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Given any pair of quantum channels Φ1,Φ2 such that at least one of them has Kraus

rank one, as well as any respective Stinespring isometries V1, V2, we prove that there
exists a unitary U on the environment such that ∥V1 − (1⊗U)V2∥∞ ≤

√
2∥Φ1 − Φ2∥⋄.

Moreover, we provide a simple example which shows that the factor
√
2 on the right-hand

side is optimal, and we conjecture that this inequality holds for every pair of channels.
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1 Introduction

A well-known consequence of Stinespring’s dilation theorem [27] is that every quantum channel

arises from some action on a larger system. More precisely, for every completely positive

trace-preserving map there exists a Hilbert space (representing the environment) as well as

an isometry V—mapping the input space of the channel to the output space coupled to the

environment—such that the original channel is recovered by tracing the environment out of

V (·)V ∗ [13, Thm. 6.9]. Equivalently, every quantum channel can be expressed in operator-sum

form using so-called Kraus operators [16]. Both these representations of quantum channels are

ubiquitous in—and fundamental to—quantum information and quantum computation [28].

While every such V (called Stinespring isometry) induces a unique quantum channel

via trE(V (·)V ∗), every channel admits uncountably many Stinespring isometries, even after

restricting the dimension of the environment Hilbert space. This is why Kretschmann et

al. [19] posed the question whether any two channels that are, in some sense, “close together”

admit Stinespring isometries which are also “close together”. What they were able to show is

that for any two quantum channels Φ1,Φ2 : Cn×n → Ck×k there exist Stinespring isometries

V1, V2 with common dilation space such that

∥V1 − V2∥∞ ≤
√
∥Φ1 − Φ2∥⋄ , (1)

under the crucial assumption that the dimension of the dilation space is at least 2nk. For the

precise statement refer to [19, Thm. 1] or [7, Prop. 5]; a slight refinement which lowers the

necessary environment dimension is given in Proposition 1 below.

This result has since been applied to various fields of quantum physics: Already in their

original paper Kretschmann et al. used it to derive an information-disturbance tradeoff for

quantum channels which has since been employed in quantum computation [20], (approxi-

mate) quantum error correction [4, 6], and, subsequently, holography [15, 11, 1, 9]. Moreover,
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2 Progress on the Kretschmann-Schlingemann-Werner Conjecture

the above continuity result has been used to answer questions, e.g., in quantum communica-

tion [12, 21], quantum simulation [5], error correction [17], and cryptography [7, 2]. Finally,

this result has since been generalized to C∗-algebras [18] as well as to energy-constrained

channels [26, 24, 23], which in turn has been used to study convergence of quantum channels

in the strong∗ operator topology [25].

In this work we will focus on the assumption of Kretschmann et al.’s result that the dilation

space has to be “large enough”; indeed, they follow up on their result by saying that they “do

not claim that for any common dilation space there exist isometries such that [Eq. (1) holds

but they] conjecture this to be true” [19, p. 1711]. While we will provide a counterexample

down below (cf. Example 1) there is much structure to uncover here. First—based on said

example—we formulate the (updated) Kretschmann-Schlingemann-Werner conjecture:

Conjecture 1 Let n, k ∈ N and let completely positive, trace-preserving linear maps

Φ1,Φ2 : Cn×n → Ck×k be given. Then for all m ∈ N and for all Stinespring isometries

V1, V2 : Cn → Ck ⊗ Cm of Φ1,Φ2, respectively, it holds that

min
U∈U(m)

∥V1 − (1⊗ U)V2∥∞ ≤
√
2∥Φ1 − Φ2∥⋄ . (2)

At this point we note that the “converse” inequality

∥Φ1 − Φ2∥⋄ ≤ 2 min
U∈U(m)

∥V1 − (1⊗ U)V2∥∞ ,

was obtained in [19]a without restriction on m, so proving Conjecture 1 would establish full

equivalence of the diamond norm and this “distance” (cf. also the remark at the end of Sec. 2)

between Stinespring isometries. Aside from showing that the factor
√
2 on the right-hand side

of (2) cannot be chosen any lower, this paper’s main contribution reads as follows.

Theorem 1 (Informal) If Φ1 or Φ2 has Kraus rank one, then Conjecture 1 holds. This

includes the case where at least one of the two channels is unitary.

The idea of our proof boils down to treating the following two cases: If the two isometries

V1, V2 are “similar enough” (i.e. close in norm up to simultaneous local unitaries), then the

minimum in Eq. (2) has an explicit form via the operational fidelity of Φ1,Φ2; note that

this only holds in general because one of the channels has Kraus rank one. Either way, the

analytic expression of the minimum lets us show Eq. (2) via an established inequality that

upper bounds the operational fidelity using the diamond norm. On the other hand, if the

(local unitary orbits of the) two isometries V1, V2 are “far apart”, then the diamond norm

distance between Φ1 and Φ2 is maximal meaning Eq. (2) is satisfied trivially. This implication,

again, only holds because of the Kraus-rank one condition.

Now while Conjecture 1 is supported by numerics, any proof of it has to differ from our

proof (of Thm. 1) as the latter does not generalize to arbitrary channels. We will address this

in the outlook section where we also present some ideas on how one could tackle Conjecture 1

beyond the assumption from Thm. 1.

aTo recap their argument, given any m,n, k ∈ N and arbitrary linear maps V1, V2 : Cn → Ck ⊗ Cm one has
id⊗ (trCm (V1(·)V ∗

1 −V2(·)V ∗
2 )) = trCm ((1⊗V1)(·)(1⊗V1)∗ − (1⊗V2)(·)(1⊗V2)∗). Then the operator norm

of the latter—which equals the diamond norm of trCm (V1(·)V ∗
1 )− trCm (V2(·)V ∗

2 )—can be upper bounded by
(∥V1∥∞ + ∥V2∥∞)∥V1 − V2∥∞ via the triangle inequality. For isometries this equals 2∥V1 − V2∥∞, and this
continues to be an upper bound when taking the minimum over the local unitary orbits.



Frederik vom Ende 3

2 Main Results

As mentioned before, Kretschmann et al. eventually extended their continuity result to C∗-

algebras [18]; yet, in this article we will work exclusively in finite dimensions. First some

notation: The collection of all linear maps : Cn×n → Ck×k will be denoted by L(Cn×n,Ck×k),
while CPTP(n, k) refers to the subset of completely positive, trace-preserving maps (also called

quantum channels or quantum maps). Each channel Φ ∈ CPTP(n, k) admits a Kraus rank

(sometimes also called Choi rank) which is defined as the smallest number r ∈ N for which

there exist {Kj}rj=1 ⊂ Ck×n such that Φ ≡
∑r
j=1Kj(·)K∗

j . In particular it holds that r ≤ nk,

cf. [28, Ch. 2.2.2].

One channel that will be particularly important is the partial trace (in the Schrödinger

picture) trCm : Ck×k ⊗ Cm×m → Ck×k, that is, trCm is the unique linear map which satisfies

tr(trCm(A)B) = tr(A(B ⊗ 1m)) for all A ∈ Ck×k ⊗ Cm×m, B ∈ Ck×k. Next, we denote by

D(Cn) the set of all n-level quantum states (i.e. positive semi-definite matrices of unit trace)

which, as usual, is equipped with the trace norm ∥ · ∥1 (i.e. the sum of all singular values of

the input). In contrast, ∥ · ∥∞ refers to the operator norm (on matrices) which is given by the

largest singular value of the input. Finally, U(n) is the Lie group of all unitary n×n matrices

and u(n) is its Lie algebra, that is, iu(n) is the collection of all Hermitian n× n matrices.

With this we come to the measures employed in this paper to “compare” channels. The

main tool certainly is the diamond norm ∥ · ∥⋄—also called completely bounded trace norm—

which for any Φ ∈ L(Cn×n,Ck×k) is defined as the supremum of ∥(idn⊗Φ)(A)∥1 taken over all

A ∈ Cn×n⊗Cn×n with ∥A∥1 = 1, cf. [28, Def. 3.43 ff.]. Moreover, we will use the operational

fidelity

F (Φ1,Φ2) := min
ψ∈Cn⊗Cn,∥ψ∥=1

f
(
(id⊗ Φ1)(|ψ⟩⟨ψ|), (id⊗ Φ2)(|ψ⟩⟨ψ|)

)
= min
ρ∈D(Cn⊗Cn)

f
(
(id⊗ Φ1)(ρ), (id⊗ Φ2)(ρ)

)
where f(ρ, σ) := tr(

√√
ρσ

√
ρ) is the usual fidelity, cf. [3, Eq. (52)]. A key characterization

of the operational fidelity is that for any two isometries V1, V2 : Cn → Ck ⊗ Cm one has

F (trCm(V1(·)V ∗
1 ), trCm(V2(·)V ∗

2 )) = max
W∈Cm×m

∥W∥∞≤1

min
ρ∈D(Cn)

Re(tr(ρV ∗
1 (1⊗W )V2))

=
1

2
max

W∈Cm×m

∥W∥∞≤1

min spec (V ∗
1 (1⊗W )V2 + V ∗

2 (1⊗W ∗)V1) ,

(3)

where, here and henceforth, spec denotes the spectrum; the first equality in (3) is [19, Eq. (24)],

and the second equality is readily verified.

Having set the stage we are now ready to recap (and slightly refine) the original conti-

nuity result of Kretschmann et al. Not only is doing so the obvious starting point, but the

proof below and the techniques used therein—which differ slightly from the original proof of

Kretschmann et al., although it is in the same spirit—will become important later when we

generalize the result.
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Proposition 1 Let m,n, k ∈ N and Φ1,Φ2 ∈ CPTP(n, k) be given, and assume that m is not

smaller than the sum of the Kraus ranks of Φ1 and Φ2. Then for all Stinespring isometries

V1, V2 : Cn → Ck ⊗ Cm of Φ1,Φ2, respectively, there exists U ∈ U(m) such that

∥V1 − (1⊗ U)V2∥2∞ = 2(1− F (Φ1,Φ2)) . (4)

In particular, for any such m and all such V1, V2 it holds that

min
U∈U(m)

∥V1 − (1⊗ U)V2∥∞ ≤
√
∥Φ1 − Φ2∥⋄ . (5)

Proof. It suffices to prove (4) because then (5) follows from the Fuchs-van de Graaf

inequality 2(1− F (Φ1,Φ2)) ≤ ∥Φ1 − Φ2∥⋄ (cf. [10, 3] and [19, Lemma 2]).

The strategy for showing (4) is to first prove it for “specific” Stinespring isometries, and

in a second step to relate it to the general case. First, set kj := Kraus rank (Φj), j = 1, 2 and

choose any Kraus operators {K1j}k1j=1, {K2j}k2j=1 ⊂ Ck×n of Φ1,Φ2, respectively. With this

define Ṽ1, Ṽ2 : Cn → Ck ⊗ Cm via Ṽ1x :=
∑k1
j=1K1jx ⊗ |j⟩, Ṽ2 :=

∑k2
j=1K2jx ⊗ |k1 + j⟩ for

all x ∈ Cn; because m ≥ k1 + k2 by assumption, Ṽ1, Ṽ2 are well-defined. One readily verifies

that Ṽ1, Ṽ2 are Stinespring isometries of Φ1,Φ2, respectively, and that for all U ∈ Cm×m

Ṽ ∗
1 (1⊗ U)Ṽ2 =

k1∑
j=1

k2∑
ℓ=1

K∗
1jK2ℓ⟨j|U |k1 + ℓ⟩ . (6)

The reason (6) is important is the fact that

∥Ṽ1 − (1⊗ U)Ṽ2∥2∞ =
∥∥(Ṽ1 − (1⊗ U)Ṽ2

)∗(
Ṽ1 − (1⊗ U)Ṽ2

)∥∥
∞

=
∥∥2 · 1− Ṽ ∗

1 (1⊗ U)Ṽ2 − Ṽ ∗
2 (1⊗ U∗)Ṽ1

∥∥
∞

= 2−min spec
(
Ṽ ∗
1 (1⊗ U)Ṽ2 − Ṽ ∗

2 (1⊗ U∗)Ṽ1
)

(7)

for all U ∈ U(m), where in the last step we used that Ṽ ∗
1 (1⊗U)Ṽ2−Ṽ ∗

2 (1⊗U∗)Ṽ1 is Hermitian

(hence unitarily diagonalizable). Now, writing any U ∈ Cm×m in block form

U =

(
U11 U12

U21 U22

)
with U11 ∈ Ck1×k1 (i.e. U12 ∈ Ck1×(m−k1))—together with Eq. (6)—shows that only U12

appears in Ṽ ∗
1 (1 ⊗ U)Ṽ2 + Ṽ ∗

2 (1 ⊗ U∗)Ṽ1. With this in mind let W ∈ Cm×m be any matrix

where max∥W∥∞≤1 min spec (Ṽ ∗
1 (1⊗W )Ṽ2+ Ṽ

∗
2 (1⊗W ∗)Ṽ1) is attained. Because ∥W∥∞ ≤ 1,

one in particular has ∥W12∥∞ ≤ 1 so

W0 :=

(√
1−W12W ∗

12 W12

W ∗
12 −

√
1−W ∗

12W12

)
∈ Cm×m

is unitary, cf. [22, Appendix, Sec. 4]. Thus min spec (Ṽ ∗
1 (1⊗W )Ṽ2+ Ṽ

∗
2 (1⊗W ∗)Ṽ1) remains

unchanged when replacing W by W0. Using (7) this lets us conclude

∥Ṽ1 − (1⊗W0)Ṽ2∥2∞ = 2−min spec
(
Ṽ ∗
1 (1⊗W0)Ṽ2 + Ṽ ∗

2 (1⊗W ∗
0 )Ṽ1

)
= 2−min spec (Ṽ ∗

1 (1⊗W )Ṽ2 + Ṽ ∗
2 (1⊗W ∗)Ṽ1)

= 2− max
∥U∥∞≤1

min spec (Ṽ ∗
1 (1⊗ U)Ṽ2 + Ṽ ∗

2 (1⊗ U∗)Ṽ1)

(3)
= 2(1− F (Φ1,Φ2)) ,
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that is, (4) holds for Ṽ1, Ṽ2, and U =W0. Now for the general case: Givenm ∈ N, m ≥ k1+k2
and any Stinespring isometries V1, V2 : Cn → Ck ⊗Cm of Φ1,Φ2, because Vk and Ṽk describe

the same channel there exist U1, U2 ∈ U(m) such that Vj = (1⊗Uj)Ṽj , j = 1, 2 [28, Coro. 2.24].

With this, setting U := U∗
1W0U2 yields

∥V1 − (1⊗ U)V2∥∞ = ∥(1⊗ U1)V1 − (1⊗W0)(1⊗ U2)V2∥∞
= ∥Ṽ1 − (1⊗W0)Ṽ2∥∞ =

√
2(1− F (Φ1,Φ2))

which concludes the proof. □.

We remark that the quantity 2(1−F (Φ1,Φ2)) is also known as the Bures distance of Φ1 and

Φ2 [26], in analogy to the Bures distance of quantum states, cf., e.g., [13, Ch. 10.2.3].

It turns out—as already hinted at in the introduction—that the assumption on the di-

mension m of the auxiliary space being “large enough” is necessary for (5) (and thus for (4))

to hold. Let us give an example to substantiate this:

Example 1 Define the unitaries V1 := 1 and V2 := diag(e2πij/n)nj=1, n ∈ N. We claim that

min
z∈U(1)

∥V1 − zV2∥∞ = sin
(π(n− 1)

2n

)√
2∥V1(·)V ∗

1 − V2(·)V ∗
2 ∥⋄ . (8)

The case n = 1 is trivial so w.l.o.g. n ≥ 2. For the left-hand side of (8)—using that the

spectrum of V2 is symmetric w.r.t. the real axis—a simple geometric argument shows

max
ϕ∈R

∥1− eiϕV2∥∞ = ∥1− V2∥∞ =
∣∣1− eiπ(n−1)/n

∣∣
=

√
2
(
1− cos

(π(n− 1)

n

))
= 2 sin

(π(n− 1)

2n

)
where in the last step we used the standard half-angle formula. On the other hand, [14,

Thm. 12] shows ∥V1(·)V ∗
1 − V2(·)V ∗

2 ∥⋄ = 2 for our choice of V1, V2, which altogether estab-

lishes (8).

Not only does this example show that Eq. (5) cannot hold for all m ∈ N as soon as n ≥ 3,

it even shows that no “universal” (i.e. dimension-independent) constant in Conjecture 1 can

be smaller than
√
2 (as sin(π(n−1)

2n ) → 1 for n → ∞). In fact this “bound” of
√
2 is attained

in infinite dimensions: set H := ℓ2(Z), V1 := 1, and V2 :=
∑
n∈Z |n⟩⟨n + 1| ∈ U(H) is the

bilateral shift. Moreover, numerics suggest that Example 1 describes the maximal violation

of Eq. (5) in each dimension.

Altogether, this example is what motivates Conjecture 1, and at this point we are ready

to prove the latter for the special case where at least one of the channels has Kraus rank

one. To do so we first need the following lemma; it appears similar to Eq. (4) but it does not

feature any assumption on m, hence why the proof below differs substantially from the proof

of Proposition 1.

Lemma 1 Let m,n, k ∈ N, U ∈ Ck×n, a vector ϕ ∈ Cm with ∥ϕ∥ = 1, and a linear map

V : Cn → Ck ⊗ Cm be given such that U and V are isometries. If there exists W ∈ U(m)

such that ∥U ⊗ |ϕ⟩ − (1⊗W )V ∥∞ ≤
√
2, then

min
W∈U(m)

∥U ⊗ |ϕ⟩ − (1⊗W )V ∥2∞ = 2
(
1− F

(
U(·)U∗, trCm(V (·)V ∗)

))
. (9)
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Proof. The key is the (non-linear) functional

Γ : Cm → R
ψ 7→ min spec

(
(U∗ ⊗ ⟨ψ|)V + V ∗(U ⊗ |ψ⟩)

) (10)

and the observation that Γ(λψ) = λΓ(ψ) for all ψ ∈ Cm and all λ ≥ 0. Now by assumption

there exists W ∈ U(m) such that ∥U ⊗ |ϕ⟩ − (1 ⊗W )V ∥∞ ≤
√
2; by (7) this implies that

(U∗ ⊗ ⟨ϕ|W )V + V ∗(U ⊗W ∗|ϕ⟩) is positive semi-definite. In particular this shows that

max
∥ψ∥=1

Γ(ψ) ≥ Γ(W ∗|ϕ⟩) ≥ 0 (11)

meaning the maximum of Γ(ψ) over the unit ball is equal to the maximum over the unit sphere:

To see this, let ψmax ∈ Cn, ∥ψmax∥ ≤ 1 be any vector such that Γ(ψmax) = max∥ψ∥≤1 Γ(ψ).

Thenb

max
∥ψ∥≤1

Γ(ψ) = Γ(ψmax) = ∥ψmax∥Γ
( ψmax

∥ψmax∥

)
≤ Γ

( ψmax

∥ψmax∥

)
≤ max

∥ψ∥=1
Γ(ψ) ≤ max

∥ψ∥≤1
Γ(ψ) ,

(12)

where in the in the third step we used that Γ(ψmax) ≥ 0. This lets us calculate

2
(
1− F

(
U(·)U∗, trCm(V (·)V ∗)

)) (3)
= 2− max

∥W∥∞≤1
min spec (U∗ ⊗ ⟨ϕ|W )V + V ∗(U ⊗W ∗|ϕ⟩)

= 2− max
∥ψ∥≤1

Γ(ψ)
(12)
= 2− max

∥ψ∥=1
Γ(ψ)

= min
W∈U(m)

(
2− Γ(W ∗|ϕ⟩)

)
(7)
= min

W∈U(m)
∥U ⊗ |ϕ⟩ − (1⊗W )V ∥2∞

which concludes the proof. □.

The condition from Lemma 1 that the (local unitary orbits of the) isometries are no more

than
√
2 apart already appeared, implicitly, in the proof of Proposition 1: there, Eq. (6)

implies Ṽ ∗
1 Ṽ2 = 0 and thus ∥Ṽ1 − Ṽ2∥∞ =

√
2. However, we emphasize that there do exist

isometries (the orbits of) which are less than
√
2 apart but the square of said distance is

not equal to—but rather strictly larger than—2(1 − F (trCm(V1(·)V ∗
1 ), trCm(V2(·)V ∗

2 ))); an

example is given in Appendix A. In particular this means that Lemma 1 fails for general

isometries.

Either way, with Lemma 1 at hand we are ready to prove this paper’s main result.

Theorem 1. Let m,n, k ∈ N and let U ∈ Ck×n be given such that U∗U = 1. If

V1 : Cn → Ck ⊗ Cm is any Stinespring isometry of U(·)U∗, and if V2 : Cn → Ck ⊗ Cm is an

arbitrary isometry, then

min
W∈U(m)

∥V1 − (1⊗W )V2∥∞ ≤
√
2∥U(·)U∗ − trCm(V2(·)V ∗

2 )∥⋄ . (13)

bWe may assume w.l.o.g. that ψmax ̸= 0: If the maximum of Γ over the unit ball were zero, then by (11)
max∥ψ∥≤1 Γ(ψ) = 0 ≤ Γ(W ∗|ϕ⟩) ≤ max∥ψ∥=1 Γ(ψ) ≤ max∥ψ∥≤1 Γ(ψ) as desired.
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Proof. Note that given any ϕ ∈ Cm with ∥ϕ∥ = 1, U ⊗ |ϕ⟩ is a Stinespring isometry

of U(·)U∗ and, moreover, by [28, Coro. 2.24] every Stinespring isometry of U(·)U∗ is of this

form. For what follows we adapt the notation from the proof of Lemma 1. We distinguish

two cases:

1. If minW∈U(m) ∥U⊗|ϕ⟩−(1⊗W )V2∥∞ ≤
√
2, then Lemma 1 together with Fuchs-van de

Graaf (i.e. 2(1−F (Φ1,Φ2)) ≤ ∥Φ1−Φ2∥⋄, cf. proof of Proposition 1) readily implies (13).

2. Assume now that minW∈U(m) ∥U ⊗ |ϕ⟩ − (1 ⊗W )V2∥∞ >
√
2. By Eq. (7) this implies

that (U∗⊗⟨ϕ|W )V +V ∗(U ⊗W ∗|ϕ⟩) has a negative eigenvalue for all W ∈ U(m). Thus

the functional Γ from Eq. (10) takes only negative values on the unit sphere; but Γ also

satisfies Γ(λ(·)) ≡ λΓ for all λ ≥ 0, so Γ is negative on all of Cm \ {0}. This shows

F
(
U(·)U∗, trCm(V (·)V ∗)

) (3)
=

1

2
max
∥ψ∥≤1

Γ(ψ) = Γ(0) = 0 .

Thus, by Fuchs-van de Graaf [19, Lemma 2] ∥U(·)U∗− trCm(V (·)V ∗)∥⋄ = 2. Altogether

this implies the claim as the l.h.s. of (13) is trivially upper bounded by 2 as a consequence

of the triangle inequality.

□.

Again we point out that this proof strategy cannot cover all of Conjecture 1: Not only

does it rely on (some version of) Eq. (4)—which is not valid in general, cf. Appendix A—

but minW∈U(m) ∥V1 − (1 ⊗ W )V2∥∞ >
√
2 does in general not imply that the channels

trCm(Vj(·)V ∗
j ), j = 1, 2 have zero fidelity, refer to Appendix B for an example. However,

this does not rule out the possibility of modifying this paper’s ideas and techniques to fit the

case of general isometries; more on this in Sec. 3.

Finally, a word of caution: The way we measure how far two Stinespring isometries “are

apart” in Conjecture 1 is not a metric on the set of quantum channels, at least not without

further ado. Given any Φ1,Φ2 ∈ CPTP(n, k) set m := maxj=1,2 Kraus rank (Φj). Then, given

any Stinespring isometries V1, V2 : Cn → Ck ⊗ Cm of Φ1,Φ2 define

d(Φ1,Φ2) := min
U∈U(m)

∥V1 − (1⊗ U)V2∥∞ . (14)

By [28, Coro. 2.24] d does not depend on the particular choice of V1, V2, that is, the map

d : CPTP(n, k) × CPTP(n, k) → [0,∞) is well-defined. While d is symmetric and positive

definite, it does not satisfy the triangle inequality. A counter-example is given by n = k = 3,

Φ1 = id, Φ2 = U(·)U∗ with U := diag(1, e2πi/3, e4πi/3), as well as Φ3 := 1
2 (Φ1 + Φ2): then

d(Φ1,Φ2) =
√
3 (by Example 1) while

d(Φ1,Φ3) ≤
∥∥1⊗ |0⟩ − 1⊗|0⟩+U⊗|1⟩√

2

∥∥
∞ =

√
2−

√
2

d(Φ2,Φ3) ≤
∥∥U ⊗ |0⟩ − (1⊗ σx)

1⊗|0⟩+U⊗|1⟩√
2

∥∥
∞ =

∥∥U ⊗ |0⟩ − 1⊗|1⟩+U⊗|0⟩√
2

∥∥
∞ =

√
2−

√
2 .

This leads to the desired contradiction

d(Φ1,Φ2) =
√
3 > 2

√
2−

√
2 ≥ d(Φ1,Φ3) + d(Φ3,Φ2) .
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Note that this example relies on Φ3 having a different Kraus rank than Φ1,Φ2. Indeed, one

possibility to resolve this issue could be to include the number m in the minimum in (14).

However, doing so might make such a quantity unfeasible for studying general channels as the

effect of the auxiliary dimension m on minU∈U(m) ∥V1 − (1⊗U)V2∥∞ is not well understood.

3 Conclusions and Outlook

We updated the Kretschmann-Schlingemann-Werner conjecture (stated as Conjecture 1 in the

introduction) based on a counterexample (Example 1), and we went on to prove the special

case where at least one of the channels has Kraus rank one; this includes the case where at

least one of the channels is unitary. The main idea of our proof was to show that, in this

case, minU∈U(m) ∥V1 − (1 ⊗ U)V2∥2∞ can be characterized via the Bures distance (resp. the

operational fidelity) of the induced channels, assuming this minimum does not exceed 2.

Generally, this minimum can be strictly larger than 2(1−F (Φ1,Φ2)) (cf. Appendix A) which,

however, does not disprove the conjecture, but rather shows that our proof strategy has

to be modified. One idea—assuming one wants to keep employing the Fuchs-van de Graaf

inequalities—could be to show

2 max
∥U∥∞≤1

Γ(U) ≤ 2 + max
U∈U(m)

Γ(U) (15)

for allm,n, k ∈ N and all isometries V1, V2 ∈ Cn → Ck⊗Cm, where Γ : Cm×m → R is the non-

linear functional Γ(X) := min spec (V ∗
1 (1⊗W )V2 +V ∗

2 (1⊗W ∗)V1). By Eqs. (3) & (7) prov-

ing (15) would be equivalent to proving minU∈U(m) ∥V1 − (1⊗ U)V2∥∞ ≤ 2
√
1− F (Φ1,Φ2).

Alternatively one could study the effect the environment dimension m has on the quantity

minU∈U(m) ∥V1 − (1 ⊗ U)V2∥∞ ; after all—by the original result of Kretschmann et al.—

Conjecture 1 (even a stricter version thereof) holds as soon as m is “large enough”, cf. also

Proposition 1. More precisely, given m,n, k ∈ N and isometries V1, V2 : Cn → Ck ⊗ Cm, if

one could show that for all m′ > m

min
U∈U(m)

∥V1 − (1⊗ U)V2∥∞ ≤
√
2 min
U ′∈U(m′)

∥(1⊗ ιm′)V1 − (1⊗ U ′)(1⊗ ιm′)V2∥∞ (16)

where the isometry ιm′ : Cm → Cm′
is defined via ιm′(x) := (x, 0m′−m)⊤, then combining

Proposition 1 with Eq. (16) would imply Conjecture 1.

While both ideas seem promising and could be directions for future research, for now the

Kretschmann-Schlingemann-Werner conjecture remains open. Let us conclude by presenting

two related open questions:

� As the bound in Conjecture 1 is independent of the dimension of the underlying spaces

one may even extend the former to infinite dimensions: Given complex Hilbert spaces

H,K,Z and arbitrary isometries V1, V2 : H → K⊗Z does it hold that

min
U∈U(Z)

∥V1 − (1K ⊗ U)V2∥∞ ≤
√

2∥trZ(V1(·)V ∗
1 )− trZ(V2(·)V ∗

2 )∥⋄ ?

� Given dynamic processes Φ1,Φ2 do there existm ∈ N as well as sufficiently regular—but
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at least locally absolutely continuous—curves of Stinespring isometriescV1,V2 such that

∥V1(t)− V2(t)∥∞ ≤
√
2∥Φ1(t)− Φ2(t)∥⋄ (17)

for all t? Be aware that (17) would not be a direct consequence of Conjecture 1 due

to the additional continuity requirement on V1,V2. This question is inspired by recent

work of ours [8] which explored the concept of “dynamic” Stinespring representations

and established at least the approximate existence of such [8, Thm. 1].
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Appendix A: Counterexample to a Generalization of Lemma 1

Consider the isometries

V1 :=
1√
3


1 0
0 1
1 1
1 −1

 and V2 :=
1√
3


1 1
1 −1
1 0
0 −1

 .

The corresponding channels Φj := trC2(Vj(·)V ∗
j ), j = 1, 2 act on any ρ ∈ C2×2 like

Φ1(ρ) =

(
1
3 (ρ11 + ρ22)

1
3 (ρ11 + ρ12 + ρ21 − ρ22)

1
3 (ρ11 + ρ12 + ρ21 − ρ22)

2
3 (ρ11 + ρ22)

)
Φ2(ρ) =

(
2
3 (ρ11 + ρ22)

1
3 (ρ11 − ρ12 + ρ21 + ρ22)

1
3 (ρ11 + ρ12 − ρ21 + ρ22)

1
3 (ρ11 + ρ22)

)
.

We claim that

max
U∈U(2)

min spec
(
V ∗
1 (1⊗ U)V2 + V ∗

2 (1⊗ U∗)V1
)
= 0.3805 . . .

<
2

3
≤ max

∥U∥∞≤1
min spec

(
V ∗
1 (1⊗ U)V2 + V ∗

2 (1⊗ U∗)V1
) (A.1)
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which by the proof of Lemma 1 is equivalent to

min
U∈U(2)

∥V1 − (1⊗ U)V2∥∞ =
√
2− 0.3805 . . .

>
√
2− 2

3 ≥
√

2
(
1− F

(
trCm(V1(·)V ∗

1 ), trCm(V2(·)V ∗
2 )

))
.

On the one hand (V ∗
1 (1⊗ |2⟩⟨1|)V2 + V ∗

2 (1⊗ |1⟩⟨2|)V1 = 2
3 · 1; this gives the lower bound of

the right-hand side of (A.1). On the other hand consider an arbitrary element U ∈ U(2), that

is,

U =

(
cos(x)eiζ sin(x)ei(ω+ϕ)

− sin(x)e−iω cos(x)ei(ϕ−ζ)

)

for some x, ϕ, ζ, ω ∈ R. Then one finds:

min spec
(
V ∗
1 (1⊗ U)V2 + V ∗

2 (1⊗ U∗)V1
)
=

2

3

(
cos(x) cos(ζ)− cos(ω) sin(x)−√

2 + 2 cos2(x) sin2(ϕ− ζ)− 2 cos2(x) sin2(ζ)− (sin(x) sin(ω + ϕ)− cos(x) sin(ϕ− ζ))2
)

Observing that setting ζ = ω = 0 and ϕ = −π
2 does not change the maximum, we may instead

consider

U =

(
cos(x) i sin(x)
− sin(x) i cos(x)

)

with x ∈ [0, π]. Therefore

max
U∈U(2)

min spec
(
V ∗
1 (1⊗ U)V2 + V ∗

2 (1⊗ U∗)V1
)

=
2

3
max
x∈[0,π]

(
cos(x)− sin(x)−

√
2 + cos(2x) + sin(2x)

)
=

√
16

9
− 2

√
2

3
≃ 0.3805 . . .

as claimed.

Appendix B: Example of Isometries That Are “Far Apart” but the Induced Chan-

nels Have Non-Zero Fidelity

The following is a (numerical) example of two isometries V1, V2 : C3 → C3 ⊗ C2 such that

minU∈U(m) ∥V1 − (1⊗U)V2∥∞ >
√
2, but F (trCm(V1(·)V ∗

1 ), trCm(V2(·)V ∗
2 )) > 0 (equivalently

by the Fuchs-van de Graaf inequalities: ∥trCm(V1(·)V ∗
1 ) − trCm(V2(·)V ∗

2 )∥⋄ < 2). A random
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search yielded

V1 =


0.0720257 + 0.403635i −0.27118− 0.260568i −0.0507697 + 0.0669192i
0.19795 + 0.363156i 0.201747 − 0.0722566i 0.679242 − 0.0637345i

−0.259574 + 0.274006i −0.107846− 0.210931i 0.0967138 + 0.297056i
−0.429354− 0.410058i 0.0846627 + 0.124068i 0.559109 − 0.251464i
−0.335246 + 0.151762i −0.130565 + 0.325685i 0.111082 + 0.0316921i
−0.120023− 0.12668i −0.446167− 0.641698i 0.200846 − 0.0199049i

 ,

V2 =


−0.472877 + 0.283338i −0.0970526− 0.387244i 0.0909608 − 0.338129i
−0.244363 + 0.193024i 0.00157303 + 0.23514i −0.104252− 0.362985i
0.129531 + 0.238246i −0.0278328 + 0.419327i 0.00258036 − 0.341585i
0.245734 + 0.258541i −0.171596 + 0.148668i −0.0406064 + 0.0942153i
0.0945343 + 0.420365i 0.0985514 + 0.220795i 0.687703 + 0.354813i
0.461193 − 0.00493922i −0.38767− 0.590272i 0.0784118 + 0.0507872i

 ;

numerics claim that minU∈U(2) ∥V1 − (13 ⊗ U)V2∥∞ = 1.478 >
√
2 and that the minimum is

attained on the unitary

U =

(
−0.256631 + 0.0241997i −0.674035 + 0.692265i
0.156281 + 0.953484i −0.196551− 0.166771i

)
.

Yet, the channels trCm(V1(·)V ∗
1 ), trCm(V2(·)V ∗

2 ) have non-zero fidelity: set

W0 :=

(
−0.123603− 0.0759052i −0.753418 + 0.567052i
−0.179898 + 0.274495i −0.137246 + 0.225905i

)
and note ∥W0∥∞ = 1 as well as

F (trCm(V1(·)V ∗
1 ), trCm(V2(·)V ∗

2 ))
(3)
=

1

2
max

W∈Cm×m

∥W∥∞≤1

min spec (V ∗
1 (1⊗W )V2 + V ∗

2 (1⊗W ∗)V1)

≥ 1

2
min spec (V ∗

1 (1⊗W0)V2 + V ∗
2 (1⊗W ∗

0 )V1) ≃ 0.04 .


