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Abstract

The indoor scenario is also called the GPS-challenged environment due to the obstruction and ac-

curacy reasons of the satellite based positioning methods. The current solutions to this problem

are primarily resorting to the local communication networks. In this dissertation an autonomic po-

sitioning strategy is proposed, which relies solely on inertial sensors. Because of the interference

immunity and unobtrusiveness of the Inertial Measurement Units (IMUs) the reliability and invul-

nerability of the system deserves to be enhanced substantially.

In reality certain body impulses are prompted when a pedestrian is walking. This sort of impulses

would be recorded by the accelerometer in user’s smartphone. Associated with the extra data sam-

pled by other built-in inertial sensors, the motion patterns of the pedestrian are recognized, in which

the length and azimuth of each step are estimated. Accordingly the current position is supposed to

be updated in real-time.

Previously all of the collected data are processed by Zero Velocity Compensation Algorithm and

Moving Average Filter in order to reduce the noises in advance. Subsequently, the heading angles

derive from the fusion of the gyroscope and magnetometer data so that both of their advantages

are produced concurrently. On the basis of the variance analysis for the azimuth and acceleration

data, the stop and turning actions are detected, by which the entire walking process are divided into

separate segments. In each segment the comparatively uniform step patterns are processed with the

specified parameters exclusively. In addition Kalman Filter is employed to further remove the jitters

in the acceleration signals. After that the steps are recognized by the successive peak-trough pairs.

Particularly, the step lengths are estimated according to two self-developed mathematical models,

for walking and running respectively. The relations between the step length, frequency and variance

are revealed after a multitude of experiments. The average deviation rates of both the estimation

models are 10.99% and 19.66% which are superior to all of the related works.

With respect to the map matching problem, particle filter is utilized to constrain the moving

trajectory to the physical surroundings. Moreover, the uncertainties caused by gesture changing are
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expected to be eliminated by this probabilistic algorithm to a great extent. In the same experiment

scenario by applying particle filter, the average deviation declined from 1.96 m to 1.21 m. Therefore

the accuracy is improved by 38.27%. With the physical layout information, the positioning results

would be rectified as well.

Eventually the digital barometer is selected for floor detection. In comparison this scheme demon-

strates stronger operability than the previous solutions. On the basis of the statistics, the effective-

ness of the approach reckoning the relative altitude from atmospheric pressure is able to maintain for

more than 10 minutes. As a result, with a few calibrations the indoor positioning system is extended

to the multi-storied scenarios.
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Zusammenfassung

Das indoore Szenario wird die GPS-herausgeforderte Umwelt genannt wegen der Nachteile z.B.

die Blockierung und Genauigkeit in den satelite-bezogenen Positionierungsmethode. Die aktuelle

Lösungen der Probleme sind sich an die lokalen Kommunikationsnetzwerke zu wenden. In dieser

Dissertation wird eine autonome Positionierungsstrategie hervorgebracht, die sich lediglich auf die

Inertialsensoren stützt. Wegen der Störfestigkeit und Unaufdringlichkeit der Inertialsensoren, wer-

den die Zuverlässigkeit sowie Unverwundbarkeit des Systems sich erheblich verbessert.

Tatsächlich werden einige Impulse des Körpers angeregt während ein Fußgänger geht. Diese Im-

pulse werden von dem Beschleunigungssensor im Smartphone des Benutzers verzeichnet. Mit den

Daten aus anderen eingebauten Inertialsensoren, werden die Bewegungszustände des Fußgängers

erkannt, damit die Länge sowie der Azimut jedes Schritts errechnet werden. Demgemäß wird die

Echtzeitposition kontinuierlich aktualisiert.

Zuallererst werden alle sammelnde Daten vom Zero Velocity Compensation Algorithmus und

gleitenden Durchschnitt-Filter bearbeitet, um das Rauschen im Voraus zu reduzieren. Anschließend

stammen die Steuerkurswinkel aus der Datenverschmelzung vom Gyroskop und Magnetometer, um

beide Vorteile gleichzeitig auszunutzen. Nach der Varianzanalyse für die Azimute und Beschle-

unigungen, werden die Bewegungen z.B. die Stopps und Abbiegungen detektiert, damit der ganze

Ablauf des Gehens in getrennten Abschnitte geteilt wird. In jedem Abschnitt werden die relative gle-

ichförmige Schrittmuster mit den spezifizierten Parametern bearbeitet. Außerdem bürgert Kalman

Filter sich ein, um die Grate im Beschleunigungssignal weiter zu entfernen. Danach werden die

Schritte anhand von den aufeinanderfolgenden Gipfel-Tal Paare erkannt.

Insbesondere, jeweils für Gehen und Laufen werden die Schrittlänge mit zwei selbst-entwickelten

mathematischen Modelle errechnet. Die Beziehungen zwischen die Schrittlänge, Frequenz und Vari-

anz werden nach einer ansehnlichen Menge Experimente entdeckt. Die durchschnittliche Abweichung-

Raten von beiden Modelle sind jeweils 10.99% und 19.66%, die vorzüglicher als alle bisherige

Modelle sind.
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In Hinsicht auf das Problem über die Kartenanpassung, wird Particle Filter verwendet, um die Be-

wegungsbahn auf die physikalischen Umgebungen zu schränken. Ferner werden die Ungewissheiten

von diesem Wahrscheinlichkeitsalgorithmus in großem Maße abgebaut, die von den Gesteverän-

derungen verursacht werden. Beim Experimentalszenario, mit Particle Filter anzuwenden verringert

die durchschnittliche Abweichung sich von 1.96 m auf 1.21 m. Deshalb erhöht die Genauigkeit sich

um 38.27%. Die Informationen über den Grundriss und die Einrichtung können auch behilflich sein,

die Positionierungsergebnisse zu berichtigen.

Zum Schluss wird der digitale Barometer für die Geschosse zu erkennen ausgewählt. Im Vergle-

ich zu den vorherigen Lösungen zeigt das Verfahren mit Barometer die bessere Bedienbarkeit. Nach

den Statistiken kann die Validität der Verfahrensweise für länger als 10 Minuten behalten, die rel-

ative Höhe mit dem Luftdruck einzuschätzen. Infolgedessen, mit einigen Kalibrierungen kann das

Indoorpositionierungssystem sich auf den mehrgeschossigen Szenarios ausbreiten.
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Chapter 1

Introduction

1.1 Background

Nowadays a wide variety of positioning techniques change our modern life dramatically. The pop-

ularization of the portable devices has brought this area new opportunity. Together with navigation,

a growing number of smartphone applications in terms of Location Based Service (LBS) received

a considerable success. With respect to outdoor navigation, Global Navigation Satellite Systems

(GNSS) such as GPS, Galileo, GLONASS and Beidou [1], along with cellular techniques are cur-

rent common solutions.

However, as far as indoor or underground scenarios are concerned, these techniques appear to

some degree inadequate. Normally the accuracies of satellite or cellular network based techniques

are more than 10 meters which is completely unacceptable. With so rough a precision to track a

target within a building and distinguish among rooms is not in any way realistic. Not merely the

sensitivity is less than satisfactory, but also the signals from them are either blocked by building or

ground, or severely affected by multipath propagation.

Meanwhile, indoor positioning receives more and more attentions in recent years. Statistics show

human averagely spends over 70% time on indoor activities in modern life. Along with the booming

of various terminal devices, indoor positioning becomes a really promising field and the relevant

applications based on smartphones, tablets, and other wearable objects are sprouting up in every

aspect of the informative life. For example, electronic guidance in a museum or an exhibition hall

cannot merely display the information according to visitors’ real-time location, but also show the

way to where they would find, such as ATM, WC, lift or exit [2] [3] [4]. In the area of smart living

and office, the attendances for a meeting, etc., can be identified and registered unobtrusively. When
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CHAPTER 1. INTRODUCTION

people arrive at a certain room or area, the projector and lighting or any other supporting facilities

could be activated automatically. Commercially it would also make advertising in a shopping mall

more targeted and efficient. With the app installed in customers’ smartphones or on shopping carts,

the sale information could be provided for the potential customers directly according to the location

data. In the future storehouses the indoor positioning techniques could make the physical distribution

management more intelligent and would be an indispensable component in Internet of Things (IoT)

[5] [6].

1.2 Related Works

Figure 1.1: According to the real-time video, the sport assistance software SIMI Scout records the
player’s position as well as moving trajectory, in order to provide the reliable data support for the
coach when tactics analysis and decision making. This is an instance of the vision-based positioning
approach.

Concerning the GPS challenge scenarios referred to above, numerous indoor positioning techniques

are implemented in the latest two decades. Vision-based systems are well-publicized choices in

surveillance and could be used for position tracking [7] [8]. Because the positioning methods from
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video analysis are considered accurate and real-time, they are taken advantage of in many assistance

systems, especially in sport recording and statistics, as shown in Fig. 1.1 [9] [10] [11]. However, the

images caught by cameras would easily be sheltered from people’s bodies or other objects. Besides,

some of vision-based approaches rely on the installation of beacons [12] [13] [14]. Meanwhile it

has high requirements in the light intensity and the distribution of cameras. The limitations also lie

in the comparative expensive equipment and sizable data amount of optical flow.

Figure 1.2: The comparison of accuracy among different positioning schemes

The similar drawbacks are found in the ultrasound and infrared method as well [15] [16]. The

techniques of Radio Frequency Identification (RFID) are attempted in some experiments [17] [18],

but few of them can stably achieve the required meter-level accuracy in the mentioned scenarios

above. Researchers recently are more likely to employ Wireless Local Area Network (WLAN)

based technologies [19] [20] [21]. The radio strength fingerprint in a certain building is analysed

statistically. There are numerous literatures discussed the improvement about it [22] [23]. By means

of some mathematical statistics methods, the positioning accuracy could be lower than 2 meters,

which is quite satisfactory for indoor scenarios [24] [25]. But the complete Wi-Fi cover in the target

building as well as the real-time interaction between the users’ device and the hot spots is necessary.

If there is no available Wi-Fi access point, or some access points are out of order temporarily, the

WLAN based schemes will also be ineffective. Bluetooth or Zigbee based solutions are proved fea-

sible in some experiments [26] [27]. In certain scenarios the accuracies are so satisfactory that these
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Wireless Personal Area Network (WPAN) techniques are regarded as the most ideal solutions for

shopping malls or exhibition halls. Basically high density equipped beacons are necessary undoubt-

edly. Moreover, their positioning effects are also strongly associated with the realistic environments.

Even the pedestrian volume could influence the performance to a great extent. In conclusion all

these schemes are compared in Fig. 1.2.

Especially in some extreme situations, such as rescue missions in a damaged architecture after

an earthquake or conflagration, or archeological and scientific expeditions in a cave or underground

where the navigation signals from satellite or cellular network are usually unavailable and the extra

infrastructures such as WLAN are insufficient, some alternative self-contained strategies which do

not rely on external signal have to be developed to continue tracking people’s position.

1.3 Inertial Measurement Units

One feasible solution is taking advantage of Inertial Measurement Unit (IMU). Because of its inde-

pendence, IMU has been chosen for navigation systems several decades ago [28] [29]. On account

of its autonomy and interference immunity, IMU-based schemes are an ideal complementarity to

current Local Positioning System (LPS) when communication signals are lacking. First and fore-

most, IMU needs neither passive nor positive interaction with external signals, thus it possesses

superb unobtrusiveness and is invulnerable to Electromagnetic Interference (EMI). Besides, it can

work all-weather and in all environments no matter outdoor or indoor, with or without shelter, in the

air, underground or underwater where the satellite or WLAN based schemes are not always effective.

Moreover, it cannot solely provide the location information of the devices but also some additional

parameters e.g. real-time azimuth and attitude. Last but not least, compared with the schemes using

communication signals, the positioning result from IMU shows better continuity, higher short-term

precision and more stability. Along with the development of Micro Electro-Mechanical System

(MEMS), IMU will be more portable and affordable, and would be a common component in the

consumer electronics.

With respect to Inertial Navigation System (INS), a great number of methods have been discussed

special for pedestrians [30] [31] [32]. Theoretically, the displacement can be calculated directly by

taking the double integral of acceleration over time. There are experiments of taking inertial sensors

in hand and walking through a square path whose side-length is 10 meters [33]. From Fig. 1.3, the

deviation becomes larger and larger along the time (the sampling data are also filtered by several

filters). Actually it must be admitted that the precision and sensitivity of IMU in usual electronics

are limited due to the comparative low price. Because of serious drifts, the results from double
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integrals in most situations are nothing more than rough sketches.

−20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

x (meter)

y 
(m

et
er

)

Figure 1.3: The effect of double integrals of the acceleration measured by commercial IMU. The red
square is the real walking path whose side-length is 10 meters; the other 4 curves are the trajectories
calculated by double integral. The drifts are rather serious.

However, the commercial IMUs with low price and limited accuracy are never useless. With

these available accelerometers, gyroscopes and magnetometers in current smartphones, a wealth

of brilliant apps were also developed. Many of them implemented some pretty practical functions

just by capitalizing on these inexpensive sensors sensibly. Although the displacement from directly

integral is invalid, from the acceleration signals generated by pedestrian’s walking, a multitude of

useful information could be extracted as well.

From Fig. 1.4, every step when walking can stimulate obvious discrete impulse in the acceleration

signal. With these acceleration impulses not singly the steps can be count, but also the length of each

step could be estimated. Besides, according to the heading direction during each step, the current

position could be updated continuously. This strategy is called Pedestrian Dead Reckoning (PDR)

[34] [35] which is a process of calculating one’s current position by using a previously determined

position, and advancing that position based upon known or estimated speeds over elapsed time and

course. Inspired by the idea of PDR, an indoor positioning approach can be proposed. This approach

is more likely to implement a Step and Heading System (SHS) [36] [37] which tracks the real-time

position by each new step measured with IMU.

5



CHAPTER 1. INTRODUCTION

0 200 400 600 800 1000 1200 1400 1600 1800
−1500

−1000

−500

0

500

1000

1500

2000

Time (× 10 ms)

A
cc

el
er

at
io

n 
(1

/1
00

0 
G

)

Figure 1.4: The raw acceleration recorded by IMU when pedestrian is walking. A volunteer holds
the accelerometer in hand and walks for 10 steps. The plotted data is the module of the accelerations
in all 3 axes. It is remarkable that each impulse is corresponding to a single step.

Therefore an indoor positioning strategy is presented in this dissertation, which lies solely on

the build-in inertial sensors within the smartphones (or other portable devices). In the subsequent

chapters the determination for the azimuth, the differentiation between walking and running, the

recognition of climbing stairs or riding an elevator, together with the mathematical models for es-

timating the step length will be discussed respectively. The result from this strategy could serve as

one complementary data source to improve the stabilization and accuracy of the current positioning

system. Since the PDR scheme sourced from path integration, theoretically the positioning result

is subject to cumulative errors and each tiny deviation would be amplified along the time. This

strategy is hardly qualified for the long term positioning and navigation solely. Ideally this IMU

based scheme could cooperate with other communication signals based schemes. On the one hand,

other schemes could provide the initial position and calibrate the drifts and cumulative errors from

the inertial sensors; on the other hand, IMU can extend navigation into areas where mainstream

positioning systems are problematic. When the external navigation signal such as GPS or WLAN is

temporarily unavailable or sometimes unreliable, this strategy can be adopted to maintain the perfor-

mance of the whole system independently. Due to the invulnerability of IMU, more reliable result

of position tracking can be achieved.
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1.4 Dissertation Structure

Fundamentally this dissertation consists of 8 chapters. These chapters are organized as follows:

In Chapter 2 the framework of the positioning system is elaborated. Particularly, as the key inertial

sensors, the structures of accelerometer and gyroscope are described respectively.

In Chapter 3 the pre-processing of the sampled data is introduced, including a variety of filters.

Accordingly step recognition is performed.

In Chapter 4 the development of the mathematical model for step length estimation is explicated

in detail.

In Chapter 5 the mathematical model special for running step length estimation is proposed as

well, by which the system is compatible with multi pedestrian activities.

In Chapter 6 particle filter is employed to implement map matching. Concurrently the accuracy

of positioning are further improved.

In Chapter 7 two more functions are added to the system: firstly, distinguishing between the

human behaviors of walking and running; secondarily, detecting the floor number in a multi-storied

scenario.

In Chapter 8 all of the research in this dissertation is summarized and a few future works are

therefore discussed.

Recap
In this chapter the background of Indoor Positioning technology is introduced. Towards this sub-

ject numerous current solutions are described and compared briefly. Furthermore, the strategy based

on inertial sensors is proposed. Both the advantages and disadvantages are discussed respectively.

From the comprehensive elucidations, this IMU Strategy is expected to serve as one complementary

method to improve the performance of the current positioning system.
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Chapter 2

Design of the Positioning System

2.1 System Architecture

Primarily my work is implementing a Step and Heading System (SHS). According to the details

of each step such as the length as well as the heading angle, the current position of pedestrian

is supposed to be tracked. When a pedestrian is walking, some vibrations of the body would be

stimulated by stepping. Basically these vibrations could be sensed by the accelerometer within

the wearable devices, such as smartphone. From these vibration waves in the acceleration signals,

certain feature vectors are expected to be extracted. Accordingly the step lengths could be estimated

on the basis of these feature vectors. Meanwhile the heading angles are measured by the gyroscope

and magnetometer. Their different properties are complementary to each other appropriately so

that the most reliable azimuth parameters would result from the data fusion. On top of that, the

altitude related information such as determining in which floor the user is, or whether climbing stairs

or riding an elevator, are analysed from the barometer which can record the atmospheric pressure

locally. With the air pressure the relative altimeter could be reckoned. Nowadays barometer is

increasingly popular and can be found in a growing number of consumer electronics. Last but not

least, to constrain the moving trajectory to the physical surroundings, Particle Filter (PF) is employed

finally. As a supplementary solution Particle Filter can not only correct the trajectory but also deal

with the instabilities by gait transition and gesture changing.

Fig. 2.1 shows the general view of this positioning system.
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Raw Acceleration 
of 3 axes in its 

own coordinate

Figure 2.1: The general view of the positioning system
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2.1. SYSTEM ARCHITECTURE

The whole system, from the subject determination, then to requirements analysis, eventually to

the products implementation, takes more than 4 years. All the procedures as well as workflow are

illustrated in Fig. 2.2, theoretically to practically.

Figure 2.2: The workflow of developing the positioning system. Foremost it is the preparation
stage to make acquainted with the current positioning methods and theories. The most crucial stage
is developing the novel mathematical models for step length estimation so that the accuracy for
positioning could be improved substantially. Lastly a set of real-time software based on smartphones
is implemented as the final products.

From the progress chart shown in Fig. 2.2, the theoretical preparations take most of the time,

virtually the first half of the schedule. Secondarily deducing the walking and running models for

pedestrians is the part of great concern in my research, which was from the beginning of 2014 to the

end of October 2014. Solely the experiments for all sorts of gaits lasted for 5 months. The achieve-

ments in these 10 months are the highlights of this dissertation, which are described in Chapter 4

and 5. Most of the theoretical works have been finished by the end of 2014. The rest time is used for

implementing the real-time positioning systems which are a series of apps running on iPhone or iPad

(iOS only), so that the results of my research could not merely be verified in the off-line simulations

but also be tested as real products. The advantages and superiorities of the mathematical models as

well as the discovered theories would be demonstrated more explicitly and convincingly.

11



CHAPTER 2. DESIGN OF THE POSITIONING SYSTEM

2.2 Pre-process for Sensor data

As shown in Fig. 2.3, normally the smartphone is handled in an uncertain attitude, no matter it is

taken in hand or put in pocket. Since the accelerometer can only measure the real-time tri-axial

accelerations in the coordinate system of smartphone itself (red in Fig. 2.3), to draw the walking

trajectory in the standard earth-fixed coordinate system (blue in Fig. 2.3), the accelerations in 3 axes

must be converted to the earth coordinate. Besides, only the specific force is expected to be involved

in further process. Specific force is not actually a force, but a type of acceleration. It is defined as the

non-gravitational force per unit mass. This (mass-) specific force is not a coordinate-acceleration,

but rather a proper acceleration, which is the acceleration relative to free-fall. Forces, specific forces,

and proper accelerations are the same in all reference frames, but coordinate accelerations are frame-

dependent. For free bodies, the specific force is the cause of, and a measure of, the body’s proper

acceleration. Therefore the gravity acceleration should be removed from the sampling data.

Figure 2.3: The accelerometer samples data in its own coordinate system (red). The raw data need
to be transformed to the earth coordinate (blue).
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2.2. PRE-PROCESS FOR SENSOR DATA

As Fig. 2.4, in this dissertation, the positive directions of the 3 axes and 3 rotation angles of

smartphone are also defined conventionally.

Figure 2.4: The positive directions of 3 axes of smartphone.

The positive direction of x-axis: from left to right. The positive direction of y-axis: from home

button to top side. The positive direction of z-axis: from bottom to up. And the rotation directions

around 3 axes follow the right hand rule.

2.2.1 Accelerometer

An accelerometer is a device that measures proper acceleration (“g-force”). Accelerometers have

multiple applications in industry and science. Highly sensitive accelerometers are components of

Inertial Navigation Systems (INSs) for aircraft and missiles. Accelerometers are used to detect and

monitor vibration in rotating machinery. Accelerometers are used in tablet computers and digital

cameras so that images on screens are always displayed upright. Along with the development of Mi-

cro Electro-Mechanical Systems (MEMSs), accelerometer becomes more inexpensive and compact.
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Nowadays it is one of the most common sensors in numerous wearable devices.

Figure 2.5: A simplified schematic diagram for a single axial mechanical accelerometer. The mag-
nitude of acceleration in the sensitive direction can be calculated by the variation in the spring’s
length. The principle in the electronic accelerometer is similar.

From Fig. 2.5, theoretically an accelerometer consists of a mass, suspended by a spring. The mass

is allowed to move in the sensitive direction of the accelerometer. As Hooke’s Law and Newton’s

Second Law of Motion (described in Eq. 2.1), the distance d of the mass with respect to the sensor

housing is measured and is a function of acceleration and the direction of gravity with respect to the

direction of distance measurement. The unit vector n represents the sensitive axis of the sensor.

Hooke′s Law : F = −kx,

Newton′s second Law o f Motion : F = ma, (2.1)

where F denote the force; k is a constant factor characteristic of the spring, its stiffness; m indicates

the mass and a the acceleration.

Concerning the multi-axial accelerometer, as Fig. 2.6, for simplification, it works with a cube-like

mass inside (maybe more than one, each in every direction, or not a mass but can response to force

with electrical signal). The pressure around the 6 sides can be detected when accelerating. For

instance, when static, only bottom side is pressed, so an acceleration of G in the direction points to

bottom (negative direction of z axis) is measured.

Because the gravity acceleration can be regarded as a Direct Current (DC) component among the
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Figure 2.6: A simplified schematic diagram for a tri-axial accelerometer

sampled acceleration signals, whose value is constantly 9.8 m/s2 and points down, theoretically it

could be removed by a high pass filter. According to the methods mentioned by [38] and [39], this

high pass filter can be implemented by Eq. 2.2.

accHP_avg = accnew × (1 − α) + accHP_avg × α,

accHP_ f iltered = accnew − accHP_avg, (2.2)

where accHP_ f iltered denotes the results after high pass filter; accnew and accHP_avg are the new

sampled acceleration and the average value of before, respectively; α indicates the weight between

new data and historical data. In experiments α is set as 0.9 empirically, which means the preceding

data count more.

Obviously the high pass filter described in Eq. 2.2 is by no means meticulous. Actually it is

merely an expedient if there is no gyroscope available in the system, solely the accelerometer can be

relied on. In my former experiments due to the shortage of gyroscope, the attitude of device could

be hardly measured, hence this method is made use of to calculate the proper accelerations with

limited precision. At present a more accurate algorithm based on gyroscope is applied and the detail

is elaborated in Section 2.2.3.

It is worthwhile to note that sometimes the values’ directions recorded by accelerometer should be

inverted. That is attributed to the principle of accelerometer [40]. When accelerating, for instance,

moves to right suddenly, the acceleration should be in positive x direction (in Fig. 2.6). However, in
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Figure 2.7: A simplified schematic diagram for a MEMS gyroscope in 2D view

this process, the left side is pressed at the beginning, therefore the acceleration detected is pointing

left. This phenomenon is also verified in the experiments.

Ultimately after remove the gravitational component, the acceleration values measured in 3 axes

have to be also made opposite.

2.2.2 Gyroscope

Traditionally gyroscope is a spinning wheel or disc in which the axis of rotation is free to assume

any orientation. When rotating, the orientation of this axis is unaffected by tilting or rotation of the

mounting, according to the conservation of angular momentum. Because of this, gyroscopes are

useful for measuring or maintaining orientation.

In recent years, the gyroscopes manufactured with MEMS technology have become increasingly

available. The MEMS gyroscope uses a vibrating element which reacts to the Coriolis force when

rotating [41]. As illuminated in Fig. 2.7, a MEMS gyroscope consists of a mass, which is brought

into vibration by an actuator in the direction given by ract. When the gyroscope is rotated, the mass

will not only vibrate in the actuation direction, but will also undergo a (small) additional displace-

ment in the direction perpendicular to both the original displacement and the angular velocity vector

rcor. This additional displacement, also known as the Coriolis Effect, is used as a measure of angular

velocity.

These are packaged similarly to other integrated circuits and may provide either analog or digital

outputs. In many cases, a single part includes gyroscopic sensors for multiple axes. Like the 3D

accelerometer setup, a 3D gyroscope can be assembled using three single axis gyroscopes. Fer-

raris [42] described a method for obtaining the gain, offset and sensitive axis of each of these gyro-
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scopes with respect to the sensor housing. The output of the calibrated 3D gyroscope system is the

angular velocity vector, expressed in the coordinate frame of the sensor housing. Some labs incor-

porate multiple gyroscopes and accelerometers (or multiple-axis gyroscopes and accelerometers), to

achieve output that has six full degrees of freedom.

MEMS gyroscopes are used in automotive roll-over prevention and airbag systems, image stabi-

lization, and have many other potential applications, especially in the flourishing intelligent wearable

devices field. iPhone 4 is the first smartphone that adopts the MEMS gyroscope in consumer elec-

tronics. The newly applied gyroscopes make a great contribution to motion sensing for smartphones.

Although accelerometer has been employed in all sorts of electronics for decades, the primary short-

coming lies in its incapability to measure the rotation around the axis aligns with the direction of

gravity. Besides, its outputs constantly suffer from the interference of the gravitational component.

The traditional solutions was using a high pass filter to eliminate the gravity acceleration as DC

component firstly (such as Eq. 2.2 in last section); subsequently resorting to a low pass filter to

remove the high frequency noise caused by the shaking of device. A series of filters could not only

cause certain distortions in original signals but also reduce the processing efficiency. Apart from

that, these weaknesses cannot be compensated by magnetometer in any way, since it takes some

time to output a stable result and is vulnerable to external Electromagnetic Interference (EMI) as

well. Therefore the emergence of MEMS gyroscope is considered a great breakthrough in motion

sensing. It enables the device to measure the rotation related parameters in real-time and makes the

precise detection of the changing in attitude possible.

As described above, the gyroscope measures the real-time angular velocities around the 3 axes

(ωx, ωy and ωz). The relation between the measured angular velocities and the 3 rotation angles is

as follow Eq. 2.3 [43]:
ωx

ωy

ωz

 =


˙Pitch

0

0

 + RPitch


0

˙Roll

0

 + RPitchRRoll


0

0

˙Yaw

 , (2.3)

where Pitch, Roll and Yaw denote the rotation angles around x-, y- and z-axis separately; RPitch,

RRoll and RYaw are their rotation matrices:

RPitch =


1 0 0

0 cosPitch sinPitch

0 −sinPitch cosPitch

 ;
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RRoll =


cosRoll 0 −sinRoll

0 1 0

sinRoll 0 cosRoll

 ; (2.4)

RYaw =


cosYaw sinYaw 0

−sinYaw cosYaw 0

0 0 1

 .
And then, 

˙Pitch = ωx + (ωysinPitch + ωzcosPitch)tanRoll

˙Roll = ωycosPitch − ωzsinPitch

˙Yaw =
ωy sinPitch+ωzcosPitch

cosRoll

(2.5)

Eq. 2.5 can be solved in strapdown system, so that the rotation angles can be real-time updated.

It is not without its drawback: when Roll = ±90◦, the solutions of equations about ˙Pitch and ˙Yaw

would be uncertain. So this method is to some degree limited. However, with respect to smartphone

users, this situation is not normal and this method is still feasible.

To implement the algorithms elaborated above, an app is developed based on iOS. The app names

“Meine Sensors” and can measure the accelerations, angular velocities, rotation angles, magnetic

field intensities in / around all 3 axes, the air pressure of the surroundings, the relative altitude

towards the initial place, the current GPS coordinates, and the azimuths between the magnetic north

and the geographical north (according to GPS). It is available in App Store1. (also accessible via the

QR code shown in Fig. 2.8 (a)). And it is universal for both iPhone and iPad.

In this app the sampling frequencies for all the inertial sensors are set as 50 Hz uniformly, while

10 Hz for displaying on screen. Because the update rate for GPS module is based on the change

in location and for energy conservation the default threshold for distance filter is set as every 100

meters. The precisions can be promoted by higher refresh frequency but the power consumption

would correspondingly rise. It is worthwhile to note that the build-in barometers are only available

in iPhone 6 / 6 Plus and iPad Air 2 or newer devices, with operating system iOS 8.0 or newer. The

roles of the barometer together with the alternative solutions are described in Chapter 7.2. In this

chapter only the functions of accelerometer and gyroscope modules are involved.

1https://appsto.re/de/7Gek7.i or https://itunes.apple.com/de/app/meine-sensors/id992495675?
l=en&mt=8
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(a) (b)

Figure 2.8: The app “Meine Sensors” is used for recording the data from the sensors in iOS devices.

(a) The QR code of the link in App Store;

(b) The screenshot of the app. The 5 referred sensors are comprised of accelerometer, gyroscope,

magnetometer, barometer and GPS module (among them the barometer is optional). With regard

to the gyroscope module, the angular velocities around the 3 axes are measured. Accordingly the 3

rotation angles are calculated and also displayed on the right side. Other functions of this app are

introduced in the following chapters of this dissertation. In addition 3 languages are supported by

the interface: English, Chinese and German.

Here the function of gyroscope module is primary concerned. With the rotation angles calculated

by the self-developed app shown in Fig. 2.8, both the accelerations and the attitude of the smart-

phone can be measured simultaneously. Subsequently the acquired accelerations in the phone’s own

coordinate system are able to be transformed to the standard earth-fixed coordinate system, so that
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the further step recognition could be implemented subsequently.

2.2.3 Coordinate Transformation

The accelerations measured by smartphone are a vector has 3 items. Transforming the accelerations

from one coordinate system to another could be regarded as rotating the vector between them. It

means that 3 rotation matrices have to multiply the original vector successively so that the vector

after rotation is supposed to be resulted. With respect to the order in which these 3 matrices should

be multiplied, the conclusion drawn from my previous work [33] is firstly R−1
Roll, then R−1

Pitch, finally

R−1
Yaw.

Figure 2.9: An example to illuminate what the correct rotation angles are, when smartphone tilts

Originally the 3 rotation angles were presumed to be the angle the device around their current

corresponding axes. But according to some experiments, that does not turn out to be the case. As the

example illustrated in Fig. 2.9, a phone tilts a little, turns around its lateral edge with a certain angle.

Pitch was presumed to be the angle around current x axis (dashed red line), Roll was around current

y axis (green line), and Yaw was around current z axis (dashed blue line). However, on the basis

of observation, the correct Yaw is the angle the device rotates constantly around vertical direction

(from down to up, original z axis, solid blue line); only the Roll is the angle rotates around the

current y axis (green line); and the correct Pitch is the angle around the axis, which is perpendicular

to the plane, in which the current y axis and original z axis lie (solid red line, in this example it is the
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original x axis by coincidence).

According to the conclusion above, the correct rotating order is first around the z axis, then x

axis, and finally y axis. Therefore the reasonable multiplying order should be RRoll ×RPitch ×RYaw ×

vectorearth. Specifically, here the rotation angles and the vector after rotated are used for calculating

the original vector before rotates (accelerations in earth coordinate). Finally the multiplying order

thus adopted is expressed in Eq. 2.6.
aearth_x

aearth_y

aearth_z

 = R−1
Yaw × R−1

Pitch × R−1
Roll ×


atilted_x

atilted_y

atilted_z

 , (2.6)

where the subscript “earth” means the acceleration values in the standard earth fixed coordinate

system (the vector based on the earth, before tilts), while the subscript “tilted” means the values in

smartphone’s own tilted coordinate system. The explanations for the 3 rotation matrices are listed

previously in Eq. 2.4.

After that, the gravitational component can be easily removed, just adding 1 G on each acceler-

ation value in z direction. Last but not least, after removing the gravity acceleration, the measured

values in 3 axes have to be also made opposite, due to the principle of accelerometer which is

explained in Section 2.2.1. After that the proper accelerations of the smartphone in terms of the

standard earth fixed coordinate system are acquired eventually.

Additional, a test app is also developed to test the effect of the coordinate transformation algo-

rithm described above. As shown in Fig. 2.10, the real-time accelerations in 3 axes are displayed

respectively. All of them are transformed and in terms of the standard earth fixed coordinate system,

so that it can record the smartphone’s proper accelerations more intrinsically, no matter the current

attitude of the device. In order to observe the motion data more explicitly, these sampled accelera-

tions are plotted separately as well, which is rather serviceable for the further step recognition.

Recap
In this chapter the framework of the positioning system is described. Besides, the key inertial

sensors, accelerometer as well as gyroscope, are introduced respectively. Before the sampled ac-

celerations could be used for counting steps and estimating distance, they need to be transformed,

from the smartphone’s own current coordinate system to the standard earth fixed coordinate system.

To fulfill it, the real-time rotation angles obtained from gyroscope plays a vital role. The processes

of calculating the rotation angles from angular velocities, transforming the accelerations between

coordinate systems by the rotation matrices are interpreted in detail. As a part of the plan for the
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future’s real positioning system, some apps are also developed for evaluation.

Figure 2.10: A screenshot of the test app which is used for measuring and calculating the proper
accelerations of smartphone. It measures the accelerations in the device’s own current coordinate
system and transforms them to the standard earth-fixed coordinate system. The 3 values with 3
colors on the screen indicate the tri-axial accelerations after coordinate transform and elimination
from the gravitational component. The 3 curves below are plotted from them. The directions of the
3 axes are previously explained in Fig. 2.4. During test, when the smartphone spins freely, as long as
its barycenter doesn’t move, the displayed accelerations’ values and their curves would never vary
sharply. Because the function of this test app is rather deficient, it is not publicized in App Store.

22



Chapter 3

Step Recognition

With the cooperation of the accelerometer and gyroscope the proper accelerations of the smartphone

could be measured, which reflect the intrinsic motion of the device. Further procedure is to recognize

the step according to the acceleration signals. But these proper accelerations are rather confused to

be distinguished directly. A series of reforms such as a wide variety of filters have to be employed

in order to ameliorate them.

3.1 Sensitive Component

Concerning the accelerations to be analyzed for step recognition, different researchers adopt dif-

ferent acceleration components. Some literatures utilize the module of the accelerations, such

as [44] [45] [46] and [47]. More researchers tend otherwise to sole acceleration in vertical direction

during their experiments [48] [39] [49] and [38].

The experiments shown in Fig. 3.1 are to investigate which component among the accelerations

indicates steps most remarkably according to the different attach positions. For smartphone holding

in hand or putting in pocket is more common. With reference to other wearable devices attaching

on shoe is also usual.

For pedestrian, the pulses in accelerations should be conveniently differentiated. The results of

the experiments above is shown in Fig. 3.2, if the sensor is taken in hand while the volunteer is

walking, each pulse in vertical direction (z axis, blue) is the most remarkably to be identified among

those in others 2. If the sensor is stuck on shoe, from the bottom figure, it is the component in

anterior-posterior direction (y axis, green) that counts more.
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(a) Taking the sensor in hand (b) Attaching the sensor on shoe

Figure 3.1: To determine which component of acceleration plays the most crucial role in the step
recognition. A group of experiments are designed. While the volunteer is walking, the inertial
sensor is held in hand and attached on shoe respectively in order to observe the different acceleration
components according to the different attach positions. The results are compared in Fig. 3.2.
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Figure 3.2: Comparison between holding inertial sensor in different positions. The upper figure is
taking it in hand, from curves it is obvious that the acceleration in vertical direction (z, blue) are
more remarkable; the lower figure is sticking it on shoe that the signal in anterior-posterior direction
(y, green) counts more.
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3.2. ZERO VELOCITY COMPENSATION (ZVC)

Some of pervious literatures argue that the module of accelerations is supposed to be utilized.

But according to my experiments, only if it is without the assistance of gyroscope, the using of the

module in all 3 shows a better effect. Because the attitude of the sensor is unknown, and using all

of the acceleration components would be a more comprehensive solution. It is the most expedient

choice in such a condition.

The experiments in this dissertation are primarily based on the platform of iOS devices. All

of them are handheld devices and equipped with both the tri-axial accelerometer and gyroscope.

Therefore in order to reach the optimal recognition precision, solely the acceleration signals in

vertical direction (z axis) are referred to when step recognition unless otherwise indicated. The

situations sticking sensors on shoe belong to other wearable devices which are beyond the works in

this dissertation and would be discussed in my future research.

3.2 Zero Velocity Compensation (ZVC)

Merely with the raw accelerations in vertical direction toward the earth coordinate system is quite

not enough to perform step recognition, they are usually too deviate for the further operation. Here

the Zero Velocity Compensation derived from Zero Velocity Updates (ZUPTs) [50] is expected

to be employed to offset this kind of deviation. It based on a premise that the object must start

from stationary and after a period of motion return to a stationary state, so that according to the

difference between the calculated terminal velocity and the actual terminal velocity (virtually 0),

the progressive deviation could be compensated theoretically. On the basis of this principle, before

starting up and after the last step finished, the actual velocities of device together with the holder

could be regarded as approximately 0. The calculated velocity at the end of walking can be drawn

on to eliminate the distortion.

a′n(t) = an(t) −
vn(t2) − vn(t1)

t2 − t1
·

1
Ts

(3.1)

where an(t) and a′n(t) denote the raw acceleration value and the value after ZVC; t1, t2 are the starting

and end time of the segment of walking; vn(t1) and vn(t2) are the calculated instantaneous velocity at

t1 and t2; Ts is the sampling duration. Fig. 3.3 is a demonstration how to calculate a′n(t) from an(t).
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CHAPTER 3. STEP RECOGNITION

Figure 3.3: The operation of Zero Velocity Compensation (ZVC)

In the Equations in Fig. 3.3, the velocities are integrated of acceleration over time. Practically, as

the accelerations measured are discrete, the integration is done on the basis of Eq. 3.2.

vn = v0 +

n−1∑
i=0

ai + ai+1

2
· Ts

= v0 +
1
2

a0Ts +

n−1∑
i=1

aiTs +
1
2

anTs, (3.2)

where normally v0 is regarded as 0.

In view of the fact that the commencing and ending velocities are both required to be approxi-

mately 0, the ZVC method is more suitable for the off-line situation, that a set of acceleration data for

the whole walking segment are operated after stop which the initial and final state of the smartphone

could be considered stationary. However, my positioning system is expected to be an intelligent

real-time system which must implement a series of operation at the same time as pedestrian walk-

ing. Performing ZVC afterwards cannot in any way be acceptable. Nevertheless, a procedure of

calibration is proposed at the very beginning to deal with this weakness. While it is calibrating,

the pedestrians are required to hold their devices as still as possible for certain time, without any
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3.2. ZERO VELOCITY COMPENSATION (ZVC)

movement or vibration. The corresponding operations toward ZVC can be performed during this

time, and the acquired parameters in terms of accelerations’ drift could be used to compensate the

deviation in all the following walking time.

(a) (b)

Figure 3.4: The screenshot of the test app for 3 filters

This test app is to implement the 3 filters for the vertical acceleration. Here the effect of Zero Ve-

locity Compensation (ZVC) is displayed. Because a premise for ZVC is at the beginning and end

the object must be stationary. A procedure of self-calibration is designed to provide this stationary

phase. During the calibrating time, the parameters about the distortion caused by the inherent de-

viation in accelerometer are measured by ZVC algorithm. Accordingly the deviation can be abated

and the subsequent data can be ameliorated continually.

(a) A dialog box is popped up when this app is newly booted, in order to inform users that before

walking a 2 seconds’ calibration for ZVC is required and during this time the smartphone should be

held as stable as possible;

(b) The effect of ZVC is obvious. In the upper figure, before, the raw acceleration (blue) and the

treated data (brown) deviate from the zero base line; afterwards the data is corrected and conformed

to the base line.
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Other functions of this test app will be introduced in the following sections. Because the functions

of this app are rather monotonous, it is not publicized in App Store. But they are involved in the

final system.

As shown in Fig. 3.4 (a), the self-calibration is performed at the very beginning, before user starts

walking. When a user firstly opens the app, a dialog box appears in order to remind the user that

after presses the “Start Calibration” button, s/he should hold the device still for 2 second. After the

calibration finished, then s/he is allowed to walk. The effect of the calibration for ZVC is shown in

Fig. 3.4 (b). The raw data of vertical accelerations are plotted in blue color, while the result after

ZVC is in brown. It can be seen that during the initial calibrating time, the acceleration data is above

the zero base line. That is because of an inherent deviation in the output of the accelerometer. After

calibration the ZVC takes effect. The operated data is separated from raw data and goes along the

zero line (at this moment the device is still not moving).

Because the inherent deviations in the accelerometers of new iPhone 6 / 6 Plus are quite low, in

order to demonstrate a more obvious effect for the ZVC algorithm, an old iPhone 4 is adopted to test

here. Therefore the screenshots shown in Fig. 3.4 are taken from an iPhone 4 whose built-in inertial

sensors are old and not so precise.

3.3 Moving Average Filter

After the inherent deviations in acceleration signals are reduced, there are a great deal of noises have

to be further rejected. These noises derived from both inertial units and measuring process cause a

multitude of jitters in the acceleration signals. Because to some extent these jitters could be regarded

as kinds of high frequency components in original signal, certain low pass filter has to be employed

to eliminate these high frequency jitters.

The Moving Average Filter is employed as a low pass filter to deal with these random jitters.

According to Eq. 3.3, for each data in the acceleration sequence, the value is replaced by the

average value among the adjacent several sampling points within a moving window with certain

size. Because of the checks and balances among the neighborhood, the accidental jitters can be in a

certain probability smoothed away.

amovAvg[i] =
1
M
·

M−1
2∑

j=− M−1
2

araw[i + j] (3.3)

where araw[] is the input signal which is after ZVC; amovAvg[] is the output signal after Moving

Average Filter; M is the fixed size of the moving window. In my experiments the value of M is set
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3.3. MOVING AVERAGE FILTER

as 5, which is empirically determined through the signal analysis.

In view of the fact that the data to be processed should be at the center of the current moving

window, with respect to the few data near the two end points, some different calculating methods is

supposed to be applied. Actually the expressions for different data segments are as Eq. 3.4.

amovAvg[i] =


1

M
2 +i+1

∑ M
2 +i+1
j=0 araw[ j] (0 6 i < M

2 )

1
M
∑i+ M

2

j=i− M
2

araw[ j] ( M
2 6 i < n − M

2 )
1

M
2 +n−i

∑n
j=i− M

2
araw[ j] (n − M

2 6 i < n)

(3.4)

where i denote the index of data sequence; n indicates the data size of the whole segment to be

processed; j is the index within in each window.

An experiment is designed to verify the function of the Moving Average Filter: a volunteer holds

the sensor and walks for 9 steps. The vertical accelerations are measured and smoothed by the

Moving Average Filter. The result of the off-line simulation is shown in Fig. 3.5. Most of noises in

the raw accelerations are reduced.
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Figure 3.5: The effect of the Moving Average Filter in off-line simulation. The vertical accelerations
while pedestrian is walking are recorded. With the Moving Average Filter the jitters in raw data have
been eliminated to some extent.

On top of that, the test app shown in Fig. 3.4 also has the function of Moving Average Filter.

The effect in real-time is demonstrated in Fig. 3.6. The subfigure (a) is the screenshot from iPhone

4 while (b) is that from iPhone 6. It is a comparison between the oldest and latest available iOS

devices. In both figures, the brown lines denote the acceleration signals before processed by the

Moving Average Filter, while the green lines indicate the signals after filtered. From both test

platforms, it can be observed that the jitters on brown lines are rejected by the filter to a great extent.
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CHAPTER 3. STEP RECOGNITION

Nevertheless, the intrinsic waveforms and useful features are reserved.

(a) Test with iPhone 4 (b) Test with iPhone 6

Figure 3.6: The effects of Moving Average Filter

Incidentally, it can be found that in the subfigure(b), the data before and after ZVC are no different

(the brown line and blue line on the top, but the blue line is virtually overlapped by the brown). That

is the reason why an old iPhone 4 is chosen for test in Fig. 3.4. In new devices with precise sensors,

the inherent deviation is so tiny that the effect of ZVC is inconspicuous for demonstration.

This Moving Average Filter is also utilized in the pre-process of the azimuth data which is de-

scribed in Section 3.4.2.

3.4 Divide and Conquer

After filtered, the vertical accelerations are adequate for step detection. To recognize each step

according to acceleration waves, there are several features are supposed to be extracted and analyzed.
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3.4. DIVIDE AND CONQUER

With respect to a segment of stable and constant wave, all of these numerous physical features could

be captured easily. Nevertheless, if the wave is generated when pedestrian is changing the gait, the

recorded waveform would be too chaotic to recognize and analyze. Normally this kind of disorder

could not be handled by most mathematical filters, including the ZVC and Moving Average Filter

introduced in Section 3.2 and 3.3.

Actually the steady stepping is just a part in all of the walking behaviors. If the abnormal or

transitional activities such as jerk, halt, turn, wander, push or pull a door are all involved, the step

detection would be rather complicated. The data gathered when gait changes are too instable and

intricate to be tackled. For simplification, for a steady output of step recognition and further distance

estimation, an innovative strategy is introduced in this section. Because it divides the whole into

small parts and processes them separately in order to reduce the complexity, its idea is similar

with an algorithm named Divide and Conquer. First and foremost the whole walking process is

divided into separate segments by several breakpoints such as turning, stop or starting up. So, simply

straight walking is involved in each segment, no transition state at all. As a result the specified

parameters for respective segment would improve the filtering effect and the recognition rate as

well. Furthermore, unlike others’ works such as that solely vertical acceleration [49] or the module

of 3 axes accelerations [44] is drawn on, in my experiments both vertical and anterior-posterior data

are analyzed respectively, so that the activities like stepping backwards, marking time (stepping but

makes no progress) or lateral shift can be distinguished from the normal walking.

3.4.1 Recognition for Start-up and Stop Actions

As discussed above the accelerations collected when unconscious shaking during turning or standing

are misleading to step recognition, the data while stably walking are hence supposed to be separated

from them. Determining the breakpoints among the valid walking waves and invalid fluctuations is

so necessary that the confusion jamming could be ignored accordingly. One kind of the breakpoints

is the time when pedestrian starts up and intermittently stops. In this section the Moving Variance

Analysis is employed for the accelerations in both vertical and anterior-posterior directions to iden-

tify this kind of breakpoints.

As shown in Fig. 3.7, the variance of a set of data indicates how far these values are spread

out. And the variance of the successive accelerations is regarded as an index how severe the device

oscillates currently. When pedestrian walks or even runs, the variance at the moment is definitely

larger than that when s/he unconsciously shakes. Around the transforming points there are certainly

some jumps on the variances. According to these varied variances, the breakpoints derived from the

start-up and stop actions could be determined distinctly.
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CHAPTER 3. STEP RECOGNITION

Figure 3.7: Searching the breakpoints by Moving Variance Analysis. The active domains for verti-
cal (blue) and anterior-posterior (green) accelerations are calculated by the variance analysis respec-
tively. Then the valid phase for pure walking is determined by their intersection set. Therefore not
only the disordered data when walking pattern transforms can be eliminated, but also the abnormal
gaits such as marking time and lateral shift could be differentiated from normal walking because
their accelerations in both directions are not coincide.

In my experiences the active domain for vertical and anterior-posterior data are searched sepa-

rately, and then the boundaries of their intersection set are adopted as the breakpoints for the corre-

sponding walking segment. Though that the normal walking and marking time can be distinguished,

because if stepping but makes no progress, the active domains of the accelerations in vertical and

anterior-posterior directions would not be coincident.

The method simply bases on a fixed threshold of variance is attempted but the performance is

barely satisfactory due to the great diversity among volunteers. In my experiments the variance

thresholds for breakpoints searching are set as dynamic values. In vertical direction, the threshold

is set as 50 times the variance during the stationary calibration at the very beginning (about the

calibration, see Section 3.2); while in anterior-posterior direction the threshold is empirically 12

times the static variance. From observations, if the window size for variance analysis is set between

one to two cycles of the wave, the most remarkable effect towards the variance curve is achieved.

Normally the step frequencies are between 1 step per second and 4 steps per second, and according to

the experiment performed in Section 3.1 one step makes up one wave cycle. Here the sampling rate

for accelerometer is 50 Hz. Therefore the window size for variance analysis is set as 50 sampling

points. As the instance shown in Fig. 3.7, the 2 intervals determined by 2 pairs of breakpoints
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represent the active domains in 2 directions respectively and the final valid walking phase is reckoned

from the intersection set between them. As a result the confused perturbations when starting up and

stop can be rejected previously.

The test experiments as well as the evaluation for this solution are in Section 3.4.3, together with

the method searching for the turn action related breakpoints.

3.4.2 Recognition for Turn Actions

The searching algorithm for the first category of breakpoints is illuminated in the last section. While

another category caused by pedestrian’s turn actions is discussed here. Detecting the turn actions,

along with measuring the turning direction in real-time is more significant for a positioning system,

because the heading angle is a crucial element for PDR scheme. Comparing with the misrecognition

for a few steps, the inaccuracy of azimuth may lead to more serious deviation in the final positioning

result.

a) Data Fusion of Gyroscope and Magnetometer Data
The purpose for this section is to determine the turning points in the whole walking process.

Gyroscope is widely used for measuring the rotation angles with high sensitivity. Besides, magne-

tometer can provide the absolute heading direction and already becomes a common instrument for

all sorts of outdoor applications such as electronic compass. The characteristics of both sensors are

contrasted in Table 3.1 [51].

Table 3.1: Comparison between Gyroscope and Magnetometer
Advantage Disadvantage

Gyroscope No external disturbance
Drift along time

Short term accuracy

Magnetometer Absolute heading
Unpredictable external disturbances

Long term stable accuracy

The emerging of gyroscope enhances the smartphones’ capability in motion sensing greatly. Pre-

cise and sensitive rotation related data can be returned in real-time. But similar to other inertial

sensors, the results from gyroscope would also suffer from drift. What worse, the longer gyroscope

works the more serious drift it would be. Fortunately this diverging drift could be corrected by mag-

netometer whose long term stability is satisfactory. However, it takes magnetometer an uncertain

time to provide a steady output. In other words the real-time reading from magnetometer could be

considered reliable if and only if the motion state of device has not varied for a while. In addition
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the accuracy of magnetometer is rather limited and it is vulnerable to EMI as well. Especially in

an indoor scenario, for example in an exhibition hall or a library where is fully equipped with elec-

trical cables as well as metal surroundings. All of them play the part of the potential interference

sources toward magnetometer. In contrast the sensitivity and interference immunity of gyroscope

could serve well in these conditions regardless of external disturbances. Therefore an optimal and

reliable system might be expected to combine the data from both gyroscope and magnetometer.

In the data fusion scheme, the magnetometer can provide the initial orientation of smartphone and

correct the drift of the gyroscope’s output regularly or irregularly, while the gyroscope would work

independently in some extreme environments such as too severe magnetic interferences occur [45].

The optimal heading angle is estimated as follow:

ĥ = (1 − wM)hG + wMhM, (3.5)

where ĥ denote the estimated heading; hG and hM indicate the results from gyroscope and magne-

tometer, respectively; wM are the weight for magnetometer.

The variance of estimated heading is

σ2 = (1 − wM)2σ2
G + w2

Mσ
2
M, (3.6)

where σ2
G and σ2

M denote the variances from the gyroscope and magnetometer’s measurements. The

more precise the sensors, the less the variances would be.

To minimize the variance σ2, the optimal magnetometer’s weight is

wM =
σ2

G

σ2
G + σ2

M

(3.7)

With this optimal weight value, the heading angle is finally estimated as Eq. 3.8, whose variance is

lowest.

ĥt = (1 −
σ2

G

σ2
G + σ2

M

)hG +
σ2

G

σ2
G + σ2

M

hM

=
hGσ

2
M + hMσ

2
G

σ2
G + σ2

M

(3.8)

Concurrently the variance of the estimated heading angle is

σ2 = (1 −
σ2

G

σ2
G + σ2

M

)2σ2
G + (

σ2
G

σ2
G + σ2

M

)2σ2
M
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=
σ2

Gσ
2
M

σ2
G + σ2

M

. (3.9)

The test of the sensors fusion is implemented as following: volunteers are required to take smart-

phone in hand and walk along a square path in within a building. In Fig. 3.8 the effect is demon-

strated. Here the geographical north regards as 0; the heading angle regards as the angle between

the heading direction and the geographical north, clockwise, from −π to π (rad).
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Figure 3.8: The effect of Sensors Fusion in terms of heading angle
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Figure 3.9: Identifying the turning points by Moving Variance Analysis
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N

Y

Y

N

Figure 3.10: The flow chart for azimuth measurement and turn action recognition. Usually the
azimuth results from the data fusion of gyroscope and magnetometer. If the EMI is too severe,
gyroscope would support the azimuth system independently. When magnetometer is stable, the
output can provide an initial orientation and offset the drift of gyroscope timely.
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b) Turning Detection
Subsequently, the turning time is determined by the heading data. The method is also Moving

Variance Analysis. Likewise, the window size for calculating the variance is set as 50 (1 second).

As shown in Fig. 3.9, according to the sampled data from Fig. 3.8, the effect of searching for the

turning points is remarkable.

When the pedestrian is walking at an indoor scenario, the electromagnetic interference is un-

known and the disturbance sources changes unpredictably, which would degrade the performance of

the azimuth estimation seriously. This kind of degradation can be reduced by assessing the distur-

bance. If the difference between the outputs from magnetometer and gyroscope is larger than a given

threshold, some uncertain disturbance is considered existent and the magnetometer measurement is

therefore ignored temporarily.

The whole operating process for the turn action recognition is demonstrated by the workflow chart

in Fig. 3.10.

In this section, the turning points are searched as the breakpoints which are merely for dividing the

whole walking phase into segments. With regard to each step, the heading is addressed respectively,

rather than using a single average orientation for all of steps in the same segment. The heading for

each step is calculated from the average heading angle during that step.

3.4.3 Evaluation

Spirited by the idea of Divide and Conquer, the whole walking phase would be divided into a series

of segments and the further filters, recognitions and estimations are supposed to be implemented

respectively. On one hand, using separate parameters for different segments could improve the

accuracy in recognition as well as estimation; on the other hand, the instable and complicated accel-

eration waveforms when gait transforms are avoided.

A group of experiments are designed to test the effect of searching the breakpoints. Among them a

combine instance is presented here, which takes place in the corridor of our institute as Fig. 3.11. In

this test experiment the volunteers are required to hold the smartphone and walk through the corridor

in the same floor. Several temporary halt and turning actions are included in the walking experiment.

According to the data recorded by the built-in accelerometer, gyroscope and magnetometer, these

breakpoints in the walking phase are searched. In this realistic scenario it is full of metal and cables

which are potential EMI source for magnetometer.
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Figure 3.11: The map of the corridor in our institute. A pedestrian walks along the green line,
from the door at up-right corner (Point 1) through the corridor to the door at up-left corner (Point
8). In this 136 meters long distance, totally 8 breakpoints are involved: 6 stop points with red sign
(including start and end points) and 2 turning points with blue sign.

The outputs from the magnetometer and the gyroscope are demonstrated in Fig. 3.12. With

reference to the magnetic heading angle, the values on the longitudinal axis of the upper figure in

Fig. 3.12 denote the angle between the orientation of device and the magnetic north, in clockwise

direction. They are interpreted in Table 3.2 in detail.

Table 3.2: The Interpretation of the Magnetic Heading Angles
Magnetic Heading Angle Direction

0◦ Magnetic North
90◦ Magnetic East
180◦ Magnetic South
270◦ Magnetic West
<0◦ Invalid Value

From the heading angles measured by magnetometer, it is obvious that the unpredictable EMI in

surroundings influence the magnetometer severely.
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Figure 3.12: By mean of the data measured by the magnetometer and the gyroscope, the breakpoints
results from turn actions are searched (as Point 3 and 6 in Fig. 3.11) according to Moving Variance
Analysis.

In the walking experiment demonstrated in Fig. 3.11 and 3.12, the volunteer turns twice (around

the corners at Point 3 and Point 6). The whole process takes 136 meters and lasts for more than

100 seconds. In this not so long a time, the drift of gyroscope is not serious, its output is hence not

corrected by magnetometer. In contrast, due to the instabilities caused by IMF, the data from the

magnetometer are temporary ignored several times.

This walking experiment takes the volunteer nearly 200 steps. From Fig. 3.13, these steps gen-

erate the waves in acceleration signals pretty distinctly. Since the changing in the variance curve is

so conspicuous, these halt points are determined precisely by the Moving Variance Analysis. The 4

breakpoints derive from occasional stop are sharply indicated in the figure. The coincidence toward

the active domains in both anterior-posterior and vertical directions verifies these breakpoints as

well. To demonstrate the effect briefly, only the accelerations after filters are displayed in Fig. 3.13

rather than the raw data.
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Figure 3.13: The effect of the breakpoints searching40
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After divide the whole walking process into separate segments, the approaches and algorithms

introduced in the following sections are expected to “conquer” these data subsequently. Within each

small walking segment, the state as well as the gait is comparative monotone and the corresponding

recognition and estimation would be less complicated and more precise.

3.5 Kalman Filter

After several procedures, the step recognition is ready. According to the vertical acceleration wave

the step features are supposed to be extracted. As shown in Fig. 3.14, how the acceleration wave is

generated during a step is illuminated in simplification. As described, there are 1 peak and 1 trough

related to a step (half stride). The harsher the feet strike the ground, the larger the amplitude of

vibration are resulted.

Figure 3.14: The oscillation in the vertical acceleration is generated by walking. Each step corre-
sponds to a cycle of wave. When one foot strikes the ground with the most force, the wave reaches
its peak; a trough is detected when a foot swings over the contralateral leg.

While a pedestrian is walking, the reciprocating actions of legs drive the oscillations of the body

in vertical direction, and these oscillations are recorded by accelerometer.

Timestamp 1: the right leg (icon in solid line) is standing straightly and the left leg (dashed icon)

swings in front of the right leg. In this moment the barycenter is at normal height and on the right

leg side;
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Timestamp 2: the left foot just touches the ground, both the legs bend tinily, the barycenter falls

to its lowest point and are transferring to the left leg side, the vertical acceleration caused by the feet

pressing reaches its peak value;

Timestamp 3: the right leg is going to leave the ground and the barycenter rises;

Timestamp 4: the right leg swings over the left leg. The barycenter reaches its highest point, the

acceleration reaches the minimum (with the positive direction: up);

Timestamp 5: the right leg is going to touch the ground, and the barycenter is transferring to the

right leg side.

Both the legs move iteratively and the oscillation in the acceleration wave is driven continually.

The essential work for the step recognition is to detect all the valid peaks and troughs, so that the

corresponding step length could be estimated successively.

However, in certain extreme conditions, for example when the smartphone is shaken very severely,

although a series of filters are already employed to reject jitters as well as noise, some peaks and

troughs are still rather ambiguous to be distinguished. As the treated accelerations shown in Fig.

3.15, the current filters are remains inefficacious in some cases. In order to extract the step features

more accurately, several additional operations are requisite.
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Figure 3.15: An instance of acceleration data after prophase filters. It is still rather difficult to
recognize every single step accurately. Certain further processes are still necessary.

Because within each divided waking segment, only straight walking is included, no stop, no

turning, and even no transitional activity, the random process noise as well as observation noise are

considered following the normal distribution. Kalman Filter can be taken advantage of to further

reduce Gaussian noise.

Kalman filtering, also known as Linear Quadratic Estimation (LQE), is an algorithm that uses
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a series of measurements observed over time, containing statistical noise and other inaccuracies,

and produces estimates of unknown variables that tend to be more precise than those based on a

single measurement alone [52] [53]. The filter is named after Rudolf E. Kalman, one of the primary

developers of its theory.

The Kalman filter has numerous applications in technology. A common application is for guid-

ance, navigation and control of vehicles, particularly aircraft and spacecraft. Furthermore, the

Kalman filter is a widely applied concept in time series analysis used in fields such as signal pro-

cessing and econometrics. Kalman filters also are one of the main topics in the field of robotic

motion planning and control, and they are sometimes included in trajectory optimization. The

multi-fractional order estimator is a simple and practical alternative to the Kalman filter for tracking

targets.

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces

estimates of the current state variables, along with their uncertainties. Once the outcome of the

next measurement (necessarily corrupted with some amount of error, including random noise) is

observed, these estimates are updated using a weighted average, with more weight being given to

estimates with higher certainty. The algorithm is recursive. It can run in real time, using only

the present input measurements and the previously calculated state and its uncertainty matrix; no

additional past information is required.

In order to use the Kalman filter to estimate the internal state of a process given only a sequence

of noisy observations, one must model the process in accordance with the framework of the Kalman

filter. This means specifying the following matrices: Ak, the state-transition model; Hk, the obser-

vation model; Qk, the covariance of the process noise; Rk, the covariance of the observation noise;

and sometimes Bk, the control-input model, for each time-step, k, as described below.

The Kalman filter model assumes the true state at time k is evolved from the state at k-1 according

to

xk = Akxk−1 + Bkuk + wk, (3.10)

where Ak is the state transition model which is applied to the previous state xk−1; Bk is the control-

input model which is applied to the control vector uk; wk is the process noise which is assumed to

be drawn from a zero mean multivariate normal distribution with covariance Qk.

wk ∼ N(0, Qk). (3.11)
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At time k an observation (or measurement) zk of the true state xk is made according to

zk = Hkxk + vk, (3.12)

where Hk is the observation model which maps the true state space into the observed space and vk is

the observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk.

vk ∼ N(0, Rk). (3.13)

The initial state, and the noise vectors at each step {x0,w1, . . . ,wk, v1, . . . , vk} are all assumed to be

mutually independent.

The data flow of Kalman Filter is illuminated briefly in Fig. 3.16.

Figure 3.16: The schematic diagram for Kalman Filter The squares represent matrices. The ellipses
represent multivariate normal distributions (with the mean and covariance matrix enclosed). The
unenclosed values are vectors.

Simplified, the purpose of the Kalman Filter is: with the observation zk, to calculate the opti-

mal estimation for the true state x̂k, in order to minimize the covariance of the (a posteriori) state

estimate’s error (xk − x̂k).

The process of the Kalman Filter is explicated as follow:

Step 1: according to the (a posteriori) state estimate at time k − 1, x̂k−1, to predict the (a priori)

state estimate at time k, x̂k:

x̂k̄ = Ax̂k−1 + Buk−1, (3.14)

where the descriptions for the vectors A, B and u are the same with those in Eq. 3.10.

Besides, the (a priori) estimate covariance is:

P̂k̄ = AP̂k−1AT + Q; (3.15)
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Step 2: according to the (a priori) estimate x̂k̄, to predict the observation:

ẑk̄ = Hx̂k̄; (3.16)

Step 3: to calculate the difference between the measurement zk and the estimation ẑk̄ in order to

update x̂k̄ to x̂k:

x̂k = x̂k̄ + Kg(zk − ẑk̄). (3.17)

With the Eq. 3.16,

x̂k = x̂k̄ + Kg(zk −Hx̂k̄), (3.18)

where zk −Hx̂k̄ is the residual, Kg denotes the weight between the estimation and the residual, and

also called as Kalman Gain.

Step 4: the covariance of the (a posteriori) state estimate’s error:

P̂k = cov(xk − x̂k). (3.19)

With Eq. 3.18 and 3.12,

P̂k = cov[(I − KgH)(xk − x̂k̄) − Kgvk], (3.20)

Step 5: to differentiate Eq. 3.20, and to make the derivative equal to 0. As a result, the optimal

Kalman Gain is:

Kg =
P̂k̄HT

HP̂k̄HT + R
. (3.21)

The Kg ∈ [0, 1/H], which means if Kg is approaching to 0, the result totally depends on the

(a priori) state estimate and the measurement is wholly ignored; if Kg is approaching to 1/H, the

result totally depends on the measurement and estimation is wholly ignored.

Moreover, the minimum of P̂k is:

P̂k = (I − KgH)P̂k̄. (3.22)

The 5 equations Eq. 3.14, 3.15, 3.18, 3.21, 3.22 are the key ingredients of the Kalman Filter. The

update process is demonstrated in Fig. 3.17 as well.
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Figure 3.17: The flow chart of the Kalman Filter

In this dissertation, the variance of observation noise R is set as the variance of the vertical ac-

celerations when the device is considered static. That “static” period is regarded as the stationary

calibration phase which is described in the Section 3.2. Besides, with respect to the variance of the

process noise Q, according to the datasheets of accelerometer and gyroscope from several main-

stream inertial sensor corporations, this value is set as 0.00001 constantly.

The algorithm for the Kalman Filter is as follow:
Algorithm: Kalman Filter

Input: input[] with size N;

R, Q;

Output: predicted[] with size N;

1 begin
2 p[] with size N, whose first item is 1 and the rest are 0;

3 while i < N − 1 do
4 p_temp← p[i] + Q;

5 Kg← p_temp
p_temp+R ;

6 predicted[i + 1]← predicted[i] + Kg × (input[i] − predicted[i]);

7 p[i + 1]← (1 − Kg[i]) × p[i];

8 i← i + 1;

9 end
where Kg denotes the Kalman Gain.

The effect of the Kalman Filter in the off-line simulation is shown in Fig. 3.18. From the treated

data after the Kalman Filter, the jitters and noise are eliminated to a great extent.
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Figure 3.18: A segment of acceleration signals are processed by the Kalman Filter. The input signal
is after the Moving Average Filter, while the output is after the Kalman Filter

(a) Test with iPhone 4 (b) Test with iPhone 6

Figure 3.19: The effects of Moving Average Filter
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On top of that, the test app shown in Fig. 3.4 also has the function of Kalman Filter. The effect

in real-time is demonstrated in Fig. 3.19. In the experiments, the pedestrian’s hand trembles a bit to

simulate severer noise so that the role of Kalman Filter would be more impressive.

In Fig. 3.19 (a) is the screenshot from iPhone 4 while (b) is that from iPhone 6, which is a

comparison between the oldest and latest available iOS devices. In this test experiment, the volunteer

is required to hold the smartphones with a trembled hand in order to highlight the effect of the

Kalman Filter. In both figures, the green lines denote the acceleration signals before processed by

the Kalman Filter, while the red lines indicate the signals after filtered. From both test platforms,

it can be observed that the jitters on the green lines are rejected by the filter to the great extent.

Nevertheless, the intrinsic waveforms and useful features are reserved.

3.6 Step Recognition

3.6.1 Related Works

a) Zero Cross Detection
A step is recognized when a pair of valid peak and trough is detected within a segment of vertical

acceleration signal. A convenient way to use the cyclic property is to monitor the accelerations for

zero crossings [54]. This is a popular choice for pedometers or activity monitors due to its simplicity.

However, sometimes (just like the situation in Fig. 3.15) this scheme would result in several mis-

takes. In other words, merely with zero cross detection the effectiveness of step recognition will be

unquestionably disappointing. For a satisfactory stabilization in the future positioning application, a

number of additional schemes are supposed to be employed to cope with all the latent unsteadiness,

just like those listed in zero cross detection above. Naturally these extreme situations are seldom but

difficult to handle.

b) Flat Zone Detection
This scheme caters to the situation that placing the sensors on shoes [48] or shanks [55] [56].

With reference to shoes, between foot-strike and toe-off there is a “flat” pause in the acceleration

signal. Concerning the shank-worn sensors, the shank vertical event can be detected by gyroscope.

These flat zones can be used to mark the borders between steps and therefore the recognition is

implemented. But in this paper the platform for the positioning system is smartphone, the possible

position for sensors is in hand or pocket, this scheme is thus inappropriate.

Both the methods above are adopted in numerous personal fitness applications or Wearable Health

Monitoring Systems (WHMS). The pedometer module uses various schemes for recognizing steps.

The zero cross detection is easy to implement but it is vulnerable to the latent disturbances which
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degrades the stabilization of the system greatly. In my preliminary experiments, when pedestrian is

slowly wandering that the measured acceleration signal fluctuates around the 0 axis slightly, the zero

cross points are rather confused to be identified. With regard to the flat zone detection, as introduced

above this scheme is primarily for the systems which place the sensors on humans’ lower limbs.

In this dissertation my positioning system is concerning the platform of smartphone, this scheme is

therefore not under my consideration.

3.6.2 Peaks and Troughs Detection

The step recognition approach eventually employed in my system is peaks and troughs detection,

which detects a series of valid peak-trough pairs in the acceleration signal and accordingly extracts

the useful features for step classification and length estimation.

The technique details lie in the following 3 aspects:

a) Dynamic Thresholds
In most current pedometer or similar applications, a step is detected when the acceleration exceeds

a preselected fixed threshold. This method is simple but also with limited precision. Different

pedestrians with various gaits in manifold shoes all lead to totally diverse acceleration waveforms.

If the system is simply for roughly daily activities monitoring, it is barely adequate. However, with

respect to the indoor positioning system whose requirement in accuracy is comparatively high, this

fixed threshold method is quite incapable. In order to detect these peaks and troughs more precisely,

a dynamic relative threshold scheme is presented by [32] [39].

Figure 3.20: The peak and trough of the ith step are identified by the dynamic thresholds

A series of dynamic thresholds are set to identify the successive peaks and troughs. The thresh-

old for a peak was determined by the value of the last trough, while the threshold for a trough was

calculated from the amplitude of the last peak. As Fig. 3.20, the threshold for the ith peak peaki,

upper_thresholdi, is the value of the last trough troughi−1 plus a relative parameter ∆threshold.
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Similarly the threshold for the ith trough troughi, lower_thresholdi, is the value of the last peak

peaki subtracts a relative parameter ∆threshold. Because of the correlation among the adjacent

steps, to some degree, this scheme is invulnerable to gait change that the amplitude of the accelera-

tion may vary gradually. During my experiments this relative ∆threshold is set as 0.2 G empirically.

b) Level Crossing Algorithm
Normally a peak is defined as the point whose value is larger than the adjacent points on both

sides, while likewise a trough is less than its neighbors. A simple way for peak trough detection is

searching all these points with above characteristics. Nevertheless, occasionally there are more than

one peaks or troughs could be found in one single wave cycle (as Fig. 3.18, near point 425, there

are still 2 troughs detected in a single wave cycle). With regard to these stubborn jitters directly

using the maxima and minima will definitely mislead the further steps length estimation. As a result

an advisable scheme is introduced in this section to deal with these intractable jitters so that more

reliable peak-trough pair could be identified for every wave cycle.

A Level Crossing Algorithm is utilized to search the unique peak and trough in a single wave

cycle [57] [58]. Suppose the series of acceleration values up to now are a0, a1, . . . , an, where an is

the most recent. an is mapped as a beacon on the basis of

sign(an) =


1, i f an > µn + σn

0, i f an < µn + σn

∧, otherwise

(3.23)

where µn denotes the average of the series, σn is the standard deviation, and ∧ indicates an unde-

fined state. Two thresholds µn +σn and µn−σn are the two levels for characterizing “up” and “down”

respectively. Both µn and σn can be updated incrementally based on the new incoming signal. This

mapping yields a sequence of beacons. Then the consecutive 1-beacons are merged into a single

bit 1, 0-beacons into 0, and ∧s into ∧. A pattern “10” or “1 ∧ 0” is considered a valid peak. The

2 temporary thresholds µn + σn and µn − σn can be adjusted for better performance. Similarly, the

trough items can also be identified by the patterns “01” or “1 ∧ 0”.

Rather than the simple maxima or minima, the operative peaks and troughs could be targeted with

higher accuracy by the Level Crossing Algorithm.

c) Double Peaks (Troughs) Merging Algorithm
The filters, approaches, algorithms employed above can to a great extent reject the jitter in the

acceleration waveform, but sometimes after those there are still successive double peaks or troughs

in a single wave cycle left (although not common). In this case, the 2 successive peaks or troughs
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need to be further combined. Consequently an algorithm is developed specially for this residual

problem after all of the foregone processes.

N

Y

Y Y

N

N

Y

Figure 3.21: The flow chart of the algorithm for removing potential double peaks within a single
step wave cycle; for troughs is similar.

In Fig. 3.21, the algorithm for removing the residual jitters toward peaks is demonstrated. After

the previous approaches, there is an array for peaks, in which all of the indexes (time points) for each

peak are stored, while for troughs also. Initially, every 2 successive peaks’ time interval is calculated.

If any 2 peaks are too close (their interval is less than half of the average interval of a whole walking

segment), a case of double peaks may occurs. Subsequently, according to different situations (peak

first, or trough first), different processes are implemented to verify whether successive double peaks

are recorded accidently or not.

51



CHAPTER 3. STEP RECOGNITION

(a) The situation, peak first then trough (b) The situation, trough first then peak

Figure 3.22: When a jitter happens, double peaks may be recorded within a single wave cycle.
The arrays peak[] and trough[] store the indexes of every peak and trough detected. (a) is for the
situation, peak first, then trough; while (b) is for trough first and then peak.

As shown in Fig. 3.22, normally the peaks and troughs recorded should take place by turn. In

other words, the indexes which are stored, should be . . . < peak[i] < trough[i] < peak[i + 1] <

trough[i+1] < . . . (if peak first), or . . . < trough[i] < peak[i] < trough[i+1] < peak[i+1] < . . .

(if trough first). But when successive double peaks occur, peak[i + 1] would smaller than trough[i]

(the next peak would earlier than the trough in the current step); or peak[i + 1] would smaller than

trough[i + 1] (the next peak would earlier than the trough in the next step). Once these happen, the

2 successive peaks would be merged, that means only the larger acceleration value’s index would

remain and the smaller one’s index would be deleted from the array peak[].

Likewise, the potential successive double troughs can also be removed by this algorithm. The

corresponding flow chart as well as the similar procedure is not described repeatedly here.

After this algorithm takes effect, the faults could be tolerated in a great measure. Although therot-

ically it can never guarantee that all of jitters would be removed unconditionally, practically accord-

ing to my multitudinous experiments, none of this kind of accident happens again. A possible reason

is that after a mixed variety of filters plus algorithms, and the instability during gait transition are

excluded also, the extreme situations are already few and far between.

A demonstration app is developed and shown in Fig. 3.23, which integrates all the filters and

algorithms discussed in this chapter to perform the function of step recognition. The ZVC, Moving

Average Filter, Divide and Conquer Strategy, Kalman Filter are utilized to meliorate the sampled

acceleration waveform. Moreover, the Dynamic Threshold, Level Cross Algorithm and Double

Peaks (Troughs) Merging Algorithm presented in this section are for peak-trough pairs detection.
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(a) Demo on iPhone 4 (b) Demo on iPhone 6

Figure 3.23: The screenshot of the demo app for step recognition

The brown lines denote the raw accelerations and the red lines indicate the data after multiply

filtered. The white lines are the variance of the filtered data, which is used for activating the step

recognition (determining the active walking phase discussed in Section 3.4). All the valid peaks are

highlighted with blue signs and troughs with green. According to these alternate peaks and troughs,

each step is counted successively.

This demo app is running on different iOS devices and tested by diverse volunteers. From the

experiments the accuracy of step recognition is completely satisfactory. Particularly in the (b) figure,

although several intractable jitters remain on the treated waveform, the identification for peaks and

troughs is still precise.

As other test apps shown in this chapter, this “Step Counter” is also not submitted to App Store,

because a more comprehensive app which includes more functions is already available in App Store

and will be introduced in the next chapter (Fig. 4.16).
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3.7 Alternative Scheme

3.7.1 Model Wave Simulation

As discussed before a series of filters and algorithms can reduce all kinds of noises to the minimum.

Their serviceability is proved by all range of off-line experiments as well as the real-time app.

However, so much prophase processes before walking distance estimation are a great challenge for

certain smartphone platforms. In my dissertation most of the experiments are based on iOS devices

whose hardware capability is superior among the similar products. Once a less advanced terminal

device is referred to, probably the computation cost towards these multiple filters and algorithms is

rather large and furthermore the performance of the final positioning system may be subject to this

disadvantage.

To develop a universal system which could be spread to a wide variety of portable devices with

various processing capacities, an alternative approach is proposed in this section. In contrast, the

bias towards the step recognition is also acceptable but its computation cost is relative low.

In this section a simulation algorithm is introduced. With the inspiration of template matching,

a set of standard sine waves are created to simulate the original data. These artificial model waves

should fit the features in original signal as much as possible. From this model wave all of the feature

vectors for step length estimation are extracted instead, so that the potential instabilities caused by

the distortion in acceleration signals are eliminated thoroughly.

First of all, the active domain for Model Wave needs to be determined as usual. These boundaries

are delimited by the moving variance analysis for the acceleration data (as Section 3.4). Because

both the boundaries for the anterior-posterior and vertical data are searched respectively and the

intersection set of those is defined as the active walking phase, the perturbations when nonconven-

tional activities (marking time or unconscious shaking, etc.) and state transforming are supposed

to be excluded. As Section 3.4.1 the window sizes for the moving variance analysis in both the

directions are set as 50 sampling points.

As discussed before every peak-trough pair represents a wave cycle which relates to a single step.

These waves can be considered as sine-like waves. Every wave cycle has its unique upper amplitude,

lower amplitude and a frequency. In order to make the created model waves fit the original signals

as coincident as possible, for every wave cycle within an active walking interval, the optimal upper /

lower amplitudes and frequency are searched. These “optimal” parameters mean that the sum of the

differences between each point on the simulated wave and its corresponding point on original signal

is expected to be made to the minimum.

The algorithm of the Model Wave Simulation is described as follow:
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Algorithm: Model Wave Simulating

Input: WaveO[]; //Original Wave between breakpoints

Output: WaveM[]; //Simulated Model Wave

1 begin

2 for ith step

3 for upper_amplitude[i]⇐ 0.1 to 0.5

4 for lower_amplitude[i]⇐ 0.1 to 0.5

5 for f requency[i]⇐ 1.0 to 4.0

6 find min
∑

j∈movWindow[i] |WaveM[ j] −WaveO[ j]|;

7 save the fittest amplitudes and frequency for this step;

8 Create sine waves by saved parameters of each step;

9 end
The moving window size is set as 3 steps in my experiments. In other words, the parameters of

each step are depended on its previous step and following step. Because of the shaking when walk-

ing, the vibrations of other body parts are also recorded by smartphone. Especially when pedestrian

changes gait or speed up suddenly, the disordered data around these transition points are rather

complicated and difficult to handle. With the new model wave the disorders are smoothed away

but useful features are kept. This Model Wave Simulation Algorithm can simplify the process of

step recognition and shows better operability on the embedded platform, especially on certain less

advanced smartphones.
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Figure 3.24: The effect of Model Wave Simulation Algorithm
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3.7.2 Evaluation

The effect of the Model Wave Simulation Algorithm is demonstrated in Fig. 3.24. In the figure the

new created model waveforms are perfectly conformable with the original waveforms. After that the

feature vectors for step length estimation can be copied but the ambiguous distortions are therefore

ignored.

Progressing to the comparison between this algorithm and previous schemes, in view of the fact

that the results from the model wave simulated are often not exactly the points of peaks and troughs,

there is no comparability in precision between previous analytic schemes and this simulation al-

gorithm. Nevertheless with respect to the reject rate and the misrecognition rate, this algorithm is

flawless. Although the error rate of previous schemes is quite low, they cannot provide absolute

reassurance. Once a couple of peaks or troughs are missing, misrecognized or disordered, this im-

perfect input could cause a series of meaningless results in further step length estimation, and for the

whole positioning system is a potential factor of instability. Hence this is also a unique advantage of

the Model Wave Simulation Algorithm and it is reasonable to employ this algorithm in the realistic

system especially when the hardware condition is limited.

Recap
In this chapter with the sampled data form the IMUs, the prophase processes for the step length

estimation are explicated. They consist of using ZVC and Moving Average Filter to ameliorate the

acceleration signal; dividing the whole walking phase into small segments to abate the complexity;

applying Kalman Filter to further reject the noises; then with the treated acceleration signal, the

Dynamic Threshold, Level Cross Algorithm and Double Peaks (Troughs) Merging Algorithm are

employed successively to recognize and count the steps. Taking the computation cost into consid-

eration, an alternative scheme named Model Wave Simulation is proposed lastly to adapt to the less

advanced devices with relative low processing capability. Although the filters and algorithms intro-

duced in this chapter are not the key ingredients in the final indoor positioning system, they lay an

indispensable foundation to the crucial procedure of step length estimation.
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Chapter 4

Walking Step Length Estimation Model

Based on the meliorated acceleration waveform the approaches of step recognition and counting for

pedestrian are explicated in the last chapter. In this chapter the key procedure for positioning is

introduced, which is to estimate the step length according to the walking acceleration features. On

the basis of the system architecture stated in Section 2.1, it is also the core of a Step and Heading

System (SHS).

4.1 Related Works

As discussed in the last chapter, the stepping of pedestrian can generate discrete impulses in the

acceleration signals. According to a few physical features of these special waveforms, the horizon-

tal moving distance of the body barycenter could be reckoned statistically. The wearable IMUs are

widely utilized in numerous sports training and personal fitness systems for recognizing and ana-

lyzing humans’ daily activities. In terms of the step length estimation, comprehensively there are 9

mathematical models concluded from the previous literatures [59].

4.1.1 Static Models

1) Constant Step Length

Some applications employ this method. The users have to measure their average step lengths by

theirselves (walk with a certain amount of steps and measure the distance), or use the recommended

value by default.

2) Determined by height

The step length for male is regarded as 0.415 times his height, while for female is 0.413 her
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height [60]. This is a convenient method in a few pedometers based apps which counts the steps

by the acceleration impulses and simply cumulates the step length and energy expenditure within a

period.

4.1.2 Dynamic Models

Obviously the 2 static models above are rather rough and solely capable in certain imprecise appli-

cations. For more scenarios which have higher requirement in accuracy, a series of dynamic math-

ematical models based on a variety of physical items of acceleration were developed by previous

researchers.

3) Weinberg Model [61]

step_length = k · 4
√

amax − amin , (4.1)

where amax and amin denote the peak and trough value of the vertical accelerations in that step; k

represents the user specified parameter. This classical model was proposed by Weinberg in 2002,

which uses the difference between the peak and trough values for reckoning the step length. The

larger the drop between maximum and minimum is measured, the longer the corresponding step is

supposed to be taken by the pedestrian. The customized parameter is adopted to cater to exacting

users.

4) Kim Model [45]

step_length = k ·
3

√∑N
i=1 |ai|

N
. (4.2)

There are N sampling points in the step and ai is the vertical acceleration of the ith sampling point;

k indicates also the user parameter. In this model, the magnitude of the acceleration (the expression

in the cubic radical sign) is drawn upon, which is regarded as an index for describing the intensity

level of the physical vibration. It is reasonable to consider that the more intense vertical vibrations

of the body lead to the bigger strides.

5) Scarlett Model [62]

step_length = k ·

∑N
i=1 |ai |

N − amin

amax − amin
. (4.3)

The explanations for the parameters are the same as the equations above. The peak and trough

values, their difference as well as the magnitude are utilized.

6) Xu Model [46]

step_length = k · [(amax − amin) + 4
√

amax − amin]. (4.4)
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This model was patented. Similar to Weinberg Model, merely the difference between the peak and

trough value is made use of. But the expression of Xu Model is a bit more complicated.

7) Frequency Related Models

A number of researchers also maintain that there is a linear relation between the step length and

the step frequency [21] [63] [64]. They harbor the idea that the pedestrian with a higher walking

frequency is more likely to make a longer step length, because it is universally acknowledged that

when a pedestrian walks faster, s/he tends to raise the step length and the frequency at the same time.

Fig. 4.1 is a typical experiment result from [44].

Figure 4.1: The relation between step length and frequency. According to the experiment results
from [44], the step length is proportional to the step frequency, which can be applied to estimate the
step length.

Other literatures also draw the similar conclusion. Although the concrete mathematical expres-

sions are various, the basic models are like this:

step_length = a f + b, (4.5)

where f denotes the step frequency, while a, b indicate the customized coefficients which are non-
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negative. This model is abstracted from the proportional relation between the step length and the

frequency.

Furthermore, more precise nonlinear model is presented by other researcher as well [65]. Rather

than using the direct step length and frequency, their rates are referred to instead. Besides, the

relation is nonlinear: 
kd = 1.5k2

f − 1.8475k f + 1.3468

kl = l/ln

k f = f / fn

(4.6)

where kl denotes the step length rate; while k f indicates the frequency rate. l and f represent the

step length and frequency. ln and fn are the step length and frequency when pedestrians walk with

their most normal gait (or their average values), which are considered constant.

On one hand, these frequency related models above show better operability and higher fault tol-

erance ability than the peak-trough pair based models introduced before, in view of the fact that if

a couple of peaks or troughs are misrecognized, the unfavorable influence over the measured step

frequency is comparative low, but towards the peak-trough schemes it would lead to a meaningless

result in that step. On the other hand, the real-time performance in the peak-trough based models is

more satisfactory, for the reason that once a pair of peak and trough is recognized, the step length can

be calculated immediately, but the measurement for the step frequency could not be implemented

instantaneously in any way. Practically the step frequency is a physical quantity with regard to a

period of time. In other words, for a single step to precisely measure its frequency is rather intricate.

Solely with a handheld device to determine the exact starting and end time of one step is excessively

intractable. More feasible solution towards a system based on smartphone is to calculate the average

step frequency within a short period of the preceding time. However, the real-time performance

of the system is undoubtedly influenced by this inevitable delay. For a health monitor application

whose requirement for the timely data is relative low, this short delay is still acceptable, but as an

indoor positioning system it is an obtrusive disadvantage. In conclusion, both sorts of the current

models have their superiorities and deficiencies. The evaluations toward the accuracy are not the

topic here and will be discussed in Section 4.3 exclusively.

Moreover, according to my experiments, there is a fact that, all of linear and nonlinear models

above are based on an assumption, or a premise: all of volunteers are required to walk with their

normal or comfortable gaits. It can be therefore rationally explained that, why the larger frequency

the pedestrian walks with, the longer step length s/he makes. Consequently, the utilization of these
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models is limited. They are only suitable for the most normal gaits. Small steps with high frequency

and large paces but low frequency are naturally never referred to.

8) Shin Model [54]

step_length = a f + bv + c. (4.7)

In this model, not only the step frequency ( f ) but also the variance (v) during that step is involved.

As a result it is more delicate than the frequency singly related models listed before because to a

certain extent it takes the fact into account that solely a high frequency could not definitely result in

a large step.

9) Bylemans Model [38]

step_length =
2.7

√√√∑N
i=1 |ai|

N
·

√
k

√
∆t · (amax − amin)

· 0.1, (4.8)

where ∆t denotes the duration of the step (in ms), the meanings of the rest of the parameters are

similar to those of the models before. In Eq. 4.8, the magnitude of the accelerations, the frequency

and the peak-trough difference are all included. Thus the advantages of the peak-trough pair based

models, the magnitude involved models and the frequency related models are all incorporated in

this model. Contrary to Weinberg Model and Xu Model, it argues that the step length decreases

with the increasing of the peak-trough difference. The reason for this contradiction is investigated

in my experiments and will be analyzed in the following section. After all, Bylemans model is up

to now the most meticulous and comprehensive step length estimation model and was employed in

my previous works [33] [66] as well.

4.2 Walking Step Length Estimation Model

Although some of the current models already show their conveniences, most of them are only suit-

able for the most common gait for human (step length: 0.65 to 0.75 meters, frequency: 90 to 120

steps per minute). When it comes to more varied and abundant gaits, the effect is less than satisfac-

tory. For higher precision of the step length estimation as well as positioning, a novel mathematical

model is investigated in this section. This new model is supposed to be general for all sorts of gaits,

because the pedestrian activities may also include wander and roam. For the application scenarios of

museum or exhibition hall, a lower walking speed is more preferred, while a higher speed is geared

towards the walking race.

This estimation model is expected to be one or a set of mathematical expressions that the step
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length could be deduced from other physical items measured by inertial sensors. Due to the diver-

sity of the human bodies, theoretically modeling for individuals’ physical structures is extremely

complicated. For that reason an exact analytic model which is universal to all kinds of the human

gaits does not appeal to most of the researchers. It is widely shared that the statistical models are

more feasible. All of the previous investigations listed in the last section also focused on the sta-

tistical relations among the step length and other acceleration related physical items such as the

magnitude of accelerations, the peak value, the trough value, the variance and the frequency of that

step. In order to discover more substantive relations among the step length and those physical items,

a multitude of experiments are designed and implemented in my research.

The experiments are based on the built-in IMUs of smartphone. The sampling rate is set to 50

Hz. All the acceleration related data are measured in G, which denotes 1 unit of gravity acceleration

(c.a. 9.8 m/s2). The coordinate transformation and filtering for the accelerations comply with the

approaches explicated in Chapter 2 and 3. The step length is set from 0.4 to 0.9 m, every 0.05 m a

group, and 11 groups in all; while the frequency varies from 60 to 180 spm, every 5 spm a group,

and 25 groups in all, where spm represents steps per minute. For every step length group, and every

frequency group: the magnitude, the average peak value, the average trough value, and the variance

for the acceleration data in both the anterior-posterior direction (y-axis), the vertical direction (z-

axis) and their module (m) are recorded (12 items in total). The definition of the magnitude is the

same as that in Eq. 4.2, 4.3 and 4.8). Although it has been discussed in Section 3.1 that solely the

accelerations in vertical direction are the most sensitive to stepping, here in order to discover more

potential relations among the step length and other physical items as comprehensive as possible, the

quantities in the y-axis and their module (
√

y2 + z2) are also recorded for analysis. Each combine

group contains a certain step length and a certain frequency, so there are 275 combine groups alto-

gether. In order to reduce the random errors, all of these experiments are implemented by just one

volunteer, and every combine group with the same gait is performed at least 10 times. All these

experiments were performed in the corridor of our institute (as Fig. 4.2). A treadmill is not adopted

due to the potential influence of conveyer belt in the y-accelerations. The walking distance for 1

time is between 20 and 30 meters (20 to 50 steps). As a result the whole walking distance for this

volunteer is more than 50 km. The first stage for the experiments lasted for 3 weeks (The following

stages are for running, putting smartphone in pocket and climbing stairs).

As shown in Fig. 4.2, to adjust the volunteer’s steps to a preselected frequency, a metronome app

for musical instrument is utilized. To make the volunteer’s steps coincide with a certain length, a

measuring tape is laid on the floor and all of the foot striking points are marked with color tags (Fig.

4.3).
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Figure 4.2: To develop the step length model, a large number of experiments are implemented by
volunteer. The step length and frequency are calibrated by measuring tape and metronome. The
acceleration data are collected by smartphone.

Figure 4.3: The step lengths are adjusted by the tags on the measuring tape.
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Figure 4.4: The sampled data during the experiments
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After 3 weeks of the walking experiments, a considerable quantity of data are acquired. An

assumption has to be accepted that the variation in the volunteer’s weight could not impact the

collected data greatly.

As an instance, Fig. 4.4 shown a set of acceleration data collected from one walking experiment.

In this group the volunteer is required to walk for 50 steps, with each step length 0.4 m and frequency

70 spm. The walking distance is 20 m. The acceleration signals displayed in Fig. 4.4 are filtered.

According to the Divide and Conquer Algorithm introduced in Section 3.4, the starting and end

points of the valid walking phase are indicated by dashed lines. On the basis of the step recognition

algorithms illustrated in Section 3.6.2, all of the peaks and troughs on the 3 waves are extracted and

marked. The values and the timestamps of these peaks and troughs would play a crucial role in the

discovery of the decisive feature vectors.

Furthermore, in order to compare the influence of the given physical items, the relations between

these items and the frequency are demonstrated from Fig. 4.5 to 4.10. The sources of these 6 figures

are the data recorded when the step length = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 m. Particularly, instead of

the peak and trough values separately, their differences are plotted here.
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Figure 4.5: With the step length 0.4 m, the 8 items vary with the different frequencies
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Figure 4.6: With the step length 0.5 m, the 8 items vary with the different frequencies
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Figure 4.7: With the step length 0.6 m, the 8 items vary with the different frequencies
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Figure 4.8: With the step length 0.7 m, the 8 items vary with the different frequencies
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Figure 4.9: With the step length 0.8 m, the 8 items vary with the different frequencies
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Figure 4.10: With the step length 0.9 m, the 8 items vary with the different frequencies

In these 6 figures, from top to bottom they are the physical items in y-axis (the anterior-posterior

direction), z-axis (the vertical direction) and their module (m) respectively. From left to right they

are the magnitude, the difference between the peak and trough, and the variance of the accelerations

successively. Because there is too much confusion in the item towards the peak-trough difference of

the module values, the figures for this item are not displayed.

From these 6 figures, it could be noticed that, the relations regarding the y data show less regularity

than those about the z data. Even the longer the step length is, the more confused points are obtained.

In order to find out the reason, several raw data are contrasted and analyzed specially. In reality, the

waveforms in the y direction are not constantly the same. As an instance, in Fig. 4.11, 3 acceleration

waveforms in the y direction are compared. All of these signals are sampled with the same step

length (0.8 m) and the same frequency (130 spm). Initially, every peak in the upper figure is quite

distinct. Subsequently in the middle figure a few troughs rise. And beside the “rising” trough, the

2 peaks draw closer. As a result in the bottom figure, the 2 adjacent peaks almost merge and it

is difficult to distinguish them. In other words, every 2 steps make up 1 wave cycle finally. The

phenomenon is common in all of the y-axis accelerations. At first every step is differentiable. After

several times in the same experiment group with the identical gait, the adjacent steps draw closer,
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just like the situation in a walking race: in the anterior-posterior direction, weaker impulses would

be made, and the body is more likely to make a uniform motion. This phenomenon leads to the

distortion in the y signals, and along with the growth of the walking speed, the confusion in the y

signals becomes increasingly severe. In contrast, the peaks in the z signals are invariably distinct,

without merging tendency. That is why the z data in the 6 figures above show more regularity while

the y data not. Since the module comprises both the y and z data, the confusions exist also in its

items. In conclusion, solely the z data related items would be involved in my model. This decision

is consistent with the conclusion of Section 3.1 as well.
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Figure 4.11: Even with the identical gait (the same step length and frequency, the waveforms in the
anterior-posterior direction change uncertainly. There is an obvious tendency that 2 adjacent peaks
are merging gradually.

The aim of this chapter is to discover a relation that the step length can be expressed by the

measured physical items. Fig. 4.12 shows in different f requencies, the variation relations between

the 3 items and step lengths. Due to the instability in the y data, merely the items regarding the z

data are referred to. Here 11 frequency ranges are adopted rather than 11 certain frequency values

because during the realistic experiences it is too intractable for a volunteer to adjust his or her

steps to a definite frequency precisely for dozens of steps. There are unavoidable deviations in the
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frequencies measured afterwards.
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Figure 4.12: The relations between magnitude, peak− trough di f f erence, variance and step length
are demonstrated according to different f requency groups.

Table 4.1: The fitting equations of magnitude (m) to step length (s) in terms of the different
f requency ranges

Step Frequency Range (spm) Equations m to s
70-79 m = 0.25985s2 − 0.18975s + 0.054113
80-89 m = 0.57327s2 − 0.58185s + 0.18041
90-99 m = 0.66367s2 − 0.65849s + 0.20161

100-109 m = 0.63265s2 − 0.55973s + 0.16571
110-119 m = 0.92774s2 − 0.81974s + 0.22392
120-129 m = 0.50208s2 − 0.31359s + 0.090053
130-139 m = 0.78336s2 − 0.52417s + 0.11824
140-149 m = 0.31979s2 − 0.024486s − 0.01065
150-159 m = 0.38369s2 − 0.12163s + 0.025127
160-169 m = 0.33562s2 − 0.064275s + 0.00059466
170-180 m = 0.28869s2 − 0.1197s + 0.045024
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From Fig. 4.12, it is evident that in all of the 11 frequency ranges, there are obvious quadratic

relations between these 3 items and step length. By defining just one of these 3 quadratic relations,

the step length model could be accordingly developed.

For each of the 11 frequency groups, there would be a corresponding quadratic relation between

the 3 items and steplengths. Consequently there are theoretically 33 quadratic relations in total. All

of these 33 relations are fitted and their equations are listed in Table 4.1, 4.2 and 4.3.

Table 4.2: The fitting equations of peak − trough di f f erence (d) to step length (s) in terms of the
different f requency ranges

Step Frequency Range (spm) Equations d to s
70-79 d = 0.82686s2 − 0.57518s + 0.17609
80-89 d = 1.0236s2 − 0.76574s + 0.24469
90-99 d = 1.4939s2 − 1.2416s + 0.379

100-109 d = 1.3399s2 − 0.85151s + 0.23725
110-119 d = 2.409s2 − 1.8603s + 0.47695
120-129 d = 1.09s2 − 0.40694s + 0.12914
130-139 d = 2.1672 − 1.2163s + 0.23003
140-149 d = 0.9095s2 + 0.051136s − 0.072082
150-159 d = 1.004s2 − 0.087144s − 0.024795
160-169 d = 0.95522s2 − 0.044558s − 0.056652
170-180 d = 0.63705s2 − 0.031979s + 0.031102

Table 4.3: The fitting equations of variance (v) to step length (s) in terms of the different f requency
ranges

Step Frequency Range (spm) Equations v to s
70-79 v = 0.06528s2 − 0.064894s + 0.016909
80-89 v = 0.10454s2 − 0.1025s + 0.02598
90-99 v = 0.15669s2 − 0.15557s + 0.039663

100-109 v = 0.2008s2 − 0.19112s + 0.046707
110-119 v = 0.36055s2 − 0.34934s + 0.085233
120-129 v = 0.17212s2 − 0.1344s + 0.028213
130-139 v = 0.43013s2 − 0.39086s + 0.090263
140-149 v = 0.30767s2 − 0.27938s + 0.067228
150-159 v = 0.23666s2 − 0.18803s + 0.038631
160-169 v = 0.30128s2 − 0.2862s + 0.071869
170-180 v = 0.10899s2 − 0.081083s + 0.017486

In addition, the fitting curves for these 33 relations are compared in Fig. 4.13 as well.
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Figure 4.13: The fitting curves of magnitude, peak − trough di f f erence, variance to step length
are illustrated with different f requency ranges.

As a result the item variance is chosen as the independent variable in the prospective model for the

step length estimation. Because from Fig. 4.13, the curves in the bottom figure vary most sharply.

Among these 3 items, variance shows the most remarkable relation with step length. Consequently

the objective model is expected to be in the form that step length is a function of variance and
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f requency.

According to Fig. 4.13, it is assumed that the relation between variance (v) and step length (s) is

quadratic:

v = as2 + bs + c, (4.9)

where a, b, c are the coefficients to be determined. These coefficients are also the functions of

f requency. In order to determine these coefficients, the relations between f requency and variance

under certain step length are necessary. These relations can be obtained from the data displayed in

Fig. 4.5 to Fig. 4.10. As Fig. 4.14, this example is an f − v figure when step length is 0.7 m. This

figure is already shown as a part in Fig. 4.8.
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Figure 4.14: When step length is 0.7 m, the relation between f requency and variance is demon-
strated. Two quadratic functions can be fitted accordingly.

When step length is 0.7 m, the relation between f requency and variance is expressed by a piece-

wise function:  v = 0.00000650 f 2 − 0.000951 f + 0.0386 ( f < 140)

v = 0.00000750 f 2 − 0.00285 f + 0.283 ( f > 140)
(4.10)

Along with the growing f requency, at first the motion in vertical direction would be increasingly
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intense, and then becomes calmer and calmer. As analyzed before, when the step frequency is high,

the pedestrian tends to adopt a gait just like that in a walking race. The acceleration impulse related

to each step is less distinct and the body is prone to make a uniform motion.

Similarly, the relations between f requency and variance at other step lengths (part of) are listed

in Table 4.4.

Table 4.4: The f requency − variance relations at different step lengths
Step Length (m) Frequency-Variance relations

0.4
v = 1.61 × 10−8 f 2 + 0.0000203 f − 0.000768 ( f <140)
v = 0.00000214 f 2 − 0.000776 f + 0.0722 ( f > 140)

0.5
v = 1.52 × 10−8 f 2 + 0.0000344 f − 0.00141 ( f <140)
v = 0.00000483 f 2 − 0.000924 f + 0.0779 ( f > 140)

0.6
v = 0.00000221 f 2 + 0.000293 f − 0.0113 ( f <140)
v = 3.075 × 10−7 f 2 − 0.000155 f + 0.0256 ( f > 140)

0.7
v = 0.00000650 f 2 − 0.000951 f + 0.0386 ( f <140)
v = 0.00000750 f 2 − 0.00285 f + 0.283 ( f > 140)

0.8
v = 0.00000826 f 2 − 0.000888 f + 0.0287 ( f <140)
v = −0.000719 f + 0.147 ( f > 140)

0.9
v = 0.0000128 f 2 − 0.00131 f + 0.0407 ( f <140)
v = −0.00135 f + 0.263 ( f > 140)

With the 6 pairs of equations in Table 4.4, the coefficients a, b, c are calculated by the least square

method:


c

b

a

 =


6

∑6
i=1 si

∑6
i=1 s2

i∑6
i=1 si

∑6
i=1 s2

i
∑6

i=1 s3
i∑6

i=1 s2
i
∑6

i=1 s3
i
∑6

i=1 s4
i


−1 

∑6
i=1 vi∑6

i=1 sivi∑6
i=1 s2

i vi

 (4.11)

where si are [0.4 0.5 0.6 0.7 0.8 0.9]; vi are the equations in Table 4.4. Therefore, when f <140

spm: 
a

b

c

 =


0.0000545 f 2 − 0.00501 f + 0.15495

−0.0000461 f 2 + 0.00404 f − 0.130

0.0000102 f 2 − 0.000913 f + 0.0336

 ; (4.12)

when f >140 spm:
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
a

b

c

 =


0.000178 f 2 − 0.0613 f + 5.381

−0.000177 f 2 + 0.0607 f − 5.272

0.0000423 f 2 − 0.0145 f + 1.248

 . (4.13)

From Eq. 4.9,

s = k ·
−b +

√
b2 − 4a(c − v)

2a
. (4.14)

The Eq. 4.12, 4.13 together with 4.14 constitutes the main ingredients of the mathematical model

for step length estimation. The step length is ultimately a nonlinear function of f requency and

variance.

However, all of the sampling data are sourced from 1 volunteer. Hence theoretically the equations

above are solely suitable for that specified volunteer. If a pedestrian prefer to walk calmly, with

the same step length a comparative lower variance would be measured, or if the feet strike ground

harshly a higher variance is apt to be resulted. Even the gesture or position taking smartphone can

also influence the variance greatly. In order to generalize the model, a customized parameter k is

proposed to adapt to various individuals.

One or more test walking could be performed for the parameter calibration. The distance could

be estimated with the initial k = 1, and compared with the real distance measured by user. Eq. 4.15

is used to calculate the user specified parameter.

k =
dreal

destimated
, (4.15)

where destimated denotes the distances estimated with the initial parameter k = 1, while dreal indicates

the real distance during the test walking.

Adding with Eq. 4.15, the model is completed for step length estimation.

4.3 Evaluation for the Model

In order to test the accuracy of the achieved mathematical model for step length estimation, 10

different volunteers (male and female, height from 1.60 m to 1.80 m, weight from 60 kg to 75 kg)

are required to walk a distance at least 30 meters with smartphone held in different gestures (except

swinging or changing between gestures). The real length and estimated length for every step are

recorded.

Afterwards, the accuracies of the estimation results from all of the available models are counted
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and compared in Table 4.5 and Table 4.6. The accuracy is measured by 2 indexes: the Root Mean

Squared Error (RMSE) and the Average Deviation Rate.

Table 4.5: The comparison of RMSE among all available models
Step length domains (m) 0.50-0.59 0.60-0.69 0.70-0.79 0.80-0.89 0.90-0.99 1.00-1.09 All

Weinberg Model 0.16951 0.10327 0.07335 0.06191 0.07402 0.11029 0.10089
Kim Model 0.17543 0.08457 0.08985 0.09550 0.10316 0.10242 0.10655

Scarlett Model 0.34873 0.19269 0.10021 0.01141 0.09738 0.19708 0.17335
Xu Model 0.10489 0.07248 0.09493 0.12298 0.17271 0.15061 0.11661

Frequency related Model 0.37316 0.32566 0.26572 0.18114 0.13944 0.24883 0.26419
Shin Model 0.33404 0.28898 0.23151 0.16262 0.13738 0.21270 0.23997

Bylemans Model 0.17029 0.08246 0.08512 0.09099 0.10198 0.15163 0.10835
My Model 0.13880 0.00685 0.05675 0.05212 0.08716 0.05060 0.07681

The RMSE is defined as

RMS E =

√∑
(sestimated − sreal)2

n
. (4.16)

The RMSE of the estimation results from all of the available models are compared by the bar

chart demonstrated in Fig. 4.15.

Figure 4.15: The comparison of RMSE among all of the available models
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In terms of the different step length groups, the RMSE of all of the available models are compared

in Fig. 4.16.

Figure 4.16: The comparison of RMSE in different step lengths among all of the available models

The Average Deviation Rates of all models with reference to the different step lengths are listed

in Table 4.6.

Table 4.6: The comparison of Average Deviation Rates among all available models
Step length domains (m) 0.50-0.59 0.60-0.69 0.70-0.79 0.80-0.89 0.90-0.99 1.00-1.09 All

Weinberg Model 41.61% 18.55% 10.14% 7.58% 8.26% 9.84% 15.79%
Kim Model 43.37% 14.14% 12.85% 12.01% 12.14% 8.66% 16.34%

Scarlett Model 86.95% 38.34% 16.36% 1.37% 12.25% 21.98% 28.11%
Xu Model 24.36% 12.03% 12.67% 14.65% 18.85% 13.15% 15.24%

Frequency related Model 87.40% 57.01% 35.75% 20.98% 15.58% 26.44% 40.71%
Shin Model 76.99% 48.62% 30.56% 19.58% 15.03% 22.36% 35.99%

Bylemans Model 42.57% 13.69% 12.73% 11.47% 11.27% 14.17% 16.16%
My Model 33.17% 13.68% 7.24% 5.88% 8.78% 4.73% 10.90%
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The deviation rate is calculated by

deviation_rate = |
sestimated − sreal

sreal
| × 100%, (4.17)

where sestimated denotes the estimated step length, while sreal is the real observed value.

Due to the cumulative errors toward the Dead Reckoning approach, the average deviation rate is

a more appropriate index for the accuracy than RMSE. For example, if a pedestrian walks with the

step length of 0.4 m and another with 0.8 m, both have a deviation of 0.04 m per step, both RMSEs

are 0.04 but naturally the model for the second one shows higher accuracy.

The Average Deviation Rates of the estimation results from all of the available models are com-

pared in Fig. 4.17 as well.

Figure 4.17: The comparison of the Average Deviation Rates among all of the available models

In terms of the different step length groups, the Average Deviation Rates of all of the available

models are compared in Fig. 4.18.
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Figure 4.18: The comparison of the Average Deviation Rates in different step lengths among all of
the available models

From the results demonstrated in Tables and Figures above, Weinberg and Xu Models are both

based on the peak-trough difference. Their accuracies are on a similar level. Xu Model has compar-

ative constant accuracies toward different step lengths but Weinberg Model performs better in 0.7

to 0.9 m length domains in which pedestrians usually walk. The Frequency Related Models show

lower accuracies in the experiments. The reason has been analyzed before: they are principally

suitable for the most common gaits (step length 0.65-0.75 m and frequency 90-120 spm), but here

the abnormal gaits are involved. The diversity in gaits leads to the degradation in their estimation

accuracies. Shin Model refers to the variance additionally, for that reason its performance is better

than the solely frequency based models. My model is the most accurate model of all. The average

deviation rate for each step is 10.90%. This is merely an average accuracy. In terms of those more

general step length domains, the deviations are even lower.

4.4 Implementation of the Application

In order to popularize my walking step length estimation model, an app is developed on iOS. This

app names “Walk Recorder” and the screenshots are demonstrated in Fig. 4.19.
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(a) (b)

Figure 4.19: The screenshot of the app “Walk Recorder”. According to the mathematical model
developed in this chapter, the length of each step is estimated and the whole walking distance is
therefore calculated. Pedestrians can use the slider at the bottom to adjust their specified parameter.
For the concision of the interface, the curves of the raw data (brown line) and the variance (white)
could be hidden temporarily as the right figure.

“Walk Recorder” records the steps for pedestrian and estimates the step lengths as well as the

whole walking distance. On the basis of the algorithms presented in Chapter 3, each valid step is

recognized and marked by the blue peak and green trough. Besides, by clicking the label “Raw

Acceleration Data” or “Variance” the brown or white curve would be hidden temporarily for con-

ciseness. When the app is newly booted, a calibration for 2 seconds is also required as the previous

test app demonstrated in Fig. 3.4. When using, the information of the step number, current step

length and total distance are displayed in real-time. In view of the fact that even with the same step

length, the acceleration signals generated would be varied from individuals, the slider placed at the
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bottom is used for adjusting the customized parameter: the harsher steps a pedestrian walks with, the

more left the slider is supposed to be set; the calmer s/he steps, the more right it should be (for more

details about the user specified parameter please see the end of Section 4.2). The users can adjust

this parameter according to their own walking habits in order to reach the most accurate result.

It is available in App Store1 (also accessible via the QR code shown in Fig. 4.20). And it is

universal for both iPhone and iPad as well.

(a) (b)

Figure 4.20: The QR code and the launch image of the app “Walk Recorder”

1access link: https://appsto.re/de/N0Q_8.i or https://itunes.apple.com/de/app/walk-recorder/
id1023323431?l=en&mt=8
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Recap
In this chapter the development of a novel mathematical model for step length estimation is in-

troduced. It is the core content and the major contribution in this dissertation. In the model the

relations among the step length, frequency and the variance of the accelerations is revealed system-

atically. Compared with the previous models, the accuracy of the step length estimation is improved

substantially. Furthermore this model is implemented by an available app so that my research could

serve the public better.
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Chapter 5

Running Step Length Estimation Model

The history of self-tracking using wearable sensors in combination with wearable computing and

wireless communication already exists for several decades. In 2007 Gary Wolf and Kevin Kelly first

proposed the term “Quantified Self (QS)” and spread this concept at TED in 2010 [67]. Literally the

QS is a movement to incorporate technology into data acquisition on aspects of a person’s daily life

in terms of inputs (e.g. food consumed, quality of surrounding air), states (e.g. mood, arousal, blood

oxygen levels), and performance (mental and physical) [68]. Such self-monitoring and self-sensing,

which combines wearable sensors (IMU, ECG, thermometer, piezometer, etc.) and wearable com-

puting, is also known as life logging. In short, QS is self-knowledge through self-tracking with

technology. The advancement of QS allows individuals to quantify biometrics that they never knew

existed, as well as make data collection cheaper and more convenient [69].

A typical application of QS is in the health and wellness improvement field. As Fig. 5.1, in a

well-liked sports training and personal fitness system, various self-tracking techniques are adopted

to monitor people’s physical activities, caloric intakes, postures, sleep qualities, and other factors

involved in personal well-being. By “quantifying” a person’s daily activities, the QS system is

able to draw up the customized training plan and help users achieve their exercise goals. As a

sport assistance system, the data-driven QS application analyzes individuals’ progresses around their

endeavors and assesses their exercise levels, provides personalized consultations intelligently such

as which is beneficial while which need to change, and eventually improves humans’ physical fitness

as well as quality of life.
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Figure 5.1: All sorts of fitness tracker devices enable people to quantify their exercises.

5.1 Related Works

Along with the booming wearable techniques recent years, the Wearable Health Monitoring Systems

(WHMS) are sprouting up in our life [70]. Among the fitness and sports applications, the most basis

function is step tracking and exercise statistics. When a person is jogging, not only the duration and

distance of running is expected to be logged but also the energy expenditure and moving trajectory

in real-time are preferred.

With regard to this kind of applications, currently there are several off-the-shelf commercial prod-

ucts available, either hardware or software. For instance, Nike+Running and Runtastic (Fig. 5.2)

are popular sports apps based on smartphone, which use successive GPS signals to update the run-

ning displacement and draw the moving trajectory. However, as discussed in Section 1.1: when the
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Figure 5.2: A popular fitness app names Runtastic. It tracks runner by GPS.

GPS-challenged environments are referred to, the effect of this sort of apps would be limited, such

as racing in an indoor gymnasium that the players could not be tracked precisely as usual. Besides,

if a player runs on a rugged mountain road where consists of quite a few ups and downs, the calcu-

lated distance would be imprecise due to the 2D localization coordinates from the GPS. Moreover,

because of the poor continuity of satellite signals, the running velocity estimated could never be

considered to be instantaneous but a reference average value.

The advent of Apple Watch in April 2015 has opened up a whole new frontier in the area of the

wearable techniques. Actually the electronic products in the same category have already served the

public for a few years. As shown in Fig. 5.3, a wide variety of smart bracelets as well as watches

sample the manifold biometrical data in real-time, including the blood pressure, respiration status,

pulse rate, blood oxygen saturation, surface temperature and hydration level all the time. With

multifarious micro sensors equipped in and on these bracelets, the human’s activity intensity, sleep

quality and health condition are able to be monitored unobtrusively.

Despite these smart bracelets show their superb capabilities to sense the users’ biometrical data,

for a practical fitness and sports system only with these healthcare related parameters is far from

comprehensive. One of their advantages lies in the fact that with the sensors next to the skin, they

are able to sample the biometrical data more seamlessly and precisely. Nonetheless, because they
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Figure 5.3: Numerous smart bracelets and watches burst onto the scene in recent years.

are placed around the wrist, the accelerations measured often suffer from the shake of arms in the

great degree. In other words, these limb-mounted sensors cannot record the kinetic characteristics

of the whole body faithfully. The oscillations of limbs affect the estimation for the velocity and

distance severely, even though the cyclic property of these oscillations could also be made full use

of to count the steps. To some extent, the smart bracelets or watches could at most serve as a kind

of efficient assistant equipment in a QS system. They are not adequate for the complete functions of

a fitness and sports application in any way.

In 2013 the researchers in KTH developed a sort of whole new digital positioning shoes [71].

They are used to track firemen’s position during the rescue missions. The working depth reaches

25 meters underground. As shown in Fig. 5.4, the sensor nodes are installed at the heels of the

shoes, which comprise accelerometers, gyroscopes and pressure transducers. By a wireless module

placed on the firemen’s shoulder, the acquired data are transmitted to their command center. As a

result, the commander is able to learn their firemen’s position as well as moving trajectory in real-

time. Because this system relies on no GPS signal, in certain extreme scenarios the firemen would

be guided and organized in a more safe and efficient way, so that they could save more lives in

accidents. As a newly emerged wearable device, this kind of digital shoes are expected to be widely

applied among police, medics, militaries and athletes. In view of the usability that the digital shoes

could work underground, this system would also be serviceable in mine. In the case of an accident

the miners could be immediately targeted by their shoes.

According to a few discussions [72] [73], the practical value of the digital shoes might outweigh

that of the smart watches. Firstly and foremost, ordinarily the time that people in shoes is longer

86



5.1. RELATED WORKS

Figure 5.4: The illustration of the digital shoes system. With the feet-mounted IMU the positions of
firemen are tracked in real-time.

than people wear watches. Office workers are usually reluctant to wear their watch all the time.

Thus the digital shoes play a more important role in humans’ daily lives. Besides, similar to the

smart bracelets, all sorts of sensors in the digital shoes are able to monitor the manifold biometrical

parameters for users as well. But the sensors are mounted at the feet of pedestrian rather than the

wrist, and either walking or running is performed by the lower limbs. Consequently the counting

for steps and the estimation for moving distance as well as energy expenditure are instinctively

more accurate and reliable than by the wrist-mounted devices. Furthermore, in several prototypes

of digital shoes, according to the equipped IMU, certain dangerous activities which lead to potential

injuries could be recognized and warned in time.

However, the digital shoes are not without their disadvantages. In the first place the difficult and

cost of developing and producing such a kind of custom shoes is certainly higher than that of smart

watch and smartphone which are based on current available platforms. Moreover, with respect to

the design of the commercial digital shoes, there are numerous nontechnical factors have to be taken

into consideration, such as fashion, style, waterproof, compression strength, and other specialty

characteristics. Additionally most of users are not willing to wear the same shoes invariably. Unlike

the watch or mobile phone that there is no remarkable distinction between the business use and

sports oriented style, the shoes are more likely to be the multi-optional products. In a word the

universality of the digital shoes is eventually a challenge. The scheme whether designing a kind
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of special sport shoes or merely producing a digital shoe module which could be easily applied in

all the shoes of various styles is remains in suspense. In conclusion, the commercialization and

popularization of the digital shoes still need a great deal of attempts as well as time.

According to the discussions above, a strategy based on smartphone is currently the first choice

because the development platform is ubiquitous. Purchasing new equipment is not necessary so that

the spreading of the application is naturally advantaged. Moreover, the corresponding algorithms

and models are comparative mature.

5.2 Running Step Length Estimation Model

As described in Eq. 4.1-4.8, a series of mathematical models were developed for the step length

estimation. Although most of the current models already show their conveniences, they are instinc-

tively walking-oriented. When it comes to more varied and complicated running gaits, the effect

is barely satisfactory. For more accuracy of step length estimation as well as positioning, a novel

mathematical model special for running is investigated in this chapter.

The mathematical model introduced in Section 4.2 shows satisfying accuracy when pedestrian

is walking. In spite of this, as far as running is referred to, the existing model is not capable any

more. Moreover, the running gait could not be ignored among the daily activities, not only because

of a few sport-related applications, but also for indoor positioning scenarios. When people pay all

attention to their walking without distraction, the gait could be regarded as a simple and constant

pattern. Nevertheless, when a pedestrian are talking with a companion or just wandering, the walk

speed would decrease. In contrast, when a person is in hurry s/he might start running suddenly

and this phenomenon is also quite common in human behaviors. The kinetic characteristics in the

running gait are totally different from those of walking. Solely adjusting the user specified parameter

is obviously not enough. In order to improve the accuracy of step length estimation, the running gait

is analyzed and a wide range of experiments in terms of various step lengths as well as diverse

frequencies are implemented once more. Thereafter an original mathematical model special for

running step length estimation is developed in this section.

To develop a mathematical model that the step length could be expressed by the measured kinetic

data when pedestrian is running, a multitude of experiments are implemented further. As mentioned

in Section 4.2, this is the second stage of the experiments.

The collected items are similar to those in the first stage, including: the magnitude of the ac-

celerations, the peak value, the trough value, the variance and the frequency of that step. But the

sampling dimensions are changed partially. The running step length is set from 0.5 to 1.0 m, every
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0.1 m a group, and 6 groups in all (not 0.4 to 0.9 m, every 0.05 m anymore). The step frequency

varies from 120 to 240 spm, every 10 spm a group, and 13 groups in all. Thus there are 78 combine

groups altogether, far less than the data size in the first stage which was 275 groups. According to

the experiences of the first stage, after confirmed through a few tests, the module of accelerations in

y- and z directions (
√

y2 + z2) are also not involved in the data collection anymore due to the overly

irregularity in that item. In spite of this, the experiments for the running data sampling last for more

than 2 weeks. Because running with a preselected step length and a fixed frequency is more difficult

for volunteer than when walking (the adjusting methods are the same as those illustrated in Fig. 4.2

and 4.3). All of the experiments are implemented by one volunteer as well, and every combine group

with the same gait is required to be repeated at least 10 times, in order to reduce the random errors.

Due to the poor operability of the running experiments, sometimes the volunteer had to run with a

certain gait many times to sample one set of qualified data successfully. The higher the frequency

is, the greater challenge the volunteer may have.

As an instance, Fig. 5.5 shown a set of acceleration data collected from one running experiment.

In this group the volunteer is required to run for 24 steps, with each step length 1.0 m and the

step frequency 160 spm. The total walking distance is 24 m. The upper figure of Fig. 5.5 is the

acceleration signal sampled in y direction, while the bottom figure is in z direction. Both of the

acceleration signals have been filtered. According to the results obtained from the experiments, the

modules of y and z acceleration are rather disordered and this phenomenon was also verified in the

walking experiments. Hence the item of yz module would not be displayed and analyzed any more.

The starting and end points of the valid walking phase are indicated by the dashed lines. According

to the algorithm introduced in Section 3.4.1, the vertical vibrations at the beginning (around the time

points 150 to 200) are rejected from the valid signal because during the same time the corresponding

valid wave in y direction is not yet detected. Besides, all of the valid peaks and troughs on both of

the waves are extracted and marked. Compared with the data in z direction, the y data are rather

instable and shows less regularity. As illustrated in the upper figure of Fig. 5.5, even the adjacent

peak values differ greatly. This situation is similar to that in the walking experiments. The confusion

is caused by the tendency that every 2 adjacent peaks on y wave are merging gradually (as analyzed

in Fig. 4.11). Thus only z data related items would be referred to in the development of the running

model.

Furthermore, in order to compare the influence of the 3 physical items (the magnitude, the differ-

ence between the peak and trough values, the variance of the vertical accelerations), the variation

trends between these items and the step frequency are shown in Fig. 5.6, 5.7 and 5.8. These relations

are demonstrated according to the different step lengths separately. Each of the figures comprises 2
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Figure 5.5: For each of the 78 running experiments, the accelerations in y and z-directions are
recorded and processed. This is one of the samples when step length is 1.0 m and frequency 160
spm.

step length groups and all of the 6 running step length groups, from 0.5 m to 1.0 m, are compared

altogether.

From these 3 figures, the relations between the 3 items and the step frequency are monotone,

unlike the variation trends shown in the walking experiments, which are piecewise. There is a

conspicuous trend that along with the increasing of the frequency, the motion of body in z direction

is less and less intense. The possible reason is that when the frequency is higher, the barycenter of

body is more likely to make a uniform motion, so that the vertical oscillation would be calmer.

According to these figures, it could be assumed that, there are quadratic relations among these

3 items and the step frequency. For the 6 step length groups and the 3 items, there are hence 18

quadratic equations theoretically. Furthermore all of these 18 equations are fitted and their curves

are contrasted in Fig. 5.9 as well.
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Figure 5.6: With 0.5 and 0.6 m as the step length, the 3 items (the magnitude, the peak-trough
difference, the variance) vary with the step frequency.
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Figure 5.7: With 0.7 and 0.8 m as the step length, the 3 items (the magnitude, the peak-trough
difference, the variance) vary with the step frequency.
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Figure 5.8: With 0.9 and 1.0 m as the step length, the 3 items (the magnitude, the peak-trough
difference, the variance) vary with the step frequency.
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Figure 5.9: The fitting curves of the relations between the step frequency and the 3 items (the
magnitude, the peak-trough difference, the variance) are demonstrated according to the different
step lengths.
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As a result the item variance is chosen as the independent variable in the prospective model for

running step length estimation. Because from Fig. 5.9, the curves in the bottom figure vary most

regularly and clearly. Among these 3 items, variance shows the most remarkable relation with

step length. Consequently the mathematical model is supposed to be in the form that step length is

a function of variance and f requency.

The relation between f requency and variance with certain step length can be obtained from the

fitting curve. As shown in Fig. 5.10, this example is the f − v figure when step length is 1.0 m. This

figure is similar to the sub-figures in the lower right corner of Fig. 5.8.
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Figure 5.10: When the running step length is 1.0 m, the relation between the step frequency and the
variance is illustrated. Accordingly a quadratic function is fitted.

Thereupon the relation between f requency ( f ) and variance (v) when step length = 1.0 m is

indicated by a quadratic function:

v = 0.00002056 f 2 − 0.0109 f + 1.432. (5.1)

Along with the increasing f requency, the vibration in vertical direction would be calmer and
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calmer. Similarly, the relations at other step lengths are fitted as well and the equations are listed in

Table 5.1.

Table 5.1: The f requency − variance relations at different step lengths
step length (m) f requency − variance Relations

0.5 v = 0.000015678 f 2 − 0.0073817 f + 0.86991
0.6 v = 0.000016527 f 2 − 0.007867 f + 0.946
0.7 v = 0.0000194916 f 2 − 0.0093086 f + 1.12636
0.8 v = 0.000016167 f 2 − 0.008653 f + 1.1356
0.9 v = 0.000019944 f 2 − 0.010096 f + 1.2944
1.0 v = 0.00002056 f 2 − 0.0109 f + 1.432

The s − v relation could be indicated in form

v = as2 + bs + c, (5.2)

where s denotes step length; the coefficients a, b, c are supposed to be calculated by the least square

method: 
c

b

a

 =


6

∑6
i=1 si

∑6
i=1 s2

i∑6
i=1 si

∑6
i=1 s2

i
∑6

i=1 s3
i∑6

i=1 s2
i
∑6

i=1 s3
i
∑6

i=1 s4
i


−1 

∑6
i=1 vi∑6

i=1 sivi∑6
i=1 s2

i vi

 (5.3)

where si are [0.5, 0.6, . . . , 1.0], the 6 step length values; vi are the 6 equations explicated in Table

5.1.

Consequently, 
a

b

c

 =


0.000019125 f 2 − 0.0107575 f + 0.9815

−0.00002525 f 2 + 0.01183 f − 0.6472

0.000023375 f 2 − 0.0105675 f + 0.9455

 . (5.4)

From Eq. 5.2,

s = k ·
−b +

√
b2 − 4a(c − v)

2a
. (5.5)

Eq. 5.5 together with Eq. 5.4 constitutes the main ingredients of the mathematical model for

running step length estimation. Ultimately step length is a function of f requency and variance.

Compared with the estimation model for walking (Section 4.2), the running model is not piecewise

function according to f requency any more.

However, all of the sampled data are sourced from one volunteer. Theoretically the developed

96



5.2. RUNNING STEP LENGTH ESTIMATION MODEL

model above is merely suitable for that specified volunteer exclusively. When a pedestrian runs

slightly, with the same step length a comparative lower acceleration variance would be measured.

On the contrary, when the feet strike ground harshly, a relative higher variance tends to be detected.

Even the different gesture or position holding smartphone could also influence the variance greatly.

Similar to the walking model, a user specified parameter k is supposed to be proposed in order to

generalize the model.

(a) (b)

Figure 5.11: The screenshots of the beta app “Running Recorder”. With this app based on iPhone
6, the developed running step length estimation model is tested. In particular, the adjustment for
the user specified parameter is performed by the slider designed at the bottom. Because this app
implements merely a part of function of PDR and the algorithm for distinguishing the activities
between walking and running is not added up, this app is not submitted to App Store until been
perfected.
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One or more test running is expected to be performed for the parameter calibration. The distance

could be estimated with the initial k = 1, and compared with the real distance observed by user. Eq.

5.6 is used to set the individual parameter.

k =
dreal

destimated
, (5.6)

where destimated denotes the distances estimated with the initial parameter k = 1; while dreal indicates

the real distance during the test walking.

Adding with Eq. 5.6, the model is completed for running step length estimation.

Practically this customized parameter is implemented with a slider (exactly as that in Fig. 5.11):

users may adjust the slider by themselves according to the initial estimation results.

5.3 Evaluation for the Model

In order to test the accuracy of the developed mathematical model for running step length estimation,

10 different volunteers (male and female, height from 1.60 m to 1.80 m, weight from 60 kg to 75

kg) are required to run for a distance at least 30 meters with smartphone held in different gestures

(except swinging or changing between gestures). They are encouraged to run with their normal and

abnormal step lengths as well as frequencies.

Afterwards, the accuracies of the estimation results from all of the available models are calculated

and compared in Table 5.2 and 5.3. The accuracy is measured by 2 indexes: the Average Deviation

Rate and the Root Mean Squared Error (RMSE).

Table 5.2: The comparison of Average Deviation Rates among all of the available models
Step length domains (m) 0.50-0.59 0.60-0.69 0.70-0.79 0.80-0.89 0.90-0.99 1.00-1.09 All

Weinberg Model 41.93% 30.43% 18.84% 10.70% 8.26% 16.92% 25.33%
Kim Model 41.59% 36.28% 21.70% 14.28% 8.66% 15.45% 26.27%

Scarlett Model 46.39% 21.77% 15.69% 14.66% 16.26% 20.81% 22.15%
Xu Model 47.45% 35.80% 34.19% 28.29% 18.14% 28.89% 35.33%

Frequency related Model 174.60% 115.09% 75.72% 42.74% 32.54% 54.78% 82.79%
Shin Model 80.69% 55.67% 37.76% 35.58% 22.79% 30.32% 45.59%

Bylemans Model 42.89% 31.00% 19.74% 10.64% 8.13% 15.44% 22.83%
My Model 24.98% 23.92% 19.06% 18.83% 15.30% 18.34% 19.66%

The deviation rate is calculated by

deviation_rate = |
sestimated − sreal

sreal
| × 100% (5.7)
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where sestimated denotes the step length estimated by different models, while sreal is the real observed

value.

Figure 5.12: The comparison of the Average Deviation Rates among all of the available models

Figure 5.13: The comparison of the Average Deviation Rates in different step lengths among all of
the available models
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The Average Deviation Rates of the estimation results from all of the available models are com-

pared in Fig. 5.12 as well. In terms of the different step length groups, the Average Deviation Rates

of all of the available models are compared in Fig. 5.13.

The RMSE of the estimation results from part of the available models are listed in Table 5.3.

Because the comparatively poor performance in the frequency related models, their RMSE are

not compared in Table 5.3 anymore. In addition, as analyzed in Section 4.3, the Average Deviation

Rate is a more reasonable index than RMSE for a PDR scheme.

Table 5.3: The comparison of Average Deviation Rates among part of the available models
Step length domains (m) 0.50-0.59 0.60-0.69 0.70-0.79 0.80-0.89 0.90-0.99 1.00-1.09 All

Weinberg Model 0.24767 0.22100 0.15271 0.09992 0.04411 0.23380 0.18940
Kim Model 0.25140 0.23164 0.17805 0.13393 0.05913 0.25212 0.20064

Scarlett Model 0.23337 0.19333 0.14260 0.14076 0.18716 0.21012 0.19239
Xu Model 0.29675 0.28381 0.28874 0.27141 0.18513 0.35039 0.27311

Bylemans Model 0.24925 0.22895 0.15857 0.10005 0.03505 0.22245 0.19091
My Model 0.13547 0.13142 0.15928 0.22592 0.18755 0.19066 0.17363

The RMSE is defined as

RMS E =

√∑
(sestimated − sreal)2

n
. (5.8)

where sestimated denotes the estimated step length, while sreal is the real observed value.

The RMSE of the estimation results from part of the available models are compared in Fig. 5.14.

In terms of the different step length groups, the RMSE of part of the available models are compared

in Fig. 5.15.

From the results demonstrated in Tables and Figures above, Weinberg and Scarlett Models are

both based on the difference between the peak and trough values. Their accuracies are on the similar

level. Scarlett Model has even accuracies toward different step lengths but Weinberg Model performs

better in 0.9 to 1.0 m length domain in which pedestrians usually run. The frequency related models

show less accuracy in the experiments. The reason has been analyzed before, they are only suitable

for the most common gaits (step length 0.8-1.0 m, frequency 160-180 spm), but here abnormal

gaits are involved. Shin Model also refers to the variance, so its performance is better than solely

frequency based models. Finally my model is more accurate than all of models above. The Average

Deviation Rate for each step is 19.66%. Take the fact into consideration that it is only the average

accuracy, this model is promising. In terms of the most general step length groups, the deviations

are even lower.

100



5.3. EVALUATION FOR THE MODEL

Figure 5.14: The comparison of RMSE among part of the available models

Figure 5.15: The comparison of RMSE in different step lengths among part of the available models
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Recap
Special for running, a step length estimation model is developed in this chapter. On the basis

of the experiments the relation among the acceleration variance, the step frequency and the step

length is discovered and summarized. Accordingly the step length would be estimated from the

accelerations measured by IMU. In the evaluations this new approach is proved to be more accurate

than the previous works. With this new mathematical model the pedestrians’ positions are able to

be tracked even when they are occasionally running in a building. Because the running behavior is

not processed by general walking oriented methods but the specialized model, the accuracy as well

as stabilization of the entire positioning system is supposed to be promoted correspondingly.
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Chapter 6

Particle Filter

According to the PDR method, the 2D position of a pedestrian after the ith step is: x[i] = x[i − 1] + step_length[i] cos(heading[i])

y[i] = y[i − 1] + step_length[i] sin(heading[i])
(6.1)

where heading[i] is the average heading angles during the ith step, which results from the fusion of

the gyroscope and magnetometer data (Section 3.4.2). On the basis of Eq. 6.1, the current location

of a pedestrian is continually updated and the function of a positioning system is performed.

Although with a few calibration approaches the Step and Heading System (SHS) are able to abate

the influence from the drift of inertial sensors to some extent, ultimately the position tracking for

pedestrians has to cooperate with certain external measurements and environment information in

order to acquire the long term stability as well as effectiveness. Specifically, the building layout is

an impactful complementarity to improve the positioning accuracy.

6.1 Background

Particle Filter, which is also denoted as Sequential Monte Carlo (SMC) algorithm, are a series of

genetic type particle Monte Carlo methodologies to tackle the filtering problem [74]. The term

“particle filters” was first coined in 1996 by Del Moral in reference to mean field interacting particle

methods [75].

If the transition model is based on the Markov Chain (MC), it is also named Markov Chain Monte

Carlo (MCMC) method. Particle filter is a recursive Bayesian filter using the MC simulations [76].

The particle filtering methodology is used to solve Hidden Markov Model (HMM) and nonlinear,
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non-Gaussian filtering problems arising in signal processing and Bayesian statistical inference.

The filtering problem consists in estimating the internal states in dynamical systems when partial

observations are made, and random perturbations are present in the sensors as well as in the dy-

namical systems. The objective is to compute the conditional probability (also known as posterior

distributions) of the states of some Markov process, given some noisy and partial observations [77].

This method allows researchers to approximate the joint posterior distribution using Sequential Im-

portance Sampling (SIS).

Particle filters implement the prediction-updating transitions of the filtering equation directly by

using a genetic type mutation-selection particle algorithm [78]. The samples from the distribution

are represented by a set of particles (also denoted as samples, individuals); each particle has a

likelihood weight assigned to it that represents the probability of that particle being sampled from the

Probability Density Function (PDF). Weight disparity leading to weight collapse is a common issue

encountered in these filtering algorithms; however it can be mitigated by including a resampling step

before the weights become too uneven. Several adaptive resampling criteria are supposed to be used,

including the variance of the weights and the relative entropy with respect to the uniform distribution.

In the resampling step, the particles with negligible weights are replaced by new particles in the

proximity of the particles with higher weights [79].

6.2 Map Matching

In an indoor positioning system, the applications of particle filter lie in 2 aspects: on one hand, com-

monly the applying of a filter would further improve the precision of the estimation results. Similar

to the various signal processing algorithms adopted or not adopted in this dissertation, particle filter

is expected to meliorate the sampled data and reproduce the true features of the original information

to a certain extent. As the assumptions proposed in the development of the step length estimation

models in Chapter 4 and 5, during the experiments and tests the volunteers are required to hold

the smartphones constantly in their hands. Although the holding gestures are not restricted (taking

the phone in front of the face or next to the chest, horizontally or slantwise, is all encouraged),

swinging hand or changing between gestures is not allowed. Because it would make the analysis

of the kinetic characteristics excessively complicated. However, in the real scenarios the holding

gestures of smartphone are extremely diverse. Apart from that, pedestrians might not only take their

phones in hands but also put them in pockets or bags. In case of those situations, solely adjusting the

user specified parameter is barely enough, because even for the identical pedestrian, the changeful

holding gestures would lead to totally different model parameters.
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Fundamentally the mathematical models developed in Chapter 4 and 5 are both based on the

kinetic characteristics of the human body’s barycenter. In other words, according to the barycenter’s

accelerations features the step length when pedestrian is walking or running is estimated. Obviously

there is definitely an assumption, or a premise: the built-in IMU in smartphone can record the

acceleration information of the body’s barycenter faithfully and exactly. If the holding gesture is not

specified but unvaried, this criterion is fairly met. But if the relative motion between the smartphone

and the body is uncertain or keeps changing, undoubtedly the effectiveness of the 2 models would

reduce greatly.

Nevertheless, continually attempting other gestures and analyzing the kinetic characteristics for

more human postures in order to develop an absolute universal mathematical model which is ap-

plicable to all of the situations are neither imperative nor feasible. Practically, by means of certain

statistical theories, to reckon the final position where has the largest probability rather than calculate

an absolute result, is supposed to be a more reasonable strategy.

Thereupon particle filter is an advisable solution. The positioning result of each step is determined

by both the current measurement and the prediction from the last state. The unfavorable influences

from gesture changing and device swinging may still exist. However, in the long term these pertur-

bations could be conquered and mitigated to a great extent. As a result the robustness and stability

of the system would be promoted substantially.

Moreover, as stated at the beginning of this section, the second function of particle filter in a posi-

tioning system rests on that it is serviceable to match the pedestrian’s trajectory to the real building

map. Practically the estimated position as well as trajectory must be constrained to lie on the corri-

dors, lobbies or rooms within a building. In other words, the unreachable positions for pedestrians

must be eliminated from the estimated result, such as walls, pillars, desks, cabinets etc. Particle fil-

ter is an ideal choice for this requirement. As described in Section 6.1, particle filter is a numerical

approximation to a Bayesian filter. It is able to deal with the nonlinear, non-Gaussian noises may

present in the estimation for step length and heading direction. The major procedures of particle fil-

ter consist of important sampling, weight calculation and resampling. Firstly, a set of “particles” are

randomly produced. Each particle represents a possible 2D displacement and a heading angle which

correspond to the length and azimuth of a step. They are produced on the basis of the posterior PDF

of the state, so that each particle contains a weight which represents its probability for the new step.

Subsequently, the state is estimated according to the particles and associated weights. As the amount

of particles becomes quite large, the represented PDF is equivalent to the usual continuous posterior

PDF. When the new step is made, the weights of all the particles are updated and this procedure is

called resample. After several iterative in which resampling is involved, the final position is derived.
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Theoretically this position has the largest probability and therefore is supposed to be a more reliable

result [80]. In reality, the particles would only be initially produced at the accessible positions in the

real architectural space. Consequently, the acquired moving trajectory is naturally coincident with

the physical surroundings.

In this dissertation, every system state of a step consists of 2 items: the length of the ith step

step_length[i] and the heading angle during the ith step heading[i]. The particle filter follows the

procedures below.

Step 1: Initially, the first state (step_length[0] and heading[0]) are output, because no previous

state could be used for predicting;

Step 2: Using the current position and the state of the last step (step_length[i−1] and heading[i−

1]) the position after the ith step is predicted, according to Eq. 6.1;

Step 3: With this predicted position as Expectation and 1 meter as S tandard deviation, 1000

random particles are produced (all must conform to the physical surroundings of the building);

Step 4: Taking the current state step_length[i] and heading[i] as a posteriori estimate, the

weights of every particle are calculated. Based on these weights (importance) resampling is im-

plemented. On the basis of new particles, an optimal estimated position is resulted (weighted sum).

According to this position the state of the ith step is output and the trajectory is updated. The weight

of every particle is calculated by Eq. 6.2:

weight[p] = normalizing(max_deviation − deviation[p] + 1), (6.2)

where weight[p] denotes the weight of the pth particle; deviation[p] indicates the distance between

the pth particle and a posteriori position; max_deviation represents the maximum among all of

deviation[]s; normalizing() is indicative of the function for normalizing.

Step 5: Turn to Step 2 and operate iteratively, until no more step state within this walking segment

is found.

6.3 Evaluation

In order to test the effect of particle filter in an indoor positioning system, a group of experiments

are implemented. The most typical scenario is the corridor in the first floor of my institute (as Fig.

6.1). The experiments are performed by 10 different volunteers (male and female, height from 1.65

m to 1.80 m, weight from 60 kg to 75 kg). All of the volunteers are required to take the smartphone

in hand and walk through the corridor from the door at the up-left corner to the door at the up-right

corner. They are encouraged to walk with their preferred gaits. There are totally 12 breakpoints
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Figure 6.1: An instance for the application of particle filter in the indoor positioning system. In this
experiment a pedestrian walked from the door at the up-left corner to the door up-right (black line
is the real route). In the process he stopped 6 times (include at the start and end points) and turned
6 times. Every red triangle represents a breakpoint and the whole walking process is divided into
10 segments. The substantial blue points are the particles being produced. Every positioning result
after a step is indicated by a red point. The total distance for walking is 136 m. It takes this volunteer
194 steps with the average step length 0.70 m.

consist in the whole route, with 6 stop points and 6 turning points. Each of these breakpoints is

highlighted with a red triangle. At the breakpoints the volunteers are allowed to change their gesture

holding the smartphone. Fig. 6.1 demonstrates the result of one instance.

According to the results of the experiments, the changing of the gesture could be handled well by

the particle filter. During the walking, a few volunteers occasionally raise the smartphones to check

the their kinetic data in real time, or put their smartphones into pockets around the breakpoints, but

the unfavorable impact from gesture changing and device swinging is relatively limited and can be

rectified by the neighboring step states. For comparison a few control groups are set, in which the

absolute schemes solely by the estimation models are employed. In contrast, in the test scenario of

Fig. 6.1, with the advantage of particle filter the average deviation of the final point declined from

1.96 meters to 1.21 meters, by 38.27%. Obviously the improvement in the positioning accuracy is

attributed to the map matching.
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Recap
In this chapter a complementary method is introduced. Because the mathematical models devel-

oped before apply basically to an absolute situation that the relative position between the smartphone

and the body is unvaried. When the gesture changed the estimation accuracy would degrade. There-

upon particle filter is employed in this chapter. With this probabilistic method the system is able to

maintain its performance in case of gesture changing and other eventualities. Furthermore the map

matching problem is accordingly solved as well. As a result the serviceability of the whole system

is improved greatly.
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Chapter 7

Enhancement of the Functions

While designing an indoor positioning system of high intelligence, there are two more factors have

to be taken into consideration: firstly, the behavior recognition for pedestrians is supposed to be

involved in the system. Particularly, the activities between walking and running are required to

be further distinguished [81], so that different mathematical models catering for variant situations

could be utilized with more efficiency. Secondarily, regarding a multi-storied building which is quite

common in the real application scenarios, the determination of users’ floor is also an indispensable

part in the Pedestrian Navigation System (PNS). For an indoor positioning system of full functions,

solely the location information in terms of 2D layout is barely comprehensive in anyway. Therefore

the solutions toward these pragmatic problems are discussed in this chapter.

7.1 Distinguish between Walking and Running

The step length of pedestrians is able to be estimated according to the mathematical models de-

veloped in Chapter 4 and 5. However, the differentiation rule between both behaviors is not yet

referred to. Intuitively the body motion when pedestrian is running is more intense than when

walking. Whether the intensity of body motion could serve as a discriminator between both of the

activities, and if so, which parameter is the most appropriate and distinctive indicator to measure

that intensity? In order to clarify these rules, the data collected during the previous experiments are

analyzed once more in this section.

Fig. 7.1 are the statistics of various parameters in the case of walking as well as running.

From the comparison in Fig. 7.1, it is remarkable that the acceleration variance is the indica-

tor showing the largest discriminability among the 4 parameters. Between walking and running,
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(a) Magnitude (in G) (b) Peak value (in G)

(c) Peak-Trough (in G) (d) Variance

Figure 7.1: The Box-whisker Plots of 4 parameters with reference to 2 different human behaviors.
Obvious is it that the intensities of body motion when walking and running are rather dissimilar. In
the 4 figures above, the magnitude, the peak value, the peak-trough difference, and the variance are
used as 4 different indicators for the motion intensity, in order to search the right parameter which
plays the most crucial role in the differentiation between walking and running.

the overlap region of the variance values is the smallest. Consequently the variance is chosen for

distinguishing both of the behaviors.

On the basis of the sampled data from all of the experiments (10 volunteers), when the threshold

for variance is set as 0.0397, the misrecognition rate reaches the minimum which is 2.52%. It has

to be emphasized that this statistics result comes from the entire test experiments which quite a few

abnormal gaits are also included, such as fast walking and slow running. With respect to the general

situations this rule for distinguishing is convincingly effective.

110



7.2. ALTITUDE DETECTION

7.2 Altitude Detection

As the popularization of the indoor positioning techniques, the requirement for altitude information

has burst onto the scene as well. Along with the growing development of the Location Based Service

(LBS), the multi-storied applications become increasingly imperative and indispensable in the real-

istic scenarios. Without the floor detection for a comprehensive and intelligent indoor positioning

system it is barely satisfactory.

7.2.1 Related Works

With regard to the schemes acquiring the floor information, several investigations were fulfilled by

the previous researchers [82] [83]. The majority employed WLAN based approaches which use Wi-

Fi fingerprint or signal trilateration to estimate the client’s location in 3D space [84]. The strength

rests on the precision and users do not need to identify their initial storey because the positioning

results are absolute heights [85]. Their shortcomings are also similar to those of all the WLAN

related schemes, that the full coverage of the wireless signal is decidedly necessary. In case of the

deficiency of the infrastructures these methods are naturally incapacity.

In terms of the solutions using IMU, there are also quite a few positive efforts were ever made

[86] [87]. However, the key equipment is the inertial sensors placed at lower limbs. With the shoe-

mounted sensors and the corresponding inertial mechanization theories, the vertical displacements

between adjacent steps are directly integrated. Zero Velocity Updates (ZUPTs) would compensate

the drift at each foot standstills [88]. Furthermore, more impressive attempts were never suspended.

For instance demonstrated in Fig. 7.2, using a series of IMUs stuck close to the hip joints, knee

joints and ankle joints to record and analyze the full activities of the lower limbs [89]. By mean of

the data from every sensor node and the Personal Area Network (PAN), all of the motion details of

both legs are reproduced while pedestrian is climbing a stair.

The advantage lies in their absolute accuracies. Relying on the Wireless Sensor Network (WSN)

and the precise biometrical models, all of the kinetic characteristics of human’s lower limbs would

be completely captured [90]. The effect is similar to those of the vision-based surveillance sys-

tems. With the exhaustive details of the mechanical motions of both legs, the behaviors of stair

ascent and descent are expected to be exactly recognized. Subsequently the function of floor detec-

tion is therefore implemented. By contrast, the inconvenience of these schemes is evident as well:

the fully equipped WSN is definitely requisite. Obviously for an indoor positioning system solely

based on the built-in sensors in smartphone, these brilliant schemes are excessively sophisticated

and demanding.
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(a) (b)

Figure 7.2: An instance using the inertial sensors network around the lower limbs to recognize the
human behaviors of stair ascent and descent

(a) The zigzag staircase (b) The spiral staircase

Figure 7.3: The staircases of 2 forms in the building of my institute. In each of the 2 staircases,
ascending and descending, a series of the experiments are implemented to seek the appropriate
approach for floor detection.
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7.2.2 Accelerometer based Solution

In order to verify the feasibility of recognizing the stair ascent and descent by inexpensive IMUs of

smartphone, a set of experiments are performed in the staircases of my institute. Fig. 7.3 illustrates

the scenes. For the zigzag staircase, between the ground floor and the first floor, the lower half have

10 stairs, the upper half have 11 stairs; while for the spiral staircase, between the ground floor and

the first floor, the lower half have 7 stairs, the upper half have 14 stairs.

Similar to the experiments in the previous chapters, one volunteer is required to ascend and de-

scend both of the staircases for 10 times (40 times altogether). Each step corresponds to 1 stair

singly. The step frequency is not pre-assigned anymore. The volunteer is able to adopt his pre-

ferred speed. Four sets of acceleration data selected from each of four groups of the experiments are

demonstrated from Fig. 7.4 to 7.7.
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Figure 7.4: A set of data collected while the volunteer goes upstairs in the zigzag staircase (the
scenes in Fig. 7.3 (a))
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Figure 7.5: A set of data collected while the volunteer goes downstairs in the zigzag staircase (the
scenes in Fig. 7.3 (a))
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Figure 7.6: A set of data collected while the volunteer goes upstairs in the spiral staircase (the scenes
in Fig. 7.3 (b))
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Figure 7.7: A set of data collected while the volunteer goes downstairs in the spiral staircase (the
scenes in Fig. 7.3 (b))

The data demonstrated in Fig. 7.4 to Fig. 7.7 include: the heading angle (black curve, according to

the data fusion algorithm introduced in Section 3.4.2), the acceleration in anterior-posterior direction

(y, green), and the acceleration in vertical direction (z, blue). Both of the acceleration signals are

processed by the multi filters described in Chapter 3.

From the acquired azimuth data, the turning in the staircases is indicated distinctly. In the zigzag

staircase there is a sharp transition when the volunteer is turning at the corner; while in the spiral

staircase, due to the rotating route the heading angles are more likely to vary progressively.

Similar to the data from the walking and running experiments, the y accelerations are instable as

before: not only the amplitudes are uncertain but also the impulses are rather confused. In contrast,

the z data show their regularity and legibility as they always are: the number of stairs is able to be

explicitly counted (for Fig. 7.4 and 7.5 they are 10 and 11 stairs; while Fig. 7.6 and 7.7 are 7 and

14).

In order to seek a feature indicator in the z accelerations, which associates with certain physical

property of stair ascent and descent, the average peak values, average trough values, average peak-

trough differences, and average variance are compared in Fig. 7.8. Because the variance has proved

to be the most crucial parameter to indicate the motion intensity (in Section 7.1), another related

parameter— the magnitude is not involved here.
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(a) Average peak value (in G) (b) Average trough value (in G)

(c) Average peak-trough difference (in G) (d) Average variance

Figure 7.8: The Box-whisker Plots of 4 indicators with reference to stair ascent and descent are
compared. It is postulated that certain parameter would show remarkable disparity towards stair
ascent and descent. In the 4 figures, the average peak values, average trough values, average peal-
trough differences, and average variances, together with their statistical distributions are compared.
Unfortunately from the 4 parameters analyzed above, there is no significant difference between both
behaviors.

All of the parameters demonstrated in Fig. 7.8 are sourced from the statistics of the data sampled

in both staircases. Form the figures none of the 4 parameters is able to differentiate both behaviors

of stair ascending and descending. There is merely an approximate phenomenon that the motion of

ascent is slightly more intense than that of descent. However, that is hardly adequate to serve as a

feature indicator. Since the effect is negative, further experiments by more diverse volunteers are

not performed any more.

Theoretically that was not how it was expected to happen. When pedestrian is ascending the
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stairs, on the whole the accelerations upward are supposed to be larger than downward, and then the

barycenter could therefore rise; vice versa. Nevertheless the absolute value of the average peak value

is less than that of average trough value, which is the same as the situation of descent. Moreover,

there is nothing but marginal difference between the acceleration waveforms generated when ascent

and descent (the only distinction revealed by Fig. 7.4 to 7.7 is: during ascending, it is trough first and

then peak; while descending, it peak first then trough. But that could not be regarded as a reliable

criterion). One possible reason is that eventually the precisions of the built-in accelerometers are

limited. The difference between ascent and descent is even less significant than the error level of

drift in inertial sensors. On the other hand, concerning the stair climbing scenario, the smartphone

held in hand might not be capable to record the motion characteristics of the body barycenter exactly.

That is also why most of researchers are inclined to rely on the sensor network set at the lower limbs

rather than sole handheld IMU in the subject of ascent & descent recognition.

7.2.3 Barometer based Solution

On the basis of the analysis in Section 7.2.2, in reality floor detection relying on handheld accelerom-

eter is barely feasible. A new approach is required to be attempted. The emergence of MEMS

barometer brings this problem new solution. Along with the unveiling of iPhone 6 / 6 plus and iPad

Air in 2014, barometer bursts onto the scene for the first time as a component of smartphone [91].

Because barometer is primarily used to estimate the relative altitude according to atmospheric pres-

sure, it is called digital altimeter as well. The advent of inexpensive built-in barometer makes a wide

range of altitude-oriented applications possible.

According to the data sheet of Bosch BMP 2801 which is a popular digital pressure sensor adopted

by many consumer electronics producers, the relative altitude is calculated by the barometric formula

described in Eq. 7.1:

altitude = 44330 × [1 − (
p
p0

)
1

5.255 ], (7.1)

where p denotes the measured atmospheric pressure; while p0 indicates the pressure at sea level,

which is considered 101.325 kPa.

1https://www.bosch-sensortec.com/en/homepage/products3/environmentalsensors1/bmp280/
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Figure 7.9: The relation between the varied atmospheric pressure and altitude

Figure 7.10: The screenshot of the app “Barometer”
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As Fig. 7.9, along with the increasing of the measured atmospheric pressure, the altitude decreases

gradually. Provided the pressure declines by 0.1 kPa at sea level, the altitude is supposed to rise by

approximately 8.43 m.

However, the estimation result for altitude from atmospheric pressure is not stable at all. Because

the reading from barometer is strongly influenced by the climate conditions, such as temperature,

humidity, air density and other weather parameters. Even the environment of indoor or outdoor

could impact on the measured pressure.

In order to verify the usability of the built-in barometer in the indoor positioning scenario, a test

app is developed to record the atmospheric pressure in real time and calculate the relative altitude

accordingly. The screenshot of the test app is demonstrated in Fig. 7.10.

With this app, the stair ascent and descent experiments are implemented once more in both of

the staircase of my institute (as Fig. 7.3). Because the function of the app “Barometer” is too

monotonous, it is not submitted to App Store.

Fig. 7.11 and 7.12 are 4 instances sampled from the experiments.

From the calculated results illustrated in Fig. 7.11 and 7.12, the variations in the altitude are

able to be sensed evidently. Although the estimation values of altitude derived from atmospheric

pressure are far from absolute accurate, and the results are not exactly in real-time as well, for the

application of floor detection the precision and sensitivity is adequate. From the relative altitude

curves in figures, even the platforms at the turning corners are demonstrated well.

Adding with the function of floor detection by the built-in barometer of smartphone, the service-

ability and comprehensiveness of the indoor positioning system would be improved in the great

degree.

119



CHAPTER 7. ENHANCEMENT OF THE FUNCTIONS

0 500 1000 1500
100.88

100.9

100.92

100.94

Time (× 20 ms)

A
tm

os
ph

er
ic

 P
re

ss
ur

e 
(k

P
a)

Ascent

0 500 1000 1500
100.88

100.9

100.92

100.94

Time (× 20 ms)

A
tm

os
ph

er
ic

 P
re

ss
ur

e 
(k

P
a)

Descent

0 500 1000 1500
−1

0

1

2

3

4

Time (× 20 ms)

R
el

at
iv

e 
A

lti
tu

de
 (

m
)

Ascent

0 500 1000 1500
−4

−3

−2

−1

0

Time (× 20 ms)

R
el

at
iv

e 
A

lti
tu

de
 (

m
)

Descent

Figure 7.11: The sampled atmospheric pressures and calculated altitude information of the stair
ascent and descent experiments in the zigzag staircase (Fig. 7.3 (a)).

0 500 1000
100.78

100.8

100.82

100.84

Time (× 20 ms)

A
tm

os
ph

er
ic

 P
re

ss
ur

e 
(k

P
a)

Ascent

0 500 1000
100.78

100.8

100.82

100.84

Time (× 20 ms)

A
tm

os
ph

er
ic

 P
re

ss
ur

e 
(k

P
a)

Descent

0 500 1000

0

1

2

3

4

Time (× 20 ms)

R
el

at
iv

e 
A

lti
tu

de
 (

m
)

Ascent

0 500 1000
−4

−3

−2

−1

0

Time (× 20 ms)

R
el

at
iv

e 
A

lti
tu

de
 (

m
)

Descent

Figure 7.12: The sampled atmospheric pressures and calculated altitude information of the stair
ascent and descent experiments in the spiral staircase (Fig. 7.3 (b)).
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7.2.4 Evaluation

The utilization of barometer in floor detection shows the great convenience. However, in the exper-

iments described in Fig. 7.11 and 7.12, as an altimeter the accuracy in real-time is far from prefect.

According to the data sheet of Bosch BMP 280, the precision of this typical commercial digital

barometer is ±0.12 hPa which is equivalent to ±1 m (with the environment temperature 25◦C).

Normally the height difference between 2 floors is approximately 2.8 to 3.5 m. For museum or ex-

hibition hall it would be higher. Thus, this rough estimation of relative altitude is fairly capable of

the low storied buildings. For example, in my institute there are only 2 floors above the ground. The

pressure distinction between 2 floors in a short time is enough to distinguish between both. Never-

theless, with regard to the high-rise multi-storied buildings and in a comparative long period, could

the barometer based solution still maintain a satisfactory performance?

In order to evaluate the long term accuracy and feasibility of the barometer scheme, a further test

experiment is designed. Because the precision of the methods using WLAN or WSN around lower

limbs approaches to 100%, the absolute accuracies are not compared in this section.

The experiment is performed in a six storied building, in which the floor heights are all 3.2 m.

The Relative Altitude (RA) on the ground floor is initialized as 0 m. If

3.2n − 1.6 6 RA < 3.2n + 1.6, (7.2)

the current floor number is regarded as n. During this experiment n is supposed to be 0, 1, . . . , 5. In

this dissertation the counting of the floor number conforms to the European standard by which the

floor index begins from 0 (by contrast in North America and Asia it starts at 1).

The volunteer is required to take a smartphone and climb through the 6 floors, upward and down-

ward, circularly. When he reaches a new floor, after the reading of the barometer is stable, the RA is

recorded. Once the determined floor number is wrong according to Eq. 7.2, the experiment is ended.

Finally the experiment was terminated at the 2th floor when the volunteer was going upstairs. At

that time, the volunteer had finished 42 storeys and spent 665 seconds. In other words, after 11 min

5 s, the deviation of RA is around 3.2 m. This phenomenon is similar to the drift in accelerometer

and gyroscope. After more than 10 min, the measured data is so offset that it needs to be calibrated.

In order to eliminate the accidental factors, this experiment was repeated twice on other days, once

it was rainy. And the first error occurred after 43 and 48 storeys respectively, which means the effec-

tiveness of the barometer based solution for floor detection is able to maintain 11 to 13 min. Within

this period, the acquired results could be deemed reliable and valid. However, in the longer term

certain calibration strategies are necessary as well.
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Recap
In this chapter two practical functions are implemented additionally. Firstly, the behaviors of

walking and running are distinguished so that the choice of the mathematical models would be more

targeted. Secondarily, for the requirement of stair ascent and descent recognition, various solutions

are attempted and compared. Finally the scheme using barometer is proved to be the most operable

and feasible. With the advantage of the newly emerged built-in barometer within smartphone, the

indoor positioning system is extended to the multi-storied scenarios.
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Chapter 8

Conclusion and Future Works

8.1 Contributions and Conclusion

In this dissertation the complete operating process of an indoor positioning strategy is described. By

means of the built-in micro sensors of smartphone, the latest standpoint and the moving trajectory

of pedestrian are calculated. Fundamentally the sampled data from accelerometer, gyroscope and

magnetometer are meliorated by a series of filters. Basing on the fused data from gyroscope and

magnetometer, the heading angles are determined. From the processed acceleration signals, the

kinetic characteristics of pedestrian’s body are extracted accordingly. Subsequently the length of

each step is therefore estimated. With both the azimuth and length information of each step, the

current position is supposed to be successively updated.

Particularly, two novel mathematical models for walking and running step length estimation are

developed respectively. They are the key contributions in this dissertation. On the basis of the

variance of the vertical accelerations, the horizontal displacement of each step is able to be reckoned.

The average deviation rate of the walking model is 10.90% while the running model is 19.66%. In

the same condition these accuracies are higher than all of the previous models. Although they are

complicated and consist of 4 equations and 3 equations respectively (Eq. 4.12, 4.13, 4.14, 4.15 and

Eq. 5.4, 5.5, 5.6), the computation cost towards smartphone is still feasible. Moreover, because

my models refer to the variance of the vertical accelerations rather than the exact peak or trough

values, they are able to promote the stabilization and robustness of the positioning system on the

whole. Once any single peak or trough is misrecognized, it might lead to a series of disorders in

the peak-trough pairs, which would cause meaningless result in the peak-trough based models. In

contrast the variance is measured more safely and the unfavorable influence of the possible errors in

step frequency is also comparatively limited. In other words, the fault-tolerant ability of the system
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is enhanced to a certain extent.

Furthermore, particle filter is adopted to constrain the moving trajectory to the physical surround-

ings. Particle filtering methodology uses a genetic type mutation-selection sampling approach, with

a set of particles to represent the posterior distribution of certain stochastic process given a few

noisy and partial observations. The state-space model could be nonlinear and the initial state and

noise distributions could take any form required. Particle filter techniques provide a well-established

methodology for generating samples from the required distribution without requiring assumptions

about the state-space model or the state distributions. In the experiment scenario by employing parti-

cle filter, the accuracy is improved by 38.27%. With the physical layout information, the positioning

result would be rectified as well.

Eventually with reference to the problem of distinguishing the behaviors of walking and running,

the variance related criteria is discussed in Chapter 7. Besides, the digital barometer is utilized for

floor detection so that the positioning system is extended to multi-storied scenarios. According to

the evaluation the reliability and validity of the floor numbers estimated by barometer can maintain

for more than 10 minutes. In most of scenarios with certain calibration approaches this solution is

convenient but adequate.

8.2 Future Works

The aim of my endeavors is to develop an autonomic indoor positioning system. In the view of the

research in this dissertation, there are 4 problems require to be further engaged:

(1) It is not difficult to realize that an initial standpoint of pedestrian is foremost necessary, which

is also an imperative premise for PDR methods. In all the experiments involved in this disserta-

tion, the starting positions are either pre-assigned or input by users themselves. However, this is

impractical for a realistic application. For this drawback, the collaboration between other position-

ing schemes is highly appreciated because the initial state may be acquired from other alternative

information sources.

(2) As the literature [92], the accuracy of the barometer based floor detection would be promoted

by WLAN signals as well. By the trilateration the searching zone is reduced and the more reliable

floor number is therefore output. In reality the association of multi-techniques is supposed to be

constantly encouraged because the entire performance would be improved by the advantage of every

component. Besides, as the introduction in this dissertation, due to the instinctive drift problem,

the scheme relying on solely inertial sensors is hardly able to perform perfectly in the long term.

Combining other positioning techniques (such as WLAN, Bluetooth related methods) may be more
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reasonable and advisable. Thereupon how to make full use of all the data sources, how to implement

the task about sensors fusion, is pretty promising and definitely requires a considerable quantity of

research as well as experiments.

Figure 8.1: The arrangements of the ceiling lamps can be used for walking speed estimation

(3) Other brilliant inspiring ideas occur continually, such as [93] that the ceiling lamps in a cor-

ridor are serviceable as well. Since a few latest smartphones are equipped with the ambient light

sensor, the rhythmic property of the light intensity above (as Fig. 8.1) may be detected and applied

to estimate the walking speed and certain special positions. Moreover, this sort of fantastic hard-

ware is expected to be taken full advantage of in order to discover any possibility to improve the

accuracy of positioning. The similar thoughts are ceaseless: for example, using barometer or ther-

mometer to sense the particular locations such as opened windows or entrance between outdoor and

indoor environments. Furthermore, if associating with numerous wearable devices, the application

potentialities are considerable. Ultimately the knowledge about the big data becomes increasingly

imperative.
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