to gluing axioms. The geometric ob-
jects are combinatorial extended manifolds of a fixed type,
which roughly speaking are composites of manifolds of
different dimensions being adjacent to or embedded into
each other, and which can be defined inductively in their
(maximal) dimension.

An extended manifold type of (maximal) dimension n
consists of a set of regions, and for each region r a di-
mension 0 ≤ dr ≤ n and a link Lr which is an extended
manifold of maximal dimension n − dr − 1. A region of
dimension dr will also be called a dr-region. The type
of Lr can be obtained from the original type by making
each region r′ of dimension dr′ into a region of dimen-
sion dr′−dr−1 and then discarding regions with negative
dimension. An extended manifold M of a given type con-
sists of 1) a (compact piece-wise linear) dr-manifold Mr

with boundary ∂Mr for every region r and 2) for every
pair of regions r, r′, a (piece-wise linear) map

ψMr,r′ : Mr × (Lr)r′ → ∂Mr′ (B1)

subject to the relations

ψMr1,r2(ψMr0,r1(x, p0), p1) = ψMr0,r2(x, ψ
Lr0
r1,r2(p0, p1)) (B2)

for all regions r0, r1, r2, and x ∈ r0, p0 ∈ (Lr0)r1 , p1 ∈
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(Lr1)r2 . Additionally, we demand that

(
⋃
r

ψMr,r′)/[Eq. (B2)] :

(
⋃
r

Mr × (Lr)r′)/[Eq. (B2)]→ ∂Mr′

(B3)

is a (piece-wise linear) homeomorphism for all regions r′.
Two extended manifolds of the same type are considered
equivalent if all of their regions are homeomorphic and
the homeomorphisms commute with ψ.

While the above definition is precise, the following in-
formal collapsed picture might be simpler to understand
or draw. We first extendMr′ by gluingMr×Cone((Lr)r′)
to the image of the map ψMr,r′ within ∂Mr′ , recalling that

Cone(X) is [0, 1]×X with 0×X identified with a single
point c. We then think of Mr as being attached to the
extended Mr′ along Mr×c. We do this recursively for the
manifold itself as well as all the links. That way we obtain
a space directly consisting of the different Mr that are at-
tached to each other in different ways. Within this space,
consider the normal space of maximal dimension n−dr at
a point of Mr for a region r. The distance-ε neighborhood
within the extended manifold around the point restricted
to this normal space is Lr. As an example, consider an
extended manifold type of dimension 2 with a 2-region a
and a 1-region b whose link consists of two points. Note
that the link of a maximal-dimension region such as a is
a −1-manifold, and we choose the convention that there
is one single (empty) −1-manifold. The collapsed pic-
ture for such an extended manifold is a 2-manifold (a)
with embedded circles (b). The ε-neighborhood around a
point of b restricted to a normal space consists of 2 points,
which is the link of b. As another example, consider an
extended manifold type of dimension 3 with a 3-region a,
a 2-region b with point link, and a 0-region c with disk
link. The collapsed picture for such an extended mani-
fold is a 3-manifold (a) with boundary (b) and embedded
points within the boundary (c). The distance-ε neighbor-
hood of a point of b restricted to the normal space consists
of one point, the link of b. The distance-ε neighborhood
of a point in c is a disk, and since everything is normal to
a point, this is the link of c. Note that the collapsed pic-
ture loses one important aspect of the formal definition,
namely a normal framing of the various submanifolds.
E.g., in our first example the embedded circles have a
favorite side, and in the second example, the points em-
bedded into the boundary carry a unit vector inside the
boundary (which, however, disappears when we consider
equivalence classes).

A combinatorial extended manifold is given by an ex-
tended manifold where Mr and (Lr)r′ for all regions r
and r′ are cellulated such that the map ψ in Eq. (B1)
is a map of cellulations. Furthermore, in order to un-
ambiguously define gluing below, we need a branching
as defined in the main text, i.e., an identification of ev-
ery r-simplex in Mr with a standard representative. As
the name suggests, a combinatorial extended manifold

contains only the combinatorial data describing the cel-
lulation and the cell map ψ, which suffices to specify M
up to equivalence/homeomorphism. 9

A tensorial TQFT type consists of 1) an extended man-
ifold type and 2) a labeling of each region as either an
internal or a space region. A tensorial TQFT of given
type is a map that associates a tensor to every combi-
natorial extended manifold, with one index associated to
every dr-cell of Mr for every space region r. The vector-
space dimension of the index can depend on r and the
standard representative of the dr-cell. A tensorial TQFT
also includes a weight matrix D for every dr − 1-cell of
every standard representative of a dr-cell for every space
region r.

The map is subject to consistency conditions we will
call gluing axioms. A gluing axiom is a commutative di-
agram as in Eq. (8) where G is a “gluing” operation, and
C is a “contraction” of the associated tensors. There
are three types of gluing axioms. First, G is topology-
preserving recellulation (such as bistellar flips/Pachner
moves) inside one of the internal regions, and C is triv-
ial. In other words, the tensors are independent of the
cellulation of the internal regions, but only depend on
their topology. Second, G is the disjoint union of combi-
natorial extended manifolds and C is the tensor product.

The third type of gluing axiom is when G is a “proper”
gluing operation, and C is a “proper” index contraction.
A proper gluing operation is defined as follows for any
space region r and any pair of dr-cells C1 and C2 of
Mr with the same standard representative. First, we
remove C1 and C2 from Mr and identify/glue ∂C1 with
∂C2. Second, we identify/glue ψrr′(C1 × (Lr)r′) with
ψrr′(C2 × (Lr)r′) for every region r′. If there are any
dr − 1-cells of the standard representative that coincide
for ∂C1 and ∂C2, then those are removed when gluing. If
∂C1 and ∂C2 share dr−1-cells that do not correspond to
the same cell of the standard representative, the iden-
tification/gluing of cells is extended transitively. The
corresponding proper index contraction is the Einstein
summation over two indices located at C1 and C2, apart
from the following. For every dr − 1-cell of the standard
representative that coincides for ∂C1 and ∂C2, we have
to insert the according weight matrix D. That is, if the
indices at C1 and C2 are labeled a1 and a2, then the
tensor T is contracted as∑

a1,a2

Ta1,a2,...Da1,a2
. (B4)

The different weight matrices for a standard represen-
tative commute among each other, and if C1 and C2

9 We can restrict without loss of generality to triangulations,
with only one standard representative, the dr-simplex Sxdr ,
such that the branching is a branching structure. In this
case Mr × (Lr)r′ is not a triangulation but consists of cells
of the form Sxdr ×Sxdr′−dr−1, so in order to make ψ a map
of triangulations we have to choose a standard triangulation of
Sxdr × Sxdr′−dr−1.
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have a coinciding dr − 1-cell, then the weight matrix
can be moved from C1 to C2. For example, if we glue
two branching-structure triangles, there are three differ-
ent weight matrices D01, D02, and D12, which we need to
include when they share either their 01, their 02, or their
12 edge. For an example of how this works in the case
of 2 + 1-dimensional lattice TQFT we refer the reader to
Ref. [11].

With this, the definition of a tensorial TQFT is com-
plete. It is interesting to consider the topological opera-
tions that can be implemented by a proper gluing of two
cells C1 and C2. For any 0 ≤ x ≤ dr and every embed-
ding of Sx×Bdr−x into Mr, we can perform an x-surgery
on Mr,

Sx ×Bdr−x → Bx+1 × Sdr−x−1 , (B5)

and attach

Bx+1 ×Bdr−x × (Lr)r′ (B6)

to Mr′ along ψr,r′(Sx×Bdr−x×(Lr)r′), where Sx is iden-
tified with ∂Bx+1. To this end, the cells of the standard
representative that coincide for ∂C1 and ∂C2 must be
topologically equal to Sx−1 × Br−x+1. In particular, we
have the case x = 0 if ∂C1 and ∂C2 are disjoint. If the
set of coinciding cells has a different topology or ∂C1

and ∂C2 share any other dr − 1-cells, then gluing can
correspond to other topological operations. However, all
those operations are generated by the surgery operations
above.

Depending on the type, tensorial TQFT as defined
above can describe many different things. First of all,
tensorial TQFT with a single internal n-region and space
d-regions for d ≤ n − i − 1 with arbitrary links seems
to be equivalent to extended TQFT, extended down to
i-manifolds. Let us motivate this claim by demonstrat-
ing equivalence in three cases. First, TQFT extended
to n − 1-manifolds is just ordinary axiomatic TQFT.
This corresponds to a tensorial TQFT type whose ex-
tended manifolds have one internal n-region with empty
link, and a spatial 0-region for every compact (connected)
n−1-manifold as link. An extended manifold of that type
is an n-manifold whose boundary is identified with a dis-
joint union of n− 1-manifolds, i.e., a cobordism without
input/output distinction. Note that in the collapsed pic-
ture, every n − 1-manifold is shrinked to a point, which
is “singular” if the boundary component is not an n− 1-
sphere. Second, fully extended TQFT is supposed to de-
scribe microscopic fixed-point models, or lattice TQFT.
This is a tensorial TQFT with one internal n-region with
empty link and one space n − 1-region whose link is
a single point. That is, we associate tensors to cellu-
lated n-manifolds, with indices at the boundary n − 1-
cells. An index configuration inside the space boundary
corresponds to an open boundary condition for the n-
dimensional microscopic model, and the corresponding
tensor entry is just the partition function of the model on
the n-dimensional space(-time) with this boundary con-
dition. Third, UMTCs give rise to Reshetikhin-Turaev

TQFTs which are known to be 3-2-1 extended TQFTs.
As we argue in Appendix B 3, UMTCs are equivalent to
a tensorial TQFT type.

Note that in order to fully determine an extended
TQFT, we do not necessarily need all possible links, but
some can be generated from others. It seems to be the
case that a finite generating set of links exists precisely
for fully-extended and almost-fully-extended (i = 1)
TQFTs. In those two cases, it seems like we can also
define a finite set of generating combinatorial extended
manifolds and generating gluing axioms. Those two cases
are thus useful for the classification of topological phases,
whereas less extended TQFTs are much more difficult
to handle explicitly mathematically. Moreover, it seems
unlikely that they would be enough to fully specify a
microscopic topological phase. In particular, as already
implied in the previous paragraph, for fully-extended ten-
sorial TQFTs, arbitrary lower-dimensional regions Mx

with arbitrary link Lx can be generated from only a
single space n − 1-region with point link. To this end,
we pull back a simple geometric mapping, namely trans-
forming Mx into the space n − 1-region by a cartesian
product with Lx. This seems to be the tensorial-TQFT
analog of the cobordism hypothesis. For example, con-
sider a 2 + 1-dimensional lattice TQFT associating ten-
sors to the boundary of 3-manifolds. Now add a 1-region
with circle link to the extended manifold type. The as-
sociated tensor can be obtained by taking the cartesian
product of this 1-region with the circle to obtain a 2-
region, and taking the associated tensor. This is equiv-
alent to what is known as the tube algebra or Drinfeld
center of a 2 + 1-dimensional lattice TQFT. For almost-
fully-extended TQFT, the generating set of space regions
is more involved, consisting of an n − 2-region with cir-
cle link but also a finite set of lower-dimensional space
regions.

More general structures are obtained by also choosing
more than one internal region. For example, if we choose
an extended manifold type with one space “boundary”
region for every internal region, we get microscopic state-
sum models/lattice TQFT including boundaries, anyons,
domain walls, or arbitrary sorts of defects or interfaces.
We can also mix fully extended and almost-fully extended
descriptions for different regions of the model.

The above formalism can be generalized in several
ways, out of which we will sketch two. First, tensorial
TQFTs as described above describe phases of quantum
spin/qu-d-it systems. We can add fermionic degrees of
freedom or impose symmetries, in three steps. First, we
need to equip all or some regions r of an extended mani-
fold type with an extra geometric/topological structure.
That is, we equip Mr of the manifold itself but also of
the different links with the extra structure, and let ψ be a
map preserving the extra structure. Concretely, an orien-
tation is standard for tensorial TQFTs describing quan-
tum topological phases, and its absence would correspond
to a Z2 time-reversal symmetry. A 1-cohomology class
(valued in the symmetry group) is needed for symmetries,
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and a spin structure is needed if we have fermionic de-
grees of freedom. All of these can be represented combi-
natorially in terms of simplicial cohomology. Second, we
need a different “target category” of the tensorial TQFT,
i.e., instead of “array” tensors we associate tensors of a
different tensor type [31], such as fermionic tensors or
tensors whose indices are equipped with group represen-
tations. Third, there is some standard interplay between
the extra geometric structure and the tensors. Hermitic-
ity equates orientation reversal and complex conjugation,
a spin-statistics relation equates spin-structure defects
with the fermion parity, and for models with symmetry,
the symmetry defects have to correspond to the symme-
try action.

The second generalization is to consider different types
of combinatorial representations of extended manifolds
and gluing, and different locations for the indices for the
same extended manifold type. Often, the resulting math-
ematical structures for different combinatorial represen-
tations will be equivalent to the standard simplicial type
of tensorial TQFT defined above. For example, one can
define fully-extended 3-dimensional tensorial TQFT with
indices on the edges of a cellulation, such that the result-
ing algebraic structure is very similar to weak Hopf al-
gebras [11]. The latter are equivalent to spherical fusion
categories which are the algebraic structure correspond-
ing to the standard simplicial version of the TQFT (af-
ter dimension-reduction block-diagonalization, see Ap-
pendix B 3). Note that in general, gluing could be an ar-
bitrarily complicated combinatorial operation acting on
a finite-size patch of the combinatorial extended mani-
fold, leading to potentially more general mathematical
structures. Tensorial TQFTs with complicated gluing
operations can however be simplified diagrammatically
by coarse graining. For fully extended/lattice TQFT,
this does not lead to the standard simplicial type, but to
vertex-liquid models [2]. Also for almost-fully extended
TQFT, we need a more complicated combinatorial struc-
ture if we want to be diagramatically universal.

2. 1 + 1-dimensional TQFTs as tensorial TQFTs

Let us consider four simple examples of tensorial
TQFTs. We start with the well-known 2-1-extended (or-
dinary) TQFT [32] in 1 + 1 dimensions [33]. As tensorial
TQFT, there is one internal 2-region, and one space 0-
region with circle link. Extended manifolds of this type
are nothing but 2-dimensional cobordisms without an
input/output distinction. In the collapsed picture, we
shrink the boundary circles and obtain 2-manifolds with
embedded points. The circle link of the 0-region can
be cellulated with a single edge, such that a combinato-
rial extended manifold is given by a cellulated 2-manifold
with 1-gon holes. However, modulo recellulation invari-
ance of the internal 2-region, the full information of a
combinatorial manifold is contained in the 2-manifold
with embedded points. We can glue two points of the

space 0-region by cutting out two small disks around
them and replacing those by an annulus. This is the
same as gluing boundary circles of cobordisms in ordi-
nary TQFT. To every extended manifold, we associate a
tensor, with one index per point. This is the same as the
linear map associated to a cobordism in ordinary TQFT.
Disjoint union and gluing at points have to be compat-
ible with tensor product and contraction of index pairs
for the associated tensors. A set of extended manifolds
that generate all others via gluing operations is given by
the pair of pants, or sphere with three points, and disk,
or sphere with one point,

, . (B7)

Thus, the whole (tensorial) TQFT is determined by the
two associated tensors. One can also write down a finite
set of generating gluing axioms. Those are such that
the generating tensors define the multiplication and unit
of a commutative Frobenius algebra. E.g., associativity
follows from

a b

c d

=

a b

c d

=
c

a b

d
,

(B8)

and commutativity from

a b

c

=

b a

c

. (B9)

To be precise, for a quantum mechanical interpretation,
we need to equip the manifolds with an orientation and
label each point as “inwards” or “outwards” with respect
to that orientation. We then only allow gluing between
inward and outward points, and demand Hermiticity as a
gluing axiom with G orientation reversal and C complex
conjugation.

As a second example take 2-dimensional open-closed
TQFT [29] that is 2-1-extended in the bulk, and 1-0-
extended at the 1-dimensional boundary. There is one
internal 2-region with empty link (the bulk), one internal
1-region with point link (the physical/closed boundary),
one space 0-region with circle link (point in the bulk),
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and one space 0-region with interval link (points on the
boundary). Extended manifolds of this type are the same
as open-closed cobordisms without the input/output dis-
tinction, namely 2-manifolds whose boundary consists of
“open” circles, “closed” circles, or circles consisting of a
sequence of open and closed intervals. In the collapsed
picture, all open circles are shrinked to bulk points, and
all open intervals to boundary points. As in the previ-
ous example, a combinatorial extended manifold modulo
recellulation on the internal regions carries the same in-
formation as the extended manifold. A set of generat-
ing extended manifolds (together with those of ordinary
TQFT above) is given by disks with one or three bound-
ary points, or one bulk and one boundary point,

, , . (B10)

So the TQFT is determined by the associated tensors.
There is also a finite generating set of gluing axioms,
which make those tensors into what is called a knowl-
edgeable Frobenius algebra in Ref. [29]. Those consist of
a commutative Frobenius algebra (the bulk TQFT with-
out boundary), a (non-commutative) Frobenius algebra
(whose multiplication is the disk with three boundary
points) and a homomorphism (the disk with one bulk
and one boundary point) from the former to the latter
whose image is the center of the non-commutative alge-
bra. E.g., in addition to associativity (but not commuta-
tivity) for the 3-point disk, the defining property of the
homomorphism is

c

a b

=

a b

c

=

a b

c

,

(B11)

and the image being the center manifests itself via

a b

c

= a b
c

=

b a

c

, (B12)

which is called the knowledgeably property in Ref. [29].

Third, let us consider lattice TQFT in 1 + 1 dimen-
sions [34], which is 2-1-0-extended. We have one internal
2-region with empty link and one space 1-region with
point link. Extended manifolds of this type in the col-
lapsed picture are 2-manifolds with boundary. The space
1-region is cellulated, that is, this 1-manifold is divided
into edges. We can glue two edges, in which case they
disappear from the boundary. The branching can be im-
plemented by giving each edge a direction, which makes
gluing unambiguous. The associated tensors have one
index per edge, and gluing edges is compatible with Ein-
stein summation over the corresponding index pair. If
two glued edges coincide in their 0 vertex or 1 vertex 10 ,
we need to contract via one of two weight matrices D0/1,
e.g.,

=
∑
a,b

D1
a,b

aa bb . (B13)

Every combinatorial extended manifold can be glued
from a single one, namely a disk whose boundary is di-
vided into three edges,

. (B14)

Again there is a finite set of generating axioms, the solu-
tions of which can in fact be fully classified. To this end
we combine the three-index tensor above and the weight
matrix to obtain a special Frobenius algebra. E.g., the
3-index tensor itself already defines an algebra, which is
associative by

= = . (B15)

It is known that special Frobenius algebras are always
semisimple and can be block-diagonalized. That is, there
is a change of basis where the algebra is given by a direct
sum of full matrix algebras. So for any tensorial TQFT,
there is an isomorphism, a set of dimensions Iα, and a
weight vector ωα, such that after applying the isomor-
phism we have

aαa′aαa′

bβb′bβb′ cγc′cγc′

=

ω

α

γβ

aa

bb

a′a′

c′c′

ccb′b′
= δα,β,γδa,bδb′,cδa′,cωα ,

(B16)

10 Here we number the vertices of a branching-structure simplex
such that the branching structure points from lower to higher
numbers.
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and

D
0/1
aαa′,bβb′ =

I−1ω−2

αα ββ
bbaa

b′b′a′a′ = δα,βδa,bδa′,b′ωα . (B17)

The diagrams in the middle are tensor-network diagrams
including a δ-tensor (the small black dot), two or three
identity matrices (the line segments), and a vector ωα
or I−1

α ω−2
α . Each index on the left is a composite of

one irrep index (drawn with fat line style) and two block
indices. The δ-tensor is defined to be 1 if all of its ir-
rep index labels are equal, and 0 otherwise. In fact, the
tensor-network notation is slightly generalized since the
dimension Iα of the block indices depends on the value
α of the irrep indices. Note that the total dimension of
each index on the left is

∑
α I

2
α.

As a last example let us consider lattice TQFT in 1+1
dimensions with boundary. The regions contain those of
ordinary lattice TQFT, plus additionally an internal 1-
region with point link (the bulk of the boundary) and
a space 0-region whose link is an interval. The interval
has two boundary points, one corresponding to the in-
ternal 1-region, and the other corresponding to the space
1-region. There is a single generating combinatorial ex-
tended manifold, in addition to Eq. (B14),

, (B18)

where the internal and space region of the boundary are
drawn in blue. The gluing axioms imply that the corre-
sponding 3-index tensor is a representation of the special
Frobenius algebra above. Such representations can be
block-diagonalized along with their Frobenius algebras,
yielding

bβσ cγσ′aαa′aαa′ =

ω

α

γβ

aa

bb

a′a′

cc

σ′σ′σσ
. (B19)

Each index on the left is a triple consisting of one irrep
index, one block index, and one multiplicity index drawn
as a zigzag line. Again, the dimension Mα of the multi-
plicity index depends on the irrep label α, and is different
from the dimension Iα of the block indices.

3. UMTCs and Lagrangian modules as tensorial
TQFTs

In this section we discuss how our definitions of
UMTCs and Lagrangian modules in Section III A and
Section IV A are equivalent to tensorial TQFT types.
We will first discuss UMTCs, and the case of Lagrangian
modules will follow by analogy. For UMTCs, the equiv-
alent tensorial TQFT type is 3-2-1-extended. The cor-
responding extended manifolds have an internal 3-region

a with empty link, a space 1-region b with circle link,
and space 0-regions cx whose link is a sphere with x em-
bedded points. This makes sense, since the ribbon mani-
folds in the definition of a UMTC are precisely extended
manifolds of this type: a is the bulk, b are the ribbons,
and cx are the x-valent fusion vertices. The framings
of ribbons and fusion vertices are automatically included
by our notion of extended manifold. Note that this is
also in accordance with Reshetikhin-Turaev TQFT [15]
constructed from a UMTC, which is known to be 3-2-1-
extended.

For a tensorial TQFT we need combinatorial extended
manifolds of this type, i.e., we need to cellulate all regions
and links. The circle Lb can be cellulated as a 1-gon with
a single edge, so Mb × Lb consists of sequences of “tube
segments” which are the cartesion product of a 1-gon
and a single edge. For each link Lcx we choose a cellu-
lated 2-manifold with x 1-gon holes, such that Mcx×Lcx
is a collection of spheres-with-holes. Those 1-gon holes
are joined with the ends of sequences of tube segments of
Mb×Lb. The so-obtained “tube system” is identified with
the boundary of the 3-cellulation of Ma. Note that by
representing Mb as a sequence of tube segments instead
of just edges embedded into Ma, we combinatorially re-
member the normal framing of Mb. The same is true
for representing Mcx as a collection of spheres-with-holes
instead of just vertices embedded into Ma. Modulo the
recellulation invariance inside Ma, it is easier to draw Mb

and Mcx in the collapsed picture as sequences of edges
meeting at vertices, and to describe the topology of Ma

and the normal framing in words.

To each such combinatorial extended manifold we as-
sociate a tensor with one index at each edge/tube seg-
ment of Mb, as well as one index at each vertex/sphere-
with-holes of Mcx . Two edges/tube segments or two
vertices/spheres-with-holes can be glued by removing
them from the combinatorial extended manifold and glu-
ing the cells of adjacent regions. This is compatible with
contracting the corresponding index pairs. If two glued
edges share their 0 or 1 vertex, we need to contract the
indices via a weight matrix D0/1 as shown in Eq. (B13).

We can already see that the definitions of UMTCs and
tensorial TQFTs are very similar. The major difference
is that a UMTC only has one label assigned to a whole
ribbon, whereas a tensorial TQFT has one index for ev-
ery edge/tube segment into which the ribbon is decom-
posed. In the following, we will show that the two alge-
braic structures are equivalent by defining a map X that
transforms every UMTC in a tensorial TQFT, and an
opposite map X . Very roughly, loops of edges of the ten-
sorial TQFT define a special Frobobenius algebra, and
the ribbon labels of the UMTC are the irreps of that
algebra.

Let us start by defining the tensorial TQFT X (M)
for a UMTC M. The X (M) vector space of the edge
indices is spanned by the ribbon labels of M, and the
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vector space of fusion vertex indices has dimension∑
a,b,...

Na,b,... , (B20)

where N is the dimension of the fusion vertex of a given
link where the adjacent ribbons are labeled a, b, . . .. To
obtain X (M)(R) for a combinatorial extended manifold

R we consider the ribbon manifold R̃ that is R where we
forget the cellulation of the ribbons. X (M)(R) is then

obtained from M(R̃) as follows. For every ribbon of R
with n edges, we make n + 2 copies of the ribbon label

a by contracting this index of M(R̃) with a δ-tensor.
Those copies are associated to the different edges as well
as the two endpoints of the ribbon. If the ribbon is a
loop, we only make n copies. In addition, we multiply by
(da/D)−n/2, e.g.,

αx0x1x2 βy0y1y2

γz0z1

aa
bb cc dd

ee

ff
gg

ii jj

= δa,b,c,d,x2,y0
δe,f,x0,z0δg,z1,y1

δi,j,x1,y2

(
da
D

)−2(
di
D

)−1(
dg
D

)−
1
2 (
de
D

)−1

α β

γ

aa

ee gg
ii .

(B21)
We have drawn the vertices within a ribbon with a white
filling to distinguish them from the black-filled fusion ver-
tices. Both weight matrices of X (M) are given via the
quantum dimensions of M as

D
0/1
a,b = δa,b

da
D

. (B22)

The gluing axiom of X (M) for gluing two vertices fol-
lows directly from the fusion 0-surgery axiom of M in
Eq. (9). Gluing two edges/tube segments of R corre-
sponds to introducing two 2-valent vertices on the cor-

responding ribbons of R̃ via Eq. (A32) and then gluing
those two vertices. Those two operations are compati-
ble because both adding an extra edge to R for X (M)

and adding an extra 2-valent fusion vertex to R̃ for M
yields a weight of (da/D)−1/2. If the two glued edges of
R share a vertex, then gluing the 2-valent fusion vertices

of R̃ yields an extra ribbon loop. This extra loop needs
to be removed using the loop 1-surgery in Eq. (11). Both
the removal of the loop for M and the inclusion of the
weight matrix D0/1 for X (M) yield a factor of da/D.

Constructing the UMTC X (T ) from a tensorial TQFT
T is slightly more involved. It is given by an op-
eration that we will refer to as dimension-reduction
block-diagonalization. In the following, we will de-
scribe dimension-reduction block-diagonalization for the
present case of 3-2-1-extended tensorial TQFT, but an

analog operation can be applied to any tensorial TQFT
type. Let A be the extended manifold type with an in-
ternal 2-region and a point-link space 1-region, and let
B be the extended manifold type defining T . Consider
the geometric/topological mapping from combinatorial
extended manifolds of type A to type B, which maps the
internal 2-region to the internal 3-region by the cartesian
product with the circle, leaving the space 1-region as it is.
E.g., a 2-ball is mapped to a 3-sphere with an embedded
ribbon loop,

→ ∈ S3 . (B23)

Composing this map with T , we obtain a 2-1-0-
extended/lattice TQFT. Next, let A be the extended
manifold type describing 1+1-dimensional lattice TQFT
with boundary as in Appendix B 2. For every fusion ver-
tex link (with x points) we can define a mapping from
A to B as follows. We take the internal 2-region times
a collection of x circles, the internal 1-region times the
fusion vertex link, and the space 1-region times x points.
E.g., for x = 3, we have

→ ∈ S3 . (B24)

Composing this map with T , we obtain a 2-dimensional
lattice TQFT with boundary. We now use the fact that
the obtained 1+1-dimensional TQFTs above correspond
to Frobenius algebras and their representations, and can
be block-diagonalized via Eq. (B16) and Eq. (B19). More
specifically, Eq. (B24) defines a representation of x times
the Frobenius algebra from Eq. (B23). Up to isomor-
phism, the algebra is specified by a block dimension Iα for
every irrep α and a weight vector ωα, and the represen-
tation is specified by a multiplicity dimension Mα,β,γ,...

depending on x irrep labels.

Now apply the block-diagonalizing isomorphism to all
edges and vertex indices of a tensor T (R). Using the
gluing axioms in the block-diagonal basis one finds that
the tensor must be obtained from a tensor X that only

depends on R̃ by 1) making n + 2 copies of the ribbon
label for a ribbon with n edges by contracting with a
δ-tensor, 2) adding a weight ω for every edge, and 3)
tensoring identity matrices shared between every pair of
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adjacent edge or vertex indices. E.g., we have

κkλlνnσ τδd . . .aαa′aαa′ bβb
′bβb′

cγc′cγc′

eεe′eεe′

mµm′mµm′

→ X(R̃)

. . .

ω

ω

ω

ω

ω

γ

β

α

ε

µ

κ

δ

λ

ν

kk
aa

a′a′
bb

b′b′
dd

llcc

nnee

c′c′

e′e′

mm

m′m′

σ

τ

,

(B25)

where the right-hand side is a tensor-network diagram.

X(R̃) has one irrep index for every ribbon of R̃, and one
multiplicity index for every vertex.

We are now ready to define X (T ). The ribbon la-
bels X (T ) are the irreps of the block-diagonalized alge-
bra. The fusion vector space dimensions are given by
the multiplicity dimensions Mα,β,γ,.... The tensors are
simply given by

X (T )(R̃) = X(R̃) . (B26)

The quantum dimensions are given by

D =
1

T (S3)
, da = Dω−2

a . (B27)

The fusion vertex gluing axioms of X (T ) follow very di-
rectly from those of T . For the loop 1-surgery axiom, we
find

= =
∑
a,b

Da,bDa,b aa bb

= M(R̃)

. . .
ω

ω

ω−2I−1

ω−2I−1

= M(R̃)

. . .

ω−2

=
∑
a

ω−2
a aa =

∑
a

da
D
aa .

(B28)

That is, taking a loop consisting of two edges/tube seg-
ments, and gluing those edges topologically performs a
1-surgery. The weights occurring in the gluing of those
two edges for T are equal to the weights occurring in the
loop 1-surgery for X (T ). Note that a closed loop of a
block index in the tensor-network diagram evaluates to
Tr(idIα) = Iα.

To show that UMTCs and tensorial TQFTs are equiva-
lent, it remains to show thatM and X (X (M)) are equiv-
alent, and also T and X (X (T )). For UMTCs, an appro-
priate notion of equivalence is given by permutations of
ribbon labels and isomorphisms of fusion vector spaces.
It is indeed easy to see thatM and X (X (M)) are equiv-
alent in this sense. For tensorial TQFTs (in general), an
appropriate notion of equivalence is given by invertible
domain walls, which are themselves tensorial TQFTs of
a more complicated type. In our case of 3-2-1-extended
TQFT, those have two copies of the internal 3-region,
space 1-region, and space 0-regions, as well as an inter-
nal 2-region and space 0-region that separate the two
different 3-regions and 1-regions. An extended TQFT
of this type is a domain wall, and it is invertible if it is
invariant under additional topological moves of the inter-
nal regions. Now, the tensors of X (X (T )) are obtained
from those of T by removing all the disconnected identity
tensors in Eq. (B25) and adapting the weight matrices.
This removal of identity tensors indeed constitutes an
invertible domain wall.

Completely analogously, a Lagrangian module as de-
fined in Section IV A is related to a type of tensorial
TQFT by dimension-reduction block-diagonalization.
The extended manifold type contains the one for UMTCs
described above. Additionally we have one internal 2-
region with point link (the boundary), a space 1-region
with interval link (the boundary ribbons), and 0-regions
whose link are disks with points in the interior and at
the boundary (the boundary fusion vertices). Again, by
pulling back a geometric/topological mapping, we ob-
tain a special Frobenius algebra and representation cor-
responding to the boundary ribbons and the boundary
fusion vertices. After block-diagonalization we find that
it suffices to associate a single irrep label to each bound-
ary ribbon instead of one index for each edge. This way,
we arrive at our definition in Section IV A.

Finally, consider the fermionic version of the above ten-
sorial TQFTs. All the manifolds are equipped with a spin
structure, and the assigned tensors are fermionic tensors
as described in Section V A. The fermionic lattice TQFT
obtained from the dimensional reduction in Eq. (B23) is
a fermionic special Frobenius algebra, containing a super
algebra. Such super algebras can be block-diagonalized,
where each block is the product of a full matrix algebra
with either 1) the trivial algebra, or 2) the Clifford algebra
Cl1. After discarding the disentangled full matrix alge-
bra part, we end up with irrep labels of two types, trivial
or Cl1. The trivial type corresponds to m-type anyons,
whereas the Cl1 type corresponds to q-type anyons men-
tioned in the main text.
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4. Other types of tensorial TQFT

In this section, we summarize and extend the list of
tensorial TQFT types mentioned throughout this docu-
ment, their physical interpretation, and which categori-
cal/algebraic structure they correspond to. We will list
those in the following format.

Name describing the tensorial TQFT type

Max. dim.: Maximal dimension of the extended manifold
type

Int. links: List of pairs (dimension, link) for all internal
regions

Space links: List of pairs (dimension, link) for all space
regions

Extra moves: “Gluing” operations in addition to the
three kinds of Appendix B 1 under which the TQFT
tensors are invariant. Only listed if there are any.

Cat. struct.: Categorical or algebraic structure that
the simplicial tensorial TQFTs of this type
(roughly) correspond to. For categorical struc-
tures we need to apply dimension-reduction block-
diagonalization. This refers to the standard sim-
plicial type, TQFTs of vertex-liquid-type could po-
tentially be more general.

Phys. int.: Physical interpretation with regard to topo-
logical phases of matter

The following list is supposed to demonstrate the ver-
satility of tensorial TQFTs, but is by far not exhaustive.
For example, we did not include extra structures such as
spin or pin structures, or absence of orientation. The lat-
ter together with the Hermiticity condition is understood
for all TQFTs below.

General ordinary TQFT

Max. dim.: n

Int. links: (n, ∅)

Space links: (n− 1, any manifold)

Cat. struct.: No finite set of generators in general

Phys. int.: k-point correlations in an n-dimensional
topological order

Ordinary TQFT in 2 dimensions

Max. dim.: 2

Int. links: (2, ∅)

Space links: (0, S1)

Extra moves: (0-surgery)

Cat. struct.: (Simple) Commutative Frobenius algebra

Phys. int.: k-point correlations in (robust) 1 + 1-
dimensional topological order

0-surgery invariance is optional, and rules out non-robust
degenerate topological order such as the GHZ state.
With 0-surgery, this topological order is automatically
invertible.

Open-closed TQFT in 2 dimensions

Max. dim.: 2

Int. links: (2,∅), (1,B0)

Space links: (0,S1), (0,B1)

Cat. struct.: Knowledgeable Frobenius algebra

Phys. int.: k-point correlation functions in models with
boundary

Lattice TQFT in 2 dimensions

Max. dim.: 2

Int. links: (2,∅)

Space links: (1,B0)

Cat. struct.: Special Frobenius algebra

Phys. int.: Microscopic fixed-point models for topologi-
cal order in 1 + 1 dimensions.

Again, we could impose 0-surgery as extra moves to im-
pose robustness/non-degeneracy.

Lattice TQFT in 2 dimensions with boundary

Max. dim.: 2

Int. links: (2,∅), (1, B0)

Space links: (1,B0), (0, Bps1 )

Cat. struct.: Special Frobenius algebra together with
representation

Phys. int.: Microscopic fixed-point models for topologi-
cal order with boundary in 1 + 1 dimensions.

Lattice TQFT in n dimensions

Max. dim.: n

Int. links: (n,∅)

Space links: (n− 1,B0)

Cat. struct.: Pachner-move invariant simplex tensor, fu-
sion n− 2-category

Phys. int.: Microscopic fixed-point models for topologi-
cal order in n spacetime dimensions

2-1-0 extended on the boundary, not extended in
the bulk

Max. dim.: 3

Int. links: (3, ∅), (2, B0)

Space links: (1, B1), (0, B2 + 3 boundary points)

Extra moves: (inverse) 1-handle attachment

Cat. struct.: Spherical fusion category, Weak Hopf alge-
bra
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Phys. int.: Amplitudes for fusion histories of point (in
space) defects inside the boundary of a 2 + 1-
dimensional model. Immediately gives rise to a
lattice TQFT (Turaev-Viro-Barrett-Westbury) for
the 2 + 1-dimensional model and its boundary.

3-2-1 extended

Max. dim.: 3

Int. links: (3, ∅)

Space links: (1, S1), (0, S2 + 3 points)

Extra moves: (inverse) 0-surgery

Cat. struct.: UMTC with c = 0

Phys. int.: Amplitudes for anyon fusion histories in 2 +
1-dimensional topological models, without chiral
anomaly

3-2-1 extended at the boundary of 4D bulk cobor-
dism

Max. dim.: 4

Int. links: (4, ∅), (3, B0)

Space links: (1, B2), (0, B3 + 3 boundary points)

Extra moves: (inverse) 1-handle attachment, any surgery
of the 4-region

Cat. struct.: UMTC

Phys. int.: Amplitudes for anyon fusion histories in 2+1-
dimensional topological models, possibly with chi-
ral anomaly

3-2-1 extended at the boundary of 4D bulk man-
ifold

Max. dim.: 4

Int. links: (4, ∅), (3, B0)

Space links: (1, B2), (0, B3 + 3 boundary points)

Extra moves: (inverse) 1-handle attachment

Cat. struct.: Braided fusion category

Phys. int.: Amplitudes for anyon fusion histories in the
2 + 1-dimensional boundary of a 3 + 1-dimensional
topological model

3-2-1 extended in the bulk, 2-1 extended at the
boundary

Max. dim.: 3

Int. links: (3, ∅), (2, B0)

Space links: (1, S1), (0, S2 + 3 points), (0, B2+ 1 point)

Extra moves: (inverse) 0-surgery, 1-handle attachment

Cat. struct.: Commutative Frobenius algebra object in-
side the (c = 0) UMTC

Phys. int.: Amplitudes for histories of anyons fusing in
the bulk and condensing at the boundary

We can add an extra 4D bulk in order to include algebra
objects in c 6= 0 UMTCs (with surgery moves of the
4D bulk), or braided fusion categories (without surgery
moves).

3-2-1 extended in the bulk, 2-1-0 extended at the
boundary

Max. dim.: 3

Int. links: (3, ∅), (2, B0)

Space links: (1, S1), (1,B1), (0, S2 + 3 points), (0, B2+ 1
bulk point + 1 boundary point), (0, B2+ 3 bound-
ary points)

Extra moves: (inverse) 0-surgery, 1-handle attachment

Cat. struct.: Lagrangian module of UMTC, Fusion cate-
gory together with its Drinfeld center, weak Hopf
algebra together with its quantum double

Phys. int.: Amplitudes for histories of anyons in the bulk
and within the boundary

Note that UMTCs with Lagrangian modules automati-
cally have c = 0. By adding an extra 4D bulk, we can
include general braided modules of braided fusion cate-
gories.

2-1-0 extended at the boundary, with bulk defect
line

Max. dim.: 3

Int. links: (3, ∅), (2, B0), (1, S1)

Space links: (1, B1), (0, B2 + 3 boundary points), (0, B2

with 1 boundary point and 1 bulk point)

Extra moves: 1-handle attachment

Cat. struct.: Fusion category + Representation of its
Drinfeld center/tube algebra

Phys. int.: Amplitudes for histories of (spatial) point de-
fects inside the boundary, together with a fixed
point defect in the bulk. Gives immediately rise
to a microscopic model for a 1+1D defect line in-
side a 2+1D topological phase. Such a defect is the
same as an anyon, or a direct sum of anyons.

Appendix C: Fermion condensation and the Kitaev
16-fold way

In Section V D, we have constructed fermionic invert-
ible boundaries for the Witt classes generated by stacks
of the Ising UMTC. In this appendix, we look at the Ki-
taev 16-fold way representatives of those Witt classes,
and discuss the relation of our fermionic CYWW bound-
aries to fermion condensation. The 16-fold way UMTCs
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are listed as M16
ν in the following table,

ν M16
ν M16

ν /ψ (M16
ν )loc

ψ

0 TC Z2 Zα2
1 Ia C2

a (C2
a)α

2 U(1)4
a

FTCa (FTCa)α

3 Ib C2
b (C2

b)α

4 S2 S Sα

5 Ic C2
c (C2

c)α

6 U(1)4
b

FTCb (FTCb)α

7 Id C2
d (C2

d)α

8 3F Z2 (Zβ2 )
9 Ie C2

a (C2
a)β

10 U(1)4
c

FTCa (FTCa)β

11 If C2
b (C2

b)β

12 S̄2 S Sβ

13 Ig C2
c (C2

c)β

14 U(1)4
d

FTCb (FTCb)β

15 Ih C2
d (C2

d)β

. (C1)

Here, TC stands for the toric code UMTC, Ix stands for
the 8 different variants of the Ising UMTC, U(1)4

x
stands

for the 4 different variants of the U(1)4 UMTC with
Z4 fusion rules, S2 stands for the square of the abelian
semion UMTC S 11 with non-trivial anyon s with spin
θs = i, S̄ is its complex conjugate, and 3F stands for the
three-fermion UMTC. M16

ν contains the trivial anyon 1,
a fermion ψ, and either one non-abelian anyon σ or two
abelian anyons σ, σ∗ with topological twist θσ = e2πi ν16 .
M16

2k+1 are the different variants of Ising, and M16
2k is

an abelian UMTC. M16
4k has Z2 × Z2 fusion rules with

the fermion being the (1, 1) element (additively written)
whereasM16

4k+2 has Z4 fusion rules with the fermion be-
ing the 2 element.

(M16
ν , ψ) defines a spin UMTC (c.f. Ref. [35]), i.e., a

UMTC with together with a fixed fermion 12. Stacking
two spin UMTCs Ma and Mb and condensing the com-
posite of their fermions yields product of spin UMTCs,

(Ma, ψa) · (Mb, ψb)

:= ((Ma ⊗Mb)/(ψaψb), ψa ' ψb) .
(C2)

The M16
ν form a Z16 group under this product. The

fermionic Lagrangian module of M16
ν is such that the

fermion ψ condenses at the boundary with an odd 0|1
super-dimension. A super-modular13 category [35] is a
braided category whose Müger center (roughly, the re-
striction to the transparent anyons that braid trivially)
is the symmetric fusion category of super-vector spaces

11 Note that the semion UMTC itself is not part of the Z16 sub-
group, and is in a different Witt class from U(1)4 despite having
the same chiral central charge 1.

12 The name “spin UMTC” might be misleading, since spin UMTCs
are bosonic and involve neither spin structure nor super-vector
spaces in their definition.

13 Also known as slightly degenerate braided fusion category.

consisting of the trivial anyon and one fermion. A super-
modular category can obtained from a spin UMTC by
restricting to the anyons that braid trivially with ψ. For
all M16

ν , this super-modular category is the trivial one,
namely the category of super-vector spaces itself. It has
been shown in Refs. [35, 36] that every super UMTC can
be extended to a spin UMTC in exactly 16 different ways.
Those 16 different spin UMTCs are simply related by the
product in Eq. (C2) with one of spin UMTCsM16

ν . Fur-
thermore, taking the tensor product with the category
of super-vector spaces defines a homomorphism from the
ordinary Witt group to the Witt group of super UMTCs,
and it has been shown in Ref. [37] that the kernel of this
homomorphism is exactly given by the 16-fold way Witt
classes.

In order to discuss fermion condensation, we first need
to talk about the fermionic analog of UMTCs themselves.
Fermionic UMTCs differ from their bosonic counterparts
in a few points. First, in general, the extended manifolds
(c.f. Appendix B) to which a 3-2-1 extended TQFT as-
signs amplitudes contain 1-dimensional worldlines with
arbitrary 1-manifold as link. Since every 1-manifold is a
disjoint union of circles, it suffices to consider ordinary
circle-link ribbons embedded into a 3-manifold. However,
in the fermionic case, all manifolds must be equipped
with a spin structure, including the links. There are
two spin circles, one with bounding and one with non-
bounding spin structure, which are both needed to gen-
erate all spin 1-manifolds via disjoint union. Thus, the
fermionic analog of a UMTC needs to contain two differ-
ent types of worldlines, which we will refer to as anyon
(with bounding circle as link) and vortex (with non-
bounding circle as link) worldlines. In an obstruction-
theoretic picture for the spin structure where dη2 = ω2,
the vortex worldlines are simply added to ω2. The fusion
of anyons and vortices is Z2-graded, e.g., two vortices
fuse to an anyon.

The second difference is that there is an anyon called
fundamental fermion, forming a Z2 subgroup under fu-
sion, braiding trivially with all other anyons, but having
a −1 braiding with all the vortices. This anyon comes
from the non-trivial (but invertible) topological fermionic
phase in 0+1 dimensions, given by a single degree of free-
dom with 0|1 super-dimension, or more physically, a sin-
gle degree of freedom with a Hamiltonian with odd-parity
ground state. In a microscopic model, the fundamental
fermion is just given by non-interactingly embedding this
0+1-dimensional phase into the 2+1-dimensional space-
time. The fundamental fermion is however not a rib-
bon label of the fermionic UMTC. Third, both vortices
and anyons can have Cl1 automorphism algebras as men-
tioned in Section V A. Fourth, the morphisms between
the objects form super-vector spaces instead of vector
spaces, leading to reordering signs in, e.g., the pentagon
equation. Fifth, for some axioms related to the topo-
logical interpretation of UMTCs beyond, e.g., the pen-
tagon equation, we get additional sign factors from how
the spin structure interacts with the tensors through the
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spin-statistics relation.
Fermionic UMTCs can be obtained from (bosonic)

spin UMTCs through fermion condensation [14], the
fermionic analog to anyon condensation. Anyon conden-
sation is a prescription that takes as input a commutative
Frobenius algebra A in a UMTC M and yields 1) a fu-
sion category M/A by taking the quotient with A, and
2) another UMTC Mloc

A where we additionally remove
all the anyons in M that braid non-trivially with A and
thus confine. Diagrammatically, a commutative Frobe-
nius algebra assigns amplitudes to ribbon manifolds with
boundary, and boundary vertices where bulk ribbons can
end, but without boundary ribbons. Physically, the rib-
bon labels that have a non-zero fusion dimension at such
a boundary vertex are anyons that “condense”. Conden-
sation yields a domain wall betweenM andMloc

A , i.e., a

Lagrangian module forM⊗Mloc
A . The boundary fusion

category of this Lagrangian module is exactlyM/A, such
that we have

Z(M/A) =M⊗Mloc
A , (C3)

where Z denotes the Drinfeld center. Physically, M/A
describes the anyons living on the domain wall, consisting
of both the anyons ofM that confine and those that are
shared by M and Mloc

A .
In a fermionic commutative Frobenius algebra, we can

condense fermionic anyons with twist −1 by letting
the boundary fusion vertex carry an odd (0|1) super-
dimension. The fermion ψ of any spin UMTC, includ-
ing the 16-fold way UMTCs M16

ν in Eq. (C1), forms
such a fermionic commutative Frobenius algebra. When
we condense a fermionic commutative Frobenius algebra,
the resulting M/A will be a fermionic fusion category,
and Mloc

A will be a fermionic UMTC. Physically speak-
ing, the condensing fermion ψ becomes the fundamental
fermion (which is not a ribbon label) of the fermionic
categoriesM/A andMloc

A . The anyons ofM that braid
non-trivially with ψ become the vortices of Mloc

A .
In the third and fourth column of the table in Eq. (C1),

we have listed the fermionic fusion category M16
ν /ψ and

the fermionic UMTC (M16
ν )loc

ψ resulting from fermion
condensation in the 16-fold way UMTCs. When tak-
ing the quotient with respect to ψ, the cosets {1, ψ}, and
{σ, σ∗} (or only {σ} for odd ν) become the two ribbon la-
bels 1 and β ofM16

ν /ψ. More precisely, Z2 stands for the
corresponding untwisted (trivially fermionic) group cat-
egory, and S is the (trivially fermionic) semion-without-
braiding, which is the Z2 group category twisted by the
non-trivial group cocycle in H3(Z2, U(1)). FTCx stands
for the two different versions of the input category of
the fermionic toric code [38]. The fusion rules are Z2

except that the super-dimension is 0|1 (i.e. odd-parity)
rather than 1|0 if a 3-valent fusion vertex has two β rib-
bons that are directed either both inwards or both out-
wards. Finally, Cx2 stands for the different versions of the
C2 fermionic fusion category introduced in Section V C
which has 1|1 fusion dimension for a 3-valent vertex with
two β ribbons. Note that we have M16

ν /ψ =M16
ν+8/ψ.

The fermionic UMTC (M16
ν )loc

ψ only contains the triv-

ial anyon (not including the fundamental fermion), since
σ (and σ∗) braids non-trivially with ψ and thus confines.
However, σ yields a non-trivial vortex β. Despite not
being trivial, (M16

ν )loc
ψ is invertible, meaning that stack-

ing it with a complex-conjugated copy yields the triv-
ial fermionic UMTC. The fusion rules and F -symbol of
(M16

ν )loc
ψ are the same as M16

ν /ψ, when we identify the

vortex β with the boundary ribbon β. However, (M16
ν )loc

ψ

and (M16
ν+8)loc

ψ have different braiding, which we indi-

cated by the α or β superscript in Eq. (C1). The (M16
ν )loc

ψ
directly form a Z16 group under stacking. Physically
speaking, (M16)loc

ψ describes the vortices of an invert-
ible chiral fermionic topological phase known as p + ip
superconductor. We observe that Eq. (C3) still holds as

Z(M16
ν /ψ) =M16

ν ⊗ (M16
ν )loc

ψ . (C4)

It is believed that every fermionic UMTC comes from
a (bosonic) spin UMTC by condensing the fermion.
In the same way, the vortex-free part of a fermionic
UMTC would come from a super UMTC. This belief, to-
gether with the results from Ref. [37], suggests that the
(bosonic) UMTCs of the Z16 Witt classes are in fact the
only ones that allow for a fermionic Lagrangian module.

Appendix D: The fermionic reordering sign

In this appendix, we explicitly prove Eq. (F41)
and Eq. (F42) used in Appendix F 3, partly following
Ref. [18]. Let us start with Eq. (F41), stating that σ is
a quadratic refinement of the bilinear form ∪1. To show
this, we look at two path integrals with tensors X and
Y and index configurations x and y. Considering a fixed
tetrahedron and writing xi for the index at the triangle
opposite to the ith vertex, we have

(X,x0x2x1x3)⊗ (Y, y0y2y1y3)

= (X ⊗ Y, x0x2x1x3y0y2y1y3)

= ((−1)|x0||y2|+|x3||y1|X ⊗ Y, y0x0y2x2x1y1x3y3)

= ((−1)|x0||y2|+|x3||y1|X ⊗ Y, (x0y0)(x2y2)(x1y1)(x3y3)) ,
(D1)

using the rules for equivalence of fermionic tensors in
Section V A. Writing a = |x| and b = |y|, we find

σ[a+ b]0123 = σ[a]0123 + σ[b]0123 + (b ∪1 a)0123 , (D2)

using the formula for ∪1 in Eq. (F2). Integration yields
Eq. (F41).

Next, let us look at Eq. (F42). We find∫
(γ1 + γ2) ∪ d(γ1 + γ2)−

∫
γ1 ∪ dγ1 −

∫
γ2 ∪ dγ2

=
∫

(γ1 ∪ dγ2 + γ2 ∪ dγ1)

=
∫

(d(γ1 ∪ γ2) + d(γ2 ∪1 dγ1) + dγ1 ∪1 dγ2)

=
∫
dγ1 ∪1 dγ2

= σ[d(γ1 + γ2)] + (η, d(γ1 + γ2))

−(σ[dγ1] + (η, dγ1))− (σ[dγ2] + (η, dγ2)) .

(D3)
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Thus, it suffices to show that Eq. (F42) is true for γ
consisting of a single edge which we will also refer to as γ.
More precisely, we need to show that the equation holds
for every potential star 14 of the edge γ. This part of
the proof has not been explicitly carried out in Ref. [18].
γ ∪ dγ is always trivial since the edge γ is contained in
all the triangles of dγ, and the cup product in Eq. (F1) is
only non-zero if the edge and triangle span a tetrahedron.
So it remains to show that σ[dγ] = ω2(γ).

Let us start with a star consisting of n tetrahedra
where γ is the 03 edge of all tetrahedra in the star,
and all the 12 edges point clockwise. For such a star,
ω2(γ) = 1 + n + n = 1, since γ is the 03 edge of all
adjacent tetrahedra and the 02 edge of all adjacent tri-
angles. Accordingly, we indeed have σ[dγ] = 1 for the
corresponding cyclic index ordering,

(X, a1ā2 . . . an−1ānanā1)

= (−X, ā1a1ā2 . . . an−1ānan) .
(D4)

Now consider flipping the direction of an outer edge in
an arbitrary star, i.e., an edge of the star spanning a
tetrahedron together with γ. This does not change the
vertex numbers if γ in any of the adjacent tetrahedra or
triangles, so ω2(γ) is not changed. σ[dγ] is unchanged
as well, since we exchange the two triangles but also the
orientation of the tetrahedron which reverses the Grass-
mann ordering. Finally, consider flipping an edge e, such
that γ and e span a triangle t. For both σ[dγ] and ω2(γ),
we get three contributions to their change, one for t and
two for the adjacent tetrahedra. The t contribution to
the change of σ[dγ] comes from exchanging the Grass-
mann variables θt and θt, and thus is always 1. The t
contribution to the change of ω2(γ) comes from γ chang-
ing between being the 01 and 02 edge, or between the 12
and 02 edge of t, and thus is also 1 always. The change
of σ or ω2 due to one of the adjacent tetrahedra depends
on the branching structure of this tetrahedron, which we
will denote by giving the list of vertex numbers of the
four vertices. In the list, we will order the four vertices
according to 1) vertex of γ but not of e, 2) vertex of both
γ and e, 3) vertex of e but not γ, 4) remaining vertex nei-
ther part of e nor γ. In configurations where e is allowed
to flip, the vertex numbers of the vertices in e, i.e, the
second and third vertex number, have to be consecutive.
So the allowed configurations before/after flipping e are

0123/0213, 3120/3210, 2013/2103,

1230/1320, 0231/0321, 3012/3102 .
(D5)

The contribution to ω2(γ) is due to γ being the 03 edge
of the tetrahedron, thus we have a change if the first two
vertex numbers are 03 or 30 on either side,

0321/0231, 3012/3102 . (D6)

14 Here, the star means the configuration of tetrahedra containing
the edge, including the directions of all their edges.

The contribution to σ[dγ] is due to the ordering of Grass-
mann variables of t and the other triangle of both dγ and
the tetrahedron, according to Eq. (F38). This ordering
changes for the configurations

0123/0213, 3120/3210, 2013/2103, 1230/1320 . (D7)

We see that σ[dγ] gets a contribution exactly if ω2(γ)
does not. Since there is a contribution from two tetrahe-
dra, overall, the change of ω2(γ) and σ[dγ] when flipping
e is equal.

Since any potential star of γ with n tetrahedra can be
obtained from a star with “standard” branching structure
by flipping edges, this implies that σ[dγ] = ω2(γ) holds
for any star.

Appendix E: U(1)4 CYWW invertible boundary

In this appendix, we look at another instructive ex-
ample for a fermionic invertible boundary of a CYWW
model, namely that of the U(1)4 UMTC, representing
the 2-element of the Z16 Witt subgroup spanned by Ising.
We will here give the fermionic Lagrangian module of the
U(1)4 UMTC, the CYWW boundary is that of Section V.

The U(1)4 category (listed as “Z4 MTC” in Section
5.3 of Ref. [39]) is an abelian UMTC with 4 anyons 1,
ε, σ, σ∗, with Z4 fusion rules and quantum dimensions
all equal to 1. As in Section V C, the amplitude for a
ribbon manifold is obtained by reducing it to the empty
manifold, and any ribbon manifold can be reduced to a
ribbon sphere by 1-surgery along additional ribbon loops.

We first remove all 1-labeled ribbon segments, and re-
solve non-σ-labeled ribbons as

σ∗σ∗ → σσ ,

ψψ →
σσ

σσ
.

(E1)

Further, we resolve every fusion vertex into uninterrupted
ribbons, e.g.,

σσ σσ

ψψ
→ (21/2)

σσσσ
,

σσ σ∗σ∗

11
→ (21/2)

σσ
.

(E2)

Different choices of resolution yield different but gauge
equivalent UMTCs. We obtain a collection of σ ribbon
loops which are disjoint but might be linked with another
and twisted. We unlink the loops and remove the twists
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by

σσσσ
= e2πi 8−2ν

16
σσ σσ

,

σ

= e2πi ν16 σσ .

(E3)

In the end, we can remove unlinked and untwisted loops,
and the empty 3-sphere has amplitude 1/D.

The Lagrangian module is given as follows. There are
two boundary ribbon labels, 1 and β with quantum di-
mension 1, so DB =

√
2. The super-dimension of the

boundary fusion vertices is 0|0 if the number of adja-
cent β ribbons is not even, 0|1 if there are two ingoing
or two outgoing β ribbons, and 1|0 otherwise. The cor-
responding fusion category is the input category of the
fermionic toric code [38]. The non-zero super-dimensions
of the boundary fusion vertices with one bulk and one
boundary ribbon are given by

1|0 1111 , 1|0 ββσσ ,

0|1 11ψψ , 0|1 ββσ∗σ∗ .
(E4)

The amplitude for a ribbon network inside a 3-ball is
again obtained by reducing it to a trivial network. To
this end, we neglect 1 ribbons, push β ribbons slightly
into the bulk,

ββ → σσ , (E5)

and transform condensation- and direction-changing ver-
tices as

ββσσ → (21/2) σσ ,

11ψψ → (21/2) σσ
σσ

,

ββββ → σσσσ .

(E6)

Finally, we can remove pairs of boundary fusion vertices
via

0 1σσσσ σσ = σσ . (E7)

Like in Eq. (85), we consider cellulations where the
boundary vertices are contained inside 2-gons and allow
for the removal of two 2-gons if they are adjacent, the
separating edge has η2 = 0, and the Grassmann ordering
is as depicted. Combined with the reduction procedure
in the bulk, we obtain the amplitude for an arbitrary
boundary ribbon manifold.

Appendix F: Gauge theory formulation for abelian
UMTCs

In this appendix we reformulate some of the invert-
ible CYWW boundaries described in Section IV and Sec-
tion V in the language of gauge theories whose action is
a cohomology operation. We focus on two simple exam-
ples, namely the invertible boundaries for the toric-code
CYWW model, and the fermionic invertible boundary
for the three-fermion CYWW model.

1. (Simplicial) cohomology

In this section, we will give a brief introduction to
the basic notions of simplicial cohomology on branching-
structure triangulations necessary for the following two
sections. The central objects are i-chains, which are func-
tions from the set of i-simplices to some coefficient group,
which for this section will be Z2. The coboundary dx of
an i-chain x is the i + 1-chain whose value on a i + 1-
simplex is the sum over the values of x on the contained
i-simplices. i-chains with dx = 0 are called i-cocycles.
Dually, the boundary δx is the i − 1-chain whose value
on an i − 1-simplex is the sum over the values of x on
the i-simplices containing it, and i-chains with δx = 0
are called i-cycles. Intuitively, 1-cycles and dually n− 1-
cocycles are networks of closed loops, 2-cycles and dually
n − 2-cocycles are networks of membranes, etc. Central
to cohomology is the relation d2 = 0 and dually δ2 = 0.
i-chains x with x = dy are themselves called cobound-
aries, and are a subset of the cocycles. Dually, boundaries
x = δy are a subset of the cycles. Chains, (co-)cycles and
(co-)boundaries form groups under simplex-wise multi-
plication, and the quotient of the i-(co)cycles by the i-
(co)boundaries is known as the ith (co)homology group.
The cup product maps an i-cochain x and a j-cochain y
to a i + j-cochain whose value on a i + j-simplex S is
given by [40]

(x ∪ y)(S) = x(S|01...i) · y(S|i...i+j) . (F1)

Intuitively, the cup product corresponds the intersection
of networks of loops/membranes/etc. Furthermore, one
can define higher-order cup products [40], of which we
will need the first-order product ∪1 mapping a i-cochain
and j-cochain to an i + j − 1-cochain. The value of ∪1

on a i+ j − 1-simplex S is given by

(x ∪1 y)(S)

=
∑

0≤k<i

x(S|0...k(k+j)...i+j−1) · y(S|k...(k+j)) . (F2)

We will need a small number of identities that can be
easily checked for the simplicial formulas, and extracted
from Ref. [40]. First, the cup product obeys a Leibniz
rule,

d(A ∪B) = dA ∪B +A ∪ dB . (F3)
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Second, the failure of commutativity of ∪ equals the fail-
ure of the Leibniz rule for ∪1,

A∪B+B ∪A = d(A∪1B) + dA∪1B+A∪1 dB . (F4)

For a simplicial complex with boundary, a i-cochain
(i-chain) x restricts to another i-cochain (i − 1-chain)
∂x within the boundary. All of the above operations
commute with the restriction to the boundary,

d∂x = ∂dx ,

∂(x ∪ y) = (∂x) ∪ (∂y) ,

∂(x ∪1 y) = (∂x) ∪1 (∂y) .

(F5)

Intuitively, cocycles (cycles) with dx = 0 (δx = 0) in
the presence of a physical boundary are open, meaning
that they are networks of loops/membranes/etc. that
are allowed to freely terminate at the boundary. Closed i-
cocycles (i-cycles) that must not terminate at a boundary
can be modeled by introducing an i−1-cochain (i-chain)
x̄ within the boundary such that ∂x = dx̄ (∂x = δx̄).
The open cycle x together with its closure x̄ within the
boundary then form a closed (co-)cycle.

2. The invertible boundary for the toric-code
CYWW

a. The bulk model The toric-code CYWW model is
a gauge theory based on a Z2 × Z2-valued 2-cocycle, or
equivalently two Z2-valued 2-cocycles A and B. The path
integral for a fixed configuration is given by (−1)

∫
L (like

any path integral in this and the subsequent section),
where

L = A ∪B (F6)

is a Z2-valued 4-cocycle which is integrated/summed
over. For the lattice model branching-structure triangu-
lation, A and B are labelings of the triangles by elements
of Z2. By Eq. (F1), on every bulk 4-simplex 01234, we
get a weight

(−1)A(012)B(234) . (F7)

Recalling that the toric code anyons are generated by e
and m, we see that A and B are just the e and m com-
ponents of the labels at the ribbon dual to the triangles.
Also the F -tensor is trivial and looking at Eq. (19) we see
that all we need to do to evaluate the ribbon manifold
corresponding to a 4-simplex is to exchange the ribbons
corresponding to the 012 and the 234 triangle. This is
done exactly by the R-tensor which is −1 for exchanging
e and m, yielding Eq. (F7).

The central property of the action is its invariance un-
der gauge transformations for 1-cochains Γ and Λ,

A′ = A+ dΓ ,

B′ = B + dΛ .
(F8)

The topological invariance of the partition function is a
direct consequence of such a gauge invariance as follows.
Consider a ball-like patch of triangulation with a fixed
configuration of gauge fields (here A and B) on its space
boundary. Due to the gauge invariance, the amplitude for
such a configuration does not depend on how the gauge
fields extend into the bulk. Now consider a Pachner move
acting on a few simplices inside the patch of triangula-
tion. We can always find bulk gauge fields that are 0
around where the Pachner move happens. Since the ac-
tion is trivial at simplices with 0 gauge field, the action
is invariant under Pachner moves.

Intuitively, it is easy to accept that the (mod 2) number
of intersections of the 2-cocycles A and B does not change
if we add a 2-coboundary. More precisely, at an A gauge
transformation, the action changes by

L(A′, B)− L(A,B) = (A+ dΓ) ∪B −A ∪B
= dΓ ∪B = d(Γ ∪B) =: d(LΓ

triv) ,
(F9)

which is a total derivative/coboundary and thus its in-
tegral vanishes. Here we used the Leibniz rule and the
fact that dB = 0. If we add a physical boundary to the
spacetime, the partition function changes by ∂LΓ

triv. An
analogous calculation yields LΛ

triv.
Finally, we should add normalizations such that the

partition function becomes independent of the lattice
size. It is given by factors of |G|−1/2 at every 4-cell,
2-cell, and 1-cell, and |G|1/2 at every 3-cell and 0-cell,
where G is the gauge group which is Z2 × Z2 here. Note
that we have

|G|− 1
2 |C4|+ 1

2 |C3|− 1
2 |C2|− 1

2 |C1|+ 1
2 |C0|

= |G|− 1
2χ|G|−|C1|+|C0| ,

(F10)

where Ci is the set of i-cells and χ is the Euler character-
istic. Neglecting the |G|− 1

2χ term would yield a simpler
normalization that is still recellulation invariant, but not
invariant under the invertibility moves described in Sec-
tion II. The normalization in Eq. (F10) also coincides
with the normalization of the CYWW state sum in Sec-
tion III B.

b. The boundary The invertible boundary for the
toric-code CYWW model is given as follows. B is a closed
2-cocycle, and A is an open 2-cocycle. Intuitively, the
number of intersections between a closed and an open co-
cycle is invariant under moving them around locally. For-
mally, we define the closed B as an open B together with
a 1-cocycle B̄ within the boundary such that dB̄ = ∂B.
To make the action gauge invariant at the boundary we
have to add a boundary action

L∂ = ∂A ∪ B̄ . (F11)

In the lattice model, B̄ is a Z2-labeling of the boundary
edges, and at every boundary tetrahedron 0123 we have
a weight

(−1)A(012)B̄(23) . (F12)
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A gauge transformation in the presence of the bound-
ary is given by

B′ = B + dΛ ,

B̄′ = B̄ + ∂Λ ,

A′ = A+ dΓ .

(F13)

Under a Λ gauge transformations, the action changes by

∂LΛ
triv + L∂(A,B′)− L∂(A,B)

= ∂(A ∪ Λ) + ∂A ∪ (B̄ + ∂Λ)− ∂A ∪ B̄
= ∂A ∪ ∂Λ + ∂A ∪ ∂Λ = 0 ,

(F14)

which is not only a boundary but also directly 0. A Γ
gauge transformation yields

∂LΓ
triv + L∂(A′, B)− L∂(A,B)

= ∂(Γ ∪B) + ∂(A+ dΓ) ∪ B̄ − ∂A ∪ B̄
= ∂Γ ∪ ∂B + d∂Γ ∪ B̄

= ∂Γ ∪ ∂B + ∂Γ ∪ dB̄ + d(∂Γ ∪ B̄)

= d(∂Γ ∪ B̄) .

(F15)

Analogous to Eq. (F10), the normalization is given by

|G|− 1
2χ|G|−|C1|+|C0||GB|−|C

B
0 | , (F16)

where GB is the gauge group inside the boundary, in
our case Z2, and CBi are the i-cells within the boundary
(which are a subset of Ci).

c. Invertibility of the boundary So far we have con-
structed a gauge-invariant and thus topological bound-
ary. What remains to show is that this boundary is
indeed invertible. To this end, we explicitly check the
invertibility moves in Eq. (3) by evaluating the parti-
tion function on both sides for different space-boundary
configurations. The key observation is that the weight
for a bulk configuration β is only non-zero if β is a 2-
(co-)cycle, and only depends on the (co-)homology class
of β. Thus, the overall partition function for a fixed
space-boundary configuration α is only non-zero if α
is a 2-cocycle/1-cycle, and it only depends on the 2-
cohomology/1-homology class of α. The partition func-
tion for a fixed α is the sum over the weights of the dif-
ferent β restricting to α at their space boundary, ∂β = α.

The additional weight of such a boundary configura-
tion α for a fixed bulk 2-cohomology class is the number
of bulk 2-cocycles β in this cohomology class (which is
the same as the number of 2-coboundaries), times the
normalization in Eq. (F10). Combined, we get

|B2||G|− 1
2χ|G|−|C1|+|C0| = |G|− 1

2χ|B2||C1|−1|C0|
= |G|− 1

2χ|Z1|−1|C0| = |G|− 1
2χ|H1|−1|B1|−1|C0|

= |G|− 1
2χ|H1|−1|H0| = |G|− 1

2χ|H3|−1|H4| ,
(F17)

where Bi denotes the set of i-coboundaries, Ci the set of
i-cochains, Zi the set of i-cocycles, and Hi the set of i-
cohomology classes, and Hi the set of i-homology classes.

We used the basic identities

|Bi| = |C
i−1|

|Zi−1|
,

|Hi| = |Z
i|

|Bi|
,

|Hi| = |Hn−i| .

(F18)

Note that the weight in Eq. (F17) also holds with a phys-
ical boundary, in which case |Hi| is a homology class with
open A-cycles and closed B-cycles. Also note that with
a space boundary, |B2| in Eq. (F17) is the number of
closed-space 2-cocycles, and consequently, all the Hi are
closed-space homology classes.

In the following, we show invariance under the invert-
ibility moves M2 and M3 in Eq. (3). The moves M0,
M1, and M4 are trivial since the space 2-cohomology/1-
homology is trivial. For M2 and M3, the partition func-
tion turns out to be 0 for the non-trivial space cohomol-
ogy class α0 on both sides of the equation. On one side,
there is no bulk cohomology class β restricting to α0 on
the boundary. On the other side there are two such β
whose weights cancel.

Concretely, generating (co-)cycles of a product space
X × Y can be obtained from those of X and Y via the
Kuenneth formula. In our simple case, the Kuenneth
formula becomes

Hk(X × Y ) =
∑
i

Hi(X)Hk−i(Y ) . (F19)

If we imagine i-cycles as i-dimensional submanifolds,
then the generating k-cycles of X × Y can be simply
obtained by taking the cartesian product of the i-cycles
of X with the k − i-cycles of Y .

Let us start with M2,

M2 : S1 ×Bps3 = Bs2 ×B
p
2 ,

× = × ,

Z0 = Z1 .

(F20)

The space boundary is

S1 ×Bp2 = × . (F21)

This space has only one generating B 1-cycle α0, the
product of all of S1 and one point of Bp2 , in the following
marked in red,

α0 : × . (F22)

It has no non-trivial A 1-cycle since A is open and thus
Bp2 has trivial 0-homology.



46

The left-hand bulk S1×Bps3 has no non-trivial 2-cycle
as follows. For A, Bps3 has trivial open 0-, 1- and 2-
homology. For B, only the closed 0-homology of Bps2 is
generated by a single point, but the 2-homology of S1

is obviously trivial. |H4| and |H3| are both trivial, and
χ = 0 15 , so the normalization is 1. Thus, evaluating the
CYWW partition functions with the two different space
boundary configurations 0 and α0 yields

Z0(0) = (−1)S(0) = 1 ,

Z0(α0) = 0 .
(F23)

The right-hand bulk Bs2 × Bp2 has two generating 2-
cycles β0 and β1,

β0 : × , ∂β0 = α0 ,

β1 : × , ∂β1 = 0 ,

(F24)

where A-cocycles are in green. It is easy to see that
those are all generating 2-cycles since the homology of
Bp2 alone only has one non-trivial cycle for B (a closed
0-cycle) as well as for A (an open 2-cycle). H4 and H3

are both trivial, and χ = 1, so the overall normalization
in Eq. (F17) is 1

2 . Further, we can see that

β0 ∪ β1 = 1 . (F25)

The partition function is thus given by

Z1(0) =
1

2
((−1)S(0) + (−1)S(β1)) =

1

2
(1 + 1) = 1 ,

Z1(α0) =
1

2
((−1)S(β0) + (−1)S(β0+β1))

=
1

2
(1 + (−1)(β0)B∪(β1)A) =

1

2
(1− 1) = 0 .

(F26)
So we indeed find that Z0 = Z1.

Let us now consider the move M3,

M3 : S2 ×Bps2 = Bs3 ×B
p
1 ,

× = × ,

Z0 = Z1 .

(F27)

The space boundary is

S2 ×Bp1 = × . (F28)

15 χ can be computed by choosing small cellulations for the left-
hand side of Eq. (F20). χ might depend on whether we include
cells of the physical or space boundary, however, different con-
ventions change the left- and right-hand side equally since χ on a
3-manifold is always 0. Here we choose the convention to neither
include cells of space nor physical boundary.

It has one generating A 1-cycle, the product of one point
of S2 and all of Bp1 ,

α0 : × . (F29)

There is no non-trivial B 1-cycle since B is closed at
the physical boundary and Bp1 has no non-trivial closed
1-cycle.

The left-hand bulk S2 × Bps2 has two generating 2-
cycles,

γ0 : × , ∂γ0 = α0 ,

γ1 : × , ∂γ1 = 0 .

(F30)

Those are all generating 2-cycles since the homology of
Bps2 alone only has one non-trivial cycle for B (a closed
0-cycle) as well as for A (an open 2-cycle). |H4| and |H3|
are trivial, χ = 2, and again γ0 ∪ γ1 = 1. So we have

Z1(0) =
1

4
((−1)S(0) + (−1)S(γ1)) =

1

4
(1 + 1) =

1

2
,

Z1(α0) =
1

4
((−1)S(γ0) + (−1)S(γ0+γ1)) =

1

4
(1− 1) = 0 .

(F31)
The left-hand bulk Bs3 × Bp1 has no non-trivial 2-

cocycles: No matter whether we are open or closed at
the physical boundary, Bs3 has trivial 1- and 2-homology,
and Bp1 has trivial 2-homology. Finally, |H4| and |H3| are
trivial and χ = 1. Thus, evaluating the CYWW model
yields

Z0(0) =
1

2
(−1)S(0) =

1

2
,

Z0(α0) = 0 .
(F32)

Again we find Z0 = Z1.

3. The fermionic invertible boundary of the
3-fermion CYWW

In this section, we present the lattice gauge theory
formulation of the fermionic invertible boundary of the
three-fermion CYWW model from Section V C.

a. The bulk model Like the toric-code CYWW
model, the three-fermion CYWW model is a gauge the-
ory with two Z2-valued 2-cocycles A and B. This time,
the action is

L = A ∪A+B ∪B +A ∪B . (F33)

A and B represent the configuration of the generating
anyons f1 and f2, and the three terms in the action cor-
respond to the −1 entries Rf1,f2 , Rf1,f3 , and Rf2,f3 in
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the braiding through Eq. (19). The difference in action
after a Γ gauge transformation as in Eq. (F8) is

L(A′, B)− L(A,B)

= (A+ dΓ) ∪B + (A+ dΓ) ∪ (A+ dΓ)

−A ∪B −A ∪A
dΓ ∪B +A ∪ dΓ + dΓ ∪A+ dΓ ∪ dΓ

d(Γ ∪B +A ∪ Γ + Γ ∪A+ Γ ∪ dΓ) = d(LΓ
triv) ,

(F34)
and an analogous calculation yields LΛ

triv.
b. The boundary The invertible boundary is closed

for B and open for A just as for the toric-code CYWW
model. Intuitively, A ∪ B and B ∪ B are intersections
involving at least one closed cocycle and are therefore
well-defined in the presence of a boundary. Formally,
the corresponding terms in Ltriv can be canceled by a
boundary action

L∂ = ∂B ∪ B̄ + ∂A ∪ B̄ . (F35)

However, there is no suitable boundary term for A ∪ A,
which intuitively is due to the fact that A is open and
intersections of A with itself can be pushed through the
boundary. This can be fixed by letting ∂A carry an odd
fermion parity. This means that S∂ =

∫
L∂ implicitly

contains a term

σ[∂A] + (η, ∂A) (F36)

where σ[∂A] is the fermionic reordering sign (as an el-
ement of Z2) along ∂A, and (η, ∂A) is the intersection
of ∂A with the spin structure η required by the spin-
statistics relation as discussed in Section V A. Note that
η is a 2-chain in the 3-dimensional boundary instead of a
1-cochain, and thus we compute the intersection with the
2-cocycle ∂A not by the cup product but by the simplex-
wise overlap (η, ∂A). In the lattice model, we have a
weight

(−1)η(012)A(012) (F37)

at every boundary triangle 012. The fermionic reordering
sign σ[∂A] is defined by choosing a fixed ordering of the
triangles of the branching-structure tetrahedron. We will
choose

123− 013− 023− 012 (F38)

in accordance with Ref. [18]. Then, we associate two
Grassmann variables (c.f. Section V A) θT and θT to ev-
ery triangle T , and evaluate

(−1)σ[A] = (
∏
T∈S2

∫
dθT )

· (
∏
X∈S3

θ
A(X123)

X123
θ
A(X013)
X013

θ
A(X023)

X023
θ
A(X012)
X012

)η1(X) ,

(F39)

where Xabc denotes the abc-triangle of a tetrahedron X,
η1(X) is 0 or 1 depending on whether X has right-handed
or left-handed orientation, and we used the notation

(A)B =

{
A if B = 0

A if B = 1
. (F40)

Below, we will use two identities for the reordering sign
that can be found in Ref. [18], and that we revisit in
Appendix D. First, the reordering sign σ is a quadratic
refinement of ∪1,

σ[a+ b] = σ[a] + σ[b] +
∫
a ∪1 b . (F41)

Second, we have

σ[da] + (η, da) =
∫
a ∪ da . (F42)

This can be understood intuitively by observing that by
definition, (−1)σ[da]+(η,da) is the amplitude of a funda-
mental fermion traveling along the worldline da. Since
fermions have spin −1, this should be equal to (−1 to
the power of) the number of twists in the loop da with
respect to some canonical framing, i.e., the linking num-
ber of da with a canonically shifted copy of da. As da is
the boundary of a, and ∪ provides a canonical shift, this
number of twists is exactly given by

∫
a ∪ da.

Using those identities, we can assert the invariance of
the partition function under gauge transformations. The
action is pretty directly invariant under Λ gauge trans-
formations as in Eq. (F13), which does not involve the
fermionic aspect of the boundary,

∂LΛ
triv + L∂(A,B′)− L∂(A,B)

= ∂(A ∪ Λ +B ∪ Λ + Λ ∪B + dΛ ∪ Λ)

+ ∂B ∪ ∂Λ + ∂dΛ ∪ B̄ + d∂Λ ∪ ∂Λ + ∂A ∪ ∂Λ

= ∂Λ ∪ ∂B + ∂Λ ∪ dB̄ + d(∂Λ ∪ B̄) = d(∂Λ ∪ B̄) .
(F43)

The invariance under a Γ gauge transformations is more
involved. Let us separate ∂LΓ

triv into

∂LΓ
triv0 = ∂Γ ∪ ∂B ,

∂LΓ
triv1 = ∂A ∪ ∂Γ + ∂Γ ∪ ∂A+ ∂Γ ∪ d∂Γ

= ∂A ∪1 d∂Γ + ∂Γ ∪ d∂Γ + d(∂A ∪1 ∂Γ) .

(F44)

Then we have

∂Ltriv0 + L∂(A′, B)− L∂(A,B) = d(∂Γ ∪ B̄) (F45)

by a calculation similar to Eq. (F15). For the change of
the fermion-related weights, we find

σ[∂(A+ dΓ)] + (η, ∂(A+ dΓ))− σ[∂A]− (η, ∂A)

= σ[d∂Γ] +
∫
∂A ∪1 d∂Γ + (η, d∂Γ)

=
∫

(∂A ∪1 d∂Γ + ∂Γ ∪ d∂Γ) =:
∫

∆σ,η

(F46)
using precisely Eq. (F41) and Eq. (F42). So the partition
function is gauge invariant, as the total change

∂Ltriv + L∂(A′, B)− L∂(A,B) + ∆σ,η (F47)

is a coboundary.
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c. Invertibility The argument for the invertibility of
the boundary is the same as for the toric-code CYWW
model in the last paragraph of Section F 2. All that mat-
ters for those considerations is that the boundary is A-
open and B-closed. As argued in Section V B, the physi-
cal boundary of the space boundary of M2 in Eq. (F21) is
a torus, on which the spin structure has to be bounding-
bounding. For this bounding-bounding spin structure,
the term∫

B ∪B +
∫
A ∪A+ σ[∂A] + (η, ∂A) (F48)

evaluates trivially for all the 2-cycles spanned by β0 and
β1 on the left-hand side, such that only the toric-code
CYWW term

∫
A ∪B remains. The same holds for M3,

for which there is only one spin structure for the physical
boundary of the space boundary.
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