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Abstract

In this thesis we investigate sign mappings, which for a fixed rank r map subsets of {1,...,n}
of size r to one of the two signs 4+ and —, while avoiding sign patterns on induced substruc-
tures. Particular focus will be on signotopes and generalized signotopes which originate from
pseudohyperplane arrangements and simple drawings. Using those combinatorial encodings for
topological objects, we prove classic results in a more general setting.

We consider Levi’s extension lemma for pseudoline arrangements and prove that it general-
izes to signotopes of odd rank r. Levi showed in 1926 that every pseudoline arrangement can
be extended by an additional pseudoline going through two prescribed points. A generaliza-
tion to dimension 3 fails as Goodman and Pollack (1981) provided an example of pseudoplane
arrangements and three prescribed points which is not extendable even though for hyperplane ar-
rangements an extension through d points in dimension d is trivial. Later Richter-Gebert (1993)
showed that even an extension through two prescribed points is not possible in dimension 3.
We show that signotopes, a subclass of pseudohyperplane arrangements, admit an extension
theorem for all even dimensions, that is if the rank r is odd. Moreover, we provide signotopes
which are not extendable for rank 4, 6, 8, 10 and 12.

Next, we focus on theorems from convex geometry such as Carathéodory’s, Helly’s and Kirch-
berger’s theorem and study them in the more general setting of simple drawings of the complete
graph. In particular we determine in which layer of the convexity hierarchy introduced by Arroyo
et al. (2022) the statements hold, and in which layer there are counterexamples. The convexity
hierarchy describes several layers between point sets in the plane and simple drawings using a
generalized notion of convexity. For the proof of Kirchberger’s theorem generalized signotopes,
which encode the triangle orientations of simple drawings in the plane, played an essential role.
Additionally to the mentioned theorems we introduce the notion of holes in the setting of simple
drawings, which are classically considered in point sets. We show that convex drawings behave
similarly to point sets in the sense that every sufficiently large convex drawing contains a 6-hole
while there are arbitrarily large drawings without 7-holes.

Moreover, we show that Rafla’s conjecture (1988) is true for convex drawings. The conjecture
states that every simple drawing of the complete graph admits a plane Hamiltonian cycle. The

best known partial results are plane paths of length ( log(n) ) (Suk, Zeng and Aichholzer et

loglog(n)
al. 2022) and plane matchings of size Q(y/n) (Aichholzer et al. 2022). We investigate several
variations and strengthenings of this conjecture. In particular we prove that every convex
drawing admits a plane substructure consisting of a plane Hamiltonian cycle and additional
n — 2 additional edges.






Selbststandigkeitserklarung

Ich erklare gegeniiber der Freien Universitat Berlin, dass ich die vorliegende Dissertation selbst-
standig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausfiihrungen, die wortlich oder in-
haltlich aus anderen Schriften entnommen sind, habe ich als solche kenntlich gemacht. Diese
Dissertation wurde in gleicher oder dhnlicher Form noch in keinem fritheren Promotionsver-
fahren eingereicht.

Mit einer Priifung meiner Arbeit durch ein Plagiatspriifungsprogramm erklére ich mich einver-
standen.

Berlin,

(Helena Bergold)






Acknowledgements

First of all I want to thank my advisors Giinter Rote and Stefan Felsner for giving me the
opportunity to finish my PhD in Berlin as part of the graduate school Facets of complexity.
Thanks for giving me the freedom to work on the research topics I like but still being available
to answer questions. Thanks for giving me the opportunity to go to conferences and experience
the nice environment of the community.

Additionally I want to thank my coauthors, colleagues, and friends. Particular thanks goes to
my friends who I met during my bachelor and master studies in Konstanz. Despite the large
Euclidean distance, we always stayed in touch.

Last but not least, I want to thank my parents, my sister and Manfred who always supported
me.






Contents

Abstract i
Selbststandigkeitserklarung iii
Acknowledgements v
Contents vii
1 Introduction 1
1.1 Publications . . . . . . . . . L )

2 Signotopes, Drawings and Related Structures 7
2.1 Basic Notation . . . . . . . . . . e 7
2.2 SIgnotopes . . . . ... 8
2.2.1 Rank 2 — Permutations . . . . . .. ... ... . L o 8

2.2.2 Rank 3 — Pseudoline Arrangements . . . . . . . .. ... ... .. ..... 10

2.2.3 Rank 3 — Pseudoconfiguration of Points . . . . . . ... .. ... ... .. 13

2.2.4  Higher Bruhat Order . . . . . . . . ... ... .. .. .. .. 15

2.2.5 Chirotopes — Oriented Matroids . . . . . . . . .. .. ... ... ..., 18

2.2.6 Topological Representations of r-Signotopes . . . . . . . . ... ... ... 24

2.3 Simple Drawings . . . . . . . . . e 29
2.4  Generalized Signotopes . . . . . . . ..o L e 31
2.5 Rotation Systems . . . . . . . .. L 33
2.6 Convexity Hierarchy . . . . . . . . . . . . 36

3 An Extension Theorem for Signotopes 39
3.1 Extendability of Signotopes . . . . . . . . . ... 40
3.2 Extendability and Incomparable Elements . . . . . .. ... ... ... ... ... 44
3.3 Rotation Operator . . . . . . . . . . . . . . e 47
3.4 2-Extendability for Odd Rank . . . . . . .. .. .. . o oo 49
3.4.1 Extension Theorem for Odd Rank (Theorem 3.1.2) . . . . ... ... ... 51

3.4.2 Extendability with Intersection (Corollary 3.1.3) . . . .. ... ... ... 52

3.4.3 Non-Extendability with Intersection (Proposition 3.1.5) . . . .. ... .. 52

3.5 Technical Lemmata . . . . . . . . . ... Lo 54
3.6 Non-2-Extendable Examples for Even Rank . . . . . . .. ... ... ... .... 56
3.6.1 SAT Encoding . . . . . . . . . . . e 56

3.6.2 Structure of the Examples supporting Conjecture 3.1 . . . . . .. ... .. 57

3.6.3 Towards an Infinite Family of Counterexamples . . . . . . ... ... ... 63

3.7 t-Extendability . . . . . ... 76



viii Contents

4 Classic Theorems from Convex Geometry in Simple Drawings 81
4.1 Kirchberger’s Theorem . . . . . . . . . . .. . L 82
4.1.1 Reverse Direction . . . . . . . .. ... L L 83

4.1.2 Proofin Point Sets . . . . . . . . ... 85

4.1.3 Proof of Kirchberger’s Theorem for Generalized Signotopes (Theorem 4.1.1) 88

4.2 Carathéodory’s Theorem . . . . . . . . .. . .. . 90
4.2.1 Colorful Carathéodory Theorem . . . . .. .. .. ... ... ....... 92

4.3 Helly’s Theorem . . . . . . . . . . e 94
4.3.1 Colorful Helly’s Theorem . . . . . . .. .. ... .. .. ... ...... 95

4.4 Holes in Convex Drawings . . . . . . . .. . ... e 95
4.4.1 Simple Drawings without a 4-Hole . . . . . .. .. .. .. ... ... ... 98

4.4.2 Holes in Convex Drawings . . . . . . . . . . ... .. .. ... 98

4.4.3 Generalized Holes . . . . . . .. . . L 103

4.5 More Classic Theorems . . . . . . . . ... i 108
4.5.1 Radon’s Theorem . . . . . . . . . .. . L 108

4.5.2 Tverberg and related Theorems . . . . . . . .. .. ... ... ... .... 108

453 (pyg)-Theorem . . . . . . . ... 109

5 Plane Hamiltonian Subgraphs in Convex Drawings 111
5.1 SAT Encoding for Rotation Systems . . . . . . . . ... .. ... ... ...... 112
5.2 Plane Hamiltonian Substructures . . . . . . . . . . . ... ... ... ... 116
5.2.1 Extending Hamiltonian Cycles . . . . . . .. .. .. ... ... .. .... 117

5.2.2 Hamiltonian Paths with a prescribed Edge . . . . .. ... ... ... .. 117

5.2.3 Hamiltonian Cycles avoiding a Matching . . . . . . . .. .. ... ... .. 118

5.24 Uncrossed Edges . . . . . . . . . . o 119

5.3 Plane Hamiltonian Cycles in Convex Drawings (Proof of Theorem 5.2.2) . . . . . 120
5.4 A second Proof of Lemma 5.3.4 . . . . . . . ... oo 131

6 Asymptotic Number and Fliples 139
6.1 Asymptotic Number of Signotopes . . . . . . . . . . ... ... L. 139
6.1.1 Proof of the upper Bound . . . . . . . .. .. ..o oo 140

6.1.2 Proof of the lower Bound . . . . .. ... ... ... ... ... ...... 140

6.2 Fliples in Signotopes . . . . . . . . . L L e 142
6.3 Counting Generalized Signotopes . . . . . . . . . . . ... 145
6.3.1 Upper Bound for g(n): . . . . . . ... ... L 145

6.3.2 Lower Bound for g(n): . . . . . . .. ... 146

6.4 Generalized Signotopes and Simple Drawings . . . . . . . ... ... ... ..., 148
6.4.1 Flip-equivalent Generalized Signotopes . . . . . . . . . . .. .. ... ... 148

6.4.2 Small Configurations . . . . . . . . ... ... o 149

7 Conclusion and Open Problems 153
References 157

Zusammenfassung 168



CHAPTER 1

Introduction

The main structures considered in this thesis are pseudohyperplane arrangements and simple
drawings together with their combinatorial description through sign mappings. A sign mapping
is a function o : ([Zf]) — {4+, —} which maps a sign to every r-element subset of a ground set
[n] = {1,...,n} such that particular sign patterns do not occur on induced substructures. The
parameter r is called the rank and n is the number of elements. More specifically we look at
so called (r + 1)-packets which are sign sequences consisting of r + 1 signs corresponding to the
signs of all r-element subsets of an (r + 1)-element subset in reversed lexicographic order. For
the precise definition we refer to Chapter 2.

Various structures from combinatorial geometry can be encoded with sign mappings. Besides
the axiomatization of point sets in dimension d in terms of chirotopes, the most prominent
combinatorial structures are permutations. A permutation is uniquely defined by its inversion
set. Moreover, if for three elements a < b < ¢ the pairs {a,b} and {b,c} are inversions, then
{a,c} is an inversion as well. Similarly, if {a,b} and {b, ¢} are non-inversions, then also {a,c} is
a non-inversion. Assigning “—” to all pairs which are an inversion in the permutation and “+”
to the remaining pairs yields a sign mapping with a monotonicity property on 3-packets: The
sign sequence (o(b,c) o(a,c) o(a,b)) of a 3-element subset {a,b, c} with a < b < ¢ is not equal
to the sign patterns +—+ and —+—, i.e., is monotone in the sense that there is at most one sign
change. It is not hard to see that all sign mappings of rank 2 with n elements avoiding the two
sign patterns +—+ and —+4— are permutations on n elements. For example, the permutation
7 = 1342 corresponds to the 2-signotope

0(1,2) =+, o(1,3)=4, ol,4) =+, 0(2,3)=—, 0(2,4)=—, 0o(3,4) =+.

Signotopes

A sign mapping of rank r is an r-signotope if in the sign sequence of an (r 4+ 1)-packet, there is
at most one sign change. As we have seen, permutations allow at most one sign change. Hence
they are in bijection with 2-signotopes. As shown by Felsner and Weil [FWO01], 3-signotopes are
in bijection with Euclidean pseudoline arrangements with a marked top cell. Rank r-signotopes
in general correspond to certain pseudohyperplane arrangements, which we describe in more
detail in Section 2.2.4. For fixed r and n, we define a partial order on the set of all r-signotopes
on n elements by comparing the preimages of 4. For r = 2 this partial order is the weak Bruhat
order of the symmetric group. In general the partial order is related to the higher Bruhat order
which have been introduced by Manin and Schechtman [MS89] and further studied by Kapranov
and Voevodsky [KV91]. The name signotopes was introduced by Felsner and Weil [FWO01] to
describe elements from higher Bruhat orders. While Manin and Schechtman used the transitive
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hull of single step inclusion to define an order on those elements, Felsner and Weil used the
inclusion. As shown by Ziegler [Zie93] those two orders do not coincide for r» > 4. Both orders
provide a correspondence between (r + 1)-signotopes and maximum chains in the partial order
of r-signotopes.

By the Folkman-Lawrence topological representation theorem [FL78] pseudohyperplane arrange-
ments correspond to the combinatorial structure of oriented matroids. There are several cryp-
tomorphic axiom systems for oriented matroids, each of them generalizing a different structure.
The most important one in the context of this thesis are chirotopes which are rank r sign map-
pings. Oriented matroids have been studied in various contexts. For an overview see the book
“Oriented Matroids” by Bjorner et al. [BLST99]. We focus on signotopes which are a rich sub-
class since asymptocically there are 261 signotopes and oriented matroids of rank r on n
elements, see Section 6.1. The precise relation between signotopes and oriented matroids is given
in Section 2.2.5. While the existence of simplicial cells in oriented matroids is a famous open
conjecture by Las Vergnas, all signotopes admit at least 2 simplicial cells. Since the signs of
r-element subsets correspond to the orientation of the simplex spanned by those r pseudohyper-
planes, a simplicial cell corresponds to an r-element subset whose sign we can change such that
the new mapping is still a signotope. We call such an r-element subset in a signotope a fliple.
While n — 2 is a known lower bound for the minimal number of fliples in rank 3, which is tight,
we show in Section 6.2 the first linear lower bound of 2’@—72 for general rank. To show this, we
use structural results about signotopes and their corresponding partial order.

Extension Theorem

In his introductory paper to pseudoline arrangements from 1926, Levi [Lev26] showed that
the fundamental property of line arrangements, that an arrangement can be extended by an
additional line through two prescribed points, holds for pseudoline arrangements as well. It
is natural to ask whether this holds in higher dimensions since clearly for proper hyperplane
arrangements d points determine a hyperplane in dimension d. Goodman and Pollack [GP81]
provide an example in dimension 3 and three prescribed points such that there is no extension
with an additional pseudohyperplane which goes through the three prescribed points. Later
Richter-Gebert [Ric93] found an example where even an extension through two prescribed points
in dimension 3 is not possible. Both examples are oriented matroids but not signotopes. We
study the extendability for the subclass of signotopes and show in Chapter 3 that for odd rank,
that is if the dimension is even, there exists an extension through any two prescribed points. The
restriction to the parity of the rank is not just a defect of the proof but for rank r = 4,6, 8,10, 12
we provide counterexamples to the extendability through two prescribed points. We expect that
an infinite family of counterexamples exists. Moreover in Chapter 3 we discuss extendability
through ¢ > 3 prescribed points and show that for every rank r there are examples which are
not extendable through four prescribed points.

Generalized Signotopes

For signotopes the monotonicity property allows at most one sign change on each packet. A
natural generalization is to allow more than one sign change. Rank 3 sign mappings with at most



two sign changes on 4-packets are called generalized signotopes. The only sign pattern which
do not appear in a packet of a generalized signotopes are the two alternating sign sequences
+—+— and —4+—+. During the axiomatization of point sets in the plane with predicate logic,
Knuth [Knu92] came across the structure of interior triple system, a generalization of point sets.
As it turns out they correspond to generalized signotopes. In Chapter 6, we show that there
are 29(n°) generalized signotopes. A lower bound with the same asymptotics was already shown
by Knuth. However we improve the multiplicative constant and show an upper bound using
Shearer’s entropy lemma.

Generalized signotopes are not only a generalization of point sets but also a combinatorial
generalization of simple drawings of the complete graph in the plane. In a simple drawing of a
graph in the plane vertices are mapped to distinct points in the plane and edges are drawn as
simple curves connecting the corresponding points such that two edges have at most one point
in common. In this thesis we focus on simple drawings of the complete graph K,. Tracing the
boundary of a triangle in a simple drawing of K,, gives an orientation which is either clockwise
or counterclockwise. To define a sign mapping on 3-subsets, we associate counterclockwise
with + and clockwise with —. In fact the sign function arising from the triangle orientation
of simple drawing is a generalized signotope, which we discuss in Section 2.4. Since there are
20(n?) generalized signotopes but only 20(n?) [Kyn13] simple drawings, there are generalized
signotopes which do not come from a simple drawing. Here O is the soft O-notation which
omits polylogarithmic factors. Details are given in Section 6.4. Even though not all generalized
signotopes come from simple drawings, generalized signotopes turned out to be a useful tool to
prove a separation theorem in the vein of Kirchberger’s theorem for simple drawings.

Classic Theorems from Convex (Geometry

Generalized signotopes are the main ingredient for a separation theorem generalizing Kirch-
berger’s theorem to simple drawings. Kirchberger’s theorem is a classic result from convex
geometry which states that every point set in R? colored with two colors red and blue admits a
hyperplane separating the blue from the red points if and only if every (d + 2)-element subset
admits such a separation. In Section 4.1 we give a proof of Kirchberger’s theorem in the setting
of generalized signotopes. Additionally, we study further classic theorems from convex geometry
in the context of simple drawings. More particularly we provide a fine grained analysis in terms
of the convexity hierarchy which was introduced by Arroyo et al. [AMRS22]. They provide a
hierarchy for simple drawings generalizing the concept of convexity to subdrawings of K3 which
are triangles. The simplest case are geometric drawings which correspond to point sets by con-
necting each pair of points with their a straight-line segment. A triangle in a geometric drawing
is convex in the sense of simple drawings if and only if it is convex in the classic sense. The
convexity hierarchy provides subclasses such as convex, h-convex and f-convex drawings between
geometric drawings and simple drawings. We show that Helly’s theorem does not generalize to
arbitrary simple drawings and present a family of f-convex drawings with arbitrarily large Helly
number. Moreover, we give a new proof of a topological generalization of Carathéodory’s theo-
rem in the plane, which turned out to generalize to complete multipartite graphs, see [ACH™23].
Another classic theorem in the study of point sets is the Erdds-Szekeres theorem which states
that for every k every sufficiently large point set contains a k-gon, i.e., a subset of k£ points
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in convex position. A variant of the Erdds-Szekeres theorem considers empty k-gons, so called
k-holes. It is known that every sufficiently large point set contains a 6-hole, while there are
arbitrary large point sets without 7-holes. In Section 4.4, we establish the notions of holes in
simple drawings and show that there are arbitrarily large simple drawings without a 4-hole, while
every sufficiently large convex drawing admits a 6-hole. Hence convex drawings are very similar
to geometric point sets when it comes to holes. The key lemma for the existence of 6-holes in
convex drawings is as follows: A k-gon together with its interior vertices is an f-convex drawing.
We expect this lemma to be of independent interest since it provides a tool to generalize results
from pseudolinear drawings to convex drawings.

Plane Hamiltonian Cycles in Convex Drawings

In Chapter 5 we show that Rafla’s conjecture [Raf88] from 1988 holds for convex drawings. It
states that every simple drawing of the complete graph admits a plane Hamiltonian cycle, i.e.,
a Hamiltonian cycle such that each pair of edges of this cycle does not cross. Even though this
conjecture and related substructures attracted the attention of many researchers, so far only
the existence of plane paths of length Q(logn/loglogn) [AGT*22, SZ22] and plane matchings
of size Q(y/n) [AGTT22] are known. Clearly the existence of a plane Hamiltonian cycle would
imply a plane path of length n and a plane matching of size [ §]. Rafla’s conjecture was tested
for small n with the aid of computer programs. Previously it was known to be true for simple
drawings of the complete graph with at most 9 vertices [AAF+15]. We develop a SAT framework
which makes it possible to show that for 10 vertices the conjecture is true as well. Based on
computer experiments on data for small n, we conjecture that even a strengthening of Rafla’s
conjecture holds: Every simple drawing contains a plane Hamiltonian subdrawing on 2n — 3
edges. To prove Rafla’s conjecture for convex drawings we used the SAT framework, especially
in the early stages, to see which substructures might appear and which do not appear. This
made it possible to show that convex drawings provide a layering structure. For each layer we
found a path such that all of them combine to a Hamiltonian cycle.

Outline

In Chapter 2 we give the precise definitions of the mentioned structures and describe relations
between various structures, starting with signotopes. The main result concerning signotopes is
the 2-extendability which we discuss in Chapter 3 and is based on the publication [BFS23a].
Additionally to the results mentioned in [BFS23a, we provide an infinite family of partial
signotopes which cannot be extended and discuss extendability through more than two points.
The classic theorems from convex geometry in the context of simple drawings are investigated
in Chapter 4. For the proof of Kirchberger’s theorem, we use generalized signotopes which are
introduced in Section 2.4. The results presented in the first sections of this chapter are based
on [BFST23b] and the conference version is [BFST20]. Section 4.4 addresses the generalization
of holes to convex drawings and is based on [BSS23b]. In Chapter 5 we further discuss convex
drawings and show that they admit a plane structure consisting of a Hamiltonian cycle and a
spanning star emanating of one vertex. In particular this shows that Rafla’s conjecture is true
for convex drawings. This chapter is based on [BFMS23]. The results concerning the asymptotic
numbers of signotopes and generalized signotopes are given in Chapter 6. Moreover we give the
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first linear lower bound on the number of fliples in every signotope in Section 6.2. In the last
chapter of this thesis, Chapter 7, we summarize the results and give some open problems for
further research.

1.1 Publications

This thesis is mostly based on the following publications.

[BFMS23]

[BFS23a]

[BFS*20]
and

[BFST23b)

[BSS23b)]

Using SAT to study plane substructures in simple drawings

Helena Bergold, Stefan Felsner, Meghana M. Reddy, Manfred Scheucher
Extended abstract presented at 39" European Workshop on Computational Ge-
ometry (EuroCG 2023).

An Extension Theorem for Signotopes

Helena Bergold, Stefan Felsner, Manfred Scheucher

Conference version appeared at 39" International Symposium on Computational
Geometry (SoCG 2023), LIPIcs 258, pages 17:1-17:14.

Extended abstract presented at 38" European Workshop on Computational Ge-
ometry (EuroCG 2022)

Topological drawings meet classical theorems from convex geometry
Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schroder, Raphael Steiner
Full version appeared in Discrete & Computational Geometry 70, pages 1121-1143,
2023.

Conference version appeared at 28" International Symposium on Graph Drawing
and Network Visualization (GD 2020), LNCS 12590, pages 281-294.

Extended abstract presented at 36" European Workshop on Computational Ge-
ometry (EuroCG 2020)

Holes in Convex Drawings

Helena Bergold, Manfred Scheucher, Felix Schroder

Extended abstract presented at 39*" FEuropean Workshop on Computational Ge-
ometry (EuroCG 2023).






CHAPTER 2

Signotopes, Drawings and
Related Structures

In this chapter we give the definition of the most important structures considered in this thesis.
Moreover, we discuss related structures, topological and geometric representations and impor-
tant properties. We start with some basic notation. We then continue with signotopes and
related structures, see Section 2.2. In the remaining part of this chapter we discuss simple draw-
ings (cf. Section 2.3), generalized signotopes (cf. Section 2.4), rotation systems (cf. Section 2.5)
and the convexity hierarchy for simple drawings (cf. Section 2.6).

2.1 Basic Notation

Throughout this thesis we use some standard notation. We summarize the most important
notation:

» [n] ={1,...,n} denotes the set of the first n natural numbers.

> ([Z]) ={T C[n]: |T|=r} is the set of all subsets of size r of [n]. We call the elements of
([Z]) r-subsets.

» [n]" denotes the r-ary Cartesian product of [n], i.e., the set of all r-tuples with entries
from [n].

» [n], is the subset of all r-tuples of [n|” whose entries are pairwise distinct elements from [n].

» S, denotes the symmetric group of order n, which are all permutations on n elements. We
sometimes identify a permutation = € S,, with a linear order on [n], denoted by a string
m=7n(1)7(2)...7(n).

» K, denotes the complete graph on n vertices.

Moreover, we use basic terminology from graph theory. Usually V is the set of vertices and FE
the set of edges of a graph. We denote an undirected edge from vertex i to vertex j by ij or
{i,j}. When dealing with drawings of a graph, we do not distinguish between an edge in the
abstract graph and an edge in the drawing.

Throughout this thesis, we deal with sign functions, which take values in {+,—,0}. For a
domain of a sign function, we consider subsets or tuples, i.e., [n], ([Z]) or [n]" depending on the
explicit function. To deal with the signs — and 4+, we use basic operation — - — = + - + = +,
— -+ =+ - — = — and the z-fold operation (—)* which is — if and only if x is odd, otherwise
+. Moreover 0-s =0 for s € {+,—,0}.
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2.2 Signotopes

Signotopes are a combinatorial structure generalizing permutations and pseudoline arrange-
ments. They can be seen as combinatorial abstraction of various geometric objects encoded via
a sign mapping on the domain ([:f]).

Definition 2.2.1 (Signotope). For r > 1 a signotope of rank r (short: r-signotope) on n
elements is a sign function o from all r-subsets of [n] to + or —, i.e., o : ([ﬁ}) — {+,—} such
that for every (r + 1)-subset X = {x1,z2,..., 2,41} of [n] with 1 < x9 < ... < 41 there is at
most one sign change in the sequence

((X\{21}) o(X\{22}) .. o(X\{zr11}))-
The set of all r-signotopes on [n] elements is denoted as S(n,r).

Note that the sequence lists the signs of all induced r-subsets of X in reversed lexicographic
order. For 3-signotopes, the following 8 sign patterns on 4-subsets are allowed:

(++++), (+++-), (++=—), (+———),

(), () (), (),

The remaining 8 sign patterns of length 4 are forbidden.

For sake of readability, we write X = (z1,...,x;) to denote a t-subset of [n] with sorted elements
1 < o3 < ... < 4. For such an X, the set X; = (z1,...,2j-1,2j41,...,2) denotes the set
without x;. With the convention — < +, the condition about sign changes in r-signotopes can
be written as a monotonicity condition for (r + 1)-subsets X = (x1,...,2Zr41):

U(Xl) < U(XQ) <...< U(XT+1) or O'(X1> > O'(XQ) > ... > U(Xr+1)-

We refer to such an (r + 1)-subset as (r + 1)-packet or just packet if the size is apparent
from the context. For r = 1 the monotonicity is trivially fulfilled and hence every mapping
o :[n] = {+,—} is a l-signotope. In the following, we discuss the case r = 2 and the correspon-
dence to permutations. We then consider the case r = 3 for which we give different geometric
representations and discuss related combinatorial objects. After discussing the small ranks in
detail, we give some basic properties of general rank r signotopes.

2.2.1 Rank 2 — Permutations

In this section, we consider rank 2 signotopes, which correspond to permutations. A permuta-
tion 7 is uniquely determined by its inversion set Inv(mw) = {{i,j} : i < j and 7(i) > 7(j)}.
We define a mapping o : ([g]) — {4+, —} by assigning o,(i,j) = — if and only if {7, j} € Inv(n)
and o (i,j) = + otherwise. The monotonicity condition asserts the following condition on every
3-subset {i,7,k} with i < j < k: If 0.(i,5) = ox(j, k) = s € {+,—}, then o.(i,k) = s. To
show this we consider the two cases s = + and s = —. Let us start with s = 4. In this case
ox(i,7) = + implies that (i) < 7(j) and o.(j,k) = + implies 7(j) < w(k) which certainly
implies that (i) < 7w(k) by the transitivity of the order < on [n]. Hence o.(i,k) = +. In
the other case, the signs and order relations are reversed. Moreover, given a 2-signotope o, the
preimage of — determines the inversion set of a permutation. This shows that 2-signotopes are
in 1-to-1 correspondence with permutations. We refer to the preimage of — as —-set of o and
to the preimage of + as +-set. We summarize:
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Lemma 2.2.2. The set of permutations S, on n elements is in bijection with the set S(n,2) of
all 2-signotopes on [n]. A permutation T corresponds to a 2-signotope o with o~1(—) = Inv().

For a fixed n, we define a partial order on the set S(n,2) of all 2-signotopes on n elements by
single step inclusion of the +-sets. Two 2-signotope ¢ and ¢’ differ in a single step, denoted by
o<do ifo7l(+) C o/"H+) and |0’ (+)| = |o71(+)]| + 1. The transitive closure of this single
step is the single step inclusion <. In particular if o < ¢’, there exist oy, ..., o, such that

c=0pg<o1<...<0 =0

Hence the single step is the cover relation of the single step inclusion. In a partial order <, the
element = covers y if x > y and there is no z with = > z > .

The partial order of S(n,2) with the single step inclusion is the weak Bruhat order of the
symmetric group S, denoted by B(n,2)! and the Hasse diagram which is the directed graph
of the cover relation. In the case of 2-signotopes this is the skeleton of the permutahedron of
order n. Let G(n,2) be the graph of the cover relation. The vertices are the elements of S(n,2)
and two vertices x and y are connected with an edge if and only if they are related through a
cover relation, i.e., if they differ in a single sign. The partial order in the case n = 4 is shown
in Figure 2.1. A subset whose value we can flip while still obtaining the monotonicity property

T
| T
o bt o
= = T
N bt - ERE—- S
P e S
o bt et - ———t I
SN =T N
o b et et e
T = T —
TR R +

Figure 2.1: Hasse diagram of B(4,2). The vertices are labeled with their 2-signotope, which are repre-
sented by the string of signs corresponding to the 2-subsets in reversed lexicographic order.

is a fliple. A flip, i.e., the change of a single sign, either adds one pair or removes one pair to
the inversion set. This corresponds to an adjacent transposition in the permutation.
The partial order B(n,2) corresponds to the inclusion order C of the +-sets on S(n,2) in which
o C o' if 71 (+) C 0/~1(+) which was shown by Yanagimoto and Okamoto [YOG69].

!Since we define Bruhat orders for higher rank later, we introduce a second parameter which encodes the rank.
In literature the weak Bruhat order is usually denoted by B, or B(n,1) where the second parameter is the
dimension. To avoid confusion, we denote the partial order defined on the set S(n,r) by B(n,r).



10 2 Signotopes, Drawings and Related Structures

2.2.2 Rank 3 — Pseudoline Arrangements

In this section, we consider the case r = 3, which was the main focus of the paper by Felsner and
Weil [FWO01], who introduced the name signotopes. They show that 3-signotopes are represented
by pseudoline arrangements.

Definition 2.2.3 (Pseudoline Arrangement). A pseudoline is a simple curve in the Euclidean
plane such that its removal from the plane results in exactly two unbounded components. A
pseudoline arrangement A s a family of pseudolines such that each pair of pseudolines from A
intersects in exactly one point, where the two curves cross properly. An arrangement is simple
if no three pseudolines cross in a common point.

In this thesis all pseudoline arrangements will be simple if not mentioned otherwise. When
studying pseudoline arrangements, we only consider the combinatorics which depend on the
order of crossings. Pseudoline arrangements with the same order of crossings but different
embedding are considered the same. Moreover, all pseudoline arrangements considered are in
the Euclidean plane? and hence have 2n unbounded cells.

The study of pseudoline arrangements goes back to Levi in the 1920’s. He proved that essential
properties of line arrangements also hold in the more general setting of pseudoline arrangements.
The following statement generalizes the fact that two points in the plane determine a line.

Theorem 2.2.4 (Levi’s extension lemma for pseudoline arrangements [Lev26]). Given an ar-
rangement A of pseudolines (not necessarily simple) and two points p, q in R2, not on a common
pseudoline of A. Then there exists a pseudoline £ containing both points p and q such that AU{{}
s a pseudoline arrangement.

We say that ¢ extends the pseudolines arrangement A. In Chapter 3 we discuss a generalization
of this statement to signotopes of higher rank.

Clearly pseudoline arrangements generalize line arrangements. However not all pseudoline ar-
rangement can be represented by a line arrangement with the same combinatorics, i.e., with the
same order of intersections. A pseudoline arrangement which admits such a line arrangement is
realizable, sometimes also referred to as stretchable. Levi gave the non-Pappus arrangement as an
example of a (non-simple) pseudoline arrangement which is not realizable. Later Ringel [Rin56]
continued the line of research and presented based on the non-Pappus arrangement a simple
pseudoline arrangement which is not stretchable, see Figure 2.8 on page 28 for an illustration.
Goodman and Pollack played a central role in the study of pseudoline arrangements. They
showed the nowadays well-known fact that all pseudoline arrangements can be drawn with
z-monotone pseudolines [Goo80]. Those z-monotone pseudoline arrangements are often also re-
ferred to as wiring diagrams or sorting networks especially if the pseudolines consist of piecewise
linear curves, so called wires and the wires are horizontal except for small neighborhoods of their
crossings with other wires. For more information concerning pseudolines, line arrangements and
related structures, see the Chapter 5 of the “Handbook of Discrete and Computational Ge-
ometry” [FG17], the book “Geometric Graphs and Arrangements” by Stefan Felsner [Fel04]
or the book “Lectures of Discrete Geometry” of Matousek [Mat02, Chapter 6]. A collection
of examples, problems and conjectures is given in the book “Arrangements and Spreads” of
Griinbaum [Grii80].

2In contrast to the Euclidean version, there is the notion o pseudoline arrangements in the projective plane.
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a: Q : a
c C

Figure 2.2: Connection between pseudoline arrangements and 3-signotopes.

Starting with a pseudoline arrangement in the Euclidean plane, we mark one of the unbounded
cells as the top cell. Moreover, we label the pseudolines starting at the marked top cell, left
of all crossings, from top to bottom by 1,...,n. Since two pseudolines cross exactly once, the
pseudolines appear in reversed order on the right. The triangle sign function o is obtained as
follows: The sign of o(a,b,c) for a < b < ¢ indicates the orientation of the triangle formed by
the three pseudolines a, b, c. If the crossing of a and ¢ is below b, it is o(a,b,c) = 4+ and if the
crossing of a and c is above b, it is o(a,b,c) = —. An illustration of the assignment is given in
Figure 2.2. Since the monotonicity condition of 3-signotopes is a condition on all 4-subsets, we
consider all pseudoline arrangements with 4 elements to show that the triangle sign function of
all pseudoline arrangements is a 3-signotope. An illustration of the 8 possibilities of pseudoline
arrangements with a fixed to cell are shown in Figure 2.3.

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
(++++) (+++-) (++-—-) (+——)
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
(—=—) (== —+) (== ++) (—+++)

Figure 2.3: All possibilities of pseudoline arrangements with a fixed top cell and 4 pseudolines together
with its 3-signotope.

Since the triangle sign function of all eight possibilities is a valid 3-signotope, all pseudoline
arrangements have a corresponding 3-signotope. Moreover, Felsner and Weil showed that the
reverse is true, i.e., every 3-signotope has a corresponding pseudoline arrangements whose tri-
angle sign function is equal to the signotope.

Proposition 2.2.5 ([FWO01, Theorem 7]). The set of simple pseudoline arrangements in the
Euclidean plane with n pseudolines and a marked top cell is in bijection with the set S(n,3) of
3-signotopes on n elements.

To show that every 3-signotope can be realized by a pseudoline arrangement, we need structural
results about general r-signotopes, which we discuss in Section 2.2.4. However we give a sketch
of the proof. First consider a pseudoline arrangement. We identify the crossings of a pseudoline
arrangement with the elements which cross, i.e., for 3-signotopes crossings are subsets of size 2.
As usual the pseudolines are labeled from top to bottom by 1,...,n, which corresponds to the
identity permutation. If two pseudolines cross, the two elements change the position. Hence we
can represent a pseudoline arrangement by a sequence of permutation in which two adjacent



12 2 Signotopes, Drawings and Related Structures

permutation differ in an adjacent transposition. In fact, we can define a sequence of permutation
representing a pseudoline arrangement from a 3-signotope. Let o be a 3-signotope on n elements.
We define a corresponding partial order on ([g]). If o(a,b,c) = +, it holds ab < ac < bc and
if o(a,b,c) = —, it is be < ac < ab. By taking the transitive closure of this relation, we
obtain a partial order on the 2-subsets. We consider a linear extension of this partial order
which gives a linear order Aq,..., A(;) on the 2-subsets of [n]. We start by constructing the
pseudoline arrangement by drawing them in the order w9 = 1...n corresponding to the identity
permutation. In every step i = 1,..., (g), we construct a new permutation m; by reversing
the order of the two elements of A;. For the constructed pseudoline arrangements we change
the order of the two corresponding pseudolines which yields a crossing. For three pseudolines
a < b < c the partial order asserts that either ab < ac < bc or bc < ac < ab which also holds
in every linear extension. Hence the triangle sign function of the so constructed pseudoline
arrangement corresponds to the 3-signotope. Moreover, the structure ensures that the elements
of A; are adjacent in m;_1.

The chain of permutations g, . . ., (@) corresponding to a pseudoline arrangement is a maximum

'I2L
chain in the order B(n,2) of the 2-signotopes. This connection has been studied earlier by
Goodman and Pollack. They define allowable sequences as a periodic sequence of permutations

to have a combinatorial abstraction of line arrangements.

Definition 2.2.6 (Allowable Sequence). For a fized n, an allowable sequence is a periodic
sequence of permutations on [n] such that the following two properties hold:

(1) Two consecutive permutations consist of reversing one or more non-overlapping substrings;
(a substring is a sequence of consecutive elements)

(2) If two elements have been reversed, they do not switch again until everything else was
reversed.

An allowable sequence is simple if in every step, we reverse exactly one substring consisting of
exactly two element, i.e., two consecutive permutations differ in an adjacent transposition.

Not all allowable sequences have a corresponding line arrangement. An allowable sequence
which cannot be realized with a line arrangement has been presented by Goodman and Pol-
lack [GP80]. However they showed that all allowable sequences have a corresponding pseudoline
arrangement [GP84].

Proposition 2.2.7 ([GP84, Theorem 4.1]). For every allowable sequence of permutations on [n],
there is an arrangement of n pseudolines whose associated sequence equals the allowable sequence.

As already shown by Goodman [Goo80], allowable sequences have the following two properties,
which reflect the partial order of signotopes.

(a) If i17; is reversed before igja, then jii; is reversed before joio;
(b) If ij is reversed before jk, then ik is reversed in between ij and jk.

By repeating the maximum chain of permutations of a 3-signotope in a periodic sequence in the
following way, we get an allowable sequence. The first half of the period is exactly the maximum
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chain, i.e., we switch ij with ¢ < j. For the second half, we repeat the maximum chain but
instead of switching ¢j, with ¢ < 7, we switch ji. The order of the two elements represents the
order in the pseudoline arrangement before the crossing. Starting with an allowable sequence
which contains the identity permutation, we get a maximum chain of 2-signotopes by taking a
subsequence between the identity and reversed identity permutation. Note that relabeling the
elements if necessary is possible to achieve that the allowable sequence contains the identity
permutation.

In Section 2.2.4, we will see that this relation between 2-signotopes and 3-signotopes is not a
coincidence of small values but is a very useful structural property of signotopes. In particular,
we see that maximum chains of (r — 1)-signotopes correspond to r-signotopes. For this we define
the partial order on S(n,r) via single step inclusion of the +-set.

Additionally, we want to mention the combinatorial encoding of pseudoline arrangements via
so called local sequences, introduced by Goodman and Pollack [GP84]. A local sequence in a
marked Euclidean arrangement of pseudolines consists of n permutations m; on [n]\{i} which
give the order of the crossings with the remaining pseudolines along the i-th pseudoline. From
the 3-signotope o, we get this information, by restricting the partial order < to all elements con-
taining this one element. This gives a total order representing the crossings along the pseudoline.
Moreover, the 2-signotope corresponding to the permutation 7; is defined by

Uz’(j) k) = U({iaja k})
for pairwise distinct i, 7, k € [n] with 7 < k.

Due to the formula of Stanley [Sta84] the precise number of allowable sequences is known and

equal to
<g> !/1”*13"*25"*3 (20— 3)L.

In contrast to an exact formula for allowable sequences, there are only rough estimates for the
number s(n, 3) of 3-signotopes on n elements, i.e., the number of arrangements of pseudolines. It
has been shown by Goodman and Pollack [GP93] that s(n,3) = 20("*) while the number of ar-
rangements of lines is only 29("1°¢7)  Knuth [Knu92] showed that s(n,3) < 3" !s(n—1,3) which
gives s(n,3) < 3(5) = 208:3)(3) where log,(3) ~ 1.585. He conjectured that s(n,3) < 2(3)+0("2),
i.e., that logy(s(n,3)) < 3n* + o(n?). Felsner and Valtr [FV11] showed that logy(s(n,3)) <
0.6571n? for sufficiently large n. The lower bound 0.2083n% < log,(s(n,3)) for sufficiently
large n is due to Dumitrescu and Mandal [DM19]. An improved lower bound of 0.2250n2 was
recently shown by Cortés Kiithnast, Felsner and Scheucher [CFS23]. The exact numbers are
known for n < 16. The last value was computed by Giinter Rote. See the entry A006245 in the
OEIS [OEI].

2.2.3 Rank 3 — Pseudoconfiguration of Points

During the study of allowable sequences, Goodman and Pollack also showed a connection to
point configurations. Similar to pseudolines, there is a topological generalization of point sets
in the plane, which are called pseudoconfiguration of points. They are an abstract description
of the fact that each pair of points in the plane determines a line. The collection of points and
the so constructed lines has the following properties which hold more generally.
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Definition 2.2.8 (Pseudoconfiguration of Points). A pseudoconfiguration of points is a set of
points P in the plane together with a family of pseudolines L such that

» For two distinct points p,q € P there exists exactly one pseudoline L containing p and q;
» FEvery pseudoline in L contains at least two points of P;

» Two pseudolines have exactly one point in common, in which they cross, i.e., L is a
pseudoline arrangement.

A pseudoconfiguration of points is simple if every pseudoline contains exactly two points of P.

Goodman [Goo80] investigated the relation between pseudoconfigurations of points and pseudo-
line arrangements and showed that they have a similar duality relation as the point-line-duality
in the geometric setting. Given a set of points P and a set of lines L in the plane, the duality
(sometimes also referred to as polarity) is given by the following relation

{p=1(a,b)e P} > {y=ax+be L}.

To show an analogue of this duality in the topological setting, Goodman used allowable se-
quences as they represent both structures, pseudoline arrangements and pseudoconfigurations
of points. In Section 2.2.2, we have seen the connection between 3-signotopes, simple pseudoline
arrangements and simple allowable sequences. To study the connection to pseudoconfigurations
of points, we encode the allowable sequence by its substrings which get reversed. Note that this
is a bijective encoding of allowable sequences. In the setting of simple arrangements, this always
corresponds to adjacent transposition. If we reverse the pair ij, then we assume that ¢ and j
appear in this order before the transposition. Starting with a pseudoconfiguration of points,
we draw a circle around it enclosing all points of P and all crossings of the pseudolines of L.
Every pseudoline has two crossing with the circle. We identify these crossings with the points
which are on the corresponding pseudoline such that the point closest to the crossing appears
first. Reading those pairs in clockwise order gives a periodic sequence satisfying the axioms of
allowable sequences [Goo80]. In the simple case, we get a sequence of 2-subsets. Hence for every
pseudoconfiguration of points we get an allowable sequence. For an illustration see Figure 2.4.
Goodman and Pollack showed that the reverse is true as well.

Proposition 2.2.9 ([GP84, Theorem 4.4]). Every allowable sequence with permutations on [n]
can be realized as a pseudoconfiguration of n points.

Moreover, there is an arrangement of lines with the same combinatorics if and only if there is a
point configuration. This holds even in the non-simple case. For non-simple arrangements, we
have the correspondence

k pseudolines cross in a common point in the pseudoline arrangement
< a substring of length k is reversed in the allowable sequence

<> k points lie on a common pseudoline in a pseudoconfiguration of points.

Since we focus on signotopes, we restrict our attention to simple arrangements and simple
pseudoconfigurations of points.
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Figure 2.4: A pseudoline arrangement together with a simple allowable sequence and a corresponding
pseudoconfiguration of points.

Balko, Fulek and Kynél [BFK15] consider pseudoconfigurations of points and provide an indepen-
dent proof that pseudoconfigurations of points are a topological representation of 3-signotopes.
Restricting the curves to the curve segments between the two vertices yields an x-monotone
pseudolinear drawing of the complete graph K,,, a subclass of simple drawings. We discuss this
in more detail in Section 2.3.

2.2.4 Higher Bruhat Order

The relation between 2-signotopes and 3-signotopes discussed in the previous section is not a
coincidence. For all » > 2, there is a relation between maximum chains of (r — 1)-signotopes
and r-signotopes. This property was first shown for the higher Bruhat order, which is a partial
order on the set of signotopes for fixed » and n. Higher Bruhat orders were introduced by Manin
and Schechtmann [MS89] in the context of discriminantal arrangements. Kapranov and Voevod-
sky [KV91] sketched two geometric representations for elements of higher Bruhat orders, the first
in terms of single element extensions of cyclic hyperplane arrangements, and the second in terms
of tight zonotopal tilings, i.e., projections of cubes. Zonotopal tilings are sometimes also called
cubillages. Ziegler [Zie93] studies the first of these geometric interpretations and investigates the
theory of higher Bruhat order. The second of the geometric interpretations of zonotopal tilings
was further investigated by Thomas [Tho03] and more recently by Williams [Wil23]. We discuss
those representations together with two additional topological representation in Section 2.2.6.

The easiest and well-known case is the weak Bruhat order of the symmetric group denoted by
B(n,2), which we discussed in Section 2.2.1. For the partial order B(n,2), which is an order
on the 2-signotopes S(n,2), we consider the single step inclusion of the +-sets. Recall that the
single step inclusion < is the transitive closure of the single step o < ¢’ which is defined via
o7 (+) C o' L(+) and |o'"1(+)| = |o71(+)| + 1. For all , we define the higher Bruhat order?
B(n,r) as the partial order on S(n,r) induced by the single step inclusion.

Definition 2.2.10 (Higher Bruhat Order). For r > 1, the higher Bruhat order B(n,r) is a
partial order < on the elements of S(n,r) with the transitive closure of the single step inclusion <.

3In the literature, the second parameter of the higher Bruhat order corresponds to the dimension, which is r — 1.
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The original definition of the higher Bruhat order B(n,r) by Manin and Schechtman [MS89] is
based on total orderings of all (r — 1)-subsets of [n], which they call admissible orders. In such
an admissible order, the (r — 1)-subsets appear in lexicographic or reversed lexicographic order
in r-packets.

In 1969 Yanagimoto and Okamoto [YOG69] showed that B(n,2) = Bc(n,2). Here Bc(n,r)
denotes the inclusion order C of the +-sets of the elements of S(n,r). Clearly, every relation
of two elements of S(n,r) in B(n,) is in Bc(n,r). In general B(n,r) and Bc(n,r) are not the
same. We summarize some results regarding higher Bruhat orders.

» For all n > r > 2 there is a unique minimal and a unique maximal element in B(n,r) and
Bc(n,r), respectively. The unique maximal element of rank r on n elements, denoted by
Omax 1S the constant + function. In the same way the unique minimal elements, denoted
by omin is the constant — function. (see [MS89]).

» For r > 1, the diagram of B(r + 1,7) = Bc(r + 1,7) is a 2(r + 1)-gon (see Figure 2.5).

R

ot - —+

+++-y+—— ——+~!+++

S
~~ —

Figure 2.5: Diagram of B(r + 1,r).

» B(n,r) = Bc(n,r) for r < 3 and n —r < 3 (see [Zie93] and [FWO00] for the case r = 3).
However, B(8,4) # Bc(8,4) (see [Zie93]).

» For all n > r > 2, B(n,r) is a graded partial order, i.e., there is a rank function p such
that for all z < y it holds p(z) < p(y) and for all y which cover z it holds p(y) = p(z) + 1.
For the higher Bruhat order, the rank function is the cardinality of the +-set (see [MS89]).

» B(n,r) is a lattice for » < 2 and n —r < 2. However, the partial order B(6,3) is not a
lattice. (see [Zie93])

The most important property for our purposes is the following structural result of the higher
Bruhat orders which gives a connections between maximum chains in B(n,r — 1) (respectively
Bc(n,r — 1)) and r-signotopes, i.e., elements in B(n,r) (see [MS89, Zie93, FWO01]).

Theorem 2.2.11. For r > 2, there is a surjective mapping I, from the maximum chains of
(r — 1)-signotopes in B(n,r — 1), respectively Bc(n,r — 1), to the set of r-signotopes S(n,r).
Moreover, every element of S(n,r) is contained in a mazimum chain in Bc(n,r).

Note that if B(n,r) = Bc(n,r), then for every two r-signotopes o,¢’ with o C ¢/, there is a
maximum chain containing both. In general this is not the case.

We give a sketch of the proof by Felsner and Weil [FWO01] for the inclusion order. For this we
define a partial order corresponding to an r-signotope. In the case r = 3 this is exactly the
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partial order which we defined in Section 2.2.2 (page 12) describing the order of crossings from
left to right in a pseudoline arrangement. We generalize this definition for arbitrary rank.

Definition 2.2.12. For an r-signotope o and every r-subset X = (x1,...,2,), we define the
partial order <, on (r[ﬁ]l) as the transitive closure of the following relations:

X1 >0 Xo>g ... Xp if o(z1,...,2) =+, and
X1 <6 Xo <6 ... <5 X, if a(xl,...,a:r):—.

Recall that for X = (x1,...,2,) we use the convention z; < ... < z, and X; = X\{z;}. By
taking the transitive closure of all relations obtained from r-subsets, we obtain a partial order <,
on the (r — 1)-subsets corresponding to o [FWO01, Lemma 10].

Let oy, ... () be a maximum chain of (r — 1)-signotopes which we represent by the unique
(r — 1)-subsets A; such that o;_1(4;) = — and 0;(A;) = +. This is a total order on the (r — 1?—
subsets. To eventually define an r-signotope &, we consider the r-subsets of [n]. For X € ([:f)
the sequence Xi,..., X, appears either in this order or in reversed order as a subsequence of

Ao, . .. ,A( n ) In the first case, we set 6(X) = +, in the latter 6(X) = —. This is indeed an

r—1

r-signotope on [n], see [FWO01, Proposition 12]. For every r-signotope o, we consider a linear
extension of the partial order <, which is a total order on the (r — 1)-subsets corresponding to
a maximum chain. Indeed the r-signotope corresponding to the maximum chain is exactly o.
This surjective map from a maximum chain of (r — 1)-signotopes to an r-signotope is denoted
by IL,.

In the next step we identify the pre-image of an r-signotope, i.e., we want to define a relation on
the maximum chains of Bc(n,r — 1) which map to the same r-signotope. Two maximum chains
represented by the permutation Ay, ... ,A(n‘) and By, ..., B(n) on (r — 1)-subsets are equivalent

if they differ in an adjacent transposition. A collection of r—srignotopes is an equivalence class if
for each pair of signotopes from the collection there is a sequence of signotopes contained in the
class such that two consecutive ones are equivalent.

Proposition 2.2.13. I (o) is a complete equivalence class.

An equivalence class is exactly the set of linear extension of the partial order <, corresponding
to o and the adjacent transpositions are the incomparable elements in <.

In the higher Bruhat order B(n,r), the cover relation corresponds to a flip of a sign of a single
r-subset. We can define the flip graph, denoted as G(n,r), as the graph of the cover relation.
The degree of a signotope in the flip graph corresponds to the number of signs we can flip.
The r-subsets whose sign we can flip are called fliple. More precisely an r-signotope o on [n],
an r-subset X C [n] is a fliple if both assignments + and — to o(X) result in a signotope.
The constant signotopes have exactly n — r + 1 fliples which are {(i,7 + 1,...,i+7r — 1) :
i =1,...,n —r + 1} since they appear as the last or first element in every packet they are
contained in. Moreover, since every r-signotope is contained in a maximum chain in B(n,r) (cf.
Theorem 2.2.11), every signotope contains at least two fliples. In Chapter 6, we give a linear
lower bound on the number of fliples in r-signotopes for all .

For r = 3, Felsner and Kriegel [FK99] showed that the minimum number of fliples is n — 2, which
is tight. Moreover, recently Alves Radtke et al. [AFO"23]) showed that the flip graph G(n, 3) of
3-signotopes on n elements is in fact (n —2)-connected. A fliple of a 3-signotope corresponds is a
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triangular cell in the pseudoline arrangement, i.e., a cell bounded by exactly three pseudolines.
Triangular cells play an important role in the study of pseudoline arrangements, since it is
possible to change the orientation of a triangle by moving one of the pseudolines over the crossing
of the two others. Such a local perturbation is called a triangle flip. It does not change the
orientation of any other triangle in the arrangement. For higher ranks, a fliple corresponds to a
simplicial cell in the corresponding pseudohyperplane arrangement. We discuss this topological
representation in Section 2.2.6. The analogon of fliples in oriented matroids, which we discuss
in more detail in the next Section 2.2.5, is called mutation. While the existence of fliples in
signotopes is known, it remains a central open problem in combinatorial geometry to decide
whether every uniform oriented matroid contains a mutation [BLS199, Chapter 7.3].

Let s(n,r) = |S(n,r)| be the number of r-signotopes on n elements. A closed formula for the
exact number is only given in the boundary cases r = 1,2 and n —r =0, 1,2 [Zie93]:

s(n,1) =2"
s(n,2) =n!
s(ny,n—2)=2"+n2""% - 2n
s(n,n—1)=2n
s(n,n) =2
The number of r-signotopes for r between 4 and 10 and small values of n are listed in the
sequences A60595 to A60601 in the OEIS. In the case r = 3 we know 0.2083n2 < log,(s(n,3)) <
0.6571n? for sufficiently large n, which we already discussed in Section 2.2.2.

In general we just know that logy(s(n, ) = ©(n" 1) for 7 > 3, which was shown by Balko [Ball9],
who studied signotopes in terms of monotone colorings of uniform hypergraphs.

Proposition 2.2.14 ([Ball9, Theorem 3|). For r > 3, the number of r-signotopes on [n]
is s(n,r) = 290",

In Chapter 6, we give a proof of Proposition 2.2.14.

2.2.5 Chirotopes — Oriented Matroids

Kapranov and Voevodsky [KV91, Theorem 4.9] already mentioned that signotopes are oriented
matroids. There are several cryptomorphic axiom systems of oriented matroids. Each of them
is based on a different geometric and combinatorial object. We limit ourselves to the definition
of chirotopes, which arise as a combinatorial generalization of point sets. We refer the inter-
ested reader to the book “Oriented matroids” by Bjorner, Las Vergnas, Sturmfels, White and
Ziegler [BLS199] for further definitions and properties of oriented matroids. Given r points

p1...,pr as column vectors in R"~!, we consider the determinant of the (r x r)-matrix corre-
sponding to the homogeneous coordinates of the r points:
1 1 ... 1
det(p1,..., = det .
(b Pr) <p1 P2 ... pr)

The sign of the determinants describe the orientation of a simplex spanned by the r points in
dimension r — 1. The determinant is 0 if and only if the r points are contained in a common
hyperplane of R"~!. Chirotopes are an abstract description of the behavior of these determinants.
They are sign functions whose domain is the set [n]” of all r-tuples with entries from [n].


https://oeis.org/A060595
https://oeis.org/A060601
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Definition 2.2.15 (Chirotope). A chirotope of rank r > 1 (short: r-chirotope) on the ground
set [n] is a sign mapping x : [n]" — {4+, —, 0} such that

(1) x is not the constant 0-map;
(2) x is alternating, i.e., for all permutations © € S, and all z1,...,x, € [n] it is
X(@ry, - 2r,) = sgu(m)x(z1, ..., 2r),
where sgn(r) = (=)@l
(3) For all x1,22,...,Zr,Yy1,Y2,...,Yr € [n] such that
X(Yi T2, @3, -, Tr) - X(Y1, Y25 - -+, Yin 15 T Vi1, - - Yr) € {0, 4}
forallie {1,...,r}, it is

X1, z)  x(yr, - yr) € {0, 41}

We refer to axiom (3) as the Grassmann-Pliicker relations since it is the combinatorial version
of those relations. The original Grassmann-Plicker relation is the following relation

T
det(CC]_, cee 7$T) . det(ylu “e 7y7") - Zdet(yiux27 cee 7xT‘) : det(yla ey Yi—1,T1, Yi4 1, - - '7y1“)
i=1

on the determinants of vectors zi,...,Z;,y1,...,y € R". The difference of both sides is a
multilinear form in the r + 1 variables x1,y1, ..., ¥y,. Moreover, the equation holds trivially for
y; = y; for i # j or x1 = y; for i = 1,...,r, which is called alternating map in terms of linear

algebra. Since an alternating multilinear from with r + 1 variables in dimension r is the constant
0 map, the equation holds.

The chirotope axiom is the abstraction of this relation to sign properties. If all summands of
the right-hand side are non-negative this corresponds to the sign + or 0, the left-hand side has
to have the same sign.

A chirotope with x(z1,...,x,) # 0 for r distinct elements x1, ..., z, is uniform. In the geomet-
ric setting of point sets, this corresponds to general position, i.e., no r points are on a r — 2
dimensional hyperplane in R"~1.

For uniform chirotopes, the last axiom (3) can be replaced by the so-called 3-term Grassmann-
Pliicker relations [BLST99, Theorem 3.6.2]. They are a restriction of the Grassmann-Pliicker
relations to the case z; = y; fori=3,...,7.

Theorem 2.2.16 (3-Term Grassmann-Pliicker Relations [BLS99, Theorem 3.6.2]).
A wuniform alternating map x : [n]" — {+,—,0} (see aziom (2) of 2.2.15) which satisfies the
following condition is a chirotope.

» Forall z1,...,2:,91,Y2 € [n], such that
X(y1, 2, x3, ..., x) - x(21,Y2, X3, ..., zr) € {+,0} and
X(y%x?a Z3,... 71"7“) : X(y17$lax37 cee 7337“) € {+7 0}
it holds that

xX(x1,z9, 23, ..., 2) - X (Y1, Y2, T3, ..., xr) € {+,0}.
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An r-signotope o is defined on r-subsets of [n] which we can interpret as r-tuples, where the
elements are pairwise different and sorted in increasing order. We define a mapping from [n]”
to {+, —,0} as follows:

0 if [{x1,...,2} <1
Xo(T1, ... xp) =
sgn(m) - 0 (Tr(1), -+ s Tr(ry) for m € Sy such that x ) < ... < Zr(.
for all r-tuples (x1,...,2,) € [n]”. Note that we use the convention sgn(r) = (=)™ (™I The

map X, is a chirotope. We could not find a proof of this particular statement even though it is
known that signotopes are oriented matroids. Hence we provide the full proof.

Lemma 2.2.17. For every r-signotope o, the map X, is a chirotope.

Proof. Since signotopes map r-subsets to {4, —}, the map x, is not identical to the 0-map.
By definition x, is alternating and uniform, it is sufficient to prove the 3-term Grassman-
Plicker relations, see Theorem 2.2.16. Moreover, we assume without loss of generality that
Z1,...,Tr,Y1,Yy2 of the 3-term Grassmann-Pliicker are pairwise different. If x; = x; for i # j,
y1 =yg or y; = x;j for i = 1,2 and j > 3, the conclusion of the condition holds since the product
is 0. If y; = 1 or yo = x4, the first condition of the assumption equals the conclusion. Similarly,
if y1 = x5 or yo = x1 the second condition is exactly the condition of the conclusion.

In the remaining part, we assume that all elements are different and hence none of the signs
which appear in the 3-term Grassmann-Pliicker relation are 0. Fix r + 2 different elements
Y1,Y2, T1, 22, T3, ..., Ty € [n]. Without loss of generality we assume that z3 < ... < z,. Other-
wise we have to apply the same permutations in all of the subsets to order them. Since there
are two signs multiplied, we multiply each condition by +. Let

s1=x(y1, 22,23, ..., %) = x(1,Y2, 3, ..., Ty,
§2 = X(y27x27x37 cee 7I1“) = X(y17x17$37 ce. 7‘7:1”)‘
We want to show that x(z1,z2,23,...,2,) = x(¥1,¥2, T3, ...,2,). In order to do this we intro-

duce the notion
inv(a,b) = |{(a,2;): i >3, a>ax;}|+ [{(byxi): i >3, b>x;}

for a,b € {z1,22,y1,y2} to encode the number of inversion of a,b with respect to z3,..., z,.
Now we consider the following four packets:

P =A{yi,z1,22,23,...,2,:}, Q =A{y2,z1,22,23,..., 2.},

R - {yl,y27371,373,- . '7:67"}7 S - {y17y27x27x37 o 71.7“}’

Since we do not know the order of the elements in the packets, we write X, for a set X without
the element z € X. We are only interested in the sign of o corresponding to the subsets which
correspond to deleting one of the elements y1,y2, 1, 2.

In the first step we consider P. We consider several cases. The three elements 1,21, 22 can
be ordered in 6 different ways. Since all signs and the order in the packet are reversed if the
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order of the three elements is reversed, we consider only three of the cases. In the first case, we
assume that y; > x1 > x9. Hence Py, P,,, P,, appear in this order in the sequence. It is

J(Pyl) = (_)inV(xth) ' X(xlv s 7xr);

7(Pay) = ()0

U(PxQ) = (_)inv(y1,xl) - 52.
This shows that if the last two signs of P,, and P,, are different, then the sign of P, must
be the same as P,,. More formally if (—)™v#122) . g = — . (=)ivUL1) g, then (—)nv(z1.22) .
x(z1,. .. x.) = (=)™W122) 5, We now consider the other two cases. For all of them we get the
same condition on the sign of x(z1,...,z,).

In the second case, we assume that y; < xo < x1. Again, we consider the three signs in the
packet P. It is

(_)inv(acl,acg)+l

Pyl) 'X($17"'7x7‘);
() = () oy
Py

o(Pey) = (<)) sy,

[l

and they appear in this order in the packet. Hence the condition from above holds. In the
remaining case, we assume the order 1 < y; < z2. The signs are

0 (Pyy) = (=)™ 0172) gy
o(Py) = (_)mv(wl’m) x(x1y ., xp);
P,

2) = (_)inv(y17$1)+1 . 82,

which appear in this particular order. Again the condition holds. Reformulation of this depen-
dencies and the fact that inv(a,b) = inv(b,a) and inv(a,b) + inv(a,c) = inv(b,c) mod 2 gives
the following claim.

Claim 2.1. If sy = (=)™@ne)+tl g then y(x1, ..., z,) = (=)2V@L20) g

By considering the three different orders of the elements z1, 2, y2 in the packet ), we get the
following relations.

Claim 2.2. If s; = (—)™@022) L5y then x(x1,...,2,) = (—)2VW272) .5,

Claim 2.1 can be applied if s; = (=)™ (@122)+1 . ) and Claim 2.2 if s; = (—)™(#1:%2) . 55 Hence
s1 and so fulfill exactly one of the two conditions. In both cases we get an implication for the
sign of x(z1,...,z,).

We proceed in the same way for the two packets R and S to get a condition of the sign
X(y1, Y2, T3, ..., x,). Again exactly one of the two cases from the following two claims occurs.

Claim 2.3. If s; = (=)"™W¥2) . s then x(y1,y2, T3, ..., 2p) = (—)2VWLE) g

Claim 2.4. If s; = (—)™Wv2)tl s then x(y1, yo, 23, ..., 2p) = (—)2VW2:72) g5
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To conclude the statement of the lemma, we have to go through the four possibilities to combine
the different cases. Clearly, if we are in the case of Claim 2.1 and Claim 2.3, the statement follows
since x(z1, ..., x,) and x(y1, Y2, T3, ..., x,) have the same sign. If Claim 2.2 and Claim 2.4 holds,
then the statement follows in the same way. If the case that the conditions of Claim 2.1 and
Claim 2.4 are fulfilled it holds

(_)inv(xl,xg)-i-l 89 = 8] = (_)inv(yl,y2)+ls2‘

This implies that inv(z1,z2) + inv(yi,y2) =0 mod 2 and hence

X(z1,...,xp) = (_)iHV(yhm) .81
= (_)inv(yl’z1)+in"(¢1vx2)+im’(y1,yz) .81
= (_)inv(yz,m) <51 = x(y1,y2, 3, ..., Tp).

In the last case, we assume that the conditions of Claim 2.2 and Claim 2.3 hold. This implies
again inv(z1,x2) +1inv(y1,y2) =0 mod 2, which in the same way as in the preceding case leads
to the statement of the lemma. O

This lemma shows that r-signotopes are a subclass of uniform r-chirotopes. Moreover, they are
acyclic.

Definition 2.2.18. A wuniform chirotope is acyclic if and only if for every (r + 1)-subset
X ={x1,...,xr41} (not necessarily ordered) the sign sequence

X(Xz1) - x(Xzp )
is none of the alternating sign sequences (+—+...(=)") and (—+—...(=)"TY) of length r + 1.
This definition of acyclicity is independent of the ordering of the elements.

Lemma 2.2.19. If the sign sequence of x1,...,x.4+1 @S alternating, then the sign sequence of
Tr(1); -+ Tr(r+1) 18 alternating for every permutation ™ € Sy41.

Proof. Since adjacent transpositions generate the symmetric group, we only need to show the
statement for an adjacent transposition. Let x1 < ... < x,41 and m € 5,41 be the permutation
with m(j) = j+1, m(j+1) = j and 7(i) =i for all i € [n]\{j,j+1}. Consider the corresponding
sequence for X = (z1,...,2r41) and X" = (21,...,Tj41, %), ..., Trp1):

(x(XT) - x(XF) x(XF) o x (X))

All subsets X7 for i ¢ {j,j + 1} contain both elements j and j + 1. However, they appear
in reversed order compared to X. All other elements appear in the same order. Hence the

sign of the permutation 7 when restricting to the elements of {x1,...,z,41}\{x;} is negative.
This shows that all signs except the one of x( JTTH) and X(X;T) are reversed in the considered
sequence. If we restrict the permutation 7 to the elements {x1,...,x,41}\{x;} for i = j,j + 1,

the resulting permutation is the identity whose sign is positive. However, the position of the
two adjacent signs in the sequence is reversed. Hence the sign sequence is equal to

(=x(X1) - = x(Xj—1) x(Xj1) x(X5) = x(Xj42) -0 = x(Xp41) )

which is alternating if and only if ( x(X1) ... x(X;41) ) is alternating. O
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In [BLS199] acyclicity is only given in terms of cryptomorphic axiom systems of oriented ma-
troids. Since we could not find the definition for general r-chirotopes elsewhere, we prove that
this definition matches the definition of [BLS"99]. In his PhD thesis, Kliem discusses the rank 3
case even for non-uniform oriented matroids, see Definition 3.3 in Chapter 4 of [Kli22].

Lemma 2.2.20. The definition of acyclicity for uniform chirotopes (Definition 2.2.18) is equiv-
alent to Definition 3.4.7 in [BLST 99] for uniform oriented matroids.

Proof. By Definition 3.4.7 in [BLST99] an oriented matroid is acyclic if it does not contain a
positive circuit. To avoid the formal definition of circuits, we use the following description. In a
uniform oriented matroid there are functions Cx : X — {4, —} for all (r 4+ 1)-subsets X C [n]
such that

x(z1,23, ..., 2r+1) = —Cx(21)Cx (x2)x(z2, T3, . . ., Tpy1), (2.1)

see [BLST99, (PV) in Defintion 3.5.1]. Such a function Cx is called circuit. By the circuit
axioms it holds: If a circuit Cx exists, then —Cx is a circuit as well. A uniform oriented
matroid contains a positive circuit if there is an (r +1)-subset X = {z1,..., 2,41} such that Cx
is the constant + function.

By Definition 2.2.18 a chirotope is not acyclic if there is an (r + 1)-subset X = {x1,..., 2,41}
containing the alternating sign sequence. This is equivalent to

(_)i-‘rr—l

X(xlv"'axT) = X(xla"'7xi71733i+17"'71‘7’+1) (22)

foralli=1,...,7.

Assume x is not acyclic and hence (2.2) holds for an (r + 1)-subset X = {z1,...,z,41}. As
described above there is a circuit C'x which fulfills the equation (2.1). Together with the alter-
nating property of chirotopes, it is

X(xlv D 7xT) - (_)iil : X(xla LlyeooyLi—1yLi415-- - 7$T)
= (=)' Ox (%) Cx (T 1) X(Tra 1y T1y - ooy Tim1, Tit 1y -« - Ty ) (2.3)
= (=) Ox (2) Cx (T 1) X (21, - -+, i1, Tig1s - -+ Trg1)

for all i = 1,...,r. Both equations (2.2) and (2.3) together imply

(_)i+T71X(x17 ey Tg—1y Lj41y - - - 7xT+1)
= x(z1,...,2,)
= (_)z+r71 . CX(xi)CX($r+1)X($1; ey Li—1, Lj41y - - - ,IL’7»+1).

for all ¢ € {1,...,r}. This shows that Cx(x;) = Cx(zy4+1) for all ¢ and hence C is either the
constant 4 or the constant — function. In both cases we have a positive circuit.
For the reverse direction assume there is a positive circuit, i.e., there is an (r + 1)-subset X =

{z1,..., 2,41} such and Cx is the constant + function on {z1,...,x,41}. By (2.1) and the
alternating property of chirotopes as used in (2.3) it follows for alli =1,...,r
X(@1, .. 2p) = —=COx (@) Ox (2r11) (=) I (@1, -, Bim1, Tigt, -+, Tri)
= (7)Z+TX(:E17 ey Li—1y Lidly e oy ':ET+1)

which is exactly an alternating sequence, see (2.2). O
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Rank 3 acyclic chirotopes are also known as abstract order types or C'C-Systems. The latter was
introduced by Knuth [Knu92] in his book “Axioms and Hulls” using counterclockwise predicates
to axiomize planar point sets.

The chirotope X, of a signotope ¢ is acyclic since there is at most one sign change on the packet
if the elements are ordered. Moreover by Lemma 2.2.19 the alternating sign sequence is invariant
under permutations. We summarize the results:

Theorem 2.2.21. For every r-signotope o, the map X is an acyclic uniform r-chirotope.

Note that acyclic uniform chirotopes are in general not signotopes. The important part about
signotopes is the linear order of the elements. For rank 3 however, there is a permutation of the
elements of a chirotope such that it becomes a signotope. This follows from the fact that every
chirotope can be represented by a pseudoline arrangement in which we can mark an unbounded
cell as the top cell and order the pseudolines from top to bottom. We have already seen that
marked Euclidean pseudoline arrangements are in correspondence with 3-signotope. For r > 4
this is no longer true, and signotopes are a proper subclass of acyclic uniform chirotopes. For
example 5 points in R? in general position which are not in convex position have no sorting such
that the packet on all 5 elements is monotone.

It is well-known that the number of r-chirotopes on n elements is 2°(n"~1), see for exam-
ple [BLST99, Corollary 7.4.3]. Since the number of r-signotopes has the same asymptotics, see
Proposition 2.2.14, they are indeed a rich subclass of r-chirotopes.

2.2.6 Topological Representations of r-Signotopes

The cases 7 = 1 and r = 2 are well-understood. For r = 3 we already discussed two topological
representations and a similar way for a combinatorial encoding. In this section, we give several
topological and geometric representations of r-signotopes. Kapranov and Voevodsky [KV91]
already mentioned two topological representations for higher Bruhat orders, the first in terms
of single element extensions of cyclic hyperplane arrangements, and the second in terms of
tight zonotopal tilings of projections of cubes, also called cubillages. For rank 3 signotopes, we
already discussed pseudolines and pseudoconfiguration of points as topological representation.
Both presentation have a generalization for higher rank.

For each of the following four presented representations we give an illustration of the 4-signotope
Oex ON 6 elements. For a compact representation, we describe it as a string of its signs in reversed
lexicographic order of its r-subsets:

Oex = ++———+———++++++.

Pseudohyerplane Arrangements

It was already observed by Kapranov and Voevodsky [KV91] that r-signotopes are a subclass
of rank r oriented matroids, see Section 2.2.5 for a proof in terms of chirotopes. The Folkman-
Lawrence representation theorem [FL78| asserts that every r-chirotope can be represented as
a pseudohyperplane arrangement in R"~!. This in particular holds for r-signotopes as they
are a subclass. Pseudohyperplane arrangements abstract the properties of proper hyperplane
arrangements.
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Definition 2.2.22 (Pseudohyperplane Arrangement). A pseudohyperplane H in R? is homeo-
morphic to a hyperplane in R?, i.e., the removal of H divides R into two connected components,
which are both homeomorphic to an open d-dimensional ball. A pseudohyperplane arrangement
in R% is a family of pseudohyperplanes in R® such that for every pair Hy, Hy of pseudohyper-
planes the intersection is a pseudohyperplane in R¥~! and H, intersects both components of
R\ Hy.

Signotopes are a subclass of r-chirotopes, which provide more structure. As shown by Felsner
and Weil r-signotopes correspond to a maximum chain of (r—1)-signotopes (cf. Theorem 2.2.11).
We refer to such a maximum chain as a sweep of the r-signotope. In terms of pseudohyperplane

Figure 2.6: A pseudohyperplane arrangement in R? of the 4-signotope o., on 6 elements. The front is
the reversed cyclic arrangement in R2, the start of the sweep.

arrangement, the sweep is a sequence of pseudohyperplane arrangements in R 72, i.e., one
dimension lower. The sweep of an r-signotope starts with the reversed cyclic arrangement which
corresponds to the constant — function and ends with the cyclic arrangement, the constant +
function. Two consecutive (r — 1)-signotopes differ in exactly one sign, which is a fliple in both
(r—1)-signotopes. For the topological setting of pseudohyperplane, this corresponds to a change
of orientation of a simplicial cell. Hence the r — 1 pseudohyperplanes cross in between. For an
illustration of ooy see Figure 2.6.* In Section 2.2.2, we already discussed the rank 3 case in which
the Euclidean pseudoline arrangement can be represented by a maximum chain of permutations
such that two consecutive differ in an adjacent transposition.

Since the sweep for a signotope always starts with the reverse and ends with the cyclic arrange-
ment of one dimension/rank less, the cyclic arrangement itself plays an important role. Clearly
the cyclic arrangement in dimension d is a (d + 1)-signotope which corresponds to the unique
maximal element o,y in the higher Bruhat order B(n,d + 1), the constant + function. In the
studies of oriented matroids it is also known as the alternating oriented matroid, which is based
on the structure in terms of the circuit axioms.

“For a 3 dimensional visualization see
https://helenabergold.github.io/supp/3d_signotopes/example_pshyperplanes.html
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k-Intersecting Pseudoconfiguration of Points

Recently, Miyata [Miy21] presented a representation of r-signotopes using the interaction of a
point set and a family of curves. Surprisingly, this is for all ranks a representation in the plane.
As it is a generalization of pseudoconfiguration of points (see Section 2.2.3 for the definition),
they are called (r — 2)-intersecting pseudoconfiguration of points.

Definition 2.2.23 (k-Intersecting Pseudoconfiguration of Points). A k-intersecting pseudocon-
figuration of points of order n consists of a point set P = {p1,...,pn} in the plane ordered by
increasing x coordinate and a set of x-monotone curves C' such that

» For every curve c € C there exists at least k + 1 points of P on c;
» For any k + 1 points there exists a unique curve going through them; and
» Two curves have at most k common points which are proper crossings (no touchings).

Note that l-intersecting pseudoconfigurations of points are basically pseudoconfigurations of
points. For pseudoconfiguration of points, see Definition 2.2.8, we assumed that two pseudo-
lines have exactly one crossing. In the case of 1-intersecting pseudoconfiguration of points, we
weakened this condition to at most one crossing. However, if two curves do not cross, there is
an arrangement representing the same 3-signotope in which they cross.

In general, given a k-intersecting pseudoconfiguration of points the n points of P ordered with
increasing x coordinate correspond to the n elements. The sign o(z1,...,z,) of an r-subset
x1 < ... < xz, is obtained by the curve ¢ going through the r — 1 points z1,...,z,_1 and the
above-below-relation of the r-th point x, with respect to the curve c. If z, is above ¢, the subset
is mapped to 4+ and — otherwise. The curve going trough the points z1,...,z,_1 is denoted by
c(x1,...,7y—1). Note that the other r — 1 curves determined by the remaining (r — 1)-subsets of
the r-subset contain the same information in the following way. Every curve divides the plane in
exactly two connected component, both of them unbounded. Since the curves are z-monotone,
one of the component is above and the other one below. We say the component above the curve
is the +-side, and the other component is the —-side. We define a sign mapping on (["]) by

r

o(x1,...,2,) =+ <& x; is on the (—)T_i—side of ¢(T1,. ., Ti1,Tit1,---,Tr);

o(x1,...,x,) = — <& x;is on the (=) "Tlside of c(zy,..., %1, Tis1,...,2);

which is indeed well-defined and a signotope as shown by Miyata. An illustration of oey is given
in Figure 2.7.5

Theorem 2.2.24 ([Miy21)). For r > 2, the sign function of an (r — 2)-intersecting pseudocon-
figuration of points of order n is an r-signotope on [n]. Moreover, for every r-signotope o on n
elements, there is a (r — 2)-intersecting pseudoconfiguration of points of order n such that the
corresponding sign function equals o.

The case r = 3 follows by the duality of pseudoconfiguration of points and marked pseudoline
arrangements discussed in Section 2.2.3. An independent proof for this special case is provided
by Balko, Fulek and Kyné¢l [BFK15].

5This representation was generated using an algorithm provided by Giinter Rote.
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Figure 2.7: A representation of a 4-signotope o on 6-elements as a 2-intersecting pseudoconfiguration
of points. The points represent the 6 elements, each of them marked with a different color.
The curves are colored with the colors of the three points they contain.

Particular instances of (r — 2)-intersecting pseudoconfiguration of points are obtained by taking
the curves as polynomial functions of degree r — 2 which interpolate the (r — 1)-subsets of the
point set. More precisely r — 1 points determine a polynomial function of degree r — 2 and two
such curves cross in at most r — 2 points. However, not all configurations are realizable in such a
way that every curve of L is a polynomial function of degree < r — 2. This already holds in the
r = 3 case, since not all pseudoline arrangements are realizable as a line arrangements which is
equivalent to realizing pseudoconfiguration of points as point sets.

Zonotopal tiling

A dual representation to pseudohyperplane arrangements are zonotopal tilings of r — 1 dimen-
sional zonotopes. A zonotope is the Minkowski sum of vectors V' = {v1, ..., v,} in R"~! which is
then tiled by translations of the Minkowski sum of subsets of V. This geometric representation
of signotopes was first studied by Kapranov and Voevodsky [KV91] and further investigated by
Thomas [Tho03] and Williams [Wil23]. By the Bohne-Dress theorem every rank r-signotopes
can be realized as a tight zonotopal tiling in R"~!. For a proof and further information, see for
example [RZ94]. A tiling is tight if all tiles are Minkowski sums of r — 1 independent vectors.
In such a representation, each vector corresponds to one element of the signotope. Hence for a
3-signotope, the tiled zonotope corresponds to a 2n-gon. Connecting the halving points of the
translations of the same vector gives a pseudohyperplane arrangement. For an illustration of a
3-signotope on 9 elements as a zonotopal tiling together with its dual pseudoline arrangement,
see Figure 2.8.
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Figure 2.8: A 2-dimensional zonotope with its dual pseudoline arrangement. This is the non-realizable
example by Ringel [Rin56] with 9 elements of rank 3.

The 3-dimensional zonotope representing e is given in Figure 2.9.6

Figure 2.9: A 3-dimensional zonotopal tiling representing the 4-signotope oo, on 6 elements. Each
vector corresponds to one element of the signotope. Translations of the same vector have
the same color.

One element extension of the cyclic arrangement

The next representation of r-signotopes was first mentioned by Kapranov and Voevodsky [KV91]
and further studied by Ziegler [Zie93]. For this an r-signotope on n elements is represented as a
single element extension of the cyclic arrangement of rank n — r + 1 on n elements. A crossing
point of n — r hyperplanes can be identified with its n — (n — r) = r pseudoplanes which do
not contain this crossing point. Along each line which corresponds to the crossing of n —r — 1
elements, the r-subsets of the crossing points are ordered lexicographically. A one element
extension of this cyclic arrangement corresponds to adding an additional pseudohyperplane.

5An interactive view of the 3-dimensional object can be found here:
https://helenabergold.github.io/supp/3d_signotopes/example_zonotope.html
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Such a pseudohyperplane partitions each line into two parts, one part above the extending
pseudohyperplane and one below. If a crossing point is above the extending line, the r subset
of the label is mapped to + and for the crossing points below to —. Monotonicity of this sign
mapping on r-subsets follows from the order of the labels along all lines. For an illustration see
Figure 2.10.

Figure 2.10: The 4-signotope gex on 6 elements represented by a one element extension of the cyclic
arrangement of rank 3 on 6 elements. The crossing points with white vertices build the
+-set, the black vertices the —-set.

2.3 Simple Drawings

Starting from Turdn’s brick factory problem from the 1940’s, which asks for the minimum
number of crossings in a drawing of a complete bipartite graph, simple drawings have gained a
lot of attention and became a source for many open problems and conjectures. In the literature,
simple drawings are also called good drawings, simple topological drawings, and simple topological
graphs.

Definition 2.3.1 (Simple Drawing). In a simple drawing of a graph in the plane (respectively
on the sphere),

» The vertices are mapped to distinct points in the plane (respectively on the sphere);

» FEdges are mapped to simple curves connecting the two corresponding vertices and contain-
ing no other vertices;

» Every pair of edges has at most one common point, which is either a common vertex or a
crossing (but not a touching); and

» No three edges cross at a common point.

Figure 2.11 shows the obstructions to simple drawings. In this thesis, we only consider simple
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L2, <X
= NN

Figure 2.11: The obstructions to simple drawings.

drawings of the complete graph K,,, hence between each pair of vertices there is a curve con-
necting them. They can be seen as continuous projection of the d-simplex onto the plane which
shows that they are a topological generalization of point sets in the plane.

When studying simple drawings, we do not consider the actual embedding of the drawing on
the sphere or in the plane. There are different ways to define isomorphism classes on simple
drawings, which we discuss in more detail in Section 2.5. Throughout this thesis we only consider
the so called weak isomorphism in which two drawings are isomorphic if the same pairs of edges
cross. This is an isomorphism class for drawings on the sphere. If we consider drawings in the
plane, we additional fix a cell of the drawing as the unbounded cell. We refer to it as outer cell.

Given a point set in the plane in general position, i.e., no three points on a line, connecting the
points with straight-line segments yields a simple drawing which is denoted as geometric draw-
ing. Geometric drawings are a proper subclass of simple drawings. Moreover, we have already
seen that signotopes appeared in the context of pseudolinear drawings of K, if the vertices are
ordered from left to right (see Section 2.2.3). A pseudolinear drawing is a drawing in which
all edges can be extended to pseudolines such that the resulting configuration is a pseudoline
arrangement. Pseudolinear drawings are clearly simple drawings and contain all geometric draw-
ings. A characterization of pseudolinear drawings via an infinite family of forbidden subdrawings
is given in [ABR21].

Deciding whether a pseudolinear drawing is homeomorphic to a geometric drawing corresponds
to deciding whether a pseuodoline arrangement is realizable as a line arrangement. This is
shown to be ETR-hard [Mné88]. Since there are non-realizable pseudoline arrangements, geo-
metric drawings are a proper subset of pseudolinear drawings. In Section 2.6 we give a more
refined classification of classes between pseudolinear drawings and simple drawings. When ex-
tending the pseudlinear drawing to a pseudoline arrangement, we obtain a pseudoconfiguration
of points. Furthermore, from a pseudoconfiguration of points we get to a pseudolinear drawing
by restricting to the curves between the two vertices. Since every pseudoline arrangement can be
drawn in an z-monotone way, we achieve an ordering of the vertices 1, ..., n such that all pseudo-
lines/edges are drawn z-monotone. Balko, Fulek and Kyncl [BFK15] used this setting to define
triple orientations based on the above-below-relationship similar to the one of the k-intersecting
pseudoconfiguration of points. In particular, for i < j < k, the triple 4, j, k is mapped to + if j
is below the edge ik and if j is above the edge, we assign —. For an illustration, see Figure 2.12.
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Figure 2.12: Illustration of the connection between the above below relation ship and triangle orienta-
tions in pseudolinear drawings.

This mapping is indeed a signotope as shown by Balko, Fulek and Kyn¢l. If we look at the
extended edges to z-monotone pseudolines, the sign of a triple 7, j, k determines the orientation
of the triangle spanned by those three vertices in the drawing of the complete graph. Given a
simple drawing D, the subdrawing of K3 induced by three vertices is a triangle. Note that the
edges of a triangle in a simple drawing do not cross and they build a simple closed curve. Hence
a triangle partitions the plane (respectively the sphere) into exactly two connected components.
If 4, j, k is assigned +, i.e., if j is below the edge ik, the triangle ijk is oriented counterclockwise
when tracing the boundary of the triangle i, j, k in this order. If 4,7,k is —, then the triangle
orientation is clockwise. We can define the triangle orientation in arbitrary simple drawings,
which we discuss in the next section.

2.4 Generalized Signotopes

Let D be a simple drawing of a complete graph in the plane. To each triple (a, b, ¢) consisting of
three distinct vertices, we assign an orientation y(a,b,c) € {4+, —}. The sign 7(a, b, ¢) indicates
whether we go counterclockwise or clockwise around the triangle when traversing the edges
ab, be, ca in this order.

In comparison to pseudolinear drawings, when considering simple drawings of the complete
graph we have no meaningful ordering of the vertices. Exchanging the labels of two vertices
reverts the orientation of all triangles containing both vertices. This suggests to look at the
alternating extension of . Formally y(ir(1),ir(2),%r(3)) = sgn(m) - v(i1,42,43) for any distinct
labels i1,1i2,i3 and any permutation m € S3. This yields a mapping v : [n]s — {+,—}. Recall
that [n]s denotes triples with pairwise distinct entries from [n]. To see whether the alternating
extension of  still has a property comparable to the monotonicity of signotopes, we have to
look at 4-tuples of vertices, i.e., drawings of Kj4. It turns out that the monotonicity condition
is replaced by unimodality or co-unimodality, i.e., there are at most two sign changes in the
sequence. On the sphere there are two types of drawings of K4: Type I has one crossing and
type II has no crossing. Type I can be drawn in two different ways in the plane: In type I, the
crossing is only incident to bounded cells and in type I}, the crossing is incident to the outer cell,
see Figure 2.13 for the drawings with one possible labeling of the vertices.

The type of a drawing of K, with vertices a, b, c,d can be characterized in terms of the sign
sequence of orientations (v(b, ¢, d) v(a,c,d) v(a,b,d) v(a,b,c)). The drawing is

» of type I, or type I, if and only if the sequence is (++++), (++——), (+——+), (—++—),
(——++), or (————); and

» of type I if and only if the number of +’s (and —’s respectively) in the sequence is odd.
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type I, type Iy type 11

4 3 4 3 4

1 9 1 2
(++++) (——++) (—+++)

Figure 2.13: The three types of simple drawings of K4 in the plane.

Since there are no other possibilities to draw a K4, there are at most two sign-changes in the
sequence (v(b, c,d) vy(a,c,d) v(a,b,d) y(a,b,c)). Moreover, any such sequence is in fact induced
by a simple drawing of K. Allowing up to two sign-changes is equivalent to forbidding the two
alternating patterns (+—+—) and (—+—+). In contrast to signotopes, for which the ordering
of the elements is essential, this is no longer true for generalized signotopes. If a generalized
signotope + is alternating and avoids the two patterns (+—+—) and (—+—+) on sorted indices,
ie, (v(4,k,1) v(i, k1) v(i,7,0) v(i,7,k)) has at most two sign-changes for all i < j < k < [,
then it avoids the two patterns in (y(b,c,d) v(a,c,d) v(a,b,d) v(a,b,c)) for pairwise distinct
a,b,c,d € [n]. This follows directly from Lemma 2.2.19 and allows us to define generalized
signotopes as alternating mappings 7: [n]s — {+, —} without alternating sign sequences.

Definition 2.4.1 (Generalized Signotope). A generalized signotope is a sign function y: [n]s —
{+, =} such that for pairwise distinct elements a,b,c,d € [n] the sign sequence

(v(b, ¢, d) v(a, ¢, d) v(a,b,d) ~(a, b, ¢))
has at most two sign changes.

For simple drawings of the K, in the plane, all subdrawings of K, admit at most two sign changes
on every 4-packet. Given a simple drawing D, a subdrawing is a set of curves corresponding to
edges and their endvertices. A subdrawing of a graph H whose edges and vertices correspond
to the incident relations of H. Hence the sign function of every simple drawing of K,,, which
encodes the orientations (clockwise or anticlockwise) of the induced K3, has at most two sign
changes on every 4-packet. We conclude:

Proposition 2.4.2. Every simple drawing of K, induces a generalized signotope on n elements.

The structure of generalized signotopes appears in various geometric objects. In his monograph
“Axioms and Hulls” Knuth [Knu92] used ternary predicates to axiomize point sets in general po-
sition in the plane, the CC-Systems which are acyclic uniform rank 3 chirotopes, see Section 2.2.5.
As a relaxation of those axioms, he studies generalized signotopes which he calls interior triple
systems. Let g, denote the number of generalized signotopes on n elements. Knuth showed
that 2%713 < logy(gn). In Chapter 6 we will improve this bound to 5;n® < logy(gn) and give an
asymptotic matching upper bound of 0.139n3 using Shearer’s entropy lemma. While general-
ized signotopes contain all uniform acyclic 3-chirotopes, the alternating sign patterns (+—+—)
or (—+—+) appear in cyclic 3-chirotope, see Section 2.2.5. Moreover, generalized signotopes
appeared in the study of intersection patterns of convex sets, see [ADKP22b, ADKP22a].
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In Chapter 6, we show that asymptotically there are more generalized signotopes than simple
drawings. Moreover, we discuss the relation between simple drawings and generalized signotopes.
While all 3-signotopes correspond to a pseudoline arrangement, this is no longer true for the
generalized signotopes and simple drawings. The two drawings shown in Figure 2.14 have
essential different properties. For example the drawing on the left, denoted as Cs is geometric
and corresponds to the point set in convex position, while the drawing on the right, denoted as
T5 is not isomorphic to a geometric drawing. However with the given labeling both generalized
signotopes are the constant +-function. Moreover, the two drawings presented are the two

4

(a)

Figure 2.14: The two crossing-maximal simple drawings of K. For both of them the triangle orientation
for triangles {i,7,k} with ¢ < j < k is counterclockwise oriented,i.e., v(i,7,k) = +. (a)
The geometric drawing Cs of points in convex position. (b) The twisted drawing 75 with
rotation system II5%. The drawing 75 is not geometric.

crossing maximal drawings of K5. Given a simple drawing and its generalized signotope, we
can decide on the basis of the generalized signotope, whether the K4 has a crossing or not.
Hence different simple drawings yielding the same generalized signotope have the same number
of crossings. However, the generalized signotope does not provide information on the exact edges
which cross. The two drawings given in Figure 2.14 have the same generalized signotope. While
in the C5 the edge {1,5} is uncrossed, the edge {1,5} in the drawing 75 crosses all edges {j, k}
with 1 < j < k < 5. Despite the lack of information, generalized signotopes turned out to be
very useful and have been the essential tool for the proof of a separation theorem in the context
of simple drawings. In Chapter 4, we discuss theorems from convex geometry in the context of
simple drawings and give a proof of Kirchberger’s theorem in terms of generalized signotopes.

2.5 Rotation Systems

Various properties of a simple drawing only depend on the combinatorics of the drawing. One
way to encode the combinatorics are generalized signotopes, which encode the orientation of
the induced K3. However, as discussed in Section 2.4 generalized signotopes do not encode all
information about the drawings. Another way to encode simple drawings combinatorially are
rotation systems.



34 2 Signotopes, Drawings and Related Structures

Definition 2.5.1 (Rotation System). For a given simple drawing D and a vertex v of D, the
cyclic order m, of incident edges in counterclockwise order around v is called the rotation of v
i D. The collection of rotations of all vertices is called the rotation system of D.

In the case of simple drawings of the complete graph K,,, the rotation of a vertex v is a cyclic
permutation on the n — 1 vertices V (K, )\{v}. The rotation system captures the combinatorial
properties of a simple drawing on the sphere — the choice of the outer cell when stereographically
projecting the drawing onto a plane has no effect on the rotation system.

Definition 2.5.2 (Pre-Rotation System). A pre-rotation system on V' consists of cyclic permu-
tations m, on the elements V\{v} for allv € V. A pre-rotation system Il = (m,)yev is drawable
if there is a simple drawing of the complete graph with vertices V' such that its rotation system
coincides with 11.

Two pre-rotation systems are isomorphic if they are the same up to relabeling and reflection
(i.e., all cyclic orders are reversed). Two simple drawings are weakly isomorphic if their rotation
systems are isomorphic.

Figure 2.15: Two weakly isomorphic drawings of K¢, which can be transformed into each other by a
triangle-flip. The triangle flip is marked grey.

Besides weak isomorphism, there is also the notion of strong isomorphism in literature: Two
simple drawings are called strongly isomorphic if they induce homeomorphic cell decompositions
of the sphere.

A triangular cell, which has no vertex on its boundary, is bounded by three edges. By moving
one of these edges across the intersection of the two other edges, one obtains a weakly isomorphic
drawing; see Figure 2.15. This operation is called triangle-flip. Gioan [Gio05, Gio22], see also
Arroyo et al. [AMRS17], showed that any two weakly isomorphic drawings of the complete graph
can be transformed into each other with a sequence of triangle-flips and at most one reflection
of the drawing.

On four vertices there are three non-isomorphic pre-rotation systems. The K4 has exactly two
non-isomorphic simple drawings on the sphere: The drawing with one crossing (see type I in
Figure 2.13) and the drawing with no crossing (type II in Figure 2.13). Note that the drawing of
type I, and type I}, are isomorphic on the sphere. The two pre-rotation systems corresponding
to type I and type II are drawable, and the third pre-rotation system is an obstruction to
drawability. It is denoted by IIj and described in Figure 2.16.

By studying the drawings of K4, see Figure 2.17, we learn that a crossing pair of edges can be
identified from the underlying rotation system. Hence the weak isomorphism is consistent with
the definition in the beginning of Section 2.3.
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I15 : 15, 115 5

m: 234 m: 2345 m: 2345

m: 134 me: 1345 m: 1354

m3: 124 m3: 1425 m3: 1425

my: 132 T 1532 My 1532
m5: 1423 m5: 1243

Figure 2.16: The three obstructions IIg, II3 |, and 1I§ , for rotation systems.

4 3 3 2 2 4 4

1 2 1 4 1 3 1 2
T 234 m: 234 m: 234 m: 234
M 134 m: 143 my: 134 mo: 143
m3: 124 w3 142 m3: 142 m3: 124
my: 123 my: 123 my: 132 my: 132

Figure 2.17: The first three drawings of type I are isomorphic, representing the different possibilities of
edges crossing in a K. The last one represents the isomorphism class corresponding to
type II.

Since every crossing pair of edges involves exactly four vertices, we have to look at subconfigura-
tions of size 4 to identify all crossings in a simple drawing. For a pre-rotation system I = (7, )yev
and a subset of the elements I C V', the sub-configuration induced by I is Il|; = (my|1)ver, where
my|r denotes the cyclic permutation obtained by restricting 7, to I\{v}. A pre-rotation system
IT on V contains IT' if there is an induced sub-configuration II|; with I C V isomorphic to IT'.
A pre-rotation system not containing II’ is called IT'-free.

The pairs of crossing edges in a drawing of K, are fully determined by its underlying rotation
system.

Observation 2.5.3. The following two statements hold:
(i) A pre-rotation system containing I1 is not drawable.

11) Let I1 be a 113-free pre-rotation system on [n|. The subconfiguration induced by a 4-element
4
subset is drawable and determines which pairs of edges cross in the drawing.

Note that part (i) of the lemma allows to talk about the crossing pairs of edges of a II3-free
pre-rotation system, even if there is no associated drawing.

Abrego et al. [A/AF+15] generated all pre-rotation systems for up to 9 vertices and used a drawing
program based on back-tracking to classify the drawable ones. In particular, they provided the
following classification.

Proposition 2.5.4 ([AAFt15]). A pre-rotation system on n < 6 elements is drawable if and
only if it does not contain 11g, 113 1, or II3 5 (Figure 2.16) as a subconfiguration.
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Moreover, Kyné¢l showed that a pre-rotation system is drawable if and only if all induced 4-, 5-,
and 6-element subconfigurations are drawable [Kyn20, Theorem 1.1]. Together with Proposi-
tion 2.5.4 this yields the following characterization:

Theorem 2.5.5. A pre-rotation system on n elements is drawable if and only if it does not
contain 113, 115 | or II3 5 (Figure 2.16) as a subconfiguration.

Rotation systems encode combinatorial properties of simple drawings on the sphere. To make
investigation with computers, we modeled a CNF instance describing rotation systems. For more
details see Chapter 5. Since rotation systems encode the crossings, and plane substructures
do not depend on the actual embedding in the plane, the SAT instance lead to several new
conjectures concerning plane substructures in simple drawings and in particular helped to prove
that every convex drawing contains a plane Hamiltonian cycle. The existence of Hamiltonian
cycles in simple drawings is known as Rafla’s conjecture [Raf88] and remains open. Despite
several improvements of the longest plane path in the last years, the conjecture is only shown
for small classes of simple drawings. Subclasses of simple drawings such as convex drawings are
defined in the next section.

2.6 Convexity Hierarchy

Geometric drawings of the K, are a different point of view for point sets in the plane. The vertices
are exactly the points, and we connect the points by their straight-line segment. Moreover,
pseudoconfigurations of points are simple drawings where we only consider the segment of the
curves between two points. This class of drawings is called pseudolinear drawings, which clearly
contains all geometric drawings. We now define superclassses of pseudolinear drawings which
generalize the convexity properties. They have been introduced in the convexity hierarchy by
Arroyo et al. [AMRS22]. The classic notion of convexity in the plane asserts that for two
points in a convex shape, the connecting line is completely contained in the convex shape. For
example (geometric) triangles are convex shapes, which we can define in simple drawings as
well. Given a simple drawing D, the subdrawing induced by three vertices is a triangle. Since
the edges of a triangle in a simple drawing do not cross and hence the removal of a triangle
separates the plane (respectively the sphere) into two connected components. In the plane this
is a bounded component and an unbounded component. We call the closure of these connected
components sides. A side of a triangle is convex if every edge that has its two endvertices in
the side is completely drawn in the side. Note that both sides of the triangle might be convex.
In geometric drawings, the bounded side is always convex. We are now ready to introduce the
convexity hierarchy of Arroyo et al. [AMRS22]). For 1 <i < j < 6, drawings with property (7)
also have property (i).

(1) simple drawings;
(2) conver drawings: Every triangle has a convex side;

(3) hereditary-convex drawings (short: h-convex): we can choose a convex side St for every
triangle T such that, for every triangle 7" contained in S, it holds S+ C St;
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(4) face-conver drawings (short: f-convex): there is a special cell ¢ such that, for every
triangle, the side not containing c., is convex;

(5) pseudolinear drawings: there is an arrangement A of pseudolines such that every edge of
the drawing is supported by (contained in) one of the pseudolines of A4;

(6) geometric drawings: Every edge is drawn as straight-line segments connecting its two
endpoints.

Arroyo et al. [AMRS18] showed that the f-convex drawings where the special cell ¢ is drawn
as the unbounded outer cell are precisely the pseudolinear drawings. Pseudolinear drawings
are generalized by pseudocircular drawings. A drawing is called pseudocircular if every edge
can be extended to a pseudocircle (simple closed curve) such that every pair of pseudocircles
either has two crossings or is disjoint. Since stereographic projections preserve (pseudo)circles,
pseudocircularity is a property of drawings on the sphere. Pseudocircular drawings were studied
in an article by Arroyo, Richter, and Sunohara [ARS21]. They provided an example of a simple
drawing which is not pseudocircular. Moreover, they proved that hereditary-convex drawings
are precisely the pseudospherical drawings, i.e., pseudocircular drawings with the additional two
properties that

» every pair of pseudocircles intersects, and
» for any two edges e # f the pseudocircle 7, has at most one crossing with f.

The relation between convex drawings and pseudocircular drawings remains open.

To see this, note that the existence of a convex side is not affected by changing the outer cell or by
transferring the drawing to the sphere. Moreover, convex sides are not affected by triangle-flips.
Hence, these properties only depend on the rotation system of the drawing.

Observation 2.6.1. Convexity, hereditary-convexity, and face-convezity are properties of the
weak isomorphism classes.

For pseudolinear and geometric drawings, however, the choice of the outer cell plays an essential
role. In [ABR21], Arroyo, Bensmail and Bruce Richter give characterization of pseudolinear
drawings which yields a polynomial-time algorithm for the recognition. Arroyo et al. [AMRS22]
showed that convex and h-convex drawings can be characterized via finitely many forbidden
subconfigurations.

Proposition 2.6.2 ([AMRS22]). A simple drawing is convex if and only if it does not contain
LI5S or 1155 (cf. Figure 2.18) as a subconfiguration. Moreover, a convex drawing is h-convez if
and only if it does not contain th (cf. Figure 2.19) as a subconfiguration.
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mg: 1345 my: 1354
m3: 1245 m3: 1245
T 1253 T 1253

m5: 1243 v m5: 1423

Figure 2.18: The two obstructions 1184 (left) and II8% (right) for convex drawings. A mnon-convex
triangle is highlighted red.

2 1
Igh
m: 23456
3 6 m: 13456
m3: 12645
my: 12356
m5: 12346
4 5 Te: 12453

Figure 2.19: The obstruction II¢" for h-convex drawings. The convex side of the red triangle is the
bounded side and for the blue triangle its the unbounded side. Hence the blue triangle is
contained in the convex side of the red one but its convex side is not.



CHAPTER 3

An Extension Theorem for
Signotopes

In 1926, Levi proved in his pioneering article on pseudoline arrangements that the fundamental
extendability of line arrangements applies to the more general setting of pseudoline arrange-
ments [Lev26].

Theorem 2.2.4 (Levi’s extension lemma for pseudoline arrangements [Lev26]). Given an ar-
rangement A of pseudolines (not necessarily simple) and two points p,q in R%, not on a common
pseudoline of A. Then there exists a pseudoline £ containing both points p and q such that AU{l}
1 a pseudoline arrangement.

Several proofs for Levi’s extension lemma are known today. Besides [Lev26], see also [AMRS18,
FWO01, Sch19].

Generalizations to higher dimensions have been studied in the context of oriented matroids,
which by the representation theorem of Folkman and Lawrence [FL78] have representations as
projective pseudohyperplane arrangements. Given a family of hyperplanes H in R¢, any d points
in R%, not all on a common hyperplane of #, define a hyperplane which is distinct from the
hyperplanes in H. Goodman and Pollack [GP81] presented an arrangement of 8 pseudoplanes
in R? and a selection of three points, not all on a common pseudoplane, such that there is no
extension of the arrangement with a pseudoplane containing the selected points. Richter-Gebert
[Ric93] then investigated a weaker version with only two disjoint prescribed points in dimension
3. He presents an example of a rank 4 oriented matroid on 12 elements which is not extendable.
In this chapter, we present a proof of Levi’s extension lemma in a purely combinatorial setting,
which works for higher dimensions. The geometry is represented by r-signotopes, which are
a rich subclass of oriented matroids (see Proposition 2.2.14, Theorem 2.2.21). We show that
r-signotopes are extendable through two prescribed points in even dimensions d, that is, when
the rank r = d + 1 is odd; see Theorem 3.1.2. Surprisingly, there are non-extendable signotopes
in rank 4, 6, 8, 10, and 12, which lead to the conjecture that there is no extension theorem for
any even rank r > 4, see Conjecture 3.1.

Outline. In Section 3.1, we discuss how to formulate extendability in terms of signotopes and
give the main results of this chapter. A special case, where the extending element is at the last
position is studied in Section 3.2. This turns out to be the essential tool in combination with the
rotation operator, which is introduced in Section 3.3. In Section 3.4, we finally give the proof
of the extension theorem for odd rank. Some technical lemmata are deferred to Section 3.5.
In Section 3.6 we discuss the properties for the counterexamples. Up to this point the results
presented in this chapter are based on [BFS23a] which is joint work with Stefan Felsner and
Manfred Scheucher. Last but not least, we discuss generalizations of this extendability by
prescribing more than two points, in Section 3.7.
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3.1 Extendability of Signotopes

In Levi’s extension lemma for pseudoline arrangements, each of the two prescribed points can
either lie in a cell of the arrangement, on one pseudoline, or be the crossing point of two or
more pseudolines. To formulate an extension lemma in terms of 3-signotopes we restrict our
considerations to simple pseudoline arrangements and to crossing points as prescribed points.
Since the pseudoline extending the arrangement passes through the two prescribed crossing
points, the extension yields a non-simple arrangement. However, perturbing the extending
pseudoline at the non-simple crossing points yields a simple arrangement. Figure 3.1 gives an
illustration.

Figure 3.1: Perturbing an extending pseudoline at the two non-simple crossing points.

In terms of signotopes we identify the crossing points via the set of the two pseudolines crossing
in this point. Since two pseudolines cross exactly once, the crossing points are in bijection
to the 2-subsets, i.e. to ([72‘]). A perturbation at a prescribed crossing together with the new
inserted pseudoline yields a triangular cell incident to the crossing. This cell is bounded by the
two pseudolines defining the crossing and the extending pseudoline. In terms of 3-signotopes
this corresponds to a fliple containing the extending element. For the definition and more
information, see Section 2.2.4.

Similarly for general rank r, we prescribe two disjoint crossing points of r — 1 pseudohyperplanes,
corresponding to (T[f]l). For the additional element extending the signotope we require that it
builds a fliple together with the prescribed (r — 1)-subsets.

Let A be an arrangement of pseudolines drawn in an z-monotone way, which are labeled 1,...,n
from top to bottom on the left. When applying Levi’s extension lemma to extend A the left
endpoint of the extending line £ will be between two consecutive endpoints of pseudolines of A.
To re-establish the properties of the labeling, we have to set the label of ¢ accordingly and
increase the label of every pseudoline that starts below £ by one. To cope with this relabeling-
issue in terms of signotopes, we introduce the reverse operation, i.e., deleting an element. For
k € [n] and a subset X of [n], we define

Xh={z|lzeXz<k}U{z—-1|ze X, x>k}

Note that the cardinality of X and X i is the same if and only if £ ¢ X. If £k € X it is
| X x| = |X| — 1. For an r-signotope o on [n], we define the deletion of an element k € [n] as
ol on r-subsets of [n — 1] by

ol (X k) = o(X)
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for all r-subsets X C [n] with k& ¢ X. This is an r-signotope on [n—1] because each (r+1)-packet
has been an (r+1)-packet for o. The deletion of several elements k; < ... < k; at the same time
is the repeated application of the deletion starting with the largest element to avoid additional
index shifts. This is denoted by ol . x.}-

Definition 3.1.1. An r-signotope o on [n] is t-extendable if for all pairwise disjoint (r — 1)-
subsets I, ..., I; € (r[f]l), there exists k € [n+ 1] and an r-signotope o on [n + 1] with fliples

If, ..., If such that o* {x= 0, and I;‘Lk: I forall j =1,...,t. Hence the element k extends o
to o* through I,...,I;.

Note that a t-extendable r-signotope on n > (r—1)t elements is clearly ({—1)-extendable. While
the l-extendability is a simple exercise the first interesting part is the 2-extendability, which we
discuss in Section 3.4 of this chapter. Moreover, in Section 3.7 we go even further and consider
t-extendability for ¢ > 3.

For 1-extendability, the strategy in the setting of pseudolines is to add a pseudoline just below
one of the two pseudolines crossing in the prescribed point and parallel to this pseudoline in
the sense that they have exactly the same crossing points. At the prescribed point the newly
inserted pseudoline crosses the two pseudolines involved in the crossing and in the remaining
part we again go parallel but just above the same pseudoline. For an illustration, see Figure 3.2.

Figure 3.2: Adding a new pseudoline extending the arrangement (black) through the marked crossing
point by adding a parallel pseudoline (red) to one of the pseudolines involved in the crossing.

From the theory developed in the following, 1-extendability for signotopes of all ranks is an easy
corollary, see Corollary 3.2.2. The extension we get, adds the additional element at the last
position which does not yield the same extension as described above in terms of pseudolines.
In the following, we focus on 2-extendability. As it turns out, 2-extendability can be guaranteed
for odd rank signotopes.

Theorem 3.1.2 (Extension theorem for signotopes of odd rank). For every odd rank r > 3,
every r-signotope is 2-extendable.

The proof of Theorem 3.1.2 (see Section 3.4) generalizes to the more general setting, where the
(r — 1)-subsets I and J, which are fliples in the extension, may intersect.

Corollary 3.1.3. Forr > 3, let 0 be an r-signotope on [n], and I, J C [n] two (r — 1)-subsets
such that |I N J| +r is odd. Then o is extendable to an r-signotope c* on [n + 1] with fliples
I*, J* and an extending element k € [n + 1] such that o* |y= o, and I* | ,=1, and J* |=J.

For 2-signotopes, which are permutations, the prescribed sets are singletons. Hence we are in
the setting of prescribed disjoint 1-subsets. Extendability through ¢ elements corresponds to
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inserting an element next to the ¢ prescribed elements in the permutation. Hence 2-signotopes
are not 2-extendable. However, the statement of Corollary 3.1.3 is still true for » = 2 since the
two sets I, J have to be equal.

When considering the extension through ¢ > 3 prescribed points, a possible generalization is
that the intersection of all (r — 1)-subsets is empty. In the geometric setting this corresponds
to prescribed points which are not all on the same pseudohyperplane. This however does not
imply that each pair is disjoint. In the non-extendable example presented by Goodman and
Pollack [GP81] the intersection of all prescribed points is empty, however two of them are on a
common pseudohyperplane.

Despite the restrictions to simple arrangements and crossing points as prescribed points we can
derive Levi’s extension lemma (Theorem 2.2.4) in its full generality with little extra work from
Theorem 3.1.2.

If the prescribed points are not crossing points, we take a crossing incident to the pseudoline
segment (or cell). Perturbing the inserted pseudoline slightly at the crossing points one can
achieve to cross a pseudoline segment (or cell) incident to the crossing point.

Moreover, given a non-simple arrangement, we can perturb the multiple crossing points (as
depicted in Figure 3.1) to obtain a simple arrangement. We obtain simplicial cells instead of
the multiple crossings. This simple arrangement can then be extended, and each of the multiple
crossing points of the original arrangement can again be obtained by contracting the simplicial
cells to a point.

1 1
2 q 2 q
3 perturb 3
—
4 > 4 e
5 5
6 6
l extend l extend
1 1
2 q 2 q
3 unperturb 3
-
4 7 4 7
5 5
6 6
7 7

Figure 3.3: Illustration how Theorem 3.1.2 implies Levi’s extension lemma (Theorem 2.2.4). When
perturbing the top-left arrangement, the multi-crossing point p (the intersection of 2, 3,
and 4) is split into three simple crossing points, including the point p’ (the intersection of 2
and 3). After the extension, we again contract these three crossing points to one multi-
crossing point.
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The statement of Theorem 3.1.2 applies only to signotopes of odd rank. This is not just a defect of
our proof because signotopes in even rank indeed behave differently. For ranks r = 4,6, 8,10, 12
we found r-signotopes on n = 2r elements, which are not 2-extendable. In Section 3.6 we
describe them in more detail and give properties for all even r which imply that an r-signotope
with those properties is not 2-extendable. Based on these examples, we dare the conjecture:

Conjecture 3.1 (No extension theorem for signotopes of even rank). For every even rankr > 2,
there is an r-signotope which is not 2-extendable.

If this conjecture is true, then there are r-signotopes which are not extendable through two
prescribed crossing points I and J if and only if |I N J| + r is even. This is an analog to
Corollary 3.1.3. The key for the non-extendable examples is that the projection to the common
intersection I N J is a signotope of even rank in which the prescribed points are disjoint. In
particular, this signotope should be one of the counterexamples where there is no extension
through the two sets I](;n7) and J(ny)-

For this we define the projection of a signotope on one of its elements. This operation commonly
used in matroid theory and geometry and also known as contraction. In the resulting signotope
the rank and the number of elements are both decreased by one.! For an r-signotope o on [n],
we define the projection to an element k € [n] as o || by

ollx (X1k) == 0(X)

for all r-subsets X C [n] with £ € X. This is an (r — 1)-signotope on [n — 1] because each
r-packet was part of an (r + 1)-packet for o. Similar as for the deletion, the projection on a
subset of elements k1 < ... < ky is defined by successively applying the projection, starting with
the largest element ky. This projection is denoted by o ||z, . x,- Clearly, we can determine
fliples in the projection from the fliples in the original signotope.

Observation 3.1.4. Let F be a fliple of the r-signotope o and K C F. Then F |k is a fliple
Of UllK.

To construct the counterexamples, we define a signotope which fulfills the projection properties
described above. For the proof of the following proposition, see Section 3.4.

Proposition 3.1.5. Let o be an r-signotope on [n] which is not 2-extendable through the two
disjoint (r — 1)-subsets I,J. For every m € N, there exists an r’'-signotope o' on [n'] with
' =r+m and n' =n+m and two (r' — 1)-subsets I', J’ of [n'] with |I' N J'| = m such that

OJU«I’OJ’: o, I/\LI’OJ’:I and J/\LI’OJ’: J.

Moreover, there is no extending 1'-signotope o* of o’ on [n' + 1] with fliples I*, J* such that
there is a k € [n + 1] with o* k=o', I*|x=1', and J* | = J'.

Note that the sum " +m = r' + |I' N J'| is even, since there are only examples which are not
2-extendable for even rank r = ' — m and hence v’ and m have the same parity.

1Since both, the rank and the number of elements are decreased, this operation is denoted by two down arrows.
For the deletion, which is only one down arrow, only the number of elements is decreased while the rank stays
the same.
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3.2 Extendability and Incomparable Elements

For the proof of the extension theorem for odd rank signotopes, there are two central ingredients.
One of them is discussed in this section. If the two prescribed crossing points are incomparable
elements in the partial order <, corresponding to the r-signotope o, then we can easily find an
extension, by adding an element at the last position. Figure 3.4 gives an illustration for the
rank 3 case. For the definition of the partial order <, on all (r — 1)-subsets corresponding to a
signotope o see Section 2.2.4.

Figure 3.4: The extension through two incomparable crossing points in the setting of pseudolines.

More abstractly we can extend the signotope if there is a down-set in the partial order on (r—1)-
subsets which has I and J as maximal elements. A down-set of a partial order (P, <) is a subset
D C P such that for all p € P and d € D with p < d it holds p € D. Similarly, an up-set is a
subset U C P such that for all p € P and v € U with p > w it holds p € U.

Proposition 3.2.1 (Extension for incomparable elements). Let < be the partial order on (T[fll)
corresponding to an r-signotope o on [n]. For every down-set D C (r[f}l) there exists an
r-signotope o* on [n + 1] such that for all mazimal elements M of D, the r-subset of the form

M U{n+ 1} is a fliple of o* and 0c* | p41= 0.
Proof. Define the extended r-signotope o* on [n+ 1] for 1 < ... < x, as follows

o(x1,...,zp) ifxy,...,2 € [n];
o (T1,. . xp) =<+ ifz, =n+1and {z1,...,2,-1} € D;
- if e, =n+1and {z1,...,2,-1} ¢ D.

Clearly it holds 0* |,,+1= 0. In the following we show that ¢* is an r-signotope on [n + 1]. For
every (r + 1)-subset P = (z1,...,%,+1), we show that the sequence

(0"(P1) 0% (P) ... 0" (Pry1))

has at most one sign change. If z,1; < n, then all signs on the considered r-subsets are the
same as for o. Since o is an r-signotope, there is at most one sign change in the sequence.

In the other case, we have z,11 = n+ 1. For all j < r we have n +1 € P;. Furthermore,
0*(Pr41) = 0(Pr+1) because n+ 1 ¢ P,y1. We consider two cases. First, if o(Pr+1) = + by
definition of the partial order it is

P\{zq1, 2} = P \{zi} = Bra\{z;} = P\{@pq1, 25} fori <.



3.2 Extendability and Incomparable Elements 45

By the property of a down-set this means that, whenever P\{z,+1,2;} € D, we also have
P\{zr41,z;} € D for i < j. Let i* be the smallest integer such that P\{z,+1,2;+} € D. Then
by definition of o* it is 0*(P;) = + for all j > i* and ¢*(P;) = — for all j < i*.

Similar arguments apply if o(Pr41) = —. Then we have

P\{z11,2;} < P\{xr41,2;} for i < 7.

This time let ¢* be the smallest integer such that P\{x,y1,z;<} ¢ D. Then by definition of ¢*
we have 0*(P;) = + for all j <i* and o*(P;) = — for all j > i*.

Let M be a maximal element of the down-set D. Then by definition it is o*(M U{n+ 1}) = +.
In every packet in which M U {n + 1} appears, it is the maximal element which is still in D.
By the analysis above it follows that M U {n + 1} is adjacent to a sign change in each packet.
Hence it is a fliple. O

From this proposition and the fact that every element in a partial order defines a down-set
in which it is the maximal element, it directly follows that all r-signotopes with r > 2 are
l-extendable by adding a new element at the last position.

Corollary 3.2.2 (l-extendability). For r > 2 let o be an r-signotope on [n] and I C [n] an
(r—1)-subset. Then there is an extending r-signotope o* on [n+1] elements such that TU{n+1}
1s a fliple and o* | p41= 0.

Proposition 3.2.1 states that we can add a new element at position n + 1 such that the maximal
elements of the partial order become fliples. For this extension, we assign + to those r-subset
which consists of n 4+ 1 and an (r — 1)-subset which is contained in the down-set of the fliple
with respect to the corresponding partial order. Otherwise we assign —.

As the following lemma shows, this is the only possibility in order to extend a signotope in this
way. In particular, if there is an extension of a signotope such that the added element is at the
last position, then a fliple including this last element prescribes the signs of all subsets which
are smaller or larger in the partial order.

Lemma 3.2.3. Forr > 2, let 0 be an r-signotope on [n] and < the corresponding partial order.
For all (r —1)-subsets I and all r-signotopes o* on [n+ 1] such that c* |,41=0 and IU{n+1}
s a fliple of o™ it holds

o (JUn+1}) = {f Zj:j

for all (r — 1)-subsets J # I of [n].

Proof. We consider the case J < I. The other case with J > I works analogously by reversing
the relations and the signs. By the definition of the partial order, there is a chain of (r — 1)-
subsets of [n] such that J = J,, < ... < Jy < J; = I such that for each pair of consecutive
subsets the intersections J; N J;11 consists of exactly r — 2 elements. Note that the r-subset
IU{n+1} = JyU{n+1} is a fliple and hence assigning o*(J; U{n+1}) = + is a valid signotope,
which we assume from now on. For all i = 2,...,m, we show that ¢*(J; U{n + 1}) = + by
induction. For a fixed ¢ > 2, consider the (r + 1)-packet P = J;_1 U J; U {n+1}. Since n+1
is the largest element in this (r + 1)-packet, it is P.y; = J;—1 U J;. Note that n + 1 ¢ J; for
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all ¢ which implies together with the assumption ¢* |,,+1= o that the sign of P, ;1 is determined
by o, i.e.,

O'*(Ji_l U Jz) = O’(Jz'_l U Jl)

Let j <r+ 1 be the index such that P; = J;_1 U {n + 1}. We consider the relation between J;
and J;_1 in the lexicographic order.

If J; is lexicographically smaller than J;_1, then J;U{n+ 1} = P, forake {j+1,...,r} and
appears after the sign of P; in the sequence. By the construction of the chain it is J;—1 > J;.
Since J; is ldxicographically smaller than J;_1, it is 0*(Pr41) = 0*(J; U J;—1) = +. The sign of
Ji U{n + 1} appears in the sequence between the one of J;_; U{n + 1} and J; U J;_1. Since
o*(Ji—1 U{n + 1}) = + by induction hypothesis, it holds ¢*(J; U{n + 1}) = +.

If J; is lexicographically larger than J;_1, then J; U {n + 1} = P, for a k = 1,...,5 — L.

Moreover it is 0*(Pr4+1) = 0*(J; U Ji—1) = —. By induction hypthesis it is still o*(P;) =
0*(Ji—1 U{n +1}) = +. Hence the sign change has to be between P; and P, which again
implies that o*(J; U {n +1}) = +. O

If there are two maximal elements in a down set, they are incomparable. This gives a condition
to ensure that a signotope is not extendable by an element added at the last position.

Proposition 3.2.4. For r > 3, let o be an r-signotope on [n] and for t > 2 let Ir,...,I; be
disjoint (r — 1)-subsets. Then there is an r-signotope c* on [n + 1] with o* |,41= o such that
for all j = 1,...,t the r-subsets I; U {n + 1} are fliples if and only if I1,...,I; are pairwise
incomparable in the partial order corresponding to o.

Proof. The reverse direction, i.e., the existence of an extension if the prescribed subsets are
pairwise incomparable follows from Proposition 3.2.1.

For the other direction assume there is an extension ¢* with ¢* |,41= o. Then o* is a 1-
extension for every I; as in the assumptions of Lemma 3.2.3. Towards a contradiction assume
there are two (r — 1)-subsets I; and I; which are comparable. Without loss of generality I; < I;.
Hence I; is in the down-set of I; and I; U {n + 1} is a fliple of ¢*. By Lemma 3.2.3 the sign of
I;U{n+ 1} has to be a + in o*. Moreover, I; U{n+ 1} is a fliple by assumption. Hence flipping
the sign to — yields a valid signotope. Since we assume r > 3 and I; and I; are disjoint, the
two r-subsets I; U {n + 1} and I; U {n + 1} do not appear in a common (7 + 1)-packet. Hence
flipping I; U {n + 1} from + to — does not affect whether I; U {n + 1} is a fliple. In particular
I; U{n + 1} is still a fliple in the signotope in which I; U {n + 1} was flipped to —. This is not
possible by Lemma 3.2.3. A contradiction. O

Note that for » = 2, the sets {i,n+ 1} and {j,n + 1} for i # j appear in a common 3-packet.
Hence there are extensions for two successive elements in the total order given by the 2-signotope
which are extendable even though they are not incomparable.

In general the two prescribed (r — 1)-subsets are not incomparable. Still we can use Propo-
sition 3.2.1 to proof the extendability result. For this we need an operation on signotopes
which still preserves the basic properties of the signotope such as the fliples. We introduce this
operation, which we call rotation in the following section.
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3.3 Rotation Operator

We now prepare for the proof of Theorem 3.1.2. For this we introduce the rotation operator.
If we rotate an arrangement of pseudolines in the plane, i.e., we choose another unbounded cell
as the top cell, we get a pseudoline arrangement with the same cell structure. However, the
signotope does not stay the same and the linear order of the elements changes. If we rotate only
a single pseudoline, then the orientation of the triangle spanned by 3 pseudolines stays the same
if and only if the rotated pseudoline is not involved. See for example the triangle spanned by
{2,3,4} in the left arrangement, which corresponds to the triangle spanned by {1,2,3} in the
right arrangement in Figure 3.5. When rotating clockwise, the first element of ¢ becomes the
last one in the rotated signotope o,t. In terms of the 3-signotope o the signs of the rotated
signotope oy, are: oyet(a, b, ¢) = o(a+1,b+1,c+1) if ¢ # n and oyt (a,b,n) = —o(1,a+1,b+1).

rotate

A

Tt = W N =
=W NN =
=W NN =

ot
ot

Figure 3.5: Illustration of a clockwise rotation of pseudolines. The rotated pseudoline is highlighted
red. The two marked crossings became incomparable in the rotated arrangement.

For general r, we define the clockwise rotated signotope oo of a given r-signotope o as:

—o(l,z14+1,...;2,1+1) ifxy <z <...<z0 =n,
O-rot('rla"'vxT) =

olx1+1,...,2, + 1) o<z <...<zp <nm.

To keep track of the index shift caused by a clockwise rotation, we define z,ot =z — 1 if z # 1
and 1.t = n. It is

r1— 1z —1,...,2p — 1) ifxy > 1;
Xrot:{.’lfrotl.’lfeX}: ( ) .
(xa—1,...,2, — 1,n) ifrg =1

for any subset X = (z1,...,2%) of [n] with x; < ... < ;. Note that this allows us to write
Orot (Xvot) = 0(X) if 1 € X and oy0t(Xrot) = —0(X) if 1 € X. The k-folded clockwise rotation
is denoted by opo¢(x). Note that the rotation operation depends on the number of elements n
of a signotope. While n is known when rotating a signotope itself, we have to be careful when
rotating a subset X C [n]. As the following lemmas show, the rotated signotope is indeed an
r-signotope, which moreover has essentially the same fliples.

Lemma 3.3.1. Let o be an r-signotope on [n|. Then oyot is an r-signotope on [n].

Proof. Consider an (r + 1)-packet P’ = (z7,...,2., ). Since rotation is a bijection on the
(r 4+ 1)-packets of [n] there is a P = (1, ...,2y+1) such that P’ = P.
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If the rotated element 1 is not in P, i.e., a:;+1 <mn,thenz; =z} +1foralli=1,...,r +1 and
the signs of the r-subsets of packet P’ have to be considered in the same order

(ovot(P]) vt (P3) ot (Py) Trot(Pri1) )
= (o(P1) o(Py) .. o(P,) o(Pry1) ).

as for P. The latter has at most one sign change since ¢ is an r-signotope.

If the rotated element 1 is in P, that is, 93;~+1 =n and z; = 1, then we have z;41 = 2} + 1 for all
i=1,...,7. Note that n € P/ for i =1,...,7 and hence 1 € P; for j = 2,...,r + 1. The sign
sequence of P’ is

( orot(P ) Urot(Pé) Urot(P;) Urot(Pqi-s-l) )
= (owt(P\{z2 —1}) arot(P\{z3 = 1}) ... Trot (P \{zr+1 —1})  ovor(P'\{n}) )
= (—o(P) —o(P3) o —o(Prya) o(P\{1}))
— (-a(P) —o(Py) o) o(P1)),
which has at most one sign change because (o(P1) o(P2) ... o(P;) o(Pr41)) has at most one
sign change due to the signotope property of o. O

The following lemma shows that the rotated signotope oot has essentially the same properties
as o when it comes to fliples. We only need to handle the index shift.

Lemma 3.3.2. Let o be an r-signotope and let F' be a fliple of 0. Then Fio is a fliple in the
clockwise rotated signotope oyot .

Proof. To prove that an r-subset Fio is a fliple, we need to check all (r 4+ 1)-packets P’
with F.o,t C P’. Let P’ be such a packet and let P be such that P,,; = P’. Since F is a
fliple in o we know that if we change the sign of o(F) there is still at most one sign change
in the sequence o(Py),0(P2),...,0(P,),0(P,+1), we abbreviate this by saying that F' is flipable
in P.

If 1 ¢ P, then o(P;) = ovot(F;) for all 4. Moreover if j is such that I = P; then Fyo = P}. Since
the signs in the sequence stay the same Fyq is flipable in P’.

Otherwise we have 1 € P. Then as shown in the proof of Lemma 3.3.1 it is

( Urot(P{) Urot(PQ/) e Urot(qu) Urot(Pv{+1) )
= (—o(P) —o(Ps) . —0(Pry1) o(Py) ).

If F = Pj the sequence (o(P) ... o(P,41)) is constant. This implies that the sign of oyo (Frot) =
orot(P)41) = o(P1) can be flipped. If F' = P, the sign sequence (¢(P1) ... o(P;)) is constant.
This shows that the sign of oyot(Frot) = 0rot(P)) is adjacent to different signs and can thus be
flipped. If F = P, then o(P;) # o(P3) and the signs oyt (P]) for 2 < i < r + 1 are the same.
Hence Fior = Pj is flipable in P'. If FF = P; with 3 < j <7, then Fiot = Pj_1 is clearly flipable

in P’. This shows that F, is flipable in all packets containing it and hence a fliple of oot [
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3.4 2-Extendability for Odd Rank

In this section, we show that for each pair of disjoint crossing points, respectively (r— 1)-subsets,
odd rank signotopes admit a rotation in which the crossing points are incomparable. In this
case, we use Proposition 3.2.1 to define an extension. To achieve an extension of the original
signotope, we then rotate in the reverse direction.

For a signotope ¢ and its rotation oy, the partial orders are denoted by < and <4, respectively.
Moreover, if two elements z,y are incomparable in < (respectively <o), it is denoted by ||y
(respectively z|roty). We summarize the interaction between the rotation operator and the
partial order in the following proposition. For the proof, we need some additional technical
lemmata, which are deferred to Section 3.5.

Proposition 3.4.1. Let o be an r-signotope on [n] with partial order <. For two (r —1)-subsets
I,J with I < J and 1 ¢ INJ, it holds Liot||rotJrot 0T Irot <rot Jrot-

For two (r —1)-subsets I and J which have a common intersection of r — 2 elements, the relation
is reversed if and only if the intersection contains the rotated element. Otherwise the relation
stays the same.

Lemma 3.4.2. Let o be an r-signotope with partial order < and oyor the rotated signotope with
corresponding partial order <,ot. For two (r —1)-subsets I, J such that |[INJ|=r—2 and [ < J
it holds

Irot =rot Jrot Zf 1 ¢ In J, and
Lot =rot Jrot iflelnd.

Proof. If 1 ¢ I and 1 ¢ J, then 1 ¢ I U J and the sign of I U J is the same for o and oy, i.e.,
o(IUJ) = 0ot (Lot U Jrot). Furthermore the order of I and J in the r-subset I U.J is the same as
the order of I.o¢ and Jyot in the r-subset Iyt U Jyot. If I is lexicographically larger than J, then
Lot is lexicographically larger than J..; which implies that the sign of 17U J in ¢ and o4 U Jyot
in oot 1S the same. Hence ot <rot Jrot-

If 1 € I but 1 ¢ J then I is lexicographically smaller than J. By assumption it is J > I and thus
o(IUJ) = +. After rotating clockwise, I, is lexicographically larger than Jyo since n € o and
n ¢ Jyot- Furthermore the sign of the r-subset changes, i.e., 0(I U J) = —0yot(Lrot U Jrot) = —.
This shows that the relation stays the same, i.e., Iot <rot Jrot- The case 1 € J but 1 ¢ I works
analogously.

If 1 € I and 1 € J the lexicographic order of I and J is the same as the lexicographic order of
Lot and Jyor but the sign of the r-subset gets is reversed, i.e., 0(IUJ) = —0yot (Lot U Jrot ). Thus
the order between I,.,; and J. is reversed as claimed. [

Indeed Proposition 3.4.1 ensures that for odd rank there exists a rotation such that the two
prescribed (r — 1)-subsets are incomparable.

Proposition 3.4.3. Let r > 3 be an odd integer, let o be an r-signotope on [n] and let I,J be
two disjoint (r — 1)-subsets. After k < n — 1 clockwise rotations, o, I, and J are transformed
into Orot(k)» Irot(k)z and Jrot(k); respectively, such that Irot(k) ”rot(k) Jrot(k)'
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Proof. Assume I and J are comparable in the partial order < corresponding to the r-signotope o.
otherwise k = 0 is the desired rotation. Without loss of generality assume I < J. We show that
after n clockwise rotations, i.e., when every element was rotated once, all signs of o are reversed.
Hence the partial order <, () rotated signotope o4y, is the reversed relation to <.

The sign of an r-subset (z1,...,2,) of [n] changes from + to — or vice versa if and only if the
rotated element is contained in (z1,..., 2 ), i.e., if we rotate z;. Hence after rotating n times in
total every z; was rotated and thus the sign of an r-subset changes exactly r times. Since r is
odd, the sign after rotating n times is reversed. The obtained signotope o4 () is the reverse of
the original signotope ¢ and the corresponding partial order is also reversed.

Furthermore by Proposition 3.4.1 we cannot reverse the order of two disjoint (r — 1)-subsets in
a single rotation. Hence there will be a rotation with k& < n such that the two disjoint sets are
incomparable. O

With similar arguments as in the previous proof it follows that for all ranks r applying 2n
rotations yields the same signotope. Hence we can define the counterclockwise rotation which
corresponds to 2n — 1 clockwise rotations, which is denoted as 0,4 (—1). Applying k rotations in
the reverse direction is consequently denoted with o).

Although the following lemma is trivial in the setting of pseudoline arrangements, we need
to prove it in the context of general r-signotopes. We show that the extension of a rotated
signotope when rotated back contains the original signotope. To show this we need to investigate
the interaction between the rotation and deletion of elements and show that the two operators
behave in an almost commutative way.

Lemma 3.4.4. Let o be an r-signotope on [n]. Then it is oyot dn= 01 and ootz = (0d2)
forx e {2,...,n}.

Proof. Because of the index shift it does not matter whether we delete the first element or we
rotate o such that the first element becomes the last and delete the last element in this rotated
signotope. Formally, the deletion operator is defined by o |1 (X J1) = o(X) for all r-subsets
X C [n] with 1 ¢ X. Since 1 ¢ X, it is 0(X) = 0vot(Xrot) and n ¢ X,o;. Hence deleting
the element n does not affect Xot, i.e., it is Xiot = (Xiot) dn. This shows oyt (Xrot) = Orot In
(Xrot4n) = Orot dn (Xiot). Assembling the steps shows

U\l/l (X\lxl) = O'rot\l/n (Xrot)-

Since 1 ¢ X, it is X J1= X;ot. Hence the first part 0,0t 4= 01 holds.
Let > 1 which implies x;o; # n. Let X be an r-subset of [n — 1] and let X* be an r-subset
of [n] with z,0t ¢ X* and X* |, .= X. We obtain

Orot darer (X) = Orotdarer (X darer) = Trot (XF).

We will now rewrite the term to get the statement. Since z,o ¢ X*, we have x ¢ (X*)rot(fl).
It is

rot

Orot dre, (X) = 0rot(X7) =50 ((X*)rot(71)> =5-0la (((X*)rot(—1)> %E)
=50l (X b dror(cn)) = 5+ 0o (Kror(1)) = (04a)r(X),

where the sign s = + (respectively s = —) if n ¢ X* (resp. n € X*). Note that n € X* is
equivalent to 1 € X, (1) for z # 1. O
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With Proposition 3.2.1, Proposition 3.4.3 and Lemma 3.4.4 we are now ready to prove Theo-
rem 3.1.2.

3.4.1 Extension Theorem for Odd Rank (Theorem 3.1.2)

For convenience we restate the theorem.

Theorem 3.1.2 (Extension theorem for signotopes of odd rank). For every odd rank r > 3,
every r-signotope is 2-extendable.

Proof. Let o be an r-signotope on [n] and let I,J be a pair of disjoint (r — 1)-subsets. By
Proposition 3.4.3 there exists k € {0,...,n — 1} such that the k-fold rotated (r — 1)-subsets
Liot(k)s Jrot(k) are incomparable in the k-fold rotated signotope o (k)-

To extend the signotope o.44(x), we use the down-set D consisting of Lo¢(x), Jrot(k), and all
(r — 1)-subsets which are smaller in <,u ;). In this down-set ) and Jyo ) are maximal
elements since they are incomparable. Hence we can apply Proposition 3.2.1 in order to add a
new element at position n + 1 in the rotated signotope oo (k) such that Iy U {n + 1} and
Jrot(k) U {n + 1} are fliples. Let afot(k) denote the extended signotope with U;‘Ot(k) In1= Orot(k)-
For an illustration of the considered signotopes, see Figure 3.6.

k cw rotations
0 ———p Trot(k)

extension i lextension
* *
0 4—— Orot)
k41 ccw
rotations

Figure 3.6: Illustration of the connections between the considered signotopes in the proof of Theo-
rem 3.1.2. The red arc is the conclusion of the statement.

Finally, we need to find a rotation of U;‘Ot(k) which contains the original signotope o. For this we
perform k + 1 counterclockwise rotations (or equivalently, 2n + 1 — k clockwise rotations) and
denote the so-obtained signotope by o*. Note that we perform k + 1 counterclockwise rotations
since the newly added element needs to be rotated and the k-fold clockwise rotation needs to
be undone.

After the first counterclockwise rotation, the added element n + 1 in o*

rot(k)
element 1 in (Ufot(k))rot(—l)' By Lemma 3.4.4 it holds ((U:ot(k))rot(—l))h: (G:ot(k))\l/n+1: Trot(k)-
After additional k counterclockwise rotations, the added element n + 1 in O':Ot(k) becomes the
element k£ + 1 in o*.

Furthermore, the fliples L) U {n + 1} and Jioqxy U {n + 1} of oy correspond to the fliples
ITU{k+1} and JU{k+1} in 0* (cf. Lemma 3.3.2). When handling the rotation of those sets,
we need to be careful since the number of elements changed which affects the rotation operator.
Since we do not rotate the extending element, the second part of Lemma 3.4.4 applied multiple

times shows ((U:ot(k))rot(q))il: (0" Lk+1)rot(k)- Together with the previous equation this shows

becomes the first

Trot(k) = (0 Lk+1)rot(k)> Which further implies o = 0™ |;11. Hence we obtain the signotope o
when deleting k£ + 1 from ¢*, which shows that ¢* is an extension of o. O
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3.4.2 Extendability with Intersection (Corollary 3.1.3)

Corollary 3.1.3. Forr > 3, let o be an r-signotope on [n], and I, J C [n] two (r — 1)-subsets
such that |I N J| + r is odd. Then o is extendable to an r-signotope o* on [n + 1] with fliples
I*, J* and an extending element k € [n + 1] such that o* {x= o, and I* |x= I, and J* = J.

Proof. To prove Corollary 3.1.3, we proceed similar as in the proof of Theorem 3.1.2. By
Proposition 3.2.1, it suffices to show that after some rotations the (r — 1)-subsets corresponding
to I and J are incomparable.

Let m = |I N J|. Since Theorem 3.1.2 covers the case m = 0, we may assume m > 1. We
consider the following two cases.

First, assume that r is odd and m is even. For odd rank r, we have already seen that after n
rotations, the signotope is reversed and hence the corresponding partial order is reversed. For
even m, the relation between I and J is reversed m times whenever we rotate one element
x € INJ, see Lemma 3.4.2. If we rotate an element = ¢ I N J, the relation cannot be reversed,
see Proposition 3.4.1. Hence the relation is reversed exactly m times in one single rotation.
Since m is even and the order is reversed after n rotations, the corresponding (r — 1)-subsets
must be incomparable in between.

If r is even and m is odd, the n-fold rotation leaves the signotope unchanged and hence the
partial order is the same. Since m is odd, we reverse the orientation of I and J exactly m times
in a single rotation step. Hence they must be incomparable in between. The statement now
follows from Proposition 3.2.1 and Lemma 3.4.4 similar as in the proof in Section 3.4.1. O

3.4.3 Non-Extendability with Intersection (Proposition 3.1.5)

Proposition 3.1.5. Let o be an r-signotope on [n] which is not 2-extendable through the two
disjoint (r — 1)-subsets I,J. For every m € N, there exists an r'-signotope o’ on [n']| with
' =r+4+m andn’ =n+m and two (r' — 1)-subsets I', J" of [n'] with |I' NV J'| = m such that

U/UI’OJ’: o, I/\LIIOJ/:I and J/xLI’ﬁJ’: J.

Moreover, there is no extending r'-signotope o* of o’ on [n' + 1] with fliples I*, J* such that
there is a k € [n+ 1] with o* =o', I*|x=1', and J* L= J'.

Proof. In a first step, assume there is an extension o* of ¢’ on [n’ 4 1] with fliples I*, J* and an
extending element k € [n 4+ 1] such that o* |,= o', I* [x=I', and J* = J'. Let k' be the label
of k after deleting I’ N J'. Clearly, (I* |pny)dw= (I* k) drnp= I’ Lpny= I and analogously
for J* and o*. Moreover, I* and J* are fliples of ¢* which implies by Observation 3.1.4 that
I* Lpngr and J* [y are fliples in the projection o* || j/~y. This shows that o* || pqys is an
extension of o by the element &’ such that I U {k'} and J U {k’} are fliples. A contradiction to
the assumption that o is not 2-extendable.

To show that such an signotope ¢’ exists, we construct a signotope by reversing the projection.
For this we add the new m elements at the last position n+1,...,n’ = n+m. For r’-subsets X
which contain all new elements, the sign is given by the sign of X (1, in 0. For the
remaining r’-subsets we have to assign them in a different manner. For this, consider the case
m = 1. By repeating the following construction m times, the case m > 2 is solved.

Let C be a maximum chain o9 < ... < o(n) of r-signotopes containing ¢ = o; for an ¢ €

{0,..., (?)} which exists by Theorem 2.2.11. Moreover oy is the constant — function and a(m)

T
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the constant + function. From o; to ;41 there is exactly one r-subset flipped from — to +.
Let Aq,... 7A(n) be the order of flipped subsets. Hence in o = o; all r-subset Aq,...,A; are

mapped to + and the remaining A;41,... ,A(n) are —, i.e.,
+ it 5 <vq

o(4;) = { L

— if j >

Again by Theorem 2.2.11, there is an (r+ 1)-signotope o¢ on [n] corresponding to the maximum
chain C for which Aqy,... ,A(n) is a sweep. In particular the order is a linear extension of the

partial order <¢ corresponding to oc. This shows that for an (r + 1)-subset X and some
1<j<i<r+1

oc(X) =

+ if X o Xy
— it X; <¢ Xy

Note that by the properties of a signotope, the choice of j and ¢ is irrelevant. Using o, we
define ¢’ as (r + 1)-signotope on [n + 1] elements as follows:

(X) oc(X) if X C[n];
o =
o(4;) ifn+1eX and X\{n+1} =A4;.
o =0;
_l’_
pe
n+1

Figure 3.7: Illustration of the construction. The assignment for the 3-signotope depends on the max-
imum chain of permutations. The 3-signotope projected to n + 1 (red) yields the starting
2-signotope o.

Clearly ¢’ || ,+1= 0. To see that ¢’ is indeed a signotope and fulfills the monotonicity condition,
we check all (r 4 2)-subsets P of [n + 1]. For the illustration of the case r = 2, see Figure 3.7.
If P does not contain n+ 1, then the packet is monotone because o¢ is a signotope. If n+1 € P,
thenn+1e€ Pjforall j=1,...,r+1and n+1 ¢ P.;2. Since o is an r-signotope on [n] in the
first r 4+ 1 signs there is at most one sign change. Deleting another element of P, s yields an
r-subset which is one of the A;. Let P = A; U{n+ 1} and P,y = A, U {n + 1}. This implies
that A; is lexicographically larger than A,.
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First assume j > ¢, i.e., Aj; > Ay. Since A; is lexicographically larger than Ay, it is ¢/(Pr42) =
oc(AjUAy) = +. If moreover £ > i, then j > i and 0/(P;) = 0(A;) = —, 0'(Pry1) = 0(A4p) = —.
Hence there is only one sign change which is between P,y1 and P.io. If £ < i, then o/(P,41) =
0(Ay) = +. This shows that there is at most one sign change between P; and P, 1.

If j < £. This implies ¢’(Pr42) = 0c(A;UA;) = —. If { <4, then j < iand o'(P1) = 0(4;) = +,
0'(Pr+1) = 0(Ay) = +. Hence there is only one sign change between P..1 and P,yo. If £ > i,
then ¢/(Py41) = 0(Ay) = —. This shows that there is at most one sign change between P; and
P,11. This completes the proof that ¢’ is an (r + 1)-signotope on n + 1 elements. O

3.5 Technical Lemmata

In this section, we proof Proposition 3.4.1 which implies that two disjoint (r — 1)-subsets cannot
be reversed in a single rotation. In Lemma 3.4.2, we showed that the relation between two
(r —1)-subsets, which share r — 2 elements, is reversed if and only if the intersection contains the
rotated element. Since those (r — 1)-subsets are directly in relation and hence not incomparable,
the orientation stays the same if the rotated element is not contained in the intersection.

For this, we introduce the following two partitions of the family of all (r — 1)-subsets. With

respect to the first element 1, we partition the (r — 1)-subsets (T[fl) into the following three sets:

{={ICn]:|I|l=r—-1,1€1};
Uy ={I1cn:|Il=r—-1,1¢1I1, cU{1}) =+ };
T={ICn]:|I|=r—1,1¢1I, c(IU{1})=— }.

Similarly, with respect to the last element n, we partition (T[f}l) into the following three sets:

H={ICn|:|I|=r—1, nell;
U ={I1cn|:|Il=r—1,né¢l, cIU{n})=—}
D ={ICn]:|I|l=r—-1,né¢l, c(IU{n}) =+ }.

We want to emphasize the sign change in the definition, that is, every I € U{ has the sign
o(I U{1}) = + while every I € U7 fulfills o(I U {n}) = —.

Lemma 3.5.1. Uf and U] are up-sets and D] and D¢ are down-sets of the partial order <
corresponding to the r-signotope o.

Proof. In the following we show that U is an up-set. Analogous arguments show that ¢/ is an
up-set and that DJ and DZ are down-sets. Let I be an element of U{. By definition, it is 1 ¢ I
and o(IU{1}) = +. Let J be an (r — 1)-subset with J > I.

If the intersection I N J contains r — 2 elements, we cannot have 1 € J, as otherwise J was
lexicographic smaller than I, which implies with the assumption J > [

—=o(IUJ)=0(IU{1}) =+,

a contradiction. Therefore, 1 ¢ J and we have r+ 1 elements in JUJU{1}. If I is lexicographic
smaller than .J, then the following sets are sorted in decreasing lexicographic order TU.J, JU{1},
I U {1} which corresponds to the order in the (r + 1)-packet I U J U {1}. Since we have
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o(I U{l}) = + by assumption and o(I U J) = + because J > I, it follows o(J U {1}) = +.
Hence J € UY.

In the other case, if J is lexicographical smaller than I, we have the following decreasing order
with respect to the lexicographical order I U J, TU {1}, JU{1}. Since we have o(I U{1}) = +
and (I U J) = —, it follows o(J U {1}) = + and hence again J € U7 .

If the intersection I N J contains less than r — 2 elements, we proceed by induction. There is
achain I =1I; < I, < ... < I = J such that any two consecutive I; have an intersection of
r — 2 elements. For ¢« = 2,...,k, since I;_1 € U7, we conclude that I; € U, and in particular,
J € U7. This completes the proof that U7 is an up-set. 0

We now study the effect of a clockwise rotation to the partial order. In the partial order <.t
corresponding to the rotated signotope oyot, the sets (UY)rot and (DY)t remain up-set and
down-set, respectively. Here Xjot = {Xiot: X € X} denotes the clockwise rotated sets of a
set-system X.

Lemma 3.5.2. It holds (H)rot = HI, (U)ot = UT", and (DT )rey = DIt

Proof. An (r — 1)-subset I contains the first element 1 if and only if its clockwise rotation I,o¢
contains the last element n. Therefore, we have

(%?)I‘Ot = ngot and (Uf U D(IT)I‘OI’, = ugrot @] DZrot'

To show (U)ot = UT™ and (D] )rot = DI, it suffices to prove the two subset relations
(U )rot C U and (DY )yor € DIt

For the first subset relation (U )ror C U, let I € UY, i.e., o(1 U{1}) = +. After rotating the
element 1, we obtain

+ =0T U{1}) = —0rot(1 U {1})sot)-

Hence oyot (Lot U {n}) = — which implies It € U7™t. An analogous argument shows (DY )yt C
’Dgrot' D

It is worth noting that for I, J € H{ (i.e., 1 € INJ) with I < J Lemma 3.5.1 implies that any
chain I = I < ... < I = J lies entirely in H{ (i.e. I1,..., I € H]). Since a clockwise rotation
converts comparability of elements containing the element 1, we have ot = (I1)rot *rot - - - >rot
(Ik:)rot = Jrot-

With the above lemmas, we can now prove Proposition 3.4.1.

Proposition 3.4.1. Let o be an r-signotope on [n] with partial order <. For two (r —1)-subsets
I,J with I <J and 1 ¢ INJ, it holds Liot|lrotJrot 0T Trot <rot Jrot-

Proof. Assume towards a contradiction that I,J are two (r — 1)-subsets with I < J and
Irot ~rot Jrot-

If I € U7, then by Lemma 3.5.1, J e U{. If I € D7, then by Lemma 3.5.2, I, € Dt and by
Lemma 3.5.1 and the assumption that Lot >rot Jrot it is Jrot € DIt. Applying Lemma 3.5.2
again yields J € Df. Analogous arguments show that, if J € DY (resp. J € UY), then I € DY
(resp. I € U7).

Since 1 ¢ I NJ not both I and J can be in H{. Hence I and J are both in Df or both in U .
Since I < J, there is a chain [ = I; < ... < I}, = J. By Lemma 3.5.1 it is Iy,...,I; € DY
(resp. UY). After a clockwise rotation, we have (I1)rot, - - -, (Ik)rot € DIt (resp. UZ™*) and hence
Lot = (I1)rot <rot - - - <rot (Ik)rot = Jrot, which is a contradiction to Irot >rot Jrot- d
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3.6 Non-2-Extendable Examples for Even Rank

Since the proof for the extension theorem (Theorem 3.1.2) applies only for odd ranks, we had to
investigate even ranks in a different manner. For even rank signotopes, rotating every element
once yields the same signotope. Hence two (r — 1)-subsets are generally not incomparable in
any rotation.

To study extendability in rank 4, we used computer assistance to enumerate all signotopes and
then tested each of the signotopes for 2-extendability. On 6 and 7 elements all 4-signotopes are
2-extendable. On 8 elements we found non-2-extendable 4-signotopes.

Using this two-level-SAT approach we managed to find the first examples of 4-signotopes which
are not 2-extendable. Among the non-extendable rank 4 examples on 8 elements, we discovered
some with high symmetries and nice properties. Those examples have a similar structure as
the example of Richter-Gebert in the context of extendability in oriented matroids [Ric93] even
though the non-extendable oriented matroid by Richter-Gebert has no sorting of the element
such that it is a signotope. The common property is the following: There are two disjoint
simplicial cells (i.e. fliples, respectively mutations) such that the choice of each of the crossing
points for both simplicial cells witnesses the non-extendability. In fact, we constructed the
signotope examples in such a way that those simplicial cells are built by the odd and even
elements, respectively. For such examples it is sufficient to check two (r — 1)-subsets I,J to
verify the non-2-extendability. This is a speed up for the extendability-test by a factor of ©(r?)
since not all pairs of (r — 1)-subsets I, J need to be tested.

In order to keep symmetries and similarities of our nicely structured example of rank 4, we
restricted our search space to examples in rank r on 2r elements. While for rank 4 all signotopes
on 8 elements can be enumerated within a few seconds, the complete enumeration in higher
ranks is unpractical as the number of r-signotopes on 2r elements grows faster than doubly
exponential in r (cf. Proposition 2.2.14). Hence, to be able to approach higher ranks, we further
analyzed the structure of our non-2-extendable rank 4 examples together with an analysis of the
already found rank 6 examples. In Section 3.6.1 we give a brief summary of the SAT framework
and explain how we encode signotopes.

With the observed properties as additional constraints, we further restricted the search space.
Under these restrictions, we managed to find examples for rank 6, 8, 10, and 12 which are
not 2-extendable, which we describe in Section 3.6.2. Investigating those properties, we can
prove non-extendability, see Section 3.6.3. With this proof of non-extendability, we do not need
the second SAT instance to test extendability. It remains to find signotopes with the specified
properties. The existence of non-extendable examples for even r > 14 remains open.

3.6.1 SAT Encoding

We give a short description of the encoding of r-signotopes on n elements in terms of a SAT
instance. Such an instance consists of a Boolean formula which has a valid assignment if and
only if there is a signotope with the specified properties. In particular we model the instance
with a Boolean formula in conjunctive normal form (short: CNF), which is a conjunction of
clauses. Each clause is a disjunction of variables and their negation (called literals). We then
use state-of-the-art SAT solvers such as CaDiCaL [Biel9] to decide whether a solution exists.

To model a signotopes o on [n] and its fliples as a CNF formula, we define Boolean variables Sx
for every r-subset X € ([:f]) and interpret the value o(X) = 4 as Sy = TRUE and o(X) = —
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as Sx = FALSE. Moreover, we have to ensure the monotonicity on (r + 1)-packets. For this
we list all possibilities of valid sign sequences, i.e., sign sequences of length r + 1 with only one
sign change. There are exactly 2r 4+ 2 possible assignment of this sequence. Let 7 be the list
of all those types. To encode which packet corresponds to which sequence and to ensure that
every packet has exactly one of the sequences, we introduce auxiliary variables Tp; for every
P € (T[fi]l) and t € T which we synchronize with the values of the corresponding r-subsets.
Let t(i) be the sign of ¢ at position i¢. For t(i) = — and a Boolean variable X we say t(i) - X
is =X. Moreover, if t(i) = +, then ¢(i) - X is X. The variable Tp; is TRUE if and only if the
sign sequence of the (r + 1)-packet P is the same as the sign sequence ¢t € 7. In particular
Tpt < Nj—1.. r41 t(J) - Sp;. For the CNF we have to add the clauses

—Tpy V t(j)-Sp; forall j=1,...,r+1; and

Tp’t vV \/ - t(j) . Spj.
j=1,...r4+1

Note that the first direction of the implication is modeled by the r 4+ 1 clauses while the reverse
direction is modeled by the clause in the second line.

An important part of the extendability are fliples. In a first step we define variables F'x p for
every (r + 1)-packet P € (T[i]l) and every r-subset X € (f) to indicate whether X is a fliple
when o is restricted to P. If Fx p = TRUE, the r-subset X is flipable in the packet P, i.e.,
is next to a sign change or at the beginning, respectively end, of a constant sign sequence.
The information about the sign change is already encoded in Tp;. Assume X is at position
j €{1,...,7 4+ 1} of the packet P. Then X is flipable in P if and only if the sign sequence t
of P has the sign change between position j — 1 and j or between position j and j + 1. For this
let 7; be the set of sign sequences such that the j’th sign can be flipped without violating the
monotonicity condition. Now it is Fiy p < \/teﬁ Tp;. Hence for the CNF, we add the clauses

—|FX’p V \/ Tp’t; and
teT;

FX,P \Y ﬂTpﬂg for all t € 7;

Using the Fx p variables, we can assert the variables Fx = A Pe( Fx p for every

T[I]l): Xcp

X e ([Z]) to indicate whether X forms a fliple in the signotope. Again we add the following
clauses to the CNF

ﬁFx\/FX#D for all P D X; and

FxV \/ —|FX’p.
PDX

For more details the supplemental code see [BFS23a].?

3.6.2 Structure of the Examples supporting Conjecture 3.1

For the first witnessing examples of Conjecture 3.1 in rank 4, we used a two-step SAT approach.
To make investigations in higher ranks, we had to get a better understanding of the examples

’https://github.com/manfredscheucher/supplemental-signotope-extension
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found in rank 4. Hence we filtered those with regularities and symmetries to come up with a
generalization of the observed properties and analyzed their structure.

One of the first and crucial observations was that there exist signotopes such that for every
choice of » — 1 even indices I C E, := {2,4,...,2r} and every choice of » — 1 odd indices
J C O, :={1,3,...,2r — 1} there is no extension.

While we came up with further observations one by one over the time, we give a summary
of all properties, which we desire from the examples in rank r with n = 2r elements. Let
X = (z1,29,...,2,) be an r-subset.

(a) 0 = Orot(4)-
(b) o(2,4,...,2r)=—and 0(1,3,...,2r — 1) = +.
(c) If the r-subset X contains exactly one even element of E,., respectively only one odd

element of O, then the sign o(X) depends only on the position of that element in the
increasing order of the elements of X. More specifically:

» Ife=ux; € E, is the only even element in X, then o(X) = (—)%.
» Ifo=x; € O, is the only odd element in X, then it is o(X) = (=)L

(d) Ifxy,...,7; € Ep and xiq1,...,7, € O, with 2 <i <7 — 2, then o(X) = ().

(e) Letxy,...,x; € Op and xi41,..., 2, € B, for 2 <i<r—2.
» Ifz, <2r then o(X) = —.
» Ifz;=2jforallj=i+1,...,r, then o(X) = +.

Furthermore, we fix the following set of 8 fliples for rank 4.

Fy = {(la?’a 5, 7)7 (274a6a8)a (27377a 8)? (1737478)7
(1, 2,4, 7), (3, 9,6, 8), (4, 5,7, 8), (3,4,6, 7)}

Together with the 4-fold symmetry, see Property (a), it is sufficient to mention only some of
them:

Fy={(1,3,5,7),(2,4,6,8).(4,5,7,8),(3,4,6,7),(1,2,4.7)}
In rank 4, there are only four signs which are not determined by the above properties:
(1,3,4,8), (4,5,7,8), (2,3,7.8), (3,4,6,7)

By the 4-fold symmetry, the assignment of (1,3, 4,8) also determines the sign of (4,5,7,8), and
vice versa. The third and fourth subset have a similar interaction. Hence, there are precisely 4
signotopes in rank 4 which fulfill the above properties. We fix the configuration where all four
undetermined signs are — and refer to it as o4 in the following. However, the choice does not play
a role. For higher rank, there are several signs undetermined by the above properties. Except a
set of prescribed fliples, our aim was to find a relation between examples in different ranks, for
example using projection and deletion arguments. For this we investigated the structure of our
rank 4 examples together with some already found rank 6 examples. We found the following
correlation.
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(f) For r > 6, let o,_2 be an example of rank r — 2 on 2r — 4 elements. For an r-subset
X C[2r] with 1,3 ¢ X and 2,4 € X, we define the sign

or(X) = or—2(X 1{12,343)-

Note that X |(q 234y is obtained by deleting the elements 2 and 4 from X and a further
index shift by —2 caused by deleting 1 and 3, which are not contained in X. In other
words, o,_o is obtained from o, by a projection to 1,3 and a deletion of 2, 4.

If we start with one example in rank 4 and recursively construct examples in higher ranks with
the desired properties and further prescribe an exact set of (r/2)? + (r/2) + 4 fliples for rank r,
it finally turned out that there is a unique example in each of the ranks r = 6,8,10,12. The
description of the fliples are provided in the paragraph “Higher Ranks”. All examples and the
source code to verify their correctness are available at the supplemental data of [BFS23a]. Note
that even though FE, and O, are fliples of the defined signotopes, changing the sign of one of
them yields a signotope with different properties. In particular for » = 4 the signotope becomes
2-extendable. The set of even elements F, and the set of odd elements O, are fliples are always
contained among the prescribed fliples, which follows from property (c).

Rank 4

We explicitly give the rank 4 example and give a visualization as pseudohyperplane arrangement.
We fix o4 as the examples, which is not 2-extendable and has the properties (a)—(f). For
this example we map the four subsets, which are not determined yet, to —. Representing the
signotope with a string of its signs in reversed lexicographic order of its 4-subsets, the complete
signotope has the signs

oa=+++-——FFtt—F -ttt ——F——F++——————————
FH+—FF ottt ottt ottt -+ -+ ++++

The representation of o4 is given as supplemental data as 3-dimensional object®. This is gener-
ated using a SageMath program which computes the sweep of the signotope and for every rank
3 signotope a wiring diagram of fixed length. In particular, there is only one crossing at a time
in the wiring diagram. This helps to make the boundaries of the 3-dimensional visualization
nice. A projection to 2 dimensions is given in Figure 3.8. The single wiring diagrams are given
as in Figure 3.9 with the same colors assigned to the elements. We start with the reversed cyclic
arrangement at the top left position and then continue line by line until we reach the cyclic
arrangement. In each step we highlight the triangular cells, which are flipped either from the
previous arrangement or to the following arrangement been flipped.

3https://helenabergold.github.io/supp/3d_signotopes /nonextendable_sign48_pshyperplane.html
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Figure 3.8: A projection of the 3-dimensional pseudohyperplane arrangement of o4. In the front, we
start with the reversed cyclic arrangement. The odd elements 1,3, 5,7 have a color from the
red color family, whereas, the even elements 2,4, 6,8 are colored with shades of blue and
purple.
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Figure 3.9: The sweep of pseudolines corresponding to o4 starting with the reversed cyclic arrangement
in the top left. The odd elements 1,3,5,7 have a color from the red color family, whereas,
the even elements 2, 4, 6, 8 are colored with shades of blue and purple. Triangular cells which
get flipped in comparison to the next signotope are marked red, if they have been flipped
from the previous one they are green. Moreover we highlight the triangles consisting only
of odd or only of even elements.
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Higher Ranks

For higher ranks, we refer to the supplemental data [BFS23a] for the explicit sign sequence of
the signotopes, since even represented as a string would be a lot of space and pages filled with +
and — signs. However we give the set of fliples of the signotopes, since this is the only missing
information. For the fliples we only give one representative for every 4-fold symmetry class.

Besides the two fliples, consisting of all even and all odd elements, we have a recursive con-
struction for the remaining fliples. Starting with the three additional fliples Fy of o4, which we
represent as a string of “|” and “z” of length 2r. If the i-th element is contained in the fliple,
we write “x” at the i-th position, “|” otherwise. Hence this string consists of exactly r charac-

[19e})

ters “z” and r characters “|”. The three fliples of F are represented by the strings “|||zz|zx”,
“Nez|zx|”, and “zz|x||z]”.

Given the set of fliples ﬁr for an even r > 4, we construct ﬁr+2 as follows. If in the string of “z”
and “|” there is a substring “||zx”, we construct a string of size 2(r + 2) = 2r + 4 by replacing
the substring

“|

|[za” by “[|[Jxzza”,

which adds additional four characters to the string. Moreover we replace the substring
“x‘ |$” by “ZE‘ | ’.T.T|IL’” .

Note that both replacement add two additional elements to the fliple itself since we add two times
“x” and two times “|”. Note that starting with r = 4, we only get three patterns “|||||zxzx|zz”,
“I|zzxz|zx]’, and “zz|x|||zz|x|” for r = 6. In addition we prescribe the string “||zzzx|z||z|”
(corresponding to the fliple (3,4,5,6,8,11) for which both rules can be applied increasing the
number of fliples for every 7.

The fliples of 13,, for r = 4,6,8,10,12 together with its string representations are:

ﬁ4 = {(1737577)7 (2747678)7
(17 2747 7)’ (37 47 67 7)’ (47 57 77 8)7}

Fs = {(1,3,5,7,9,11), (2,4,6,8, 10, 12),
(1,2,4,8,9,11),(5,6,7,8,10,11), (6,7,8,9,11,12), (3,4,5,6,8,11), }

Fs ={(1,3,5,7,9,11,13,15), (2,4,6,8, 10, 12, 14, 16),
(1,2,4,10,11,12,13,15), (3,4,5,6,8,12,13, 15), (5,6, 7,8,9, 10,12, 15),
(7,8,9,10,11,12, 14, 15), (8,9, 10,11, 12, 13,15, 16)}
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Fio={(1,3,5,7,9,11,13,15,17,19), (2,4, 6,8, 10,12, 14, 16, 18, 20),
(1,2,4,12,13,14,15,16,17,19), (3,4,5,6,8, 14, 15,16, 17, 19),
(5,6,7,8,9,10,12,16,17,19), (7,8,9,10,11, 12,13, 14, 16, 19),
(9,10,11,12,13, 14, 15,16, 18,19), (10,11, 12, 13,14, 15, 16,17, 19, 20), }

Fip ={(1,3,5,7,9,11,13,15,17,19, 21, 23), (2,4, 6,8,10,12, 14, 16, 18, 20, 22, 24),
1,2,4,14,15,16,17,18,19, 20,21, 23), (3,4,5,6,8,16,17, 18, 19, 20, 21, 23),
5,6,7,8,9,10,12,18,19,20,21,23), (7,8,9,10, 11, 12, 13, 14, 16, 20, 21, 23),
9,10,11,12,13,14, 15,16, 17, 18,20, 23), (11,12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23),

(
(
(
(12,13,14,15,16,17, 18,19, 20,21, 23,24)}

Until now there is no explanation why this construction works and whether it works for arbitrary
rank. However this is the construction of the set of fliples for up to » = 12 which gives together
with the remaining property a unique example.

3.6.3 Towards an Infinite Family of Counterexamples

In this section, we construct a partial signotope p, for every even rank r, i.e., we only assign
signs to a subset X C ([:f]) of all r-subsets. In particular those signs imply that every signotope
which contains the partial signotope is not 2-extendable. We say a signotope o contains a
partial signotope p whose domain is X C ([:f}) if 0(X) = p(X) for all X € X. We define a
partial signotope p, on n = 2r elements for even rank r and show that the non-extendable
signotopes o, (see Section 3.6.2) for r = 4,6,8,10,12 contain p,. However the existence of
signotopes with the specified properties remains open for all even r > 14.

The question whether there exists a signotope ¢ containing p, for all even r is an instance of
the completion problem. For related structures such as acyclic uniform 3-chirotopes, uniform 3-
chirotopes, and generalized signotopes the completion problem is NP-hard. The first was shown
by Knuth [Knu92]. Later Baier [Bai05] showed that the proof of Knuth transfers to uniform
rank 3 chirotopes. Tschirschnitz [Tsc03] independently showed the result with a reduction from
alternating 3SAT. This reduction might transfer to the setting of 3-signotopes. The NP-hardness
of generalized signotopes was recently shown by Bergold, Scheucher and Schréder [BSS23a] who
also showed the hardness for 40 related completion problems. We expect that the completion
problem for signotopes is NP-hard as conjectured by Felsner, Gartner and Tschirschnitz [FGTO05].

For even r, we define a partial mapping p, on ([2:}). The n = 2r elements are partitioned into
the odd elements O, = {o01,...,0,} and the even elements FE, = {ej1,...,e,} with o, = 2i — 1
and e; = 2 for ¢ = 1,...,7. Hence it holds 0; < €¢; < 0,41 < e¢;41 forallt =1,...,7 — 1. Even
though p, is only a partial signotope, we use the operations as defined for r-signotopes such
as rotation (pr)rot, deletion and projection. Instead of (p,)ot(k), We write pgk) for the k-fold
rotation. Without loss of generality, we assume

(1) ,07‘(01)02)"'701“) =+

Otherwise, we just reverse all the signs. Furthermore, we define the following signs of p;.
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(2) pr(€1,€2,...7€T) = —,

(3) pr(€irs---s€ip, 055 €ipyry-nnstipy) = (—)F for k=0,...,7r—1, and
1 < .o <0 <J<pyr <tpo1 <1,
(4) (0,044, €55 03150, _y) = (—)FF1 for k=0,...,r—1, and

i1<...<ik§j<ik+1<i7_1§7ﬁ

Note that those conditions together imply that O, and FE, are fliples. The only packets in
which O, appears are the ones consisting of all elements from O, and exactly one element
from E,. The signs which appear in those (r + 1)-packets are all determined by (1)—(4) and do
not contradict the monotonicity property. Moreover, the sign change is next to O,. The same
argument holds for FE,. by exchanging the roles of E, and O,. For more details see the proof of
Proposition 3.6.1 (page 70).

In the geometric sense of pseudohyperplane arrangements O, and FE, being fliples means that
the simplex spanned by each of the r pseudohyperplanes is not crossed by any other pseudohy-
perplane, i.e., is a simplicial cell. The conditions (3) and (4) show that each crossing of only
even elements is above every pseudohyperplane corresponding to an odd hyperplane and each
crossing of the pseudohyperplane of only odd elements is below each pseudohyperplane of an
even element.

Another important structural property making the example very symmetric and therefore easier
to analyze is the 4-fold symmetry. The partial mapping p, satisfies

(5) pr=pt.

The 4-fold symmetry is equivalent to
pr(T1, ... @) = (—)ipT(:L‘Hl — 4, e —4n—44+x,...,n—4+x;)

forall 1 <ax < ...<z; <4< xiy41 < ... <z < 2r and does not contradict the properties
(1)—(4). We discuss this in more detail in the proof of Proposition 3.6.1 (page 70). Further signs
of p, are

(6)  pr(0iys- -+, 0iy, Cht1s Chy2y -5 6r) =+ fork=2,....,r—2
and i1 < ... <1 < k41,

(7) pr(o1,02,€2,... €k 0p12,...,0p) = — for k=3,...,r—1.

The signs determined in (1)—(7) define Q(r3) signs of r-subsets of a total of (2:) signs and do
not contradict the monotonicity property of signotopes. We defer the proof of the following
proposition to the end of this section (page 70).

Proposition 3.6.1. For all even r > 4, the partial mapping p, is a partial r-signotope, i.e., the
determined signs do not contradict the monotonictiy property on (r + 1)-packets.

In the following we show that for even r = 4,...,12, there exist signotopes containing p,. In
particular the signotopes o, described in Section 3.6.2 contain p,. For even rank r > 14 the
existence remains unknown.

Lemma 3.6.2. The signotopes o, of rank r for r = 4,6,8,10,12 (defined in Section 3.6.2),
which are not 2-extendable, contain p,. In particular they fulfill properties (1)—(7).
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Proof. Clearly conditions (1)—(5) are fulfilled by those examples as they are exactly (a)—(c).
Moreover, (6) corresponds to the second part of (e). To show the remaining property (7), we
apply the rotation operator multiple times to obtain an r-subset to which property (e) applies.
We distinguish two cases depending on the parity of k, such that e is the largest element of E,.
in the r-subset (01,09, €2, ..., €k, Okt2,...,0).

First assume k is odd. Since r is even, the number of elements o2, ..., 0, is even. By the 4-fold
symmetry of o, (a) the application of four rotations yields the same signotope. In every step in
which we apply four (backwards) rotations, we rotate exactly two of the elements o,_1, 0, which
become 01, 09. Since the number of rotated elements is even, the sign stays the same. To rotate
all elements og42,...,0,, we apply 4 - % = 2(r — k — 1) rotations in total. Using the 4-fold
symmetry, it holds

07(01,02,€2,...,€k, 0842, ..,0r) = 0p(01, .-, Op ki1, €rfils -y Er1) = —.

The sign of the latter r-subset is — because of the first part of (e).

If k£ is even, we apply 4 - T_g_Z = 2(r — k — 2) rotations. In each set of four rotations exactly
the two elements o,_1, o, are rotated and become 01, 05. In the end the considered r-subset still
contains o,.. Hence we apply another set of four rotations in which only o, is rotated which
implies a reversion of the sign. By second part of (e), we can determine the sign of the resulting

set.

UT(Ol) 02,€2,... 76k+27 Ok+47 e 701”) - UT(Ol) ey Op——2,€6p—fk—2,...,€Er_2, OT)
= _UT(027 s Op—ky €rfy e e vy 67”)
= — .4+ =,
This shows that o, fulfills (7) and hence o, contains p, for r =4,... 12. O

pr is not 2-extendable

The next step is to show that for even r every r-signotope containing p, is not 2-extendable. In
order to show the non-extendability, we show a stronger statement. As for the signotopes o,
we show that every r-signotope o which contains p, and for every choice of an (r — 1)-subset
E C E, and an (r—1)-subset O C O, there is no extension in which E and O are fliples together
with the new element.

Theorem 3.6.3. Let O C O, = {o1,...,0,}, E C E, = {ey,...,e.} be two disjoint (r — 1)-
subsets. For even r > 4 and all r-signotopes o on [2r] which contain p, there is no extending
r-signotope p, on [2r + 1] such that there is an z € [2r + 1] with (p,) l.= o and O U {z} and
EU {z} are fliples of p,.

For the proof, we need to show that we cannot extend a signotope containing p, with an addi-

tional element z such that the two considered disjoint (r — 1)-subsets E and O are fliples in the

extension. Since the elements are sorted in linear order, we need to make sure that we cannot

add z at any position. We start by showing that we cannot extend p, with z inserted at the

last position n 4+ 1. In order to avoid the index shift, we go through all rotations and show

in the considered rotation, that no extension with the last elem(er)lt exists. If we show for the
(2

i-th rotation of p, with ¢ = 0,...,n — 1 that we cannot extend p;’ with an element at the last
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position, than p, is not extendable. Since our constructed partial signotope p, is 4-symmetric
(see (5)) it suffices to show the non-extendability with an element at the last position for signo-
topes containing one of the four rotations p, = p,(~ ),p,(n ), p7(~ ), pg?’) Note that (E;,)yot = O, and
(Or)rot- Hence the prescribed fliples stay the same for every rotation.

For each of the four rotations, we proceed as follows. To show that there is no extension with
an element z = n + 1 such that F and O are fliples, we assume towards a contradiction that
there is an extension by the element n + 1 in such a way that one of the two sets E U {n + 1}
and OU {n+1} is a fliple. By deducing signs using the monotonicity property, we show that the
other set cannot be a fliple at the same time. All arguments work for each choice of E and O.

We consider the four rotations separately. In order to make it easier to follow, we rewrite the
conditions (1)—(7) in terms of the considered rotation. This makes it easier to use the condition
in the proof for the non-extendability. Moreover, we only mention the properties which are
necessary for the considered rotation.

Rotation 0

In a first step, we look at a signotope containing p,, i.e., with the original properties (1)—(7).
We only mention the properties we use for the proof. Note that the elements of each r-subset
are sorted.

0.1 cf. property

©
o

cf. property

o
o

cf. property

o
=

(
(
(
(

pr(0iyy-.y0i,_,e) = (=) =+ for 0;; € O, and e € E, cf. property

(0.1)  pi(
(0.2)  p(
(0.3) pr(o€ir,... €,_,) = (=) =+ for o € O, and e;, € E,
(0.4)  pi(
(0.5)  pi

05 pT’ 07,1 O’Lk7 ek+17 M e’/‘) = + for Oi]' e O’r’

and k=2,...,r —2. (cf. property (6))

Note that for property (0.4) we used that r is even. We show that every signotope which
contains p, cannot be extended by an element z = n+1 at the last position to an r-signotope py
such that O U {z} and E U {z} are both fliples. Since j, is an extension, the deletion py |1 of
the last element contains the partial signotope p,.. Hence if there is an extension, the conditions
(0.1)-(0.5) hold for g,.

We assume that there is an extension p, with z = n+ 1 such that there is a fliple EU {z} for an
(r —1)-subset E of E,. By deducing further signs using the monotonicity property, we show that
for all O C O,, the r-subset OU {z} is not a fliple of p,. Since EU {z} is a fliple, the sign change
of the (r + 1)-subset P = {e1,...,e,,z} is before or after the position of E U {z} in the packet.
In the case that the subset P, = {ea,...,e,, z} is the fliple, there might be no sign change since
the fliple is at the first position. However, since P; is a fliple, we can flip the sign of the subset
in order to get a sign change between P, and P». Flipping the sign of P; does not affect whether
subsets of the form O U {z} are flipable. By (0.2) it is py(e1, ..., e,) = p(Pry1) = —. Hence we
assume

(0.6) prle,...,er,2)=+.
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Since p, is an r-signotope, we use the monotonicity of signotopes to show p,.(02,...,0.,2) =+ in
the following Claim 3.1. By (0.1) it is p.(o1,...,0;) = +. Hence in the packet {o1,..., 0,2} the

only possible fliple of the form O U {z} is (02,...,0,2). As we show in Claim 3.1 this r-subset
is not a fliple. Hence there is no extension such that EU{z} and OU {z} are both fliples, which
completes the proof for this rotation.

To prove that p,(o2,...,0.,2) = 4, we increase the number of odd elements in our r-subset in

order to use the monotonicity on a common (r + 1)-packet.
Claim 3.1. For k=0,...,r =1 and 0;; < ... < 0;, < 0p41 it is
Pr(0iys ..y 0ip, €y, ... €0, 2) = +.
Furthermore, for k =1,...,r — 1 the r-subset (0;,,...,0i,,€k12,.-.,€r, 2) is not a fliple.

Proof. We prove the claim by induction on k and start the base case with k£ = 0. In this case the
claim follows by assumption (0.6). Now let £ > 0. We want to determine the sign of the r-subset
(0iyy -+ 0ipy €kt2, - - -, Er, 2). Since 0;, < 041 < ep41 we can add the element eyy; between o;,
and ejyo and consider the sign sequence of the (r 4 1)-subset

P =(0iy,...,0i,€kt1,€kt2,- -, Er,2).

By induction hypothesis, it is p.(Px) = pr(0iy, - - -, 0if_y» €kt1s€k+2, - - - » €, 2) = +. Furthermore
by the properties of p,, we have p(Pry1) = pr(0iy, ..., 0i s €kt1, €kt2s - -, €p) = F. For 2 < k <
r — 2, this is by property (0.5). For k = 1 and k = r — 1, this follows from property (0.3) and
property (0.4), respectively. Since Pji1 appears in the sequence between Py and P,ii, which

have both the sign +, it is p,(Pgt+1) = pr(0iy,- - -, 0iy, €442, - - -, €r, 2) = +. Furthermore, since
(0iys- -3 0iy, €42, - - -, €r, 2) s nOt adjacent to a sign change in this sequence, it cannot be a fliple
of p,. Hence the claim follows by induction. O

Rotation 1

We rotate 01 = 1 of p, which becomes n = e, for pgl). Moreover in the rotated signotope, the

role of the odd and even elements change and with them some signs. The following properties
we will need to show that there is no extension with z =n + 1.

(1.1) pfnl)(ol, oy 0p) = prler,...,ep) =— (cf. property (2))
1.2) pM(er,....en) =—-prlo1,...,00) = — + = — (cf. property (1))
(1.3) Y (er. . erm1,00) = prloa,. . o) = (=) =+ (cf. property (3))
(1.4) p&l)(el, 02,...,0;) = pr(02,€2,...,e,) = (=) =+ (cf. property (4))
(1.5) pgnl)(el, e €y Okt 1y vy 0r) = pr(02,. ., Okt1, i1y €p) =+

fork=2,...,7r—2. (cf. property (6))

We proceed in a similar way as for the last rotation and show that there is no extension [)gl)

of this rotation, where the extended element z is inserted at the last position n + 1 such that
E U{z} and O U{z} are fliples.



68 3 An Extension Theorem for Signotopes

We assume there is an extension ;39) with a fliple of the form E U {z} and show that it is not
(1)

possible that a set of the form 6U{z} is a fliple in the same extension. Since p; ’(e1,...,6,) = —,
we assume without loss of generality.

1.6) pM(er,... ep1,2) = —.

If £ # (e1,...,er_1), this equation holds, since the signs of (e1,...,e,—1,2) and (eq,...,e,) are
adjacent in the sign sequence of the packet (eq,...,e,, z). Moreover they are on the same side
of the fliple E U {z}. Hence they have the same sign. Moreover if E = (e1,...,er—1), We can
flip the sign of (ey,...,e,—1,2) if necessary without affecting the other properties. In particular
it does not change whether there is a fliple of the form O U {z}.

By increasing the number of odd elements, we conclude the following signs. As in the first part,
we prove this claim by induction.

Claim 3.2. Fork=r—1,...,0 it is
Ay(ﬂl)(elv <€y Ok 42, .- 707’72) =
Furthermore, for k =r —2,...,0 the r-subset (e1, ..., €k, Ogs2,-..,0r,2) is not a fliple.

Proof. For k = r — 1, the sign of (e1,...,e,—1,2) is — by assumption (1.6). For & < r — 1, we
consider the sign sequence of the (r + 1)-subset

P = (61, vy Cky€kt1,0k+2,-..,0p, Z).
By induction hypothesis, it is ﬁgl)(P]H_g) = ﬁg})(el,...,ek,ek+1,ok+3,...,or) = —. Further-
more, by (1.5), it is p( )( 1) = ﬁq(nl)(el,...,ek,ek+1,ok+2,...,or) =+ fork=1,...,r —3.
For k =r—2and k =0 thls follows by (1.3) and (1.4), respectively. The subset P11 =
(é1,...,€k,0k12,...,0r,2) is on the same side of the sign change as Py,s and hence it maps
to —. Moreover, it is not adjacent to the sign change. The latter shows that Py is not flipable

in this sequence and hence not a fliple of p(l). ]
The claim shows that ﬁ&l)(o% .eoy0p,2) = — and (09,...,0,2) is not a fliple. Considering the
sign sequence corresponding to the (r+ 1)-subset (01, ..., 0., z), we can conclude with (1.1) that
this sequence consist only of — signs. Hence there cannot be a fliple of the form O U {z} other
than (o0g,...,0.,2) which is not a fliple by Claim 3.2. This shows that after one rotation we

cannot insert an element at the last position. This correspond to adding the new element z
between the first and the second element in the signotope containing p,.

Rotation 2
(2

After a second rotation, py ) has the following properties.

21) (01, 0,) = = prlo1,...,0,) = — (cf. property (1))

I
+

(2.2) ( )(61, cosep)=—pler, ... er) (cf. property (2))

(23) ( )(017 €15+, eT*l) = pT‘(OQa €2,..., e’r‘) = (_)0 =+ (Cf property (3))
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(2.4) ( )(01, ceyOp1y6r-1) = pr(02, ..., 0p,6,) = (=) =+ (cf. property (4))
(2.5) ( )(01, ey Oky €hy ey 1) = pr(02, ..o Ok 11, €ht1y . s €p) =+
fork=2,...,r—2. (cf. property (6))

As before, we show that we cannot add an element z at the last position n+4 1 such that O U {z}

and E U {z} are fliples. Assume there is an extension ,0( ) such that E U {z} is a fliple. By (2.2)
the sign of (ey,...,e,) is +. Hence we may assume

2.6) pP(er,... ep1,2) = +.

If £ # (e1,...,e,—1) it clearly holds. Moreover if E = (e1,...,€,-1), we can flip the sign of
(e1,...,er—_1,2) if necessary without affecting whether O U {z} is flipable.

Claim 3.3. For k=0,...,r—1 it is
(2)(017 -+ 0k, €41, - - .,67‘,1,2) =+
Furthermore, for k =1,...,r — 1 the r-subset (o1,...,0k, €kt1,--.,€r—1,2) is not a fliple.

Proof. As in the preceding part, we prove this claim by induction and we increase the number

of odd elements in the sequence one by one. For k = 0, by (2.6) it is /37(?) (e1,...,6r-1,2) = +.

For k > 1, we consider the packet

P = (01,...,0k, €k, Chils- - Er_1,%).

The sign of Py is p( )(01, ey 0k_1,€k, €kt1,€r—1,2) = + by induction hypothesis. Furthermore
by construction of p,., it is ﬁq(?)(PrH) = ﬁ$2)(01, ey Ok €y sCp1) =+ for k=1,...,r — 1.
To be more precise, for k = 2,...,r — 2 it follows by (2.5). For k =1 and k = r — 1, it follows

by (2.3) and (2.4), respectively. Since the considered subset Pjy; is in between P and Py, it
follows p( )<Pk+1) = + and Py, is not flipable in P and hence is not a fliple. O

Considering the packet (oy, ..., 0,,z) shows that none of the r-subsets O U {z} can be a fliple.

Rotation 3

For the last considered rotation, we use the following properties.

(3.1) o )(01, cos0r) =—prler,. ... ep) =+ (cf. property (2))
(3.2) o )(61, coser) =prlor,...,00) =+ (cf. property (1))
(3.3) p7(~3)(01,62, cooyer) = pr(01,00,€2,04,...,0.) = (=)3 = — (cf. property (4))
(34) (01, 0m,e) = = prlozen,. o) = = ()" == (cl. property (3))
(3.5) (3)(01, ey Oky €ty -y €r) = pr(01,02,€2, ... €11, 0k+3y - -, 0p) =

fork=2,...,7r—2. (cf property (7))
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Note that this is the only rotation for which we need property (7). Again, we assume that there
is a fliple EU{z} and hence we may assume without loss of generality that

(3.6) 5V (e2,... en,2) = —

Using those properties, we show by induction, that the following subsets are determined due to
the monotonicity of signotopes.

Claim 3.4. For k=0,...,r—1, it is

A£3)(01, ey Oky €kt Dy ey Epy Z) = —.

Furthermore, for k =1,...,r — 1 the r-subset (o1, ..., 0k, €kt2,..., e, 2) is not a fliple.

Proof. By (3.6) it is ﬁgg)(eg, ...,€r,z) = — which is the statement for k = 0. For k > 1, we
consider the packet

P=(01,...,0k,€kils--s€r,2).

By induction the sign of P, = (o1,...,0k-1,€k+1,€r,2) is determined and is ﬁ7(o3)(Pk) = —,
Furthermore for k = 2,...,r — 2 the sign of P41 = (01,...,0k,€k11,.-.,6) 18 [)1(03) (Pry1) = —
by (3.5). By (3.3) and (3.4) it is ﬁ£3)(PT+1) = —for k=1 and k =r — 1. Since the sign of Py
is between the sign of P, and P,4; the claim follows. ]

Analogously to the preceding rotations it follows that ﬁ$«3) has no fliple of the form Oou {z} by
considering the packet (o1,..., 0., 2). This completes the proof of Theorem 3.6.3.

pr is a partial signotope (Proof of Proposition 3.6.1)

In this part we provide the missing part and prove Proposition 3.6.1. For this we show that the
signs given by properties (1)—(7) do not contradict the monotonicity of signotopes. For the proof
we consider packets in which the signs of r-subsets are determined by one or more conditions.
In a first step we consider the properties (1)—(4). We consider (r + 1)-subsets containing exactly
one element from O, and r elements from E, (or vice versa). Let P be the packet having an
even element e at position k + 1 and all others are odd. In this case it is

pr(Py) = (—=)*! for i < k
Pr(Pk+1) = 7"(017 s 707“) =+
or(P}) = (=) for j > k4 2.

All signs are determined and do not contradict the monotonicity. Since these are the only
packets in which O, appears and the sign change is next to the sign of O,., it is a fliple. Similar
arguments hold for F,.

Let us now consider the 4-symmetry (cf. property (5)). Property (1) and (2) are invariant
under the 4-fold rotation. For (4) we consider the r-subset X = (0i,,...0i,,€,04 1,.-.,0i,_1).
If e > 4, then we only rotate some of the 0;’s. Let £ be the index such that o;, < 4 but o0;, , > 4.
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Hence ¢ elements get rotated during the four rotations and the position of the even element is
decreased by ¢. Hence it holds

pr(X) = Pr(Xrot(4))
= (—)g-p,«(oié+1—4,...,oik—4,e—4,0ik+1—4,...,02-r_1—4,n—4+0i1,...,n—4—|—0i£)
(_)Z(_)k-ﬁ-l—é — (_)k+1

which coincides with the sign according to (4). If e < 4, we rotate additional elements. Again
let ¢ be the index such that o;, < e; < 4 and 0ipy; > 4. In this case we rotate { + 1 elements
and the position of e in X,q(4) is 7 — (£ + 1) + &k + 1 and hence it holds for even r

Pr (X) = Pr (Xrot(4))

:(_)Z—l—l.pr(0i2+1—4,...,Oir_1—4,n—4+0i1,...,’I’L—4+Oik,n—4—6,

n—4+0y., ., ..,n—4+0;)

_ (_)E-l-l . (_)r—(f—&-l)-ﬁ-k—i—l _ (_)k—f—l

which again coincides with the sign according to (4). This shows that (4) is invariant with
respect to the 4-symmetry. Analogously it follows that (3) is invariant.

Now we apply the 4-symmetry property (5) to the two remaining properties (6) and (7). Hence
the following signs are determined.

(6*) pT(elv"'7625707:17"'7Oika€2f+k+l7'"ae'r) =+
with k=2,...,r—2,20+k <r,and iy,...,i; € {2(,...,20+ k+ 1}; and
pT(0i17' "70ij7€i7' . -,62[,02‘j+1,--- 7Oik) == (_)j+2€7i+1 = (_)j7i+1

With k420~ i1 =1, 20—0 > 2,k > 2,1, ... i; € {1,.o,i}, ige1s..rip € {2041, .. 1}

Note that in the second version, the sign depends on how many elements are rotated. In the first
version this is always an odd number. If we do the same for property (7), we get the following
more general rules

(7*) pr(ola <oy 020,€20, -+ €24y O20+ K42, - - '70T) = -
with £ > 1 and k > 2 such that 2/ + k < r; and

pr(ela"'76470€+2)"'702k‘)62k7"'767“) =+
With 0 < £ <2%k—3, k>4 0+r—2k+1>2.

The subsets (01, . ..,09, €24, ..., €2k, 0212, ..., 0p) and (€1, ..., €20,02049,...,09%, €2k, - - ., €y) AP~
pear in both rules (6*) and (7*) and get the same sign — and +, respectively, in both rules.
Furthermore we study the interaction of (6*) and (7*) and the other properties. If two rules
affect each other, subsets for which the rule applies appear in the same (r 4+ 1)-packet. More
precisely they need to have r — 1 elements in common.

Subsets for which (6*) or (7*) apply contain at least two elements from O, and two from FE,.
Hence they do not appear with (o1,...,0,) and (ey,...,e,) in a same (r 4+ 1)-packet.

In a first step, we consider packets which contain exactly two elements from O, and a subset for
which rule (6*) applies. Deleting one of the elements of O, from the packet leads to a subset
for which property (3) gives the sign. To ensure that we can apply (6*) for one of the other
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r-subsets, we start with a subset of (6*) with only two elements from O,. There are two different
types (e1,...,€2¢,0iy,0iy, €2043, - - ., &) and (01, €1,...,€._2,0;,). We now list all (r + 1)-packets
which contain at least one of them and exactly two elements from O, and check the determined
signs in order to see whether they contradict the partial signotope property. If the sign of an
r-subset is determined by any of the rules, we will write it to the right and give the number of
the corresponding rule.

P

(€1,...,€20,€2041,02042, 02043, €20+3, - - -5 €r) | pr(Part2) = (—

(617 ceey €90, Oi17€j>0i27 €20+43,- -+, 61”) Pr P2€+2) =+
pr(Pae+3)

(

(

(

(

(

(
(Parr1) = (-1)* =+ E)

(€1, -1 €20, 09041, 02012, €242, €a045, - - €r) | Lo 204 cT
pr(Paio) = (1) =+ (3)
pr(Pory3) = (6"
pr(P) = (-1)""1=— (
(01,€1,...,€r—2,€r_1,0r) pr(Pr) =— (
pr(Pry1) = (=1) = + E
(
(

)
(017617"-767‘—2a0i276j) Pr(Pr :<_1)0:+

In the next step, we consider packets containing a subset of the form (6*) and exactly two
elements from E,. Subsets for which we can apply rule (6*) which have only two elements from
E,. have the form

(OZ'17 SRR 0ij562f—17 €2¢, Oij+17 s aoi,-,z)-

for 0 < j <r —2 and compatible £ = 1,...,r. Their sign in p, is (—)7 according to (6*). There
are only three possibilities to add another element from O,.

P
pr(B) = (=) k<j+1 (6%)
(0; 05, 1,€20—1,€2¢, 04 0i,_1) pr( j+2) = (_)JA+2 ()
i1y o3 0441y €20—1,€2¢, 0459y ++ 5 04,4 pr(PjJrS) = (*)]"‘"2 (4)
pr(P) = (P kzj+d ()
pr(Pjs1) = (=) )
(Oila o045, €20 1,090,€20, 00, 15 - - ,Oi,,_Q) pr(Pj+2) = (_)] (6*)
pT(Pj+3) = (_)J,Jrl (4)
pr(P)= (P T k<] (©)
R P\ N S (4
1509 0y €20—15€20,04 15«5 04,4 pT(Pj+2) — (_)JAJFI (4)
pr(Pe)= (=) k=2j+3 (6%
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In a similar way, we proceed for rule (7*). First we consider packets in which r-subsets ap-
pear for which rule (7*) applies and which have exactly two odd elements. If there are only
two elements from O,, the subsets for which rule (7*) applies are (01,09,€9,...,€6,—1) and
(€1,...,€26—3,02k—1, 02k, €2k, - - ., &) for k= 1,..., 5. They are contained in the following two

(r 4+ 1)-packets

P
pr(P1)=— (3)
(01,€1,02,€2,...,€7-1) pr(P2)=— (7)
pr(Ps) =+ (3)
prEPl% =+ 533
or(P2) =+ 3
(o002 eronn6r) pe(P) = (-17 =+ ()
pT’(PT+1) - (7*)
pr(PQng—Zg =+ (7*)
(€15 -+, €2%-3, €2k—2, 02k 1,02k, €2ks - - - » 1) pr(p]:?f%;i _ E_;gk_z _ i g;
pr(Popy1) =+ (67)
pr(Pog—2) = ()" =+ (3)
(€1, -+, €2k-3, 0961, €2k—1, 02k, €2k - - - ; Er) pr(Pog—1) =+ (7%)
pr(Poy) = (=)* 73 == (3)
Let us now consider packets with only two elements from E, containing an r-subset for which
rule (7*) applies. Subsets from (7*) we have to consider are (01, ..., 09, €27, €2041, 02013, .., 0p)
and (e1,03,...,0-,€,) and they appear in the following (r + 1)-packets with only two elements
from E,.
P
pr(Pai1) = (=) =+ (4)
(01,...,02¢,€20,02041,€2041, 02043, - - - ,0r) pr(Pag2) = — (7%)
pr(Papys) = (=) = - (4)
pr(Parg1) = (—)%H =- (4
(01, - -+, 020, €20, €2041, 02042, 02043, - - -, 0r) | pr(Pagya) = (=) =— (4)
pr(Poeys) = —  (77)
pr(Pr) =+ (77)
(01,€1,03,...,0r,€;) or(P2)=(=)"=+ (4)
pr(Pri1) = (=) =+ (4)
pr(P1) =(-1)"=+ (4)
(€1,02,03,...,0,€) or(P2) =+ (7)
pr(Pri1) = (_1)1 =- (4

The remaining part are packets which contain subsets of the form (6*) and (7*), respectively,
with at least three elements from O, and three elements from FE,. In all of those cases the only
rules which might apply are (6*) and (7*). We consider two cases. Some packets we consider
might appear in both. We start with packets containing subsets of the form (7*). We start with
the r-subset

(01, +-,020,€20, - - ;€201 s 024142, - - -, Or)-
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For the packet we add another element, we start with the possibilities to add an element from O,..
If we add an element o9,y with j € {1,...,2¢ + k}, the only way to get consecutive blocks of
only elements from O, followed by only elements from E, (considered cyclically) is to delete this
element again. Hence the only subset for which we can apply one of the rules contained in this
packet is the one we started with. Moreover the odd elements o1, ..., 09 are already contained
in the subset.

Hence there is only one remaining option:

P = (01,...,020,€20, .. ,€201k; 02+k+1502+k+2s - - -, Or)-

If 2¢ 4+ k is even, we can apply rule (6*) and get the following signs.

( ) _ ( )26 1-20+1 _ =4 forall 1 <j <2/ (6*)
pr(Pag1) = ( )2 — (6°)
pr(Paeyk+2) = (697
pr(P;) = (—1)2-@0+ — _ forall20 +k+3<j<r. (6%)

In the other case, if 2¢ + k is odd, we can only determine the two following signs

pr(Paryii2) = — (6%)&(7")
pr(Porykis) = —. ()

If instead we add an element from FE,., there is again only one possibility.

/
P = (017 <3 020,€205 - o5 €204k €24 k415 O24K+25 - - - 5 OT)

If 2¢ + k 4 1 is even, all sign of the packet are determined and are

pT(PJ{) = (- )25 1=CO+1 — 4 forall 1 < j<2L (6")
pr(Pagyr) = + (6%)
Pr(P2e+k+2) (7°)
pr(P2€+k+3) (7°)
pr(P)) = (—)QHf+1 =—forall U+k+2<j<m (6%)

On the other hand, if 2¢ + k£ 4 1 is odd, we only have two determined signs. For both we apply
property (7).

Pr(P2/£+k+2) = (7)

Pr(P2/6+k+3) = (7)
Let us now have a look at the second version of (7*) which are subsets of the following form
(€1,...,€0,0049,...,00k, €2k, ..., ). If we insert an o € O,, we have one possibility to add it in

order to have consecutive blocks of elements in O, an elements in E,. We get an (r + 1)-packet
of the following form

Q= (€1, ,€0,0041,0042, - ,00k,€2hs ..., Er)
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with the determined signs

pr(Qe) = + (7)
Pr(Qey1) = + (7)
pr(Qj) =+ for all £+ 2 < j < 2k; only if £ is even (6)
)=+ (6%)

only if ¢ is even

Adding another element from E, gives the packet

Ql = (617 sy €0,€041,0042, - -5, 02k, €2k - - - 767")
which has the signs
pr(Qir) =+ (7%)
PT(Q/£+2) =+ (7)
pr(Qj) =+ for all £+ 2 < j < 2k; only if £ 4 1 is even (6%)
pr(Qort1) =+ only if ¢ is even . (6%)

Similarly, we investigate packets containing subsets of the form (6*). Since there are two dif-
ferent versions of this property we consider them separately. Again, for each of them we add
first an element from O, and then one from FE, which gives us two different packets whose
sign sequence we analyze in the following. Let us first consider the (r + 1)-packet P =
(€1,.--,€20,041, -+ ,04,0i 1, €201kl - -,€r). Then the signs of P; for j =20+1,...,20+k+2
are determined by (6*) and all of them are +, which does not contradict the monotonicity of sig-
notopes. Similar for the packet P = (e1,..., e, €2041,0i;,- -, 0, €204k41;-- -, €r) the sign of
Pyg11is + by (6). Possibly depending on the values the signs of P; with j = 20+2,...,204+1+k
are determined by (7*) and are also +. Now let us consider the second variant of (6*). The
(r+1)-packet P = (04, .. .,0i;,0i;, 1, €iy-,€20,0i,,1,- -0 ) has the signs which are determined
by the property given at the end of the line

pr(P) = (=)~ form <j+1 (6%)
pr(Pjya) = (=)~ (67)
pr(Pp) = (=) 7112 form > 204 j+ 1. (6%)
As a last packet, we consider P = (oil,...,oij,ei_l,ei,...,egg,oijﬂ,...,oik), which has the
following signs:
pr(P) = (=) 7 for m < j (67)
pr(Pjsr) = (=) 74 (67)
pr(Pp) = (=) for m > 20+ j. (6%)

If we instead add egp11 to the r-subset, there is only one sign determined.
This completes the proof and shows that p, is a partial signotope.
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3.7 t-Extendability

In the previous section, we studied 1- and 2-extendability. Moreover, we developed techniques
to investigate general t-extendability. In this section, we discuss examples which show that
signotopes with rank r > 4 are not 4-extendable. Moreover, for » = 3 and r = 5, we present an
example which is not 3-extendable.

Line arrangements are trivially not extendable by a line through three prescribed points. How-
ever, it might be possible that a line arrangement is extendable by a pseudoline. Is it not hard
to see, that this is in general not the case. An example for this is the cyclic arrangement, see
Figure 3.10. There is no possibility to add a pseudoline going through the three marked crossing

1

) 6

Figure 3.10: The cyclic line arrangement with 6 lines. There is no extension to a pseudoline arrange-
ments with a pseudoline passing through the three marked points. The sector of one
crossing point containing the other two points is marked grey.

points. If there was a pseudoline going through all three points, this new pseudoline has to
contain the three points in a linear order. Hence one of the crossing points has to be in between
the other two on the newly added pseudoline. For this we study sectors which are spanned
by two pseudolines. Two pseudolines which cross once divide the plane into four connected
components. We call those connected components sectors. The prescribed point which is in
between the other two on the newly added pseudoline must have the two remaining points in
two different sectors. However, this is not the case. For each of the three points, the other two
points are in the same sector. This shows that the rank 3 signotope on 6 elements where every
triple is mapped to +, i.e., the unique maximal signotope opax of B(6,3) is not 3-extendable.
The above arguments with the sectors, essentially use the partial order corresponding to a
signotope. Hence we can write the proof in terms of signotopes. Moreover, we can generalize
this to higher ranks in which this construction only gives that opax € B(n,r) for r > 4 is not
4-extendable.

Proposition 3.7.1. Let oymax € B(n,r) be the constant + signotope with n = 4(r — 1) elements
and odd rank r. For r > 3 the signotope omax s not 4-extendable. Moreover, for r =3, n =6
and r =5, n =12, the signotope omax s not 3-extendable.
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To study the extendability we use Proposition 3.2.4 which gives a condition for the extendability
by an element at the last position. We extend this characterization by going through all rotations.

Corollary 3.7.2. An r-signotope o on [n] is t-extendable for t > 2 if and only if for all pairwise
disjoint (r —1)-subsets I, ..., I there exists a rotation in which they are pairwise incomparable.

Hence the strategy to prove Proposition 3.7.1 is to prescribe (r — 1)-subsets such that in each
rotation at least two of them are comparable. For oy, we consider the four (r — 1)-subsets

L=((i-1)-(r—1) 41, .. i (r—1))

for ¢ = 1,2,3,4. Note that they are disjoint and consecutive in the sense that all elements
contained in I; are smaller than all elements of I; for ¢ < j. We consider all rotations, and
investigate which of the subsets are incomparable. For rank 3, we only consider I, Is, I3. For
rank 5 with the same prescribed (r — 1)-subsets there exists a 3-extension. However, if we
instead consider the three 4-subsets I = (1,3,4,5),J = (2,10,11,12), K = (6,7,8,9) on n = 12
elements, oyax 18 not 3-extendable.

To show comparability between two (r — 1)-subsets, it is enough to consider a smaller signotope.
If they are comparable in the restriction, they are comparable in the original signotope.

Lemma 3.7.3. Let o be an r-signotope on [n| and I,J two disjoint (r — 1)-subsets of [n].
Furthermore let o' = o\ (1ug) be the restriction to the elements of I U J, i.e., an r-signotope
onn' =2(r —1) < n elements. For the partial order < of o and <" of o', it holds: If I' <" .J,
then I < J.

Proof. If I' and J' are comparable in o/, i.e., I’ <’ J', there is a chain of (r — 1)-subsets
I'=Iy <1} < ... <" I,=J such that |I[; NI}, | =7 —2 and I; C [n]. For each of the I there
is a corresponding set I; of o such that (I;) i)\ (jus)= Ij- Now clearly I; < I;y1 for all 4 which
implies the statement. O

Since for each two of the four prescribed (r — 1)-subsets I3, Io, I3, I the order of the elements is
the same, we study the comparability between them in oy ax-

Lemma 3.7.4. Fori < j, it holds I; < I; in the partial order < corresponding to omax.-

Proof. By the Lemma 3.7.3 it is enough to show that the two (r — 1)-subsets I = (1,...,r—1)
and Iy = (r,...,2(r — 1)) are comparable concerning the signotope of rank r on n = 2(r — 1)
elements. Since the sign of all r-subsets X = (i,...,i+7) is +, it is X{ < X! which shows that
(4y...;i+r—1)<(i+1,...;i+7r) foralli=1,...,r— 1. With the transitivity of <, the claim
follows. O

In the next step, we study the comparability of the (r — 1)-subsets in the rotations. For every

rotation k let Ii(k) denote the k-th rotation of I;, i.e., Il-(k) = (Ii>rot(k)- Moreover, let <) be the
partial order corresponding to the k-th rotation o4 ) of 0. We investigate for which rotation

k the (r — 1)-subsets Ii(k) and Ij(k) are comparable.

Lemma 3.7.5. Let I; = (z1,...,2,—1) and I; = (y1,...,Yr—1) with x,—1 < y1. The two disjoint
(k) (k)

(r —1)-subsets Ii(k) and I](k) are comparable if :cgk),xQ or yil are the smallest elements in the

k-th rotation among the elements Ii(k) U I](k) = {:vgk), o a y%k), e ,yﬁli)l}.

y Mpr—19
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Proof. We consider the three cases separately. We restrict to the first n rotations since after-
wards everything is the same except that all signs might be reversed which does not affect the

comparability. If xgk) is the smallest element, we have

(k)

r—1

(k)

A N A T

In this case the statement follows from Lemma 3.7.4. In the next case, we assume xék) is the
smallest element. Hence the ordering of the considered elements is

(k) (k)

(k) ) ) <),

Ty <...<zZ 41 <Y <y
Since we only consider r-subset of the considered 2(r — 1) elements by Lemma 3.7.3, the

(k)

only signs which are — are the ones of the r-subsets containing x;"’. Considering the set
(k) (k) (k) (k))

(g sz 1,y oy ) whose sign is — in oy4¢(g)- It holds

k k k k k k k
(25", 2t <oy @)
All remaining signs which we considered in the proof of Lemma 3.7.4 are still + and hence it
holds
k k k k k
This completes the second part of the lemma. Hence it remains to consider the last ordering of
elements in which we have

yﬁk_)l <2 <. <2 <y << yﬁk_)Q.

(k)

- Hence we have

In this case all signs are — except the ones of the r-subsets containing y

Trot(k) (mék), e ,x@l,ygk), . ,yéli)l) = —forall{=1,...,r — 2 which implies
(gt 2 = @D,
Moreover it is Urot(k)(yik_)l, xq(nk_)l, ygk), e yffi)Q) = + which implies
W01, < @ ).
Combining the relations, the claim follows. O

We are now ready to prove Proposition 3.7.1. We will first consider the case r = 3 with the
prescribed sets I, I, I3 to show the moreover part and then show that the choice of Iy, Is, I3, I4
implies the not 4-extendability for general rank. The remaining part for » = 5 uses a different
choice of prescribed fliples which we give in the end.

Proof of Proposition 3.7.1. In the case r = 3, we consider the three pairs I} = (1,2), Iy = (3,4)
and I3 = (5,6). By the previous Lemma 3.7.5 Ifk) and IQ(k) are comparable in the signotope
after k = 0,1,3,4,5 rotations. Hence the only possible rotation in which they might be in-
comparable is 0,4(2). Furthermore Lemma 3.7.5 shows that Iék) and I?Ek) are comparable for
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k=0,1,2,3,5. Hence they cannot be incomparable after 2 rotations. This shows the moreover
part of Proposition 3.7.1.

For odd rank r > 5, we show that I%k), Iék), Iék), and [ ik) cannot be incomparable at the
same rotation k. By Lemma 3.7.5 the two sets Il(k), Iz(k) are comparable if either one of the
two smallest of I7 or the largest of I» are the first element in the rotation. Hence they can
only be incomparable for k € {2,...,2r — 4}. However I:,Ek) and [ ik) are comparable for all
k €{2,...,2r—4} since in this case we still have the smallest one of I3 as a first element. Hence

they cannot be incomparable at the same time.

To show that oyax of rank 5 is not 3-extendable, we consider the disjoint 4-subsets I = (1, 3,4, 5),
J =1(2,10,11,12), K = (6,7,8,9). Since all elements from I are smaller than the one from K,
Lemma 3.7.5 implies that they are comparable for rotation £ =0,1,2,8,9,10, 11.

Kiot(k) and Jyoq (1) are comparable for rotation k = 2,3,4,5,6,7,11. Hence the three subsets are

not pairwise incomparable in the same rotation. For k = 2 this is because
Jrot(2) = (87 9,10, 12) '<rot(2) (57 9,10, 12) =rot(2) (4a 92,9, 12) ‘<r0t(2) (4a 5,7, 12) =rot(2) (4a 2,6, 7)
= Hrot(2)

All of the relations hold since the r-subset of the union of two consecutive (r—1)-subsets contains
the 12 which is the only element rotated and hence the sign is — in o,4¢(2). The same chain but
shifted holds for rotation k = 3,4,5,6. For kK = 7, the chain

Jrot(?) = (37 4,5, 7) '<rot(7) (27 3,9, 7) '<rot(7) (27 3,9, 12) '<r0t(7) (17 2,3, 12) "<rot(7) (17 2,11, 12)
- Krot(7)

and for k¥ = 11 the chain

‘]rot(ll) = (17 37 ]-]-7 12) —<r0t(11) (17 97 117 12) —<r0t(11) (97 107 1]-7 ]-2)
'<r0t(11) (8a 9,10, 12) '<r0t(11) (77 8,9, 10) - Krot(ll)

witnesses the comparability. O






CHAPTER 4

Classic Theorems from Convex
Geometry in Simple Drawings

In this chapter, we discuss classic theorems from convex geometry such as Kirchberger’s, Helly’s,
and Carathéodory’s theorem and variants of the Erdds-Szekeres theorem in terms of the con-
vexity hierarchy of simple drawings, which was developed by Arroyo, McQuillan, Richter, and
Salazar [AMRS22]. For the definition of the layers, see Section 2.6. In particular we make
use of the combinatorial structure of generalized signotopes as introduced in Section 2.4 which
describe combinatorially the triangle orientations of simple drawings in the plane. The classic
version of the theorems we consider in this chapter are originally in the setting of point sets in
the plane or more generally in R?. When considering point sets in general position, connecting
the points via straight-line segments yields a geometric drawing of the K,,. Hence the classic
versions of the theorems for the plane imply a result for geometric drawings of the K,,. Moreover,
generalizations of the classic theorems have been proven by Goodman and Pollack [GP82] who
dualized the original statements and proved Radon’s, Kirchberger’s, Helly’s and Carathéodory’s
Theorem for arrangements of pseudolines. As mentioned in their paper (cf. [GP82, Remark
5.2]) all statements can be formulated in terms of allowable sequences and hence transfer to
pseudoconfiguration of points. By restricting the pseudolines to the segments of the curves be-
tween the two points, the results transfer to pseudolinear drawings. Recently, Keszegh [Kes23]
developed a theory of pseudoconvex sets in the plane based on hypergraphs, which again turns
out to be equivalent to rank 3 oriented matroids. He gives alternatives proofs for the mentioned
theorems and discussed Helly’s theorem in more detail.

Outline This chapter is mostly based on [BFS*23b] and its conference version [BFST20].
The results are joint work with Stefan Felsner, Manfred Scheucher, Felix Schroder and Raphael
Steiner. Section 4.4 is based on [BSS23b] and further unpublished joint work with Joachim
Orthaber, Manfred Scheucher and Felix Schroder.

In Section 4.1, we use the structure of generalized signotopes to prove a version of Kirch-
berger’s theorem for simple drawings in the plane. Section 4.2 deals with a generalization of
Carathéodory’s theorem to simple drawings and in Section 4.3, we present a family of simple
drawings with arbitrarily large Helly number. In Section 4.4, we consider a variant of the classic
Erdés-Szekeres theorem concerning empty k-gons, so called k-holes. The existence of holes of
size k < 6 is known for points sets in the plane. Moreover, there are arbitrarily large points sets
without 7-holes. For simple drawings, so far only empty triangles, i.e., 3-holes, have been stud-
ied. We generalize the notion of k-holes for simple drawings in the plane and discuss variants of
the definition. In particular, we present arbitrarily large simple drawings without 4-holes and
show that 6-holes exist in convex drawings.
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4.1 Kirchberger’s Theorem

Two closed sets A, B C R? are called separable if there exists a hyperplane H separating them,
ie., AC Hy and B C H_ with Hy, H_ being the two closed half-spaces defined by H. It is
well-known that, if two non-empty compact sets A, B are separable, then they can be separated
by a hyperplane H containing points of A and B. Kirchberger’s theorem [Kir03] asserts that
two finite point sets A, B C R? are separable if and only if for every C C AU B with |C| = d+2,
CN A and C N B are separable.

As mentioned above, Goodman and Pollack (cf. Theorem 4.8 and Remark 5.2 in [GP82]) proved
Kirchberger’s theorem for arrangements of pseudolines, which transfers to pseudolinear drawings
of K,,. A version of Kirchberger’s theorem for Complexes of oriented matroids has been shown
in [HKK23].

The 2-dimensional version of Kirchberger’s theorem can be formulated in terms of triple orien-
tations which indicate whether a point lies on the right or left side of a chosen line. Note that
for this we assign an orientation to the line and moreover, we assume that the point set is in
general position as otherwise there could be a third point on a line. We show a generalization
for simple drawings using the triangle orientations, which are encoded in generalized signotopes.
For a generalized signotope v on n elements, two sets A, B C [n] are separable if there exist
i,7 € AU B such that v(i,j,z) = + for all z € A\ {i,7} and (i, j,2) = — for all z € B\ {3, j}.
In this case we say that ij separates A from B and write v(i,j, A) = + and ~(i,j5,B) = —.
Moreover, if we can find i € A and j € B, we say that A and B are strongly separable.

Theorem 4.1.1 (Kirchberger for Generalized Signotopes). Let v : [n]s — {+,—} be a general-
ized signotope, and let A, B C [n] be two non-empty sets. If for every C C AU B with |C| = 4,
the sets ANC and BN C are separable, then A and B are strongly separable.

Since every simple drawing yields a generalized signotope (cf. Proposition 2.4.2), Theorem 4.1.1
implies Kirchberger’s theorem for simple drawings of the complete graphs. In terms of simple
drawings separability means that there exists an edge ¢j such that all triangles induced by ¢, j, a
for a € A are oriented counterclockwise if the vertices appear in this particular order and all
triangles induced by i, j,b for b € B are oriented clockwise.

Corollary 4.1.2 (Kirchberger for Simple Drawings). Let D be a simple drawing of the K, in
the plane whose vertices are partitioned into A and B. If for every C C AU B with |C| = 4, the
verter sets ANC and BN C are separable, then there exist two vertices a € A and b € B such
that the edge ab separates A from B.

By the following lemma the roles of A and B are interchangeable even in the strong separating
context.

Lemma 4.1.3. Let v be a generalized signotope on n elements partitioned into A and B. If
there is a strong separator ab with a € A and b € B separating A from B, then ba strongly
separates B from A.

Proof. A strong separator ab fulfills v(a,b,A) = + and v(a,b,B) = —. In this case it is
v(b,a, B) = + and (b, a, A) = — showing that ba is a strong separator separating B from A. [J

On 4-tuples separability is the same as strong separability. This shows that we can assume that
all 4-tuples are strongly separable.
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Lemma 4.1.4. Let v : [4]3 — {+, —} be a generalized signotope with [4] = AU B a partition
into two non-empty sets A and B. Then A and B are separable if and only if they are strongly
separable.

Proof. Clearly if A and B are strongly separable, they are separable. For the reverse direction
we assume that |A| < |B|. Otherwise exchange the roles of A and B which is possible by
Lemma 4.1.3. Assume A and B are separable. Table 4.1 and 4.2 show that in all separable gen-
eralized signotopes on {a, by, bs, b3} and {a1,a2,b1,ba}, respectively, there is a strong separator
of the sets {a} and {b1,b2,b3} or {a1,as} and {by, by}, respectively. O

4.1.1 Reverse Direction

In the classic version of Kirchberger’s theorem for point sets in R?, the converse statement of
Theorem 4.1.1 is trivially true. A separating hyperplane for the point set separates all subsets.
However, in the setting of generalized signotopes the reverse direction is no longer true. A
separating pair 75 for A, B is not necessarily contained in a 4-element subset C C AU B. In
Figure 4.1(b), we provide a generalized signotope on 6 elements with a separator for a fixed
partition into A = {1,2} and B = {3,4,5,6}. However for the subset C' = {2,4,5,6} the two
sets ANC = {2} and BNC = {4,5,6} are not separable. Moreover, this generalized signotopes
comes from a simple drawing, which is drawn in Figure 4.1(a). The edge marked bold separates
the blue from the red vertices. However, the subdrawing of the K, marked with dashed edges
has no separator.

~v(4,5,6) + ~v(1,5,6) = —
v(3,5,6) = — ~v(1,4,6) = —
v(3,4,6) = — v(1,4,5) = —
~v(3,4,5) — ~v(1,3,6) = —
v(2,5,6) = — v(1,3,5) = —
v(2,4,6) = -— ~v(1,3,4) = —
v(2,4,5) = + v(1,2,6) = —
v(2,3,6) = — ~(1,2,5) = —
v(2,3,5) = -— v(1,2,4) = —
v(2,3,4) = + v(1,2,3) = —

(a) (b)

Figure 4.1: (a) Simple drawing showing that the reverse direction of Kirchberger is not true. The bold
edge is a separator for the drawing on all 6 vertices. However, the subdrawing of the Ky
marked with the dashed edges has no separator. The vertices of A are marked red and the
vertices of B blue. (b) Orientations of the drawing yielding the generalized signotope ~.
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v(b1,b2,b3) ~y(a,ba,b3) ~(a,bi,bs) ~(a,by,bs) | list of separators
L@),, bla, b1b3

(Iibg, bla, blbg, bgbg
L@, bla, blbg, b3b2
LbQ, bla, b1b2

(no separator)
Llh, bga, b3b2

LbQ, blbg, bga, bgbl
+ - abs, bibs, baa, baby
+ - L&;, bga, beg

+ - (no separator)

— — Lbb bga, b2b1

— — LZM, bza,bgbg,bgbl
+ - — - Lbb bab1, bza, b3bsy
— — — — LZH, bga, b3bl

2

+
+ +
i

-

Table 4.1: Separators for generalized signotopes on {a, by, bo, bs}. Strong separators are underlined.

v(az,b1,b2) ~y(a1,b1,b2) ~y(ai1,a2,b2) ~y(ai,a2,b1) |list of separators

+ + + + asaq, azbs, biai, bibs
- + + + asai, azbi, bra;

+ - + + agal,@, b2a1

- - + + asazy, agby, baay, baby
+ + - + alib% blal, ble

+ - - + (no separator)

— - — + azby, boag, baby

+ + + — agby, biaz, biby

- + + - (no separator)

- - + - m, bzal, b2b1

+ + - - a1a2,a17bg, bl(lg,blbz
- + - - 0,1(12,(1,17[)27 b2a2

+ - - - ajaz,aibi, biaz

- - - - araz, aiby, baas, baby

Table 4.2: Separators for generalized signotopes on {a1, as, b1, ba}. Strong separators are underlined.
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4.1.2 Proof in Point Sets

In order to make the proof of Theorem 4.1.1 more accessible we first discuss the proof idea which
is based on induction in the geometric setting and analyze which of the given structures already
help us in the more abstract setting of generalized signotopes. This already covers some parts of
the proof. However, we give a full proof for Theorem 4.1.1 using only the notion of generalized
signotopes in Section 4.1.3.

Let P be a point set in general position, whose points are partitioned into A and B. For the
illustration we assume that the points of A are colored red and the points of B are colored blue.
A separating line in the plane for the geometric setting is a line [ such that all points from A
are in one half-plane spanned by [ and the points of B in the other half-plane. The definition
of a strong separation of generalized signotopes in the setting of point sets is a separating line [
spanned by one point of A and one point of B. Clearly a set of points in general position has
a separating line if and only if there exists a line containing a point of A and a point of B.
Further we give the separating line a direction and show that there is a line spanned by a point
a € A and a point b € B such that all other points of A are on the left side of the line when
orienting the line from a to b. This oriented line is denoted by %. If c% is a separator, A is on
the left-hand side of c% and B is on right-hand side of %. Note that if x is right of % then the
triangle a, b, x is oriented clockwise and hence a is right of bx and b is right of Ta.

Throughout the proof we assume that all 4-element subsets are separable. Without loss of
generality we assume that |A| < |B|. We prove the statement using induction on the size of the
set A.

’}/(CL, b7 BI) = -
v(a;0,0") = +
Y(a,b"0) = +
’//.". aab>b*7b,: ++ -+
" .

no separator

Figure 4.2: Illustration of the proof in the geometric setting, with only one red vertex, together with
the implied orientations.

For the induction base, let A consists of exactly one point a. For every b € B, let N(b) be the
number of points b’ € B which are on the right-hand side of the %. Let b € B be a point which
maximizes the value N(b). Let B’ be the set of points right of % including b itself. Assume {a}
is not separable from B. Then B’ C B and hence there is b* € B\ B’ which is left of ab. 1f all

%
elements of B’, which are on the right-hand side of the line %, are on the right-hand side of ab®,
then N(b*) > N(b) + 1. A contradiction to the maximality assumption of N(b). Hence there

is a vertex b’ € B’ which j on the_> right-hand side of ab but on the left-hand side of ab*. This

implies that a is left of b*0' and b'b. Moreover, b* is left of % and hence a is left of b—b’Z . This
implies that a is in the convex hull of b, ¥’, b*. This is a contradiction to the assumption that all
4-tuples are separable. For an illustration see Figure 4.2.
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Since the point set is in general position, it holds:
» For every a € A there is exactly one b = b(a) € B such that (% separates {a} from B.

In the above proof, we only used the triple orientations and hence the result transfers to gener-
alized signotopes. The summary of the triple orientations is given in Figure 4.2. By assumption
all points of B’ are right of ab. For all elements b’ of B’ the triple a, b, V' is oriented clockwise, i.e.,
v(a,b, B") = —. Furthermore there is a vertex b* € B\ B’ with y(a, b, b*) = +, otherwise, we are
done. By the choice of b, we assumed that there exists b’ € B’ such that v(a, b*,b') = +. This
shows that the sign sequence induced by the four element subset {a, b, b*,0'} is 7+—+. Here “?”
denotes that the triple orientation is not known. By the properties of a generalized signotope
it is (b, b*,b') = + to avoid the alternating sign pattern. Hence the considered subset has no
separator, see Table 4.1. This shows that the induction base works analogously for generalized
signotopes.

For the induction step, assume that |A| > 2 and every set of |A| — 1 points is separable from B.
Let A’ = A\{a*} be a subset of A with |A| —1 points. By induction hypothesis, there are points
a € A" and b € B such that all elements from A’ are left of % and all elements from B are right
of ab.

If a* is left of %, the line % is the separator. Assume that a* is right of %. Then there is a
unique b* = b(a*) such that a*b* separates separates {a*} from B. We consider the following
three cases:

(i) Assume b* = b. In this case a is left of a*b and all elements from B are on the right-hand
side. If all elements from A are left of cﬁ, we have a separator. Otherwise there is a vertex
a’ which is left of % but right of cﬁ. See Figure 4.3 for an illustration. In this case b is
in the convex hull of a, a*, @’ which is a contradiction to the assumption that all 4-element
subsets are separable.

(ii) Assume b* # b and a is right of (W . Then the four points a, b, a*,b* are not separable.
Since there is exactly one possibility to separate a single element from A from a subset
of B, the only possible separators of the subset {a,a*,b,b*} are ab and a*b*. By the
assumption they do not separate. A contradiction to the assumption. For an illustration,
see Figure 4.4.

(iii) Assume b* # b and a is left of @b, If all points of A’ are left of ab and left of a*b%, the
separator line is a*b*. Otherwise there is a vertex a’ € A’ which is left of % and right of
W , see Figure 4.5. The fact that a’ is left of the line % and right of the line m implies
that the line-segment from a* to the crossing of the two lines is contained in the convex
hull of a,a*,a’. Since B* is right of ab, the point b* is on this line segment. Hence b* is in
the convex hull of a,a*,a’. Again a contradiction.

As in the induction base, we check whether the triple orientation given through our assumptions
in the three different cases are sufficient to prove Kirchberger’s theorem for generalized signo-
topes. Note that all triple orientations are summarized next to the corresponding figures. For
all three cases we have the following signs. Since ab separates A’ from B, it holds v(a, b, B) = —
and 7y(a,b, A") = +. Furthermore if a* is left of %, i.e., v(a,b,a*) = +, we have a separator,
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a,a*,a’,b: +—++
no separator

Figure 4.3: Ilustration of case (i), where b = b* in the geometric version of the induction step. In this
case b* = b with the given orientations. In the depicted case there is no separator of the
four points since b is in the convex hull of a, a*, and a’.

a,a*,b,b* : +—+
no separator

Figure 4.4: Tlustration of second case (ii) of the geometric version together with the given orientations.

We assume b* # b and a is right of a*b*. In this case there is no separator of the four
depicted elements as the convex hull of a and a* intersects the convex hull of b and b*.

2
o
=2
=
Il
+

o
S
s}

*
~—
I
|
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*
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\.*
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a,a*,a’,b: +747

Figure 4.5: Case (iii) of the geometric version of the proof. It is b* # b and a is left of W . The only
case where we have no separator is the case depicted above. In this case b* is in the convex
hull of a, a*, and a’. In this case, there could be still a separator in the setting of generalized
signotopes.
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and hence we only consider the case y(a,b,a*) = —. For the three cases, we get the following
additional conditions.

(i)

(iii)

If b = b*, by definition it holds y(a*, b, B) = —. In the non-trivial case there is a vertex a’
with v(a*,b,a’) = —. This shows that the packet consisting of a,a*,a’,b has the sign
sequence +—+7?. To avoid +—+—, it is y(a,a*,d’) = +. However this 4-element subset
has no separator, see Table 4.1.

b

and hence y(a*,b*, B) = —. Furthermore, we assume that a is to the right of a*b*, which
gives the triple orientation (a*,b*,a) = —. The four element subset {a,a*,b,b*} has the
sign sequence +——+. Using Table 4.2, we see that this packet has no separator.

For the second case, it is b # b* and by definition all elements from B are right of

As in the previous case, we assume b* # b and v(a*, b*, B) = —. Moreover, the point a is
to the left of a*b*, which gives v(a*,b*,a) = +. In the non-trivial case, there is an o’ € A’
which is right of a*b*. This translates into the sign v(a*,b*,a’) = —. As suggested in the

proof of the geometric setting, we look at the 4 elements a,a*,a’,b* whose sign sequence
is +747.

In contrast to the geometric case,there is not enough information to show that this four
element subset is not separable. In a simple drawing of this subconfiguration, the edge aa’
could be drawn differently, see Figure 4.6. In this case, the four elements have a separator
which is a’b* marked with a fat line.

a

N

Figure 4.6: Illustration of a possible drawing where y(a*,b*,a) = + and y(a*,b*,a’) = —. However in

contrast to the geometric setting (see Figure 4.5), where b* is in the convex hull of a, a*, d/,
the edge a’b* is a separator for this 4-element subset.

4.1.3 Proof of Kirchberger’s Theorem for Generalized Signotopes

(Theorem 4.1.1)

By Lemma 4.1.4, we assume that all 4-tuples from A U B are strongly separable. Moreover, by
symmetry we assume |A| < |B|. First we consider the cases |A| = 1,2, 3 individually and then
the case |A| > 4.
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Let A = {a}, let B’ be a maximal subset of B such that B’ is strongly separated from {a}, and
let b € B’ be such that «y(a,b, B') = —. Suppose that B’ # B, then there is a b* € B\ B’ with

v(a,b,b*) = +. (4.1)

By maximality of B’ we cannot use the pair a,b* for a strong separation of {a} and B’ U {b*}.
Hence, for some V' € B’:

y(a,b*,b') = +. (4.2)

Since 7 is alternating (4.1) and (4.2) together imply b’ # b. Since ¥’ € B’ we have v(a,b,b') = —.
From this together with (4.1), (4.2), and Table 4.1 it follows that the four-element set {a, b, V', b*}
has no separator. This is a contradiction, hence B’ = B.

As a consequence we obtain:

» Every one-element set {a} with a € A can be strongly separated from B. Since 7 is
alternating there is a unique b(a) € B such that v(a,b(a), B) = —.

Now consider the case A = {aj,a2}. Let b; = b(a;), ie., y(a;,b;, B) = — for i = 1,2. If
v(a1,b1,a2) = + or if vy(ag,b2,a1) = +, then a1b; or asbe, respectively, is a strong separator
for A and B. Therefore, we may assume that it holds (a1, b1,a2) = —, and y(az, b, a1) = —.

By the alternating property, it is by # bs. We get the sequence +——+ for the four-element set
{a1,a9,b1,b2} which has no strong separator (cf. Table 4.2), a contradiction.

Let A = {a1,a2,a3}. Suppose that A is not separable from B. For i = 1,2, 3, let b; = b(a;), i.e.,
v(a;,bi, B) = —. For i,j € {1,2,3}, i # j we define s;; = vy(a;, b;,a;). Moreover, if s;; = + for
some ¢ and all j # 4, then a;b; separates A from B. Hence, for each ¢ there exists j # i with
Sij = —

If s;j = sj; = — for some i, j, then since 7 is alternating b; # b; and the packet a;,a;,b;,b;
corresponds to the sign sequence +——+ in Table 4.2. Hence there is no strong separator and
at least one of s;; and s;; is +.

These two conditions imply that we can relabel the elements of A such that sjo = s93 = s31 = +

and s13 = s21 = s32 = —. Suppose that b; = b; = b for 4,5 € {1,2,3} with i # j. Since
b € {b1,ba} it is y(b,a1,a2) = v(az,be,a1) = — or v(b,a1,a2) = — - y(a1,b1,a2) = —. Similar,
we get (b, a1,a3) = + and (b, az,a3) = — which yields the sign pattern ?—+— for the packet

b,a1,as,as. Avoiding the alternating sign pattern, we get ———+—. Table 4.1 shows there is no
strong separator. This contradiction shows that by, bo, b3 must be pairwise distinct.

From s3» = — and s31 = + we find that b3, a1, as, a3 corresponds to a row of type 7—+7 in
Table 4.1. Since every 4-element subset has a separator by assumption, we conclude that the
strong separator of {b3, a1, a2, as} is asbs. In both cases, it holds

7(b37a17a2) = +. (43)

Now consider {a1, az,b1,bs}. From s13 = +, equation (4.3), and 7y(a1, b1, b3) = — we obtain the
pattern 7—+—. Since +—-+— is forbidden we obtain

v(az,b1,b3) = —. (4.4)
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The set {a2, as, b1, b3} needs a strong separator. The candidate pair asb; is made impossible by

~v(as,b1,b3) = +, asbs is made impossible by s32 = —, and agbs is made impossible by (4.4).
Hence agb; is the strong separator and, in particular, it holds
v(az, b1, a3) = +. (4.5)

But now the set {a1, a2, a3, b;} has no strong separator. The candidate pair a;b; is impossible
because of s13 = —, asb; does not separate because s12 = +, and (4.5) shows that agb; cannot
separate the set. This contradiction proves the case |A| = 3.

For the remaining case |A| > 4 consider a counterexample (v, A, B) minimizing the size of the
smaller of the two sets. We have 4 < |A| < |B|.

Let a* € A. By minimality A’ = A\{a*} is separable from B. Let a € A" and b € B such that
v(a,b, A’) = + and 7(a,b, B) = —. Hence

v(a,b,a*) = —. (4.6)
Let b* = b(a*), i.e., v(a*,b*, B) = —. There is some a’ € A’ such that

y(a*,b*,a") = —. (4.7)
Assume a’ = a, then b # b* because of (4.6) and (4.7). From (4.6), (4.7), v(a,b, B) = —, and
~v(a*,b*, B) = — it follows that the four-element set {a,a*,b,b*} has the sign pattern +——+,

hence there is no separator, see Table 4.2. This shows that o’ # a.

Let b’ =b(a’). If b # b’ we look at the four elements {a, b, da’,b'}. The packet corresponds to the
sign sequence —?—+ so that we can conclude y(a,a’,b") = — to avoid the forbidden pattern. If
b=1"V then a’ € A’ implies v(a,b,a’) = + which yields vy(d’,¥’,a) = v(d’,b,a) = —.

Hence, regardless whether b = b or b # b’ we have

y(d' b a) = — . (4.8)

Since |A| > 4, we know by the minimality of the instance (v, A, B) that the set {a,b,d,
b',a*,b*}, which has 3 elements of A and at least 1 element of B, is separable. It follows
from y(a,b, B) = vy(d’, b/, B) = v(a*,b*, B) = — that the only possible strong separators are ab,
a't’,; and a*b*. They, however, do not separate because of (4.6), (4.7) and (4.8) respectively.
This contradiction shows that there is no counterexample and Kirchberger’s theorem holds in
the setting of generalized signotopes.

4.2 Carathéodory’s Theorem

Carathéodory’s theorem asserts that, if a point z lies in the convex hull of a point set P in R¢,
then z lies in the convex hull of at most d + 1 points of P.

As already mentioned in the beginning of this chapter, Goodman and Pollack [GP82] proved
a dual of Carathéodory’s theorem, which transfers to pseudolinear drawings. A more general
version in the plane is due to Balko, Fulek, and Kynél [BFK15, Lemma 4.7], who provided
a proof of Carathéodory’s theorem for simple drawings of K,. In this section, we present a
shorter proof for their theorem. Recently Aichholzer, Chiu, Hoang, Hoffmann, Kyn¢l, Maus,
Vogtenhuber and Weinberger [ACH" 23| showed that our proof generalizes to simple drawings
of complete multipartite graphs.
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Theorem 4.2.1 (Carathéodory for Simple Drawings). Let D be a simple drawing of K, in the
plane and let x € R? be a point contained in a bounded connected component of R? — D. Then
there is a triangle in D that contains x in the bounded side.

Note that, in the classic version of Carathéodory’s theorem for points in R?, the case |A| = 1 of
Kirchberger’s theorem implies Carathéodory’s theorem, and vice versa. This is not true for the
generalized versions. The vertex 1 in Figure 4.7 is in the triangle spanned by 2, 3,4. However,
partitioning the four vertices into A = {1} and B = {2,3,4} gives a separating pair (1,2)
because the triples (1,2,3) and (1,2,4) are oriented the same way.

4 3

Figure 4.7: Example that Kirchberger’s theorem with one red point does not imply Carathéodory’s
theorem for simple drawings. The vertex 1 is in region bounded by the blue triangle.
However, there is still an edge separating the blue from the red vertices.

Proof. Suppose towards a contradiction that there is a pair (D, z) consisting of a simple drawing
D of K,, and a point z in a bounded cell of the drawing, violating the claim. We choose D minimal
with respect to the number of vertices n.

Let a be a vertex of the drawing. If we remove all incident edges of a from D, then, by minimality
of the example, x becomes a point of the outer cell. Therefore, if we remove the incident edges
of a one by one, we find a last subdrawing D’ such that x is still in a bounded cell. Let ab be an
edge such that in the drawing D’ — ab the point z is in the outer cell. Hence there is a simple
curve P connecting x to infinity, which does not cross any of the edges in D’ — ab. By the choice
of D', the curve P has at least one crossing with the edge ab. We choose P minimal with respect
to the number of crossings with ab.

Claim 4.1. P intersects ab exactly once.

Proof. Suppose that P crosses ab more than once. Then there is a lense C formed by P and ab,
that is, two crossings of P and ab such that the simple closed curve dC, composed of a connected
subcurve P; of P and a part P, of the edge ab between the crossings, encloses a simply connected
region C, see Figure 4.8(a).

Now consider the simple curve P’ from x to infinity which is obtained from P by replacing the
subcurve P; by a curve Pj which is a close copy of P» in the sense that it has the same crossing
pattern with all edges in D and the same simple properties, but is disjoint from ab. As P was
chosen minimal with respect to the number of crossings with ab, there has to be an edge e of
the drawing D’ that intersects Pj and by the choice of Pj also P». By construction, this edge
e has no crossing with P and crosses ab at most once. Hence one of its endpoints is inside the
lense C' and one outside C. If b € C, we choose ¢; to be the endpoint of e which is not in C and
if b ¢ C, we choose the endpoint of e which is in C. Hence the edge bcy in D’ intersects 0C. But
since they are adjacent, bc; cannot intersect ab and by the choice of P it does not intersect P.
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(b)

Figure 4.8: (a) and (b) give an illustration of the proof of Theor