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Abstract

In this thesis we investigate sign mappings, which for a fixed rank r map subsets of {1, . . . , n}
of size r to one of the two signs + and −, while avoiding sign patterns on induced substruc-
tures. Particular focus will be on signotopes and generalized signotopes which originate from
pseudohyperplane arrangements and simple drawings. Using those combinatorial encodings for
topological objects, we prove classic results in a more general setting.

We consider Levi’s extension lemma for pseudoline arrangements and prove that it general-
izes to signotopes of odd rank r. Levi showed in 1926 that every pseudoline arrangement can
be extended by an additional pseudoline going through two prescribed points. A generaliza-
tion to dimension 3 fails as Goodman and Pollack (1981) provided an example of pseudoplane
arrangements and three prescribed points which is not extendable even though for hyperplane ar-
rangements an extension through d points in dimension d is trivial. Later Richter-Gebert (1993)
showed that even an extension through two prescribed points is not possible in dimension 3.
We show that signotopes, a subclass of pseudohyperplane arrangements, admit an extension
theorem for all even dimensions, that is if the rank r is odd. Moreover, we provide signotopes
which are not extendable for rank 4, 6, 8, 10 and 12.

Next, we focus on theorems from convex geometry such as Carathéodory’s, Helly’s and Kirch-
berger’s theorem and study them in the more general setting of simple drawings of the complete
graph. In particular we determine in which layer of the convexity hierarchy introduced by Arroyo
et al. (2022) the statements hold, and in which layer there are counterexamples. The convexity
hierarchy describes several layers between point sets in the plane and simple drawings using a
generalized notion of convexity. For the proof of Kirchberger’s theorem generalized signotopes,
which encode the triangle orientations of simple drawings in the plane, played an essential role.
Additionally to the mentioned theorems we introduce the notion of holes in the setting of simple
drawings, which are classically considered in point sets. We show that convex drawings behave
similarly to point sets in the sense that every sufficiently large convex drawing contains a 6-hole
while there are arbitrarily large drawings without 7-holes.

Moreover, we show that Rafla’s conjecture (1988) is true for convex drawings. The conjecture
states that every simple drawing of the complete graph admits a plane Hamiltonian cycle. The

best known partial results are plane paths of length Ω
(

log(n)
log log(n)

)
(Suk, Zeng and Aichholzer et

al. 2022) and plane matchings of size Ω(
√
n) (Aichholzer et al. 2022). We investigate several

variations and strengthenings of this conjecture. In particular we prove that every convex
drawing admits a plane substructure consisting of a plane Hamiltonian cycle and additional
n− 2 additional edges.
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4.2.1 Colorful Carathéodory Theorem . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Helly’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Colorful Helly’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Holes in Convex Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.1 Simple Drawings without a 4-Hole . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Holes in Convex Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 Generalized Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 More Classic Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.1 Radon’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.2 Tverberg and related Theorems . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.3 (p, q)-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Plane Hamiltonian Subgraphs in Convex Drawings 111
5.1 SAT Encoding for Rotation Systems . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Plane Hamiltonian Substructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Extending Hamiltonian Cycles . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2 Hamiltonian Paths with a prescribed Edge . . . . . . . . . . . . . . . . . 117
5.2.3 Hamiltonian Cycles avoiding a Matching . . . . . . . . . . . . . . . . . . . 118
5.2.4 Uncrossed Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Plane Hamiltonian Cycles in Convex Drawings (Proof of Theorem 5.2.2) . . . . . 120
5.4 A second Proof of Lemma 5.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Asymptotic Number and Fliples 139
6.1 Asymptotic Number of Signotopes . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.1 Proof of the upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1.2 Proof of the lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Fliples in Signotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Counting Generalized Signotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Upper Bound for g(n): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.2 Lower Bound for g(n): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Generalized Signotopes and Simple Drawings . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Flip-equivalent Generalized Signotopes . . . . . . . . . . . . . . . . . . . . 148
6.4.2 Small Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Conclusion and Open Problems 153

References 157

Zusammenfassung 168



Chapter 1

Introduction

The main structures considered in this thesis are pseudohyperplane arrangements and simple
drawings together with their combinatorial description through sign mappings. A sign mapping
is a function σ :

(
[n]
r

)
→ {+,−} which maps a sign to every r-element subset of a ground set

[n] = {1, . . . , n} such that particular sign patterns do not occur on induced substructures. The
parameter r is called the rank and n is the number of elements. More specifically we look at
so called (r+ 1)-packets which are sign sequences consisting of r+ 1 signs corresponding to the
signs of all r-element subsets of an (r + 1)-element subset in reversed lexicographic order. For
the precise definition we refer to Chapter 2.
Various structures from combinatorial geometry can be encoded with sign mappings. Besides
the axiomatization of point sets in dimension d in terms of chirotopes, the most prominent
combinatorial structures are permutations. A permutation is uniquely defined by its inversion
set. Moreover, if for three elements a < b < c the pairs {a, b} and {b, c} are inversions, then
{a, c} is an inversion as well. Similarly, if {a, b} and {b, c} are non-inversions, then also {a, c} is
a non-inversion. Assigning “−” to all pairs which are an inversion in the permutation and “+”
to the remaining pairs yields a sign mapping with a monotonicity property on 3-packets: The
sign sequence (σ(b, c) σ(a, c) σ(a, b)) of a 3-element subset {a, b, c} with a < b < c is not equal
to the sign patterns +−+ and −+−, i.e., is monotone in the sense that there is at most one sign
change. It is not hard to see that all sign mappings of rank 2 with n elements avoiding the two
sign patterns +−+ and −+− are permutations on n elements. For example, the permutation
π = 1342 corresponds to the 2-signotope

σ(1, 2) = +, σ(1, 3) = +, σ(1, 4) = +, σ(2, 3) = −, σ(2, 4) = −, σ(3, 4) = +.

Signotopes

A sign mapping of rank r is an r-signotope if in the sign sequence of an (r + 1)-packet, there is
at most one sign change. As we have seen, permutations allow at most one sign change. Hence
they are in bijection with 2-signotopes. As shown by Felsner and Weil [FW01], 3-signotopes are
in bijection with Euclidean pseudoline arrangements with a marked top cell. Rank r-signotopes
in general correspond to certain pseudohyperplane arrangements, which we describe in more
detail in Section 2.2.4. For fixed r and n, we define a partial order on the set of all r-signotopes
on n elements by comparing the preimages of +. For r = 2 this partial order is the weak Bruhat
order of the symmetric group. In general the partial order is related to the higher Bruhat order
which have been introduced by Manin and Schechtman [MS89] and further studied by Kapranov
and Voevodsky [KV91]. The name signotopes was introduced by Felsner and Weil [FW01] to
describe elements from higher Bruhat orders. While Manin and Schechtman used the transitive
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hull of single step inclusion to define an order on those elements, Felsner and Weil used the
inclusion. As shown by Ziegler [Zie93] those two orders do not coincide for r ≥ 4. Both orders
provide a correspondence between (r + 1)-signotopes and maximum chains in the partial order
of r-signotopes.

By the Folkman-Lawrence topological representation theorem [FL78] pseudohyperplane arrange-
ments correspond to the combinatorial structure of oriented matroids. There are several cryp-
tomorphic axiom systems for oriented matroids, each of them generalizing a different structure.
The most important one in the context of this thesis are chirotopes which are rank r sign map-
pings. Oriented matroids have been studied in various contexts. For an overview see the book
“Oriented Matroids” by Björner et al. [BLS+99]. We focus on signotopes which are a rich sub-
class since asymptocically there are 2Θ(nr−1) signotopes and oriented matroids of rank r on n
elements, see Section 6.1. The precise relation between signotopes and oriented matroids is given
in Section 2.2.5. While the existence of simplicial cells in oriented matroids is a famous open
conjecture by Las Vergnas, all signotopes admit at least 2 simplicial cells. Since the signs of
r-element subsets correspond to the orientation of the simplex spanned by those r pseudohyper-
planes, a simplicial cell corresponds to an r-element subset whose sign we can change such that
the new mapping is still a signotope. We call such an r-element subset in a signotope a fliple.
While n− 2 is a known lower bound for the minimal number of fliples in rank 3, which is tight,
we show in Section 6.2 the first linear lower bound of 2n−2

r for general rank. To show this, we
use structural results about signotopes and their corresponding partial order.

Extension Theorem

In his introductory paper to pseudoline arrangements from 1926, Levi [Lev26] showed that
the fundamental property of line arrangements, that an arrangement can be extended by an
additional line through two prescribed points, holds for pseudoline arrangements as well. It
is natural to ask whether this holds in higher dimensions since clearly for proper hyperplane
arrangements d points determine a hyperplane in dimension d. Goodman and Pollack [GP81]
provide an example in dimension 3 and three prescribed points such that there is no extension
with an additional pseudohyperplane which goes through the three prescribed points. Later
Richter-Gebert [Ric93] found an example where even an extension through two prescribed points
in dimension 3 is not possible. Both examples are oriented matroids but not signotopes. We
study the extendability for the subclass of signotopes and show in Chapter 3 that for odd rank,
that is if the dimension is even, there exists an extension through any two prescribed points. The
restriction to the parity of the rank is not just a defect of the proof but for rank r = 4, 6, 8, 10, 12
we provide counterexamples to the extendability through two prescribed points. We expect that
an infinite family of counterexamples exists. Moreover in Chapter 3 we discuss extendability
through t ≥ 3 prescribed points and show that for every rank r there are examples which are
not extendable through four prescribed points.

Generalized Signotopes

For signotopes the monotonicity property allows at most one sign change on each packet. A
natural generalization is to allow more than one sign change. Rank 3 sign mappings with at most
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two sign changes on 4-packets are called generalized signotopes. The only sign pattern which
do not appear in a packet of a generalized signotopes are the two alternating sign sequences
+−+− and −+−+. During the axiomatization of point sets in the plane with predicate logic,
Knuth [Knu92] came across the structure of interior triple system, a generalization of point sets.
As it turns out they correspond to generalized signotopes. In Chapter 6, we show that there
are 2Θ(n3) generalized signotopes. A lower bound with the same asymptotics was already shown
by Knuth. However we improve the multiplicative constant and show an upper bound using
Shearer’s entropy lemma.

Generalized signotopes are not only a generalization of point sets but also a combinatorial
generalization of simple drawings of the complete graph in the plane. In a simple drawing of a
graph in the plane vertices are mapped to distinct points in the plane and edges are drawn as
simple curves connecting the corresponding points such that two edges have at most one point
in common. In this thesis we focus on simple drawings of the complete graph Kn. Tracing the
boundary of a triangle in a simple drawing of Kn gives an orientation which is either clockwise
or counterclockwise. To define a sign mapping on 3-subsets, we associate counterclockwise
with + and clockwise with −. In fact the sign function arising from the triangle orientation
of simple drawing is a generalized signotope, which we discuss in Section 2.4. Since there are

2Θ(n3) generalized signotopes but only 2Õ(n2) [Kyn13] simple drawings, there are generalized
signotopes which do not come from a simple drawing. Here Õ is the soft O-notation which
omits polylogarithmic factors. Details are given in Section 6.4. Even though not all generalized
signotopes come from simple drawings, generalized signotopes turned out to be a useful tool to
prove a separation theorem in the vein of Kirchberger’s theorem for simple drawings.

Classic Theorems from Convex Geometry

Generalized signotopes are the main ingredient for a separation theorem generalizing Kirch-
berger’s theorem to simple drawings. Kirchberger’s theorem is a classic result from convex
geometry which states that every point set in Rd colored with two colors red and blue admits a
hyperplane separating the blue from the red points if and only if every (d + 2)-element subset
admits such a separation. In Section 4.1 we give a proof of Kirchberger’s theorem in the setting
of generalized signotopes. Additionally, we study further classic theorems from convex geometry
in the context of simple drawings. More particularly we provide a fine grained analysis in terms
of the convexity hierarchy which was introduced by Arroyo et al. [AMRS22]. They provide a
hierarchy for simple drawings generalizing the concept of convexity to subdrawings of K3 which
are triangles. The simplest case are geometric drawings which correspond to point sets by con-
necting each pair of points with their a straight-line segment. A triangle in a geometric drawing
is convex in the sense of simple drawings if and only if it is convex in the classic sense. The
convexity hierarchy provides subclasses such as convex, h-convex and f-convex drawings between
geometric drawings and simple drawings. We show that Helly’s theorem does not generalize to
arbitrary simple drawings and present a family of f-convex drawings with arbitrarily large Helly
number. Moreover, we give a new proof of a topological generalization of Carathéodory’s theo-
rem in the plane, which turned out to generalize to complete multipartite graphs, see [ACH+23].

Another classic theorem in the study of point sets is the Erdős-Szekeres theorem which states
that for every k every sufficiently large point set contains a k-gon, i.e., a subset of k points
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in convex position. A variant of the Erdős-Szekeres theorem considers empty k-gons, so called
k-holes. It is known that every sufficiently large point set contains a 6-hole, while there are
arbitrary large point sets without 7-holes. In Section 4.4, we establish the notions of holes in
simple drawings and show that there are arbitrarily large simple drawings without a 4-hole, while
every sufficiently large convex drawing admits a 6-hole. Hence convex drawings are very similar
to geometric point sets when it comes to holes. The key lemma for the existence of 6-holes in
convex drawings is as follows: A k-gon together with its interior vertices is an f-convex drawing.
We expect this lemma to be of independent interest since it provides a tool to generalize results
from pseudolinear drawings to convex drawings.

Plane Hamiltonian Cycles in Convex Drawings

In Chapter 5 we show that Rafla’s conjecture [Raf88] from 1988 holds for convex drawings. It
states that every simple drawing of the complete graph admits a plane Hamiltonian cycle, i.e.,
a Hamiltonian cycle such that each pair of edges of this cycle does not cross. Even though this
conjecture and related substructures attracted the attention of many researchers, so far only
the existence of plane paths of length Ω(log n/ log log n) [AGT+22, SZ22] and plane matchings
of size Ω(

√
n) [AGT+22] are known. Clearly the existence of a plane Hamiltonian cycle would

imply a plane path of length n and a plane matching of size bn2 c. Rafla’s conjecture was tested
for small n with the aid of computer programs. Previously it was known to be true for simple
drawings of the complete graph with at most 9 vertices [ÁAF+15]. We develop a SAT framework
which makes it possible to show that for 10 vertices the conjecture is true as well. Based on
computer experiments on data for small n, we conjecture that even a strengthening of Rafla’s
conjecture holds: Every simple drawing contains a plane Hamiltonian subdrawing on 2n − 3
edges. To prove Rafla’s conjecture for convex drawings we used the SAT framework, especially
in the early stages, to see which substructures might appear and which do not appear. This
made it possible to show that convex drawings provide a layering structure. For each layer we
found a path such that all of them combine to a Hamiltonian cycle.

Outline

In Chapter 2 we give the precise definitions of the mentioned structures and describe relations
between various structures, starting with signotopes. The main result concerning signotopes is
the 2-extendability which we discuss in Chapter 3 and is based on the publication [BFS23a].
Additionally to the results mentioned in [BFS23a], we provide an infinite family of partial
signotopes which cannot be extended and discuss extendability through more than two points.
The classic theorems from convex geometry in the context of simple drawings are investigated
in Chapter 4. For the proof of Kirchberger’s theorem, we use generalized signotopes which are
introduced in Section 2.4. The results presented in the first sections of this chapter are based
on [BFS+23b] and the conference version is [BFS+20]. Section 4.4 addresses the generalization
of holes to convex drawings and is based on [BSS23b]. In Chapter 5 we further discuss convex
drawings and show that they admit a plane structure consisting of a Hamiltonian cycle and a
spanning star emanating of one vertex. In particular this shows that Rafla’s conjecture is true
for convex drawings. This chapter is based on [BFMS23]. The results concerning the asymptotic
numbers of signotopes and generalized signotopes are given in Chapter 6. Moreover we give the
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first linear lower bound on the number of fliples in every signotope in Section 6.2. In the last
chapter of this thesis, Chapter 7, we summarize the results and give some open problems for
further research.

1.1 Publications

This thesis is mostly based on the following publications.

[BFMS23] Using SAT to study plane substructures in simple drawings
Helena Bergold, Stefan Felsner, Meghana M. Reddy, Manfred Scheucher
Extended abstract presented at 39th European Workshop on Computational Ge-
ometry (EuroCG 2023).

[BFS23a] An Extension Theorem for Signotopes
Helena Bergold, Stefan Felsner, Manfred Scheucher
Conference version appeared at 39th International Symposium on Computational
Geometry (SoCG 2023), LIPIcs 258, pages 17:1–17:14.
Extended abstract presented at 38th European Workshop on Computational Ge-
ometry (EuroCG 2022)

[BFS+20]
and
[BFS+23b]

Topological drawings meet classical theorems from convex geometry
Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schröder, Raphael Steiner
Full version appeared in Discrete & Computational Geometry 70, pages 1121–1143,
2023.
Conference version appeared at 28th International Symposium on Graph Drawing
and Network Visualization (GD 2020), LNCS 12590, pages 281–294.
Extended abstract presented at 36th European Workshop on Computational Ge-
ometry (EuroCG 2020)

[BSS23b] Holes in Convex Drawings
Helena Bergold, Manfred Scheucher, Felix Schröder
Extended abstract presented at 39th European Workshop on Computational Ge-
ometry (EuroCG 2023).





Chapter 2

Signotopes, Drawings and
Related Structures

In this chapter we give the definition of the most important structures considered in this thesis.
Moreover, we discuss related structures, topological and geometric representations and impor-
tant properties. We start with some basic notation. We then continue with signotopes and
related structures, see Section 2.2. In the remaining part of this chapter we discuss simple draw-
ings (cf. Section 2.3), generalized signotopes (cf. Section 2.4), rotation systems (cf. Section 2.5)
and the convexity hierarchy for simple drawings (cf. Section 2.6).

2.1 Basic Notation

Throughout this thesis we use some standard notation. We summarize the most important
notation:

I [n] = {1, . . . , n} denotes the set of the first n natural numbers.

I
(

[n]
r

)
= {T ⊆ [n] : |T | = r} is the set of all subsets of size r of [n]. We call the elements of(

[n]
r

)
r-subsets.

I [n]r denotes the r-ary Cartesian product of [n], i.e., the set of all r-tuples with entries
from [n].

I [n]r is the subset of all r-tuples of [n]r whose entries are pairwise distinct elements from [n].

I Sn denotes the symmetric group of order n, which are all permutations on n elements. We
sometimes identify a permutation π ∈ Sn with a linear order on [n], denoted by a string
π = π(1)π(2) . . . π(n).

I Kn denotes the complete graph on n vertices.

Moreover, we use basic terminology from graph theory. Usually V is the set of vertices and E
the set of edges of a graph. We denote an undirected edge from vertex i to vertex j by ij or
{i, j}. When dealing with drawings of a graph, we do not distinguish between an edge in the
abstract graph and an edge in the drawing.
Throughout this thesis, we deal with sign functions, which take values in {+,−, 0}. For a
domain of a sign function, we consider subsets or tuples, i.e., [n]r,

(
[n]
r

)
or [n]r depending on the

explicit function. To deal with the signs − and +, we use basic operation − · − = + · + = +,
− · + = + · − = − and the x-fold operation (−)x which is − if and only if x is odd, otherwise
+. Moreover 0 · s = 0 for s ∈ {+,−, 0}.
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2.2 Signotopes

Signotopes are a combinatorial structure generalizing permutations and pseudoline arrange-
ments. They can be seen as combinatorial abstraction of various geometric objects encoded via
a sign mapping on the domain

(
[n]
r

)
.

Definition 2.2.1 (Signotope). For r ≥ 1 a signotope of rank r (short: r-signotope) on n
elements is a sign function σ from all r-subsets of [n] to + or −, i.e., σ :

(
[n]
r

)
→ {+,−} such

that for every (r + 1)-subset X = {x1, x2, . . . , xr+1} of [n] with x1 < x2 < . . . < xr+1 there is at
most one sign change in the sequence

(σ(X\{x1}) σ(X\{x2}) . . . σ(X\{xr+1})).

The set of all r-signotopes on [n] elements is denoted as S(n, r).

Note that the sequence lists the signs of all induced r-subsets of X in reversed lexicographic
order. For 3-signotopes, the following 8 sign patterns on 4-subsets are allowed:

(++++), (+++−), (++−−), (+−−−),

(−−−−), (−−−+), (−−++), (−+++).

The remaining 8 sign patterns of length 4 are forbidden.
For sake of readability, we write X = (x1, . . . , xt) to denote a t-subset of [n] with sorted elements
x1 < x2 < . . . < xt. For such an X, the set Xj = (x1, . . . , xj−1, xj+1, . . . , xt) denotes the set
without xj . With the convention − < +, the condition about sign changes in r-signotopes can
be written as a monotonicity condition for (r + 1)-subsets X = (x1, . . . , xr+1):

σ(X1) ≤ σ(X2) ≤ . . . ≤ σ(Xr+1) or σ(X1) ≥ σ(X2) ≥ . . . ≥ σ(Xr+1).

We refer to such an (r + 1)-subset as (r + 1)-packet or just packet if the size is apparent
from the context. For r = 1 the monotonicity is trivially fulfilled and hence every mapping
σ : [n]→ {+,−} is a 1-signotope. In the following, we discuss the case r = 2 and the correspon-
dence to permutations. We then consider the case r = 3 for which we give different geometric
representations and discuss related combinatorial objects. After discussing the small ranks in
detail, we give some basic properties of general rank r signotopes.

2.2.1 Rank 2 – Permutations

In this section, we consider rank 2 signotopes, which correspond to permutations. A permuta-
tion π is uniquely determined by its inversion set Inv(π) = {{i, j} : i < j and π(i) > π(j)}.
We define a mapping σπ :

(
[n]
2

)
→ {+,−} by assigning σπ(i, j) = − if and only if {i, j} ∈ Inv(π)

and σπ(i, j) = + otherwise. The monotonicity condition asserts the following condition on every
3-subset {i, j, k} with i < j < k: If σπ(i, j) = σπ(j, k) = s ∈ {+,−}, then σπ(i, k) = s. To
show this we consider the two cases s = + and s = −. Let us start with s = +. In this case
σπ(i, j) = + implies that π(i) < π(j) and σπ(j, k) = + implies π(j) < π(k) which certainly
implies that π(i) < π(k) by the transitivity of the order < on [n]. Hence σπ(i, k) = +. In
the other case, the signs and order relations are reversed. Moreover, given a 2-signotope σ, the
preimage of − determines the inversion set of a permutation. This shows that 2-signotopes are
in 1-to-1 correspondence with permutations. We refer to the preimage of − as −-set of σ and
to the preimage of + as +-set. We summarize:
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Lemma 2.2.2. The set of permutations Sn on n elements is in bijection with the set S(n, 2) of
all 2-signotopes on [n]. A permutation π corresponds to a 2-signotope σ with σ−1(−) = Inv(π).

For a fixed n, we define a partial order on the set S(n, 2) of all 2-signotopes on n elements by
single step inclusion of the +-sets. Two 2-signotope σ and σ′ differ in a single step, denoted by
σ l σ′ if σ−1(+) ⊂ σ′−1(+) and |σ′−1(+)| = |σ−1(+)| + 1. The transitive closure of this single
step is the single step inclusion ≤. In particular if σ ≤ σ′, there exist σ0, . . . , σt such that

σ = σ0 l σ1 l . . .l σt = σ′.

Hence the single step is the cover relation of the single step inclusion. In a partial order ≺, the
element x covers y if x � y and there is no z with x � z � y.

The partial order of S(n, 2) with the single step inclusion is the weak Bruhat order of the
symmetric group Sn denoted by B(n, 2)1 and the Hasse diagram which is the directed graph
of the cover relation. In the case of 2-signotopes this is the skeleton of the permutahedron of
order n. Let G(n, 2) be the graph of the cover relation. The vertices are the elements of S(n, 2)
and two vertices x and y are connected with an edge if and only if they are related through a
cover relation, i.e., if they differ in a single sign. The partial order in the case n = 4 is shown
in Figure 2.1. A subset whose value we can flip while still obtaining the monotonicity property

−−−−−−

+−−−−− −−+−−− −−−−−+

−++−−− +−−−−+ −−+−+− −−−−++++−−−−

+++−−− ++−+−− +−−+−+ −−+−++ −−−+++−++−+−

++−+−+ −++++− +−−+++ −−++++++++−−

+++++− ++−+++ −+++++

++++++

Figure 2.1: Hasse diagram of B(4, 2). The vertices are labeled with their 2-signotope, which are repre-
sented by the string of signs corresponding to the 2-subsets in reversed lexicographic order.

is a fliple. A flip, i.e., the change of a single sign, either adds one pair or removes one pair to
the inversion set. This corresponds to an adjacent transposition in the permutation.

The partial order B(n, 2) corresponds to the inclusion order ⊆ of the +-sets on S(n, 2) in which
σ ⊆ σ′ if σ−1(+) ⊆ σ′−1(+) which was shown by Yanagimoto and Okamoto [YO69].

1Since we define Bruhat orders for higher rank later, we introduce a second parameter which encodes the rank.
In literature the weak Bruhat order is usually denoted by Bn or B(n, 1) where the second parameter is the
dimension. To avoid confusion, we denote the partial order defined on the set S(n, r) by B(n, r).
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2.2.2 Rank 3 – Pseudoline Arrangements

In this section, we consider the case r = 3, which was the main focus of the paper by Felsner and
Weil [FW01], who introduced the name signotopes. They show that 3-signotopes are represented
by pseudoline arrangements.

Definition 2.2.3 (Pseudoline Arrangement). A pseudoline is a simple curve in the Euclidean
plane such that its removal from the plane results in exactly two unbounded components. A
pseudoline arrangement A is a family of pseudolines such that each pair of pseudolines from A
intersects in exactly one point, where the two curves cross properly. An arrangement is simple
if no three pseudolines cross in a common point.

In this thesis all pseudoline arrangements will be simple if not mentioned otherwise. When
studying pseudoline arrangements, we only consider the combinatorics which depend on the
order of crossings. Pseudoline arrangements with the same order of crossings but different
embedding are considered the same. Moreover, all pseudoline arrangements considered are in
the Euclidean plane2 and hence have 2n unbounded cells.
The study of pseudoline arrangements goes back to Levi in the 1920’s. He proved that essential
properties of line arrangements also hold in the more general setting of pseudoline arrangements.
The following statement generalizes the fact that two points in the plane determine a line.

Theorem 2.2.4 (Levi’s extension lemma for pseudoline arrangements [Lev26]). Given an ar-
rangement A of pseudolines (not necessarily simple) and two points p, q in R2, not on a common
pseudoline of A. Then there exists a pseudoline ` containing both points p and q such that A∪{`}
is a pseudoline arrangement.

We say that ` extends the pseudolines arrangement A. In Chapter 3 we discuss a generalization
of this statement to signotopes of higher rank.
Clearly pseudoline arrangements generalize line arrangements. However not all pseudoline ar-
rangement can be represented by a line arrangement with the same combinatorics, i.e., with the
same order of intersections. A pseudoline arrangement which admits such a line arrangement is
realizable, sometimes also referred to as stretchable. Levi gave the non-Pappus arrangement as an
example of a (non-simple) pseudoline arrangement which is not realizable. Later Ringel [Rin56]
continued the line of research and presented based on the non-Pappus arrangement a simple
pseudoline arrangement which is not stretchable, see Figure 2.8 on page 28 for an illustration.
Goodman and Pollack played a central role in the study of pseudoline arrangements. They
showed the nowadays well-known fact that all pseudoline arrangements can be drawn with
x-monotone pseudolines [Goo80]. Those x-monotone pseudoline arrangements are often also re-
ferred to as wiring diagrams or sorting networks especially if the pseudolines consist of piecewise
linear curves, so called wires and the wires are horizontal except for small neighborhoods of their
crossings with other wires. For more information concerning pseudolines, line arrangements and
related structures, see the Chapter 5 of the “Handbook of Discrete and Computational Ge-
ometry” [FG17], the book “Geometric Graphs and Arrangements” by Stefan Felsner [Fel04]
or the book “Lectures of Discrete Geometry” of Matoušek [Mat02, Chapter 6]. A collection
of examples, problems and conjectures is given in the book “Arrangements and Spreads” of
Grünbaum [Grü80].

2In contrast to the Euclidean version, there is the notion o pseudoline arrangements in the projective plane.
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a

b

c

+
a

b

c
−

Figure 2.2: Connection between pseudoline arrangements and 3-signotopes.

Starting with a pseudoline arrangement in the Euclidean plane, we mark one of the unbounded
cells as the top cell. Moreover, we label the pseudolines starting at the marked top cell, left
of all crossings, from top to bottom by 1, . . . , n. Since two pseudolines cross exactly once, the
pseudolines appear in reversed order on the right. The triangle sign function σ is obtained as
follows: The sign of σ(a, b, c) for a < b < c indicates the orientation of the triangle formed by
the three pseudolines a, b, c. If the crossing of a and c is below b, it is σ(a, b, c) = + and if the
crossing of a and c is above b, it is σ(a, b, c) = −. An illustration of the assignment is given in
Figure 2.2. Since the monotonicity condition of 3-signotopes is a condition on all 4-subsets, we
consider all pseudoline arrangements with 4 elements to show that the triangle sign function of
all pseudoline arrangements is a 3-signotope. An illustration of the 8 possibilities of pseudoline
arrangements with a fixed to cell are shown in Figure 2.3.

(+ + ++) (+ ++−) (+ +−−) (+−−−)

(−−−−) (−−−+) (−−++) (−+++)

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Figure 2.3: All possibilities of pseudoline arrangements with a fixed top cell and 4 pseudolines together
with its 3-signotope.

Since the triangle sign function of all eight possibilities is a valid 3-signotope, all pseudoline
arrangements have a corresponding 3-signotope. Moreover, Felsner and Weil showed that the
reverse is true, i.e., every 3-signotope has a corresponding pseudoline arrangements whose tri-
angle sign function is equal to the signotope.

Proposition 2.2.5 ([FW01, Theorem 7]). The set of simple pseudoline arrangements in the
Euclidean plane with n pseudolines and a marked top cell is in bijection with the set S(n, 3) of
3-signotopes on n elements.

To show that every 3-signotope can be realized by a pseudoline arrangement, we need structural
results about general r-signotopes, which we discuss in Section 2.2.4. However we give a sketch
of the proof. First consider a pseudoline arrangement. We identify the crossings of a pseudoline
arrangement with the elements which cross, i.e., for 3-signotopes crossings are subsets of size 2.
As usual the pseudolines are labeled from top to bottom by 1, . . . , n, which corresponds to the
identity permutation. If two pseudolines cross, the two elements change the position. Hence we
can represent a pseudoline arrangement by a sequence of permutation in which two adjacent
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permutation differ in an adjacent transposition. In fact, we can define a sequence of permutation
representing a pseudoline arrangement from a 3-signotope. Let σ be a 3-signotope on n elements.
We define a corresponding partial order on

(
[n]
2

)
. If σ(a, b, c) = +, it holds ab ≺ ac ≺ bc and

if σ(a, b, c) = −, it is bc ≺ ac ≺ ab. By taking the transitive closure of this relation, we
obtain a partial order on the 2-subsets. We consider a linear extension of this partial order
which gives a linear order A1, . . . , A(n2)

on the 2-subsets of [n]. We start by constructing the

pseudoline arrangement by drawing them in the order π0 = 1 . . . n corresponding to the identity
permutation. In every step i = 1, . . . ,

(
n
2

)
, we construct a new permutation πi by reversing

the order of the two elements of Ai. For the constructed pseudoline arrangements we change
the order of the two corresponding pseudolines which yields a crossing. For three pseudolines
a < b < c the partial order asserts that either ab ≺ ac ≺ bc or bc ≺ ac ≺ ab which also holds
in every linear extension. Hence the triangle sign function of the so constructed pseudoline
arrangement corresponds to the 3-signotope. Moreover, the structure ensures that the elements
of Ai are adjacent in πi−1.

The chain of permutations π0, . . . , π(n2)
corresponding to a pseudoline arrangement is a maximum

chain in the order B(n, 2) of the 2-signotopes. This connection has been studied earlier by
Goodman and Pollack. They define allowable sequences as a periodic sequence of permutations
to have a combinatorial abstraction of line arrangements.

Definition 2.2.6 (Allowable Sequence). For a fixed n, an allowable sequence is a periodic
sequence of permutations on [n] such that the following two properties hold:

(1) Two consecutive permutations consist of reversing one or more non-overlapping substrings;
(a substring is a sequence of consecutive elements)

(2) If two elements have been reversed, they do not switch again until everything else was
reversed.

An allowable sequence is simple if in every step, we reverse exactly one substring consisting of
exactly two element, i.e., two consecutive permutations differ in an adjacent transposition.

Not all allowable sequences have a corresponding line arrangement. An allowable sequence
which cannot be realized with a line arrangement has been presented by Goodman and Pol-
lack [GP80]. However they showed that all allowable sequences have a corresponding pseudoline
arrangement [GP84].

Proposition 2.2.7 ([GP84, Theorem 4.1]). For every allowable sequence of permutations on [n],
there is an arrangement of n pseudolines whose associated sequence equals the allowable sequence.

As already shown by Goodman [Goo80], allowable sequences have the following two properties,
which reflect the partial order of signotopes.

(a) If i1j1 is reversed before i2j2, then j1i1 is reversed before j2i2;

(b) If ij is reversed before jk, then ik is reversed in between ij and jk.

By repeating the maximum chain of permutations of a 3-signotope in a periodic sequence in the
following way, we get an allowable sequence. The first half of the period is exactly the maximum
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chain, i.e., we switch ij with i < j. For the second half, we repeat the maximum chain but
instead of switching ij, with i < j, we switch ji. The order of the two elements represents the
order in the pseudoline arrangement before the crossing. Starting with an allowable sequence
which contains the identity permutation, we get a maximum chain of 2-signotopes by taking a
subsequence between the identity and reversed identity permutation. Note that relabeling the
elements if necessary is possible to achieve that the allowable sequence contains the identity
permutation.
In Section 2.2.4, we will see that this relation between 2-signotopes and 3-signotopes is not a
coincidence of small values but is a very useful structural property of signotopes. In particular,
we see that maximum chains of (r−1)-signotopes correspond to r-signotopes. For this we define
the partial order on S(n, r) via single step inclusion of the +-set.

Additionally, we want to mention the combinatorial encoding of pseudoline arrangements via
so called local sequences, introduced by Goodman and Pollack [GP84]. A local sequence in a
marked Euclidean arrangement of pseudolines consists of n permutations πi on [n]\{i} which
give the order of the crossings with the remaining pseudolines along the i-th pseudoline. From
the 3-signotope σ, we get this information, by restricting the partial order ≺ to all elements con-
taining this one element. This gives a total order representing the crossings along the pseudoline.
Moreover, the 2-signotope corresponding to the permutation πi is defined by

σi(j, k) = σ({i, j, k})

for pairwise distinct i, j, k ∈ [n] with j < k.

Due to the formula of Stanley [Sta84] the precise number of allowable sequences is known and
equal to (

n

2

)
!
/

1n−13n−25n−3 · · · (2n− 3)1.

In contrast to an exact formula for allowable sequences, there are only rough estimates for the
number s(n, 3) of 3-signotopes on n elements, i.e., the number of arrangements of pseudolines. It
has been shown by Goodman and Pollack [GP93] that s(n, 3) = 2Θ(n2) while the number of ar-
rangements of lines is only 2Θ(n logn). Knuth [Knu92] showed that s(n, 3) ≤ 3n−1s(n−1, 3) which

gives s(n, 3) ≤ 3(n2) = 2log2(3)(n2) where log2(3) ≈ 1.585. He conjectured that s(n, 3) ≤ 2(n2)+o(n2),
i.e., that log2(s(n, 3)) ≤ 1

2n
2 + o(n2). Felsner and Valtr [FV11] showed that log2(s(n, 3)) ≤

0.6571n2 for sufficiently large n. The lower bound 0.2083n2 ≤ log2(s(n, 3)) for sufficiently
large n is due to Dumitrescu and Mandal [DM19]. An improved lower bound of 0.2250n2 was
recently shown by Cortés Kühnast, Felsner and Scheucher [CFS23]. The exact numbers are
known for n ≤ 16. The last value was computed by Günter Rote. See the entry A006245 in the
OEIS [OEI].

2.2.3 Rank 3 – Pseudoconfiguration of Points

During the study of allowable sequences, Goodman and Pollack also showed a connection to
point configurations. Similar to pseudolines, there is a topological generalization of point sets
in the plane, which are called pseudoconfiguration of points. They are an abstract description
of the fact that each pair of points in the plane determines a line. The collection of points and
the so constructed lines has the following properties which hold more generally.

https://oeis.org/A006245
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Definition 2.2.8 (Pseudoconfiguration of Points). A pseudoconfiguration of points is a set of
points P in the plane together with a family of pseudolines L such that

I For two distinct points p, q ∈ P there exists exactly one pseudoline L containing p and q;

I Every pseudoline in L contains at least two points of P ;

I Two pseudolines have exactly one point in common, in which they cross, i.e., L is a
pseudoline arrangement.

A pseudoconfiguration of points is simple if every pseudoline contains exactly two points of P .

Goodman [Goo80] investigated the relation between pseudoconfigurations of points and pseudo-
line arrangements and showed that they have a similar duality relation as the point-line-duality
in the geometric setting. Given a set of points P and a set of lines L in the plane, the duality
(sometimes also referred to as polarity) is given by the following relation

{p = (a, b) ∈ P} ↔ {y = ax+ b ∈ L}.

To show an analogue of this duality in the topological setting, Goodman used allowable se-
quences as they represent both structures, pseudoline arrangements and pseudoconfigurations
of points. In Section 2.2.2, we have seen the connection between 3-signotopes, simple pseudoline
arrangements and simple allowable sequences. To study the connection to pseudoconfigurations
of points, we encode the allowable sequence by its substrings which get reversed. Note that this
is a bijective encoding of allowable sequences. In the setting of simple arrangements, this always
corresponds to adjacent transposition. If we reverse the pair ij, then we assume that i and j
appear in this order before the transposition. Starting with a pseudoconfiguration of points,
we draw a circle around it enclosing all points of P and all crossings of the pseudolines of L.
Every pseudoline has two crossing with the circle. We identify these crossings with the points
which are on the corresponding pseudoline such that the point closest to the crossing appears
first. Reading those pairs in clockwise order gives a periodic sequence satisfying the axioms of
allowable sequences [Goo80]. In the simple case, we get a sequence of 2-subsets. Hence for every
pseudoconfiguration of points we get an allowable sequence. For an illustration see Figure 2.4.
Goodman and Pollack showed that the reverse is true as well.

Proposition 2.2.9 ([GP84, Theorem 4.4]). Every allowable sequence with permutations on [n]
can be realized as a pseudoconfiguration of n points.

Moreover, there is an arrangement of lines with the same combinatorics if and only if there is a
point configuration. This holds even in the non-simple case. For non-simple arrangements, we
have the correspondence

k pseudolines cross in a common point in the pseudoline arrangement

↔ a substring of length k is reversed in the allowable sequence

↔ k points lie on a common pseudoline in a pseudoconfiguration of points.

Since we focus on signotopes, we restrict our attention to simple arrangements and simple
pseudoconfigurations of points.
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Figure 2.4: A pseudoline arrangement together with a simple allowable sequence and a corresponding
pseudoconfiguration of points.

Balko, Fulek and Kynčl [BFK15] consider pseudoconfigurations of points and provide an indepen-
dent proof that pseudoconfigurations of points are a topological representation of 3-signotopes.
Restricting the curves to the curve segments between the two vertices yields an x-monotone
pseudolinear drawing of the complete graph Kn, a subclass of simple drawings. We discuss this
in more detail in Section 2.3.

2.2.4 Higher Bruhat Order

The relation between 2-signotopes and 3-signotopes discussed in the previous section is not a
coincidence. For all r ≥ 2, there is a relation between maximum chains of (r − 1)-signotopes
and r-signotopes. This property was first shown for the higher Bruhat order, which is a partial
order on the set of signotopes for fixed r and n. Higher Bruhat orders were introduced by Manin
and Schechtmann [MS89] in the context of discriminantal arrangements. Kapranov and Voevod-
sky [KV91] sketched two geometric representations for elements of higher Bruhat orders, the first
in terms of single element extensions of cyclic hyperplane arrangements, and the second in terms
of tight zonotopal tilings, i.e., projections of cubes. Zonotopal tilings are sometimes also called
cubillages. Ziegler [Zie93] studies the first of these geometric interpretations and investigates the
theory of higher Bruhat order. The second of the geometric interpretations of zonotopal tilings
was further investigated by Thomas [Tho03] and more recently by Williams [Wil23]. We discuss
those representations together with two additional topological representation in Section 2.2.6.

The easiest and well-known case is the weak Bruhat order of the symmetric group denoted by
B(n, 2), which we discussed in Section 2.2.1. For the partial order B(n, 2), which is an order
on the 2-signotopes S(n, 2), we consider the single step inclusion of the +-sets. Recall that the
single step inclusion ≤ is the transitive closure of the single step σ l σ′ which is defined via
σ−1(+) ⊂ σ′−1(+) and |σ′−1(+)| = |σ−1(+)|+ 1. For all r, we define the higher Bruhat order3

B(n, r) as the partial order on S(n, r) induced by the single step inclusion.

Definition 2.2.10 (Higher Bruhat Order). For r ≥ 1, the higher Bruhat order B(n, r) is a
partial order ≤ on the elements of S(n, r) with the transitive closure of the single step inclusion l.

3In the literature, the second parameter of the higher Bruhat order corresponds to the dimension, which is r−1.
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The original definition of the higher Bruhat order B(n, r) by Manin and Schechtman [MS89] is
based on total orderings of all (r − 1)-subsets of [n], which they call admissible orders. In such
an admissible order, the (r − 1)-subsets appear in lexicographic or reversed lexicographic order
in r-packets.
In 1969 Yanagimoto and Okamoto [YO69] showed that B(n, 2) = B⊆(n, 2). Here B⊆(n, r)
denotes the inclusion order ⊆ of the +-sets of the elements of S(n, r). Clearly, every relation
of two elements of S(n, r) in B(nr) is in B⊆(n, r). In general B(n, r) and B⊆(n, r) are not the
same. We summarize some results regarding higher Bruhat orders.

I For all n ≥ r ≥ 2 there is a unique minimal and a unique maximal element in B(n, r) and
B⊆(n, r), respectively. The unique maximal element of rank r on n elements, denoted by
σmax is the constant + function. In the same way the unique minimal elements, denoted
by σmin is the constant − function. (see [MS89]).

I For r ≥ 1, the diagram of B(r + 1, r) = B⊆(r + 1, r) is a 2(r + 1)-gon (see Figure 2.5).

−−− · · ·−−−

+++ · · ·+++

+−− · · ·−−−

+++ · · ·++−

−−− · · ·−−+

+++ · · ·+−−

++− · · ·−−− −−− · · ·−++

−−+ · · ·+++

−++ · · ·+++

...
...

Figure 2.5: Diagram of B(r + 1, r).

I B(n, r) = B⊆(n, r) for r ≤ 3 and n − r ≤ 3 (see [Zie93] and [FW00] for the case r = 3).
However, B(8, 4) 6= B⊆(8, 4) (see [Zie93]).

I For all n ≥ r ≥ 2, B(n, r) is a graded partial order, i.e., there is a rank function ρ such
that for all x < y it holds ρ(x) < ρ(y) and for all y which cover x it holds ρ(y) = ρ(x) + 1.
For the higher Bruhat order, the rank function is the cardinality of the +-set (see [MS89]).

I B(n, r) is a lattice for r ≤ 2 and n − r ≤ 2. However, the partial order B(6, 3) is not a
lattice. (see [Zie93])

The most important property for our purposes is the following structural result of the higher
Bruhat orders which gives a connections between maximum chains in B(n, r − 1) (respectively
B⊆(n, r − 1)) and r-signotopes, i.e., elements in B(n, r) (see [MS89, Zie93, FW01]).

Theorem 2.2.11. For r ≥ 2, there is a surjective mapping Πr from the maximum chains of
(r − 1)-signotopes in B(n, r − 1), respectively B⊆(n, r − 1), to the set of r-signotopes S(n, r).
Moreover, every element of S(n, r) is contained in a maximum chain in B⊆(n, r).

Note that if B(n, r) = B⊆(n, r), then for every two r-signotopes σ, σ′ with σ ⊆ σ′, there is a
maximum chain containing both. In general this is not the case.
We give a sketch of the proof by Felsner and Weil [FW01] for the inclusion order. For this we
define a partial order corresponding to an r-signotope. In the case r = 3 this is exactly the
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partial order which we defined in Section 2.2.2 (page 12) describing the order of crossings from
left to right in a pseudoline arrangement. We generalize this definition for arbitrary rank.

Definition 2.2.12. For an r-signotope σ and every r-subset X = (x1, . . . , xr), we define the
partial order ≺σ on

(
[n]
r−1

)
as the transitive closure of the following relations:

X1 �σ X2 �σ . . . �σ Xr if σ(x1, . . . , xr) = +, and

X1 ≺σ X2 ≺σ . . . ≺σ Xr if σ(x1, . . . , xr) = −.

Recall that for X = (x1, . . . , xr) we use the convention x1 < . . . < xr and Xi = X\{xi}. By
taking the transitive closure of all relations obtained from r-subsets, we obtain a partial order ≺σ
on the (r − 1)-subsets corresponding to σ [FW01, Lemma 10].
Let σ0, . . . , σ( n

r−1)
be a maximum chain of (r − 1)-signotopes which we represent by the unique

(r− 1)-subsets Ai such that σi−1(Ai) = − and σi(Ai) = +. This is a total order on the (r− 1)-
subsets. To eventually define an r-signotope σ̄, we consider the r-subsets of [n]. For X ∈

(
[n]
r

)
the sequence X1, . . . , Xr appears either in this order or in reversed order as a subsequence of
A0, . . . , A( n

r−1)
. In the first case, we set σ̄(X) = +, in the latter σ̄(X) = −. This is indeed an

r-signotope on [n], see [FW01, Proposition 12]. For every r-signotope σ, we consider a linear
extension of the partial order ≺σ, which is a total order on the (r− 1)-subsets corresponding to
a maximum chain. Indeed the r-signotope corresponding to the maximum chain is exactly σ.
This surjective map from a maximum chain of (r − 1)-signotopes to an r-signotope is denoted
by Πr.
In the next step we identify the pre-image of an r-signotope, i.e., we want to define a relation on
the maximum chains of B⊆(n, r− 1) which map to the same r-signotope. Two maximum chains
represented by the permutation A0, . . . , A(nr)

and B0, . . . , B(nr)
on (r− 1)-subsets are equivalent

if they differ in an adjacent transposition. A collection of r-signotopes is an equivalence class if
for each pair of signotopes from the collection there is a sequence of signotopes contained in the
class such that two consecutive ones are equivalent.

Proposition 2.2.13. Π−1
r (σ) is a complete equivalence class.

An equivalence class is exactly the set of linear extension of the partial order ≺σ corresponding
to σ and the adjacent transpositions are the incomparable elements in ≺σ.

In the higher Bruhat order B(n, r), the cover relation corresponds to a flip of a sign of a single
r-subset. We can define the flip graph, denoted as G(n, r), as the graph of the cover relation.
The degree of a signotope in the flip graph corresponds to the number of signs we can flip.
The r-subsets whose sign we can flip are called fliple. More precisely an r-signotope σ on [n],
an r-subset X ⊆ [n] is a fliple if both assignments + and − to σ(X) result in a signotope.
The constant signotopes have exactly n − r + 1 fliples which are {(i, i + 1, . . . , i + r − 1) :
i = 1, . . . , n − r + 1} since they appear as the last or first element in every packet they are
contained in. Moreover, since every r-signotope is contained in a maximum chain in B(n, r) (cf.
Theorem 2.2.11), every signotope contains at least two fliples. In Chapter 6, we give a linear
lower bound on the number of fliples in r-signotopes for all r.
For r = 3, Felsner and Kriegel [FK99] showed that the minimum number of fliples is n−2, which
is tight. Moreover, recently Alves Radtke et al. [AFO+23]) showed that the flip graph G(n, 3) of
3-signotopes on n elements is in fact (n−2)-connected. A fliple of a 3-signotope corresponds is a
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triangular cell in the pseudoline arrangement, i.e., a cell bounded by exactly three pseudolines.
Triangular cells play an important role in the study of pseudoline arrangements, since it is
possible to change the orientation of a triangle by moving one of the pseudolines over the crossing
of the two others. Such a local perturbation is called a triangle flip. It does not change the
orientation of any other triangle in the arrangement. For higher ranks, a fliple corresponds to a
simplicial cell in the corresponding pseudohyperplane arrangement. We discuss this topological
representation in Section 2.2.6. The analogon of fliples in oriented matroids, which we discuss
in more detail in the next Section 2.2.5, is called mutation. While the existence of fliples in
signotopes is known, it remains a central open problem in combinatorial geometry to decide
whether every uniform oriented matroid contains a mutation [BLS+99, Chapter 7.3].

Let s(n, r) = |S(n, r)| be the number of r-signotopes on n elements. A closed formula for the
exact number is only given in the boundary cases r = 1, 2 and n− r = 0, 1, 2 [Zie93]:

s(n, 1) = 2n

s(n, 2) = n!

s(n, n− 2) = 2n + n2n−2 − 2n

s(n, n− 1) = 2n

s(n, n) = 2

The number of r-signotopes for r between 4 and 10 and small values of n are listed in the
sequences A60595 to A60601 in the OEIS. In the case r = 3 we know 0.2083n2 ≤ log2(s(n, 3)) ≤
0.6571n2 for sufficiently large n, which we already discussed in Section 2.2.2.
In general we just know that log2(s(n, r)) = Θ(nr−1) for r ≥ 3, which was shown by Balko [Bal19],
who studied signotopes in terms of monotone colorings of uniform hypergraphs.

Proposition 2.2.14 ([Bal19, Theorem 3]). For r ≥ 3, the number of r-signotopes on [n]
is s(n, r) = 2Θ(nr−1).

In Chapter 6, we give a proof of Proposition 2.2.14.

2.2.5 Chirotopes – Oriented Matroids

Kapranov and Voevodsky [KV91, Theorem 4.9] already mentioned that signotopes are oriented
matroids. There are several cryptomorphic axiom systems of oriented matroids. Each of them
is based on a different geometric and combinatorial object. We limit ourselves to the definition
of chirotopes, which arise as a combinatorial generalization of point sets. We refer the inter-
ested reader to the book “Oriented matroids” by Björner, Las Vergnas, Sturmfels, White and
Ziegler [BLS+99] for further definitions and properties of oriented matroids. Given r points
p1 . . . , pr as column vectors in Rr−1, we consider the determinant of the (r × r)-matrix corre-
sponding to the homogeneous coordinates of the r points:

det(p1, . . . , pr) := det

(
1 1 . . . 1
p1 p2 . . . pr

)
.

The sign of the determinants describe the orientation of a simplex spanned by the r points in
dimension r − 1. The determinant is 0 if and only if the r points are contained in a common
hyperplane of Rr−1. Chirotopes are an abstract description of the behavior of these determinants.
They are sign functions whose domain is the set [n]r of all r-tuples with entries from [n].

https://oeis.org/A060595
https://oeis.org/A060601
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Definition 2.2.15 (Chirotope). A chirotope of rank r ≥ 1 (short: r-chirotope) on the ground
set [n] is a sign mapping χ : [n]r → {+,−, 0} such that

(1) χ is not the constant 0-map;

(2) χ is alternating, i.e., for all permutations π ∈ Sr and all x1, . . . , xr ∈ [n] it is

χ(xπ1 , . . . , xπr) = sgn(π)χ(x1, . . . , xr),

where sgn(π) = (−)|Inv(π)|;

(3) For all x1, x2, . . . , xr, y1, y2, . . . , yr ∈ [n] such that

χ(yi, x2, x3, . . . , xr) · χ(y1, y2, . . . , yi−1, x1, yi+1, . . . yr) ∈ {0,+}

for all i ∈ {1, . . . , r}, it is

χ(x1, . . . xr) · χ(y1, . . . , yr) ∈ {0,+}.

We refer to axiom (3) as the Grassmann-Plücker relations since it is the combinatorial version
of those relations. The original Grassmann-Plücker relation is the following relation

det(x1, . . . , xr) · det(y1, . . . , yr) =
r∑
i=1

det(yi, x2, . . . , xr) · det(y1, . . . , yi−1, x1, yi+1, . . . , yr)

on the determinants of vectors x1, . . . , xr, y1, . . . , yr ∈ Rr. The difference of both sides is a
multilinear form in the r + 1 variables x1, y1, . . . , yr. Moreover, the equation holds trivially for
yi = yj for i 6= j or x1 = yi for i = 1, . . . , r, which is called alternating map in terms of linear
algebra. Since an alternating multilinear from with r+1 variables in dimension r is the constant
0 map, the equation holds.
The chirotope axiom is the abstraction of this relation to sign properties. If all summands of
the right-hand side are non-negative this corresponds to the sign + or 0, the left-hand side has
to have the same sign.
A chirotope with χ(x1, . . . , xr) 6= 0 for r distinct elements x1, . . . , xr is uniform. In the geomet-
ric setting of point sets, this corresponds to general position, i.e., no r points are on a r − 2
dimensional hyperplane in Rr−1.
For uniform chirotopes, the last axiom (3) can be replaced by the so-called 3-term Grassmann-
Plücker relations [BLS+99, Theorem 3.6.2]. They are a restriction of the Grassmann-Plücker
relations to the case xi = yi for i = 3, . . . , r.

Theorem 2.2.16 (3-Term Grassmann-Plücker Relations [BLS+99, Theorem 3.6.2]).
A uniform alternating map χ : [n]r → {+,−, 0} (see axiom (2) of 2.2.15) which satisfies the

following condition is a chirotope.

I For all x1, . . . , xr, y1, y2 ∈ [n], such that

χ(y1, x2, x3, . . . , xr) · χ(x1, y2, x3, . . . , xr) ∈ {+, 0} and

χ(y2, x2, x3, . . . , xr) · χ(y1, x1, x3, . . . , xr) ∈ {+, 0}

it holds that

χ(x1, x2, x3, . . . , xr) · χ(y1, y2, x3, . . . , xr) ∈ {+, 0}.
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An r-signotope σ is defined on r-subsets of [n] which we can interpret as r-tuples, where the
elements are pairwise different and sorted in increasing order. We define a mapping from [n]r

to {+,−, 0} as follows:

χσ(x1, . . . , xr) =

{
0 if |{x1, . . . , xr}| < r;

sgn(π) · σ(xπ(1), . . . , xπ(r)) for π ∈ Sr such that xπ(1) < . . . < xπ(r).

for all r-tuples (x1, . . . , xr) ∈ [n]r. Note that we use the convention sgn(π) = (−)|Inv(π)|. The
map χσ is a chirotope. We could not find a proof of this particular statement even though it is
known that signotopes are oriented matroids. Hence we provide the full proof.

Lemma 2.2.17. For every r-signotope σ, the map χσ is a chirotope.

Proof. Since signotopes map r-subsets to {+,−}, the map χσ is not identical to the 0-map.
By definition χσ is alternating and uniform, it is sufficient to prove the 3-term Grassman-
Plücker relations, see Theorem 2.2.16. Moreover, we assume without loss of generality that
x1, . . . , xr, y1, y2 of the 3-term Grassmann-Plücker are pairwise different. If xi = xj for i 6= j,
y1 = y2 or yi = xj for i = 1, 2 and j ≥ 3, the conclusion of the condition holds since the product
is 0. If y1 = x1 or y2 = x2, the first condition of the assumption equals the conclusion. Similarly,
if y1 = x2 or y2 = x1 the second condition is exactly the condition of the conclusion.

In the remaining part, we assume that all elements are different and hence none of the signs
which appear in the 3-term Grassmann-Plücker relation are 0. Fix r + 2 different elements
y1, y2, x1, x2, x3, . . . , xr ∈ [n]. Without loss of generality we assume that x3 < . . . < xr. Other-
wise we have to apply the same permutations in all of the subsets to order them. Since there
are two signs multiplied, we multiply each condition by +. Let

s1 = χ(y1, x2, x3, . . . , xr) = χ(x1, y2, x3, . . . , xr),

s2 = χ(y2, x2, x3, . . . , xr) = χ(y1, x1, x3, . . . , xr).

We want to show that χ(x1, x2, x3, . . . , xr) = χ(y1, y2, x3, . . . , xr). In order to do this we intro-
duce the notion

inv(a, b) = |{(a, xi) : i ≥ 3, a > xi}|+ |{(b, xi) : i ≥ 3, b > xi}|

for a, b ∈ {x1, x2, y1, y2} to encode the number of inversion of a, b with respect to x3, . . . , xr.
Now we consider the following four packets:

P = {y1, x1, x2, x3, . . . , xr}, Q = {y2, x1, x2, x3, . . . , xr},
R = {y1, y2, x1, x3, . . . , xr}, S = {y1, y2, x2, x3, . . . , xr}.

Since we do not know the order of the elements in the packets, we write Xx for a set X without
the element x ∈ X. We are only interested in the sign of σ corresponding to the subsets which
correspond to deleting one of the elements y1, y2, x1, x2.

In the first step we consider P . We consider several cases. The three elements y1, x1, x2 can
be ordered in 6 different ways. Since all signs and the order in the packet are reversed if the
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order of the three elements is reversed, we consider only three of the cases. In the first case, we
assume that y1 > x1 > x2. Hence Py1 , Px1 , Px2 appear in this order in the sequence. It is

σ(Py1) = (−)inv(x1,x2) · χ(x1, . . . , xr);

σ(Px1) = (−)inv(y1,x2) · s1;

σ(Px2) = (−)inv(y1,x1) · s2.

This shows that if the last two signs of Px1 and Px2 are different, then the sign of Py1 must
be the same as Px1 . More formally if (−)inv(y1,x2) · s1 = − · (−)inv(y1,x1) · s2, then (−)inv(x1,x2) ·
χ(x1, . . . , xr) = (−)inv(y1,x2)s1. We now consider the other two cases. For all of them we get the
same condition on the sign of χ(x1, . . . , xr).

In the second case, we assume that y1 < x2 < x1. Again, we consider the three signs in the
packet P . It is

σ(Py1) = (−)inv(x1,x2)+1 · χ(x1, . . . , xr);

σ(Px2) = (−)inv(y1,x1) · s2;

σ(Px1) = (−)inv(y1,x2) · s1,

and they appear in this order in the packet. Hence the condition from above holds. In the
remaining case, we assume the order x1 < y1 < x2. The signs are

σ(Px1) = (−)inv(y1,x2) · s1;

σ(Py1) = (−)inv(x1,x2) · χ(x1, . . . , xr);

σ(Px2) = (−)inv(y1,x1)+1 · s2,

which appear in this particular order. Again the condition holds. Reformulation of this depen-
dencies and the fact that inv(a, b) = inv(b, a) and inv(a, b) + inv(a, c) ≡ inv(b, c) mod 2 gives
the following claim.

Claim 2.1. If s1 = (−)inv(x1,x2)+1 · s2, then χ(x1, . . . , xr) = (−)inv(y1,x1) · s1.

By considering the three different orders of the elements x1, x2, y2 in the packet Q, we get the
following relations.

Claim 2.2. If s1 = (−)inv(x1,x2) · s2, then χ(x1, . . . , xr) = (−)inv(y2,x2) · s1.

Claim 2.1 can be applied if s1 = (−)inv(x1,x2)+1 · s2 and Claim 2.2 if s1 = (−)inv(x1,x2) · s2. Hence
s1 and s2 fulfill exactly one of the two conditions. In both cases we get an implication for the
sign of χ(x1, . . . , xr).

We proceed in the same way for the two packets R and S to get a condition of the sign
χ(y1, y2, x3, . . . , xr). Again exactly one of the two cases from the following two claims occurs.

Claim 2.3. If s1 = (−)inv(y1,y2) · s2, then χ(y1, y2, x3, . . . , xr) = (−)inv(y1,x1) · s1.

Claim 2.4. If s1 = (−)inv(y1,y2)+1 · s2, then χ(y1, y2, x3, . . . , xr) = (−)inv(y2,x2) · s1.
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To conclude the statement of the lemma, we have to go through the four possibilities to combine
the different cases. Clearly, if we are in the case of Claim 2.1 and Claim 2.3, the statement follows
since χ(x1, . . . , xr) and χ(y1, y2, x3, . . . , xr) have the same sign. If Claim 2.2 and Claim 2.4 holds,
then the statement follows in the same way. If the case that the conditions of Claim 2.1 and
Claim 2.4 are fulfilled it holds

(−)inv(x1,x2)+1 · s2 = s1 = (−)inv(y1,y2)+1s2.

This implies that inv(x1, x2) + inv(y1, y2) ≡ 0 mod 2 and hence

χ(x1, . . . , xr) = (−)inv(y1,x1) · s1

= (−)inv(y1,x1)+inv(x1,x2)+inv(y1,y2) · s1

= (−)inv(y2,x2) · s1 = χ(y1, y2, x3, . . . , xr).

In the last case, we assume that the conditions of Claim 2.2 and Claim 2.3 hold. This implies
again inv(x1, x2) + inv(y1, y2) ≡ 0 mod 2, which in the same way as in the preceding case leads
to the statement of the lemma.

This lemma shows that r-signotopes are a subclass of uniform r-chirotopes. Moreover, they are
acyclic.

Definition 2.2.18. A uniform chirotope is acyclic if and only if for every (r + 1)-subset
X = {x1, . . . , xr+1} (not necessarily ordered) the sign sequence

(χ(Xx1) . . . χ(Xxr+1))

is none of the alternating sign sequences (+−+ . . . (−)r) and (−+− . . . (−)r+1) of length r + 1.

This definition of acyclicity is independent of the ordering of the elements.

Lemma 2.2.19. If the sign sequence of x1, . . . , xr+1 is alternating, then the sign sequence of
xπ(1), . . . , xπ(r+1) is alternating for every permutation π ∈ Sr+1.

Proof. Since adjacent transpositions generate the symmetric group, we only need to show the
statement for an adjacent transposition. Let x1 < . . . < xr+1 and π ∈ Sr+1 be the permutation
with π(j) = j+1, π(j+1) = j and π(i) = i for all i ∈ [n]\{j, j+1}. Consider the corresponding
sequence for X = (x1, . . . , xr+1) and Xπ = (x1, . . . , xj+1, xj , . . . , xr+1):

( χ(Xπ
1 ) . . . χ(Xπ

j+1) χ(Xπ
j ) . . . χ(Xπ

r+1) ).

All subsets Xπ
i for i /∈ {j, j + 1} contain both elements j and j + 1. However, they appear

in reversed order compared to X. All other elements appear in the same order. Hence the
sign of the permutation π when restricting to the elements of {x1, . . . , xr+1}\{xi} is negative.
This shows that all signs except the one of χ(Xπ

j+1) and χ(Xπ
j ) are reversed in the considered

sequence. If we restrict the permutation π to the elements {x1, . . . , xr+1}\{xi} for i = j, j + 1,
the resulting permutation is the identity whose sign is positive. However, the position of the
two adjacent signs in the sequence is reversed. Hence the sign sequence is equal to

( −χ(X1) . . . − χ(Xj−1) χ(Xj+1) χ(Xj) − χ(Xj+2) . . . − χ(Xr+1) )

which is alternating if and only if ( χ(X1) . . . χ(Xr+1) ) is alternating.
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In [BLS+99] acyclicity is only given in terms of cryptomorphic axiom systems of oriented ma-
troids. Since we could not find the definition for general r-chirotopes elsewhere, we prove that
this definition matches the definition of [BLS+99]. In his PhD thesis, Kliem discusses the rank 3
case even for non-uniform oriented matroids, see Definition 3.3 in Chapter 4 of [Kli22].

Lemma 2.2.20. The definition of acyclicity for uniform chirotopes (Definition 2.2.18) is equiv-
alent to Definition 3.4.7 in [BLS+99] for uniform oriented matroids.

Proof. By Definition 3.4.7 in [BLS+99] an oriented matroid is acyclic if it does not contain a
positive circuit. To avoid the formal definition of circuits, we use the following description. In a
uniform oriented matroid there are functions CX : X → {+,−} for all (r + 1)-subsets X ⊆ [n]
such that

χ(x1, x3, . . . , xr+1) = −CX(x1)CX(x2)χ(x2, x3, . . . , xr+1), (2.1)

see [BLS+99, (PV) in Defintion 3.5.1]. Such a function CX is called circuit. By the circuit
axioms it holds: If a circuit CX exists, then −CX is a circuit as well. A uniform oriented
matroid contains a positive circuit if there is an (r+ 1)-subset X = {x1, . . . , xr+1} such that CX
is the constant + function.
By Definition 2.2.18 a chirotope is not acyclic if there is an (r + 1)-subset X = {x1, . . . , xr+1}
containing the alternating sign sequence. This is equivalent to

χ(x1, . . . , xr) = (−)i+r−1χ(x1, . . . , xi−1, xi+1, . . . , xr+1) (2.2)

for all i = 1, . . . , r.
Assume χ is not acyclic and hence (2.2) holds for an (r + 1)-subset X = {x1, . . . , xr+1}. As
described above there is a circuit CX which fulfills the equation (2.1). Together with the alter-
nating property of chirotopes, it is

χ(x1, . . . , xr) = (−)i−1 · χ(xi, x1, . . . , xi−1, xi+1, . . . , xr)

= (−)i · CX(xi)CX(xr+1)χ(xr+1, x1, . . . , xi−1, xi+1, . . . , xr) (2.3)

= (−)i+r−1 · CX(xi)CX(xr+1)χ(x1, . . . , xi−1, xi+1, . . . , xr+1)

for all i = 1, . . . , r. Both equations (2.2) and (2.3) together imply

(−)i+r−1χ(x1, . . . , xi−1, xi+1, . . . , xr+1)

= χ(x1, . . . , xr)

= (−)i+r−1 · CX(xi)CX(xr+1)χ(x1, . . . , xi−1, xi+1, . . . , xr+1).

for all i ∈ {1, . . . , r}. This shows that CX(xi) = CX(xr+1) for all i and hence C is either the
constant + or the constant − function. In both cases we have a positive circuit.
For the reverse direction assume there is a positive circuit, i.e., there is an (r + 1)-subset X =
{x1, . . . , xr+1} such and CX is the constant + function on {x1, . . . , xr+1}. By (2.1) and the
alternating property of chirotopes as used in (2.3) it follows for all i = 1, . . . , r

χ(x1, . . . , xr) = −CX(xi)CX(xr+1)(−)i+r−1χ(x1, . . . , xi−1, xi+1, . . . , xr+1)

= (−)i+rχ(x1, . . . , xi−1, xi+1, . . . , xr+1)

which is exactly an alternating sequence, see (2.2).
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Rank 3 acyclic chirotopes are also known as abstract order types or CC-Systems. The latter was
introduced by Knuth [Knu92] in his book “Axioms and Hulls” using counterclockwise predicates
to axiomize planar point sets.

The chirotope χσ of a signotope σ is acyclic since there is at most one sign change on the packet
if the elements are ordered. Moreover by Lemma 2.2.19 the alternating sign sequence is invariant
under permutations. We summarize the results:

Theorem 2.2.21. For every r-signotope σ, the map χσ is an acyclic uniform r-chirotope.

Note that acyclic uniform chirotopes are in general not signotopes. The important part about
signotopes is the linear order of the elements. For rank 3 however, there is a permutation of the
elements of a chirotope such that it becomes a signotope. This follows from the fact that every
chirotope can be represented by a pseudoline arrangement in which we can mark an unbounded
cell as the top cell and order the pseudolines from top to bottom. We have already seen that
marked Euclidean pseudoline arrangements are in correspondence with 3-signotope. For r ≥ 4
this is no longer true, and signotopes are a proper subclass of acyclic uniform chirotopes. For
example 5 points in R3 in general position which are not in convex position have no sorting such
that the packet on all 5 elements is monotone.

It is well-known that the number of r-chirotopes on n elements is 2Θ(nr−1), see for exam-
ple [BLS+99, Corollary 7.4.3]. Since the number of r-signotopes has the same asymptotics, see
Proposition 2.2.14, they are indeed a rich subclass of r-chirotopes.

2.2.6 Topological Representations of r-Signotopes

The cases r = 1 and r = 2 are well-understood. For r = 3 we already discussed two topological
representations and a similar way for a combinatorial encoding. In this section, we give several
topological and geometric representations of r-signotopes. Kapranov and Voevodsky [KV91]
already mentioned two topological representations for higher Bruhat orders, the first in terms
of single element extensions of cyclic hyperplane arrangements, and the second in terms of
tight zonotopal tilings of projections of cubes, also called cubillages. For rank 3 signotopes, we
already discussed pseudolines and pseudoconfiguration of points as topological representation.
Both presentation have a generalization for higher rank.

For each of the following four presented representations we give an illustration of the 4-signotope
σex on 6 elements. For a compact representation, we describe it as a string of its signs in reversed
lexicographic order of its r-subsets:

σex = ++−−−+−−−++++++.

Pseudohyerplane Arrangements

It was already observed by Kapranov and Voevodsky [KV91] that r-signotopes are a subclass
of rank r oriented matroids, see Section 2.2.5 for a proof in terms of chirotopes. The Folkman-
Lawrence representation theorem [FL78] asserts that every r-chirotope can be represented as
a pseudohyperplane arrangement in Rr−1. This in particular holds for r-signotopes as they
are a subclass. Pseudohyperplane arrangements abstract the properties of proper hyperplane
arrangements.
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Definition 2.2.22 (Pseudohyperplane Arrangement). A pseudohyperplane H in Rd is homeo-
morphic to a hyperplane in Rd, i.e., the removal of H divides Rd into two connected components,
which are both homeomorphic to an open d-dimensional ball. A pseudohyperplane arrangement
in Rd is a family of pseudohyperplanes in Rd such that for every pair H1, H2 of pseudohyper-
planes the intersection is a pseudohyperplane in Rd−1 and H1 intersects both components of
Rd\H2.

Signotopes are a subclass of r-chirotopes, which provide more structure. As shown by Felsner
and Weil r-signotopes correspond to a maximum chain of (r−1)-signotopes (cf. Theorem 2.2.11).
We refer to such a maximum chain as a sweep of the r-signotope. In terms of pseudohyperplane

Figure 2.6: A pseudohyperplane arrangement in R3 of the 4-signotope σex on 6 elements. The front is
the reversed cyclic arrangement in R2, the start of the sweep.

arrangement, the sweep is a sequence of pseudohyperplane arrangements in Rr−2, i.e., one
dimension lower. The sweep of an r-signotope starts with the reversed cyclic arrangement which
corresponds to the constant − function and ends with the cyclic arrangement, the constant +
function. Two consecutive (r− 1)-signotopes differ in exactly one sign, which is a fliple in both
(r−1)-signotopes. For the topological setting of pseudohyperplane, this corresponds to a change
of orientation of a simplicial cell. Hence the r − 1 pseudohyperplanes cross in between. For an
illustration of σex see Figure 2.6.4 In Section 2.2.2, we already discussed the rank 3 case in which
the Euclidean pseudoline arrangement can be represented by a maximum chain of permutations
such that two consecutive differ in an adjacent transposition.

Since the sweep for a signotope always starts with the reverse and ends with the cyclic arrange-
ment of one dimension/rank less, the cyclic arrangement itself plays an important role. Clearly
the cyclic arrangement in dimension d is a (d + 1)-signotope which corresponds to the unique
maximal element σmax in the higher Bruhat order B(n, d+ 1), the constant + function. In the
studies of oriented matroids it is also known as the alternating oriented matroid, which is based
on the structure in terms of the circuit axioms.

4For a 3 dimensional visualization see
https://helenabergold.github.io/supp/3d signotopes/example pshyperplanes.html

https://helenabergold.github.io/supp/3d_signotopes/example_pshyperplanes.html
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k-Intersecting Pseudoconfiguration of Points

Recently, Miyata [Miy21] presented a representation of r-signotopes using the interaction of a
point set and a family of curves. Surprisingly, this is for all ranks a representation in the plane.
As it is a generalization of pseudoconfiguration of points (see Section 2.2.3 for the definition),
they are called (r − 2)-intersecting pseudoconfiguration of points.

Definition 2.2.23 (k-Intersecting Pseudoconfiguration of Points). A k-intersecting pseudocon-
figuration of points of order n consists of a point set P = {p1, . . . , pn} in the plane ordered by
increasing x coordinate and a set of x-monotone curves C such that

I For every curve c ∈ C there exists at least k + 1 points of P on c;

I For any k + 1 points there exists a unique curve going through them; and

I Two curves have at most k common points which are proper crossings (no touchings).

Note that 1-intersecting pseudoconfigurations of points are basically pseudoconfigurations of
points. For pseudoconfiguration of points, see Definition 2.2.8, we assumed that two pseudo-
lines have exactly one crossing. In the case of 1-intersecting pseudoconfiguration of points, we
weakened this condition to at most one crossing. However, if two curves do not cross, there is
an arrangement representing the same 3-signotope in which they cross.
In general, given a k-intersecting pseudoconfiguration of points the n points of P ordered with
increasing x coordinate correspond to the n elements. The sign σ(x1, . . . , xr) of an r-subset
x1 < . . . < xr is obtained by the curve c going through the r − 1 points x1, . . . , xr−1 and the
above-below-relation of the r-th point xr with respect to the curve c. If xr is above c, the subset
is mapped to + and − otherwise. The curve going trough the points x1, . . . , xr−1 is denoted by
c(x1, . . . , xr−1). Note that the other r− 1 curves determined by the remaining (r− 1)-subsets of
the r-subset contain the same information in the following way. Every curve divides the plane in
exactly two connected component, both of them unbounded. Since the curves are x-monotone,
one of the component is above and the other one below. We say the component above the curve
is the +-side, and the other component is the −-side. We define a sign mapping on

(
[n]
r

)
by

σ(x1, . . . , xr) = + ⇔ xi is on the (−)r−i-side of c(x1, . . . , xi−1, xi+1, . . . , xr);

σ(x1, . . . , xr) = − ⇔ xi is on the (−)r−i+1-side of c(x1, . . . , xi−1, xi+1, . . . , xr);

which is indeed well-defined and a signotope as shown by Miyata. An illustration of σex is given
in Figure 2.7.5

Theorem 2.2.24 ([Miy21]). For r ≥ 2, the sign function of an (r − 2)-intersecting pseudocon-
figuration of points of order n is an r-signotope on [n]. Moreover, for every r-signotope σ on n
elements, there is a (r − 2)-intersecting pseudoconfiguration of points of order n such that the
corresponding sign function equals σ.

The case r = 3 follows by the duality of pseudoconfiguration of points and marked pseudoline
arrangements discussed in Section 2.2.3. An independent proof for this special case is provided
by Balko, Fulek and Kynčl [BFK15].

5This representation was generated using an algorithm provided by Günter Rote.
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Figure 2.7: A representation of a 4-signotope σex on 6-elements as a 2-intersecting pseudoconfiguration
of points. The points represent the 6 elements, each of them marked with a different color.
The curves are colored with the colors of the three points they contain.

Particular instances of (r− 2)-intersecting pseudoconfiguration of points are obtained by taking
the curves as polynomial functions of degree r − 2 which interpolate the (r − 1)-subsets of the
point set. More precisely r − 1 points determine a polynomial function of degree r − 2 and two
such curves cross in at most r−2 points. However, not all configurations are realizable in such a
way that every curve of L is a polynomial function of degree ≤ r− 2. This already holds in the
r = 3 case, since not all pseudoline arrangements are realizable as a line arrangements which is
equivalent to realizing pseudoconfiguration of points as point sets.

Zonotopal tiling

A dual representation to pseudohyperplane arrangements are zonotopal tilings of r − 1 dimen-
sional zonotopes. A zonotope is the Minkowski sum of vectors V = {v1, . . . , vn} in Rr−1, which is
then tiled by translations of the Minkowski sum of subsets of V . This geometric representation
of signotopes was first studied by Kapranov and Voevodsky [KV91] and further investigated by
Thomas [Tho03] and Williams [Wil23]. By the Bohne-Dress theorem every rank r-signotopes
can be realized as a tight zonotopal tiling in Rr−1. For a proof and further information, see for
example [RZ94]. A tiling is tight if all tiles are Minkowski sums of r − 1 independent vectors.
In such a representation, each vector corresponds to one element of the signotope. Hence for a
3-signotope, the tiled zonotope corresponds to a 2n-gon. Connecting the halving points of the
translations of the same vector gives a pseudohyperplane arrangement. For an illustration of a
3-signotope on 9 elements as a zonotopal tiling together with its dual pseudoline arrangement,
see Figure 2.8.
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Figure 2.8: A 2-dimensional zonotope with its dual pseudoline arrangement. This is the non-realizable
example by Ringel [Rin56] with 9 elements of rank 3.

The 3-dimensional zonotope representing σex is given in Figure 2.9.6

Figure 2.9: A 3-dimensional zonotopal tiling representing the 4-signotope σex on 6 elements. Each
vector corresponds to one element of the signotope. Translations of the same vector have
the same color.

One element extension of the cyclic arrangement

The next representation of r-signotopes was first mentioned by Kapranov and Voevodsky [KV91]
and further studied by Ziegler [Zie93]. For this an r-signotope on n elements is represented as a
single element extension of the cyclic arrangement of rank n− r + 1 on n elements. A crossing
point of n − r hyperplanes can be identified with its n − (n − r) = r pseudoplanes which do
not contain this crossing point. Along each line which corresponds to the crossing of n− r − 1
elements, the r-subsets of the crossing points are ordered lexicographically. A one element
extension of this cyclic arrangement corresponds to adding an additional pseudohyperplane.

6An interactive view of the 3-dimensional object can be found here:
https://helenabergold.github.io/supp/3d signotopes/example zonotope.html

https://helenabergold.github.io/supp/3d_signotopes/example_zonotope.html
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Such a pseudohyperplane partitions each line into two parts, one part above the extending
pseudohyperplane and one below. If a crossing point is above the extending line, the r subset
of the label is mapped to + and for the crossing points below to −. Monotonicity of this sign
mapping on r-subsets follows from the order of the labels along all lines. For an illustration see
Figure 2.10.

3456

2456

2356

2346

2345

1456

1356

1346

1345

1245

1235

1234

1236
1256

1246

Figure 2.10: The 4-signotope σex on 6 elements represented by a one element extension of the cyclic
arrangement of rank 3 on 6 elements. The crossing points with white vertices build the
+-set, the black vertices the −-set.

2.3 Simple Drawings

Starting from Turán’s brick factory problem from the 1940’s, which asks for the minimum
number of crossings in a drawing of a complete bipartite graph, simple drawings have gained a
lot of attention and became a source for many open problems and conjectures. In the literature,
simple drawings are also called good drawings, simple topological drawings, and simple topological
graphs.

Definition 2.3.1 (Simple Drawing). In a simple drawing of a graph in the plane (respectively
on the sphere),

I The vertices are mapped to distinct points in the plane (respectively on the sphere);

I Edges are mapped to simple curves connecting the two corresponding vertices and contain-
ing no other vertices;

I Every pair of edges has at most one common point, which is either a common vertex or a
crossing (but not a touching); and

I No three edges cross at a common point.

Figure 2.11 shows the obstructions to simple drawings. In this thesis, we only consider simple
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Figure 2.11: The obstructions to simple drawings.

drawings of the complete graph Kn, hence between each pair of vertices there is a curve con-
necting them. They can be seen as continuous projection of the d-simplex onto the plane which
shows that they are a topological generalization of point sets in the plane.

When studying simple drawings, we do not consider the actual embedding of the drawing on
the sphere or in the plane. There are different ways to define isomorphism classes on simple
drawings, which we discuss in more detail in Section 2.5. Throughout this thesis we only consider
the so called weak isomorphism in which two drawings are isomorphic if the same pairs of edges
cross. This is an isomorphism class for drawings on the sphere. If we consider drawings in the
plane, we additional fix a cell of the drawing as the unbounded cell. We refer to it as outer cell.

Given a point set in the plane in general position, i.e., no three points on a line, connecting the
points with straight-line segments yields a simple drawing which is denoted as geometric draw-
ing. Geometric drawings are a proper subclass of simple drawings. Moreover, we have already
seen that signotopes appeared in the context of pseudolinear drawings of Kn if the vertices are
ordered from left to right (see Section 2.2.3). A pseudolinear drawing is a drawing in which
all edges can be extended to pseudolines such that the resulting configuration is a pseudoline
arrangement. Pseudolinear drawings are clearly simple drawings and contain all geometric draw-
ings. A characterization of pseudolinear drawings via an infinite family of forbidden subdrawings
is given in [ABR21].

Deciding whether a pseudolinear drawing is homeomorphic to a geometric drawing corresponds
to deciding whether a pseuodoline arrangement is realizable as a line arrangement. This is
shown to be ETR-hard [Mnë88]. Since there are non-realizable pseudoline arrangements, geo-
metric drawings are a proper subset of pseudolinear drawings. In Section 2.6 we give a more
refined classification of classes between pseudolinear drawings and simple drawings. When ex-
tending the pseudlinear drawing to a pseudoline arrangement, we obtain a pseudoconfiguration
of points. Furthermore, from a pseudoconfiguration of points we get to a pseudolinear drawing
by restricting to the curves between the two vertices. Since every pseudoline arrangement can be
drawn in an x-monotone way, we achieve an ordering of the vertices 1, . . . , n such that all pseudo-
lines/edges are drawn x-monotone. Balko, Fulek and Kynčl [BFK15] used this setting to define
triple orientations based on the above-below-relationship similar to the one of the k-intersecting
pseudoconfiguration of points. In particular, for i < j < k, the triple i, j, k is mapped to + if j
is below the edge ik and if j is above the edge, we assign −. For an illustration, see Figure 2.12.
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i j k

+
i j k

−

Figure 2.12: Illustration of the connection between the above below relation ship and triangle orienta-
tions in pseudolinear drawings.

This mapping is indeed a signotope as shown by Balko, Fulek and Kynčl. If we look at the
extended edges to x-monotone pseudolines, the sign of a triple i, j, k determines the orientation
of the triangle spanned by those three vertices in the drawing of the complete graph. Given a
simple drawing D, the subdrawing of K3 induced by three vertices is a triangle. Note that the
edges of a triangle in a simple drawing do not cross and they build a simple closed curve. Hence
a triangle partitions the plane (respectively the sphere) into exactly two connected components.
If i, j, k is assigned +, i.e., if j is below the edge ik, the triangle ijk is oriented counterclockwise
when tracing the boundary of the triangle i, j, k in this order. If i, j, k is −, then the triangle
orientation is clockwise. We can define the triangle orientation in arbitrary simple drawings,
which we discuss in the next section.

2.4 Generalized Signotopes

Let D be a simple drawing of a complete graph in the plane. To each triple (a, b, c) consisting of
three distinct vertices, we assign an orientation γ(a, b, c) ∈ {+,−}. The sign γ(a, b, c) indicates
whether we go counterclockwise or clockwise around the triangle when traversing the edges
ab, bc, ca in this order.
In comparison to pseudolinear drawings, when considering simple drawings of the complete
graph we have no meaningful ordering of the vertices. Exchanging the labels of two vertices
reverts the orientation of all triangles containing both vertices. This suggests to look at the
alternating extension of γ. Formally γ(iπ(1), iπ(2), iπ(3)) = sgn(π) · γ(i1, i2, i3) for any distinct
labels i1, i2, i3 and any permutation π ∈ S3. This yields a mapping γ : [n]3 → {+,−}. Recall
that [n]3 denotes triples with pairwise distinct entries from [n]. To see whether the alternating
extension of γ still has a property comparable to the monotonicity of signotopes, we have to
look at 4-tuples of vertices, i.e., drawings of K4. It turns out that the monotonicity condition
is replaced by unimodality or co-unimodality, i.e., there are at most two sign changes in the
sequence. On the sphere there are two types of drawings of K4: Type I has one crossing and
type II has no crossing. Type I can be drawn in two different ways in the plane: In type Ia the
crossing is only incident to bounded cells and in type Ib the crossing is incident to the outer cell,
see Figure 2.13 for the drawings with one possible labeling of the vertices.
The type of a drawing of K4 with vertices a, b, c, d can be characterized in terms of the sign
sequence of orientations (γ(b, c, d) γ(a, c, d) γ(a, b, d) γ(a, b, c)). The drawing is

I of type Ia or type Ib if and only if the sequence is (++++), (++−−), (+−−+), (−++−),
(−−++), or (−−−−); and

I of type II if and only if the number of +’s (and −’s respectively) in the sequence is odd.
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type Ia type Ib type II

(++++) (−−++) (−+++)

Figure 2.13: The three types of simple drawings of K4 in the plane.

Since there are no other possibilities to draw a K4, there are at most two sign-changes in the
sequence (γ(b, c, d) γ(a, c, d) γ(a, b, d) γ(a, b, c)). Moreover, any such sequence is in fact induced
by a simple drawing of K4. Allowing up to two sign-changes is equivalent to forbidding the two
alternating patterns (+−+−) and (−+−+). In contrast to signotopes, for which the ordering
of the elements is essential, this is no longer true for generalized signotopes. If a generalized
signotope γ is alternating and avoids the two patterns (+−+−) and (−+−+) on sorted indices,
i.e., (γ(j, k, l) γ(i, k, l) γ(i, j, l) γ(i, j, k)) has at most two sign-changes for all i < j < k < l,
then it avoids the two patterns in (γ(b, c, d) γ(a, c, d) γ(a, b, d) γ(a, b, c)) for pairwise distinct
a, b, c, d ∈ [n]. This follows directly from Lemma 2.2.19 and allows us to define generalized
signotopes as alternating mappings γ : [n]3 → {+,−} without alternating sign sequences.

Definition 2.4.1 (Generalized Signotope). A generalized signotope is a sign function γ : [n]3 →
{+,−} such that for pairwise distinct elements a, b, c, d ∈ [n] the sign sequence

(γ(b, c, d) γ(a, c, d) γ(a, b, d) γ(a, b, c))

has at most two sign changes.

For simple drawings of the Kn in the plane, all subdrawings of K4 admit at most two sign changes
on every 4-packet. Given a simple drawing D, a subdrawing is a set of curves corresponding to
edges and their endvertices. A subdrawing of a graph H whose edges and vertices correspond
to the incident relations of H. Hence the sign function of every simple drawing of Kn, which
encodes the orientations (clockwise or anticlockwise) of the induced K3, has at most two sign
changes on every 4-packet. We conclude:

Proposition 2.4.2. Every simple drawing of Kn induces a generalized signotope on n elements.

The structure of generalized signotopes appears in various geometric objects. In his monograph
“Axioms and Hulls” Knuth [Knu92] used ternary predicates to axiomize point sets in general po-
sition in the plane, the CC-Systems which are acyclic uniform rank 3 chirotopes, see Section 2.2.5.
As a relaxation of those axioms, he studies generalized signotopes which he calls interior triple
systems. Let gn denote the number of generalized signotopes on n elements. Knuth showed
that 1

27n
3 ≤ log2(gn). In Chapter 6 we will improve this bound to 1

24n
3 ≤ log2(gn) and give an

asymptotic matching upper bound of 0.139n3 using Shearer’s entropy lemma. While general-
ized signotopes contain all uniform acyclic 3-chirotopes, the alternating sign patterns (+−+−)
or (−+−+) appear in cyclic 3-chirotope, see Section 2.2.5. Moreover, generalized signotopes
appeared in the study of intersection patterns of convex sets, see [ADKP22b, ADKP22a].



2.5 Rotation Systems 33

In Chapter 6, we show that asymptotically there are more generalized signotopes than simple
drawings. Moreover, we discuss the relation between simple drawings and generalized signotopes.
While all 3-signotopes correspond to a pseudoline arrangement, this is no longer true for the
generalized signotopes and simple drawings. The two drawings shown in Figure 2.14 have
essential different properties. For example the drawing on the left, denoted as C5 is geometric
and corresponds to the point set in convex position, while the drawing on the right, denoted as
T5 is not isomorphic to a geometric drawing. However with the given labeling both generalized
signotopes are the constant +-function. Moreover, the two drawings presented are the two

4

5

3

2

1

(a)

5 4 3 2 1

(b)

Figure 2.14: The two crossing-maximal simple drawings of K5. For both of them the triangle orientation
for triangles {i, j, k} with i < j < k is counterclockwise oriented,i.e., γ(i, j, k) = +. (a)
The geometric drawing C5 of points in convex position. (b) The twisted drawing T5 with
rotation system Πoc

5,1. The drawing T5 is not geometric.

crossing maximal drawings of K5. Given a simple drawing and its generalized signotope, we
can decide on the basis of the generalized signotope, whether the K4 has a crossing or not.
Hence different simple drawings yielding the same generalized signotope have the same number
of crossings. However, the generalized signotope does not provide information on the exact edges
which cross. The two drawings given in Figure 2.14 have the same generalized signotope. While
in the C5 the edge {1, 5} is uncrossed, the edge {1, 5} in the drawing T5 crosses all edges {j, k}
with 1 < j < k < 5. Despite the lack of information, generalized signotopes turned out to be
very useful and have been the essential tool for the proof of a separation theorem in the context
of simple drawings. In Chapter 4, we discuss theorems from convex geometry in the context of
simple drawings and give a proof of Kirchberger’s theorem in terms of generalized signotopes.

2.5 Rotation Systems

Various properties of a simple drawing only depend on the combinatorics of the drawing. One
way to encode the combinatorics are generalized signotopes, which encode the orientation of
the induced K3. However, as discussed in Section 2.4 generalized signotopes do not encode all
information about the drawings. Another way to encode simple drawings combinatorially are
rotation systems.
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Definition 2.5.1 (Rotation System). For a given simple drawing D and a vertex v of D, the
cyclic order πv of incident edges in counterclockwise order around v is called the rotation of v
in D. The collection of rotations of all vertices is called the rotation system of D.

In the case of simple drawings of the complete graph Kn, the rotation of a vertex v is a cyclic
permutation on the n− 1 vertices V (Kn)\{v}. The rotation system captures the combinatorial
properties of a simple drawing on the sphere – the choice of the outer cell when stereographically
projecting the drawing onto a plane has no effect on the rotation system.

Definition 2.5.2 (Pre-Rotation System). A pre-rotation system on V consists of cyclic permu-
tations πv on the elements V \{v} for all v ∈ V . A pre-rotation system Π = (πv)v∈V is drawable
if there is a simple drawing of the complete graph with vertices V such that its rotation system
coincides with Π.

Two pre-rotation systems are isomorphic if they are the same up to relabeling and reflection
(i.e., all cyclic orders are reversed). Two simple drawings are weakly isomorphic if their rotation
systems are isomorphic.

Figure 2.15: Two weakly isomorphic drawings of K6, which can be transformed into each other by a
triangle-flip. The triangle flip is marked grey.

Besides weak isomorphism, there is also the notion of strong isomorphism in literature: Two
simple drawings are called strongly isomorphic if they induce homeomorphic cell decompositions
of the sphere.

A triangular cell, which has no vertex on its boundary, is bounded by three edges. By moving
one of these edges across the intersection of the two other edges, one obtains a weakly isomorphic
drawing; see Figure 2.15. This operation is called triangle-flip. Gioan [Gio05, Gio22], see also
Arroyo et al. [AMRS17], showed that any two weakly isomorphic drawings of the complete graph
can be transformed into each other with a sequence of triangle-flips and at most one reflection
of the drawing.

On four vertices there are three non-isomorphic pre-rotation systems. The K4 has exactly two
non-isomorphic simple drawings on the sphere: The drawing with one crossing (see type I in
Figure 2.13) and the drawing with no crossing (type II in Figure 2.13). Note that the drawing of
type Ia and type Ib are isomorphic on the sphere. The two pre-rotation systems corresponding
to type I and type II are drawable, and the third pre-rotation system is an obstruction to
drawability. It is denoted by Πo

4 and described in Figure 2.16.

By studying the drawings of K4, see Figure 2.17, we learn that a crossing pair of edges can be
identified from the underlying rotation system. Hence the weak isomorphism is consistent with
the definition in the beginning of Section 2.3.
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Πo
4 :

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 3 2

Πo
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 4 2 3

Πo
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 2 4 3

Figure 2.16: The three obstructions Πo
4, Πo

5,1, and Πo
5,2 for rotation systems.
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π1 : 2 3 4
π2 : 1 3 4
π3 : 1 4 2
π4 : 1 3 2

π1 : 2 3 4
π2 : 1 4 3
π3 : 1 4 2
π4 : 1 2 3

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 2 3
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π1 : 2 3 4
π2 : 1 4 3
π3 : 1 2 4
π4 : 1 3 2

Figure 2.17: The first three drawings of type I are isomorphic, representing the different possibilities of
edges crossing in a K4. The last one represents the isomorphism class corresponding to
type II.

Since every crossing pair of edges involves exactly four vertices, we have to look at subconfigura-
tions of size 4 to identify all crossings in a simple drawing. For a pre-rotation system Π = (πv)v∈V
and a subset of the elements I ⊆ V , the sub-configuration induced by I is Π|I = (πv|I)v∈I , where
πv|I denotes the cyclic permutation obtained by restricting πv to I\{v}. A pre-rotation system
Π on V contains Π′ if there is an induced sub-configuration Π|I with I ⊆ V isomorphic to Π′.
A pre-rotation system not containing Π′ is called Π′-free.

The pairs of crossing edges in a drawing of Kn are fully determined by its underlying rotation
system.

Observation 2.5.3. The following two statements hold:

(i) A pre-rotation system containing Πo
4 is not drawable.

(ii) Let Π be a Πo
4-free pre-rotation system on [n]. The subconfiguration induced by a 4-element

subset is drawable and determines which pairs of edges cross in the drawing.

Note that part (ii) of the lemma allows to talk about the crossing pairs of edges of a Πo
4-free

pre-rotation system, even if there is no associated drawing.

Ábrego et al. [ÁAF+15] generated all pre-rotation systems for up to 9 vertices and used a drawing
program based on back-tracking to classify the drawable ones. In particular, they provided the
following classification.

Proposition 2.5.4 ([ÁAF+15]). A pre-rotation system on n ≤ 6 elements is drawable if and
only if it does not contain Πo

4, Πo
5,1, or Πo

5,2 (Figure 2.16) as a subconfiguration.
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Moreover, Kynčl showed that a pre-rotation system is drawable if and only if all induced 4-, 5-,
and 6-element subconfigurations are drawable [Kyn20, Theorem 1.1]. Together with Proposi-
tion 2.5.4 this yields the following characterization:

Theorem 2.5.5. A pre-rotation system on n elements is drawable if and only if it does not
contain Πo

4, Πo
5,1 or Πo

5,2 (Figure 2.16) as a subconfiguration.

Rotation systems encode combinatorial properties of simple drawings on the sphere. To make
investigation with computers, we modeled a CNF instance describing rotation systems. For more
details see Chapter 5. Since rotation systems encode the crossings, and plane substructures
do not depend on the actual embedding in the plane, the SAT instance lead to several new
conjectures concerning plane substructures in simple drawings and in particular helped to prove
that every convex drawing contains a plane Hamiltonian cycle. The existence of Hamiltonian
cycles in simple drawings is known as Rafla’s conjecture [Raf88] and remains open. Despite
several improvements of the longest plane path in the last years, the conjecture is only shown
for small classes of simple drawings. Subclasses of simple drawings such as convex drawings are
defined in the next section.

2.6 Convexity Hierarchy

Geometric drawings of theKn are a different point of view for point sets in the plane. The vertices
are exactly the points, and we connect the points by their straight-line segment. Moreover,
pseudoconfigurations of points are simple drawings where we only consider the segment of the
curves between two points. This class of drawings is called pseudolinear drawings, which clearly
contains all geometric drawings. We now define superclassses of pseudolinear drawings which
generalize the convexity properties. They have been introduced in the convexity hierarchy by
Arroyo et al. [AMRS22]. The classic notion of convexity in the plane asserts that for two
points in a convex shape, the connecting line is completely contained in the convex shape. For
example (geometric) triangles are convex shapes, which we can define in simple drawings as
well. Given a simple drawing D, the subdrawing induced by three vertices is a triangle. Since
the edges of a triangle in a simple drawing do not cross and hence the removal of a triangle
separates the plane (respectively the sphere) into two connected components. In the plane this
is a bounded component and an unbounded component. We call the closure of these connected
components sides. A side of a triangle is convex if every edge that has its two endvertices in
the side is completely drawn in the side. Note that both sides of the triangle might be convex.
In geometric drawings, the bounded side is always convex. We are now ready to introduce the
convexity hierarchy of Arroyo et al. [AMRS22]). For 1 ≤ i < j ≤ 6, drawings with property (j)
also have property (i).

(1) simple drawings;

(2) convex drawings: Every triangle has a convex side;

(3) hereditary-convex drawings (short: h-convex): we can choose a convex side ST for every
triangle T such that, for every triangle T ′ contained in ST , it holds ST ′ ⊆ ST ;
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(4) face-convex drawings (short: f-convex): there is a special cell c∞ such that, for every
triangle, the side not containing c∞ is convex;

(5) pseudolinear drawings: there is an arrangement A of pseudolines such that every edge of
the drawing is supported by (contained in) one of the pseudolines of A;

(6) geometric drawings: Every edge is drawn as straight-line segments connecting its two
endpoints.

Arroyo et al. [AMRS18] showed that the f-convex drawings where the special cell c∞ is drawn
as the unbounded outer cell are precisely the pseudolinear drawings. Pseudolinear drawings
are generalized by pseudocircular drawings. A drawing is called pseudocircular if every edge
can be extended to a pseudocircle (simple closed curve) such that every pair of pseudocircles
either has two crossings or is disjoint. Since stereographic projections preserve (pseudo)circles,
pseudocircularity is a property of drawings on the sphere. Pseudocircular drawings were studied
in an article by Arroyo, Richter, and Sunohara [ARS21]. They provided an example of a simple
drawing which is not pseudocircular. Moreover, they proved that hereditary-convex drawings
are precisely the pseudospherical drawings, i.e., pseudocircular drawings with the additional two
properties that

I every pair of pseudocircles intersects, and

I for any two edges e 6= f the pseudocircle γe has at most one crossing with f .

The relation between convex drawings and pseudocircular drawings remains open.

To see this, note that the existence of a convex side is not affected by changing the outer cell or by
transferring the drawing to the sphere. Moreover, convex sides are not affected by triangle-flips.
Hence, these properties only depend on the rotation system of the drawing.

Observation 2.6.1. Convexity, hereditary-convexity, and face-convexity are properties of the
weak isomorphism classes.

For pseudolinear and geometric drawings, however, the choice of the outer cell plays an essential
role. In [ABR21], Arroyo, Bensmail and Bruce Richter give characterization of pseudolinear
drawings which yields a polynomial-time algorithm for the recognition. Arroyo et al. [AMRS22]
showed that convex and h-convex drawings can be characterized via finitely many forbidden
subconfigurations.

Proposition 2.6.2 ([AMRS22]). A simple drawing is convex if and only if it does not contain
Πoc

5,1 or Πoc
5,2 (cf. Figure 2.18) as a subconfiguration. Moreover, a convex drawing is h-convex if

and only if it does not contain Πoh
6 (cf. Figure 2.19) as a subconfiguration.
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Πoc
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 2 4 3

2

5

1

4

1

2

5 4

Πoc
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 4 2 3

3

3

Figure 2.18: The two obstructions Πoc
5,1 (left) and Πoc

5,2 (right) for convex drawings. A non-convex
triangle is highlighted red.

Πoh
6 :

π1 : 2 3 4 5 6
π2 : 1 3 4 5 6
π3 : 1 2 6 4 5
π4 : 1 2 3 5 6
π5 : 1 2 3 4 6
π6 : 1 2 4 5 3

2 1

54

3 6

Figure 2.19: The obstruction Πoh
6 for h-convex drawings. The convex side of the red triangle is the

bounded side and for the blue triangle its the unbounded side. Hence the blue triangle is
contained in the convex side of the red one but its convex side is not.



Chapter 3

An Extension Theorem for
Signotopes

In 1926, Levi proved in his pioneering article on pseudoline arrangements that the fundamental
extendability of line arrangements applies to the more general setting of pseudoline arrange-
ments [Lev26].

Theorem 2.2.4 (Levi’s extension lemma for pseudoline arrangements [Lev26]). Given an ar-
rangement A of pseudolines (not necessarily simple) and two points p, q in R2, not on a common
pseudoline of A. Then there exists a pseudoline ` containing both points p and q such that A∪{`}
is a pseudoline arrangement.

Several proofs for Levi’s extension lemma are known today. Besides [Lev26], see also [AMRS18,
FW01, Sch19].
Generalizations to higher dimensions have been studied in the context of oriented matroids,
which by the representation theorem of Folkman and Lawrence [FL78] have representations as
projective pseudohyperplane arrangements. Given a family of hyperplanes H in Rd, any d points
in Rd, not all on a common hyperplane of H, define a hyperplane which is distinct from the
hyperplanes in H. Goodman and Pollack [GP81] presented an arrangement of 8 pseudoplanes
in R3 and a selection of three points, not all on a common pseudoplane, such that there is no
extension of the arrangement with a pseudoplane containing the selected points. Richter-Gebert
[Ric93] then investigated a weaker version with only two disjoint prescribed points in dimension
3. He presents an example of a rank 4 oriented matroid on 12 elements which is not extendable.
In this chapter, we present a proof of Levi’s extension lemma in a purely combinatorial setting,
which works for higher dimensions. The geometry is represented by r-signotopes, which are
a rich subclass of oriented matroids (see Proposition 2.2.14, Theorem 2.2.21). We show that
r-signotopes are extendable through two prescribed points in even dimensions d, that is, when
the rank r = d+ 1 is odd; see Theorem 3.1.2. Surprisingly, there are non-extendable signotopes
in rank 4, 6, 8, 10, and 12, which lead to the conjecture that there is no extension theorem for
any even rank r ≥ 4, see Conjecture 3.1.

Outline. In Section 3.1, we discuss how to formulate extendability in terms of signotopes and
give the main results of this chapter. A special case, where the extending element is at the last
position is studied in Section 3.2. This turns out to be the essential tool in combination with the
rotation operator, which is introduced in Section 3.3. In Section 3.4, we finally give the proof
of the extension theorem for odd rank. Some technical lemmata are deferred to Section 3.5.
In Section 3.6 we discuss the properties for the counterexamples. Up to this point the results
presented in this chapter are based on [BFS23a] which is joint work with Stefan Felsner and
Manfred Scheucher. Last but not least, we discuss generalizations of this extendability by
prescribing more than two points, in Section 3.7.
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3.1 Extendability of Signotopes

In Levi’s extension lemma for pseudoline arrangements, each of the two prescribed points can
either lie in a cell of the arrangement, on one pseudoline, or be the crossing point of two or
more pseudolines. To formulate an extension lemma in terms of 3-signotopes we restrict our
considerations to simple pseudoline arrangements and to crossing points as prescribed points.
Since the pseudoline extending the arrangement passes through the two prescribed crossing
points, the extension yields a non-simple arrangement. However, perturbing the extending
pseudoline at the non-simple crossing points yields a simple arrangement. Figure 3.1 gives an
illustration.

Figure 3.1: Perturbing an extending pseudoline at the two non-simple crossing points.

In terms of signotopes we identify the crossing points via the set of the two pseudolines crossing
in this point. Since two pseudolines cross exactly once, the crossing points are in bijection
to the 2-subsets, i.e. to

(
[n]
2

)
. A perturbation at a prescribed crossing together with the new

inserted pseudoline yields a triangular cell incident to the crossing. This cell is bounded by the
two pseudolines defining the crossing and the extending pseudoline. In terms of 3-signotopes
this corresponds to a fliple containing the extending element. For the definition and more
information, see Section 2.2.4.
Similarly for general rank r, we prescribe two disjoint crossing points of r−1 pseudohyperplanes,
corresponding to

(
[n]
r−1

)
. For the additional element extending the signotope we require that it

builds a fliple together with the prescribed (r − 1)-subsets.
Let A be an arrangement of pseudolines drawn in an x-monotone way, which are labeled 1, . . . , n
from top to bottom on the left. When applying Levi’s extension lemma to extend A the left
endpoint of the extending line ` will be between two consecutive endpoints of pseudolines of A.
To re-establish the properties of the labeling, we have to set the label of ` accordingly and
increase the label of every pseudoline that starts below ` by one. To cope with this relabeling-
issue in terms of signotopes, we introduce the reverse operation, i.e., deleting an element. For
k ∈ [n] and a subset X of [n], we define

X ↓k:= {x | x ∈ X,x < k} ∪ {x− 1 | x ∈ X,x > k}.

Note that the cardinality of X and X ↓k is the same if and only if k /∈ X. If k ∈ X it is
|X ↓k | = |X| − 1. For an r-signotope σ on [n], we define the deletion of an element k ∈ [n] as
σ↓k on r-subsets of [n− 1] by

σ↓k (X ↓k) := σ(X)
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for all r-subsets X ⊆ [n] with k /∈ X. This is an r-signotope on [n−1] because each (r+1)-packet
has been an (r+1)-packet for σ. The deletion of several elements k1 < . . . < k` at the same time
is the repeated application of the deletion starting with the largest element to avoid additional
index shifts. This is denoted by σ↓{k1,...,k`}.

Definition 3.1.1. An r-signotope σ on [n] is t-extendable if for all pairwise disjoint (r − 1)-
subsets I1, . . . , It ∈

(
[n]
r−1

)
, there exists k ∈ [n + 1] and an r-signotope σ∗ on [n + 1] with fliples

I∗1 , . . . , I
∗
t such that σ∗ ↓k= σ, and I∗j ↓k= Ij for all j = 1, . . . , t. Hence the element k extends σ

to σ∗ through I1, . . . , It.

Note that a t-extendable r-signotope on n ≥ (r−1)t elements is clearly (t−1)-extendable. While
the 1-extendability is a simple exercise the first interesting part is the 2-extendability, which we
discuss in Section 3.4 of this chapter. Moreover, in Section 3.7 we go even further and consider
t-extendability for t ≥ 3.
For 1-extendability, the strategy in the setting of pseudolines is to add a pseudoline just below
one of the two pseudolines crossing in the prescribed point and parallel to this pseudoline in
the sense that they have exactly the same crossing points. At the prescribed point the newly
inserted pseudoline crosses the two pseudolines involved in the crossing and in the remaining
part we again go parallel but just above the same pseudoline. For an illustration, see Figure 3.2.

Figure 3.2: Adding a new pseudoline extending the arrangement (black) through the marked crossing
point by adding a parallel pseudoline (red) to one of the pseudolines involved in the crossing.

From the theory developed in the following, 1-extendability for signotopes of all ranks is an easy
corollary, see Corollary 3.2.2. The extension we get, adds the additional element at the last
position which does not yield the same extension as described above in terms of pseudolines.
In the following, we focus on 2-extendability. As it turns out, 2-extendability can be guaranteed
for odd rank signotopes.

Theorem 3.1.2 (Extension theorem for signotopes of odd rank). For every odd rank r ≥ 3,
every r-signotope is 2-extendable.

The proof of Theorem 3.1.2 (see Section 3.4) generalizes to the more general setting, where the
(r − 1)-subsets I and J , which are fliples in the extension, may intersect.

Corollary 3.1.3. For r ≥ 3, let σ be an r-signotope on [n], and I, J ⊆ [n] two (r − 1)-subsets
such that |I ∩ J | + r is odd. Then σ is extendable to an r-signotope σ∗ on [n + 1] with fliples
I∗, J∗ and an extending element k ∈ [n+ 1] such that σ∗ ↓k= σ, and I∗ ↓k= I, and J∗ ↓k= J .

For 2-signotopes, which are permutations, the prescribed sets are singletons. Hence we are in
the setting of prescribed disjoint 1-subsets. Extendability through t elements corresponds to
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inserting an element next to the t prescribed elements in the permutation. Hence 2-signotopes
are not 2-extendable. However, the statement of Corollary 3.1.3 is still true for r = 2 since the
two sets I, J have to be equal.

When considering the extension through t ≥ 3 prescribed points, a possible generalization is
that the intersection of all (r − 1)-subsets is empty. In the geometric setting this corresponds
to prescribed points which are not all on the same pseudohyperplane. This however does not
imply that each pair is disjoint. In the non-extendable example presented by Goodman and
Pollack [GP81] the intersection of all prescribed points is empty, however two of them are on a
common pseudohyperplane.

Despite the restrictions to simple arrangements and crossing points as prescribed points we can
derive Levi’s extension lemma (Theorem 2.2.4) in its full generality with little extra work from
Theorem 3.1.2.

If the prescribed points are not crossing points, we take a crossing incident to the pseudoline
segment (or cell). Perturbing the inserted pseudoline slightly at the crossing points one can
achieve to cross a pseudoline segment (or cell) incident to the crossing point.

Moreover, given a non-simple arrangement, we can perturb the multiple crossing points (as
depicted in Figure 3.1) to obtain a simple arrangement. We obtain simplicial cells instead of
the multiple crossings. This simple arrangement can then be extended, and each of the multiple
crossing points of the original arrangement can again be obtained by contracting the simplicial
cells to a point.
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Figure 3.3: Illustration how Theorem 3.1.2 implies Levi’s extension lemma (Theorem 2.2.4). When
perturbing the top-left arrangement, the multi-crossing point p (the intersection of 2, 3,
and 4) is split into three simple crossing points, including the point p′ (the intersection of 2
and 3). After the extension, we again contract these three crossing points to one multi-
crossing point.
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The statement of Theorem 3.1.2 applies only to signotopes of odd rank. This is not just a defect of
our proof because signotopes in even rank indeed behave differently. For ranks r = 4, 6, 8, 10, 12
we found r-signotopes on n = 2r elements, which are not 2-extendable. In Section 3.6 we
describe them in more detail and give properties for all even r which imply that an r-signotope
with those properties is not 2-extendable. Based on these examples, we dare the conjecture:

Conjecture 3.1 (No extension theorem for signotopes of even rank). For every even rank r ≥ 2,
there is an r-signotope which is not 2-extendable.

If this conjecture is true, then there are r-signotopes which are not extendable through two
prescribed crossing points I and J if and only if |I ∩ J | + r is even. This is an analog to
Corollary 3.1.3. The key for the non-extendable examples is that the projection to the common
intersection I ∩ J is a signotope of even rank in which the prescribed points are disjoint. In
particular, this signotope should be one of the counterexamples where there is no extension
through the two sets I ↓(I∩J) and J ↓(I∩J).
For this we define the projection of a signotope on one of its elements. This operation commonly
used in matroid theory and geometry and also known as contraction. In the resulting signotope
the rank and the number of elements are both decreased by one.1 For an r-signotope σ on [n],
we define the projection to an element k ∈ [n] as σ�k by

σ�k (X ↓k) := σ(X)

for all r-subsets X ⊆ [n] with k ∈ X. This is an (r − 1)-signotope on [n − 1] because each
r-packet was part of an (r + 1)-packet for σ. Similar as for the deletion, the projection on a
subset of elements k1 < . . . < k` is defined by successively applying the projection, starting with
the largest element k`. This projection is denoted by σ�{k1,...,k`}. Clearly, we can determine
fliples in the projection from the fliples in the original signotope.

Observation 3.1.4. Let F be a fliple of the r-signotope σ and K ⊆ F . Then F ↓K is a fliple
of σ�K .

To construct the counterexamples, we define a signotope which fulfills the projection properties
described above. For the proof of the following proposition, see Section 3.4.

Proposition 3.1.5. Let σ be an r-signotope on [n] which is not 2-extendable through the two
disjoint (r − 1)-subsets I, J . For every m ∈ N, there exists an r′-signotope σ′ on [n′] with
r′ = r +m and n′ = n+m and two (r′ − 1)-subsets I ′, J ′ of [n′] with |I ′ ∩ J ′| = m such that

σ′�I′∩J ′= σ, I ′ ↓I′∩J ′= I and J ′ ↓I′∩J ′= J.

Moreover, there is no extending r′-signotope σ∗ of σ′ on [n′ + 1] with fliples I∗, J∗ such that
there is a k ∈ [n+ 1] with σ∗ ↓k= σ′, I∗ ↓k= I ′, and J∗ ↓k= J ′.

Note that the sum r′ + m = r′ + |I ′ ∩ J ′| is even, since there are only examples which are not
2-extendable for even rank r = r′ −m and hence r′ and m have the same parity.

1Since both, the rank and the number of elements are decreased, this operation is denoted by two down arrows.
For the deletion, which is only one down arrow, only the number of elements is decreased while the rank stays
the same.
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3.2 Extendability and Incomparable Elements

For the proof of the extension theorem for odd rank signotopes, there are two central ingredients.
One of them is discussed in this section. If the two prescribed crossing points are incomparable
elements in the partial order ≺σ corresponding to the r-signotope σ, then we can easily find an
extension, by adding an element at the last position. Figure 3.4 gives an illustration for the
rank 3 case. For the definition of the partial order ≺σ on all (r − 1)-subsets corresponding to a
signotope σ see Section 2.2.4.

1
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3

4

5
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Figure 3.4: The extension through two incomparable crossing points in the setting of pseudolines.

More abstractly we can extend the signotope if there is a down-set in the partial order on (r−1)-
subsets which has I and J as maximal elements. A down-set of a partial order (P,≺) is a subset
D ⊆ P such that for all p ∈ P and d ∈ D with p � d it holds p ∈ D. Similarly, an up-set is a
subset U ⊆ P such that for all p ∈ P and u ∈ U with p � u it holds p ∈ U .

Proposition 3.2.1 (Extension for incomparable elements). Let ≺ be the partial order on
(

[n]
r−1

)
corresponding to an r-signotope σ on [n]. For every down-set D ⊆

(
[n]
r−1

)
there exists an

r-signotope σ∗ on [n + 1] such that for all maximal elements M of D, the r-subset of the form
M ∪ {n+ 1} is a fliple of σ∗ and σ∗ ↓n+1= σ.

Proof. Define the extended r-signotope σ∗ on [n+ 1] for x1 < . . . < xr as follows

σ∗(x1, . . . , xr) :=


σ(x1, . . . , xr) if x1, . . . , xr ∈ [n];

+ if xr = n+ 1 and {x1, . . . , xr−1} ∈ D;

− if xr = n+ 1 and {x1, . . . , xr−1} 6∈ D.

Clearly it holds σ∗ ↓n+1= σ. In the following we show that σ∗ is an r-signotope on [n+ 1]. For
every (r + 1)-subset P = (x1, . . . , xr+1), we show that the sequence

(σ∗(P1) σ∗(P2) . . . σ∗(Pr+1))

has at most one sign change. If xr+1 ≤ n, then all signs on the considered r-subsets are the
same as for σ. Since σ is an r-signotope, there is at most one sign change in the sequence.
In the other case, we have xr+1 = n + 1. For all j ≤ r we have n + 1 ∈ Pj . Furthermore,
σ∗(Pr+1) = σ(Pr+1) because n + 1 6∈ Pr+1. We consider two cases. First, if σ(Pr+1) = + by
definition of the partial order it is

P\{xr+1, xi} = Pr+1\{xi} � Pr+1\{xj} = P\{xr+1, xj} for i < j.
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By the property of a down-set this means that, whenever P\{xr+1, xi} ∈ D, we also have
P\{xr+1, xj} ∈ D for i < j. Let i∗ be the smallest integer such that P\{xr+1, xi∗} ∈ D. Then
by definition of σ∗ it is σ∗(Pj) = + for all j ≥ i∗ and σ∗(Pj) = − for all j < i∗.
Similar arguments apply if σ(Pr+1) = −. Then we have

P\{xr+1, xi} ≺ P\{xr+1, xj} for i < j.

This time let i∗ be the smallest integer such that P\{xr+1, xi∗} 6∈ D. Then by definition of σ∗

we have σ∗(Pj) = + for all j < i∗ and σ∗(Pj) = − for all j ≥ i∗.
Let M be a maximal element of the down-set D. Then by definition it is σ∗(M ∪ {n+ 1}) = +.
In every packet in which M ∪ {n + 1} appears, it is the maximal element which is still in D.
By the analysis above it follows that M ∪ {n + 1} is adjacent to a sign change in each packet.
Hence it is a fliple.

From this proposition and the fact that every element in a partial order defines a down-set
in which it is the maximal element, it directly follows that all r-signotopes with r ≥ 2 are
1-extendable by adding a new element at the last position.

Corollary 3.2.2 (1-extendability). For r ≥ 2 let σ be an r-signotope on [n] and I ⊆ [n] an
(r−1)-subset. Then there is an extending r-signotope σ∗ on [n+1] elements such that I∪{n+1}
is a fliple and σ∗ ↓n+1= σ.

Proposition 3.2.1 states that we can add a new element at position n+ 1 such that the maximal
elements of the partial order become fliples. For this extension, we assign + to those r-subset
which consists of n + 1 and an (r − 1)-subset which is contained in the down-set of the fliple
with respect to the corresponding partial order. Otherwise we assign −.
As the following lemma shows, this is the only possibility in order to extend a signotope in this
way. In particular, if there is an extension of a signotope such that the added element is at the
last position, then a fliple including this last element prescribes the signs of all subsets which
are smaller or larger in the partial order.

Lemma 3.2.3. For r ≥ 2, let σ be an r-signotope on [n] and ≺ the corresponding partial order.
For all (r− 1)-subsets I and all r-signotopes σ∗ on [n+ 1] such that σ∗ ↓n+1= σ and I ∪{n+ 1}
is a fliple of σ∗ it holds

σ∗(J ∪ {n+ 1}) =

{
+, if J ≺ I;

−, if J � I,

for all (r − 1)-subsets J 6= I of [n].

Proof. We consider the case J ≺ I. The other case with J � I works analogously by reversing
the relations and the signs. By the definition of the partial order, there is a chain of (r − 1)-
subsets of [n] such that J = Jm ≺ . . . ≺ J2 ≺ J1 = I such that for each pair of consecutive
subsets the intersections Ji ∩ Ji+1 consists of exactly r − 2 elements. Note that the r-subset
I∪{n+1} = J1∪{n+1} is a fliple and hence assigning σ∗(J1∪{n+1}) = + is a valid signotope,
which we assume from now on. For all i = 2, . . . ,m, we show that σ∗(Ji ∪ {n + 1}) = + by
induction. For a fixed i ≥ 2, consider the (r+ 1)-packet P = Ji−1 ∪ Ji ∪ {n+ 1}. Since n+ 1
is the largest element in this (r + 1)-packet, it is Pr+1 = Ji−1 ∪ Ji. Note that n + 1 /∈ Ji for
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all i which implies together with the assumption σ∗ ↓n+1= σ that the sign of Pr+1 is determined
by σ, i.e.,

σ∗(Ji−1 ∪ Ji) = σ(Ji−1 ∪ Ji).

Let j < r + 1 be the index such that Pj = Ji−1 ∪ {n+ 1}. We consider the relation between Ji
and Ji−1 in the lexicographic order.

If Ji is lexicographically smaller than Ji−1, then Ji ∪ {n+ 1} = Pk for a k ∈ {j + 1, . . . , r} and
appears after the sign of Pj in the sequence. By the construction of the chain it is Ji−1 � Ji.
Since Ji is l4xicographically smaller than Ji−1, it is σ∗(Pr+1) = σ∗(Ji ∪ Ji−1) = +. The sign of
Ji ∪ {n + 1} appears in the sequence between the one of Ji−1 ∪ {n + 1} and Ji ∪ Ji−1. Since
σ∗(Ji−1 ∪ {n+ 1}) = + by induction hypothesis, it holds σ∗(Ji ∪ {n+ 1}) = +.

If Ji is lexicographically larger than Ji−1, then Ji ∪ {n + 1} = Pk for a k = 1, . . . , j − 1.
Moreover it is σ∗(Pr+1) = σ∗(Ji ∪ Ji−1) = −. By induction hypthesis it is still σ∗(Pj) =
σ∗(Ji−1 ∪ {n + 1}) = +. Hence the sign change has to be between Pj and Pr+1 which again
implies that σ∗(Ji ∪ {n+ 1}) = +.

If there are two maximal elements in a down set, they are incomparable. This gives a condition
to ensure that a signotope is not extendable by an element added at the last position.

Proposition 3.2.4. For r ≥ 3, let σ be an r-signotope on [n] and for t ≥ 2 let I1, . . . , It be
disjoint (r − 1)-subsets. Then there is an r-signotope σ∗ on [n + 1] with σ∗ ↓n+1= σ such that
for all j = 1, . . . , t the r-subsets Ij ∪ {n + 1} are fliples if and only if I1, . . . , It are pairwise
incomparable in the partial order corresponding to σ.

Proof. The reverse direction, i.e., the existence of an extension if the prescribed subsets are
pairwise incomparable follows from Proposition 3.2.1.

For the other direction assume there is an extension σ∗ with σ∗ ↓n+1= σ. Then σ∗ is a 1-
extension for every Ij as in the assumptions of Lemma 3.2.3. Towards a contradiction assume
there are two (r−1)-subsets Ii and Ij which are comparable. Without loss of generality Ii ≺ Ij .
Hence Ii is in the down-set of Ij and Ij ∪ {n+ 1} is a fliple of σ∗. By Lemma 3.2.3 the sign of
Ii ∪{n+ 1} has to be a + in σ∗. Moreover, Ii ∪{n+ 1} is a fliple by assumption. Hence flipping
the sign to − yields a valid signotope. Since we assume r ≥ 3 and Ii and Ij are disjoint, the
two r-subsets Ii ∪ {n + 1} and Ij ∪ {n + 1} do not appear in a common (r + 1)-packet. Hence
flipping Ii ∪ {n+ 1} from + to − does not affect whether Ij ∪ {n+ 1} is a fliple. In particular
Ij ∪ {n+ 1} is still a fliple in the signotope in which Ii ∪ {n+ 1} was flipped to −. This is not
possible by Lemma 3.2.3. A contradiction.

Note that for r = 2, the sets {i, n + 1} and {j, n + 1} for i 6= j appear in a common 3-packet.
Hence there are extensions for two successive elements in the total order given by the 2-signotope
which are extendable even though they are not incomparable.

In general the two prescribed (r − 1)-subsets are not incomparable. Still we can use Propo-
sition 3.2.1 to proof the extendability result. For this we need an operation on signotopes
which still preserves the basic properties of the signotope such as the fliples. We introduce this
operation, which we call rotation in the following section.
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3.3 Rotation Operator

We now prepare for the proof of Theorem 3.1.2. For this we introduce the rotation operator.
If we rotate an arrangement of pseudolines in the plane, i.e., we choose another unbounded cell
as the top cell, we get a pseudoline arrangement with the same cell structure. However, the
signotope does not stay the same and the linear order of the elements changes. If we rotate only
a single pseudoline, then the orientation of the triangle spanned by 3 pseudolines stays the same
if and only if the rotated pseudoline is not involved. See for example the triangle spanned by
{2, 3, 4} in the left arrangement, which corresponds to the triangle spanned by {1, 2, 3} in the
right arrangement in Figure 3.5. When rotating clockwise, the first element of σ becomes the
last one in the rotated signotope σrot. In terms of the 3-signotope σ the signs of the rotated
signotope σrot are: σrot(a, b, c) = σ(a+1, b+1, c+1) if c 6= n and σrot(a, b, n) = −σ(1, a+1, b+1).

1
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4

5

rotate

1

2

3

4
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5

Figure 3.5: Illustration of a clockwise rotation of pseudolines. The rotated pseudoline is highlighted
red. The two marked crossings became incomparable in the rotated arrangement.

For general r, we define the clockwise rotated signotope σrot of a given r-signotope σ as:

σrot(x1, . . . , xr) :=

{
−σ(1, x1 + 1, . . . , xr−1 + 1) if x1 < x2 < . . . < xr = n,

σ(x1 + 1, . . . , xr + 1) if x1 < x2 < . . . < xr < n.

To keep track of the index shift caused by a clockwise rotation, we define xrot = x− 1 if x 6= 1
and 1rot = n. It is

Xrot = {xrot : x ∈ X} =

{
(x1 − 1, x2 − 1, . . . , xk − 1) if x1 > 1;

(x2 − 1, . . . , xk − 1, n) if x1 = 1

for any subset X = (x1, . . . , xk) of [n] with x1 < . . . < xk. Note that this allows us to write
σrot(Xrot) = σ(X) if 1 6∈ X and σrot(Xrot) = −σ(X) if 1 ∈ X. The k-folded clockwise rotation
is denoted by σrot(k). Note that the rotation operation depends on the number of elements n
of a signotope. While n is known when rotating a signotope itself, we have to be careful when
rotating a subset X ⊆ [n]. As the following lemmas show, the rotated signotope is indeed an
r-signotope, which moreover has essentially the same fliples.

Lemma 3.3.1. Let σ be an r-signotope on [n]. Then σrot is an r-signotope on [n].

Proof. Consider an (r + 1)-packet P ′ = (x′1, . . . , x
′
r+1). Since rotation is a bijection on the

(r + 1)-packets of [n] there is a P = (x1, . . . , xr+1) such that P ′ = Prot.
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If the rotated element 1 is not in P , i.e., x′r+1 < n, then xi = x′i + 1 for all i = 1, . . . , r + 1 and
the signs of the r-subsets of packet P ′ have to be considered in the same order

( σrot(P
′
1) σrot(P

′
2) . . . σrot(P

′
r) σrot(P

′
r+1) )

= ( σ(P1) σ(P2) . . . σ(Pr) σ(Pr+1) ).

as for P . The latter has at most one sign change since σ is an r-signotope.

If the rotated element 1 is in P , that is, x′r+1 = n and x1 = 1, then we have xi+1 = x′i + 1 for all
i = 1, . . . , r. Note that n ∈ P ′i for i = 1, . . . , r and hence 1 ∈ Pj for j = 2, . . . , r + 1. The sign
sequence of P ′ is

( σrot(P
′
1) σrot(P

′
2) . . . σrot(P

′
r) σrot(P

′
r+1) )

= ( σrot(P
′\{x2 − 1}) σrot(P

′\{x3 − 1}) . . . σrot(P
′\{xr+1 − 1}) σrot(P

′\{n}) )

= ( −σ(P2) −σ(P3) . . . −σ(Pr+1) σ(P\{1}) )

= ( −σ(P2) −σ(P3) . . . −σ(Pr+1) σ(P1) ),

which has at most one sign change because (σ(P1) σ(P2) . . . σ(Pr) σ(Pr+1)) has at most one
sign change due to the signotope property of σ.

The following lemma shows that the rotated signotope σrot has essentially the same properties
as σ when it comes to fliples. We only need to handle the index shift.

Lemma 3.3.2. Let σ be an r-signotope and let F be a fliple of σ. Then Frot is a fliple in the
clockwise rotated signotope σrot.

Proof. To prove that an r-subset Frot is a fliple, we need to check all (r + 1)-packets P ′

with Frot ⊂ P ′. Let P ′ be such a packet and let P be such that Prot = P ′. Since F is a
fliple in σ we know that if we change the sign of σ(F ) there is still at most one sign change
in the sequence σ(P1), σ(P2), . . . , σ(Pr), σ(Pr+1), we abbreviate this by saying that F is flipable
in P .

If 1 6∈ P , then σ(Pi) = σrot(P
′
i ) for all i. Moreover if j is such that F = Pj then Frot = P ′j . Since

the signs in the sequence stay the same Frot is flipable in P ′.

Otherwise we have 1 ∈ P . Then as shown in the proof of Lemma 3.3.1 it is

( σrot(P
′
1) σrot(P

′
2) . . . σrot(P

′
r) σrot(P

′
r+1) )

= ( −σ(P2) −σ(P3) . . . −σ(Pr+1) σ(P1) ).

If F = P1 the sequence (σ(P2) . . . σ(Pr+1)) is constant. This implies that the sign of σrot(Frot) =
σrot(P

′
r+1) = σ(P1) can be flipped. If F = Pr+1 the sign sequence (σ(P1) . . . σ(Pr)) is constant.

This shows that the sign of σrot(Frot) = σrot(P
′
r) is adjacent to different signs and can thus be

flipped. If F = P2 then σ(P1) 6= σ(P3) and the signs σrot(P
′
i ) for 2 ≤ i ≤ r + 1 are the same.

Hence Frot = P ′1 is flipable in P ′. If F = Pj with 3 ≤ j ≤ r, then Frot = P ′j−1 is clearly flipable
in P ′. This shows that Frot is flipable in all packets containing it and hence a fliple of σrot.
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3.4 2-Extendability for Odd Rank

In this section, we show that for each pair of disjoint crossing points, respectively (r−1)-subsets,
odd rank signotopes admit a rotation in which the crossing points are incomparable. In this
case, we use Proposition 3.2.1 to define an extension. To achieve an extension of the original
signotope, we then rotate in the reverse direction.

For a signotope σ and its rotation σrot, the partial orders are denoted by ≺ and ≺rot, respectively.
Moreover, if two elements x, y are incomparable in ≺ (respectively ≺rot), it is denoted by x‖y
(respectively x‖roty). We summarize the interaction between the rotation operator and the
partial order in the following proposition. For the proof, we need some additional technical
lemmata, which are deferred to Section 3.5.

Proposition 3.4.1. Let σ be an r-signotope on [n] with partial order ≺. For two (r−1)-subsets
I, J with I ≺ J and 1 /∈ I ∩ J , it holds Irot‖rotJrot or Irot ≺rot Jrot.

For two (r−1)-subsets I and J which have a common intersection of r−2 elements, the relation
is reversed if and only if the intersection contains the rotated element. Otherwise the relation
stays the same.

Lemma 3.4.2. Let σ be an r-signotope with partial order ≺ and σrot the rotated signotope with
corresponding partial order ≺rot. For two (r−1)-subsets I, J such that |I ∩J | = r−2 and I ≺ J
it holds

Irot ≺rot Jrot if 1 /∈ I ∩ J, and

Irot �rot Jrot if 1 ∈ I ∩ J.

Proof. If 1 /∈ I and 1 /∈ J , then 1 /∈ I ∪ J and the sign of I ∪ J is the same for σ and σrot, i.e.,
σ(I ∪J) = σrot(Irot∪Jrot). Furthermore the order of I and J in the r-subset I ∪J is the same as
the order of Irot and Jrot in the r-subset Irot ∪ Jrot. If I is lexicographically larger than J , then
Irot is lexicographically larger than Jrot which implies that the sign of I ∪ J in σ and Irot ∪ Jrot

in σrot is the same. Hence Irot ≺rot Jrot.

If 1 ∈ I but 1 /∈ J then I is lexicographically smaller than J . By assumption it is J � I and thus
σ(I∪J) = +. After rotating clockwise, Irot is lexicographically larger than Jrot since n ∈ Irot and
n /∈ Jrot. Furthermore the sign of the r-subset changes, i.e., σ(I ∪ J) = −σrot(Irot ∪ Jrot) = −.
This shows that the relation stays the same, i.e., Irot ≺rot Jrot. The case 1 ∈ J but 1 /∈ I works
analogously.

If 1 ∈ I and 1 ∈ J the lexicographic order of I and J is the same as the lexicographic order of
Irot and Jrot but the sign of the r-subset gets is reversed, i.e., σ(I ∪J) = −σrot(Irot∪Jrot). Thus
the order between Irot and Jrot is reversed as claimed.

Indeed Proposition 3.4.1 ensures that for odd rank there exists a rotation such that the two
prescribed (r − 1)-subsets are incomparable.

Proposition 3.4.3. Let r ≥ 3 be an odd integer, let σ be an r-signotope on [n] and let I, J be
two disjoint (r − 1)-subsets. After k ≤ n − 1 clockwise rotations, σ, I, and J are transformed
into σrot(k), Irot(k), and Jrot(k), respectively, such that Irot(k)‖rot(k)Jrot(k).
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Proof. Assume I and J are comparable in the partial order ≺ corresponding to the r-signotope σ.
otherwise k = 0 is the desired rotation. Without loss of generality assume I ≺ J . We show that
after n clockwise rotations, i.e., when every element was rotated once, all signs of σ are reversed.
Hence the partial order ≺rot(n) rotated signotope σrot(n) is the reversed relation to ≺.
The sign of an r-subset (z1, . . . , zr) of [n] changes from + to − or vice versa if and only if the
rotated element is contained in (z1, . . . , zr), i.e., if we rotate z1. Hence after rotating n times in
total every zi was rotated and thus the sign of an r-subset changes exactly r times. Since r is
odd, the sign after rotating n times is reversed. The obtained signotope σrot(n) is the reverse of
the original signotope σ and the corresponding partial order is also reversed.
Furthermore by Proposition 3.4.1 we cannot reverse the order of two disjoint (r − 1)-subsets in
a single rotation. Hence there will be a rotation with k < n such that the two disjoint sets are
incomparable.

With similar arguments as in the previous proof it follows that for all ranks r applying 2n
rotations yields the same signotope. Hence we can define the counterclockwise rotation which
corresponds to 2n− 1 clockwise rotations, which is denoted as σrot(−1). Applying k rotations in
the reverse direction is consequently denoted with σrot(−k).
Although the following lemma is trivial in the setting of pseudoline arrangements, we need
to prove it in the context of general r-signotopes. We show that the extension of a rotated
signotope when rotated back contains the original signotope. To show this we need to investigate
the interaction between the rotation and deletion of elements and show that the two operators
behave in an almost commutative way.

Lemma 3.4.4. Let σ be an r-signotope on [n]. Then it is σrot ↓n= σ↓1 and σrot ↓xrot= (σ↓x)rot

for x ∈ {2, . . . , n}.

Proof. Because of the index shift it does not matter whether we delete the first element or we
rotate σ such that the first element becomes the last and delete the last element in this rotated
signotope. Formally, the deletion operator is defined by σ ↓1 (X ↓1) = σ(X) for all r-subsets
X ⊆ [n] with 1 /∈ X. Since 1 /∈ X, it is σ(X) = σrot(Xrot) and n /∈ Xrot. Hence deleting
the element n does not affect Xrot, i.e., it is Xrot = (Xrot) ↓n. This shows σrot(Xrot) = σrot ↓n
(Xrot ↓n) = σrot ↓n (Xrot). Assembling the steps shows

σ↓1 (X ↓1) = σrot ↓n (Xrot).

Since 1 /∈ X, it is X ↓1= Xrot. Hence the first part σrot ↓n= σ↓1 holds.
Let x > 1 which implies xrot 6= n. Let X be an r-subset of [n − 1] and let X∗ be an r-subset
of [n] with xrot /∈ X∗ and X∗ ↓xrot= X. We obtain

σrot ↓xrot (X) = σrot ↓xrot (X∗ ↓xrot) = σrot(X
∗).

We will now rewrite the term to get the statement. Since xrot /∈ X∗, we have x /∈ (X∗)rot(−1).
It is

σrot ↓xrot (X) = σrot(X
∗) = s · σ

(
(X∗)rot(−1)

)
= s · σ↓x

((
(X∗)rot(−1)

)
↓x
)

= s · σ↓x
(

(X∗ ↓xrot)rot(−1)

)
= s · σ↓x

(
Xrot(−1)

)
= (σ↓x)rot(X),

where the sign s = + (respectively s = −) if n /∈ X∗ (resp. n ∈ X∗). Note that n ∈ X∗ is
equivalent to 1 ∈ Xrot(−1) for x 6= 1.
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With Proposition 3.2.1, Proposition 3.4.3 and Lemma 3.4.4 we are now ready to prove Theo-
rem 3.1.2.

3.4.1 Extension Theorem for Odd Rank (Theorem 3.1.2)

For convenience we restate the theorem.

Theorem 3.1.2 (Extension theorem for signotopes of odd rank). For every odd rank r ≥ 3,
every r-signotope is 2-extendable.

Proof. Let σ be an r-signotope on [n] and let I, J be a pair of disjoint (r − 1)-subsets. By
Proposition 3.4.3 there exists k ∈ {0, . . . , n − 1} such that the k-fold rotated (r − 1)-subsets
Irot(k), Jrot(k) are incomparable in the k-fold rotated signotope σrot(k).

To extend the signotope σrot(k), we use the down-set D consisting of Irot(k), Jrot(k), and all
(r − 1)-subsets which are smaller in ≺rot(k). In this down-set Irot(k) and Jrot(k) are maximal
elements since they are incomparable. Hence we can apply Proposition 3.2.1 in order to add a
new element at position n + 1 in the rotated signotope σrot(k) such that Irot(k) ∪ {n + 1} and
Jrot(k) ∪ {n+ 1} are fliples. Let σ∗rot(k) denote the extended signotope with σ∗rot(k) ↓n+1= σrot(k).
For an illustration of the considered signotopes, see Figure 3.6.

σ σrot(k)

σ∗
rot(k)

k cw rotations

extension

σ∗

k + 1 ccw
rotations

extension

Figure 3.6: Illustration of the connections between the considered signotopes in the proof of Theo-
rem 3.1.2. The red arc is the conclusion of the statement.

Finally, we need to find a rotation of σ∗rot(k) which contains the original signotope σ. For this we

perform k + 1 counterclockwise rotations (or equivalently, 2n + 1 − k clockwise rotations) and
denote the so-obtained signotope by σ∗. Note that we perform k+ 1 counterclockwise rotations
since the newly added element needs to be rotated and the k-fold clockwise rotation needs to
be undone.

After the first counterclockwise rotation, the added element n + 1 in σ∗rot(k) becomes the first

element 1 in (σ∗rot(k))rot(−1). By Lemma 3.4.4 it holds ((σ∗rot(k))rot(−1))↓1= (σ∗rot(k))↓n+1= σrot(k).
After additional k counterclockwise rotations, the added element n + 1 in σ∗rot(k) becomes the
element k + 1 in σ∗.

Furthermore, the fliples Irot(k) ∪ {n + 1} and Jrot(k) ∪ {n + 1} of σ∗rot correspond to the fliples
I ∪ {k+ 1} and J ∪ {k+ 1} in σ∗ (cf. Lemma 3.3.2). When handling the rotation of those sets,
we need to be careful since the number of elements changed which affects the rotation operator.
Since we do not rotate the extending element, the second part of Lemma 3.4.4 applied multiple
times shows ((σ∗rot(k))rot(−1))↓1= (σ∗ ↓k+1)rot(k). Together with the previous equation this shows

σrot(k) = (σ∗ ↓k+1)rot(k), which further implies σ = σ∗ ↓k+1. Hence we obtain the signotope σ
when deleting k + 1 from σ∗, which shows that σ∗ is an extension of σ.
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3.4.2 Extendability with Intersection (Corollary 3.1.3)

Corollary 3.1.3. For r ≥ 3, let σ be an r-signotope on [n], and I, J ⊆ [n] two (r − 1)-subsets
such that |I ∩ J | + r is odd. Then σ is extendable to an r-signotope σ∗ on [n + 1] with fliples
I∗, J∗ and an extending element k ∈ [n+ 1] such that σ∗ ↓k= σ, and I∗ ↓k= I, and J∗ ↓k= J .

Proof. To prove Corollary 3.1.3, we proceed similar as in the proof of Theorem 3.1.2. By
Proposition 3.2.1, it suffices to show that after some rotations the (r− 1)-subsets corresponding
to I and J are incomparable.
Let m = |I ∩ J |. Since Theorem 3.1.2 covers the case m = 0, we may assume m ≥ 1. We
consider the following two cases.
First, assume that r is odd and m is even. For odd rank r, we have already seen that after n
rotations, the signotope is reversed and hence the corresponding partial order is reversed. For
even m, the relation between I and J is reversed m times whenever we rotate one element
x ∈ I ∩ J , see Lemma 3.4.2. If we rotate an element x /∈ I ∩ J , the relation cannot be reversed,
see Proposition 3.4.1. Hence the relation is reversed exactly m times in one single rotation.
Since m is even and the order is reversed after n rotations, the corresponding (r − 1)-subsets
must be incomparable in between.
If r is even and m is odd, the n-fold rotation leaves the signotope unchanged and hence the
partial order is the same. Since m is odd, we reverse the orientation of I and J exactly m times
in a single rotation step. Hence they must be incomparable in between. The statement now
follows from Proposition 3.2.1 and Lemma 3.4.4 similar as in the proof in Section 3.4.1.

3.4.3 Non-Extendability with Intersection (Proposition 3.1.5)

Proposition 3.1.5. Let σ be an r-signotope on [n] which is not 2-extendable through the two
disjoint (r − 1)-subsets I, J . For every m ∈ N, there exists an r′-signotope σ′ on [n′] with
r′ = r +m and n′ = n+m and two (r′ − 1)-subsets I ′, J ′ of [n′] with |I ′ ∩ J ′| = m such that

σ′�I′∩J ′= σ, I ′ ↓I′∩J ′= I and J ′ ↓I′∩J ′= J.

Moreover, there is no extending r′-signotope σ∗ of σ′ on [n′ + 1] with fliples I∗, J∗ such that
there is a k ∈ [n+ 1] with σ∗ ↓k= σ′, I∗ ↓k= I ′, and J∗ ↓k= J ′.

Proof. In a first step, assume there is an extension σ∗ of σ′ on [n′+ 1] with fliples I∗, J∗ and an
extending element k ∈ [n+ 1] such that σ∗ ↓k= σ′, I∗ ↓k= I ′, and J∗ ↓k= J ′. Let k′ be the label
of k after deleting I ′ ∩ J ′. Clearly, (I∗ ↓I′∩J ′) ↓k′= (I∗ ↓k) ↓I′∩J ′= I ′ ↓I′∩J ′= I and analogously
for J∗ and σ∗. Moreover, I∗ and J∗ are fliples of σ∗ which implies by Observation 3.1.4 that
I∗ ↓I′∩J ′ and J∗ ↓I′∩J ′ are fliples in the projection σ∗ �I′∩J ′ . This shows that σ∗ �I′∩J ′ is an
extension of σ by the element k′ such that I ∪ {k′} and J ∪ {k′} are fliples. A contradiction to
the assumption that σ is not 2-extendable.
To show that such an signotope σ′ exists, we construct a signotope by reversing the projection.
For this we add the new m elements at the last position n+ 1, . . . , n′ = n+m. For r′-subsets X
which contain all new elements, the sign is given by the sign of X ↓{n+1,...,n′} in σ. For the
remaining r′-subsets we have to assign them in a different manner. For this, consider the case
m = 1. By repeating the following construction m times, the case m ≥ 2 is solved.
Let C be a maximum chain σ0 ≺ . . . ≺ σ(nr)

of r-signotopes containing σ = σi for an i ∈
{0, . . . ,

(
n
r

)
} which exists by Theorem 2.2.11. Moreover σ0 is the constant − function and σ(nr)
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the constant + function. From σj to σj+1 there is exactly one r-subset flipped from − to +.
Let A1, . . . , A(nr)

be the order of flipped subsets. Hence in σ = σi all r-subset A1, . . . , Ai are

mapped to + and the remaining Ai+1, . . . , A(nr)
are −, i.e.,

σ(Aj) =

{
+ if j ≤ i;
− if j > i.

Again by Theorem 2.2.11, there is an (r+1)-signotope σC on [n] corresponding to the maximum
chain C for which A1, . . . , A(nr)

is a sweep. In particular the order is a linear extension of the

partial order ≺C corresponding to σC . This shows that for an (r + 1)-subset X and some
1 ≤ j < ` ≤ r + 1

σC(X) =

{
+ if Xj �C X`;

− if Xj ≺C X`.

Note that by the properties of a signotope, the choice of j and ` is irrelevant. Using σC , we
define σ′ as (r + 1)-signotope on [n+ 1] elements as follows:

σ′(X) :=

{
σC(X) if X ⊆ [n];

σ(Aj) if n+ 1 ∈ X and X\{n+ 1} = Aj .

σ = σi

σ0

σ(52)n+ 1

+

−

Figure 3.7: Illustration of the construction. The assignment for the 3-signotope depends on the max-
imum chain of permutations. The 3-signotope projected to n + 1 (red) yields the starting
2-signotope σ.

Clearly σ′�n+1= σ. To see that σ′ is indeed a signotope and fulfills the monotonicity condition,
we check all (r + 2)-subsets P of [n+ 1]. For the illustration of the case r = 2, see Figure 3.7.
If P does not contain n+1, then the packet is monotone because σC is a signotope. If n+1 ∈ P ,
then n+ 1 ∈ Pj for all j = 1, . . . , r+ 1 and n+ 1 /∈ Pr+2. Since σ is an r-signotope on [n] in the
first r + 1 signs there is at most one sign change. Deleting another element of Pr+2 yields an
r-subset which is one of the Aj . Let P1 = Aj ∪ {n+ 1} and Pr+1 = A` ∪ {n+ 1}. This implies
that Aj is lexicographically larger than A`.
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First assume j > `, i.e., Aj � A`. Since Aj is lexicographically larger than A`, it is σ′(Pr+2) =
σC(Aj ∪A`) = +. If moreover ` > i, then j > i and σ′(P1) = σ(Aj) = −, σ′(Pr+1) = σ(A`) = −.
Hence there is only one sign change which is between Pr+1 and Pr+2. If ` < i, then σ′(Pr+1) =
σ(A`) = +. This shows that there is at most one sign change between P1 and Pr+1.
If j < `. This implies σ′(Pr+2) = σC(Aj ∪A`) = −. If ` < i, then j < i and σ′(P1) = σ(Aj) = +,
σ′(Pr+1) = σ(A`) = +. Hence there is only one sign change between Pr+1 and Pr+2. If ` > i,
then σ′(Pr+1) = σ(A`) = −. This shows that there is at most one sign change between P1 and
Pr+1. This completes the proof that σ′ is an (r + 1)-signotope on n+ 1 elements.

3.5 Technical Lemmata

In this section, we proof Proposition 3.4.1 which implies that two disjoint (r−1)-subsets cannot
be reversed in a single rotation. In Lemma 3.4.2, we showed that the relation between two
(r−1)-subsets, which share r−2 elements, is reversed if and only if the intersection contains the
rotated element. Since those (r−1)-subsets are directly in relation and hence not incomparable,
the orientation stays the same if the rotated element is not contained in the intersection.
For this, we introduce the following two partitions of the family of all (r − 1)-subsets. With
respect to the first element 1, we partition the (r−1)-subsets

(
[n]
r−1

)
into the following three sets:

Hσ1 = { I ⊂ [n] : |I| = r − 1, 1 ∈ I };
Uσ1 = { I ⊂ [n] : |I| = r − 1, 1 /∈ I, σ(I ∪ {1}) = + };
Dσ1 = { I ⊂ [n] : |I| = r − 1, 1 /∈ I, σ(I ∪ {1}) = − }.

Similarly, with respect to the last element n, we partition
(

[n]
r−1

)
into the following three sets:

Hσn = { I ⊂ [n] : |I| = r − 1, n ∈ I };
Uσn = { I ⊂ [n] : |I| = r − 1, n /∈ I, σ(I ∪ {n}) = − };
Dσn = { I ⊂ [n] : |I| = r − 1, n /∈ I, σ(I ∪ {n}) = + }.

We want to emphasize the sign change in the definition, that is, every I ∈ Uσ1 has the sign
σ(I ∪ {1}) = + while every I ∈ Uσn fulfills σ(I ∪ {n}) = −.

Lemma 3.5.1. Uσ1 and Uσn are up-sets and Dσ1 and Dσn are down-sets of the partial order ≺
corresponding to the r-signotope σ.

Proof. In the following we show that Uσ1 is an up-set. Analogous arguments show that Uσn is an
up-set and that Dσ1 and Dσn are down-sets. Let I be an element of Uσ1 . By definition, it is 1 /∈ I
and σ(I ∪ {1}) = +. Let J be an (r − 1)-subset with J � I.
If the intersection I ∩ J contains r − 2 elements, we cannot have 1 ∈ J , as otherwise J was
lexicographic smaller than I, which implies with the assumption J � I

− = σ(I ∪ J) = σ(I ∪ {1}) = +,

a contradiction. Therefore, 1 /∈ J and we have r+ 1 elements in I ∪J ∪{1}. If I is lexicographic
smaller than J , then the following sets are sorted in decreasing lexicographic order I∪J , J∪{1},
I ∪ {1} which corresponds to the order in the (r + 1)-packet I ∪ J ∪ {1}. Since we have



3.5 Technical Lemmata 55

σ(I ∪ {1}) = + by assumption and σ(I ∪ J) = + because J � I, it follows σ(J ∪ {1}) = +.
Hence J ∈ Uσ1 .
In the other case, if J is lexicographical smaller than I, we have the following decreasing order
with respect to the lexicographical order I ∪ J , I ∪ {1}, J ∪ {1}. Since we have σ(I ∪ {1}) = +
and σ(I ∪ J) = −, it follows σ(J ∪ {1}) = + and hence again J ∈ Uσ1 .
If the intersection I ∩ J contains less than r − 2 elements, we proceed by induction. There is
a chain I = I1 ≺ I2 ≺ . . . ≺ Ik = J such that any two consecutive Ii have an intersection of
r − 2 elements. For i = 2, . . . , k, since Ii−1 ∈ Uσ1 , we conclude that Ii ∈ Uσ1 , and in particular,
J ∈ Uσ1 . This completes the proof that Uσ1 is an up-set.

We now study the effect of a clockwise rotation to the partial order. In the partial order ≺rot

corresponding to the rotated signotope σrot, the sets (Uσ1 )rot and (Dσ1 )rot remain up-set and
down-set, respectively. Here Xrot = {Xrot : X ∈ X} denotes the clockwise rotated sets of a
set-system X .

Lemma 3.5.2. It holds (Hσ1 )rot = Hσrotn , (Uσ1 )rot = Uσrotn , and (Dσ1 )rot = Dσrotn .

Proof. An (r − 1)-subset I contains the first element 1 if and only if its clockwise rotation Irot

contains the last element n. Therefore, we have

(Hσ1 )rot = Hσrotn and (Uσ1 ∪ Dσ1 )rot = Uσrotn ∪ Dσrotn .

To show (Uσ1 )rot = Uσrotn and (Dσ1 )rot = Dσrotn , it suffices to prove the two subset relations
(Uσ1 )rot ⊆ Uσrotn and (Dσ1 )rot ⊆ Dσrotn .
For the first subset relation (Uσ1 )rot ⊆ Uσrotn , let I ∈ Uσ1 , i.e., σ(I ∪ {1}) = +. After rotating the
element 1, we obtain

+ = σ(I ∪ {1}) = −σrot((I ∪ {1})rot).

Hence σrot(Irot ∪ {n}) = − which implies Irot ∈ Uσrotn . An analogous argument shows (Dσ1 )rot ⊆
Dσrotn .

It is worth noting that for I, J ∈ Hσ1 (i.e., 1 ∈ I ∩ J) with I ≺ J Lemma 3.5.1 implies that any
chain I = I1 ≺ . . . ≺ Ik = J lies entirely in Hσ1 (i.e. I1, . . . , Ik ∈ Hσ1 ). Since a clockwise rotation
converts comparability of elements containing the element 1, we have Irot = (I1)rot �rot . . . �rot

(Ik)rot = Jrot.
With the above lemmas, we can now prove Proposition 3.4.1.

Proposition 3.4.1. Let σ be an r-signotope on [n] with partial order ≺. For two (r−1)-subsets
I, J with I ≺ J and 1 /∈ I ∩ J , it holds Irot‖rotJrot or Irot ≺rot Jrot.

Proof. Assume towards a contradiction that I, J are two (r − 1)-subsets with I ≺ J and
Irot �rot Jrot.
If I ∈ Uσ1 , then by Lemma 3.5.1, J ∈ Uσ1 . If I ∈ Dσ1 , then by Lemma 3.5.2, Irot ∈ Dσrotn and by
Lemma 3.5.1 and the assumption that Irot �rot Jrot it is Jrot ∈ Dσrotn . Applying Lemma 3.5.2
again yields J ∈ Dσ1 . Analogous arguments show that, if J ∈ Dσ1 (resp. J ∈ Uσ1 ), then I ∈ Dσ1
(resp. I ∈ Uσ1 ).
Since 1 /∈ I ∩ J not both I and J can be in Hσ1 . Hence I and J are both in Dσ1 or both in Uσ1 .
Since I ≺ J , there is a chain I = I1 ≺ . . . ≺ Ik = J . By Lemma 3.5.1 it is I1, . . . , Ik ∈ Dσ1
(resp. Uσ1 ). After a clockwise rotation, we have (I1)rot, . . . , (Ik)rot ∈ Dσrotn (resp. Uσrotn ) and hence
Irot = (I1)rot ≺rot . . . ≺rot (Ik)rot = Jrot, which is a contradiction to Irot �rot Jrot.
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3.6 Non-2-Extendable Examples for Even Rank

Since the proof for the extension theorem (Theorem 3.1.2) applies only for odd ranks, we had to
investigate even ranks in a different manner. For even rank signotopes, rotating every element
once yields the same signotope. Hence two (r − 1)-subsets are generally not incomparable in
any rotation.
To study extendability in rank 4, we used computer assistance to enumerate all signotopes and
then tested each of the signotopes for 2-extendability. On 6 and 7 elements all 4-signotopes are
2-extendable. On 8 elements we found non-2-extendable 4-signotopes.
Using this two-level-SAT approach we managed to find the first examples of 4-signotopes which
are not 2-extendable. Among the non-extendable rank 4 examples on 8 elements, we discovered
some with high symmetries and nice properties. Those examples have a similar structure as
the example of Richter-Gebert in the context of extendability in oriented matroids [Ric93] even
though the non-extendable oriented matroid by Richter-Gebert has no sorting of the element
such that it is a signotope. The common property is the following: There are two disjoint
simplicial cells (i.e. fliples, respectively mutations) such that the choice of each of the crossing
points for both simplicial cells witnesses the non-extendability. In fact, we constructed the
signotope examples in such a way that those simplicial cells are built by the odd and even
elements, respectively. For such examples it is sufficient to check two (r − 1)-subsets I, J to
verify the non-2-extendability. This is a speed up for the extendability-test by a factor of Θ(r2)
since not all pairs of (r − 1)-subsets I, J need to be tested.
In order to keep symmetries and similarities of our nicely structured example of rank 4, we
restricted our search space to examples in rank r on 2r elements. While for rank 4 all signotopes
on 8 elements can be enumerated within a few seconds, the complete enumeration in higher
ranks is unpractical as the number of r-signotopes on 2r elements grows faster than doubly
exponential in r (cf. Proposition 2.2.14). Hence, to be able to approach higher ranks, we further
analyzed the structure of our non-2-extendable rank 4 examples together with an analysis of the
already found rank 6 examples. In Section 3.6.1 we give a brief summary of the SAT framework
and explain how we encode signotopes.
With the observed properties as additional constraints, we further restricted the search space.
Under these restrictions, we managed to find examples for rank 6, 8, 10, and 12 which are
not 2-extendable, which we describe in Section 3.6.2. Investigating those properties, we can
prove non-extendability, see Section 3.6.3. With this proof of non-extendability, we do not need
the second SAT instance to test extendability. It remains to find signotopes with the specified
properties. The existence of non-extendable examples for even r ≥ 14 remains open.

3.6.1 SAT Encoding

We give a short description of the encoding of r-signotopes on n elements in terms of a SAT
instance. Such an instance consists of a Boolean formula which has a valid assignment if and
only if there is a signotope with the specified properties. In particular we model the instance
with a Boolean formula in conjunctive normal form (short: CNF), which is a conjunction of
clauses. Each clause is a disjunction of variables and their negation (called literals). We then
use state-of-the-art SAT solvers such as CaDiCaL [Bie19] to decide whether a solution exists.
To model a signotopes σ on [n] and its fliples as a CNF formula, we define Boolean variables SX
for every r-subset X ∈

(
[n]
r

)
and interpret the value σ(X) = + as SX = True and σ(X) = −
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as SX = False. Moreover, we have to ensure the monotonicity on (r + 1)-packets. For this
we list all possibilities of valid sign sequences, i.e., sign sequences of length r + 1 with only one
sign change. There are exactly 2r + 2 possible assignment of this sequence. Let T be the list
of all those types. To encode which packet corresponds to which sequence and to ensure that
every packet has exactly one of the sequences, we introduce auxiliary variables TP,t for every

P ∈
(

[n]
r+1

)
and t ∈ T which we synchronize with the values of the corresponding r-subsets.

Let t(i) be the sign of t at position i. For t(i) = − and a Boolean variable X we say t(i) · X
is ¬X. Moreover, if t(i) = +, then t(i) · X is X. The variable TP,t is True if and only if the
sign sequence of the (r + 1)-packet P is the same as the sign sequence t ∈ T . In particular
TP,t ⇔

∧
j=1,...,r+1 t(j) · SPj . For the CNF we have to add the clauses

¬TP,t ∨ t(j) · SPj for all j = 1, . . . , r + 1; and

TP,t ∨
∨

j=1,...,r+1

¬ t(j) · SPj .

Note that the first direction of the implication is modeled by the r+ 1 clauses while the reverse
direction is modeled by the clause in the second line.
An important part of the extendability are fliples. In a first step we define variables FX,P for

every (r + 1)-packet P ∈
(

[n]
r+1

)
and every r-subset X ∈

(
P
r

)
to indicate whether X is a fliple

when σ is restricted to P . If FX,P = True, the r-subset X is flipable in the packet P , i.e.,
is next to a sign change or at the beginning, respectively end, of a constant sign sequence.
The information about the sign change is already encoded in TP,t. Assume X is at position
j ∈ {1, . . . , r + 1} of the packet P . Then X is flipable in P if and only if the sign sequence t
of P has the sign change between position j − 1 and j or between position j and j + 1. For this
let Tj be the set of sign sequences such that the j’th sign can be flipped without violating the
monotonicity condition. Now it is FX,P ⇔

∨
t∈Tj TP,t. Hence for the CNF, we add the clauses

¬FX,P ∨
∨
t∈Tj

TP,t; and

FX,P ∨ ¬TP,t for all t ∈ Tj .

Using the FX,P variables, we can assert the variables FX =
∧
P∈( [n]

r+1) : X⊂P FX,P for every

X ∈
(

[n]
r

)
to indicate whether X forms a fliple in the signotope. Again we add the following

clauses to the CNF

¬FX ∨ FX,P for all P ⊃ X; and

FX ∨
∨
P⊃X

¬FX,P .

For more details the supplemental code see [BFS23a].2

3.6.2 Structure of the Examples supporting Conjecture 3.1

For the first witnessing examples of Conjecture 3.1 in rank 4, we used a two-step SAT approach.
To make investigations in higher ranks, we had to get a better understanding of the examples

2https://github.com/manfredscheucher/supplemental-signotope-extension

https://github.com/manfredscheucher/supplemental-signotope-extension
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found in rank 4. Hence we filtered those with regularities and symmetries to come up with a
generalization of the observed properties and analyzed their structure.
One of the first and crucial observations was that there exist signotopes such that for every
choice of r − 1 even indices I ⊂ Er := {2, 4, . . . , 2r} and every choice of r − 1 odd indices
J ⊂ Or := {1, 3, . . . , 2r − 1} there is no extension.
While we came up with further observations one by one over the time, we give a summary
of all properties, which we desire from the examples in rank r with n = 2r elements. Let
X = (x1, x2, . . . , xr) be an r-subset.

(a) σ = σrot(4).

(b) σ(2, 4, . . . , 2r) = − and σ(1, 3, . . . , 2r − 1) = +.

(c) If the r-subset X contains exactly one even element of Er, respectively only one odd
element of Or, then the sign σ(X) depends only on the position of that element in the
increasing order of the elements of X. More specifically:

I If e = xi ∈ Er is the only even element in X, then σ(X) = (−)i.

I If o = xi ∈ Or is the only odd element in X, then it is σ(X) = (−)i+1.

(d) If x1, . . . , xi ∈ Er and xi+1, . . . , xr ∈ Or with 2 ≤ i ≤ r − 2, then σ(X) = (−)i+1.

(e) Let x1, . . . , xi ∈ Or and xi+1, . . . , xr ∈ Er for 2 ≤ i < r − 2.

I If xr < 2r, then σ(X) = −.

I If xj = 2j for all j = i+ 1, . . . , r, then σ(X) = +.

Furthermore, we fix the following set of 8 fliples for rank 4.

F4 = {(1, 3, 5, 7), (2, 4, 6, 8), (2, 3, 7, 8), (1, 3, 4, 8),

(1, 2, 4, 7), (3, 5, 6, 8), (4, 5, 7, 8), (3, 4, 6, 7)}

Together with the 4-fold symmetry, see Property (a), it is sufficient to mention only some of
them:

F̂4 = {(1, 3, 5, 7), (2, 4, 6, 8), (4, 5, 7, 8), (3, 4, 6, 7), (1, 2, 4, 7)}

In rank 4, there are only four signs which are not determined by the above properties:

(1, 3, 4, 8), (4, 5, 7, 8), (2, 3, 7, 8), (3, 4, 6, 7)

By the 4-fold symmetry, the assignment of (1, 3, 4, 8) also determines the sign of (4, 5, 7, 8), and
vice versa. The third and fourth subset have a similar interaction. Hence, there are precisely 4
signotopes in rank 4 which fulfill the above properties. We fix the configuration where all four
undetermined signs are − and refer to it as σ4 in the following. However, the choice does not play
a role. For higher rank, there are several signs undetermined by the above properties. Except a
set of prescribed fliples, our aim was to find a relation between examples in different ranks, for
example using projection and deletion arguments. For this we investigated the structure of our
rank 4 examples together with some already found rank 6 examples. We found the following
correlation.
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(f) For r ≥ 6, let σr−2 be an example of rank r − 2 on 2r − 4 elements. For an r-subset
X ⊆ [2r] with 1, 3 /∈ X and 2, 4 ∈ X, we define the sign

σr(X) = σr−2(X ↓{1,2,3,4}).

Note that X ↓{1,2,3,4} is obtained by deleting the elements 2 and 4 from X and a further
index shift by −2 caused by deleting 1 and 3, which are not contained in X. In other
words, σr−2 is obtained from σr by a projection to 1, 3 and a deletion of 2, 4.

If we start with one example in rank 4 and recursively construct examples in higher ranks with
the desired properties and further prescribe an exact set of (r/2)2 + (r/2) + 4 fliples for rank r,
it finally turned out that there is a unique example in each of the ranks r = 6, 8, 10, 12. The
description of the fliples are provided in the paragraph “Higher Ranks”. All examples and the
source code to verify their correctness are available at the supplemental data of [BFS23a]. Note
that even though Er and Or are fliples of the defined signotopes, changing the sign of one of
them yields a signotope with different properties. In particular for r = 4 the signotope becomes
2-extendable. The set of even elements Er and the set of odd elements Or are fliples are always
contained among the prescribed fliples, which follows from property (c).

Rank 4

We explicitly give the rank 4 example and give a visualization as pseudohyperplane arrangement.
We fix σ4 as the examples, which is not 2-extendable and has the properties (a)–(f). For
this example we map the four subsets, which are not determined yet, to −. Representing the
signotope with a string of its signs in reversed lexicographic order of its 4-subsets, the complete
signotope has the signs

σ4 = + + +−−+ + +−+ +−+ + + + +−−+−−+ + +−−−−−−−−−−
+ + +−+ +−+ + + + +−+ + +−−−−+ +−+ + + +−+−+ + + + +.

The representation of σ4 is given as supplemental data as 3-dimensional object3. This is gener-
ated using a SageMath program which computes the sweep of the signotope and for every rank
3 signotope a wiring diagram of fixed length. In particular, there is only one crossing at a time
in the wiring diagram. This helps to make the boundaries of the 3-dimensional visualization
nice. A projection to 2 dimensions is given in Figure 3.8. The single wiring diagrams are given
as in Figure 3.9 with the same colors assigned to the elements. We start with the reversed cyclic
arrangement at the top left position and then continue line by line until we reach the cyclic
arrangement. In each step we highlight the triangular cells, which are flipped either from the
previous arrangement or to the following arrangement been flipped.

3https://helenabergold.github.io/supp/3d signotopes/nonextendable sign48 pshyperplane.html

https://helenabergold.github.io/supp/3d_signotopes/nonextendable_sign48_pshyperplane.html
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Figure 3.8: A projection of the 3-dimensional pseudohyperplane arrangement of σ4. In the front, we
start with the reversed cyclic arrangement. The odd elements 1, 3, 5, 7 have a color from the
red color family, whereas, the even elements 2, 4, 6, 8 are colored with shades of blue and
purple.
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Figure 3.9: The sweep of pseudolines corresponding to σ4 starting with the reversed cyclic arrangement
in the top left. The odd elements 1, 3, 5, 7 have a color from the red color family, whereas,
the even elements 2, 4, 6, 8 are colored with shades of blue and purple. Triangular cells which
get flipped in comparison to the next signotope are marked red, if they have been flipped
from the previous one they are green. Moreover we highlight the triangles consisting only
of odd or only of even elements.



62 3 An Extension Theorem for Signotopes

Higher Ranks

For higher ranks, we refer to the supplemental data [BFS23a] for the explicit sign sequence of
the signotopes, since even represented as a string would be a lot of space and pages filled with +
and − signs. However we give the set of fliples of the signotopes, since this is the only missing
information. For the fliples we only give one representative for every 4-fold symmetry class.

Besides the two fliples, consisting of all even and all odd elements, we have a recursive con-
struction for the remaining fliples. Starting with the three additional fliples F̂4 of σ4, which we
represent as a string of “|” and “x” of length 2r. If the i-th element is contained in the fliple,
we write “x” at the i-th position, “|” otherwise. Hence this string consists of exactly r charac-
ters “x” and r characters “|”. The three fliples of F̂4 are represented by the strings “|||xx|xx”,
“||xx|xx|”, and “xx|x||x|”.

Given the set of fliples F̂r for an even r ≥ 4, we construct F̂r+2 as follows. If in the string of “x”
and “|” there is a substring “||xx”, we construct a string of size 2(r + 2) = 2r + 4 by replacing
the substring

“||xx” by “||||xxxx”,

which adds additional four characters to the string. Moreover we replace the substring

“x||x” by “x|||xx|x”.

Note that both replacement add two additional elements to the fliple itself since we add two times
“x” and two times “|”. Note that starting with r = 4, we only get three patterns “|||||xxxx|xx”,
“||||xxxx|xx|”, and “xx|x|||xx|x|” for r = 6. In addition we prescribe the string “||xxxx|x||x|”
(corresponding to the fliple (3, 4, 5, 6, 8, 11) for which both rules can be applied increasing the
number of fliples for every r.

The fliples of F̂r for r = 4, 6, 8, 10, 12 together with its string representations are:

F̂4 = {(1, 3, 5, 7), (2, 4, 6, 8),

(1, 2, 4, 7), (3, 4, 6, 7), (4, 5, 7, 8), }

F̂6 = {(1, 3, 5, 7, 9, 11), (2, 4, 6, 8, 10, 12),

(1, 2, 4, 8, 9, 11), (5, 6, 7, 8, 10, 11), (6, 7, 8, 9, 11, 12), (3, 4, 5, 6, 8, 11), }

F̂8 = {(1, 3, 5, 7, 9, 11, 13, 15), (2, 4, 6, 8, 10, 12, 14, 16),

(1, 2, 4, 10, 11, 12, 13, 15), (3, 4, 5, 6, 8, 12, 13, 15), (5, 6, 7, 8, 9, 10, 12, 15),

(7, 8, 9, 10, 11, 12, 14, 15), (8, 9, 10, 11, 12, 13, 15, 16)}
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F̂10 = {(1, 3, 5, 7, 9, 11, 13, 15, 17, 19), (2, 4, 6, 8, 10, 12, 14, 16, 18, 20),

(1, 2, 4, 12, 13, 14, 15, 16, 17, 19), (3, 4, 5, 6, 8, 14, 15, 16, 17, 19),

(5, 6, 7, 8, 9, 10, 12, 16, 17, 19), (7, 8, 9, 10, 11, 12, 13, 14, 16, 19),

(9, 10, 11, 12, 13, 14, 15, 16, 18, 19), (10, 11, 12, 13, 14, 15, 16, 17, 19, 20), }

F̂12 = {(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23), (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24),

(1, 2, 4, 14, 15, 16, 17, 18, 19, 20, 21, 23), (3, 4, 5, 6, 8, 16, 17, 18, 19, 20, 21, 23),

(5, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 23), (7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 23),

(9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 23), (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23),

(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24)}

Until now there is no explanation why this construction works and whether it works for arbitrary
rank. However this is the construction of the set of fliples for up to r = 12 which gives together
with the remaining property a unique example.

3.6.3 Towards an Infinite Family of Counterexamples

In this section, we construct a partial signotope ρr for every even rank r, i.e., we only assign
signs to a subset X ⊆

(
[n]
r

)
of all r-subsets. In particular those signs imply that every signotope

which contains the partial signotope is not 2-extendable. We say a signotope σ contains a
partial signotope ρ whose domain is X ⊆

(
[n]
r

)
if σ(X) = ρ(X) for all X ∈ X . We define a

partial signotope ρr on n = 2r elements for even rank r and show that the non-extendable
signotopes σr (see Section 3.6.2) for r = 4, 6, 8, 10, 12 contain ρr. However the existence of
signotopes with the specified properties remains open for all even r ≥ 14.

The question whether there exists a signotope σ containing ρr for all even r is an instance of
the completion problem. For related structures such as acyclic uniform 3-chirotopes, uniform 3-
chirotopes, and generalized signotopes the completion problem is NP-hard. The first was shown
by Knuth [Knu92]. Later Baier [Bai05] showed that the proof of Knuth transfers to uniform
rank 3 chirotopes. Tschirschnitz [Tsc03] independently showed the result with a reduction from
alternating 3SAT. This reduction might transfer to the setting of 3-signotopes. The NP-hardness
of generalized signotopes was recently shown by Bergold, Scheucher and Schröder [BSS23a] who
also showed the hardness for 40 related completion problems. We expect that the completion
problem for signotopes is NP-hard as conjectured by Felsner, Gärtner and Tschirschnitz [FGT05].

For even r, we define a partial mapping ρr on
(

[2r]
r

)
. The n = 2r elements are partitioned into

the odd elements Or = {o1, . . . , or} and the even elements Er = {e1, . . . , er} with oi = 2i − 1
and ei = 2i for i = 1, . . . , r. Hence it holds oi < ei < oi+1 < ei+1 for all i = 1, . . . , r − 1. Even
though ρr is only a partial signotope, we use the operations as defined for r-signotopes such

as rotation (ρr)rot, deletion and projection. Instead of (ρr)rot(k), we write ρ
(k)
r for the k-fold

rotation. Without loss of generality, we assume

(1) ρr(o1, o2, . . . , or) = +.

Otherwise, we just reverse all the signs. Furthermore, we define the following signs of ρr.
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(2) ρr(e1, e2, . . . , er) = −,

(3) ρr(ei1 , . . . , eik , oj , eik+1
, . . . , eir−1) = (−)k for k = 0, . . . , r − 1, and

i1 < . . . < ik < j ≤ ik+1 < ir−1 ≤ r,

(4) ρr(oi1 , . . . , oik , ej , oik+1
, . . . , oir−1) = (−)k+1 for k = 0, . . . , r − 1, and

i1 < . . . < ik ≤ j < ik+1 < ir−1 ≤ r.

Note that those conditions together imply that Or and Er are fliples. The only packets in
which Or appears are the ones consisting of all elements from Or and exactly one element
from Er. The signs which appear in those (r + 1)-packets are all determined by (1)–(4) and do
not contradict the monotonicity property. Moreover, the sign change is next to Or. The same
argument holds for Er by exchanging the roles of Er and Or. For more details see the proof of
Proposition 3.6.1 (page 70).
In the geometric sense of pseudohyperplane arrangements Or and Er being fliples means that
the simplex spanned by each of the r pseudohyperplanes is not crossed by any other pseudohy-
perplane, i.e., is a simplicial cell. The conditions (3) and (4) show that each crossing of only
even elements is above every pseudohyperplane corresponding to an odd hyperplane and each
crossing of the pseudohyperplane of only odd elements is below each pseudohyperplane of an
even element.
Another important structural property making the example very symmetric and therefore easier
to analyze is the 4-fold symmetry. The partial mapping ρr satisfies

(5) ρr = ρ
(4)
r .

The 4-fold symmetry is equivalent to

ρr(x1, . . . , xr) = (−)iρr(xi+1 − 4, . . . , xr − 4, n− 4 + x1, . . . , n− 4 + xi)

for all 1 ≤ x1 < . . . < xi ≤ 4 < xi+1 < . . . < xr ≤ 2r and does not contradict the properties
(1)–(4). We discuss this in more detail in the proof of Proposition 3.6.1 (page 70). Further signs
of ρr are

(6) ρr(oi1 , . . . , oik , ek+1, ek+2, . . . , er) = + for k = 2, . . . , r − 2
and i1 < . . . < ik ≤ k + 1,

(7) ρr(o1, o2, e2, . . . , ek, ok+2, . . . , or) = − for k = 3, . . . , r − 1.

The signs determined in (1)–(7) define Ω(r3) signs of r-subsets of a total of
(

2r
r

)
signs and do

not contradict the monotonicity property of signotopes. We defer the proof of the following
proposition to the end of this section (page 70).

Proposition 3.6.1. For all even r ≥ 4, the partial mapping ρr is a partial r-signotope, i.e., the
determined signs do not contradict the monotonictiy property on (r + 1)-packets.

In the following we show that for even r = 4, . . . , 12, there exist signotopes containing ρr. In
particular the signotopes σr described in Section 3.6.2 contain ρr. For even rank r ≥ 14 the
existence remains unknown.

Lemma 3.6.2. The signotopes σr of rank r for r = 4, 6, 8, 10, 12 (defined in Section 3.6.2),
which are not 2-extendable, contain ρr. In particular they fulfill properties (1)–(7).
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Proof. Clearly conditions (1)–(5) are fulfilled by those examples as they are exactly (a)–(c).
Moreover, (6) corresponds to the second part of (e). To show the remaining property (7), we
apply the rotation operator multiple times to obtain an r-subset to which property (e) applies.
We distinguish two cases depending on the parity of k, such that ek is the largest element of Er
in the r-subset (o1, o2, e2, . . . , ek, ok+2, . . . , or).
First assume k is odd. Since r is even, the number of elements ok+2, . . . , or is even. By the 4-fold
symmetry of σr (a) the application of four rotations yields the same signotope. In every step in
which we apply four (backwards) rotations, we rotate exactly two of the elements or−1, or which
become o1, o2. Since the number of rotated elements is even, the sign stays the same. To rotate
all elements ok+2, . . . , or, we apply 4 · r−k−1

2 = 2(r − k − 1) rotations in total. Using the 4-fold
symmetry, it holds

σr(o1, o2, e2, . . . , ek, ok+2, . . . , or) = σr(o1, . . . , or−k+1, er−k+1, . . . , er−1) = −.

The sign of the latter r-subset is − because of the first part of (e).
If k is even, we apply 4 · r−k−2

2 = 2(r − k − 2) rotations. In each set of four rotations exactly
the two elements or−1, or are rotated and become o1, o2. In the end the considered r-subset still
contains or. Hence we apply another set of four rotations in which only or is rotated which
implies a reversion of the sign. By second part of (e), we can determine the sign of the resulting
set.

σr(o1, o2, e2, . . . , ek+2, ok+4, . . . , or) = σr(o1, . . . , or−k−2, er−k−2, . . . , er−2, or)

= −σr(o2, . . . , or−k, er−k, . . . , er)

= − ·+ = −.

This shows that σr fulfills (7) and hence σr contains ρr for r = 4, . . . , 12.

ρr is not 2-extendable

The next step is to show that for even r every r-signotope containing ρr is not 2-extendable. In
order to show the non-extendability, we show a stronger statement. As for the signotopes σr,
we show that every r-signotope σ which contains ρr and for every choice of an (r − 1)-subset
Ẽ ⊆ Er and an (r−1)-subset Õ ⊆ Or there is no extension in which Ẽ and Õ are fliples together
with the new element.

Theorem 3.6.3. Let Õ ⊂ Or = {o1, . . . , or}, Ẽ ⊂ Er = {e1, . . . , er} be two disjoint (r − 1)-
subsets. For even r ≥ 4 and all r-signotopes σ on [2r] which contain ρr there is no extending
r-signotope ρ̂r on [2r + 1] such that there is an z ∈ [2r + 1] with (ρ̂r) ↓z= σ and Õ ∪ {z} and
Ẽ ∪ {z} are fliples of ρ̂r.

For the proof, we need to show that we cannot extend a signotope containing ρr with an addi-
tional element z such that the two considered disjoint (r− 1)-subsets Ẽ and Õ are fliples in the
extension. Since the elements are sorted in linear order, we need to make sure that we cannot
add z at any position. We start by showing that we cannot extend ρr with z inserted at the
last position n + 1. In order to avoid the index shift, we go through all rotations and show
in the considered rotation, that no extension with the last element exists. If we show for the

i-th rotation of ρr with i = 0, . . . , n− 1 that we cannot extend ρ
(i)
r with an element at the last
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position, than ρr is not extendable. Since our constructed partial signotope ρr is 4-symmetric
(see (5)) it suffices to show the non-extendability with an element at the last position for signo-

topes containing one of the four rotations ρr = ρ
(0)
r , ρ

(1)
r , ρ

(2)
r , ρ

(3)
r . Note that (Er)rot = Or and

(Or)rot. Hence the prescribed fliples stay the same for every rotation.

For each of the four rotations, we proceed as follows. To show that there is no extension with
an element z = n + 1 such that Ẽ and Õ are fliples, we assume towards a contradiction that
there is an extension by the element n + 1 in such a way that one of the two sets Ẽ ∪ {n + 1}
and Õ∪{n+1} is a fliple. By deducing signs using the monotonicity property, we show that the
other set cannot be a fliple at the same time. All arguments work for each choice of Ẽ and Õ.

We consider the four rotations separately. In order to make it easier to follow, we rewrite the
conditions (1)–(7) in terms of the considered rotation. This makes it easier to use the condition
in the proof for the non-extendability. Moreover, we only mention the properties which are
necessary for the considered rotation.

Rotation 0

In a first step, we look at a signotope containing ρr, i.e., with the original properties (1)–(7).
We only mention the properties we use for the proof. Note that the elements of each r-subset
are sorted.

(0.1) ρr(o1, . . . , or) = + (cf. property (1))

(0.2) ρr(e1, . . . , er) = − (cf. property (2))

(0.3) ρr(o, ei1 , . . . , eir−1) = (−)0 = + for o ∈ Or and eij ∈ Er (cf. property (3))

(0.4) ρr(oi1 , . . . , oir−1 , e) = (−)r = + for oij ∈ Or and e ∈ Er (cf. property (4))

(0.5) ρr(oi1 . . . oik , ek+1, . . . , er) = + for oij ∈ Or
and k = 2, . . . , r − 2. (cf. property (6))

Note that for property (0.4) we used that r is even. We show that every signotope which
contains ρr cannot be extended by an element z = n+1 at the last position to an r-signotope ρ̂r
such that Õ ∪ {z} and Ẽ ∪ {z} are both fliples. Since ρ̂r is an extension, the deletion ρ̂r ↓n+1 of
the last element contains the partial signotope ρr. Hence if there is an extension, the conditions
(0.1)–(0.5) hold for ρ̂r.

We assume that there is an extension ρ̂r with z = n+ 1 such that there is a fliple Ẽ ∪{z} for an
(r−1)-subset Ẽ of Er. By deducing further signs using the monotonicity property, we show that
for all Õ ⊂ Or, the r-subset Õ∪{z} is not a fliple of ρ̂r. Since Ẽ∪{z} is a fliple, the sign change
of the (r + 1)-subset P = {e1, . . . , er, z} is before or after the position of Ẽ ∪ {z} in the packet.
In the case that the subset P1 = {e2, . . . , er, z} is the fliple, there might be no sign change since
the fliple is at the first position. However, since P1 is a fliple, we can flip the sign of the subset
in order to get a sign change between P1 and P2. Flipping the sign of P1 does not affect whether
subsets of the form Õ ∪ {z} are flipable. By (0.2) it is ρr(e1, . . . , er) = ρ(Pr+1) = −. Hence we
assume

(0.6) ρ̂r(e2, . . . , er, z) = +.
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Since ρ̂r is an r-signotope, we use the monotonicity of signotopes to show ρ̂r(o2, . . . , or, z) = + in
the following Claim 3.1. By (0.1) it is ρr(o1, . . . , or) = +. Hence in the packet {o1, . . . , or, z} the
only possible fliple of the form Õ ∪ {z} is (o2, . . . , or, z). As we show in Claim 3.1 this r-subset
is not a fliple. Hence there is no extension such that Ẽ ∪{z} and Õ∪{z} are both fliples, which
completes the proof for this rotation.
To prove that ρ̂r(o2, . . . , or, z) = +, we increase the number of odd elements in our r-subset in
order to use the monotonicity on a common (r + 1)-packet.

Claim 3.1. For k = 0, . . . , r − 1 and oi1 < . . . < oik ≤ ok+1 it is

ρ̂r(oi1 , . . . , oik , ek+2, . . . , er, z) = +.

Furthermore, for k = 1, . . . , r − 1 the r-subset (oi1 , . . . , oik , ek+2, . . . , er, z) is not a fliple.

Proof. We prove the claim by induction on k and start the base case with k = 0. In this case the
claim follows by assumption (0.6). Now let k > 0. We want to determine the sign of the r-subset
(oi1 , . . . , oik , ek+2, . . . , er, z). Since oik ≤ ok+1 < ek+1 we can add the element ek+1 between oik
and ek+2 and consider the sign sequence of the (r + 1)-subset

P = (oi1 , . . . , oik , ek+1, ek+2, . . . , er, z).

By induction hypothesis, it is ρ̂r(Pk) = ρ̂r(oi1 , . . . , oik−1
, ek+1, ek+2, . . . , er, z) = +. Furthermore

by the properties of ρr, we have ρ̂r(Pr+1) = ρ̂r(oi1 , . . . , oik , ek+1, ek+2, . . . , er) = +. For 2 ≤ k ≤
r − 2, this is by property (0.5). For k = 1 and k = r − 1, this follows from property (0.3) and
property (0.4), respectively. Since Pk+1 appears in the sequence between Pk and Pr+1, which
have both the sign +, it is ρ̂r(Pk+1) = ρ̂r(oi1 , . . . , oik , ek+2, . . . , er, z) = +. Furthermore, since
(oi1 , . . . , oik , ek+2, . . . , er, z) is not adjacent to a sign change in this sequence, it cannot be a fliple
of ρ̂r. Hence the claim follows by induction.

Rotation 1

We rotate o1 = 1 of ρr which becomes n = er for ρ
(1)
r . Moreover in the rotated signotope, the

role of the odd and even elements change and with them some signs. The following properties
we will need to show that there is no extension with z = n+ 1.

(1.1) ρ
(1)
r (o1, . . . , or) = ρr(e1, . . . , er) = − (cf. property (2))

(1.2) ρ
(1)
r (e1, . . . , er) = − · ρr(o1, . . . , or) = − ·+ = − (cf. property (1))

(1.3) ρ
(1)
r (e1, . . . , er−1, or) = ρr(o2, . . . , or, er) = (−)r = + (cf. property (3))

(1.4) ρ
(1)
r (e1, o2, . . . , or) = ρr(o2, e2, . . . , er) = (−)0 = + (cf. property (4))

(1.5) ρ
(1)
r (e1, . . . ek, ok+1, . . . , or) = ρr(o2, . . . , ok+1, ek+1, . . . , er) = +

for k = 2, . . . , r − 2. (cf. property (6))

We proceed in a similar way as for the last rotation and show that there is no extension ρ̂
(1)
r

of this rotation, where the extended element z is inserted at the last position n + 1 such that
Ẽ ∪ {z} and Õ ∪ {z} are fliples.
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We assume there is an extension ρ̂
(1)
r with a fliple of the form Ẽ ∪ {z} and show that it is not

possible that a set of the form Õ∪{z} is a fliple in the same extension. Since ρ
(1)
r (e1, . . . , er) = −,

we assume without loss of generality.

(1.6) ρ̂
(1)
r (e1, . . . , er−1, z) = −.

If Ẽ 6= (e1, . . . , er−1), this equation holds, since the signs of (e1, . . . , er−1, z) and (e1, . . . , er) are
adjacent in the sign sequence of the packet (e1, . . . , er, z). Moreover they are on the same side
of the fliple Ẽ ∪ {z}. Hence they have the same sign. Moreover if Ẽ = (e1, . . . , er−1), we can
flip the sign of (e1, . . . , er−1, z) if necessary without affecting the other properties. In particular
it does not change whether there is a fliple of the form Õ ∪ {z}.
By increasing the number of odd elements, we conclude the following signs. As in the first part,
we prove this claim by induction.

Claim 3.2. For k = r − 1, . . . , 0 it is

ρ̂(1)
r (e1, . . . , ek, ok+2, . . . , or, z) = −.

Furthermore, for k = r − 2, . . . , 0 the r-subset (e1, . . . , ek, ok+2, . . . , or, z) is not a fliple.

Proof. For k = r − 1, the sign of (e1, . . . , er−1, z) is − by assumption (1.6). For k < r − 1, we
consider the sign sequence of the (r + 1)-subset

P = (e1, . . . , ek, ek+1, ok+2, . . . , or, z).

By induction hypothesis, it is ρ̂
(1)
r (Pk+2) = ρ̂

(1)
r (e1, . . . , ek, ek+1, ok+3, . . . , or) = −. Further-

more, by (1.5), it is ρ̂
(1)
r (Pr+1) = ρ̂

(1)
r (e1, . . . , ek, ek+1, ok+2, . . . , or) = + for k = 1, . . . , r − 3.

For k = r − 2 and k = 0 this follows by (1.3) and (1.4), respectively. The subset Pk+1 =
(e1, . . . , ek, ok+2, . . . , or, z) is on the same side of the sign change as Pk+2 and hence it maps
to −. Moreover, it is not adjacent to the sign change. The latter shows that Pk+1 is not flipable

in this sequence and hence not a fliple of ρ̂
(1)
r .

The claim shows that ρ̂
(1)
r (o2, . . . , or, z) = − and (o2, . . . , or, z) is not a fliple. Considering the

sign sequence corresponding to the (r+1)-subset (o1, . . . , or, z), we can conclude with (1.1) that
this sequence consist only of − signs. Hence there cannot be a fliple of the form Õ ∪ {z} other
than (o2, . . . , or, z) which is not a fliple by Claim 3.2. This shows that after one rotation we
cannot insert an element at the last position. This correspond to adding the new element z
between the first and the second element in the signotope containing ρr.

Rotation 2

After a second rotation, ρ
(2)
r has the following properties.

(2.1) ρ
(2)
r (o1, . . . , or) = − ρr(o1, . . . , or) = − (cf. property (1))

(2.2) ρ
(2)
r (e1, . . . , er) = − ρ(e1, . . . , er) = + (cf. property (2))

(2.3) ρ
(2)
r (o1, e1, . . . , er−1) = ρr(o2, e2, . . . , er) = (−)0 = + (cf. property (3))
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(2.4) ρ
(2)
r (o1, . . . , or−1, er−1) = ρr(o2, . . . , or, er) = (−)r = + (cf. property (4))

(2.5) ρ
(2)
r (o1, . . . , ok, ek, . . . , er−1) = ρr(o2, . . . , ok+1, ek+1, . . . , er) = +

for k = 2, . . . , r − 2. (cf. property (6))

As before, we show that we cannot add an element z at the last position n+ 1 such that Õ∪{z}
and Ẽ ∪ {z} are fliples. Assume there is an extension ρ̂

(3)
r such that Ẽ ∪ {z} is a fliple. By (2.2)

the sign of (e1, . . . , er) is +. Hence we may assume

(2.6) ρ̂
(3)
r (e1, . . . , er−1, z) = +.

If Ẽ 6= (e1, . . . , er−1) it clearly holds. Moreover if Ẽ = (e1, . . . , er−1), we can flip the sign of
(e1, . . . , er−1, z) if necessary without affecting whether Õ ∪ {z} is flipable.

Claim 3.3. For k = 0, . . . , r − 1 it is

ρ̂(2)
r (o1, . . . , ok, ek+1, . . . , er−1, z) = +.

Furthermore, for k = 1, . . . , r − 1 the r-subset (o1, . . . , ok, ek+1, . . . , er−1, z) is not a fliple.

Proof. As in the preceding part, we prove this claim by induction and we increase the number

of odd elements in the sequence one by one. For k = 0, by (2.6) it is ρ̂
(2)
r (e1, . . . , er−1, z) = +.

For k > 1, we consider the packet

P = (o1, . . . , ok, ek, ek+1, . . . , er−1, z).

The sign of Pk is ρ̂
(2)
r (o1, . . . , ok−1, ek, ek+1, er−1, z) = + by induction hypothesis. Furthermore

by construction of ρr, it is ρ̂
(2)
r (Pr+1) = ρ̂

(2)
r (o1, . . . , ok, ek, . . . , er−1) = + for k = 1, . . . , r − 1.

To be more precise, for k = 2, . . . , r − 2 it follows by (2.5). For k = 1 and k = r − 1, it follows
by (2.3) and (2.4), respectively. Since the considered subset Pk+1 is in between Pk and Pr+1, it

follows ρ̂
(2)
r (Pk+1) = + and Pk+1 is not flipable in P and hence is not a fliple.

Considering the packet (o1, . . . , or, z) shows that none of the r-subsets Õ ∪ {z} can be a fliple.

Rotation 3

For the last considered rotation, we use the following properties.

(3.1) ρ
(3)
r (o1, . . . , or) = −ρr(e1, . . . , er) = + (cf. property (2))

(3.2) ρ
(3)
r (e1, . . . , er) = ρr(o1, . . . , or) = + (cf. property (1))

(3.3) ρ
(3)
r (o1, e2, . . . , er) = ρr(o1, o2, e2, o4, . . . , or) = (−)3 = − (cf. property (4))

(3.4) ρ
(3)
r (o1, . . . , or−1, er) = − · ρr(o2, e2, . . . , er) = − · (−)0 = − (cf. property (3))

(3.5) ρ
(3)
r (o1, . . . , ok, ek+1, . . . , er) = ρr(o1, o2, e2, . . . , ek+1, ok+3, . . . , or) = −

for k = 2, . . . , r − 2. (cf. property (7))
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Note that this is the only rotation for which we need property (7). Again, we assume that there
is a fliple Ẽ ∪ {z} and hence we may assume without loss of generality that

(3.6) ρ̂
(3)
r (e2, . . . , er, z) = −.

Using those properties, we show by induction, that the following subsets are determined due to
the monotonicity of signotopes.

Claim 3.4. For k = 0, . . . , r − 1, it is

ρ̂(3)
r (o1, . . . , ok, ek+2, . . . , er, z) = −.

Furthermore, for k = 1, . . . , r − 1 the r-subset (o1, . . . , ok, ek+2, . . . , er, z) is not a fliple.

Proof. By (3.6) it is ρ̂
(3)
r (e2, . . . , er, z) = − which is the statement for k = 0. For k > 1, we

consider the packet

P = (o1, . . . , ok, ek+1, . . . , er, z).

By induction the sign of Pk = (o1, . . . , ok−1, ek+1, er, z) is determined and is ρ̂
(3)
r (Pk) = −.

Furthermore for k = 2, . . . , r − 2 the sign of Pr+1 = (o1, . . . , ok, ek+1, . . . , er) is ρ̂
(3)
r (Pr+1) = −

by (3.5). By (3.3) and (3.4) it is ρ̂
(3)
r (Pr+1) = − for k = 1 and k = r− 1. Since the sign of Pk+1

is between the sign of Pk and Pr+1 the claim follows.

Analogously to the preceding rotations it follows that ρ̂
(3)
r has no fliple of the form Õ ∪ {z} by

considering the packet (o1, . . . , or, z). This completes the proof of Theorem 3.6.3.

ρr is a partial signotope (Proof of Proposition 3.6.1)

In this part we provide the missing part and prove Proposition 3.6.1. For this we show that the
signs given by properties (1)–(7) do not contradict the monotonicity of signotopes. For the proof
we consider packets in which the signs of r-subsets are determined by one or more conditions.

In a first step we consider the properties (1)–(4). We consider (r+ 1)-subsets containing exactly
one element from Or and r elements from Er (or vice versa). Let P be the packet having an
even element e at position k + 1 and all others are odd. In this case it is

ρr(Pi) = (−)k−1 for i ≤ k
ρr(Pk+1) = ρr(o1, . . . , or) = +

ρr(Pj) = (−)k for j ≥ k + 2.

All signs are determined and do not contradict the monotonicity. Since these are the only
packets in which Or appears and the sign change is next to the sign of Or, it is a fliple. Similar
arguments hold for Er.

Let us now consider the 4-symmetry (cf. property (5)). Property (1) and (2) are invariant
under the 4-fold rotation. For (4) we consider the r-subset X = (oi1 , . . . oik , e, oik+1

, . . . , oir−1).
If e > 4, then we only rotate some of the oi’s. Let ` be the index such that oi` < 4 but oi`+1

> 4.
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Hence ` elements get rotated during the four rotations and the position of the even element is
decreased by `. Hence it holds

ρr(X) = ρr(Xrot(4))

= (−)` · ρr(oi`+1
− 4, . . . , oik− 4, e− 4, oik+1

− 4, . . . , oir−1− 4, n− 4 + oi1 , . . . , n− 4 + oi`)

= (−)`(−)k+1−` = (−)k+1

which coincides with the sign according to (4). If e ≤ 4, we rotate additional elements. Again
let ` be the index such that oi` < ej ≤ 4 and oi`+1

> 4. In this case we rotate ` + 1 elements
and the position of e in Xrot(4) is r − (`+ 1) + k + 1 and hence it holds for even r

ρr(X) = ρr(Xrot(4))

= (−)`+1 · ρr(oi`+1
− 4, . . . , oir−1− 4, n− 4 + oi1 , . . . , n− 4 + oik , n− 4− e,

n− 4 + oik+1
, . . . , n− 4 + oi`)

= (−)`+1 · (−)r−(`+1)+k+1 = (−)k+1

which again coincides with the sign according to (4). This shows that (4) is invariant with
respect to the 4-symmetry. Analogously it follows that (3) is invariant.
Now we apply the 4-symmetry property (5) to the two remaining properties (6) and (7). Hence
the following signs are determined.

(6∗) ρr(e1, . . . , e2`, oi1 , . . . , oik , e2`+k+1, . . . , er) = +
with k = 2, . . . , r − 2, 2`+ k ≤ r, and i1, . . . , ik ∈ {2`, . . . , 2`+ k + 1}; and

ρr(oi1 , . . . , oij , ei, . . . , e2`, oij+1 , . . . , oik) = (−)j+2`−i+1 = (−)j−i+1

with k+2`−i+1 = r, 2`−i ≥ 2, k ≥ 2, i1, . . . , ij ∈ {1, . . . , i}, ij+1, . . . , ik ∈ {2`+1, . . . , r}

Note that in the second version, the sign depends on how many elements are rotated. In the first
version this is always an odd number. If we do the same for property (7), we get the following
more general rules

(7∗) ρr(o1, . . . , o2`, e2`, . . . , e2`+k, o2`+k+2, . . . , or) = −
with ` ≥ 1 and k ≥ 2 such that 2`+ k ≤ r; and

ρr(e1, . . . , e`, o`+2, . . . , o2k, e2k, . . . , er) = +
with 0 ≤ ` ≤ 2k − 3, k ≥ 4, `+ r − 2k + 1 ≥ 2.

The subsets (o1, . . . , o2`, e2`, . . . , e2k, o2k+2, . . . , or) and (e1, . . . , e2`, o2`+2, . . . , o2k, e2k, . . . , er) ap-
pear in both rules (6∗) and (7∗) and get the same sign − and +, respectively, in both rules.
Furthermore we study the interaction of (6∗) and (7∗) and the other properties. If two rules
affect each other, subsets for which the rule applies appear in the same (r + 1)-packet. More
precisely they need to have r − 1 elements in common.
Subsets for which (6∗) or (7∗) apply contain at least two elements from Or and two from Er.
Hence they do not appear with (o1, . . . , or) and (e1, . . . , er) in a same (r + 1)-packet.
In a first step, we consider packets which contain exactly two elements from Or and a subset for
which rule (6∗) applies. Deleting one of the elements of Or from the packet leads to a subset
for which property (3) gives the sign. To ensure that we can apply (6∗) for one of the other
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r-subsets, we start with a subset of (6∗) with only two elements from Or. There are two different
types (e1, . . . , e2`, oi1 , oi2 , e2`+3, . . . , er) and (o1, e1, . . . , er−2, oi2). We now list all (r+ 1)-packets
which contain at least one of them and exactly two elements from Or and check the determined
signs in order to see whether they contradict the partial signotope property. If the sign of an
r-subset is determined by any of the rules, we will write it to the right and give the number of
the corresponding rule.

P

(e1, . . . , e2`, e2`+1, o2`+2, o2`+3, e2`+3, . . . , er)
ρr(P2`+1) = + (6∗)

ρr(P2`+2) = (−)2`+1 = − (3)
ρr(P2`+3) = (−)2`+1 = − (3)

(e1, . . . , e2`, oi1 , ej , oi2 , e2`+3, . . . , er)
ρr(P2`+1) = (−)2`+1 = − (3)

ρr(P2`+2) = + (6∗)
ρr(P2`+3) = (−)2` = + (3)

(e1, . . . , e2`, o2`+1, o2`+2, e2`+2, e2`+3, . . . , er)

ρr(P2`) = + (7∗)
ρr(P2`+1) = (−1)2` = + (3)
ρr(P2`+2) = (−1)2` = + (3)

ρr(P2`+3) = + (6∗)

(o1, e1, . . . , er−2, er−1, or)
ρr(P1) = (−1)r−1 = − (3)

ρr(Pr) = − (6∗)
ρr(Pr+1) = (−1)0 = + (3)

(o1, e1, . . . , er−2, oi2 , ej)
ρr(P1) = (−1)r−2 = + (3)
ρr(Pr) = (−1)0 = + (3)

ρr(Pr+1) = − (6∗)

In the next step, we consider packets containing a subset of the form (6∗) and exactly two
elements from Er. Subsets for which we can apply rule (6∗) which have only two elements from
Er have the form

(oi1 , . . . , oij , e2`−1, e2`, oij+1 , . . . , oir−2).

for 0 ≤ j ≤ r − 2 and compatible ` = 1, . . . , r. Their sign in ρr is (−)j according to (6∗). There
are only three possibilities to add another element from Or.

P

(oi1 , . . . , oij+1 , e2`−1, e2`, oij+2 , . . . , oir−1)

ρr(Pk) = (−)j k ≤ j + 1 (6∗)
ρr(Pj+2) = (−)j+2 (4)
ρr(Pj+3) = (−)j+2 (4)
ρr(Pk) = (−)j+1 k ≥ j + 4 (6∗)

(oi1 , . . . , oij , e2`−1, o2`, e2`, oij+1 , . . . , oir−2)
ρr(Pj+1) = (−)j+2 (4)
ρr(Pj+2) = (−)j (6∗)
ρr(Pj+3) = (−)j+1 (4)

(oi1 , . . . , oij , e2`−1, e2`, oij+1 , . . . , oir−1)

ρr(Pk) = (−)j−1 k ≤ j (6∗)
ρr(Pj+1) = (−)j+1 (4)
ρr(Pj+2) = (−)j+1 (4)
ρr(Pk) = (−)j k ≥ j + 3 (6∗)
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In a similar way, we proceed for rule (7∗). First we consider packets in which r-subsets ap-
pear for which rule (7∗) applies and which have exactly two odd elements. If there are only
two elements from Or, the subsets for which rule (7∗) applies are (o1, o2, e2, . . . , er−1) and
(e1, . . . , e2k−3, o2k−1, o2k, e2k, . . . , er) for k = 1, . . . , r2 . They are contained in the following two
(r + 1)-packets

P

(o1, e1, o2, e2, . . . , er−1)
ρr(P1) = − (3)
ρr(P2) = − (7∗)
ρr(P3) = + (3)

(o1, o2, e2, . . . , er−1, er)

ρr(P1) = + (3)
ρr(P2) = + (3)

ρr(P3) = (−1)2 = + (6∗)
ρr(Pr+1) = − (7∗)

(e1, . . . , e2k−3, e2k−2, o2k−1, o2k, e2k, . . . , er)

ρr(P2k−2) = + (7∗)
ρr(P2k−1) = (−)2k−2 = + (3)
ρr(P2k) = (−)2k−2 = + (3)

ρr(P2k+1) = + (6∗)

(e1, . . . , e2k−3, o2k−1, e2k−1, o2k, e2k, . . . , er)
ρr(P2k−2) = (−)2k−2 = + (3)

ρr(P2k−1) = + (7∗)
ρr(P2k) = (−)2k−3 = − (3)

Let us now consider packets with only two elements from Er containing an r-subset for which
rule (7∗) applies. Subsets from (7∗) we have to consider are (o1, . . . , o2`, e2`, e2`+1, o2`+3, . . . , or)
and (e1, o3, . . . , or, er) and they appear in the following (r + 1)-packets with only two elements
from Er.

P

(o1, . . . , o2`, e2`, o2`+1, e2`+1, o2`+3, . . . , or)
ρr(P2`+1) = (−)2`+2 = + (4)

ρr(P2`+2) = − (7∗)
ρr(P2`+3) = (−)2`+1 = − (4)

(o1, . . . , o2`, e2`, e2`+1, o2`+2, o2`+3, . . . , or)
ρr(P2`+1) = (−)2`+1 = − (4)
ρr(P2`+2) = (−)2`+1 = − (4)

ρr(P2`+3) = − (7∗)

(o1, e1, o3, . . . , or, er)
ρr(P1) = + (7∗)

ρr(P2) = (−)r = + (4)
ρr(Pr+1) = (−)2 = + (4)

(e1, o2, o3, . . . , or, er)
ρr(P1) = (−1)r = + (4)

ρr(P2) = + (7∗)
ρr(Pr+1) = (−1)1 = − (4)

The remaining part are packets which contain subsets of the form (6∗) and (7∗), respectively,
with at least three elements from Or and three elements from Er. In all of those cases the only
rules which might apply are (6∗) and (7∗). We consider two cases. Some packets we consider
might appear in both. We start with packets containing subsets of the form (7∗). We start with
the r-subset

(o1, . . . , o2`, e2`, . . . , e2`+k, o2`+l+2, . . . , or).
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For the packet we add another element, we start with the possibilities to add an element from Or.
If we add an element o2`+j with j ∈ {1, . . . , 2` + k}, the only way to get consecutive blocks of
only elements from Or followed by only elements from Er (considered cyclically) is to delete this
element again. Hence the only subset for which we can apply one of the rules contained in this
packet is the one we started with. Moreover the odd elements o1, . . . , o2` are already contained
in the subset.
Hence there is only one remaining option:

P = (o1, . . . , o2`, e2`, . . . , e2`+k, o2`+k+1, o2`+k+2, . . . , or).

If 2`+ k is even, we can apply rule (6∗) and get the following signs.

ρr(Pj) = (−)2`−1−2`+1 = + for all 1 ≤ j ≤ 2` (6∗)

ρr(P2`+1) = (−)2`−(2`−1)+1 = + (6∗)

ρr(P2`+k+2) = − (6∗)&(7∗)

ρr(Pj) = (−1)2`−(2`)+1 = − for all 2`+ k + 3 ≤ j ≤ r. (6∗)

In the other case, if 2`+ k is odd, we can only determine the two following signs

ρr(P2`+k+2) = − (6∗)&(7∗)

ρr(P2`+k+3) = −. (7∗)

If instead we add an element from Er, there is again only one possibility.

P ′ = (o1, . . . , o2`, e2`, . . . , e2`+k, e2`+k+1, o2`+k+2, . . . , or)

If 2`+ k + 1 is even, all sign of the packet are determined and are

ρr(P
′
j) = (−)2`−1−(2`)+1 = + for all 1 ≤ j ≤ 2` (6∗)

ρr(P
′
2`+1) = + (6∗)

ρr(P
′
2`+k+2) = − (7∗)

ρr(P
′
2`+k+3) = − (7∗)

ρr(P
′
j) = (−)2`−2`+1 = − for all 1`+ k + 2 ≤ j ≤ r. (6∗)

On the other hand, if 2`+ k + 1 is odd, we only have two determined signs. For both we apply
property (7∗).

ρr(P
′
2`+k+2) = − (7∗)

ρr(P
′
2`+k+3) = −. (7∗)

Let us now have a look at the second version of (7∗) which are subsets of the following form
(e1, . . . , e`, o`+2, . . . , o2k, e2k, . . . , er). If we insert an o ∈ Or, we have one possibility to add it in
order to have consecutive blocks of elements in Or an elements in Er. We get an (r+ 1)-packet
of the following form

Q = (e1, . . . , e`, o`+1, o`+2, . . . , o2k, e2k, . . . , er)
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with the determined signs

ρr(Q`) = + (7∗)

ρr(Q`+1) = + (7∗)

ρr(Qj) = + for all `+ 2 ≤ j ≤ 2k; only if ` is even (6∗)

ρr(Q2k+1) = + only if ` is even (6∗)

Adding another element from Er gives the packet

Q′ = (e1, . . . , e`, e`+1, o`+2, . . . , o2k, e2k, . . . , er)

which has the signs

ρr(Q
′
`+1) = + (7∗)

ρr(Q
′
`+2) = + (7∗)

ρr(Qj) = + for all `+ 2 ≤ j ≤ 2k; only if `+ 1 is even (6∗)

ρr(Q2k+1) = + only if ` is even . (6∗)

Similarly, we investigate packets containing subsets of the form (6∗). Since there are two dif-
ferent versions of this property we consider them separately. Again, for each of them we add
first an element from Or and then one from Er which gives us two different packets whose
sign sequence we analyze in the following. Let us first consider the (r + 1)-packet P =
(e1, . . . , e2`, oi1 , . . . , oik , oik+1

, e2`+k+1, . . . , er). Then the signs of Pj for j = 2`+ 1, . . . , 2`+ k+ 2
are determined by (6∗) and all of them are +, which does not contradict the monotonicity of sig-
notopes. Similar for the packet P = (e1, . . . , e2`, e2`+1, oi1 , . . . , oik+1

, e2`+k+1, . . . , er) the sign of
P2`+1 is + by (6∗). Possibly depending on the values the signs of Pj with j = 2`+2, . . . , 2`+1+k
are determined by (7∗) and are also +. Now let us consider the second variant of (6∗). The
(r+1)-packet P = (oi1 , . . . , oij , oij+1 , ei, . . . , e2`, oij+1 , . . . , oik) has the signs which are determined
by the property given at the end of the line

ρr(Pm) = (−)j−i+1 for m ≤ j + 1 (6∗)

ρr(Pj+2) = (−)j−i+1 (6∗)

ρr(Pm) = (−)j−i+2 for m ≥ 2`+ j + 1. (6∗)

As a last packet, we consider P = (oi1 , . . . , oij , ei−1, ei, . . . , e2`, oij+1 , . . . , oik), which has the
following signs:

ρr(Pm) = (−)j−i+1 for m ≤ j (6∗)

ρr(Pj+1) = (−)j−i+1 (6∗)

ρr(Pm) = (−)j−i+2 for m ≥ 2`+ j. (6∗)

If we instead add e2`+1 to the r-subset, there is only one sign determined.

This completes the proof and shows that ρr is a partial signotope.
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3.7 t-Extendability

In the previous section, we studied 1- and 2-extendability. Moreover, we developed techniques
to investigate general t-extendability. In this section, we discuss examples which show that
signotopes with rank r ≥ 4 are not 4-extendable. Moreover, for r = 3 and r = 5, we present an
example which is not 3-extendable.

Line arrangements are trivially not extendable by a line through three prescribed points. How-
ever, it might be possible that a line arrangement is extendable by a pseudoline. Is it not hard
to see, that this is in general not the case. An example for this is the cyclic arrangement, see
Figure 3.10. There is no possibility to add a pseudoline going through the three marked crossing

1

2

3

4

5 6

Figure 3.10: The cyclic line arrangement with 6 lines. There is no extension to a pseudoline arrange-
ments with a pseudoline passing through the three marked points. The sector of one
crossing point containing the other two points is marked grey.

points. If there was a pseudoline going through all three points, this new pseudoline has to
contain the three points in a linear order. Hence one of the crossing points has to be in between
the other two on the newly added pseudoline. For this we study sectors which are spanned
by two pseudolines. Two pseudolines which cross once divide the plane into four connected
components. We call those connected components sectors. The prescribed point which is in
between the other two on the newly added pseudoline must have the two remaining points in
two different sectors. However, this is not the case. For each of the three points, the other two
points are in the same sector. This shows that the rank 3 signotope on 6 elements where every
triple is mapped to +, i.e., the unique maximal signotope σmax of B(6, 3) is not 3-extendable.
The above arguments with the sectors, essentially use the partial order corresponding to a
signotope. Hence we can write the proof in terms of signotopes. Moreover, we can generalize
this to higher ranks in which this construction only gives that σmax ∈ B(n, r) for r ≥ 4 is not
4-extendable.

Proposition 3.7.1. Let σmax ∈ B(n, r) be the constant + signotope with n = 4(r− 1) elements
and odd rank r. For r ≥ 3 the signotope σmax is not 4-extendable. Moreover, for r = 3, n = 6
and r = 5, n = 12, the signotope σmax is not 3-extendable.
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To study the extendability we use Proposition 3.2.4 which gives a condition for the extendability
by an element at the last position. We extend this characterization by going through all rotations.

Corollary 3.7.2. An r-signotope σ on [n] is t-extendable for t ≥ 2 if and only if for all pairwise
disjoint (r−1)-subsets I1, . . . , It there exists a rotation in which they are pairwise incomparable.

Hence the strategy to prove Proposition 3.7.1 is to prescribe (r − 1)-subsets such that in each
rotation at least two of them are comparable. For σmax, we consider the four (r − 1)-subsets

Ii = ((i− 1) · (r − 1) + 1, . . . , i · (r − 1))

for i = 1, 2, 3, 4. Note that they are disjoint and consecutive in the sense that all elements
contained in Ii are smaller than all elements of Ij for i < j. We consider all rotations, and
investigate which of the subsets are incomparable. For rank 3, we only consider I1, I2, I3. For
rank 5 with the same prescribed (r − 1)-subsets there exists a 3-extension. However, if we
instead consider the three 4-subsets I = (1, 3, 4, 5), J = (2, 10, 11, 12),K = (6, 7, 8, 9) on n = 12
elements, σmax is not 3-extendable.
To show comparability between two (r−1)-subsets, it is enough to consider a smaller signotope.
If they are comparable in the restriction, they are comparable in the original signotope.

Lemma 3.7.3. Let σ be an r-signotope on [n] and I, J two disjoint (r − 1)-subsets of [n].
Furthermore let σ′ = σ ↓[n]\(I∪J) be the restriction to the elements of I ∪ J , i.e., an r-signotope
on n′ = 2(r − 1) < n elements. For the partial order ≺ of σ and ≺′ of σ′, it holds: If I ′ ≺′ J ′,
then I ≺ J .

Proof. If I ′ and J ′ are comparable in σ′, i.e., I ′ ≺′ J ′, there is a chain of (r − 1)-subsets
I ′ = I ′0 ≺ I ′1 ≺′ . . . ≺′ I ′k = J ′ such that |I ′i ∩ I ′i+1| = r − 2 and Ii ⊆ [n]. For each of the I ′i there
is a corresponding set Ii of σ such that (Ii)↓[n]\(I∪J)= I ′i. Now clearly Ii ≺ Ii+1 for all i which
implies the statement.

Since for each two of the four prescribed (r− 1)-subsets I1, I2, I3, I4 the order of the elements is
the same, we study the comparability between them in σmax.

Lemma 3.7.4. For i < j, it holds Ii ≺ Ij in the partial order ≺ corresponding to σmax.

Proof. By the Lemma 3.7.3 it is enough to show that the two (r− 1)-subsets I1 = (1, . . . , r− 1)
and I2 = (r, . . . , 2(r − 1)) are comparable concerning the signotope of rank r on n = 2(r − 1)
elements. Since the sign of all r-subsets Xi = (i, . . . , i+ r) is +, it is Xi

1 ≺ Xi
r which shows that

(i, . . . , i+ r− 1) ≺ (i+ 1, . . . , i+ r) for all i = 1, . . . , r− 1. With the transitivity of ≺, the claim
follows.

In the next step, we study the comparability of the (r − 1)-subsets in the rotations. For every

rotation k let I
(k)
i denote the k-th rotation of Ii, i.e., I

(k)
i = (Ii)rot(k). Moreover, let ≺(k) be the

partial order corresponding to the k-th rotation σrot(k) of σ. We investigate for which rotation

k the (r − 1)-subsets I
(k)
i and I

(k)
j are comparable.

Lemma 3.7.5. Let Ii = (x1, . . . , xr−1) and Ij = (y1, . . . , yr−1) with xr−1 < y1. The two disjoint

(r− 1)-subsets I
(k)
i and I

(k)
j are comparable if x

(k)
1 , x

(k)
2 or y

(k)
r−1 are the smallest elements in the

k-th rotation among the elements I
(k)
i ∪ I

(k)
j = {x(k)

1 , . . . , x
(k)
r−1, y

(k)
1 , . . . , y

(k)
r−1}.
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Proof. We consider the three cases separately. We restrict to the first n rotations since after-
wards everything is the same except that all signs might be reversed which does not affect the

comparability. If x
(k)
1 is the smallest element, we have

x
(k)
1 < . . . < x

(k)
r−1 < y

(k)
1 < . . . < y

(k)
r−1.

In this case the statement follows from Lemma 3.7.4. In the next case, we assume x
(k)
2 is the

smallest element. Hence the ordering of the considered elements is

x
(k)
2 < . . . < x

(k)
r−1 < y

(k)
1 < . . . < y

(k)
r−1 < x

(k)
1 .

Since we only consider r-subset of the considered 2(r − 1) elements by Lemma 3.7.3, the

only signs which are − are the ones of the r-subsets containing x
(k)
1 . Considering the set

(x
(k)
2 , . . . , x

(k)
r−1, y

(k)
1 , x

(k)
1 ) whose sign is − in σrot(k). It holds

(x
(k)
3 , . . . , x

(k)
r−1, y

(k)
1 , x

(k)
1 ) ≺(k) (x

(k)
2 , . . . , x

(k)
r−1, y

(k)
1 )

All remaining signs which we considered in the proof of Lemma 3.7.4 are still + and hence it
holds

(x
(k)
2 , . . . , x

(k)
r−1, y

(k)
1 ) ≺(k) (y

(k)
1 , . . . , y

(k)
r−1).

This completes the second part of the lemma. Hence it remains to consider the last ordering of
elements in which we have

y
(k)
r−1 < x

(k)
1 < . . . < x

(k)
r−1 < y

(k)
1 < . . . < y

(k)
r−2.

In this case all signs are − except the ones of the r-subsets containing y
(k)
r−1. Hence we have

σrot(k)(x
(k)
` , . . . , x

(k)
r−1, y

(k)
1 , . . . , y

(k)
`−1) = − for all ` = 1, . . . , r − 2 which implies

(x
(k)
`+1, . . . , x

(k)
r−1, y

(k)
1 , . . . , y

(k)
`−1) ≺(k) (x

(k)
` , . . . , x

(k)
r−1, y

(k)
1 , . . . , y

(k)
`−2).

Moreover it is σrot(k)(y
(k)
r−1, x

(k)
r−1, y

(k)
1 , . . . , y

(k)
r−2) = + which implies

(y
(k)
r−1, y

(k)
1 , . . . , y

(k)
r−2) ≺(k) (x

(k)
r−1, y

(k)
1 , . . . , y

(k)
r−2).

Combining the relations, the claim follows.

We are now ready to prove Proposition 3.7.1. We will first consider the case r = 3 with the
prescribed sets I1, I2, I3 to show the moreover part and then show that the choice of I1, I2, I3, I4

implies the not 4-extendability for general rank. The remaining part for r = 5 uses a different
choice of prescribed fliples which we give in the end.

Proof of Proposition 3.7.1. In the case r = 3, we consider the three pairs I1 = (1, 2), I2 = (3, 4)

and I3 = (5, 6). By the previous Lemma 3.7.5 I
(k)
1 and I

(k)
2 are comparable in the signotope

after k = 0, 1, 3, 4, 5 rotations. Hence the only possible rotation in which they might be in-

comparable is σrot(2). Furthermore Lemma 3.7.5 shows that I
(k)
2 and I

(k)
3 are comparable for
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k = 0, 1, 2, 3, 5. Hence they cannot be incomparable after 2 rotations. This shows the moreover
part of Proposition 3.7.1.

For odd rank r ≥ 5, we show that I
(k)
1 , I

(k)
2 , I

(k)
3 , and I

(k)
4 cannot be incomparable at the

same rotation k. By Lemma 3.7.5 the two sets I
(k)
1 , I

(k)
2 are comparable if either one of the

two smallest of I1 or the largest of I2 are the first element in the rotation. Hence they can

only be incomparable for k ∈ {2, . . . , 2r − 4}. However I
(k)
3 and I

(k)
4 are comparable for all

k ∈ {2, . . . , 2r−4} since in this case we still have the smallest one of I3 as a first element. Hence
they cannot be incomparable at the same time.

To show that σmax of rank 5 is not 3-extendable, we consider the disjoint 4-subsets I = (1, 3, 4, 5),
J = (2, 10, 11, 12), K = (6, 7, 8, 9). Since all elements from I are smaller than the one from K,
Lemma 3.7.5 implies that they are comparable for rotation k = 0, 1, 2, 8, 9, 10, 11.
Krot(k) and Jrot(k) are comparable for rotation k = 2, 3, 4, 5, 6, 7, 11. Hence the three subsets are
not pairwise incomparable in the same rotation. For k = 2 this is because

Jrot(2) = (8, 9, 10, 12) ≺rot(2) (5, 9, 10, 12) ≺rot(2) (4, 5, 9, 12) ≺rot(2) (4, 5, 7, 12) ≺rot(2) (4, 5, 6, 7)

= Krot(2)

All of the relations hold since the r-subset of the union of two consecutive (r−1)-subsets contains
the 12 which is the only element rotated and hence the sign is − in σrot(2). The same chain but
shifted holds for rotation k = 3, 4, 5, 6. For k = 7, the chain

Jrot(7) = (3, 4, 5, 7) ≺rot(7) (2, 3, 5, 7) ≺rot(7) (2, 3, 5, 12) ≺rot(7) (1, 2, 3, 12) ≺rot(7) (1, 2, 11, 12)

= Krot(7)

and for k = 11 the chain

Jrot(11) = (1, 3, 11, 12) ≺rot(11) (1, 9, 11, 12) ≺rot(11) (9, 10, 11, 12)

≺rot(11) (8, 9, 10, 12) ≺rot(11) (7, 8, 9, 10) = Krot(11)

witnesses the comparability.





Chapter 4

Classic Theorems from Convex
Geometry in Simple Drawings

In this chapter, we discuss classic theorems from convex geometry such as Kirchberger’s, Helly’s,
and Carathéodory’s theorem and variants of the Erdős-Szekeres theorem in terms of the con-
vexity hierarchy of simple drawings, which was developed by Arroyo, McQuillan, Richter, and
Salazar [AMRS22]. For the definition of the layers, see Section 2.6. In particular we make
use of the combinatorial structure of generalized signotopes as introduced in Section 2.4 which
describe combinatorially the triangle orientations of simple drawings in the plane. The classic
version of the theorems we consider in this chapter are originally in the setting of point sets in
the plane or more generally in Rd. When considering point sets in general position, connecting
the points via straight-line segments yields a geometric drawing of the Kn. Hence the classic
versions of the theorems for the plane imply a result for geometric drawings of the Kn. Moreover,
generalizations of the classic theorems have been proven by Goodman and Pollack [GP82] who
dualized the original statements and proved Radon’s, Kirchberger’s, Helly’s and Carathéodory’s
Theorem for arrangements of pseudolines. As mentioned in their paper (cf. [GP82, Remark
5.2]) all statements can be formulated in terms of allowable sequences and hence transfer to
pseudoconfiguration of points. By restricting the pseudolines to the segments of the curves be-
tween the two points, the results transfer to pseudolinear drawings. Recently, Keszegh [Kes23]
developed a theory of pseudoconvex sets in the plane based on hypergraphs, which again turns
out to be equivalent to rank 3 oriented matroids. He gives alternatives proofs for the mentioned
theorems and discussed Helly’s theorem in more detail.

Outline This chapter is mostly based on [BFS+23b] and its conference version [BFS+20].
The results are joint work with Stefan Felsner, Manfred Scheucher, Felix Schröder and Raphael
Steiner. Section 4.4 is based on [BSS23b] and further unpublished joint work with Joachim
Orthaber, Manfred Scheucher and Felix Schröder.
In Section 4.1, we use the structure of generalized signotopes to prove a version of Kirch-
berger’s theorem for simple drawings in the plane. Section 4.2 deals with a generalization of
Carathéodory’s theorem to simple drawings and in Section 4.3, we present a family of simple
drawings with arbitrarily large Helly number. In Section 4.4, we consider a variant of the classic
Erdős-Szekeres theorem concerning empty k-gons, so called k-holes. The existence of holes of
size k ≤ 6 is known for points sets in the plane. Moreover, there are arbitrarily large points sets
without 7-holes. For simple drawings, so far only empty triangles, i.e., 3-holes, have been stud-
ied. We generalize the notion of k-holes for simple drawings in the plane and discuss variants of
the definition. In particular, we present arbitrarily large simple drawings without 4-holes and
show that 6-holes exist in convex drawings.
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4.1 Kirchberger’s Theorem

Two closed sets A,B ⊆ Rd are called separable if there exists a hyperplane H separating them,
i.e., A ⊂ H+ and B ⊂ H− with H+, H− being the two closed half-spaces defined by H. It is
well-known that, if two non-empty compact sets A,B are separable, then they can be separated
by a hyperplane H containing points of A and B. Kirchberger’s theorem [Kir03] asserts that
two finite point sets A,B ⊆ Rd are separable if and only if for every C ⊆ A∪B with |C| = d+2,
C ∩A and C ∩B are separable.
As mentioned above, Goodman and Pollack (cf. Theorem 4.8 and Remark 5.2 in [GP82]) proved
Kirchberger’s theorem for arrangements of pseudolines, which transfers to pseudolinear drawings
of Kn. A version of Kirchberger’s theorem for Complexes of oriented matroids has been shown
in [HKK23].
The 2-dimensional version of Kirchberger’s theorem can be formulated in terms of triple orien-
tations which indicate whether a point lies on the right or left side of a chosen line. Note that
for this we assign an orientation to the line and moreover, we assume that the point set is in
general position as otherwise there could be a third point on a line. We show a generalization
for simple drawings using the triangle orientations, which are encoded in generalized signotopes.
For a generalized signotope γ on n elements, two sets A,B ⊆ [n] are separable if there exist
i, j ∈ A∪B such that γ(i, j, x) = + for all x ∈ A \ {i, j} and γ(i, j, x) = − for all x ∈ B \ {i, j}.
In this case we say that ij separates A from B and write γ(i, j, A) = + and γ(i, j, B) = −.
Moreover, if we can find i ∈ A and j ∈ B, we say that A and B are strongly separable.

Theorem 4.1.1 (Kirchberger for Generalized Signotopes). Let γ : [n]3 → {+,−} be a general-
ized signotope, and let A,B ⊆ [n] be two non-empty sets. If for every C ⊆ A ∪B with |C| = 4,
the sets A ∩ C and B ∩ C are separable, then A and B are strongly separable.

Since every simple drawing yields a generalized signotope (cf. Proposition 2.4.2), Theorem 4.1.1
implies Kirchberger’s theorem for simple drawings of the complete graphs. In terms of simple
drawings separability means that there exists an edge ij such that all triangles induced by i, j, a
for a ∈ A are oriented counterclockwise if the vertices appear in this particular order and all
triangles induced by i, j, b for b ∈ B are oriented clockwise.

Corollary 4.1.2 (Kirchberger for Simple Drawings). Let D be a simple drawing of the Kn in
the plane whose vertices are partitioned into A and B. If for every C ⊆ A∪B with |C| = 4, the
vertex sets A ∩ C and B ∩ C are separable, then there exist two vertices a ∈ A and b ∈ B such
that the edge ab separates A from B.

By the following lemma the roles of A and B are interchangeable even in the strong separating
context.

Lemma 4.1.3. Let γ be a generalized signotope on n elements partitioned into A and B. If
there is a strong separator ab with a ∈ A and b ∈ B separating A from B, then ba strongly
separates B from A.

Proof. A strong separator ab fulfills γ(a, b, A) = + and γ(a, b, B) = −. In this case it is
γ(b, a,B) = + and γ(b, a,A) = − showing that ba is a strong separator separating B from A.

On 4-tuples separability is the same as strong separability. This shows that we can assume that
all 4-tuples are strongly separable.
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Lemma 4.1.4. Let γ : [4]3 → {+,−} be a generalized signotope with [4] = A ∪ B a partition
into two non-empty sets A and B. Then A and B are separable if and only if they are strongly
separable.

Proof. Clearly if A and B are strongly separable, they are separable. For the reverse direction
we assume that |A| ≤ |B|. Otherwise exchange the roles of A and B which is possible by
Lemma 4.1.3. Assume A and B are separable. Table 4.1 and 4.2 show that in all separable gen-
eralized signotopes on {a, b1, b2, b3} and {a1, a2, b1, b2}, respectively, there is a strong separator
of the sets {a} and {b1, b2, b3} or {a1, a2} and {b1, b2}, respectively.

4.1.1 Reverse Direction

In the classic version of Kirchberger’s theorem for point sets in Rd, the converse statement of
Theorem 4.1.1 is trivially true. A separating hyperplane for the point set separates all subsets.
However, in the setting of generalized signotopes the reverse direction is no longer true. A
separating pair ij for A,B is not necessarily contained in a 4-element subset C ⊂ A ∪ B. In
Figure 4.1(b), we provide a generalized signotope on 6 elements with a separator for a fixed
partition into A = {1, 2} and B = {3, 4, 5, 6}. However for the subset C = {2, 4, 5, 6} the two
sets A∩C = {2} and B ∩C = {4, 5, 6} are not separable. Moreover, this generalized signotopes
comes from a simple drawing, which is drawn in Figure 4.1(a). The edge marked bold separates
the blue from the red vertices. However, the subdrawing of the K4 marked with dashed edges
has no separator.

1

2

3

4

5 6

(a)

γ(4, 5, 6) = + γ(1, 5, 6) = −
γ(3, 5, 6) = − γ(1, 4, 6) = −
γ(3, 4, 6) = − γ(1, 4, 5) = −
γ(3, 4, 5) = − γ(1, 3, 6) = −
γ(2, 5, 6) = − γ(1, 3, 5) = −
γ(2, 4, 6) = − γ(1, 3, 4) = −
γ(2, 4, 5) = + γ(1, 2, 6) = −
γ(2, 3, 6) = − γ(1, 2, 5) = −
γ(2, 3, 5) = − γ(1, 2, 4) = −
γ(2, 3, 4) = + γ(1, 2, 3) = −

(b)

Figure 4.1: (a) Simple drawing showing that the reverse direction of Kirchberger is not true. The bold
edge is a separator for the drawing on all 6 vertices. However, the subdrawing of the K4

marked with the dashed edges has no separator. The vertices of A are marked red and the
vertices of B blue. (b) Orientations of the drawing yielding the generalized signotope γ.
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γ(b1, b2, b3) γ(a, b2, b3) γ(a, b1, b3) γ(a, b1, b2) list of separators

+ + + + ab3, b1a, b1b3
− + + + ab3, b1a, b1b2, b2b3
+ − + + ab2, b1a, b1b3, b3b2
− − + + ab2, b1a, b1b2
+ + − + (no separator)
+ − − + ab2, b3a, b3b2
− − − + ab2, b1b2, b3a, b3b1
+ + + − ab3, b1b3, b2a, b2b1
− + + − ab3, b2a, b2b3
− − + − (no separator)
+ + − − ab1, b2a, b2b1
− + − − ab1, b2a, b2b3, b3b1
+ − − − ab1, b2b1, b3a, b3b2
− − − − ab1, b3a, b3b1

Table 4.1: Separators for generalized signotopes on {a, b1, b2, b3}. Strong separators are underlined.

γ(a2, b1, b2) γ(a1, b1, b2) γ(a1, a2, b2) γ(a1, a2, b1) list of separators

+ + + + a2a1, a2b2, b1a1, b1b2
− + + + a2a1, a2b1, b1a1

+ − + + a2a1, a2b2, b2a1

− − + + a2a1, a2b1, b2a1, b2b1
+ + − + a1b2, b1a1, b1b2
+ − − + (no separator)
− − − + a2b1, b2a2, b2b1
+ + + − a2b2, b1a2, b1b2
− + + − (no separator)
− − + − a1b1, b2a1, b2b1
+ + − − a1a2, a1b2, b1a2, b1b2
− + − − a1a2, a1b2, b2a2

+ − − − a1a2, a1b1, b1a2

− − − − a1a2, a1b1, b2a2, b2b1

Table 4.2: Separators for generalized signotopes on {a1, a2, b1, b2}. Strong separators are underlined.
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4.1.2 Proof in Point Sets

In order to make the proof of Theorem 4.1.1 more accessible we first discuss the proof idea which
is based on induction in the geometric setting and analyze which of the given structures already
help us in the more abstract setting of generalized signotopes. This already covers some parts of
the proof. However, we give a full proof for Theorem 4.1.1 using only the notion of generalized
signotopes in Section 4.1.3.

Let P be a point set in general position, whose points are partitioned into A and B. For the
illustration we assume that the points of A are colored red and the points of B are colored blue.
A separating line in the plane for the geometric setting is a line l such that all points from A
are in one half-plane spanned by l and the points of B in the other half-plane. The definition
of a strong separation of generalized signotopes in the setting of point sets is a separating line l
spanned by one point of A and one point of B. Clearly a set of points in general position has
a separating line if and only if there exists a line containing a point of A and a point of B.
Further we give the separating line a direction and show that there is a line spanned by a point
a ∈ A and a point b ∈ B such that all other points of A are on the left side of the line when

orienting the line from a to b. This oriented line is denoted by
−→
ab. If

−→
ab is a separator, A is on

the left-hand side of
−→
ab and B is on right-hand side of

−→
ab. Note that if x is right of

−→
ab then the

triangle a, b, x is oriented clockwise and hence a is right of
−→
bx and b is right of −→xa.

Throughout the proof we assume that all 4-element subsets are separable. Without loss of
generality we assume that |A| ≤ |B|. We prove the statement using induction on the size of the
set A.

a

b

b∗

b′

γ(a, b, B′) = −
γ(a, b, b∗) = +

γ(a, b∗, b′) = +

a, b, b∗, b′ : + +−+

no separator

Figure 4.2: Illustration of the proof in the geometric setting, with only one red vertex, together with
the implied orientations.

For the induction base, let A consists of exactly one point a. For every b ∈ B, let N(b) be the

number of points b′ ∈ B which are on the right-hand side of the
−→
ab. Let b ∈ B be a point which

maximizes the value N(b). Let B′ be the set of points right of
−→
ab including b itself. Assume {a}

is not separable from B. Then B′ ( B and hence there is b∗ ∈ B\B′ which is left of
−→
ab. If all

elements of B′, which are on the right-hand side of the line
−→
ab, are on the right-hand side of

−→
ab∗,

then N(b∗) ≥ N(b) + 1. A contradiction to the maximality assumption of N(b). Hence there

is a vertex b′ ∈ B′ which is on the right-hand side of
−→
ab but on the left-hand side of

−→
ab∗. This

implies that a is left of
−→
b∗b′ and

−→
b′b. Moreover, b∗ is left of

−→
ab and hence a is left of

−→
bb∗. This

implies that a is in the convex hull of b, b′, b∗. This is a contradiction to the assumption that all
4-tuples are separable. For an illustration see Figure 4.2.
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Since the point set is in general position, it holds:

I For every a ∈ A there is exactly one b = b(a) ∈ B such that
−→
ab separates {a} from B.

In the above proof, we only used the triple orientations and hence the result transfers to gener-
alized signotopes. The summary of the triple orientations is given in Figure 4.2. By assumption

all points of B′ are right of
−→
ab. For all elements b′ of B′ the triple a, b, b′ is oriented clockwise, i.e.,

γ(a, b, B′) = −. Furthermore there is a vertex b∗ ∈ B\B′ with γ(a, b, b∗) = +, otherwise, we are
done. By the choice of b, we assumed that there exists b′ ∈ B′ such that γ(a, b∗, b′) = +. This
shows that the sign sequence induced by the four element subset {a, b, b∗, b′} is ?+−+. Here “?”
denotes that the triple orientation is not known. By the properties of a generalized signotope
it is γ(b, b∗, b′) = + to avoid the alternating sign pattern. Hence the considered subset has no
separator, see Table 4.1. This shows that the induction base works analogously for generalized
signotopes.

For the induction step, assume that |A| ≥ 2 and every set of |A| − 1 points is separable from B.
Let A′ = A\{a∗} be a subset of A with |A|−1 points. By induction hypothesis, there are points

a ∈ A′ and b ∈ B such that all elements from A′ are left of
−→
ab and all elements from B are right

of
−→
ab.

If a∗ is left of
−→
ab, the line

−→
ab is the separator. Assume that a∗ is right of

−→
ab. Then there is a

unique b∗ = b(a∗) such that a∗b∗ separates separates {a∗} from B. We consider the following
three cases:

(i) Assume b∗ = b. In this case a is left of
−→
a∗b and all elements from B are on the right-hand

side. If all elements from A are left of
−→
a∗b, we have a separator. Otherwise there is a vertex

a′ which is left of
−→
ab but right of

−→
a∗b. See Figure 4.3 for an illustration. In this case b is

in the convex hull of a, a∗, a′ which is a contradiction to the assumption that all 4-element
subsets are separable.

(ii) Assume b∗ 6= b and a is right of
−−→
a∗b∗. Then the four points a, b, a∗, b∗ are not separable.

Since there is exactly one possibility to separate a single element from A from a subset
of B, the only possible separators of the subset {a, a∗, b, b∗} are ab and a∗b∗. By the
assumption they do not separate. A contradiction to the assumption. For an illustration,
see Figure 4.4.

(iii) Assume b∗ 6= b and a is left of
−−→
a∗b∗. If all points of A′ are left of

−→
ab and left of

−−→
a∗b∗, the

separator line is a∗b∗. Otherwise there is a vertex a′ ∈ A′ which is left of
−→
ab and right of−−→

a∗b∗, see Figure 4.5. The fact that a′ is left of the line
−→
ab and right of the line

−−→
a∗b∗ implies

that the line-segment from a∗ to the crossing of the two lines is contained in the convex

hull of a, a∗, a′. Since B∗ is right of
−→
ab, the point b∗ is on this line segment. Hence b∗ is in

the convex hull of a, a∗, a′. Again a contradiction.

As in the induction base, we check whether the triple orientation given through our assumptions
in the three different cases are sufficient to prove Kirchberger’s theorem for generalized signo-
topes. Note that all triple orientations are summarized next to the corresponding figures. For

all three cases we have the following signs. Since
−→
ab separates A′ from B, it holds γ(a, b, B) = −

and γ(a, b, A′) = +. Furthermore if a∗ is left of
−→
ab, i.e., γ(a, b, a∗) = +, we have a separator,
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a

a∗

b

a′

= b∗

γ(a, b, B) = −
γ(a, b, A′) = +

γ(a, b, a∗) = −
γ(a∗, b, B) = −
γ(a∗, b, a′) = −

a, a∗, a′, b : +−++
no separator

Figure 4.3: Illustration of case (i), where b = b∗ in the geometric version of the induction step. In this
case b∗ = b with the given orientations. In the depicted case there is no separator of the
four points since b is in the convex hull of a, a∗, and a′.

b∗

a∗

a

b

γ(a, b, B) = −
γ(a, b, A′) = +

γ(a, b, a∗) = −
γ(a∗, b∗, B) = −
γ(a∗, b∗, a) = −

a, a∗, b, b∗ : +−−+
no separator

Figure 4.4: Illustration of second case (ii) of the geometric version together with the given orientations.

We assume b∗ 6= b and a is right of
−−→
a∗b∗. In this case there is no separator of the four

depicted elements as the convex hull of a and a∗ intersects the convex hull of b and b∗.

b∗

a∗

a′

a

b

γ(a, b, B) = −
γ(a, b, A′) = +

γ(a, b, a∗) = −
γ(a∗, b∗, B) = −
γ(a∗, b∗, a) = +

γ(a∗, b∗, a′) = −

a, a∗, a′, b : +?+?

Figure 4.5: Case (iii) of the geometric version of the proof. It is b∗ 6= b and a is left of
−−→
a∗b∗. The only

case where we have no separator is the case depicted above. In this case b∗ is in the convex
hull of a, a∗, and a′. In this case, there could be still a separator in the setting of generalized
signotopes.
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and hence we only consider the case γ(a, b, a∗) = −. For the three cases, we get the following
additional conditions.

(i) If b = b∗, by definition it holds γ(a∗, b, B) = −. In the non-trivial case there is a vertex a′

with γ(a∗, b, a′) = −. This shows that the packet consisting of a, a∗, a′, b has the sign
sequence +−+?. To avoid +−+−, it is γ(a, a∗, a′) = +. However this 4-element subset
has no separator, see Table 4.1.

(ii) For the second case, it is b 6= b∗ and by definition all elements from B are right of
−−→
a∗b∗

and hence γ(a∗, b∗, B) = −. Furthermore, we assume that a is to the right of
−−→
a∗b∗, which

gives the triple orientation γ(a∗, b∗, a) = −. The four element subset {a, a∗, b, b∗} has the
sign sequence +−−+. Using Table 4.2, we see that this packet has no separator.

(iii) As in the previous case, we assume b∗ 6= b and γ(a∗, b∗, B) = −. Moreover, the point a is

to the left of
−−→
a∗b∗, which gives γ(a∗, b∗, a) = +. In the non-trivial case, there is an a′ ∈ A′

which is right of
−−→
a∗b∗. This translates into the sign γ(a∗, b∗, a′) = −. As suggested in the

proof of the geometric setting, we look at the 4 elements a, a∗, a′, b∗ whose sign sequence
is +?+?.

In contrast to the geometric case,there is not enough information to show that this four
element subset is not separable. In a simple drawing of this subconfiguration, the edge aa′

could be drawn differently, see Figure 4.6. In this case, the four elements have a separator
which is a′b∗ marked with a fat line.

a

a∗

b∗

a′

Figure 4.6: Illustration of a possible drawing where γ(a∗, b∗, a) = + and γ(a∗, b∗, a′) = −. However in
contrast to the geometric setting (see Figure 4.5), where b∗ is in the convex hull of a, a∗, a′,
the edge a′b∗ is a separator for this 4-element subset.

4.1.3 Proof of Kirchberger’s Theorem for Generalized Signotopes
(Theorem 4.1.1)

By Lemma 4.1.4, we assume that all 4-tuples from A ∪B are strongly separable. Moreover, by
symmetry we assume |A| ≤ |B|. First we consider the cases |A| = 1, 2, 3 individually and then
the case |A| ≥ 4.
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Let A = {a}, let B′ be a maximal subset of B such that B′ is strongly separated from {a}, and
let b ∈ B′ be such that γ(a, b, B′) = −. Suppose that B′ 6= B, then there is a b∗ ∈ B\B′ with

γ(a, b, b∗) = +. (4.1)

By maximality of B′ we cannot use the pair a, b∗ for a strong separation of {a} and B′ ∪ {b∗}.
Hence, for some b′ ∈ B′:

γ(a, b∗, b′) = +. (4.2)

Since γ is alternating (4.1) and (4.2) together imply b′ 6= b. Since b′ ∈ B′ we have γ(a, b, b′) = −.
From this together with (4.1), (4.2), and Table 4.1 it follows that the four-element set {a, b, b′, b∗}
has no separator. This is a contradiction, hence B′ = B.

As a consequence we obtain:

I Every one-element set {a} with a ∈ A can be strongly separated from B. Since γ is
alternating there is a unique b(a) ∈ B such that γ(a, b(a), B) = −.

Now consider the case A = {a1, a2}. Let bi = b(ai), i.e., γ(ai, bi, B) = − for i = 1, 2. If
γ(a1, b1, a2) = + or if γ(a2, b2, a1) = +, then a1b1 or a2b2, respectively, is a strong separator
for A and B. Therefore, we may assume that it holds γ(a1, b1, a2) = −, and γ(a2, b2, a1) = −.
By the alternating property, it is b1 6= b2. We get the sequence +−−+ for the four-element set
{a1, a2, b1, b2} which has no strong separator (cf. Table 4.2), a contradiction.

Let A = {a1, a2, a3}. Suppose that A is not separable from B. For i = 1, 2, 3, let bi = b(ai), i.e.,
γ(ai, bi, B) = −. For i, j ∈ {1, 2, 3}, i 6= j we define sij = γ(ai, bi, aj). Moreover, if sij = + for
some i and all j 6= i, then aibi separates A from B. Hence, for each i there exists j 6= i with
sij = −.
If sij = sji = − for some i, j, then since γ is alternating bi 6= bj and the packet ai, aj , bi, bj
corresponds to the sign sequence +−−+ in Table 4.2. Hence there is no strong separator and
at least one of sij and sji is +.
These two conditions imply that we can relabel the elements of A such that s12 = s23 = s31 = +
and s13 = s21 = s32 = −. Suppose that bi = bj = b for i, j ∈ {1, 2, 3} with i 6= j. Since
b ∈ {b1, b2} it is γ(b, a1, a2) = γ(a2, b2, a1) = − or γ(b, a1, a2) = − · γ(a1, b1, a2) = −. Similar,
we get γ(b, a1, a3) = + and γ(b, a2, a3) = − which yields the sign pattern ?−+− for the packet
b, a1, a2, a3. Avoiding the alternating sign pattern, we get −−+−. Table 4.1 shows there is no
strong separator. This contradiction shows that b1, b2, b3 must be pairwise distinct.
From s32 = − and s31 = + we find that b3, a1, a2, a3 corresponds to a row of type ?−+? in
Table 4.1. Since every 4-element subset has a separator by assumption, we conclude that the
strong separator of {b3, a1, a2, a3} is a2b3. In both cases, it holds

γ(b3, a1, a2) = +. (4.3)

Now consider {a1, a2, b1, b3}. From s12 = +, equation (4.3), and γ(a1, b1, b3) = − we obtain the
pattern ?−+−. Since +−+− is forbidden we obtain

γ(a2, b1, b3) = −. (4.4)
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The set {a2, a3, b1, b3} needs a strong separator. The candidate pair a3b1 is made impossible by
γ(a3, b1, b3) = +, a3b3 is made impossible by s32 = −, and a2b3 is made impossible by (4.4).
Hence a2b1 is the strong separator and, in particular, it holds

γ(a2, b1, a3) = +. (4.5)

But now the set {a1, a2, a3, b1} has no strong separator. The candidate pair a1b1 is impossible
because of s13 = −, a2b1 does not separate because s12 = +, and (4.5) shows that a3b1 cannot
separate the set. This contradiction proves the case |A| = 3.

For the remaining case |A| ≥ 4 consider a counterexample (γ,A,B) minimizing the size of the
smaller of the two sets. We have 4 ≤ |A| ≤ |B|.
Let a∗ ∈ A. By minimality A′ = A\{a∗} is separable from B. Let a ∈ A′ and b ∈ B such that
γ(a, b, A′) = + and γ(a, b, B) = −. Hence

γ(a, b, a∗) = −. (4.6)

Let b∗ = b(a∗), i.e., γ(a∗, b∗, B) = −. There is some a′ ∈ A′ such that

γ(a∗, b∗, a′) = −. (4.7)

Assume a′ = a, then b 6= b∗ because of (4.6) and (4.7). From (4.6), (4.7), γ(a, b, B) = −, and
γ(a∗, b∗, B) = − it follows that the four-element set {a, a∗, b, b∗} has the sign pattern +−−+,
hence there is no separator, see Table 4.2. This shows that a′ 6= a.
Let b′ = b(a′). If b 6= b′ we look at the four elements {a, b, a′, b′}. The packet corresponds to the
sign sequence −?−+ so that we can conclude γ(a, a′, b′) = − to avoid the forbidden pattern. If
b = b′, then a′ ∈ A′ implies γ(a, b, a′) = + which yields γ(a′, b′, a) = γ(a′, b, a) = −.
Hence, regardless whether b = b′ or b 6= b′ we have

γ(a′, b′, a) = − . (4.8)

Since |A| ≥ 4, we know by the minimality of the instance (γ,A,B) that the set {a, b, a′,
b′, a∗, b∗}, which has 3 elements of A and at least 1 element of B, is separable. It follows
from γ(a, b, B) = γ(a′, b′, B) = γ(a∗, b∗, B) = − that the only possible strong separators are ab,
a′b′, and a∗b∗. They, however, do not separate because of (4.6), (4.7) and (4.8) respectively.
This contradiction shows that there is no counterexample and Kirchberger’s theorem holds in
the setting of generalized signotopes.

4.2 Carathéodory’s Theorem

Carathéodory’s theorem asserts that, if a point x lies in the convex hull of a point set P in Rd,
then x lies in the convex hull of at most d+ 1 points of P .
As already mentioned in the beginning of this chapter, Goodman and Pollack [GP82] proved
a dual of Carathéodory’s theorem, which transfers to pseudolinear drawings. A more general
version in the plane is due to Balko, Fulek, and Kynčl [BFK15, Lemma 4.7], who provided
a proof of Carathéodory’s theorem for simple drawings of Kn. In this section, we present a
shorter proof for their theorem. Recently Aichholzer, Chiu, Hoang, Hoffmann, Kynčl, Maus,
Vogtenhuber and Weinberger [ACH+23] showed that our proof generalizes to simple drawings
of complete multipartite graphs.
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Theorem 4.2.1 (Carathéodory for Simple Drawings). Let D be a simple drawing of Kn in the
plane and let x ∈ R2 be a point contained in a bounded connected component of R2 − D. Then
there is a triangle in D that contains x in the bounded side.

Note that, in the classic version of Carathéodory’s theorem for points in Rd, the case |A| = 1 of
Kirchberger’s theorem implies Carathéodory’s theorem, and vice versa. This is not true for the
generalized versions. The vertex 1 in Figure 4.7 is in the triangle spanned by 2, 3, 4. However,
partitioning the four vertices into A = {1} and B = {2, 3, 4} gives a separating pair (1, 2)
because the triples (1, 2, 3) and (1, 2, 4) are oriented the same way.

12

34

Figure 4.7: Example that Kirchberger’s theorem with one red point does not imply Carathéodory’s
theorem for simple drawings. The vertex 1 is in region bounded by the blue triangle.
However, there is still an edge separating the blue from the red vertices.

Proof. Suppose towards a contradiction that there is a pair (D, x) consisting of a simple drawing
D ofKn and a point x in a bounded cell of the drawing, violating the claim. We chooseD minimal
with respect to the number of vertices n.
Let a be a vertex of the drawing. If we remove all incident edges of a from D, then, by minimality
of the example, x becomes a point of the outer cell. Therefore, if we remove the incident edges
of a one by one, we find a last subdrawing D′ such that x is still in a bounded cell. Let ab be an
edge such that in the drawing D′ − ab the point x is in the outer cell. Hence there is a simple
curve P connecting x to infinity, which does not cross any of the edges in D′−ab. By the choice
of D′, the curve P has at least one crossing with the edge ab. We choose P minimal with respect
to the number of crossings with ab.

Claim 4.1. P intersects ab exactly once.

Proof. Suppose that P crosses ab more than once. Then there is a lense C formed by P and ab,
that is, two crossings of P and ab such that the simple closed curve ∂C, composed of a connected
subcurve P1 of P and a part P2 of the edge ab between the crossings, encloses a simply connected
region C, see Figure 4.8(a).
Now consider the simple curve P ′ from x to infinity which is obtained from P by replacing the
subcurve P1 by a curve P ′2 which is a close copy of P2 in the sense that it has the same crossing
pattern with all edges in D and the same simple properties, but is disjoint from ab. As P was
chosen minimal with respect to the number of crossings with ab, there has to be an edge e of
the drawing D′ that intersects P ′2 and by the choice of P ′2 also P2. By construction, this edge
e has no crossing with P and crosses ab at most once. Hence one of its endpoints is inside the
lense C and one outside C. If b ∈ C, we choose c1 to be the endpoint of e which is not in C and
if b /∈ C, we choose the endpoint of e which is in C. Hence the edge bc1 in D′ intersects ∂C. But
since they are adjacent, bc1 cannot intersect ab and by the choice of P it does not intersect P .
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Figure 4.8: (a) and (b) give an illustration of the proof of Theorem 4.2.1.

A contradiction. This shows that P crosses ab in a unique point p. �

If a has another neighbor c2 in the drawing D′ then, since only edges incident to a have been
removed there is an edge connecting b to c2 in D′. Both edges ac2 and bc2 do not cross P , so x
is in the interior of the triangle spanned by a, b, c2, which is a contradiction to the assumption
that (D, x) is a counterexample.
Hence there is no edge ac2 in D′ and deg(a) = 1 in D′. As x is not in the outer cell of D′,
there must be an edge cd in D′ which intersects the partial segment of the edge ab starting in a
and ending in the unique crossing point p of P and ab, in its interior. Let c be the vertex on
the same side of ab as x; see Figure 4.8(b). The edges bc and bd of D′ cross neither P nor ab.
Consequently, the triangle spanned by b, c, d (drawn blue) must contain a in its interior.

Claim 4.2. The edge ac in the original drawing D (drawn red dashed) lies completely in the
bounded side of the triangle spanned by b, c, d.

Proof. The bounded region defined by the edges ab, cd, and bd of D′ contains a and c. Since D is
a simple drawing, ac has no crossing with ab and cd. This implies ac has an even number of cross-
ings with bd. Since the drawing is simple, ab has no crossing with bd, which proves the claim. �

Now the curve P does not intersect ac, and the only edge of the triangle induced by a, b, c
intersected by P is ab. Therefore, x lies in the interior of the triangle spanned by a, b, c. This
contradicts the assumption that (D, x) is a counterexample.

4.2.1 Colorful Carathéodory Theorem

Bárány [Bár82] generalized Carathéodory’s theorem as follows: Given finite point sets P0, . . . , Pd
from Rd such that there is a point x ∈ conv(P0) ∩ . . . ∩ conv(Pd), then x lies in a simplex
spanned by d+1 points p0 ∈ P0, . . . , pd ∈ Pd. The sets Pi are often referred to as colors and hence
we call such a simplex colorful. The theorem is known as the Colorful Carathéodory theorem.
Choosing P0 = . . . = Pd gives the classic statement of Carathéodory’s theorem.
A strengthening, known as the Strong Colorful Carathéodory theorem, was shown by Holmsen,
Pach and Tverberg [HPT08] and independently by Arocha et al. [ABB+09]: It is sufficient if
there is a point x with x ∈ conv(Pi ∪ Pj) for all i 6= j, to find a colorful simplex. The Strong
Colorful Carathéodory theorem was further generalized to oriented matroids by Holmsen [Hol16].
In particular, the theorem applies to pseudolinear drawings which are in correspondence with
oriented matroids of rank 3.
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Figure 4.9: A f-convex drawings of K9. If the cell co is chosen as the outer cell, then Colorful
Carathéodory theorem does not hold for the colored triangles and every point x from the
cell ci. To obtain a pseudolinear drawing, the cell c∞ has to be the unbounded cell.

Holmsen’s proof [Hol16] uses sophisticated methods from topology. However, Bárány’s algorith-
mic proof [Bár82] of the Colorful Carathéodory theorem can be adapted to pseudoconfigurations
of points in the plane. Instead of the Euclidean distance, one can use a discrete metric that
counts the minimum number of cells to traverse. In the following we give a sketch.

Start with an arbitrary colorful triangle T . If x is in the bounded side of the chosen triangle T ,
we are done. Otherwise, we choose a shortest path from x to the bounded side of the current
colorful triangle T . In Bárány’s original proof the shortest path is considered as the Euclidean
distance. In the setting of pseudoconfiguration of points this is not a precise measure. Instead,
we measure the distance by the number of edges we cross. Let P be the shortest path from x
to the bounded side of T . Then P crosses exactly one of the triangle edges of T . Let e be this
edge. Since T is colorful, the two endpoints of T have two different colors. The third vertex
vk of the triangle has the remaining third color k considered. By assumption x is contained
in a bounded cell of the subdrawing induced by all vertices of color k. Using Carathéodory’s
theorem this implies that there is a triangle spanned by three vertices of color k, such that x is
contained in the bounded side. Moreover the shortest path in a pseudoline arrangement crosses
every pseudoline at most once (cf. [BLS+99, Proposition 4.2.3]). Hence there is a vertex v′k
which is in the halfspace of the pseudoline spanned by e which does not contain vk. Clearly the
triangle T ′ spanned by the vertex v′k and the two endvertices of e is again colorful. Moreover,
the length of the shortest path P ′ from x to the interior of T ′ decreases since we can take P and
remove the crossing with the edge e. We proceed in a similar way. Since the distance decreases
in every step, we achieve distance 0 after a finite number of steps, which yields a colorful triangle
containing x.

The following result shows that in the convexity hierarchy of simple drawings of Kn the Colorful
Carathéodory theorem is not valid beyond the class of pseudolinear drawings.
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Proposition 4.2.2. There exists a f-convex drawing of the K9, whose vertices are colored with
three colors and a point x in the bounded side of each of the three monochromatic triangle, but
there is no colorful triangle containing x.

Proof. The drawing depicted in Figure 4.9 is a geometric drawing. By changing the outer cell
from c∞ to co the drawing remains f-convex, see Observation 2.6.1. Let x be an arbitrary point
from the cell ci. The point x is contained in the three monochromatic triangles and is separated
from the outer cell only by three monochromatic edges. Therefore, there is no triangle in the
drawing spanned by a red, a green, and a blue point such that x is contained in the triangle
formed by these three points.

4.3 Helly’s Theorem

The Helly number of a family of sets F with empty intersection is the size of the smallest
subfamily of F with empty intersection. Helly’s theorem asserts that the Helly number of a
family of n convex sets S1, . . . , Sn from Rd is at most d+ 1, i.e., the intersection of S1, . . . , Sn is
non-empty if the intersection of every subfamily of size d+ 1 is non-empty [Hel30].
In the following we discuss the Helly number in the context of simple drawings and the convexity
hierarchy. For this we assume that the sets Si are the bounded sides of triangles of the drawing
in the plane.
From the results of Goodman and Pollack [GP82] it follows that Helly’s theorem generalizes
to pseudoconfigurations of points in two dimensions, and thus for pseudolinear drawings. A
more general version of Helly’s theorem was shown by Bachem and Wanka [BW88]. They prove
Helly’s and Radon’s theorem for oriented matroids with the “intersection property” (i.e. the
existence of an adjoint). All oriented matroids of rank 3 have this property since they have a
representation as pseudoline arrangements and as pseudoconfiguration of points. Hence both
theorems, Helly’s and Radon’s hold for pseudolinear drawings. We discuss Radon’s theorem in
more detail in Section 4.5.

We show that Helly’s theorem does not hold for f-convex drawings. Moreover, the Helly num-
ber can be arbitrarily large in f-convex drawings. Note that the following proposition does not
contradict the Topological Helly theorem (see [Hel30] for connected sets and [GPP+17] for a
connection to the Betti-numbers) because in our construction the number of connected compo-
nents of the intersection can grow arbitrarily large. More precisely, if the number of triangles n
is even, the intersection of the n/2 triangles with even index has n/2 connected components, see
Figure 4.10 for an illustration.

Proposition 4.3.1. For every integer n ≥ 3, there exists an f-convex drawing of K3n in the
plane whose Helly number is at least n, i.e., there are n triangles such that the bounded sides of
any n − 1 triangles have a common interior point, but the intersection of the bounded sides of
all n triangles is empty. In particular, Helly’s theorem does not generalize to f-convex drawings.

Proof. Consider the geometric drawing D of K3n with n triangles Ti as shown for the case n = 7
in Figure 4.10. All edges are drawn straight-line. Let D′ be the drawing obtained from D by
making the cell co the outer cell. Since it arises from a geometric drawing by changing the outer
cell, D′ is f-convex. Let Bi be the side of Ti that is bounded in D′. For 1 ≤ i < n the set Bi
corresponds to the unbounded side of Ti in D while Bn corresponds to the bounded side of Tn.
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Figure 4.10: A drawing D of K21 is obtained by adding the remaining edges as straight-line segments.
Making the gray cell co the outer cell, we obtain an f-convex drawing with Helly number 7.
We omit some edges for sake of readability.1

In D′ we have
⋂n−1
i=1 Bi 6= ∅, indeed any point pn which belongs to the outer cell of D is in this

intersection. For each i ∈ {1, . . . , n − 1} there is a point pi ∈
⋂n
j=1;j 6=iBj which is not in Bi.

Since Bn ⊂
⋃n−1
i=1 B

c
i , we have Bn∩

⋂n−1
i=1 Bi = ∅, i.e.,

⋂n
i=1Bi = ∅. In summary, the intersection

of any n−1 of the n sets B1, . . . , Bn is non-empty but the intersection of all of them is empty.

4.3.1 Colorful Helly’s Theorem

Lovász (cf. Bárány [Bár82]) generalized Helly’s theorem as follows: Let C0, . . . , Cd be families of
compact convex sets from Rd such that for every “colorful” choice of sets C0 ∈ C0, . . . , Cd ∈ Cd
the intersection C0 ∩ . . .∩Cd is non-empty. Again the choice of C0 = . . . = Cd implies the classic
version of Helly’s theorem. Then, for some k, the intersection

⋂
Ck is non-empty. This result is

known as the Colorful Helly theorem. Kalai and Meshulam [KM05] presented a simple version
of the Colorful Helly theorem, which, in particular, carries over to pseudolinear drawings. Since
Helly’s theorem does not generalize to f-convex drawings (cf. Proposition 4.3.1), neither does
the Colorful Helly theorem.

4.4 Holes in Convex Drawings

This section is based on [BSS23b] and further unpublished research together with Joachim
Orthaber, Manfred Scheucher and Felix Schröder.

Another classic theorem from convex geometry is the Erdős–Szekeres theorem [ES35]. It states
that for every k ∈ N every sufficiently large point set P in general position contains a subset of k
points which are the vertices of a convex polygon. Such a convex polygon with k vertices is called
k-gon. The Erdős–Szekeres number is the smallest integer ES(k) such that every set of ES(k)

1A special thanks goes to Patrick Schnider for his simplification of this construction.
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points contains a k-gon. Erdős and Szekeres [ES35] showed the upper bound ES(k) ≤
(

2k−4
k−2

)
+1

and conjectured that it holds ES(k) = 2k−2 +1 for every k ≥ 2. Later they proved the matching
lower bound ES(k) ≥ 2k−2 + 1 [ES60]. The conjecture was verified for k ≤ 6 by exhaustive
computer search [SP06] and remains open for k ≥ 7. The currently best known upper bound
of ES(k) ≤ 2k+O(

√
k log k) is due to Holmsen, Mojarrad, Pach, and Tardos [HMPT20] who

improved the small error term of the break through result by Suk [Suk17]. While determining
ES(k) continues to be a challenging problem, various variants have attracted the attention of
many researchers in the last decades.

A prominent variation of the Erdős–Szekeres theorem suggested by Erdős himself [Erd78] is
about the existence of k-gons which do not contain vertices in the interior of their convex
hull, so called k-holes. The existence of 5-holes in sufficiently large point sets was shown by
Harborth [Har78]. An easier textbook proof can be found in Martoušek’s book [Mat02]. Propo-
sition 4.4.8 shows that the latter transfers to pseudolinear drawings. Moreover, Horton [Hor83]
gives a construction of arbitrarily large point sets without a 7-hole. The case k = 6 remained
open until Gerken [Ger08] and Nicolás [Nic07] proved independently the empty hexagon the-
orem, i.e., the existence of 6-holes for sufficiently large point sets. Gerken showed that every
9-gon in a point set yields a 6-hole while Nicolás showed that a 25-gon yields a 6-hole. The
proof of Gerken only uses the order type of the point sets and not the exact coordinates and
generalizes to pseudolinear drawings [Sch23].

We establish the notion of holes in simple drawings and investigate the existence of holes in
various layers of the convexity hierarchy, see Section 2.6. The only case which was previously
studied in simple drawings are empty triangles, i.e., 3-holes. A triangle is empty if one of its
two sides does not contain any vertex in its interior. For simple drawings, Harborth [Har98]
proved that there are at least two empty triangles and conjectured that the minimum among
all simple drawings of Kn is 2n − 4. This is a tight upper bound which is witnessed by the
twisted drawing Tn [Har98]. Recently Garćıa, Tejel, Vogtenhuber and Weinberger [GTVW22]
showed that generalized twisted drawings, which is a class of simple drawings containing the
twisted drawing Tn, contain exactly 2n − 4 empty triangles. The best known lower bound is n
which is due to Aichholzer, Hackl, Pilz, Ramos, Sacristán and Vogtenhuber [AHP+15]. In the
geometric setting, the number of empty triangles behave differently: Every point set has Ω(n2)
empty triangles, and this bound is asymptotically optimal [BF87]. Note that the notion of empty
triangles in point sets slightly differs from the one in simple drawings since the complement of
the convex hull of a point set can be an empty triangle. The class of convex drawings behaves
similarly to the geometric setting as the minimum number of empty triangles is asymptotically
quadratic [AMRS18, Theorem 5].

To define k-holes in simple drawings, we first consider the notion of k-gons in simple drawings
of the complete graph Kn. A k-gon is a subdrawing weakly isomorphic to the geometric draw-
ing Ck of k points in convex position, see Figure 4.11(a). In terms of crossings, a k-gon Ck is
a (sub)drawing with vertices v1, . . . , vk such that {vi, v`} crosses {vj , vm} for i < j < ` < m.
In contrast to the geometric setting where every sufficiently large geometric drawing contains a
k-gon, simple drawings of complete graphs do not necessarily contain k-gons [Har98]. For ex-
ample, the twisted drawing Tn depicted in Figure 4.11(b) does not contain a 5-gon. In terms of
crossings, Tn can be characterized as a drawing of Kn with vertices v1, . . . , vn such that {vi, vm}
crosses {vj , v`} for i < j < ` < m. Even though there are arbitrarily large simple drawings with-
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out a k-gon, a theorem by Pach, Solymosi and Tóth [PST03] states that every sufficiently large
simple drawing of Kn contains Ck or Tk. The currently best known estimate is due to Suk and
Zeng [SZ22] who showed that every simple drawing of Kn with n > 29·log2(a) log2(b)a2b2 contains
Ca or Tb. Since convex drawings do not contain T5 as a subdrawing, every convex drawing of Kn

contains a k-gon Ck with k = (log2 n)1/2−o(1).

i

n− 1

2

1

n

...

. . .

(a)

i n− 121 ... n...

(b)

Figure 4.11: (a) The geometric drawing Cn with n points in convex position also referred to as n-gon.
The convex side is drawn gray.
(b) The twisted drawing Tn which has exactly one 4-hole, whose convex side is drawn gray.

In the drawing Ck with k ≥ 4, all triangles have exactly one empty side which is the unique
convex side. The convex side of Ck is the union of the convex sides of its triangles; see the gray
shaded region in Figure 4.11(a). Given a k-gon Ck in a simple drawing of Kn, we call vertices in
its convex side interior vertices. Arroyo, McQuillan, Richter and Salazar [AMRS22, Section 3]
started the investigations of interior vertices of k-gons in convex drawings and showed that edges
from an interior vertex to a vertex of Ck and edges between two interior vertices are contained
in the convex side of Ck, which the concept of convexity of triangles.

Lemma 4.4.1 ([AMRS22, Lemma 3.5]). Let Ck be a k-gon in a convex drawing of Kn with
vertices v1, . . . , vk and k ≥ 4. Then for each two vertices u, v contained in the convex side of Ck
the edge {u, v} is contained in the convex side of Ck. Moreover, for each interior vertex u, the
vertices v1, . . . , vk appear in this cyclic order in the rotation around the vertex u.

We present a definition for k-holes in simple drawings for all k ≥ 3.

Definition 4.4.2 (Holes in Simple Drawings). A k-hole in a simple drawing of Kn is a k-gon
which has no interior vertices.

For example, the vertices 1, 2, n − 1, n form a 4-hole in Tn which is highlighted gray in Fig-
ure 4.11(b). In the following, we resolve the questions of the existence of 4-, 5- and 6-holes in
simple and convex drawings.
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4.4.1 Simple Drawings without a 4-Hole

The twisted drawing Tn with n ≥ 4 depicted in Figure 2.14(b) has exactly 2n−4 empty triangles
which are spanned by the vertices {1, 2, i} for 3 ≤ i ≤ n and {i, n−1, n} for 1 ≤ i ≤ n−2 [Har98].
Clearly a 4-hole {a, b, c, d} implies that all triangles spanned by three of its vertices are empty.
Indeed the drawing Tn has exactly one 4-hole, which is spanned by {1, 2, n− 1, n}. However, in
simple drawings the existence of 4-holes cannot be guaranteed.

For n ≥ 5, let T̃n denote the simple drawing of Kn that is obtained by rerouting the edge {1, n}
in the drawing Tn as illustrated in Figure 4.12. More precisely, while in Tn the edge {1, n}
crosses every edge {i, j} with 2 ≤ i < j ≤ n − 1, in T̃n it only crosses the edges {i, j} with
2 ≤ i < j ≤ n−2. Recall that the pairs of crossing edges determine the weak isomorphism class,
see Theorem 2.5.5.

i21 ... n...

Figure 4.12: Illustration of T̃n without 4-holes. The edge {1, n} is highlighted red.

Proposition 4.4.3. For n ≥ 5 the drawing T̃n does not contain a 4-hole.

Proof. Rerouting the edge {1, n} only affects the emptiness of triangles incident to both vertices
1 and n. More precisely, it only affects the vertex n− 1 which changes the side of every triangle
incident to {1, n}. In particular the triangle spanned by {1, 2, n} is not empty in T̃n. Hence
{1, 2, n − 1, n} is not a 4-hole anymore. A new 4-hole would be of the form {1, a, b, n} with
2 ≤ a < b ≤ n− 1 since the new empty triangles have to contain the vertices 1 and n. However
{1, a, b} is only empty if a = 2 < b < n and {a, b, n} is only empty if 1 < a < b = n − 1. Since

no four vertices span four empty triangles, T̃n does not contain a 4-hole.

4.4.2 Holes in Convex Drawings

In this section, we show that convex drawings behave similarly to geometric point sets when it
comes to the existence of holes. We show that every sufficiently large convex drawing contains
a 6-hole, and hence a 5-hole and a 4-hole.

Theorem 4.4.4 (Empty Hexagon theorem for Convex Drawings). Every convex drawing of Kn

with sufficiently large n contains a 6-hole.
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Moreover, 6-holes are the largest unavoidable holes because the construction by Horton [Hor83]
gives arbitrarily large point sets and hence convex drawings without 7-holes. Before we give the
proof we discuss structural results of convex drawings.

For 4-holes, we show that there is a quadratic number of 4-holes in convex drawings, which
generalizes a result by Bárány and Füredi [BF87, Lemma 11.1].

Theorem 4.4.5. It holds hconv
4 (n) ≥ n2

4 −O(n).

Proof. Let D be a convex drawing of Kn. We show that every edge which is crossed is a diagonal
of a 4-hole in the sense that it is one of the crossing edges of the underlying 4-gon. Let e be an
edge which is crossed by another edge f . The four endvertices of e and f build a 4-gon C4 in D.
We assume the vertices are labeled with v1, v2, v3, v4 such that e = {v1, v3} and f = {v2, v4}. If
C4 does not contain vertices in its interior it is empty and hence a 4-hole. Otherwise, let x be
an interior vertex of C4 as illustrated in Figure 4.13.

v1

v3

v4

v2

x

Figure 4.13: Illustration of the proof of Theorem 4.4.5.

By the properties of a 4-gon, x lies in the convex side of exactly two of its four triangles. Without
loss of generality, we assume that x is in the convex side of the two triangles {v1, v2, v3} and
{v2, v3, v4}. By Lemma 4.4.1, all edges {x, vi} for i = 1, 2, 3, 4 are fully contained in the convex
side of C4. Since the edge {x, v4} is fully contained in the convex side of the triangle spanned
by {v2, v3, v4}, but has to leave the triangle induced by {v1, v2, v3} to get to v4, it crosses the
edge e = {v1, v3}. Hence v1, x, v3, v4 spans another 4-gon in which {v1, v3} is one of the crossing
edges. Furthermore, since the edges {x, v1}, {x, v2}, {x, v3} are contained in the convex side
of C4, the convex side of the 4-gon spanned by {v1, x, v3, v4} is contained in the convex side
of C4. Hence the number of interior vertices of this 4-gon is strictly smaller. Since n is finite, we
can iteratively determine a smaller 4-gon with diagonal e until we reach a 4-hole with diagonal
e.

Every drawing of Kn has
(
n
2

)
edges and at most 2n − 2 edges are uncrossed [Rin64], see also

Section 5.2.4. Since every 4-hole has two diagonals, each 4-hole is counted twice. Altogether,
the number of 4-holes in D is at least

1

2

((
n

2

)
− 2n+ 2

)
=

1

4
n2 − 5

4
n+ 1.

In the proof of Theorem 4.4.5, we used minimal 4-gons to show the existence of 4-holes with a
particular diagonal. More generally, we consider minimal k-gons, i.e., k-gons whose convex side
do not contain the convex side of another k-gon. For the sake of readability, we refer to the
vertices v1, . . . , vk of a k-gon with indices modulo k.
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Lemma 4.4.6. Let Ck be a minimal k-gon in a convex drawing of Kn with vertices v1, . . . , vk
and k ≥ 4. Then for all i = 1, . . . , k there are no interior vertices in the convex sides of the
triangles spanned by {vi, vi+1, vi+2}.

Proof. Assume towards a contradiction there is an interior vertex v in the convex side of the
triangle determined by {vi, vi+1, vi+2}. Clearly, the vertices v1, . . . , vi, vi+2, . . . , vk span a (k−1)-
gon and the triangle spanned by vi, v, vi+2 is not contained in the convex side of that (k−1)-gon.
In order to show that v1, . . . , vi, v, vi+2, . . . , vk spans a k-gon, we need to show that the rotation
system is the same as the one of Ck. Let vj for j ∈ {1, . . . , i − 1, i + 3} be one of the vertices
of Ck. By Lemma 4.4.1, the edge {v, vj} does not leave the convex side of Ck and the rotation
of v is v1, . . . , vk. Therefore, the edge {v, vj} has to enter vj from the convex side of Ck in the
rotation, which is the same as the convex side of the (k − 1)-gon. Moreover, the convex side of
the (k− 1)-gon is entered by crossing the edge {vi, vi+2}. By the properties of a simple drawing
the edge {v, vj} does not cross any of the edges adjacent to vj . Hence v lies between vi and vi+2

in the rotation around vj . Figure 4.14 gives an illustration. Since this is the rotation system of
a k-gon, we showed that v1, . . . , vi, v, vi+2, . . . , vk span the k-gon C′k. Furthermore since no edge
leaves the convex side of the k-gon, the convex side of the C′k is contained in the convex side of
Ck and hence Ck was not minimal – a contradiction.

v

vi

vi+1

vi+2

vj

Figure 4.14: A k-gon with an interior vertex v in the convex side of the triangle spanned by vi, vi+1, vi+2.

As it turns out minimal k-gons are useful to determine the existence of holes. The following
theorem about the convex side of minimal k-gons might be of independent interest to transfer
results on pseudolinear drawing to the more general setting of convex drawings.

Theorem 4.4.7. Let Ck be a minimal k-gon in a convex drawing D of Kn with n ≥ k ≥ 5. Then
the subdrawing induced by the vertices in the convex side of Ck is f-convex with the marked cell
c∞ not in the convex side of Ck.

Note that the statement of Theorem 4.4.7 does not hold without minimality assumption. Fig-
ure 4.15 shows an example of a 4-gon which is not minimal and the subdrawing induced by the
convex side is not even h-convex.

Proof. Recall that a drawing is f-convex if there is a cell c∞ such that, for every triangle the
side not containing c∞ is convex.
Let Ck be a minimal k-gon with vertices v1, . . . , vk in D and c∞ be a cell in the non-convex
side of the k-gon Ck. The convex side of the triangles spanned by three vertices vi, vj , v` of
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v1

v2 v3

v4

Figure 4.15: A 4-gon (black) which is not minimal and has two interior vertices (red and blue) such
that the vertices in the convex side are not h-convex since it contains Πoh

6 .

the k-gon is the side not containing c∞. Suppose towards a contradiction that there exists a
triangle T determined by three vertices t1, t2, t3 from the convex side of Ck, such that the side
not containing c∞ is not convex. Hence the non-convex side SN is contained in the convex side
of Ck. Since D is convex, the side SC containing c∞ and all vertices v1, . . . , vk has to be convex.

In the following we show that the three vertices t1, t2, t3 are contained in the closure of a single
cell of the subdrawing induced by Ck. Assume towards a contradiction that this is not the case.
Then some edge {vi, vj} has a crossing with at least one of the triangle edges {t`, tm}. Since
vi and vj are in the convex side SC of the triangle T , this is a contradiction to the convexity.
Hence SN lies in the closure of a cell of Ck.
By the minimality of Ck and Lemma 4.4.6, there are no interior vertices in the convex side of
a triangle spanned by {vi, vi+1, vi+2}. Moreover, since all cells in the convex side of Ck incident
to the vertex vi+1 are inside this triangle, the vertex vi+1 is not part of T . This holds for every
index i and hence the vertices t1, t2, t3 are interior vertices of Ck. Hence SN lies in a cell of the
convex side of Ck, which is not covered by the convex side of one of the triangles spanned by
{vi, vi+1, vi+2}.
Since SN is not convex, there exists a vertex z in the interior of SN such that the subdrawing
induced by {t1, t2, t3, z} has a crossing [AMRS22, Corollary 2.5]. We assume without loss of
generality that the edge {t1, z} crosses {t2, t3}. Moreover, exactly one of the following two
conditions holds:

I The triangle spanned by {t1, t3, z} separates t2 and c∞.

I The triangle spanned by {t1, t2, z} separates t3 and c∞.

Without loss of generality, we assume that the first case holds. Otherwise we exchange the roles
of t2 and t3. Figure 4.16 gives an illustration.

Now we consider all edges from t2 to the vertices v1, . . . , vk of Ck. Since SC is convex and
contains v1, . . . , vk, the edges {t2, vi} are fully contained in SC . This shows that none of the
edges {t2, vi} has a crossing with the boundary of T . In particular, they do not cross {t1, t3}.
The edges {t2, v1}, . . . , {t2, vk} partition the convex side of Ck into triangles spanned by the three
vertices t2, vi, vi+1 for i = 1, . . . , k. Hence there is an index i such that the three vertices t1, t3, z
lie in one of the sides of the triangle spanned by {t2, vi, vi+1}. The edge {vi, vi+2} witnesses that
the side of the triangle spanned by {t2, vi, vi+1} containing vi+2 is not convex. Moreover, the
edge {t1, z} is not fully contained in the side containing t1 and z. Hence the triangle spanned
by {t2, vi, vi+1} has no convex side. A contradiction to the convexity.
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zt1

t3

t2
vi+1

vi

c∞

Figure 4.16: Illustration of the proof of Lemma 4.4.7. The vertices t1, t2, t3 are highlighted red and
vertex z is highlighted blue. The blue edge violates the convexity.

Using Theorem 4.4.7, the proof of Theorem 4.4.4 follows with the existence of k-gons and the
existence of 6-holes in k-gons of pseudolinear drawings. The original proof of Gerken’s empty
hexagon theorem [Ger08] is in the geometric setting and shows that every 9-gon contains a
6-hole. The proof only uses the combinatorics of the point set and generalizes to pseudolinear
drawings [Sch23]. Even though the existence of 6-holes directly implies the existence of 5-holes,
when adapting the proof to 5-holes one obtains a better bound. Similarly as for the 6-holes, the
proof for the existence of 5-holes in every 6-gon of a point set (see [Mat02, Section 3.2]) applies
to pseudolinear drawings as it only uses triple orientations, which we give in the following.

Proposition 4.4.8. Every pseudolinear drawing with a 6-gon contains a 5-hole.

Proof. Let D be a pseudolinear drawing of Kn containing a 6-gon. We start with a minimal
6-gon C6 with vertices v1, . . . , v6. If C6 does not have interior points, we clearly have a 6-hole and
hence a 5-hole. If C6 has exactly one interior vertex x, we consider the edge {v1, v4} connecting
two vertices through a diagonal. This diagonal is fully contained in the convex side of C6 and
hence partitions the convex side into two parts. The vertex x is in one part and, together with
the four vertices from the k-gon from the other part, it spans a 5-hole. For an illustration see
Figure 4.17(a).
Let us now assume that C6 has at least two interior vertices. Let x, y be two interior vertices
such that the remaining interior vertices are on the same side of the pseudoline ` extending the
edge {x, y}. Note that this is possible since there is a notion of convex hull in the setting of
pseudolinear drawings.
We now consider two different cases, depending on which two edges {vi, vi+1} this pseudoline
crosses to leave C6. If ` intersects two opposite edges of C6, then all other interior vertices lie
on one side of this prolonged pseudoline. In this case there are three vertices of C6 which are
on the opposite side as the remaining interior vertices. Those three vertices together with x, y
determine a 5-hole; see Figure 4.17(b). Otherwise, if ` intersects two other boundary edges,
there are at least four vertices of C6 on one of the two sides and hence there is a 6-gon with fewer
interior vertices as illustrated in Figure 4.17(c) – a contradiction to the minimality of C6.

We are finally ready to prove the main theorem of this section which is the existence of 6-holes
in convex drawings. For this we use the existence of k-gons in large enough drawings, which
imply the existence of a minimal k-gon and therefore we can apply the existence of holes in
pseudolinear drawings.
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(a)

(b) (c)

Figure 4.17: Illustration of the proof for the existence of 5-holes in pseudolinear drawings.

Proof of Theorem 4.4.4. Every convex drawing of Kn with n > 2225 log2(5)·k2 log2(k) contains a
k-gon [SZ22]. In order to find a 6-hole, we apply this result for k = 9. (To find a 5-hole,
we use k = 6.) Consider a minimal k-gon. By Lemma 4.4.7, the subdrawing induced by the
vertices from the convex side of the k-gon is f-convex. Since the existence of holes is invariant
under the choice of the outer cell, we can choose the cell containing c∞ as the unbounded cell
to make the subdrawing pseudolinear. Next we apply the results concerning the existence of a
6-hole (resp. 5-hole) in pseudolinear drawings and conclude that the subdrawing induced by the
k-gon and the interior vertices contains a 6-hole (resp. 5-hole). This 6-hole (resp. 5-hole) in the
subdrawing does not contain vertices of the original drawing of Kn since those vertices would
be interior vertices of the k-gon. Therefore it is a 6-hole (resp. 5-hole) in the original drawing.
This completes the argument.

Even though the existence of 6-holes is shown, it remains to determine the minimal integer such
that every drawing contains a 5-hole respectively, 6-hole. Let hconv(k) (resp. hgeom(k)) denote
the smallest integer such that every convex (resp. geometric) drawing of size n ≥ hconv(k)
contains a k-hole. Every K4 spanned by the four vertices of a crossing, contains a 4-hole
(see Theorem 4.4.5). Hence it holds hconv(4) = hgeom(4) = 5. In the geometric setting it
holds hgeom(5) = 10 [Har78] and 30 ≤ hgeom(6) ≤ ES(9) ≤ 1717 [Ger08, Ove03]. Our proof
(Theorem 4.4.4) shows

hconv(5) ≤ 2225·62·log2(5)·log2(6) + 1 and;

hconv(6) ≤ 2225·92·log2(5)·log2(9) + 1.

4.4.3 Generalized Holes

Aichholzer, Hackl, Huemer, Hurtado and Vogtenhuber [AHH+10] showed that every sufficiently
large bicolored point set P = A ∪̇ B contains a generalized 4-hole spanned only by points of A
or only by points of B. A generalized k-hole is a simple polygon (not necessarily convex) which
is spanned by k points of P and does not contain points of P in its interior. Since there are
no coordinates involved in the proof, the proof transfers to the pseudolinear setting. For simple
drawings we need to adapt the definition of generalized holes. A simple polygon in a point set
is basically a plane cycle, which we can define for simple drawings. This motivates the first
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definition of empty cycles. However, in the geometric setting, a simple polygon always admits
a triangulation. This is not the case for plane cycles in simple drawings. For the second more
restrictive variant, we consider empty triangulations.

Empty Cycles

As a first generalization of polygons, we consider plane cycles. Similar to triangles, they divide
the plane into two components whose closures we call sides. An empty k-cycle in a simple
drawing is a plane cycle of length k such that one of its two sides is empty. For k = 3 this
definition coincides with empty triangles. As for empty triangles, the complement of the convex
hull of a point set is counted as an empty k-cycle even though it is not a generalized k-hole in
the point set. In the following we show the existence of empty 4-cycles.

Theorem 4.4.9. Let D be a simple drawing of Kn with n ≥ 4 and let v be a vertex of D.
Then D contains an empty 4-cycle passing through v.

Proof. For a fixed vertex v, we consider the star Sv centered at v and consisting of all incident
edges. By [GTP21, Corollary 3.4], there is a plane subdrawing D′ that consists of the star Sv
and some spanning tree T on the remaining n−1 vertices. Moreover, D′ is 2-connected [GTP21,
Theorem 3.1]. Every face F of D′ contains v on its boundary because the tree T is cycle-free.
Hence the subdrawing D′ has exactly 2n− 3 edges and n− 1 faces. If there is a face of D′ with
exactly 4 edges on its boundary, then this yields an empty 4-cycle passing through v. Similarly
if two triangular faces are adjacent, then this yields an empty 4-cycle passing through v. In
the other cases, we derive a contradiction by counting the number of edges E in D′. Since no
two triangular faces are adjacent, there are at most bn−1

2 c triangles. Let f3 denote the number
of triangles. All other faces have at least 5 edges on their boundary, whose number is denoted
by f≥5. Since every edge is incident to exactly two faces, this yields

|E| ≥ 1

2
(5f≥5 + 3f3) =

1

2
(5(n− 1− f3) + 3f3) ≥ 1

2

(
5(n− 1)− 2

⌊
n− 1

2

⌋)
≥ 2n− 2.

This is a contradiction to the fact that D′ contains exactly 2n− 3 edges.

Similar to the minimum number of empty triangles which is asymptotically linear [AHP+15],
the above theorem implies a linear lower bound on the number of empty 4-cycles.

Corollary 4.4.10. Every simple drawing of Kn with n ≥ 4 contains at least n
4 empty 4-cycles.

Note that the twisted drawing Tn contains cubically many empty 4-cycles. A plane 4-cycle of
Tn is illustrated in Figure 4.18. Such a 4-cycle is empty if and only if one of the two sides is
empty. This is the case if the 4-cycle consists of the vertices 1, 2, n − 1, n or i, j, j + 1, ` for
i < j < j + 1 < `.

While the empty 3-cycles and empty 4-cycles exists in all simple drawings ([Har98] and Theo-
rem 4.4.9), the existence of k-cycles remains open for k ≥ 5.

Question 4.1. Does every simple drawing of Kn contain an empty k-cycle for each 3 ≤ k ≤ n?
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...............

Figure 4.18: A plane 4-cycle in Tn.

An empty n-cycle is a plane Hamiltonian cycle. Rafla [Raf88] conjectured that every simple
drawing of Kn contains a plane Hamiltonian cycle.

An affirmative answer to Question 4.1 restricted to convex drawings follows immediately from
Theorem 5.2.2, which we discuss in more detail in the Chapter 5. In particular Theorem 5.2.2
states that every star Sv in a convex drawing of Kn can be planarly extended by a Hamiltonian
path P on the remaining n− 1 vertices. By closing the subpath of P on the first k − 1 vertices
via v, one obtains the desired empty k-cycle.

Corollary 4.4.11. Let D be a convex drawing of Kn and let 3 ≤ k ≤ n. Then D contains an
empty k-cycle.

Empty Triangulations

Recall that a generalized hole in a point set is a simple empty polygon, and that polygons
can be triangulated. To restrict the definition of generalized holes in simple drawings, we may
further require that the empty side of an empty k-cycle can be triangulated, i.e., is the disjoint
union of empty triangles. We call such a structure empty k-triangulation. For example, in the
drawing T̃n constructed in Section 4.4.1 the vertices 1, n−1, 2, n form an empty 4-triangulation.
While Theorem 4.4.9 asserts that every simple drawing of Kn contains an empty 4-cycle, there
are simple drawings without empty 4-triangulations. To construct an infinite family of such
drawings T ′n, we start with the twisted drawing Tn and reroute some edges as illustrated in
Figure 4.19.

Proposition 4.4.12. For n ≥ 6 the drawing T ′n contains no empty 4-triangulation.

Using the result by Aichholzer et al. [AHH+10] about the existence of monochromatic generalized
4-holes in bicolored point sets (resp. pseudolinear drawing of Kn), we show the existence of
empty 4-triangulations in convex drawings. In particular, since every sufficiently large convex
drawing of Kn contains a minimal k-gon whose convex side induces an f-convex subdrawing
(Lemma 4.4.7), we can apply the existence in the pseudolinear setting to obtain that every
sufficiently large bicolored convex drawing contains a monochromatic empty 4-triangulation.

Corollary 4.4.13. Every sufficiently large convex drawing on vertices V = A ∪̇ B has an empty
4-triangulation induced only by vertices from A or only by vertices from B.
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. . .
1 2

3
4 n

Figure 4.19: The drawing T ′n without empty 4-triangulations for n ≥ 6.
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Proof of Proposition 4.4.12. Note that the drawing induced by the vertices 1, 3, . . . , n is the
twisted drawing Tn−1. Even though the remaining drawing is not Tn, it is crossing maximal.

Claim 4.3. T ′n contains
(
n
4

)
crossings.

Proof. The following proof gives the exact crossing pairs and hence describes the drawing up to
weak isomorphism.

The vertices 1, 3, 4, . . . , n build a twisted drawing Tn−1 and hence every 4-tuple from [n]\{2}
contains a crossing, giving

(
n−1

4

)
crossings. More specifically, the edges {i, `} and {j, k} cross

for i, j, k, ` ∈ [n] \ {2} with i < j < k < `.

It remains to describe the crossings in 4-subsets which contain vertex 2. The edge {1, 2} crosses
the edges {3, n}, {3, 4}, {4, i} for i = 5, . . . n which are n − 2 crossings. The edge {2, 3} has no
crossing and {2, 4} crosses only the edge {3, n}. For j = 5, . . . , n−1 the edge {2, j} crosses the two
edges {1, 3}, {3, n}, the n−j edges {1, j+1}, . . . , {1, n} and the edges {i, k} for 2 < i < k < j, of
which there are

(
j−3

2

)
. Finally, the edge {2, n} crosses the

(
n−4

2

)
edges {i, j} for 3 < i < j ≤ n−1.

In total there are

(
n− 1

4

)
+ (n− 2) + 1 +

n−1∑
j=5

(
2 + (n− j) +

(
j − 3

2

))
+

(
n− 4

2

)

=

(
n− 1

4

)
+ 3n− 11 +

(
n− 4

2

)
+
n−4∑
j=2

(
j

2

)
+

(
n− 4

2

)

=

(
n− 1

4

)
+ 2n− 7 +

(
n− 3

2

)
+

(
n− 3

3

)
+

(
n− 4

2

)
=

(
n− 1

4

)
+ 1 + (n− 4) +

(
n− 3

2

)
+

(
n− 2

3

)
=

(
n− 1

4

)
+

(
n− 1

3

)
=

(
n

4

)

crossings because of the hockey-stick identity
∑n

j=r

(
j
r

)
=
(
n+1
r+1

)
and its relative

∑m
k=0

(
n+k
k

)
=(

n+m+1
n+1

)
. �

Because of the crossing maximality every empty 4-triangulation is a 4-hole. The only possibility
to achieve an empty 4-triangulation which is not a 4-hole, is a crossing-free subdrawing. In the
twisted subdrawing Tn−1 induced by 1, 3, . . . , n the empty triangles are 1, 3, i for i = 4, . . . , n
and i, n − 1, n for i = 1, 3 . . . n − 2 and the only 4-hole is 1, 3, n − 1, n which is not a 4-hole
in T ′n, since the vertex 2 is in the triangle spanned by {3, n− 1, n}. Hence if there is a 4-hole, it
consists of the vertex 2 and three vertices of an empty triangle of the induced subdrawing Tn−1.
However, since all empty triangles from the induced subdrawing Tn−1 are induced by 1 and 3 or
both vertices n − 1, n, at least one of the two triangle spanned by 1, 2, 3 or 2, n − 1, n must be
empty. This is not the case in the constructed drawing.
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Figure 4.20: Illustration of the two partitions for Radon’s theorem.

4.5 More Classic Theorems

We conclude this chapter with remarks on additional classic theorems from convex geometry
which are not discussed yet. Most prominently we discuss Tverberg’s theorem and the (p, q)-
theorem, a Helly-type theorem. We start with a special case of Tverberg’s theorem.

4.5.1 Radon’s Theorem

Radon’s theorem asserts that every set of d + 2 points in Rd can be partitioned into two sets
whose convex hulls intersect. Clearly Radon’s theorem holds for all simple drawings since every
simple drawing of the K4 can be partitioned into two sets which intersect. Instead of convex
sets, we consider the bounded region enclosed by all edges connecting vertices of the same color.

If the drawing has a crossing, we partition the vertices such that the endvertices of a crossing
edge have the same color. In the crossing-free drawing of the K4, we divide the vertices in the
outer triangle and the vertex being in the bounded side of this triangle. For an illustration of
the cases see Figure 4.20.

4.5.2 Tverberg and related Theorems

In 1959 Birch [Bir59] showed that for every r and every geometric drawing of K3r there are r
vertex disjoint triangles such that the intersection of their bounded side is not empty. For more
information see for example [Zie11]. Indeed it is possible to reduce the number of points to 3r−2
such that there is a partition in r parts whose convex hulls have a common intersection. Later
Tverberg [Tve66] generalized this to point sets in dimension d. Tverberg’s theorem asserts that
every set V of at least (d+ 1)(r − 1) + 1 points in Rd can be partitioned into V = V1 ∪̇ . . . ∪̇ Vr
such that conv(V1)∩ . . .∩ conv(Vr) is non-empty. The case r = 2 of Tverberg is exactly Radon’s
theorem.

The topological version of Tverberg’s theorem remains unsolved. If r is prime [BSS81] or if r is
a prime-power [Öza87], the topological Tverberg is true for any dimension. Moreover for every r
which is not a prime power, there is a counterexample in some dimension d [BFZ19, MW14].

For pseudolinear drawings (dimension 2) the generalization was proven by Roudneff [Rou88].
An approach for a generalization of Birch’s theorem for simple drawings of complete graphs
is given in [FS20]2. For a recent survey on generalizations of Tverberg’s theorem, we refer to
[BS18].

2As the authors state at the arXiv version, the proof seems to be incomplete.



4.5 More Classic Theorems 109

4.5.3 (p, q)-Theorem

The (p, q)-Theorem was conjectured by Hadwiger and Debrunner and proved by Alon and Kleit-
man [AK92]. For improved bounds see [KST18]. It says that for any p ≥ q ≥ d + 1 there is a
finite number c(p, q, d) with the following property: If C is a family of convex sets in Rd, with
the property that among any p of them, there are q that have a common point, then there are
c(p, q, d) points that cover all the sets in C. Helly’s theorem is the case with p = q = d + 1,
i.e., c(d + 1, d + 1, d) = 1. We are not aware whether a (p, q)-Theorem for triangles in general
simple drawings exists, however, an anonymous reviewer pointed us to a proof for pseudolinear
drawings. Here is an outline: A triangle in a pseudolinear drawing is the intersection of three
pseudo-halfplanes. Hence, the intersection of multiple triangles is the intersection of pseudo-
halfplanes, and is therefore either empty or path-connected. A (p, q)-Theorem for triangles in
pseudolinear drawings now follows directly from Patáková’s (p, q)-Theorem [Pat20, Theorem 6].
Moreover, Keszegh [Kes22] studied the case of pseudo-halfplanes and showed that c(3, 3, 2) = 2
and several related results.





Chapter 5

Plane Hamiltonian Subgraphs in
Convex Drawings

In the study of simple drawings, unavoidable structures gained a lot of attention in the last
years. In the last chapter, Section 4.4 we have seen that every sufficiently large simple drawing
of Kn contains either a Tk or a Ck. Moreover, it is well known that for complete graphs with
5 or more vertices we cannot avoid a crossing. Besides crossing structures, plane substructures
in simple drawings have been studied. In a drawing D of Kn, the subdrawing D[H] induced
by a subgraph H of Kn is plane if no two edges of H have a crossing in D. One of the most
well-known conjectures regarding plane substructures may be Rafla’s conjecture. In his PhD
thesis he showed that every simple drawing with n ≤ 7 contains a plane Hamiltonian cycle and
conjectured that this holds for all n.

Conjecture 5.1 ([Raf88]). Every simple drawing of Kn with n ≥ 3 contains a plane Hamiltonian
cycle.

Later Ábrego et al. [ÁAF+15] enumerated all rotation systems for n ≤ 9 and verified the con-
jecture for n ≤ 9. Note that all geometric drawings clearly have a plane Hamiltonian cycle as
we can start with an arbitrary vertex and visit the remaining vertices in the order in which they
appear cyclically around this particular vertex. For an illustration see Figure 5.1. For points in
convex position, i.e., a point set with no point inside the convex hull, there is a unique plane
Hamiltonian cycle traversing the convex hull. Since this is the only point configuration with
exactly one plane Hamiltonian cycle, the number of plane Hamiltonian cycles in a point set is
a measure of non-convexity, which has been studied extensively. The question of the maximum
number of plane Hamiltonian cycles in a set of n points was first introduced by Newborn and
Moser [NM80] (see also [BMP05, Chapter 8.4]). For the current best lower bound of Ω(4.642n)

v?

Figure 5.1: Hamiltonian cycle in a geometric drawing.
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see Garćıa, Noy and Tejel [GNT00] and for the upper bound of O(55.839n) see Sharir, Sheffer
and Welzl [SSW13].

Another subclass of simple drawings for which Rafla’s conjecture is true are monotone drawings.
Recently, Orthaber [Ort22] proved in his master thesis that cylindrical and strongly c-monotone
drawings have a plane Hamiltonian cycle (see also [AOV24]). This in particular includes mono-
tone and geometric drawings. Aichholzer et al. [AGT+22] furthermore showed that generalized
twisted drawings with an odd number of vertices contain a plane Hamiltonian cycle.

Besides the positive results concerning subclasses, weaker results on general simple drawing have
been investigated. Clearly if there is a plane Hamiltonian cycle, then the drawing also admits
a plane Hamiltonian path and a plane matching. In 2022, Suk and Zeng [SZ22] and Aichholzer
et al. [AGT+22] independently showed that simple drawings contain a plane path of length
(log n)1−o(1). Additionally, Suk and Zeng showed that every simple drawing of Kn contains
a plane copy of every tree on (log n)1/4−o(1) vertices. Aichholzer et al. moreover showed the
existence of a plane matching of size Ω(

√
n), improving previous bounds from [PST03, PT05,

FS09, Suk12, FR13, Ful14, Rui17].

Outline This chapter is based on [BFMS23] which is joint work with Stefan Felsner, Meghana
M. Reddy and Manfred Scheucher. We consider several variations and strengthenings of Rafla’s
conjecture, see Section 5.2. The main result (see Theorem 5.2.2) is a proof of the existence of
plane Hamiltonian cycles in convex drawings which moreover can be extended by a spanning
star consisting of additional n − 3 edges. This is a combination of Rafla’s conjecture and the
result by Fulek and Ruiz-Vargas [FR13, Lemma 2.1] that every simple drawing of Kn admits a
plane subdrawing of size 2n− 3. The proof of Theorem 5.2.2 is constructive and comes with a
quadratic time algorithm. We use special edges denoted as bad edges, which admit a layering
structure and reduce the problem to finding a plane path in every layer. The proof is given
in Section 5.3. For the important layering structure we use computer assistance in form of a
SAT framework to avoid large case distinction. In this thesis, we additionally provide a classic
proof without computer in Section 5.4. Note that all problems considered in this chapter only
depend on the pairs of crossing edges and not on the actual embedding. This allows to work with
rotation systems, which makes it possible to investigate the problems with SAT. In Section 5.1,
we give a short description of the SAT encoding. With the help of the SAT framework, we show
that Rafla’s conjecture is true for n ≤ 10.

5.1 SAT Encoding for Rotation Systems

To study substructures in general simple drawings and subclasses such as convex or h-convex
drawings, we develop a Python program which generates a Boolean formula that is satisfiable
if and only if there exists a simple drawing of Kn with prescribed properties for a specified
value of n. Moreover, the solutions of these instances are in one-to-one correspondence with
non-isomorphic simple drawings with the prescribed properties. To be more specific, for a given
problem of the form “does there exist a simple drawing of Kn with the property . . . ”, the
Python program generates a Boolean formula in conjunctive normal form (CNF). We then use
state-of-the-art SAT solvers such as CaDiCaL [Bie19] to decide whether a solution exists and to
enumerate solutions. While solutions can be verified, the correctness in the unsatisfiable case has
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no obvious certificate. Nevertheless, we verify our unsatisfiability results using the independent
proof checking tool DRAT-trim [WHH14].

To encode pre-rotation systems on n elements as a Boolean satisfiability problem for a constant n,
we use Boolean variables and clauses to encode the rotations of the vertices. Since we only
consider complete graphs, the rotation of a vertex a ∈ [n] is a cyclic permutation on [n]\{a}.
We introduce a Boolean variable Xaib for every pair of distinct vertices a, b ∈ [n] and every index
i ∈ [n − 1], to indicate whether πa(i) = b. To encode that for all a ∈ [n] and for all i ∈ [n − 1]
there is at least a value πa(i) ∈ [n]\{a}, we add the clauses∨

b 6=a
Xaib

to our CNF. Moreover, we want that there is exactly one value πa(i) and hence Xaib1 ⇒ ¬Xaib2

for all b1 6= b2. This implication gives that there is at most one value πa(i) ∈ [n]\{a} for all
a ∈ [n] and for all i ∈ [n− 1]. As a clause this is

¬Xaib1 ∨ ¬Xaib2 .

Moreover, since a permutation is a bijective function, every b is taken exactly once. This is
encoded with the following clauses for all a, b ∈ [n].∨

i∈[n−1]

Xaib; and

¬Xai1b ∨ ¬Xai2b for all i1 6= i2.

Since rotations around an element are cyclic permutations, there are n − 1 possibilities for the
permutations encoded with the clauses. All of them encode the same rotation. To break the
symmetries, we assume without loss of generality that we start the rotation with the smallest
element, i.e., the rotation around the first element starts with 2, and for every other element
the rotation starts with 1. For the CNF, we encode it as follows:

X1,1,2; and

Xa,1,1 for all a 6= 1.

With those clauses, we encode a pre-rotation system. To restrict the search space to rotation
systems, we need to forbid the subconfigurations Πo

4, Πo
5,1, Πo

5,2 depicted in Figure 2.16, see The-
orem 2.5.5. To encode this, we introduce auxiliary variables Sa,bcd to encode that bcd appear
in this order in the rotation of a. We synchronize the auxiliary variables Sa,bcd with the vari-
ables Xaib which encode already our rotation system. For this we add for all distinct elements
a, b, c, d ∈ [n] the clauses

¬Xaib ∨ ¬Xajc ∨ ¬Xakd ∨ Sa,bcd if i < j < k, k < i < j, or j < k < i; and

¬Xaib ∨ ¬Xajc ∨ ¬Xakd ∨ ¬Sa,bcd if i < k < j, k < j < i, or j < i < k.

To forbid the obstruction Πo
4 as a subconfiguration, we add the two clauses for each set of four

vertices a, b, c, d ∈ [n]

¬Sa,bcd ∨ ¬Sb,acd ∨ ¬Sc,abd ∨ ¬Sd,acb; and

Sa,bcd ∨ Sb,acd ∨ Sc,abd ∨ Sd,acb.
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Here we ensure that neither Πo
4 nor the reversed rotation system appears as a substructure. In an

analogous manner, we can assert that Πo
5,1 and Πo

5,2 are not contained. In total, we have Θ(n5)
clauses which assert that the pre-rotation system is indeed a rotation system, i.e., drawable.
Similar it is possible to restrict the search space to convex or h-convex drawings, respectively.
By Proposition 2.6.2 and Observation 2.6.1 it is enough to forbid the subconfigurations Πoc

5,1,

and Πoc
5,2 for convexity and additionally Πoh

6 for h-convexity. This can be done in an analogous
manner as the drawability obstructions.

With this encoding every solution of the CNF formula corresponds to a (convex, h-convex)
rotation system of a simple drawing of Kn. To ensure that the solutions are in one-to-one
correspondence with isomorphism classes of rotation systems, we implement a static symmetry
breaking in which we classify a unique representative.
In a first step, we consider so called natural pre-rotation systems. A pre-rotation system on [n] is
natural if the rotation of the first element is the identity permutation, that is, the rotation around
1 is 2, 3, . . . , n. By permuting the labels of the elements 3, . . . , n we can make any pre-rotation
system natural. Figure 5.2 shows the four natural rotation systems of K4 and their corresponding
drawings, while Figure 5.3 shows the four natural non-drawable pre-rotation system on [4].
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3
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π1 : 2 3 4
π2 : 1 3 4
π3 : 1 4 2
π4 : 1 3 2

π1 : 2 3 4
π2 : 1 4 3
π3 : 1 4 2
π4 : 1 2 3

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 2 3
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π1 : 2 3 4
π2 : 1 4 3
π3 : 1 2 4
π4 : 1 3 2

Figure 5.2: The four natural rotation systems on 4 elements with their drawings. The first, second, and
third are isomorphic and the first is the lexicographic minimum representative. Note that
this is the same as Figure 2.17.

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 4 2
π4 : 1 2 3

π1 : 2 3 4
π2 : 1 4 3
π3 : 1 4 2
π4 : 1 3 2

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 3 2

π1 : 2 3 4
π2 : 1 4 3
π3 : 1 2 4
π4 : 1 2 3

Figure 5.3: The four natural pre-rotation systems on 4 elements, which are not drawable. The first is
the lexicographic minimum representative, see also Figure 2.16.

As Figure 5.2 and Figure 5.3 show this encoding is still not a 1-to-1 correspondence between
solutions of the CNF and isomorphism classes of the pre-rotation systems. For each pre-rotation
system on [n] we can obtain up to 2n! isomorphic pre-rotation systems by permuting the elements
and by reflection (which reverses all cyclic orders). We further restrict the SAT encoding to only
consider one representative for each isomorphism class.
A pre-rotation system Π can be encoded as an n × (n − 1) matrix MΠ, where the a-th row
encodes the rotation of the a-th element, or as a vector vΠ of length n · (n− 1) that is obtained
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by concatenating the rows of the matrix. Note that we assume that the first element in every
row of MΠ is the smallest one of the cyclic permutation, i.e., the first row starts with 2 and all
other rows start with 1. In order to find a unique representative for an isomorphism class, we
take the pre-rotation system with the lexicographically minimal vector.
In a lexicographically minimal pre-rotation system Π, the first row of the matrix MΠ is the
identity permutation on [n]\{1}. It is necessary that a lexicographical minimum is natural,
but not sufficient; see for example the three rotation systems corresponding to a crossing K4

in Figure 5.2. At first glance, it seems that we have to check n! relabellings whenever we test
whether a given pre-rotation system Π is a lexicographic minimum. However, since the relabeling
has to be natural, the choice of the first and second vertices fully determines the first row and
thus the full permutation of the vertices. Hence, we only have to test n(n− 1) relabellings plus
their reflections to test isomorphism.

In the course of this chapter, we study plane substructures in simple drawings of the complete
graph. To use the SAT encoding for this investigations, we have to encode crossings and non-
crossings. For this we introduce variables Cab,cd = Cef to indicate whether two non-adjacent
edges e = {a, b} and f = {c, d} cross (cf. Observation 2.5.3(ii)). If the drawing of K4 with
vertices {a, b, c, d} is crossing-free, the rotation system is unique up to relabeling or reflection.
Otherwise, if there is a crossing, we have one of the following: ab crosses cd, ac crosses bd, or ad
crosses bc and this is fully determined by the rotation system. For each of these three cases, there

are two subcases. If ab crosses cd, then the directed edge
−→
cd either traverses

−→
ab from the left to

the right or vice versa. Each subcase corresponds to a unique rotation system. The three cases
are depicted in Figure 5.2. The other cases are the reversed rotation systems which correspond
to the reflected drawings. For the implementation, we introduce an auxiliary variable Dab,cd to
indicate whether we are in the first subcase and set

Cab,cd = Dab,cd ∨Dab,dc.

Moreover, we add the clauses

¬Sa,bdc ∨ ¬Sb,acd ∨ ¬Sc,abd ∨ ¬Sd,acb ∨ Dab,cd

Sa,bdc ∨ ¬Dab,cd

Sb,acd ∨ ¬Dab,cd

Sc,abd ∨ ¬Dab,cd

Sd,acb ∨ ¬Dab,cd

to encode the directed crossing.
We assert that a subset of the edges E′ ⊂ E(Kn) forms a plane subdrawing by setting the
auxiliary crossing variables corresponding to pairs of edges from E to False, that is, we have
a clause ¬Ce,f for every pair of non-adjacent edges e, f ∈ E′. Similarly, we can assert that E′

does not form a plane subdrawing with the constraint∨
e,f∈E′ : e∩f=∅

Ce,f .

For instance, to assert that a rotation system does not contain a plane Hamiltonian cycle, we
need that for every cyclic permutation π on [n] there is at least one crossing pair of edges in the
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set of edges Eπ = {(π(i), π(i + 1)) : i ∈ [n]}, where the elements are considered modulo n, i.e.
n+ 1 = 1. Note that this gives (n− 1)! clauses and is therefore only suited for relatively small
values of n. Similarly, we can deal with plane Hamiltonian subdrawings on 2n − 3 edges: We
assert that there is at least one crossing formed by every edge set E′ ∈

(
E(Kn)
2n−3

)
which contains

the edges Eπ of some Hamiltonian cycle π. The framework is given in [BFMS23].1

5.2 Plane Hamiltonian Substructures

In this section we consider various questions and conjectures concerning plane substructures
in simple drawings and more specifically in convex drawings. One of the most prominent con-
jectures concerning plane substructures is by Rafla, see Conjecture 5.1, which asks for a plane
Hamiltonian cycle in drawings of Kn. In the following we investigate strengthenings and vari-
ations of this conjectures. Using the SAT framework presented in Section 5.1 we showed that
Rafla’s conjecture is true for all n ≤ 10. Previously it was known to be true for n ≤ 9 [ÁAF+15].

Theorem 5.2.1. All simple drawings of Kn with n ≤ 10 contain a plane Hamiltonian cycle.

In contrast to the previous approach by Ábrego et al. who enumerated all rotation systems
and tested the data base for a plane Hamiltonian cycle, we do not need the large data base of
7 198 391 729 rotation systems for n = 9 [ÁAF+15]. Since the growth rate of rotation systems
is 2Ω(n2), it is not possible with today’s resources to store the database in the current form for
rotation systems with n = 10 elements. Using the SAT framework made it possible to check the
conjecture for n = 10, which took about 6 CPU days to show unsatisfiability for the instance.
The DRAT certificate for n = 10 is about 78GB and the verification with DRAT-trim took
additionally 6 CPU days.

In the following we discuss variants and a strengthening of the conjecture. In a first step we
consider the largest plane subdrawing. In the general context this was investigated by Fulek
and Ruiz-Vargas [FR13, Lemma 2.1]. They showed that every simple drawing of Kn contains
a plane subdrawing with 2n − 3 edges, which is best-possible as witnessed by the geometric
drawing Cn of n points in convex position depicted in Figure 2.14(a). Moreover, for a prescribed
connected plane spanning subdrawing, an augmentation with the maximum number of edges
can be computed in cubic time [GTP21, Theorem 4.1]. In general it is NP-complete to determine
the size of the largest plane subdrawing [GTP21, Theorem 4.2]. We investigated a combination
of both properties, a plane Hamiltonian cycle and a plane subdrawing of 2n − 3 edges. Hence
we consider plane Hamiltonian subdrawings of size 2n− 3. A plane Hamiltonian subdrawing is
a plane subdrawing which contains a Hamiltonian cycle. Such a subdrawing exists for all simple
drawings with n ≤ 8 which we showed using the SAT framework and we conjecture that this
pattern continues.

Conjecture 5.2. Every simple drawing of Kn with n ≥ 3 contains a plane Hamiltonian sub-
drawing with 2n− 3 edges.

For convex drawings, we prove Conjecture 5.2, where the plane Hamiltonian subdrawing consists
of a Hamiltonian cycle and a spanning star. This clearly implies the existence of a plane
Hamiltonian cycle in every convex drawing. The proof of the theorem is deferred to Section 5.3.

1https://github.com/manfredscheucher/supplemental-rafla

https://github.com/manfredscheucher/supplemental-rafla
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Theorem 5.2.2. Let D be a convex drawing of Kn with n ≥ 3 and let v? be a vertex of D.
Then D contains a plane Hamiltonian cycle C which does not cross any edge incident to v?.
This Hamiltonian cycle can be computed in O(n2) time. Moreover, if D is h-convex, then C
traverses the neighbors of v? in the order of the rotation around v?.

2

5
3

4

1

(a)

2 1

54

3 6

(b)

Figure 5.4: (a) The T5 showing that there is no Hamiltonian cycle which does not cross star edges
incident to v? = 5. All edges which do not cross the star edges (black) are incident to
the vertex 2; (b) The smallest convex but not h-convex drawing for which there is no
Hamiltonian cycle traversing the vertices corresponding to the rotation around the vertex 3.

The Hamiltonian cycle from Theorem 5.2.2 together with the spanning star centered at v? forms
a plane subdrawing on 2n− 3 edges. The statement of Theorem 5.2.2 is not true for non-convex
drawings. For example, if v? is chosen as vertex 5 of T5 in Figure 5.4(a), then the only edges not
crossing star-edges are incident to vertex 1. Moreover, Figure 5.4(b) shows a convex drawing
which is not h-convex and where no plane Hamiltonian cycle traverses the neighbors of v? = 3
in the order of the rotation around v?.

5.2.1 Extending Hamiltonian Cycles

Another way to read Theorem 5.2.2 is the following: given a spanning star in a convex drawing,
we can extend this star by additional n− 2 edges to a plane Hamiltonian subdrawing on 2n− 3
edges. As a variant of this formulation, we tested whether the other direction is true, i.e., whether
every given plane Hamiltonian cycle can be extended by n−3 edges to a plane subdrawing with
2n − 3 edges. It is worth noting that the special case in which the n − 3 edges build a star
already fails in the geometric setting; see Figure 5.5(a).

While for convex drawings such an extension exists for all n ≤ 10, for general simple drawings
it does not; see the example on 8 vertices depicted in Figure 5.5(b).

Conjecture 5.3. Let D be a convex drawing. Then every plane Hamiltonian cycle can be
extended to a plane Hamiltonian subdrawing on 2n− 3 edges.

5.2.2 Hamiltonian Paths with a prescribed Edge

Clearly every plane Hamiltonian cycle in a simple drawings admits a plane matching with bn2 c
edges. Again, we tested whether the reverse is true, i.e., whether a prescribed plane matching can
be augmented to a plane Hamiltonian cycle. In general it is not possible to find a Hamiltonian
cycle containing a prescribed edge. For example, the edge {1, 3} of C5 depicted in Figure 2.14(a)
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(a) (b)

Figure 5.5: (a) A plane Hamiltonian cycle (red) in a geometric drawing of K6 which cannot be extended
by a spanning star. (b) A plane Hamiltonian cycle in a drawing of K8 (red) which can only
be extended by 4 edges (black). Edges crossing the Hamiltonian cycle are drawn gray.

is not contained in any Hamiltonian cycle. Hence, prescribing an edge of a Hamiltonian cycle is
not even possible in the geometric setting. Instead we only ask for a Hamiltonian path containing
a prescribed edge. Again there is an easy example: Consider the edge {1, 5} in T5 depicted in
Figure 2.14(b). Since this edge has a crossing with all edges not sharing a common vertex, it
is not contained in any plane Hamiltonian path. More generally this holds for the edge {1, n}
in Tn. However, prescribing an edge for a plane Hamiltonian path is possible in convex drawings,
in which T5 does not occur as a subdrawing. The proof follows from Theorem 5.2.2.

Theorem 5.2.3. Let D be a convex drawing of Kn and let e be an edge of D. Then D has a
plane Hamiltonian path containing the edge e.

Proof. Let e = {u, v} be the prescribed edge in D. By Theorem 5.2.2 there exists a plane
Hamiltonian subgraph containing all edges adjacent to u. In Figure 5.6 we marked the Hamil-
tonian cycle red. Assume that the Hamiltonian cycle traverses u, x1, . . . , xn−1, u in this order
with v = xi for some index i. If i = 1 or i = n − 1, the Hamiltonian cycle contains the
edge {u, v}. Otherwise we start the Hamiltonian path at xi−1, traverse xi−2, . . . , x1, take the
star edges {x1, u} and e = {u, xi} = {u, v}, and finally traverse xi+1, . . . , xn−1. The edges of
the constructed path are marked blue in Figure 5.6. Since all traversed edges are part of the
original plane Hamiltonian subgraph, the constructed Hamiltonian path is also plane.

5.2.3 Hamiltonian Cycles avoiding a Matching

Another variant is to consider a prescribed matching and ask whether there is a Hamiltonian
cycle which together with the matching builds a plane Hamiltonian substructure, i.e., the edges
of the matching are not crossed by the Hamiltonian cycle (but possibly contained). In the
geometric setting, this corresponds to the question whether the visibility graph of matching edges
is Hamiltonian. Hoffmann and Tóth [HT03] showed that for every plane perfect matching M in
a geometric drawing of Kn there exists a plane Hamiltonian cycle that does not cross any edge
from M . In his PhD thesis Hoffmann [Hof05, Theorem 3.2] moreover showed that this holds for
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u

vx1

Figure 5.6: Illustration of the proof of Theorem 5.2.3. The blue edge is the prescribed edge. We choose
one of the endvertices as star vertex which gives a Hamiltonian cycle (red) using Theo-
rem 5.2.2. The Hamiltonian path (dashed blue) is constructed as in the proof containing
the edge {u, v}.

all plane matchings, which are not necessarily perfect. While the statement does not generalize
to simple drawings (Figure 5.7 shows the smallest example), it seems to generalize to convex
drawings. We dare the following conjecture, which we verified for n ≤ 11.

Conjecture 5.4. For every plane matching M in a convex drawing of Kn there exists a plane
Hamiltonian cycle that does not cross any edge from M .

Figure 5.7: A perfect matching (red) in a non-convex drawing of K8, which does not contain a plane
Hamiltonian cycle not crossing the matching edges. Edges which cross matching edges are
marked in gray.

5.2.4 Uncrossed Edges

In this section we focus on edges which are not crossed by any other edge of a given drawing
of Kn. In 1964, Ringel [Rin64] proved that in every simple drawing of Kn there are at most
2n − 2 edges without a crossing. Later, Harborth and Mengersen [HM74] studied the minimal
number of uncrossed edges and showed that every simple drawing of Kn with n ≤ 7 contains
an uncrossed edge and constructed simple drawings for n ≥ 8 such that every edge is crossed.
The drawing of K8 constructed by Harborth and Mengersen is depicted in Figure 5.8. For
larger n the construction works the same using two cycles of length n

2 for even n. For odd n,
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adding a vertex in the gray marked cell and carefully adding edges gives a drawing with the
same properties. However, these drawings are not convex. In Figure 5.8 the red triangle has

Figure 5.8: A drawing of K8 without uncrossed edges. The red triangle has no convex side.

no convex side, which is witnessed by the square vertices which have an edge to a triangle
vertex which does not stay in the corresponding side. Using the SAT framework, we confirmed
these results. Moreover, when restricted to convex drawings, all drawings with n ≤ 10 have
an uncrossed edge. For n = 11, . . . , 21, there are convex drawings where every edge is crossed.
These examples are indeed h-convex. Kynčl and Valtr [KV09] showed that for sufficiently large
n there is an h-convex drawing of Kn in which every edge is crossed. We conjecture:

Conjecture 5.5. For every n ≥ 11 there exists an h-convex drawing of Kn where every edge is
crossed.

Note that geometric drawings are of little interest in this context because the edges forming the
boundary of the convex hull are always uncrossed.

5.3 Plane Hamiltonian cycles in convex drawings

(Proof of Theorem 5.2.2)

We prove the existence of a plane Hamiltonian cycle in a constructive way and present a quadratic
time algorithm to find it. For a given convex drawing D of the complete graph Kn and a
fixed vertex v? the algorithm computes a plane Hamiltonian cycle which does not cross edges
incident to v?. Since this statement is independent from the labeling of the vertices, we assume
throughout the section that v? = n and that the other vertices are labeled from 1 to n − 1 in
cyclic order around v?, i.e., according to the rotation πn. As usual we consider the vertices 1 to
n− 1 modulo n− 1.
The convexity of a drawing in the plane and the containment of a plane Hamiltonian cycle is
independent of the choice of the outer cell. For the figures and arguments, we choose a drawing
where v? is incident to the outer cell. The vertex v? = n is denoted as the star vertex and
edges incident to v? as star edges. Note that every Hamiltonian cycle contains exactly two star
edges. We let Ê be the set of non-star edges and call an edge e ∈ Ê star-crossing if it crosses
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a star edge. For the Hamiltonian cycle we only use edges which are not star-crossing. Let
E◦ = Ê \ {e ∈ Ê : e is star-crossing} be the set of these candidate edges. The goal is to find a
Hamiltonian path on the vertices 1, . . . , n−1 using the edges of E◦. For this we start at a vertex
which we will determine later and successively add edges in such a ways that the endvertices
u, v and u′, v′ of each pair of edges appear in the cyclic order u, v, u′, v′. This ensures that the
constructed path is plane.

Observation 5.3.1. Let e = {u, v} and e′ = {u′, v′} be independent edges from E◦. If u, v, u′, v′

appear in this cyclic order around v?, then e and e′ do not cross.

Particular focus will be on the edges e = {v, v + 1} with 1 ≤ v < n. Such an edge is called good
if it is not star-crossing. Otherwise, if the edge b = {v, v + 1} crosses a star edge {w, v?}, then
we say that b is a bad edge and w is a witness for the bad edge b.

If there is at most one bad edge {v, v+ 1}, then the n− 2 good edges together with the two star
edges {v, v?} and {v + 1, v?} form a Hamiltonian cycle which visits the non-star vertices in the
order of the rotation around v?.

Observation 5.3.2. If Ê contains at most one bad edge, then D contains a plane Hamiltonian
cycle which does not cross any star edges and visits the non-star vertices in the order of the
rotation around the star vertex v?.

An example of a drawing with two bad edges is illustrated in Figure 5.4(b) with the choice of
v? = 3 and the two bad edges {4, 6} and {6, 2}.
For the proof of the theorem it is essential to understand the structure of bad edges in a convex
drawing. We start with an easy lemma concerning the convex side of the triangle spanned by v?
and a bad edge. If b = {v, v + 1} is a bad edge with witness w, then the side of the triangle
spanned by {v, v + 1, v?} that contains w is not convex, since v? and w both belong to this side
but the edge {v?, w} is not fully contained in this side.

Observation 5.3.3. Let b = {v, v + 1} be a bad edge, then the side of the triangle spanned by
{v, v + 1, v?} containing the witnesses is not convex.

Every triangle in a convex drawing has at least one convex side. Thus, for every bad edge
b = {v, v + 1} the triangle spanned by {v, v + 1, v?}, denoted by Tb, has a unique convex side,
which is the side not containing the witnesses.

The following lemma provides the layering structure of bad edges which is the key for our
proof. Every bad edge has at least one witness. Hence except for the star vertex there are
three additional vertices involved. To study the structure between two bad edges we need to
investigate substructures of at most 7 vertices. Since it is a finite subconfiguration, we are able
to use the SAT framework for the proof of this lemma. Note that this is possible since convex
drawings are a hereditary structure, i.e., the drawing stays convex when a vertex and its adjacent
edges are removed. In Section 5.4 we provide the full proof of this lemma without computer
assistance.

Lemma 5.3.4. Let b = {v, v + 1} and b′ = {v′, v′ + 1} be two distinct bad edges with witnesses
w and w′, respectively. Then the following three properties hold:

(i) w 6= w′;
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(ii) w′, w, v, v′ appear in this or the reversed cyclic order around v?;

(iii) Each of the triangles {v, v + 1, v?} and {v′, v′ + 1, v?} is in the convex side of the other.

Proof. Assume towards a contradiction that a convex drawing of Kn contains two bad edges
b = {v, v + 1} and b′ = {v′, v′ + 1} with witnesses w and w′, respectively, such that w′, w, v, v′,
do not occur in this particular cyclic order or reversed. We may assume that n ≤ 7 because the
vertices v, v+1, w, v′, v′+1, w′, v? (which are not necessarily distinct) induce a convex drawing on
at most 7 vertices which has the desired property. Since every bad edge crosses at least one star
edge, the subdrawing has at least two crossings. All simple drawings on n ≤ 4 have at most one
crossing and hence at most one bad edge. We used our SAT framework to enumerate all convex
rotation systems on 5, 6, and 7 vertices, respectively. There are 3, 16, and 139 lexicographically
minimal convex rotation systems on 5,6, and 7 vertices, respectively. For every convex rotation
system, we test whether they fulfill the desired property. For this we fix two distinct vertices
v, v′ of our considered subdrawing. Moreover, we know that w is distinct from v, v + 1 and w′

distinct from v′, v′ + 1. We prescribe the crossings {w, v?} and {v, v + 1}, respectively {w′, v?}
and {v′, v′ + 1}. Each of the drawings has the property that the vertices appear in the order
w′, w, v, v′ or reversed around the vertex v? and it holds w 6= w′. This is a contradiction to the
assumption. Hence the properties (i) and (ii) hold.
To show (iii), assume without loss of generality that the cyclic order is w′, w, v, v + 1, v′, v′ + 1,
where possibly v + 1 = v′ but all the other vertices are distinct. We show that the vertices
v′, v′+ 1 are contained in the convex side S of the triangle induced by {v, v+ 1, v?}. Recall that
the side of the triangle containing w is not convex, see Observation 5.3.3. Assume towards a
contradiction that at least one of the two vertices v′ and v′+1 is in the interior of the non-convex
side of Tb. Note that if v′ = v + 1, the vertex is in both sides of Tb. In all other cases not being
in the convex side is equivalent to being in the non-convex side. Let x ∈ {v′, v′ + 1} be a vertex
in the interior of the non-convex side of Tb. This vertex is a witness for the bad edge b. A
contradiction since the order in the rotation around v? does not correspond to one proven in (ii).
Since both vertices v′ and v′ + 1 are contained in S, the bad edge b′ is fully contained in S. To
show that the triangle spanned by {v, v + 1, v?} is contained in the convex side of the triangle
spanned by {v, v + 1, v?} we change the roles of v and v′.

This lemma immediately implies that there is at most one bad edge in every h-convex drawing.

Corollary 5.3.5. Every h-convex drawing has at most one bad edge.

Proof. Towards a contradiction assume, there are two bad edges b = {v, v+ 1} and b′ = {v′, v′+
1} with witnesses w and w′, respectively. Since h-convex drawings are convex, we can apply
Lemma 5.3.4. Hence the cyclic order of the vertices around v? is either w′, w, v, v′ or the reversed
order and v?, v, v+ 1 are in the unique convex side of the triangle spanned by {v′, v′+ 1, v?} and
vice versa. But this contradicts the property of h-convex drawings.

Corollary 5.3.5 together with Observation 5.3.2 imply the moreover part of Theorem 5.2.2 for
h-convex drawings. If a drawing has two or more bad edges Lemma 5.3.4 implies that there
is a partition of the vertices 1, . . . , n − 1 into two blocks such that in the rotation around v?
both blocks of the partition are consecutive, one contains the vertices of all bad edges and
the other contains all the witnesses. Let b = {v, v + 1} be the bad edge whose vertices are
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last in the clockwise order of its block. We cyclically relabel the vertices such that b becomes
{n− 2, n− 1}. This makes the labels of all witnesses smaller than the labels of vertices of bad
edges. In particular we then have the following two properties:

(sidedness) If {v, v + 1} is a bad edge with witness w, then w < v.

(nestedness) If b = {v, v + 1} and b′ = {v′, v′ + 1} are bad edges with respective witnesses
w and w′ and if v < v′, then w′ < w.

In addition we can apply a change of the outer cell (via stereographic projections) such that the
vertex v? and the initial segments of the edges {v?, 1} and {v?, n − 1} belong to the outer cell.
The nesting property implies that we can label the bad edges as b1, . . . , bm for some m ≥ 2, such
that if bi = {vi, vi + 1}, then 1 < v1 < v2 < . . . < vm = n− 2. Moreover, let wLi and wRi denote
the leftmost (smallest index) and the rightmost (largest index) witness, respectively, of the bad
edge bi. Then 1 ≤ wLm ≤ wRm < wLm−1 ≤ wRm−1 < . . . < wL1 ≤ wR1 . Sidedness additionally implies
wRi < vi for all i = 1, . . . ,m. Figure 5.9 shows the situation for two bad edges bi and bi+1. Note
that vi + 1 = vi+1 is possible.

wL
i vi + 1vi vi+1 + 1

bi+1

wR
i

bi

wL
i+1 wR

i+1

Li Ri

vi+1

Figure 5.9: Illustration of sidedness and nestedness for two bad edges and together with the correspond-
ing notation.

For i = 1, . . . ,m− 1 let Li = {x ∈ [n− 1] : wRi+1 < x < wLi } and Ri = {x ∈ [n− 1] : vi + 1 ≤ x ≤
vi+1} denote the left and the right blocks of vertices between two consecutive bad edges bi and
bi+1, see Figure 5.9. Note that Ri is non-empty since it always contains vi + 1 and vi+1 but Li
might be empty.

In a first step, we consider edges between one of the two endvertices of the bad edge bi and
witnesses of bi. In the following lemma we show that {wLi , vi + 1}, {wRi , vi} ∈ E◦ for all i.

Lemma 5.3.6. For all i ∈ [m] the edges {wLi , vi + 1} and {wRi , vi} are not star-crossing.

Proof. For a fixed i, both edges are fully contained in the non-convex side of the triangle spanned
by {vi, vi+1, v?} since the induced subdrawing on the three vertices v?, vi, vi+1 and the considered
witness already has a crossing. Assume {wLi , vi + 1} crosses a star edge {x, v?}. Then x has to
be a witness of bi with x > wLi . However, the side of the triangle {wLi , vi+ 1, v?} that contains x
is not convex due to the edge {x, v?}. Additionally, the other side is not convex due to the edge
{vi, vi + 1}. A contradiction to the convexity. A similar argument holds for the edge {wRi , vi}.
Both situations are depicted in Figure 5.10.
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vi + 1vi
wR

iwL
i

vi + 1vi
wR

iwL
i

Figure 5.10: The blue edges {wR
i , vi}, {wL

i , vi + 1} are not star-crossing. The star edges corresponding
to the vertices marked with the squares show that the blue triangle is not convex.

Let us first consider the case, in which Li = ∅ for all i. In this case, we construct a plane
Hamiltonian cycle as follows: Begin with the edge {v?, v1}. For i = 1, . . . ,m− 1, when vertex vi
is visited, we go from vi to wRi and then one by one with decreasing labels to wLi . From there we
want to visit vi+1 and then one by one in increasing order the vertices of Ri until we reach vi+1.
When we reach vm + 1 = n − 1, we collect the remaining vertices x with 1 ≤ x < wLm using
the good edge {vm + 1, 1} and then one by one in increasing order to wLm − 1. A plane path
is constructed. This path can be closed to a cycle with the edge {wLm − 1, v?}. These are all
ingredients to find a plane Hamiltonian cycle in the special case where all Li = ∅. Figure 5.11
shows an example for this special case. However in general there are vertices in Li and the
challenge is to visit all vertices in Li.

Figure 5.11: A plane Hamiltonian cycle (green) in the case where Li = ∅ for all i.

The strategy to find the Hamiltonian cycle visiting all vertices of Li is to identify edges in
E◦ which connect a vertex in Li with a vertex in Ri in such a way that we proceed in each
step either one step to the left in Li or one step to the right in Ri. These edges then allow
constructing a path from vi to vi+1 using edges from E◦. In each step from vi to vi+1 we visit
all vertices from Ri and all vertices between wLi and wRi . However, it is possible that we do
not visit all vertices from Li. We proceed as follows: Starting at vi we collect the remaining
vertices from Li−1 and continue with the vertices from wRi to wLi with decreasing index as in
the previous case where Li = ∅. Additionally, we continue collecting some of the vertices in Li
until we reach one of the chosen edges in E◦ connecting a vertex from Li to vi + 1, which we
use. In a second step we construct a path from vi + 1 to vi+1 collecting all vertices in Ri and
some of the vertices in Li with the chosen edges of E◦ by jumping back and forth between Li
and Ri. During this procedure we proceed in each step either one step to the left in Li or one
step to the right in Ri. This yields a plane Hamiltonian cycle which has no crossing with a star
edge.
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In the following lemmas we describe which edges of E◦ we use to construct the Hamiltonian
cycle. For this we consider edges from Li to Ri and analyze which edges are not star-crossing.
First, we show that the properties of a convex drawing imply that the edges between vertices of
Li and Ri stay in the region between the two bad edges bi and bi+1. This implies that the only
star edges which can be crossed by those edges are {v?, x} with x ∈ Li ∪Ri.

Lemma 5.3.7. All edges {u, v} with u, v ∈ Li ∪ Ri do not cross star edges {z, v?} with z ∈
V \(Li ∪Ri).

Proof. The convex sides Si and Si+1 of the triangles Ti and Ti+1, respectively, have a common
intersection which is partitioned into three regions by the edges {wRi+1, v?} and {wLi , v?}. Both
vertices u, v are contained in the region that is bounded by both edges {wRi+1, v?} and {wLi , v?}.
Since the edge {u, v} has to lie in Si and Si+1 and can cross {wRi+1, v?} and {wLi , v?} at most
once, it has to be fully contained in the same region. This shows that we cannot cross star edges
{z, v?} where z is outside of this region, i.e., z ∈ V \(Li ∪Ri).

Moreover, we show that an edge from a vertex in Li to a vertex in Ri cannot cross star edges
with vertices in Ri.

Lemma 5.3.8. All edges {u, v} with u ∈ Li and v ∈ Ri do not cross star edges {z, v?} with
z ∈ Ri.

Proof. Assume towards a contradiction that the edge {u, v} crosses a star edges {z, v?} with
z ∈ Ri. We distinguish the following four cases which are illustrated in Figure 5.12. Let wi, wi+1

be witnesses of the bad edges bi = {vi, vi + 1} and bi+1 = {vi+1, vi+1 + 1}, respectively. If
{u, v} crosses a star edge {z, v?} with z ∈ Ri such that z > v, we are in Case 1 or Case 2.
In both cases, we consider the subdrawing induced by wi+1, u, v, z, vi+1, vi+1 + 1, v?, which is a
subdrawing on 7 vertices and u, v are adjacent in the rotation around v?. Hence {u, v} is a bad
edge in the subdrawing. This cannot happen in a convex drawing since the cyclic order of the
vertices around v? violates the statement of Lemma 5.3.4. If z < v, we consider the subdrawing
induced by u,wi, vi, vi + 1, z, v, v?. Again the edge {u, v} is a bad edge with witness z since u
and v are adjacent in the subdrawing. By Lemma 5.3.4 this order of vertices corresponding to
two bad edges cannot happen.

The previous lemmas show that if {u, v} with u ∈ Li and v ∈ Ri crosses a star edge {z, v?}, then
z ∈ Li. We now analyze crossings in Li. The edge {u, v} cannot cross two star edges {z1, v?}
and {z2, v?} with z1 < u < z2 and z1, z2 ∈ Li. This is because the two star edges cross the edge
{u, v} from different directions and hence are witnesses for non-convexity of the corresponding
side of the triangle spanned by {u, v, v?}. For an illustration, see Figure 5.13.

Lemma 5.3.9. The edge {u, v} with u ∈ Li and v ∈ Ri does not cross any two star edges
{z1, v?} and {z2, v?} with z1 < u < z2 and z1, z2 ∈ Li.

Proof. Assume towards a contradiction, {u, v} crosses both edges {z1, v?} and {z2, v?}. Then z1

and z2 are on different sides of the triangle spanned by {u, v, v?}. Since both star edges {z1, v?}
and {z2, v?} cross the triangle, there is no convex side. A contradiction to the convexity of the
drawing.
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vi+1zu vvi

(a) Case 1

vi zu v vi+1

(b) Case 2

vi zu v vi+1

(c) Case 3

vi
v

zu vi+1
=

(d) Case 4

Figure 5.12: Illustration of the four forbidden configurations to prove Lemma 5.3.8. The red edges
cannot cross the star edge {z, v?} as depicted. The vertices (and incident edges) which are
deleted to achieve a subdrawing contradicting the convexity are drawn gray.

vi+1vu vi
z2z1

vi+1vu viz2
z1

Figure 5.13: Illustration for the proof of Lemma 5.3.9. The red triangle {u, v, v?} has no convex side.
Witnesses for the non-convexity are the edges {z1, v?} and {z2, v?}.

Even though edges from Li to Ri cannot cross star edges incident to vertices in Li with smaller
and larger indices at the same time, crossing with one of them cannot be avoided. An edge from
Li to Ri whose endvertex in Li is the vertex wRi+1 + 1 can only cross star edges {z, v?} where z
is larger than the endvertex. The easiest case is that this edge is not star-crossing. In this case,
we can visit all vertices of Li in decreasing order and proceed similar as in the case for Li = ∅.
In the following, we study the case that it is star-crossing. In general, we focus on edges which
only cross star-edges with larger indices than the endvertex in Li. As the following lemma shows
those edges help us to find edges from Li to Ri which are not star crossing.

Lemma 5.3.10. Let u ∈ Li and v ∈ Ri and z be the largest index in Li with z > u such that
the edge {u, v} crosses the star edge {z, v?}. Then the following two statements hold:

(a) The edge {z, v} ∈ E◦, i.e., is not star-crossing.

(b) The edge {z + 1, v} does not cross the edges {x′, v?} with x′ ∈ Li and x′ ≤ z.

Proof. To show (a), assume towards a contradiction that the edge {z, v} crosses a star edge
{x′, v?}. From Lemma 5.3.7 and Lemma 5.3.8 we know that x′ ∈ Li. Moreover, in a simple
drawing the edge {z, v} has no crossing with the triangle T induced by {u, v, v?} because the
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edges {u, v} and {z, v?} already cross. Hence {z, v} does not cross any star edge which is fully
contained in the side of T which does not contain z. The choice of z implies that all edges {x, v?}
with x ∈ Li and x > z do not cross {u, v}. Hence {v, z} can only cross star edges {x′, v?} with
x′ ∈ Li and x′ < z.
Now observe that the triangle induced by {z, v, v?} is not convex. The side containing the
vertex x′ is not convex since the edge {x′, v?} crosses {z, v}. The other side contains the vertex u
and is not convex since the edge {u, v} crosses {z, v?}. This is a contradiction. Figure 5.14 gives
an illustration. The figure shows the two cases x′ = x′1 > u and x′ = x′2 < u, which we do not
need to distinguish.

v
u

zx′
1 vi vi + 1 vi+1x′

2

Figure 5.14: Illustration for the proof of Lemma 5.3.10(a). The red triangle {z, v, v?} has no convex
side. Witnesses for the non-convexity are the edges {u, v?} and {x′i, v?}.

To show (b), assume towards a contradiction that {z + 1, v} crosses a star edge {x′, v?} with
x′ ∈ Li and x′ ≤ z. Since {z + 1, v} is adjacent to {u, v} and {v, v?}, the edge {z + 1, v} has to
cross {u, v?} in order to cross a star edge {x′, v?} with x′ ∈ Li. From (a) we know that {z, v}
does not cross any star edges. Since {z, z+1} is a good edge, the vertices u and v? are contained
in different sides of the triangle {z, z + 1, v}. This is a contradiction since both sides are not
convex. Witnesses for the non-convexity are the star vertex v? whose edge {z, v?} crosses the
boundary of the triangle and the edge {u, v}. An illustration is given in Figure 5.15.

v
u z z + 1

Figure 5.15: Illustration for the proof of Lemma 5.3.10(b). The red triangle has no convex side. Wit-
nesses for the non-convexity are the edges {z, v?} and {u, v}.

If z ∈ Li is the vertex with the largest index such that the star edge {z, v?} is crossed by an edge
from some x ∈ Li with x < z to r ∈ Ri, then the edge {z + 1, r} is not star-crossing. For this
we define the vertex l(r) ∈ Li ∪ {−∞} for all r ∈ Ri. For all r ∈ Ri, let l(r) denote the largest
index in Li such that the star edge {l(r), v?} is crossed by an edge from a vertex x < l(r) in Li
to r. More formally, it is

l(r) := max{z ∈ Li : edge {z, v?} crosses {u, r} with u ∈ Li , u < z},
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Note that a vertex l ∈ Li with the desired properties does not necessarily exist, in which case
we have l(r) = −∞. If one of the values satisfies l(r) = −∞, we take the smallest r such that
l(r) = −∞ and construct a path from l(r − 1) ∈ Li to vi+1 as follows: Since l(r) = −∞, the
edge {wRi+1 + 1, r} is not star-crossing. Hence we can go from l(r − 1) in Li to the vertex with
the smallest index in Li which is wRi+1 + 1, take the edge {wRi+1 + 1, r} to go to Ri and collect
the remaining vertices one by one starting from r with increasing index to vi+1.
With this definition and Lemma 5.3.10 it follows.

Lemma 5.3.11. Let r ∈ Ri with l(r) 6= −∞. Then the edges {l(r), r} and {l(r) + 1, r} are not
star-crossing.

In general we can show that the l(r) have decreasing indices.

Lemma 5.3.12. For r, r′ ∈ Ri with r < r′, we have l(r) ≥ l(r′).

r r + 1vi

l(r + 1)
x

≤ l(r)

Figure 5.16: Illustration of the proof of Lemma 5.3.12.

Proof. We only consider the case r′ = r+1. For r′ > r+1 the claim follows by transitivity. Let T
be the triangle induced by the vertices {v?, r + 1, x} such that {r + 1, x} crosses {l(r + 1), v?}.
See the blue triangle in Figure 5.16. The side of T containing l(r + 1) is not convex which is
witnessed by {l(r+1), v?}. Since the drawing is convex, the side not containing l(r+1) is convex.
The edge {x, r + 1} does not cross star edges with vertices in Ri which shows that the vertex r
is contained in the convex side of T . Hence the edge {x, r} is fully contained in T . This implies
that it crosses the star edge {l(r + 1), v?}. This completes the proof that l(r) ≥ l(r + 1).

Similar to the case with Li = ∅, we construct a Hamiltonian cycle starting with the edge {v1, v?}.
For i = 1, . . . ,m− 1 we successively add paths from vi to vi+1. In the end we use good edges to
traverse the remaining vertices and close the cycle with the edge {vm + 1, v?}.
The first part is a path from vi to vi + 1. Starting from vi, we go to the unvisited vertex in
Li−1 with the largest index. Note that we set L0 = [wR1 + 1, v1 − 1]. Then we visit them
one by one with decreasing index until we reach the witness wRi . We proceed visiting vertices
one by one with decreasing index until we reach wLi . Now we compute l(vi + 1). In the case
l(vi + 1) = −∞, we proceed as described before and continue collecting all vertices in Li one by
one with decreasing index and then use the edge {wRi+1 + 1, vi + 1} to go to Ri. In this case the
remaining part of the path only consists of collecting the unvisited vertices in Ri with increasing
index until reaching vi+1.
If l(vi + 1) > −∞, we proceed from wLi to l(vi + 1) + 1 one by one with decreasing index. By
Lemma 5.3.11 the edge {l(vi + 1) + 1, vi + 1} is not star crossing. We use this edge to get to
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vi + 1. Now we continue with the path to reach vi+1. Let r < vi+1 be the current vertex in Ri.
We compute l(r+ 1). If l(r+ 1) = l(r), we use the good edge {r, r+ 1} and continue with r+ 1
as current vertex in Ri. If l(r+ 1) = −∞, we use the edge {r, l(r)} which is not star crossing by
Lemma 5.3.11. From l(r) we continue collecting the remaining vertices with smaller index in Li
until wRi+1 + 1, using the edge {wRi+1 + 1, r + 1} and continue collecting the remaining vertices
in Ri with increasing index. In the remaining case, i.e., −∞ < l(r + 1) < l(r), we use the edge
{r, l(r)} to go to Li, continue collecting the vertices in Li one by one with decreasing index
until we reach l(r + 1) + 1. Then we use the edge {l(r + 1), r + 1} which is not star crossing by
Lemma 5.3.11. Now we proceed with r + 1 as the current vertex in Ri.
For the last bad edge bm, we construct the path to v? as follows: Use the edge vm to the largest
vertex in Lm−1 which was not used yet. Then proceed with decreasing index to reach vertex 1,
and then add the good edge {1, vm + 1}. Finally, we only have to add the star edge {vm + 1, v?}
to close the path to a cycle.
For a formal description of the algorithm, see Algorithm 1.

Lemma 5.3.13. Algorithm 1 finds a plane Hamiltonian cycle whose edges are not star-crossing
in O(n2) time.

Proof. The proof is divided into two parts. First we show that the algorithm indeed gives a
plane Hamiltonian cycle. In the second part we give a proof for the quadratic runtime.
Correctness: In each step of Algorithm 1 we either progress to the left or to the right side
without skipping vertices. Hence, every vertex is visited exactly once and the resulting cycle is
Hamiltonian.
Moreover, since all the edges of the constructed path do not cross star edges and we construct
the edges in such a way that the vertices of two independent edges e = {u, v} and e′ = {u′, v′}
appear cyclically in the order u, u′, v′, v, they fulfill the condition of Observation 5.3.1. Hence
the constructed Hamiltonian cycle is plane.
To see that no star-crossing edges are added, we analyze which edges are added by the algorithm:

I All edges that are added in lines 8, 10, 14, 17, 29, and 30 are between two consecutive
vertices where both vertices lie in Li or Ri or between wLi and wRi and hence they are good
edges, i.e., they do not cross star edges.

I In lines 4 and 28 we add {vi, ui}: For i = 1, {v1, u1} is a good edge because u1 = v1 − 1.
For i > 1, we have either ui = wRi or ui = l(vi). In the first case the edge is not star
crossing by Lemma 5.3.6 and Lemma 5.3.11 implies that in the second case, the edge does
not cross star edges.

I In line 9 we add {wRi+1 + 1, r}: If we add an edge of this form, we are in the case where
l(r) = −∞. This implies that the edge {wRi+1 + 1, r} does not cross star edges.

I In line 15 we add {l(r) + 1, r}: In this case l(r) ∈ [n− 1] and by Lemma 5.3.11 this edge
does not cross star edges.

I In line 19 we add {r′, l(r′)}: By Lemma 5.3.11 this edge does not cross star edges.

This shows the correctness of the algorithm since the edges added in Line 1 and Line 31 are star
edges closing the path to a cycle.
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Algorithm 1 Construction of a plane Hamiltonian cycle for convex drawings

1: Start the cycle with edge {v?, v1}
2: Set u1 = v1 − 1
3: for i = 1, . . . ,m− 1 do
4: Add edge {vi, ui}
5: Set r = vi + 1
6: while r ≤ vi+1 do
7: if l(r) = −∞ then
8: Add edges {ui, ui − 1}, . . . , {wRi+1 + 2, wRi+1 + 1}
9: Add edge {wRi+1 + 1, r}

10: Add edges {r, r + 1}, . . . , {vi+1 − 1, vi+1}
11: Set ui+1 = wRi+1

12: Set r = +∞
13: else if l(r) ∈ Li then
14: Add edges {ui, ui − 1}, . . . , {l(r) + 2, l(r) + 1}
15: Add edge {l(r) + 1, r}
16: Let r′ ∈ Ri be the largest index such that l(r) = l(r + 1) = . . . = l(r′)
17: Add edges {r, r + 1}, {r + 1, r + 2}, . . . , {r′ − 1, r′}
18: if r′ < vi+1 then
19: Add edge {r′, l(r′)}
20: Set ui = l(r′)
21: else if r′ = vi+1 then
22: Set ui+1 = l(vi+1)
23: end if
24: Set r = r′ + 1
25: end if
26: end while
27: end for
28: Add edge {vm, um}
29: Add edges {um, um − 1}, {um − 1, um − 2}, . . . , {2, 1}
30: Add edge {1, vm + 1}
31: Add star edge {vm + 1, v?}

Running time: In the first preprocessing step, we compute the bad edges. This is possible in
O(n2) time: for each of the n− 1 edges {i, i+ 1} there are n− 3 potential witnesses which have
to be tested. This directly determines the value m and all values vi, w

L
i , wRi .

In the second preprocessing step, we compute the values of l(r) for every r. We claim that this
can be done in O(n2) time. To determine l(r) for r ∈ Ri, we check if l = l(r) for every l ∈ Li.
Recall that l(r + 1) ≤ l(r) due to Lemma 5.3.12. Thus, once l(r) is determined, we only need
to check for vertices l ∈ Li where l ≤ l(r) to determine l(r + 1). We start with the smallest
index r from Ri and with the largest index l from Li, and iteratively either decrement l by one
if l 6= l(r), or we find l = l(r) and increment r by one. In total, we consider a linear number of
candidate pairs (l, r) to determine all values l(r). For each such pair (l, r), we can test in linear
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time whether l = l(r) holds by checking whether the edge {l, v?} crosses some edge {l′, r} with
l′ < l. Altogether, we can compute all values of l(r) in O(n2) time.
Next observe that in each loop at least one edge is added to the cycle. Since in total there are
exactly n edges added to the cycle, there are at most n iterations of the loop which takes O(n)
time. Hence, the total running time of Algorithm 1 is O(n2).

This completes the proof of Theorem 5.2.2.

5.4 A second Proof of Lemma 5.3.4

In this section, we give the complete proof of Lemma 5.3.4 without computer assistance.

Lemma 5.3.4. Let b = {v, v + 1} and b′ = {v′, v′ + 1} be two distinct bad edges with witnesses
w and w′, respectively. Then the following three properties hold:

(i) w 6= w′;

(ii) w′, w, v, v′ appear in this or the reversed cyclic order around v?;

(iii) Each of the triangles {v, v + 1, v?} and {v′, v′ + 1, v?} is in the convex side of the other.

In the following we prove the three properties separately starting with the first one. All of the
arguments only consider the subdrawing induced by the vertices {w,w′, v, v + 1, v′, v′ + 1, v?}
which is sufficient as described in the proof of Lemma 5.3.4 in Section 5.3. Throughout the
section, we use the notation Tb for the triangle spanned by the two endvertices v, v+ 1 of a bad
edge b and the star vertex v? (see Observation 5.3.3). Moreover Sb denotes the convex side of
Tb, which is the side not containing the witness w. For the figures in this section, we draw the
triangle spanned by {v, v + 1, v?} red an the triangle spanned by {v′, v′ + 1, v?} blue.
In a first step we show that a vertex cannot be a witness for more than one bad edge, i.e.,
w′ 6= w.

Proof of property (i). Assume towards a contradiction that w = w′, i.e., there is a vertex w
which is a witness for both bad edges b = {v, v+ 1} and b′ = {v′, v′ + 1}. Hence b and b′ have a
crossing with the edge {w, v?}. We assume without loss of generality, that the vertices w, v, v′

appear in this cyclic order around πv? . Otherwise they appear in the reverse order and the
arguments work analogously. Note that possibly v + 1 = v′.
If both vertices v′, v′ + 1 lie in the convex side of Tb, the edge b′ cannot cross {w, v?} without
leaving the convex side. A contradiction to the convexity of the drawing. Hence at least one of
the two vertices v′, v′+ 1 has to be in the non-convex side of Tb. In the same way we argue that
not both vertices v, v+ 1 can lie in the convex side of Tb′ . This shows that b has to cross at least
one of the edges {v′, v?} or {v′ + 1, v?} and b′ has to cross at least one of the edges {v, v?} and
{v + 1, v?}. We consider the three cases for b. Either b crosses exactly one of the two edges or
both.

Case 1: b crosses {v′, v?} but not {v′ + 1, v?}.

In this case it clearly holds v+1 6= v′. The vertex v′ is in the interior of the non-convex side of Tb
and v′+1 in the interior of the convex side of Tb. Since they are separated by Tb, the connecting
edge b′ has to cross Tb an odd number of times. In a simple drawing this is either once or three
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times since every edge is crossed at most once. If b′ crosses {v + 1, v?} it has to cross b as well.
Hence we are in the situation with three crossings, which is depicted in Figure 5.17(a). In this
case it is impossible to insert the edge {v+ 1, v′+ 1} in the convex side of Tb, a contradiction to
the convexity. Hence we assume from now on that b′ does not cross {v + 1, v?}.

w = w′ v v + 1 v′ v′ + 1

(a)

w = w′ v v + 1 v′ v′ + 1

(b)

Figure 5.17: Illustration of two bad edges b = {v, v+ 1} and b′ = {v′, v′+ 1}. The vertices marked with
squares cannot be connected by an edge such that the drawing remains convex.

However, the edge b′ has to cross at least one of the edges {v, v?} and {v + 1, v?}. Hence the
remaining case is one crossing with the triangle Tb exactly at the edge {v, v?}. The situation is
depicted in Figure 5.17(b). In this case v+1 is in the convex side of Tb′ but the edge {v+1, v′+1}
cannot stay in the intersection of both convex sides. Again a contradiction.

Case 2: b crosses {v′ + 1, v?} but not {v′, v?}.

In this case, v′ + 1 is in the interior of the non-convex side of Tb and v′ is in the convex side.
First consider the case v+ 1 = v′. The edge b′ has to cross {v, v?} which is not possible without
crossing adjacent edges. Hence this situation cannot happen in a simple drawing. See Figure 5.18
for an illustration.

w = w′ v v′ + 1v + 1
= v′

Figure 5.18: Illustration of two bad edges b = {v, v + 1} and b′ = {v′, v′ + 1} with v + 1 = v′.

From now on assume v + 1 < v′. Again the edge b′ has to cross Tb an odd number of times and
at least one of the two edges {v, v?} and {v+ 1, v?}. By the properties of a simple drawing, the
edge has to cross either b or {v + 1, v?} since v′ is in a region bounded by those two edges and
the adjacent edge {v′+ 1, v?}. If b′ crosses b, then it crosses all three boundary edges of Tb since
it also has to cross at least one of the two star edges. The situation is depicted in Figure 5.19(a).
The edge connecting v′ and v has to lie completely in the convex side of Tb, which is impossible
without crossing adjacent edges. A contradiction.

In the second case b′ only crosses {v + 1, v?}, see Figure 5.19(b). Since v is in the convex side
of Tb′ , the edge {v, v′} has to stay in the intersection of both convex sides Sb and Sb′ which again
is not possible.
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w = w′ v v + 1 v′ v′ + 1

(a)

w = w′ v v + 1 v′ v′ + 1

(b)

Figure 5.19: Illustration of two bad edges b = {v, v+ 1} and b′ = {v′, v′+ 1}. The vertices marked with
squares cannot be connected by an edge such that the drawing remains convex.

Case 3: b crosses both {v′, v?} and {v′ + 1, v?}.

In this case, it clearly is v + 1 6= v′ since both of the vertices v′ and v′ + 1 are witnesses for the
bad edge b and hence they have to be in the interior of the non-convex side of Tb. Therefore,
the edge b′ has to cross the triangle Tb an even number of times. As before, it has to cross at
least one of the edges {v, v?} or {v+ 1, v?}, which implies that b′ crosses the triangle Tb exactly
twice. Moreover b′ cannot cross {v, v?} and {v + 1, v?} at the same time without crossing b.
See Figure 5.20 for an illustration. There are two cases remaining. By assumption v′, v′ + 1 are
in the non-convex side of Tb and exactly one of the vertices of v, v + 1 is in the interior of the
convex side of Tb′ , while the other one in the interior of the non-convex side. Exchanging the
roles of b and b′ leads to the cases already considered (Case 1 and Case 2, see Figure 5.17(a)
and Figure 5.19(a)). This concludes the proof that w 6= w′.

w = w′ v v + 1 v′ v′ + 1

Figure 5.20: Illustration of the third case.

As a next step, we show that there is only one order (up to reversing) in which the vertices
appear in the cyclic order around the star vertex v?.

Proof of property (ii). As already shown in (i), we have w 6= w′ and hence w cannot be a witness
of b′. Similar w′ cannot be a witness of b. Note that w′ ∈ {v, v+1}, w ∈ {v′, v′+1} and v+1 = v′

are possible. Up to reflection, there are three different possibilities for the rotation around v?.

(5.1) w′ w v v′

(5.2) w w′ v v′

(5.3) w v w′ v′

We want to show that the order in (5.1) is the only possibility for convex drawings. Hence
we show that in the other two cases this cannot happen in a convex drawing. For this we
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distinguish the two main cases. For each of them we consider several subcases depending on the
edge crossings.

Case 1: Cyclic order w,w′, v, v′ around v? as in (5.2)

We assume without loss of generality w < w′ ≤ v < v + 1 ≤ v′. Note that v′ + 1 might coincide
with w. By assumption w is a witness of the edge b = {v, v+1} and hence b crosses {w, v?}. We
distinguish further subcases dependent on which star edges b crosses other than {w, v?}. By (i)
the edge b does not cross {w′, v?}.

Subcase (a): b crosses neither {v′, v?} nor {v′ + 1, v?}.
Note that this in particular implies v′ + 1 6= w. Both vertices v′ and v′ + 1 are in the interior of
the convex side of Tb. Hence b′ has to stay in the convex side of Tb, which implies that w′ 6= v.
Moreover, since w′ is in a region bounded by the three edges {v, v?}, {w, v?}, b, it is impossible
that b′ crosses the star edge {w′, v?} without crossing {w, v?}. A contradiction. An illustration
is given in Figure 5.21(a).

w′ v v + 1 v′ v′ + 1w

(a)

w′ v v + 1 v′ v′ + 1w

(b)

Figure 5.21: (a) The edge b′ = {v′, v′+ 1} has to stay in the convex side of Tb and has to cross {w′, v?},
which is not possible. (b) The edge b′ cannot be drawn such that it crosses {w′, v?} but
not {w, v?}.

Subcase (b): b crosses {v′, v?} but not {v′ + 1, v?}.
In this case it holds v + 1 6= v′ and w 6= v′ + 1. Since v′ and v′ + 1 are in different sides of Tb,
the edge b′ has to cross Tb and odd number of times, either once or three times. Assume w′ 6= v.
Since the edge b′ crosses {w′, v?}, it has to cross two of the edges bounding the region in which
w′ is contained. These are the edges {w, v?}, b, {v, v?}. Moreover, b′ does not cross {w, v?}.
Hence there is only one possibility for b′ and it has to cross {v, v?} and b. Similar, in the case
w′ = v, the edge b′ has to cross {v, v?} and b. To connect to v′ + 1, the edge b′ has to cross b
again since this is the only edge incident to the region containing v′+ 1. This is impossible in a
simple drawing. For an illustration, see Figure 5.21(b).

Subcase (c): b crosses {v′ + 1, v?} but not {v′, v?}.
If v′ 6= v + 1, the vertices v′ and v′ + 1 are in different sides of Tb which implies that b′ has an
odd number of crossings with Tb. Since b′ crosses {w′, v?} but not {w, v?}, there are at least two
crossings with Tb which implies that there are exactly three. Hence every edge of Tb is crossed
exactly once by b′. There is only one possibility to draw this, which is depicted in Figure 5.22(a).
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w′ v v + 1 v′ v′ + 1w

(a)

w′ v v + 1 v′ v′ + 1w

(b)

Figure 5.22: (a) The edge {v, v′} whose vertices are marked with squares cannot be added in a convex
way. (b) The edge {v+ 1, v′+ 1} whose vertices are marked with squares cannot be drawn
in a convex drawing.

The vertex v′ which is in the convex side of Tb cannot be connected to v while staying in the
convex side. This contradicts the property of convex drawings. Note that these also statements
hold in the case w′ = v or w = v′ + 1. If v′ = v+ 1, the edge b′ has to cross b and {v, v?}. Since
b and b′ share an vertex, this is not possible in a simple drawing.

Subcase (d): b crosses both {v′, v?} and {v′ + 1, v?}.
In this case it holds v′ 6= v + 1 and both vertices v′ and v′ + 1 are in the non-convex side of Tb.
However the vertex w′ is in the convex side. Hence the edge b′ crosses Tb twice. Both crossings
are needed to enter and leave the cell containing w′. In order to obtain a simple drawing, b′ has
to cross {v, v?} and b as illustrated in Figure 5.22(b). This implies that v + 1 is in the convex
side of Tb′ . Hence the edge {v+ 1, v′ + 1} has to stay in the convex side. This is not possible in
a simple drawing. A contradiction.

Hence this order cannot appear in convex drawings. We now consider the second order of the
vertices around v?.

Case 2: Cyclic order w, v, w′, v′ around v? as in (5.3)
In this case, we assume that it holds w < v < v + 1 ≤ w′ < v′. Note that this order implies
that v + 1 6= v′. However v + 1 = w′ and v′ + 1 = w are still possible. We again distinguish the
following four subcases.

Subcase (a): b crosses neither {v′, v?} nor {v′ + 1, v?}.
This case implies that w 6= v′+ 1. In this case, both vertices, v′ and v′+ 1 are in the convex side
of Tb and hence the edge b′ has to stay in the convex side and does not cross Tb. Hence it has to
be v+1 6= w′. Now v′ is in the convex side of Tb and v in the convex side of Tb′ . This implies that
the edge {v, v′} has to stay in the intersection of both convex sides. The situation is depicted
in Figure 5.23(a). The triangle induced by {v, v′, v?} has no convex side. The vertices w and w′

are witnesses for this since their star edges connecting to v? cross the boundary of this triangle.

Subcase (b): b crosses {v′, v?} but not {v′ + 1, v?}.
This case implies again that w 6= v′+1. The edge b′ crosses {w′, v?}. To guarantee this crossing,
the edge has to cross b and {v + 1, v?}. The remaining edge of Tb, which can be crossed to
leave this side of the triangle, is {v, v?}. However, we cannot connect to v′ + 1, which is in



136 5 Plane Hamiltonian Subgraphs in Convex Drawings

w′v v + 1 v′ v′ + 1w

(a)

w′v v + 1 v′ v′ + 1w

(b)

Figure 5.23: (a) The green edge connecting v and v′ must not cross any of the blue or red edges. But
in this case the green triangle is not convex due to {w, v?} and {w′, v?}. (b) In this convex
drawing there cannot be an edge b′ = {v′, v′ + 1}, which crosses {w′, v?} but not {w, v?}.

the convex side of Tb, without crossing {w, v?}. A contradiction. The situation is depicted in
Figure 5.23(b).

Subcase (c): b crosses {v′ + 1, v?} but not {v′, v?}.
As in the previous case, v′ and v′ + 1 are in different sides of Tb and hence b′ crosses Tb either
once or three times. Assume it only crosses once, then the edge b′ crosses either {v+ 1, v?} or b
in order to leave the region containing w′. First assume b′ crosses only b. But then v and v + 1
are in the convex side of Tb′ and the edge b does not stay in the convex side. Hence this cannot
happen in a convex drawing. If b′ crosses only {v + 1, v?}, the vertex v is in the convex side of
Tb′ and v′ is in the convex side of Tb. This shows that the connecting edge {v, v′} has to stay in
the intersection of both convex sides. This is not possible, see Figure 5.24(a).

In the remaining case b′ crosses all three boundary edges of Tb. Again this cannot happen in a
convex drawing of the complete graph. To see this note that v′ is in the convex side of Tb. As
before, the edge {v, v′} has to stay in the convex side of Tb and does not cross adjacent edges.
This is impossible. The case is depicted in Figure 5.24.

w′v v + 1 v′ v′ + 1w

(a)

w′v v + 1 v′ v′ + 1w

(b)

Figure 5.24: Two cases to draw the edge b′. In both cases the edge {v′, v}, whose endvertices are marked
with squares, cannot be added in a convex drawing.

Subcase (d): b crosses both {v′, v?} and {v′ + 1, v?}
The vertices v′ and v′ + 1 are in the non-convex side of Tb. The edge b′ has to cross {w′, v?},
which is contained in the convex side of Tb. Hence b′ has to cross exactly two edges of Tb, which
are b and {v + 1, v?} as boundary edges of the region, which contains w′. This implies that the
vertex v is contained in the convex side of Tb′ . However, the edge {v, v′} cannot be drawn in
the convex side without crossing adjacent edges. This is a contradiction. For an illustration see
Figure 5.25.
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w′v v + 1 v′ v′ + 1w

Figure 5.25: The edge {v, v′}, whose endvertices are marked with squares, cannot be drawn such that
the drawing stays convex.

This shows that the only possible order of the vertices around the fixed star vertex v? is
w′, w, v, v′. Note that this in particular implies that w /∈ {v′, v′ + 1} and w′ /∈ {v, v + 1}.

It remains to show that the bad edges b and b′ do not cross and are nested as claimed.

Proof of property (iii). From the two previous parts we know that w 6= w′ and that w′, w, v, v′

appear in this order (or reversed) in the rotation πv? around the star vertex v?. Without loss
of generality we assume that the vertices appear in the order w′, w, v, v′ around v?. The other
case is symmetric. Moreover, since w′ 6= w holds for all witnesses, a witness w of b cannot be
a witness for w′ and vice versa. In particular b does not cross {w′, v?} and b′ does not cross
{w, v?}. This implies that w is in the convex side of Tb′ and w′ in the convex side of Tb.
To show the statement, we have to show that v′, v′ + 1 are in the convex side of Tb and v, v + 1
are in the convex side of Tb′ . This is sufficient since the convexity implies that the edge b,
respectively b′, is completely contained in the corresponding convex side. We only show the first
part that v′, v′ + 1 are in the convex side of Tb. The other case works analogously. Assume
towards a contradiction that at least one of the two vertices v′ and v′+ 1 is in the interior of the
non-convex side of Tb. Note that if v′ = v+ 1, the vertex is in both sides of Tb. In all other cases
not being in the convex side is equivalent to being in the non-convex side. If at least one of the
two vertices v′, v′ + 1 is in the interior of the non-convex side of Tb, this vertex is a witness of
the bad edge b. A contradiction since the order in the rotation around v? does not correspond
to one proven in (ii).

This concludes the proof of the lemma.





Chapter 6

Asymptotic Number and Fliples

In this chapter, we discuss the asymptotic number of r-signotopes and generalized signotopes.
More specifically we give a proof of Proposition 2.2.14 showing that for r ≥ 3 there are 2Ω(nr−1)

r-signotopes on [n]. Moreover we make structural investigations of signotopes and give the
first linear lower bound on the number of fliples in every r-signotope. More specifically we
show that every r signotope on [n] has at least 2n−2

r fliples. For generalized signotopes, we

show that asymptotically there are 2Ω(n3) many (Theorem 6.3.1), which strengthens a result by
Knuth [Knu92] who proved a lower bound for the number of generalized signotopes. We improve
his lower bound and give an asymptotically matching upper bound using Shearer’s entropy

lemma. Kynčl [Kyn13] showed that there are at most 2n
2α(n)O(1)

weak isomorphism classes of
simple drawings of Kn, where α(n) is the extremely slow growing inverse of the Ackermann
function. Hence there are essentially more generalized signotopes than simple drawings, which
shows that there a generalized signotopes which do not come from simple drawings. Moreover
we study the relation between simple drawings and generalized signotopes for small numbers in
more detail.

Outline In the first part of this chapter, in Section 6.1, we consider r-signotopes and give a
proof of Proposition 2.2.14. This part is based on [BFS23a]. In Section 6.2, we improve the
lower bound of the minimum degree in the flip graph G(n, r) from the constant number 2 to
a linear bound 2n−2

r , which is unpublished. In the remaining part of this chapter, Section 6.3
we determine the asymptotic number of generalized signotopes, improving a previous result by
Knuth [Knu92] and in Section 6.4 we discuss the relation to simple drawings. These two sections
are based on [BFS+23b].

6.1 Asymptotic Number of Signotopes

It is well known that the number of oriented matroids of rank r on n elements is 2Θ(nr−1)

[BLS+99, Corollary 7.4.3]. As shown in Section 2.2.5, the set of r-signotopes is a subset of
rank r oriented matroids. Balko showed that r-signotopes are indeed a rich subclass of oriented
matroids of rank r.

Proposition 2.2.14 ([Bal19, Theorem 3]). For r ≥ 3, the number of r-signotopes on [n]
is s(n, r) = 2Θ(nr−1).

In ranks 1 and 2 there are 2n and n! signotopes on [n], respectively. Rank 1 signotopes are
mappings from [n] to {+,−} without any additional property and 2-signotopes are permutations.
For rank r ≥ 3, the precise number of r-signotopes on [n] has been computed for small values
of r and n; see A006245 (rank 3) and A060595 to A060601 (rank 4 to rank 10) on the OEIS.

https://oeis.org/A006245
https://oeis.org/A060595
https://oeis.org/A060601
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6.1.1 Proof of the upper Bound

The upper bound follows immediately using the fact, that r-signotopes on n elements are rank r
oriented matroids (cf. Section 2.2.5) and their number is upper bounded by 2c(n

r−1) [BLS+99,
Chapter 7.4]. For completeness, however, we include an inductive proof.
For rank 3, there exists a constant c > 0 such that for every n there are at most 2cn

2(1+o(1))

signotopes on n elements. The currently best bound c = 0.657 is due to Felsner and Valtr [FV11].
For rank r ≥ 4, we proceed by induction. Given an r-signotope σ on [n], we compute its sequence
of projections. For each i ∈ [n], we project σ to i and obtain an (r− 1)-signotope σ�i on n− 1
elements. Since two distinct r-signotopes yield different sequences (σ�i)i∈[n] of projections, we
can bound the number of r-signotopes as

s(n, r) ≤ (s(n− 1, r − 1))n ≤
(

2c(n−1)r−2
)n
≤ 2cn

r−1
.

6.1.2 Proof of the lower Bound

For convenience we assume n = rm for some m ∈ N. We partition [n] =
⋃r
k=1Nk into r intervals

Nk = [(k − 1)m+ 1, km] of size m.

For every r-subset (x1, . . . , xr) we define the weight φ(x1, . . . , xr) =
(∑r−1

k=1 xk

)
−xr. Note that,

for r-subsets X = (x1, . . . , xr+1) with x1 < . . . < xr+1 as usual, it holds φ(X1) > . . . > φ(Xr)
and φ(Xr) < φ(Xr+1).
For a threshold T we now define a collection ST of signotopes on [n]. A signotope σ is in ST if σ
has the following signs, where ± indicates that the sign can be chosen arbitrarily from {+,−}.

σ(x1, . . . , xr) =


− if xr−1 6∈ Nr, xr ∈ Nr, and φ(x1, . . . , xr) > T

± if xr−1 6∈ Nr, xr ∈ Nr, and φ(x1, . . . , xr) = T

+ otherwise.

For the lower bound we show two properties:

(i) The elements of ST are indeed signotopes.

(ii) For fixed r and a suitable chosen T there are 2Ω(nr−1) elements in ST .

To show (i), we check the monotonicity of all (r + 1)-subsets X = (x1, . . . , xr+1), that is, there
is at most one sign-change in the sequence

(σ(X1) . . . σ(Xr+1)).

If xr+1 6∈ Nr, then σ(Xj) = + for all j = 1, . . . , r+ 1 and there is no sign change on the packet.
Otherwise, there is some k ∈ [r + 1] such that x1, . . . , xk−1 6∈ Nr and xk, . . . , xr+1 ∈ Nr.
If k < r, then xr−1, xr, xr+1 ∈ Nr. Hence each Xj contains at least two elements from Nr, which
implies σ(Xj) = + for all j = 1, . . . , r + 1 and there is no sign change on the packet.
If k = r, then each Xj with j < r contains two elements from Nr and thus σ(Xj) = + for j < r.
We also know that φ(Xr) < φ(Xr+1), therefore, if σ(Xr) = − then σ(Xr+1) = − as well. Hence,
there is at most one sign change on the packet.
Finally, if k = r + 1, then σ(Xr+1) = +. Since φ(X1) > φ(X2) > . . . > φ(Xr) the sign sequence
(σ(X1) σ(X2) . . . σ(Xr)) is a sequence of − signs followed by a sequence of + signs possibly
one ± in between. Again there is at most one sign change on the packet.
This completes the proof of (i) that all elements of ST are signotopes.
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It remains to show (ii), i.e., for some T the set ST contains sufficiently many elements. Call
an r-subsets (x1, . . . , xr) splitted if xk ∈ Nk for all k = 1, . . . , r. Splitted r-subsets with
φ(x1, . . . , xr) = T are subsets where every σ ∈ ST can be freely and independently assigned
to a sign from {+,−}. For two non-determined r-subsets the choice can only affect each other if
they appear in a common (r+ 1)-subset. This is the case if they share r− 1 elements. However
since only one element differs, the weight φ of the two r-subsets differs. Hence not both r-subsets
have weight T . If there are aT splitted r-subsets with φ(x1, . . . , xr) = T then |ST | ≥ 2aT .
For splitted r-subsets (x1, . . . xr), we can identify the elements xk ∈ Nk with its relativ position
yk = xk− (k− 1)m in the set Nk. Hence the splitted r-subsets are in bijection with the set [m]r

via yk = xk − (k − 1)m. We first consider the r-tuples (y1, . . . , yr) ∈ [m]r and then find the
corresponding r-subsets (x1, . . . , xr).
There are

(
`−1
r−2

)
possible ordered partitions of an integer ` into exactly r − 1 positive integers.

Hence for r − 1 positive integers y1, . . . , yr−1 there are
(
`−1
r−2

)
solutions to the equation

r−1∑
k=1

yk = `.

We use this to determine the number of solutions for r elements y1, . . . , yr ∈ [m] such that

r−1∑
k=1

yk = yr. (6.1)

Since yr is in [m], the number of solutions is
∑m

`=1

(
`−1
r−2

)
. By the hockey-stick identity for

binomial coefficients this can be rephrased as:

m∑
`=1

(
`− 1

r − 2

)
=

m−1∑
`=r−2

(
`

r − 2

)
=

(
m

r − 1

)
= Θ(mr−1) = Θ(nr−1).

In the next step, we determine a suitable threshold T to find the corresponding r-subsets
(x1, . . . , xr). Hence we want to determine T such that φ(x1, . . . , xr) =

∑r−1
k=1 xk − xr = T if

and only if the corresponding y1, . . . , yr fulfill equation (6.1). It is

0 =
r−1∑
k=1

yk − yr

=
r−1∑
k=1

(xk − (k − 1)m)− (xr − (r − 1)m)

=

r−1∑
k=1

xk − xr −
r−1∑
k=1

m(k − 1) + (r − 1)m

=
r−1∑
k=1

xk − xr −m ·
(r − 2)(r − 1)− 2(r − 1)

2

=
r−1∑
k=1

xk − xr −m ·
(r − 4)(r − 1)

2
.

Hence T = m · (r−4)(r−1)
2 is a constant which gives the lower bound.
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6.2 Fliples in Signotopes

Felsner and Kriegel [FK99] showed that every Euclidean pseudoline arrangement with n pseu-
dolines has at least n−2 triangular cells. Hence the minimum degree of G(n, 3) is at least n−2.
Since the cyclic arrangement of rank 3 has exactly n−2 triangular cells, the lower bound is tight.
Recently Alves Radtke et al. [AFO+23] showed that G(n, 3) is n − 2 connected. Felsner and
Weil [FW01] conjectured that the minimum degree and the connectivity of G(n, r) is n− r + 1
for all n ≥ r ≥ 3. In particular this would show that the cyclic arrangement of rank r on n
elements which has exactly n− r + 1 fliples minimizes the number of fliples. Recently, together
with Lukas Egeling from ETH Zürich we found a counterexample to this conjecture. There are
eight rank 4 signotopes on 8 elements which only have 4 fliples. Those examples can be found
using the SAT framework described in Section 3.6.1. As it turns out they are also examples
which are not 2-extendable.

Since every r-signotope is contained in a maximum chain in B(n, r), see Theorem 2.2.11, there
exists in all signotopes except the cyclic and the reversed cyclic a r-subset which can be flipped
from + to − and one which can be flipped from − to +. Hence every signotope has at least 2
fliples. We show the first linear bound. As an intermediate step we show that every element is
contained in a fliple.
In general pseudohyperplane arrangements, i.e., in oriented matroids, the question of the ex-
istence of simplicial cells remains open. Simplicial cells in terms of matroids are often called
mutations. The existence of mutations for all oriented matroids is a famous conjecture by Las
Vergnas, see [BLS+99, Conjecture 7.3.10]. There are only partial results known. Bokowski and
Rohls [BR01] showed that every rank 4 oriented matroid on n ≤ 12 elements has a mutation.
Moreover, in contrast to signotopes, there are examples in which one element is not incident
to any simplicial cell. The first example of rank 4 with 20 element was presented by Richter-
Gebert [Ric93]. More recently Bokowski and Rohls [BR01] found a smaller example of rank 4
with only 17 elements.

Theorem 6.2.1. For r ≥ 2 every r-signotope on n ≥ r + 1 elements has at least 2n−2
r fliples.

Note that for r = 1 all n elements are fliples. Moreover, for r = 2 the fliples correspond to
adjacent transposition and every permutation on n elements admits n−1 adjacent transposition.
Moreover, for all r ≥ 1 the graph G(r, r) contains exactly 2 elements, both of them have degree
exactly 1. The graph G(r + 1, r) is a 2(r + 1) cycle (cf. Figure 2.5) in which every vertex has
degree 2. This corresponds to the above bound.
From now on, we assume r ≥ 3. The strategy for the proof is to show, that every element is
contained in a fliple. For this, we first consider the element 1, which is the element at the first
position. As in Section 3.5 (see page 54), we partition the (r − 1)-element subsets into

Hσ1 = { I ⊂ [n] : |I| = r − 1, 1 ∈ I };
Uσ1 = { I ⊂ [n] : |I| = r − 1, 1 /∈ I, σ(I ∪ {1}) = + };
Dσ1 = { I ⊂ [n] : |I| = r − 1, 1 /∈ I, σ(I ∪ {1}) = − }.

Lemma 3.5.1 shows that Dσ1 is a down-set, and Uσ1 an up-set in the partial order ≺ corresponding
to the r-signotope σ. We show that the minimal elements in the up-set and the maximal elements
in the down-set together with the 1 are fliples.
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Lemma 6.2.2. There exists a fliple F of σ with 1 ∈ F .

Proof. Since
(

[n]
r−1

)
contains sets which do not contain the 1, at least one of the two sets Dσ1 or

Uσ1 is non-empty. For each of them which is non-empty, we take the closest element to 1 in the
following sense:

I If Dσ1 is non-empty, we take a largest element ID in Dσ1 .

I If Uσ1 is non-empty, we take a smallest element IU in Uσ1 .

Note that the up- and down-sets might have more minimal or maximal elements. We show for
both possibilities I ∈ {ID, IU} that the r-subset I ∪ {1} is a fliple. We only discuss the case
I = IU . The other case works analogously by changing the signs and corresponding orders.
To show that it is a fliple, we show that it is flipable in each packet it is contained in. Let
I = (x1, . . . , xr−1) and P = {1} ∪ I ∪ {y} an (r + 1)-subset containing I ∪ {1}. Assume in the
ordered sequence of P , the element y is at position i ∈ {2, . . . , r + 1}, i.e., Pi = I ∪ {1}. Note
that 1 ∈ Pk for all k = 2, . . . , r + 1. Since I ∈ Uσ1 , the sign of this r-subset is

σ(Pi) = σ(I ∪ {1}) = +.

We distinguish two cases. First assume σ(P1) = σ(I ∪ {y}) = +. This shows that for all k < i,
it is I = P1\{y} ≺ P1\{xk−1} = Pk\{1}, which implies that Pk\{1} ∈ Uσ1 by the property of
an up-set. Hence σ(Pk) = +. Moreover for all k > i it is I = P1\{y} � P1\{xk−1} = Pk\{1},
which implies that Pk\{1} ∈ Dσ1 by the minimality assumption of I. This shows that σ(Pk) = −.
Hence the sign change is exactly between Pi and Pi+1 which shows that Pi is flipable.

The second case, if σ(P1) = σ(I ∪{y}) = − works similar. For all k > i, it is I ≺ Pk\{1}, which
implies that Pk\{1} ∈ Uσ1 and hence σ(Pk) = +. Moreover for all k < i it is I � Pk\{1} and
hence Pk\{1} ∈ Dσ1 by the minimality assumption of I. This shows that σ(Pk) = −. Hence the
sign change is exactly between Pi−1 and Pi. Again Pi is flipable, which completes the proof.

Using the rotation operator and Lemma 6.2.2, we transfer this result to all elements. This yields
a smaller lower bound on the number of fliples.

Proposition 6.2.3. Let σ be an r-signotope on n ≥ r elements. For every k ∈ [n], there is a
fliple F with k ∈ F . In particular σ has at least n

r fliples.

Proof. By Lemma 6.2.2 there is a fliple containing the first element 1. Moreover, Lemma 3.3.2
shows that fliples are invariant under rotation. Hence with the rotation operator, we can make
every element the first one. This shows that every element is contained in a fliple. Since every
fliple contains r elements, there are at least n

r fliples.

In a next step, we show that there are at most 2 elements such that one of the two sets Uσ1 , Dσ1
is empty. This shows that the remaining n− 2 elements are contained in at least 2 fliples, which
yields the statement of Theorem 6.2.1 since the total number of fliples is 2(n−2)+2

r = 2n−2
r .
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Lemma 6.2.4. For n ≥ r + 1 ≥ 4, there are n − 2 elements which are contained in at least 2
fliples.

Proof. Let k ≤ n be a rotation of σ such that exactly one of the two sets Uσ1 , Dσ1 is empty. If Uσ1
is empty, all subsets I ∈

(
[n]
r−1

)
which do not contain the 1 are in Dσ1 , i.e., σrot(k)(I ∪ {1}) = −

for all I ∈
(

[n]\{1}
r−1

)
. Hence the sign of (I ∪ {1})rot(−k) = Irot(−k) ∪ {k + 1} in σ is

σ(Irot(−k) ∪ {k + 1}) = − · (−)x,

where x is the number of rotated elements in Irot(−k), i.e, the number of elements in Irot(−k)

which are ≤ k. We rephrase this as

σ(I ∪ {k + 1}) = − · (−)x,

for all I with k + 1 /∈ I and x = |{i ∈ I : i ≤ k}|. In the same way it follows for a rotation
k ≤ n if Dσ1 is empty then

σ(I ∪ {k + 1}) = + · (−)x,

for all I with k + 1 /∈ I and x = |{i ∈ I : i ≤ k}|.
Denote the up-set from the k-fold rotation σrot(k) considered in the original signotope σ by

Uσk+1 =
(
Uσrot(k)1

)
rot(−k)

and similarly, the down-set by Dσk+1 =
(
Uσrot(k)1

)
rot(−k)

.

Claim 6.1. Let k, ` ∈ [n] with k < `. If either Uσk = Uσ` = ∅ or Dσk = Dσ` = ∅, then k = 1 and
` = n.

Proof. Consider a subset X ∈
(

[n]
r

)
such that k, ` ∈ X. For k 6= 1 or ` 6= n, we may assume that

the position of k and ` in the ordered set has an odd difference. If `− k ≤ r is odd, we consider
the set X containing k, k + 1, . . . , ` − 1, ` with additional arbitrary element such that X has r
elements. In the remaining cases, we choose X such that there is an even number of elements
between k and ` which is always possible since n ≥ r + 1. Hence we can leave out elements in
between. The only case where we cannot change the position of k and ` arbitrarily is for k = 1
and ` = n. In this case k is always at the first and n is always at the r-th position. Hence if
r − 1 is even which is the case if r is odd, such a choice is not possible.

Let s = − if Uσk = Uσ` = ∅ otherwise if Dσk = Dσ` = ∅ we set s = +. For the r-subset X as
described above, it is

s · (−)i = σ(X) = s · (−)j

where i is the position of k in the ordered set X and j the position of `. This is impossible if
j − i is odd. �

For an illustration of two pseudolines for which the down-set is empty and hence there cannot
be pseudolines above both or below both see Figure 6.1(a).
The claim shows that there exist no three distinct elements such that the up-set of all of them
is empty. Moreover, there are no three distinct elements such that the down-set of all of them
is empty.
In the case that there is one k such that up-set is empty and ` such that down-set is empty, we
get the following relation. For an illustration in terms of pseudolines see Figure 6.1(b) showing
that two such pseudolines have to be consecutive.
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(a) (b)

Figure 6.1: (a) Two pseudolines with marked down-set. If the down-set of both pseudolines is empty,
then there are no pseudolines starting above the blue one or below the red one. (b) Two
pseudolines such that for the red one the up-set is empty and for the blue one the down-set
is empty. In this case there is no pseudoline between the two.

Claim 6.2. Let k, ` ∈ [n]. If Uσk = Dσ` = ∅, then |k − `| = 1.

Proof. Consider an r-subset X which contains k, `. Let i be the position of k and j the position
of ` in the ordered set of X. It holds

− · (−)i = σ(X) = + · (−)j

which is impossible if |i− j| is even. For every choice of k, ` ∈ [n] except |k − `| = 1, we find a
set X such that |i− j| is even. �

Assume towards a contradiction that there are three elements for which either the up-set or the
down-set is empty, then there are two elements of the same kind. Hence one of them is 1 and
the other one n. Moreover, the third element must be different from 1 and n and at a distance
of 1 from both of them. This is not possible for n ≥ 4.

6.3 Counting Generalized Signotopes

In this section we show that the number g(n) of generalized signotopes on n elements is of
order 2Θ(n3). Knuth [Knu92] already showed a lower bound of log2(g(n)) ≥ 1

27n
3. We improve

the constant to 1
24 and give an asymptotic matching upper bound. For small n the exact number

of generalized signotopes can be found at the sequence A328377 of OEIS.

Theorem 6.3.1. The number g(n) of generalized signotopes on n ≥ 8 elements is between
2c1·n

3+O(n2) and 2c2·n
3

for constants c1 = 1
24 ≈ 0.0417 and c2 ≈ 0.1339.

6.3.1 Upper Bound for g(n):

For n ≥ t we show that g(n) ≤ g(t)(
n
t)/(

n−3
t−3) is an upper bound on the number of generalized

signotopes on n elements. For this we use of Shearer’s entropy lemma [CGFS86].

Lemma 6.3.2 (Shearer’s Entropy Lemma [CGFS86]). Let S be a finite set and let A1, . . . , Am
be subsets of S such that every element of S is contained in at least k of the sets A1, . . . , Am.

https://oeis.org/A328377
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If F is a collection of subsets of S and Fi = {F ∩Ai : F ∈ F} for 1 ≤ i ≤ m. Then

|F|k ≤
m∏
i=1

|Fi|.

Let t ≤ n. We consider the set S =
(

[n]
3

)
of all triples from [n] and, for each t-subset I of [n], let

AI =
(
I
3

)
be the set of triples of I. There are m =

(
n
t

)
choices for I and as many sets AI . Each

triple in S belongs to k =
(
n−3
t−3

)
sets AI .

A generalized signotope on n elements is uniquely encoded by its +-triples, which form a subset
of S. Let F be the family of all generalized signotopes on n elements given by their +-triples.
For every I, let FI = {F ∩AI : F ∈ F}. Note that FI is a family of generalized signotopes on I.
Hence |FI | ≤ g(t).

Lemma 6.3.2 implies for m =
(
n
t

)
and k =

(
n−3
t−3

)
g(n)k = |F|k ≤

∏
I∈([n]

t )

|FI | ≤ g(t)m,

Therefore,

g(n) ≤ g(t)m/k = 2c(t)(
n
3) with c(t) = log2(g(t))/

(
t

3

)
.

Note that in the last equation, we used that
(
n
3

)
/
(
t
3

)
=
(
n
t

)
/
(
n−3
t−3

)
.

Using g(8) = 35 355 434 970 848 (cf. Table 6.1 or OEIS A328377), we obtain that the number

g(n) of generalized signotopes on n ≥ 8 elements is at most 2c2·(
n
3) where c2 = c(8) ≈ 0.8036.

This is the same as 2c
′
2·(

n
3) with c′2 = 1

6 · c2 ≈ 0.1339. In [BFS+23b] the largest available value
was g(7) which gave a constant of c(7) ≈ 0.8352. From the above equation, it holds c(n) ≤ c(t),
that is, c is non-increasing. Thus, the factor c2 can be expected to decrease if a value of c(t′)
with t′ > 8 becomes available.

6.3.2 Lower Bound for g(n):

We give a recursive construction of a set G3n of generalized signotopes on 3n elements. The
set G3 consists of the two generalized signotopes on [3].

In the next step, we construct G3n based on Gn. Let A = {1, . . . , n}, B = {n + 1, . . . , 2n}, and
C = {2n + 1, . . . , 3n}. Pick three generalized signotopes γA, γB, γC from Gn and an arbitrary
mapping M : A×B × C → {+,−}. We define γ by the following rule: for x < y < z we set

γ(x, y, z) =



γA(x, y, z) if x, y, z ∈ A
γB(x, y, z) if x, y, z ∈ B
γC(x, y, z) if x, y, z ∈ C
M(x, y, z) if x ∈ A, y ∈ B, z ∈ C
+ otherwise.

https://oeis.org/A328377
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Claim 6.3. γ is a generalized signotope on n elements.

Proof. For any four elements x < y < z < w, at least two are from the same class S ∈ {A,B,C}.
We look at the signs sequence (γ(y, z, w) γ(x, z, w) γ(x, y, w) γ(x, y, z)).
If all four elements are from S, then we use that γS is a generalized signotope.
If exactly three of the elements are from S, then there are at least three + signs in the sequence.
This shows that the forbidden patterns +−+− and −+−+ do not occur. Now if exactly two of
the elements are from S, then if the two elements are x, y the triples (x, y, z) and (x, y, w) map
to plus and we have ++??, where ? ∈ {+,−} is arbitrary. If y, z are from S, we have +??+, and
if z, w are from S, we have ??++. In any case, the forbidden alternating sign patterns cannot
occur. �

Since there are |Gn|3 · 2n
3

possibilities to choose γA, γB, γC ,M , and no two such selections yield
the same γ, we have

|G3n| = |Gn|3 · 2n
3
.

Now, using the all-plus-extensions (cf. Lemma 6.3.3), we obtain sets G3n+1 and G3n+2 of gener-
alized signotopes on 3n + 1 and 3n + 2 elements, respectively, with |G3n| = |G3n+1| = |G3n+2|.
The name “all-plus-extension” comes from the fact, that we assign + to each triple a < b < c
which is not completely contained in [n].

Lemma 6.3.3 (All-plus-extension). Let γ be a generalized signotope on n elements and let
n′ ≥ n be an integer. Then the mapping γ′ : [n′]3 → {+,−} with

γ′(x, y, z) =


γ(x, y, z) if x, y, z ∈ [n];

+ if x < y < z or y < z < x or z < x < y;

− if y < x < z or x < z < y or z < y < x;

is a generalized signotope on n′ elements.

Proof. Consider four elements x, y, z, w ∈ [n′] with x < y < z < w. If x, y, z, w ∈ [n], then the
sequence (γ′(xyz) γ′(xyw) γ′(xzw) γ′(yzw)) avoids the forbidden patterns +−+− and −+−+
because γ is a generalized signotope. Otherwise, the sequence (γ′(x, y, z) γ′(x, y, w) γ′(x, z, w)
γ′(y, z, w)) contains at least three +-entries.

Hence, for f(n) = log2 |Gn| we have

f(n) = 3f(bn/3c) + bn/3c3.

Inductively assuming f(n) ≥ 1
24n

3− 3
8n

2, which is easy to check for n = 1 and n = 2, we obtain

f(n) = 3f
(⌊n

3

⌋)
+
⌊n

3

⌋3

≥ 3

(
1

24
·
⌊n

3

⌋3
− 3

8
·
⌊n

3

⌋2
)

+
⌊n

3

⌋3

≥ 3

(
1

24
·
(
n− 2

3

)3

− 3

8
·
(n

3

)2
)

+

(
n− 2

3

)3

=
1

24
n3 − 3

8
n2 +

1

2
n− 1

3
≥ 1

24
n3 − 3

8
n2

for every n ≥ 3. This completes the proof of the lower bound.
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6.4 Generalized Signotopes and Simple Drawings

By introducing a notion of flips for generalized signotopes, we show that generalized signotopes
indeed are a proper generalization of simple drawings. From the known estimates for the asymp-
totic number of simple drawings, it follows that most generalized signotopes do not come from
simple drawings.

6.4.1 Flip-equivalent Generalized Signotopes

Let γ be a generalized signotope on [n]. A pair (i, j) of distinct elements of [n] is said to be edge-
flipable in γ if inverting the signs of all triples containing i and j yields a generalized signotope.
If γ comes from a simple drawing and ij is an edge incident to the outer cell, then (i, j) is edge-
flipable in γ. Moreover, the generalized signotope γ′ obtained by inverting all triples containing
i and j again comes from a drawing. Indeed, if D is a drawing corresponding to γ and the edge
e = ij is incident to the outer cell c1, then there is a second cell c2 which is separated from c1

only by e. The drawing D′ obtained by wrapping this edge around which makes c2 the outer
cell corresponds to γ′. Type Ia and type Ib of the simple drawings of K4 (see Figure 2.13) differ
by such a flip operation applied to the edge {3, 4}.
Two generalized signotopes γ, γ′ are edge-flip-equivalent if there is a sequence (i1, j1), . . . , (ik, jk)
of pairs and a sequence γ0, . . . , γk of generalized signotopes with γ = γ0, γ′ = γk, and γ` is
obtained from γ`−1 by flipping the pair (i`, j`). This edge-flip-equivalence relation partitions the
set of all generalized signotopes into flip classes, which we further consider to be closed under
relabeling of the elements.

In the following, we show that two weakly isomorphic drawings yield flip-equivalent generalized
signotopes. In fact, the following lemma will be the key to show that most generalized signotopes
do not come from simple drawings.

Lemma 6.4.1. Two weakly isomorphic drawings D and D′ of Kn in the plane yield edge-flip-
equivalent generalized signotopes.

Proof. Gioan [Gio05, Gio22] proved that two weakly isomorphic drawings on the sphere can
be transformed into each other using triangle-flips, i.e., the change of a cell bounded by three
edges and without incident vertices by moving one edge past the crossing of the other two edges,
see Figure 2.15. As already discussed earlier, an edge at the outer cell can be flipped which
yields a generalized signotope of the same edge-flip equivalence class. In such a way we achieve
two weakly isomorphic drawings with the same chosen outer cell. Hence we might assume
both drawings D and D′ are drawn in the plane with the same edges incident to the outer cell.
Suppose we have D = D0,D1, . . . ,Dm = D′, where Di is transformed into Di+1 by a triangle-flip.
We have to show that γ(Di) and γ(Di+1) are edge-flip-equivalent generalized signotopes. Here
γ(Di) denotes the generalized signotope of the drawing Di. A crucial point is that generalized
signotopes come from drawings in the plane while weak isomorphism is a property of spherical
drawings. Hence, we have to allow triangle-flips with the triangle being the outer cell.

Let 4i be the triangular cell in Di which is flipped to obtain Di+1. If 4i is a bounded cell, we
are done because of γ(Di) = γ(Di+1). Otherwise, if 4i is the outer cell, apply an flip of an edge
bounding the outer cell to obtain an isomorphic drawing D′i in which another cell is the outer
cell. Because of the edge-flip, γ(D′i) is edge-flip-equivalent to γ(Di).
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Gen.Sig. Relabeling Edge-Flip Weak Isom.

3 2 1 1 1

4 14 2 2 2

5 544 6 3 5

6 173 128 167 16 102

7 630 988 832 63 451 442 11 556

8 35 355 434 970 848 ? ? 5 370 725

9 7 198 391 729
...

n 2Θ(n3) 2Θ(n3) 2Θ(n3) 2Θ̃(n2)

Table 6.1: The first three columns show the number of generalized signotopes on n elements, equivalence
classes up to relabeling, and flip classes, respectively. The last column shows the number
of weak isomorphism classes of simple drawings of Kn from [ÁAF+15] (cf. OEIS A276110).
The asymptotic bounds are provided in Theorem 6.3.1 and [Kyn13], respectively.

Note that the asymptotic number of 2Θ(n3) generalized signotopes applies to the numbers of
relabeling classes and edge-flip classes, respectively, because reflections and relabelings only

give a factor of at most 2 · n! and the number of elements in a edge-flip class is at most 2(n2).
Moreover, there are at most 2Õ(n2) = 2n

2α(n)O(1)
weak isomorphism classes of simple drawings

of the complete graph Kn [Kyn13]. Here α denotes extremely slow growing inverse of the
Ackermann function. By Lemma 6.4.1, each weak isomorphism classes is contained in a edge-
flip-equivalence class of generalized signotopes. Since the number of generalized signotopes in

an edge-flip-equivalence class is at most 2(n2), we conclude that at most 2Õ(n2) · 2(n2) = 2Õ(n2)

generalized signotopes come from simple drawings of Kn.

6.4.2 Small Configurations

To get a better understanding of which generalized signotopes come from simple drawings, we
enumerated all generalized signotopes and edge-flip classes up to n = 7 elements, see Table 6.1.
Moreover, since drawings from the same weak isomorphism class induce edge-flip-equivalent
generalized signotopes (Lemma 6.4.1), Table 6.1 also restates the number of weak isomorphism
classes from [ÁAF+15].

In Section 2.4, we have seen that there are precisely two weak isomorphism classes of simple
drawings of K4, see Figure 2.13. Via relabeling and mirroring, all 14 generalized signotopes on
n = 4 elements are realized by type I and type II. These 14 generalized signotopes partition
into two relabeling classes and two edge-flip classes. One of the classes corresponds to drawings
of type I (1 crossing) and the other one to drawings of type II (0 crossings). In particular, the
edge-flip operation for generalized signotopes preserves the number of crossings in a 4-tuple.
Therefore, we can define the crossing number of a generalized signotope γ on n elements as the
number of induced 4-tuples which belong to the edge-flip class of the type I drawing.

For n = 5, there are 544 generalized signotopes, which belong to 6 relabeling classes and 3 edge-
flip classes, respectively. There are five weak isomorphism classes of simple drawings of K5, see

https://oeis.org/A276110
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Figure 6.2. We have verified by computer that each of the 544 generalized signotope on n = 5

type I type II type III type IV type V

Figure 6.2: The five types of simple drawings of K5.

elements is realized by a simple drawing of K5. Since we can read whether a 4-tuple of vertices
induces a crossing from the generalized signotope, it is clear that drawings with different number
of crossings do not correspond to a common relabeling class of generalized signotopes. Indeed,
the class with 24 generalized signotopes corresponds to type I and type V (both 5 crossings),
the class with 280 generalized signotopes corresponds to type II and type IV (both 3 crossings),
and the class with 240 generalized signotopes corresponds to type III (1 crossing). We conclude
that generalized signotopes are not able to encode the weak isomorphism class. Also convexity is
not encoded: type I and type V induce the same generalized signotope but type I is face-convex
while type V is non-convex. Note that type I is C5 (cf. Figure 2.14(a)) and together with type II,
type II they are the three geometric drawings of K5. While type IV and type V are the two
obstructions Πoc

5,1 and Πoc
5,2 to convexity (cf. Figure 2.18). Type V is the twisted drawing T5.

For n = 6, there are 173 128 generalized signotopes, 167 relabeling classes, and 16 edge-flip
classes. We have verified by computer that 151 of the 167 relabeling classes are realized by a
simple drawing of K6. However, from each of the 16 edge-flip classes there is a representative
which can be realized by a simple drawing of K6. The non-realizable generalized signotopes on
n = 6 belong to three edge-flip classes, which have 3, 4, and 5 crossings, respectively. Note that
there is a unique edge-flip class with 3 crossings, a unique edge-flip class with 4 crossings, and
two edge-flip classes with 5 crossings.

We now consider the edge-flip class F of generalized signotopes on n = 6 elements with 3
crossings. There is up to weak isomorphism a unique simple drawing D of K6 which has the
minimum of 3 crossings. Indeed since this drawing has no cell bounded by exactly three edges
and no vertex, this is the unique drawing up to strong isomorphism. A drawing of the graph
is given in Figure 6.3. Therefore, every drawing realizing a generalized signotope from F is

Figure 6.3: The unique simple drawing of K6 which has the minimum of 3 crossings.

isomorphic to D. Since the drawing D is highly symmetric, there are up to isomorphism only 3
choices for the outer cell, and hence only 3 of the 10 generalized signotopes from the edge-flip
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class F are realized

γ1
real = −−−−+−−−−+++++++++++

γ2
real = +−−−−−−−−+++++++++++

γ3
real = −−−+−−−+−−++++++++++

The remaining 7 generalized signotopes of that edge-flip class are not realizable.

γ1
non = −−−+−+−−−−++++++++++

γ2
non = −−+−−−+−−−++++++++++

γ3
non = −−−−−−++−−++++++++++

γ4
non = −++−−+−++−+++−++++++

γ5
non = −−+−−−−−+−++++++++++

γ6
non = −−−−−+−−+−++++++++++

γ7
non = −+−−−−−−−+++++++++++

To lift the non-representable examples to higher number of elements we use the all-plus-extension
of a generalized signotope. see lemma 6.3.3

Corollary 6.4.2. For n ≤ 5 all generalized signotopes on n elements are realizable as simple
drawing of Kn. For n ≥ 6 there exist non-realizable generalized signotopes on n elements.

Proof. The first part follows from earlier discussions in this section. For the second part, consider
the non-realizable generalized signotope γ on 6 elements from above. Now, for every integer n′

with n′ ≥ 6, the all-plus-extension of γ (Lemma 6.3.3) is also non-realizable since it contains γ
as an induced subconfiguration.

Another interesting example is the generalized signotope on n = 7 elements.

γ7 = +−−−++−−−−+−−++−+−+−+−++++++++−++++

This configuration is not representable by any simple drawing of K7 because it has crossing
number 7 while every drawing of K7 has at least 9 crossings [Guy72].
It would be interesting to have non-trivial bounds for the minimum number of crossings of
generalized signotopes on n elements.





Chapter 7

Conclusion and Open Problems

The main result of Chapter 3 is a generalization of Levi’s extension lemma to signotopes of odd
rank (cf. Theorem 3.1.2). Moreover, we present examples of rank r = 4, 6, 8, 10, 12 which are not
2-extendable. Based on this evidence, we conjecture that for every even rank r ≥ 4 there is an
r-signotope which is not 2-extendable (cf. Conjecture 3.1). In Section 3.6.3 we present a family
of partial signotopes ρr for even r such that every r-signotope containing ρr is not 2-extendable.
An affirmative answer to the following conjecture would solve Conjecture 3.1.

Conjecture 7.1. For every even r there is an r-signotope containing ρr.

One possibility to handle this question is to complete the partial signotope ρr by assigning addi-
tional signs without violating the monotonicity condition of signotopes. However in general such
a completion does not necessarily exist. The decision problem whether a partial assignment can
be completed to a full assignment is known as completion problem. For related structures such
as uniform 3-chirotopes [Bai05, Tsc03], uniform acyclic 3-chirotopes [Knu92] and generalized
signotopes [BSS23a] the problem is known to be NP-hard, while it is polynomial solvable for
2-signotopes, i.e., permutations. Most likely, the completion problem for 3-signotopes is also
NP-hard as conjectured by [FGT05].

Moreover we showed that signotopes are generally not 4-extendable. The remaining case is
extendability with three prescribed points.

Question 7.2. Are signotopes of odd rank 3-extendable?

Signotopes are a rich subclass of oriented matroids. Extendability for higher dimensions was
previously studied in the setting of oriented matroids. Goodman and Pollack [GP81] showed
that rank 4 oriented matroids do not provide an extension by a pseudohyperplane going through
three prescribed points. Later Richter-Gebert [Ric93] showed that there is a rank 4 oriented
matroid which is not 2-extendable. However it might be true that, similar as for signotopes,
there is an extension theorem for oriented matroids of odd rank.

Question 7.3. Is there an extension theorem for oriented matroids of odd rank?

The rank 4 oriented matroid by Richter-Gebert which is not 2-extendable is part of a construction
which provides an oriented matroid such that one element is not contained in a mutation. In
the geometric sense this translates to a pseudoplane in R3 in a pseudoplane arrangement which
is not incident to a simplicial cell. A famous conjecture by Las Vergnas is the existence of
mutations in oriented matroids.

Conjecture 7.4 ([BLS+99, Conjecture 7.3.10]). Every oriented matroid admits a mutation.
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For oriented matroids of rank 4 and with n ≤ 12 elements it is known to be true [BR01]. In
contrast, the existence of fliples (which is the corresponding structure in signotopes) follows
from the fact that every signotope is contained in a maximum chain [FW01]. In Chapter 6 we
improved the lower bound to 2n−2

r fliples in every r-signotope on n elements, which gives a lower
bound on the minimum degree in the flip graph. However the minimum degree of the flip graph
G(n, r) is not determined. Felsner and Weil conjectures it to be n − r + 1, which corresponds
to the degree of the constant + signotope. Recently, together with a Master student, Lukas
Egeling, from ETH Zürich, we discovered that this conjecture does not hold. There are eight
rank 4 signotope on 8 elements with 4 fliples, which is the minimal number of fliples.

Question 7.5. What is the minimum degree of G(n, r), i.e., the minimum number of fliples in
every signotope?

Moreover there are a lot of open problems concerning the structure of the flip graph such as the
connectivity, Hamiltonicity and more, which we want to investigate in the future.
Similarly as for signotopes, one can define a flip graph of generalized signotopes. Note that
in contrast to the edge-flip operation defined in Section 6.4, the flip is the sign change of an
r-subset such that the new sign mapping remains a generalized signotope. In the flip graph for
a fixed n the vertices are the generalized signotopes and two vertices are connected if they differ
in a single sign. However very little is known about the flip graph.

Question 7.6. Is the flip graph of generalized signotopes connected? Determine the minimum
degree.

In signotopes there is always an r-subset which can flip from − to + and one which can flip from
+ to − unless all signs are + or −, respectively. This is not longer true for generalized signotopes.
Manfred Scheucher (personal communication) found the following generalized signotope on 12
elements in which no − can be flipped to +. Encoded in the reversed lexicographic order of its
3-subsets it is the following generalized signotope.

γnoflip =+−−−−−−+−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−++++−−−−+

−−−−−+−−−−−−+−−+−−+−−+−−−+−−−−+−−++−−−−−−+−−−+−
−+−+−+−−−−−−+−+−+−−−−−−−−−−−−−−+−+−−+−−−−−−++−−
−−++−−+−−−−−−−−−−−−−−−−+−−−−−−+−−+−+−+−−−++−−++

++++++−−++−−−−+−+−+−−−−−++−−+−−−.

In this thesis generalized signotopes are mainly considered as a combinatorial encoding of triangle
orientations of simple drawings. As shown in Section 6.4 not all generalized signotopes come from
simple drawings. Hence it would certainly be nice to have a characterization of those generalized
signotopes which come from a simple drawing. However, finding such a characterization might be
challenging since there are several simple drawings yielding the same generalized signotope. An
example is the generalized signotope corresponding to the constant + function. Both drawings
Cn and Tn correspond to this generalized signotope, see Section 2.4. From the view point of
simple drawings flipping the sign of a triple {a, b, c} corresponds to moving a vertex x ∈ {a, b, c}
over the edge connecting the two remaining vertices. However, there might be up to three
possibilities. It is not uniquely defined which of the three vertices is moved over the edge. For
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example the two simple drawings T5 and C5 can be transformed into each other by two flip
operations which corresponds to changing a triple to − and back to +. However since there are
different vertices involved this gives a different drawing.
A first step might be to restrict the setting to convex drawings where the generalized signotope
might be unique since convex drawings are T5-free. In particular, besides the mentioned char-
acterization of pseudolinear drawings as 3-signotopes [BFK15, Theorem 3.2], Balko, Fulek, and
Kynčl provide a characterization of which generalized signotopes can be drawn as x-monotone
simple drawings and which can be drawn as x-monotone semisimple drawings by forbidding
finitely many subconfigurations [BFK15, Theorem 3.1]. In the spirit of their results, Kynčl’s
theorem [Kyn20], and the classification of h-convex and convex drawings [AMRS22], we pose
the following question on characterizing drawable generalized signotopes. Recall that a gener-
alized signotope is drawable if there exists a simple drawing whose triangle orientation is the
generalized signotope.

Question 7.7. Is there a finite number k such that all generalized signotopes are drawable if all
k-subsets are drawable?

Additionally it might be interesting to find a topological representation of all generalized signo-
topes.

Question 7.8. Is there a geometric or topological representation of generalized signotopes?

A related structure mentioned by Knuth [Knu92] are so called transitive interior triple systems,
which are a proper subclass of generalized signotopes (Knuth called them interior triple systems)
and contain all signotopes. Hence the number of transitive interior triple systems is in 2Ω(n2)

and 2O(n3). The precise asymptotic number remains unknown.

Question 7.9 ([Knu92]). What is the asymptotic number of transitive interior triple systems?

For signotopes we presented various topological representations in Chapter 2. The most recent
one is by Miyata [Miy21] who showed that signotopes of arbitrary rank r ≥ 3 can be represented
in the plane by so called (r−2)-intersecting pseudoconfigurations of points. Those configurations
are an abstraction of the interpolation polynomials spanned by r−1 points. Signotopes which can
be represented by an (r − 2)-intersecting pseudoconfiguration of points using polynomial func-
tions are called polynomially realizable. Moreover in terms of pseudohyperplane arrangements
a signotope is realizable if there is a hyperplane arrangement with the same combinatorics. A
natural question is whether those two terms of realizability coincide.

Question 7.10. Is an r-signotope realizable if and only if it is polynomially realizable?

In Section 4.4 the main ingredient to show that sufficiently large convex drawings admit a 6-hole
is Theorem 4.4.7 which states that the convex side of every minimal k-gon is f-convex. This
makes it possible to transfer results, which do not depend on the outer cell, from pseudolinear
drawings to convex drawings. For future research and to obtain better bounds on the minimal
integer hconv(k) such that every convex drawing with more than hconv(k) vertices contains a k-
hole, it would certainly be nice to determine the size of a largest k-gon and the size of a largest
f-convex subdrawing in a convex drawing.

Question 7.11. What is the largest f-convex subdrawing in every convex drawing of Kn?
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The currently best lower bound for the largest k-gon and hence for the largest f-convex drawing
in Kn is of magnitude k ≥ (log2 n)1/2−o(1) [SZ22]. The construction of Erdős–Szekeres [ES60]
shows that there are geometric drawings and hence every convex drawings, which only contain
k-gons of size k ≤ dlog2 ne+ 1. However, we are not aware of any sublinear upper bound on the
size of a largest f-convex subdrawing. In the case of h-convex drawings, Arroyo et al. [ARS21,
Lemmas 5.2–5.6] showed that a partitioning into two parts which are both f-convex is possible.

In Chapter 5 we showed that every convex drawing of Kn admits a plane Hamiltonian cy-
cle. Rafla [Raf88] conjectures that this is true in all simple drawings of Kn. Among various
conjectures we stated, we want to emphasize the strengthening of Rafla’s conjecture, see Con-
jecture 5.2.

Question 7.12. Do all simple drawings of Kn contain a plane Hamiltonian subgraph of size
2n− 3?

However it would certainly be nice to solve any of those conjectures in order to make progress
on Rafla’s conjecture.
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[BFZ19] P. V. Blagojević, F. Frick, and G. M. Ziegler. Barycenters of polytope skeleta and
counterexamples to the topological tverberg conjecture, via constraints. Journal of
the European Mathematical Society, 21(7):2107–2116, 2019.

[Bie19] A. Biere. CaDiCaL at the SAT Race 2019. In Proceedings of SAT Race 2019 –
Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer
Science Series, pages 8–9. University of Helsinki, 2019.

[Bir59] B. J. Birch. On 3N points in a plane. Mathematical Proceedings of the Cambridge
Philosophical Society, 55(4):289–293, 1959.

[BLS+99] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Ori-
ented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2 edition, 1999.

[BMP05] P. Brass, W. O. J. Moser, and J. Pach. Research Problems in Discrete Geometry.
Springer, 2005.

[BR01] J. Bokowski and H. Rohlfs. On a mutation problem for oriented matroids. European
Journal of Combinatorics, 22(5):617–626, 2001.
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theorem of Tverberg. Journal of the London Mathematical Society, s2-23(1):158–
164, 1981.

[BSS23a] H. Bergold, M. Scheucher, and F. Schröder. Using SAT to find NP-hardness proofs
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[ES35] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935.
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Zusammenfassung

In dieser Arbeit untersuchen wir Vorzeichenabbildungen, die für einen festen Rang r Teilmengen
von {1, . . . , n} der Mächtigkeit r auf eines der beiden Vorzeichen + und − abbilden, wobei
Vorzeichenmuster auf induzierten Teilstrukturen vermieden werden. Insbesondere betrachten
wir Signotope und verallgemeinerte Signotope, die aus Pseudohyperebenen Arrangements und
einfachen Zeichnungen hervorgehen. Unter Verwendung dieser kombinatorischen Kodierungen
für topologische Objekte beweisen wir verallgemeinerte Aussagen klassischer Ergebnisse.

Wir betrachten Levis Erweiterungslemma für Pseudogeraden Arrangements und beweisen, dass
es sich auf Signotope ungeraden Ranges r verallgemeinern lässt. Levi zeigte 1926, dass jedes
Pseudogeraden Arrangement durch eine zusätzliche Pseudogerade erweitert werden kann, welche
zwei vorgeschriebene Punkte enthält. Eine Verallgemeinerung auf die Dimension 3 ist nicht
möglich. Goodman und Pollack entdeckten 1981 ein Beispiel eines Pseudoebenen Arrange-
ments und drei vorgeschriebene Punkte, das nicht erweiterbar ist, obwohl es eine Erweiterung
durch d Punkte für Hyperebenen Arrangements in Dimension d gibt. Später zeigte Richter-
Gebert (1993), dass sogar eine Erweiterung durch zwei vorgeschriebene Punkte in Dimension 3
nicht möglich ist. Wir zeigen, dass für Signotope, die eine Teilklasse von Pseudohyperebenen
Arrangements bilden, ein Erweiterungssatz in geraden Dimensionen (ungerader Rang r) gilt.
Außerdem geben wir Signotope von Rang 4, 6, 8, 10 und 12 an, welche nicht erweiterbar sind.

Zudem betrachten wir klassische Ergebnisse der konvexen Geometrie wie beispielsweise den
Satz von Carathéodory, Helly und Kirchberger und untersuchen diese im Kontext einfacher
Zeichnungen des vollständigen Graphen. Insbesondere bestimmen wir, in welcher Ebene der
von Arroyo et al. (2022) eingeführten Konvexitätshierarchie die Aussagen gelten und ab welcher
Ebene es Gegenbeispiele gibt. Die Konvexitätshierarchie beschreibt mehrere Teilklassen von
Zeichnungen zwischen Punktmengen in der Ebene und einfachen Zeichnungen unter Verwendung
eines verallgemeinerten Konvexitätsbegriffs. Für den Beweis des Satzes von Kirchberger spielen
verallgemeinerte Signotope eine wesentliche Rolle. Diese kodieren die Dreiecksorientierungen
von einfachen Zeichnungen. Zusätzlich zu den genannten Sätzen betrachten und definieren
wir Löcher im Rahmen einfacher Zeichnungen ein. Löcher werden klassischer Weise in der
Forschung von Punktmengen betrachtet. Wir zeigen, dass sich konvexe Zeichnungen ähnlich
wie Punktmengen verhalten, da jede hinreichend große konvexe Zeichnung ein 6-Loch enthält,
während es beliebig große Zeichnungen ohne 7-Löcher gibt.

Zu guter Letzt zeigen wir, dass die Vermutung von Rafla (1988) für konvexe Zeichnungen wahr
ist. Die Vermutung besagt, dass jede einfache Zeichnung des vollständigen Graphen einen
planaren Hamiltonkreis enthält. Bis jetzt ist nur die Existenz von planaren Pfaden der Länge

Ω
(

log(n)
log log(n)

)
(Suk, Zeng und Aichholzer et al. 2022) und planaren Matchings der Größe Ω(

√
n)

(Aichholzer et al. 2022) bekannt. Wir untersuchen Variationen und Verallgemeinerungen dieser
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Vermutung. Insbesondere beweisen wir, dass jede konvexe Zeichnung eine planare Teilstruktur
zulässt, die aus einem planaren Hamiltonkreis und zusätzlichen n− 2 Kanten besteht.
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