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(Dated: February 15, 2023)

Correlated insulators are frequently observed in magic angle twisted bilayer graphene at even fillings of elec-
trons or holes per moiré unit-cell. Whereas theory predicts these insulators to be intervalley coherent excitonic
phases, the measured gaps are routinely much smaller than theoretical estimates. We explore the effects of
random strain variations on the intervalley coherent phase, which have a pair-breaking effect analogous to mag-
netic disorder in superconductors. We find that the spectral gap may be strongly suppressed by strain disorder,
or vanish altogether, even as intervalley coherence is maintained. We discuss predicted features of the tunneling
density of states, show that the activation gap measured in transport experiments corresponds to the diminished
gap, and thus offer a solution for the apparent discrepancy between the theoretical and experimental gaps.

Introduction.—In recent years, magic-angle twisted bilayer
graphene (MATBG) [1] has emerged as an exciting and ver-
satile platform for strong-correlation physics. Its rich phase
diagram prominently features correlated insulators, Chern in-
sulators, superconductivity, and strange metallicity [2–12].

Correlated insulators consistently found at fillings ν = ±2
electrons per moiré unit cell relative to charge neutrality (CN),
and more rarely at CN, have been suggested to originate
from Kramers intervalley-coherent order (K-IVC) [13–16].
The K-IVC phase is in some sense analogous to a supercon-
ductor, with the condensate made up of intervalley electron-
holes pairs. Interestingly, theoretical predictions of the K-
IVC gap energy, by both Hartree-Fock and numerically ex-
act methods, overestimate the measured activation gap of
∼ O (1 meV) [2, 4–6, 9] by more than an order of magnitude.

It has been experimentally well-established that the moiré
lattice formed in realistic MATBG devices is not pristine, pre-
sumably due to substantial relaxation effects of the underly-
ing graphene lattice [17]. Disorder in the local twist angle
between the graphene layers has been observed [7, 18], lead-
ing to domains with slightly different effective moiré unit-
cell sizes. Local measurements have also shown significant
strain effects, consistent with a moiré lattice distortion of
0.1%− 0.7% [19–21].

As the two graphene layers may be subjected to different
strain fields, the strain tensor applied to the bilayer is com-
prised of a layer-symmetric part (homostrain) and a layer-
antisymmetric contribution (heterostrain). Uniform heteros-
train was suggested to have an important role in weakening
the even-filling correlated insulator states in MATBG [13, 22].
This is mainly due to a large increase of the flat-bands band-
width [23, 24], leading to diminished effective interactions.

Whereas heterostrain shifts the two Dirac points within
each valley with respect to each other, homostrain subjects
both layers to identical distortions and mainly acts as a
pseudo-gauge field. This field acts oppositely in the two val-
leys (as illustrated in Fig. 1a), thus maintaining time-reversal
symmetry (TRS). In this manuscript, we explore the effects of
spatially random homostrain (Fig. 1b) on the properties of the
K-IVC phase. We show that this perturbation induces “pair-

FIG. 1. Schematic description of our model. (a) The band struc-
ture in each valley (K,K′) is approximated by two Dirac cones, one
in each “mini-valley”. The momentum separating the valleys, Q, is
modified by random homostrain fluctuations acting on the graphene
layers, as represented by colored dotted arrows. (b) Schematic of
a possible random strain configuration. Color indicates the strain
strength |A|, whereas arrows indicate the directions of the local dis-
tortions of the graphene lattice.

breaking” effects in striking resemblance to magnetic impu-
rities in spin-singlet superconductors. Effects of other types
of strain on the K-IVC phase are discussed in the supplemen-
tary materials (SM) [25], and various disorder perturbations
are classified by their impact on this phase in Ref. [26].

We find that modest strain fluctuations reduces both the K-
IVC order parameter and the spectral gap, but enable the two
to be dramatically different from one another. We propose
that this effect may be responsible for the surprisingly small
activation gap observed in transport experiments. Moreover,
we show that intervalley coherence can persist even when the
system becomes gapless to single-particle excitations, a phase
that we dub “gapless K-IVC”. This phase could explain the
haphazard appearance of a correlated insulator at CN.

Model.—We consider the following simplified spinless
model of MATBG,

H0 =
∑
k

Ψ†k [ukxσxτz + ukyσy] Ψk, (1)

where Ψ†k is an 8-spinor of fermionic annihilation operators at
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momentum k relative to their respective origin in momentum
space, and with sublattice, valley, and ”mini-valley” degrees
of freedom, described by Pauli matrices σi, τi, and ρi, re-
spectively. This model features four Dirac cones with linear
dispersion εk = ±u |k|. H0 preserves the TRS T = τxρxK
(K implements complex conjugation), with T 2 = 1.

The spinless model effectively describes the fillings ν =
±2, where two electronic flavors of opposite valleys are en-
tirely filled or empty, while the remaining pair is “active”
and forms intervalley coherence. Conversely, two copies of
our spinless model may be used describe the K-IVC phase at
CN [13–16].

We introduce local density-density repulsive interactions,

Hint =
U

2Ω

∑
k,k′,q

Ψ†k+qΨkΨ†k′−qΨk′ , (2)

which induce spontaneous symmetry-breaking in our model
on a mean-field level. (Ω is the system area.) This simplified
form of Hint suffices to illustrate the phenomenon we are in-
terested in. Specifically, we examine the K-IVC phase, which
has been argued to be the likely ground state of MATBG at
even fillings. The K-IVC state is characterized by intervalley
coherence, i.e., formation of an exciton condensate with inter-
valley electron-hole pairs, a finite gap to charge excitations,
and TRS breaking. The corresponding mean-field Hamilto-
nian at a given k has the form

hMF (k) = u (kxσxτz + kyσy) + ∆ivcσxτxρz. (3)

hMF preserves a Kramers-like TRS, T ′ = τyρxK, which con-
catenates T with a valley rotation. It also preserves chiral
and particle-hole symmetries, represented by S = σz and
C = ST ′, respectively [27] .

We now introduce random homostrain variations, which en-
ter the model as a random gauge field acting in opposite di-
rections in opposite valleys, see Fig. 1b. Concretely, the strain
Hamiltonian may be written as

Hstr = u

∫
drΨ† (r) [Ax (r)σx +Ay (r)σyτz] Ψ (r) , (4)

where A is the strain-induced perturbation, and Ψ (r) =
1√
Ω

∑
k e

ik·rΨk. In Eq. (4) we have implicitly assumed that
the strain potential is smooth on the moiré length scale. Oth-
erwise one should replace the renormalized velocity u by the
much larger bare graphene Fermi velocity vF . Notice that uni-
form strain constitutes a shift of k in H0 [28] and redefines
the momentum connecting the two valleys Q = K−K′.
This only changes the momentum carried by the condensed
electron-hole K-IVC pairs, so that we can assumeAi has zero
spatial mean.

The perturbation in Eq. (4) does not break any of the sym-
metries of hMF. However, as we will show below (see also
Ref. [26]), the fact that it commutes with the K-IVC operator
σxτxρz , enables a drastic reduction of the gap which opens in
the K-IVC spectrum due to the random strain disorder. For

this reason, we have also neglected inter-minivalley scatter-
ing, which have additional ρx, ρy factors, and thus anticom-
mute with the order parameter.

Considering a simple point-like perturbation, A (r) =
A0δ (r), one may employ a T -matrix formalism to find the
bound-state spectrum inside the mean-field gap [25], in anal-
ogy to Yu-Shiba-Rusinov states induced by magnetic impuri-
ties in a superconductor [29–31]. We find that as the perturba-
tion strength increases, the in-gap-state energy is reduced and
the two bound-state energies cross at zero when the impurity
strength becomes an appreciable fraction of the bandwidthW .

Moreover, we find that when approximating the density-of-
states (DOS) as a constant around the Fermi level (rather than
linear as appropriate in our case), one recovers – apart from
additional degeneracies – precisely the bound-state spectrum
of a magnetic impurity inside a singlet superconductor. This
outcome may be traced to the analogous algebraic structure
of the two problems, i.e., the impurity operator commuting
with the order parameter. This analogy enables the treatment
of random strain fluctuations in MATBG by tools similar to
those employed in superconductors with magnetic impurities.

Abrikosov-Gor’kov approach.—We therefore treat the ran-
dom strain fluctuations within the self-consistent Born ap-
proximation (SCBA), inspired by the Abrikosov-Gor’kov
theory of superconductivity in magnetically disordered al-
loys [32]. A similar method was also used to study exciton
condensates in the presence of potential impurities [33, 34].

The main object of interest is the Green’s function,

G (k, ω) =
(
iω − hMF − Σ̂SCBA

)−1

. (5)

Within the SCBA, the self-energy matrix Σ̂SCBA can be writ-
ten as

Σ̂SCBA (k, ω) =

〈∑
p

Uk−pG (p, ω)Up−k

〉
dis.

, (6)

where the matrix U represents the random strain perturbation
in momentum space, Hstr =

∑
kq Ψ†k+qUqΨk, and 〈...〉dis.

stands for disorder averaging.
Upon standard manipulation of the Green’s function, it can

be written as

G = − iω̃ + u (kxσxτz + kyσy) + ∆̃σxτxρz

ε2k + ∆̃2 + ω̃2
. (7)

The parameters ω̃, ∆̃ are related to ω,∆ivc by the self-
consistency equations(

ω̃

∆̃

)
=

(
ω

∆ivc

)
+ ΓF

(
ω̃, ∆̃

)( ω̃

−∆̃

)
, (8)

where F
(
ω̃, ∆̃

)
= W

2

∫
dε N (ε)

ε2+∆̃2+ω̃2
, N (ε) is the DOS per

unit cell of area Ωu.c., and W is the bandwidth. The disorder
energy scale Γ is

Γ =
2Ω

WΩu.c.

〈∫
dθu2A†θ ·Aθ

〉
dis.

, (9)
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where Aq is the Fourier transform of A (r), and we have
used the standard approximation that the scattering mostly de-
pends on the angle between incoming and outgoing momenta
θ [33, 34]. As for magnetic impurities in superconductors
and potential scatterers in excitonic condensates, the form of
Eq. (8) is due to the K-IVC order parameter commuting with
the random perturbation. Thus, the equations we find are iden-
tical to the Abrikosov-Gor’kov equations for superconductors
with magnetic impurities, with one important difference. In
MATBG, we cannot assume a constant DOS near the Fermi
energy, but should account for the fact that the DOS vanishes
linearly at the Dirac point. This leads to important qualitative
differences in the results.

By relating the local strain to the effective gauge-field A,
one may obtain an order-of-magnitude estimate of Γ. For root-
mean-square strains of E ∼ 0.1% and disorder correlation
lengths of few unit cells, we find Γ/W values of 0.1−0.3 [25].
As will be shown, such values are sufficient to dramatically
reduce the spectral gap or even close it completely.

The strength of K-IVC order in the presence of disorder is
obtained by combining Eq. (8) with the gap equation

∆ivc = −2
U

βΩ

∑
ωk

Tr {σxτxρzG} , (10)

which we solve numerically. (Here, β is inverse tempera-
ture.) Figure 2a shows results for the order parameter ∆ivc as
a function of temperature and disorder. We find that both the
order parameter and the critical temperature deteriorate with
increasing disorder.

When assuming a DOS which is linear in energy, Nlin. =
4 |ε| /W 2 with cutoff energy |ε| < W/2, we can also make
analytical progress. In particular, we may calculate the critical
disorder scale Γc, at which ∆ivc vanishes for T = 0. In the
regime Γc �W/2, we find [25]

Γc =
Uc

log 8

(
1− Uc

U

)
, (11)

where Uc = W/4 is the critical interaction U below which the
K-IVC order vanishes at Γ, T = 0. The finite Uc as well as the
form of the critical “pair-breaking” parameter Γc originate in
the DOS vanishing linearly at zero. This suppresses the ana-
log of the Cooper-instability for arbitrarily weak interactions,
which requires a finite DOS at the Fermi level.

Having found the self-consistent Green’s function, we can
calculate the tunneling density of states (TDOS) Ñ (ε) =
1
π Im 1

Ω

∑
k TrG (k, ω → iε). In clean systems, the gap ωg in

the TDOS is equal to the order parameter ∆ivc. In the pres-
ence of finite disorder Γ, ωg is in general smaller than ∆ivc.

In Fig. 2b, we plot the ratio ωg/∆ivc for the same param-
eter range as in Fig. 2a. As Γ increases, the ratio gradually
deviates from unity, and eventually reaches zero, before ∆ivc

vanishes. We dub the regime with finite ∆ivc and vanishing
ωg as the gapless K-IVC phase. Similar to gapless supercon-
ductivity, we interpret this regime as one where intervalley
coherence exists throughout a large fraction of the system, yet

FIG. 2. (a) The order parameter ∆ivc as a function of temperature
and disorder energy scale Γ. For a given temperature, there is a crit-
ical Γ at which the order parameter vanishes. (b) The ratio between
the gap in the TDOS, ωg , and ∆ivc. As Γ increases, ωg deviates from
∆ivc appreciably. There exists a gapless K-IVC region bounded by
the vanishing of the single-particle gap (black dashed line) and of the
order parameter (blue dashed line). We used U = 0.7W and a lin-
ear DOS Nlin.. (c) Linecuts for different values of Γ showing ∆ivc

(solid) and ωg (dash-dotted).

strain-induced in-gap states form a low-energy compressible
continuum of states. For linear DOS, we find that the disorder
strength at which the gap closes is related to ∆ivc [25] through

Γg = W/ log
(

1 + W 2

∆2
ivc

)2

.

In Fig. 2c, we plot linecuts of Fig. 2a for several values of Γ.
We find that even for modest (and realistic) disorder strengths,
the spectral gap is significantly suppressed compared to the
naive gap as given by the order parameter. Thus, devices
which host appreciable strain fluctuations may exhibit an ef-
fective gap as seen in a global transport measurement, which
is about an order of magnitude smaller than the expected con-
densation order parameter.

In Fig. 3 we track the evolution of the TDOS with disor-
der strength. At very low Γ we find two narrow K-IVC bands
separated by roughly 2∆ivc, as expected from previous theo-
retical investigations of the pristine K-IVC phase. As the dis-
order strength Γ increases, these bands spread out in energy,
and their separation diminishes. As shown in the figure, this is
very different from the behavior of ∆ivc. While ωg diminishes
already for weak disorder, ∆ivc remains mostly unaffected up
to intermediate values of Γ.

The TDOS depicted in Fig. 3 can be measured in pla-
nar tunneling junctions with a large tunneling area, simi-
lar to the experimental verification of gapless superconduc-
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FIG. 3. Evolution of the TDOS Ñ (ε) with Γ. The gap ωg gradually
closes as the disorder strength increases. The blue line indicates the
evolution of ∆ivc/W with increasing Γ. Notice that its evolution
differs from that of the single-particle gap as it deteriorates more
slowly. We used U = 0.7W , T = 0 in this figure.

FIG. 4. Arrhenius plots of the longitudinal DC conductivity σxx.
Dots: σxx as a function of temperature for different strengths of the
strain fluctuations, Γ/W ∈ [0.02, 0.1], increasing from bottom (red)
to top (blue) in steps of 0.02. We used the same parameters as in
Fig. 2. Solid lines: guides to the eye ∝ exp [−ωg (T → 0) /T ] for
each Γ value. Whereas ωg differs by a factor of∼ 5 between the first
and last plots, ∆ivc changes only modestly by < 25%.

tivity [35]. The large tunneling area is required for effec-
tive averaging over disorder configurations in a particular de-
vice. Such measurements are expected to show two spread-out
TDOS lobes, with centers separated by∼ 2∆ivc and a spectral
gap of 2ωg < 2∆ivc. In contrast, local scanning-tunneling-
microscopy (STM) measurements do not reveal disorder-
averaged quantities, yet we expect the tunneling gap to vary
as a function of position, in a manner correlated with the ho-
mostrain variations. Such phenomenology would be a clear
indicator of the proposed disordered K-IVC phase.

To make contact with transport experiments, we now turn to
calculating the DC conductivity within our model. We use the
Kubo-Bastin formula [36], σxx ∝

∫
dε
(
−dfdε

)
S (ε), where f

is the Fermi function, and

S (ε) ≈ 1

Ω

∑
k

Tr {jxImG (k, ω → iε) jxImG (k, ω → iε)}

(12)
is the conductivity kernel. The current operator is jx =
uσxτz . Equation (12) neglects vertex corrections to jx, which
may have quantitative significance, but are beyond the scope
of this work.

Fig. 4 presents Arrhenius plots of the conductivity for dif-
ferent Γ values. From these plots, we can extract the acti-
vation energy Eact by fitting the longitudinal conductivity to
σxx ∝ exp (−Eact/T ). Remarkably, we observe that the low-
T behavior is indeed temperature activated with Eact ≈ ωg ,
and not the potentially much larger ∆ivc. (In the topmost plot
of Fig. 4 ∆ivc ≈ 5.4ωg .) This behavior can be traced to the
analytic structure of S (ε), which has a gap ≈ 2ωg around
ε = 0 [25], similar to the TDOS.

Conclusions.—We have explored the consequences of ran-
dom homostrain fluctuations on the K-IVC state, believed to
describe the insulating phases of MATBG at even fillings. Us-
ing a simplified model for MATBG, we have studied this prob-
lem using the SCBA in conjunction with a mean-field treat-
ment of the K-IVC order parameter. Homostrain disorder has
a pair-breaking effect on the intervalley coherent condensate,
since it locally acts on the two valleys in opposite ways.

In contrast to similar pair-breaking disorder problems, ran-
dom homostrain does not break any symmetries of the K-IVC
state. However, it does lead to in-gap states, gap closing, and
order parameter deterioration due to its operator structure –
it commutes with the order parameter. Moreover, the DOS
dependence on energy had to be taken into account, since it
vanishes at the Dirac point. This led to the unique form of
the solutions of the Abrikosov-Gor’kov equations which we
derive, and of the critical pair-breaking parameter Γc.

One of our key results is the significant separation between
the energy scales of the K-IVC order (∆ivc) and the spectral
gap for single-particle excitations (ωg), even for modest val-
ues of disorder. Borrowing insights from superconductors, the
gap reduction stems from in-gap bound states, which become
stronger and more abundant with increasing Γ, yet impact the
surrounding intervalley-coherent condensate only weakly.

We suggest that the order-of-magnitude discrepancy be-
tween the theorized K-IVC gap and the activation gap mea-
sured in transport experiments can be resolved within our
model. We have demonstrated that the relevant activation en-
ergy as measured via the DC conductivity is the spectral gap,
which may be considerably smaller than the order parameter
due to disorder. (Both scales coincide in the pristine case).
The rare appearance of insulators at CN can also be under-
stood by considering two copies of our model with differ-
ent spin labels. Variations of the magnitude of strain disor-
der between devices may tip the state at CN from a weakly-
insulating K-IVC state to the gapless K-IVC regime. The
relative weakness of the insulating state at CN compared to
fillings ν = ±2 has been attributed to bandwidth renormal-
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izations [37–39], rendering the effective interactions stronger
away from CN.

The interplay of strain fluctuations with other sources of
K-IVC suppression, such as twist-angle disorder and uni-
form heterostrain, remains to be explored. Additionally, the
fact that the considered disorder couples only to intervalley-
ordered states may also be important. This may have ramifi-
cations for the competition between the K-IVC state and other
correlated insulating phases, such as the valley-Hall phase, for
which the order parameter ∝ σz anticommutes with the strain
fluctuations. Incorporating such complications, as well as in-
cluding more intricate aspects of the (particle-hole asymmet-
ric) band structure will shed much-needed light on the nature
of the insulating phases in MATBG and their variation be-
tween different devices.
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SUPPLEMENTAL MATERIAL

COMPONENTS OF THE STRAIN TENSOR

Consider the two graphene layers which make up the twisted bilayer. One may apply a spatially-dependent displacement field
to the carbon atoms of each layer, uαdisplacement (`, r). Here, r is the position of the displaced carbon atom, ` = t,b corresponds
to either the top or bottom layer, and α = x, y is the axis along which the atom is displaced.

We then define the strain tensor

ε`αβ =
∂αu

β
displacement (`, r) + ∂βu

α
displacement (`, r)

2
. (S1)

The homostrain and heterostrain tensor are now simply the layer-symmetric and antisymmetric components of ε`αβ ,

εhomo
αβ =

εtαβ + εbαβ
2

, (S2)

εhetero
αβ =

εtαβ − εbαβ
2

, (S3)

and one therefore expects both components to exist for a generic random strain field configuration.

Uniform strain

Uniform heterostrain.—The effects of uniform heterostrain on both the band structure of magic angle twisted bilayer graphene
(MATBG) and on the correlated insulator appearing at even fillings of electron/holes per moiré unit-cell have been considered in
Refs. [13, 22–24]. The main notable effect of this perturbation is the distortion of the moiré superlattice, leading to a significant
increase of the flat-bands’ bandwidth. This then leads to weakening of the correlated insulator, due to an effective weaker
interaction (as compared to the bandwidth of the electrons).

Uniform homostrain.—Uniform strain which is applied identically to both graphene layers will shift the band structure in the
two valleys in opposite directions in momentum space [28],

K→ K + A, K′ → K′ −A, (S4)

where K,K′ are the two monolayer graphene valleys and A is the pseudo-gauge field.
Assuming electron-electron interactions which are weakly dependent on momentum, consider a spontaneous intervalley-

coherent order parameter, which has an oscillatory spatial dependence ∆ivc (r) ∝ exp (iQ · r) in the absence of strain,
with Q = K − K′ the intervalley separation. Then, applying uniform homostrain would have no effect on the instabil-
ity towards the intervalley order, though the “new” order parameter will now have a slightly different spatial periodicity,
∆ivc (r) ∝ exp [i (Q + 2A) · r]. We therefore do not include this type of perturbation in our considerations in this work.

Strain disorder

Let us now discuss the effects of the disordered strain potentials within our effective model. As a reminder, its mean-field
form is

hMF (k) = u (kxσxτz + kyσy) + ∆ivcσxτxρz, (S5)

where sublattice, valley, and ”mini-valley” degrees of freedom are described by Pauli matrices σi, τi, and ρi, respectively.

https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1016/0038-1098(86)90190-0
https://doi.org/10.1016/0038-1098(86)90190-0
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In this language, homostrain disorder is proportional to the operators σx, σyτz , or a linear combination of the two. Therefore,
the homostrain operator commutes with the order parameter ∝ σxτxρz . This fact is crucial for allowing this disorder term to
close the gap induced by the intervalley order parameter, as we discuss throughout this work.

Heterostrain disorder however, is proportional to the operators σxτzρz , σyρz and their combinations. One easy way to
understand why, is to recognize that the same mini-valley in opposite valleys originates in the Dirac points corresponding to
opposite layers. Therefore, when it comes to response to a strain potential, the operator τzρz effectively acts as an “originating-
layer” index. Heterostrain operators are then naturally given by multiplying the homostrain operators by τzρz , enforcing opposite
pseudo-gauge fields in opposite layers.

Importantly, the heterostrain operators anticommute with the intervalley-coherent order parameter, so that the gap cannot be
closed by weak disorder of that kind. Their effect is thus analogous to that of non-magnetic charge impurities in conventional
spin-singlet superconductors. Therefore, we do not consider this type of disorder in this work.

MEAN-FIELD RESULTS IN THE PRISTINE CASE

Let us briefly discuss the model

H = H0 +Hint, (S6)

H0 =
∑
k

Ψ†k [ukxσxτz + ukyσy] Ψk, (S7)

Hint =
U

2Ω

∑
k,k′,q

Ψ†k+qΨkΨ†k′−qΨk′ . (S8)

Ψ†k is an 8-spinor of fermionic annihilation operators at momentum k relative to their respective origin in momentum space, and
with sublattice, valley, and ”mini-valley” degrees of freedom, described by Pauli matrices σi, τi, and ρi, respectively.

We note that the basis used in this model is quite different from the commonly used “sublattice basis” (see, e.g., Refs. [13, 15]),
since we effectively separate the electronic species in each valley into two species near the two Dirac cones in each valley. In
this case, the momentum k is measured relative to the appropriate Dirac point labeled by both the quantum numbers τz and ρz .
As we show momentarily, this also translates to a different form of the intervalley-coherent order parameter.

Our model is meant to provide an effective description of the physics near ν = ±2 filling in MATBG. It is widely believed that
in these regimes, the flavor (spin and valley) symmetry is spontaneously broken due to strong electron-electron interactions [7, 8].
Consequently, two flavors are either completely full or completely empty, whereas the remaining two flavors have their chemical
potential at the Dirac point. Eq. (S7) describes precisely the two remaining active flavors in this scenario.

We are interested in the order parameter

∆ivc = − U

2Ω

∑
k

〈
Ψ† (k)σxτxρzΨ (k)

〉
(S9)

for Kramers intervalley-coherent (K-IVC) order. We note that ∆ivc spontaneously breaks the valley-U (1) symmetry in our
model, manifested in τx → τxe

iαvalleyτz .
Performing a mean-field decomposition on the Hamiltonian, we find

HMF =
∑
k

Ψ† (k) [ukxσxτz + ukyσy + ∆ivcσxτxρz] Ψ (k) + 2
Ω

U
∆2

ivc. (S10)

Importantly, the order parameter ∆ivc is the only possible K-IVC order parameter (up to a rotation in the τx–τy plane), i.e., it
fulfills the three conditions: (i) it is valley off-diagonal, (ii) it opens a gap in the spectrum (anti-commutes with H0), and (iii) it
breaks the time-reversal symmetry T = τxρxK, while preserving the Kramers one T ′ = τyρxK (K is the complex conjugation
operator).

Defining εk = u |k|, Ek =
√
ε2k + ∆2

ivc, we find the mean-field thermodynamic potential Φ at temperature T ,

Φ = 2
Ω

U
∆2

ivc − 8T
∑
k

log

[
2 cosh

(
Ek

2T

)]
. (S11)
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The self-consistent gap equation follows from the condition ∂Φ
∂∆ivc

= 0, which leads to

1

U
=

∫
dεN (ε)

tanh

(√
ε2+∆2

ivc

2T

)
√
ε2 + ∆2

ivc

, (S12)

where N (ε) is the density of states per unit cell and flavor (spin, valley, minivalley) of H0 at energy ε.
We may extract some analytical results by assuming a strictly linear density of states,

N (ε) =

{
4|ε|
W 2 |ε| < W/2,

0 otherwise,
(S13)

with W the total bandwidth. Setting T = 0, we find

∆00 = ∆ivc (T = 0) = U

[
1−

(
Uc
U

)2
]
. (S14)

Here, we have defined the critical interaction strength Uc = W/4, below which there is no gap opening. The existence of a
critical coupling contrasts with the familiar behavior of the standard Bardeen-Cooper-Schrieffer (BCS) gap equation, which has
the same form as Eq. (S12). The difference originates from the density of states N (ε). In the present case, the density of states
vanishes at the Dirac point (ε = 0), which eliminates the Cooper instability for infinitesimally weak interaction strengths.

We may also extract the critical temperature Tc0 by setting ∆ivc = 0 in the gap equation. This leads to the transcendental
equation

Uc
U

=
Tc0
Uc

log

[
cosh

(
Uc
Tc0

)]
, (S15)

which does not have a Tc0 > 0 solution for U < Uc, as expected. Close to the transition, when Tc0 � Uc, we may approximate
Tc0 ≈ 1

log 2
Uc

U (U − Uc).

POINT-LIKE PERTURBATION

In this section, we analyze the effect of a localized strain “impurity” on the mean-field K-IVC state. We assume that the
strain does not suppress the formation of intervalley coherent order for the sake of this discussion. Thus, we investigate the
Hamiltonian

Himp =
∑
k

Ψ†k [ukxσxτz + ukyσy + ∆ivcσxτxρz] Ψk

+
1

Ω

∑
k,k′

Ψ†k [vFAxσx + vFAyσyτz] Ψk′ , (S16)

where Ax,y are constants, reflecting the delta-potential like spatial dependence of A (r), to be determined by the strain tensor,
see Eq. (S40). Notice that the velocity in this impurity strain potential is the bare Fermi velocity of graphene vF , and not the
renormalized one u. This is because the deformed potential is not smooth on the moiré scale, as we have assumed it is pointlike
by definition. We note that much like in the case of the strain perturbation we consider in the main text, Himp preserves both T
and T ′ time-reversal symmetries.

The Green’s function for the Ax,y = 0 system can be written as

G0 (k, ω) = −ω + ukxσxτz + ukyσy + ∆ivcσxτxρz
ε2k + ∆2

ivc − ω2
, (S17)

with εk = u |k|. We also calculate

g0 (ω) ≡ 1

Ω

∑
k

G0 (k, ω) = − (ω + ∆ivcσxτxρz)C, (S18)

C =

∫
dε

N (ε)

ε2 + ∆2
ivc − ω2

, (S19)

which we will use momentarily.
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T -matrix formalism

Our goal is to find the in-gap bound state spectrum due to the strain perturbation. In order to do so, we shall employ the
T -matrix formalism [40, 43]. Within this formalism, in the case of a point-like perturbation at the origin, the real-space Green’s
function may be written as

G (r, r′;ω) = G0 (r, r′;ω) +G0 (r,0;ω)T (ω)G0 (0, r′;ω) , (S20)

with G0 (r, r′;ω) the unperturbed Green’s function and the T -matrix

T (ω) =
U0

1− U0g0 (ω)
. (S21)

In our case U0 is given by the matrix U0 = vFAxσx + vFAyσyτz . Notice [U0,∆ivcσxτxρz] = 0.
The quasiparticle spectrum may be recovered by finding the poles of G. Thus, to calculate the perturbation-induced in-gap

bound state spectrum it is sufficient to find the poles of the T -matrix. Thus, the in-gap states have energy ω such that the matrix

Q ≡ 1− U0g
0 (ω) , (S22)

has a zero eigenvalue. The eigenvalues of Q are

λQ = 1± vFAC (∆ivc ± ω) , (S23)

with A =
√
A2
x +A2

y . Each of these four eigenvalues is doubly degenerate. Notice the particle-hole symmetry. If ω∗ makes
one eigenvalue go to zero, then −ω∗ makes another eigenvalue go to zero as well.

In order to make further progress, we must address C, which is not a constant, but rather a function of ω and ∆ivc.

Linear-in-ε density of states

Using the linear density of states we employed in Eq. (S13), we find

C =
1

(W/2)
2 log

[
1 +

(W/2)
2

∆2
ivc − ω2

]
. (S24)

It is instructive to find the impurity strength at which the gap closes , i.e., ω = 0 leads to a zero λQ. This is given by A0,

vFA0

W/2
=
W/2

∆ivc

1

log

[
1 +

(
W/2
∆ivc

)2
] . (S25)

Additionally, it is interesting to find the behavior of the in-gap state at very small strain, vFA �W . In this limit, we find

ω ≈ ±∆ivc

[
1−

(
W/2

2∆

)2

exp

(
−W/2

2∆

W/2

vFA

)]
, (S26)

i.e., the bound state is exponentially close to the gap edge. This behavior can indeed be seen in Fig. S1 at small A.

Constant density of states

In order to shed some light on the results of the last section, as well as to further facilitate the comparison to a magnetic
impurity embedded in a singlet superconductor, let us repeat the calculation with a constant density of states, N (ε) = N0. In
this case,

C =
πN0√

∆2
ivc − ω2

. (S27)
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FIG. S1. Bound state spectrum of the strain impurity problem. The two branches of the spectrum appear in blue and red, showing the
particle-hole symmetry. Each of the branches is doubly degenerate, reflecting the Kramers-like time-reversal symmetry T ′ of the Hamiltonian,
even in the presence of the strain perturbation. For this plot we used ∆ivc = W/5.

The bound state spectrum is thus given by

ω = ±∆ivc
1− s2

1 + s2
, (S28)

with the dimensionless impurity strength s = πN0vFA. It is worth mentioning that the result of Eq. (S28) is identical to the
bound state energies of in-gap states induced in a singlet superconductor in the presence of a magnetic impurities, see, e.g.,
Ref. [41]. Thus, although the perturbation breaks no symmetries of the mean-field Hamiltonian, due to its matrix form which
commutes with the order parameter – an in-gap state (which may eventually reach all the way to zero energy) becomes possible.

DETAILS OF THE ABRIKOSOV-GORKOV CALCULATIONS

Calculations in this section closely resemble the techniques used to treat magnetic impurities in singlet superconductors [32,
42] and excitonic condensation in semiconductors [33] and graphene [34]. We combine self-consistent mean-field calculations
for the order parameter ∆ivc, together with a self-consistent Born approximation, which allows us to handle the random strain
fluctuations.

The key player in this treatment of the problem is the Green’s function, which satisfies (within the mean-field approximation)

G (k, ω) = (iω − hMF − ΣSCBA)
−1
, (S29)

with the mean-field Hamiltonian

hMF = u (kxσxτz + kyσy) + ∆ivcσxτxρz. (S30)

Within the self-consistent Born approximation, the self-energy is given by

ΣSCBA (k, ω) =

〈 ∑
|p|<Λc

Uk−pG (p, ω)Up−k

〉
disorder

(S31)

where the matrix U represents the random strain perturbation in momentum space, Hstr =
∑

kq Ψ†k+qUqΨk, and 〈...〉disorder

stands for averaging over disorder configurations. Notice that Eq. (S31) contains within it the full Green’s function, such that
Eq. (S29) and Eq. (S31) must be solved together self-consistently.

The strain operator has the form

Uq = u (Ax,qσx +Ay,qσyτz) . (S32)
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Assuming the disorder averaging eliminates any anisotropy introduced by a specific disorder configuration, we may assume〈
A∗x,qAy,q

〉
disorder

=
〈
A∗y,qAx,q

〉
disorder

= 0, and
〈
A∗x,qAx,q −A∗y,qAy,q

〉
disorder

= 0. Using the fact that the real-space
strain perturbation is real, we have Ai,−q = A∗i,q. Employing the ansatz,

GSCBA (k, ω) =
(
iω̃ − ukxσxτz − ukyσy − ∆̃σxτxρz

)−1

, (S33)

the self-energy takes the form

ΣSCBA (k, ω)− =

〈∑
p

∣∣∣u ~Ap−q

∣∣∣2 iω̃ + ∆̃σxτxρz

ε2p + ∆̃2 + ω̃2

〉
disorder

. (S34)

For simplicity, we now make the standard assumption that the disorder potential ~Ap−q depends mostly on the relative angle
between the initial and final momenta, i.e., ~Ap−q ≈ ~Aθ, where the angle is defined by tan θ =

py−qy
px−qx . This assumption is due

to the singularity of the Green’s function at the Fermi level, such that the main contribution in the sum appearing in Eq. (S34) is
by momenta with |p| ≈ pF , with pF the Fermi momentum. With this approximation, we find the self-consistent equations for ω̃
and ∆̃,

ω̃ = ω + ω̃Γ
W

2

∫
dε

N (ε)

ε2 + ∆̃2 + ω̃2
, (S35)

∆̃ = ∆− ∆̃Γ
W

2

∫
dε

N (ε)

ε2 + ∆̃2 + ω̃2
, (S36)

where N (ε) is the density of states per moiré unit-cell Ωu.c., W is the bandwidth, and the scattering rate Γ is

Γ =
2Ω

WΩu.c.

〈∫
dθu2 ~A†θ · ~Aθ

〉
disorder

. (S37)

Finally, to complete the picture, we must include the self-consistent calculation of the order parameter itself, with the gap
equation

∆ivc = −2
U

βΩ

∑
ωk

Tr {σxτxρzGSCBA (k, ω)}

= 2U
1

β

∑
ω

∫
dε

N (ε)

ε2 + ∆̃2 + ω̃2
∆̃. (S38)

Equations (S35),(S36), and (S38) form a set of closed equations that can be solved together to recover ∆ivc and GSCBA in the
presence of strain fluctuations.

Lastly, we may also calculate the tunneling density of states, given by

Ñ (ε) =
1

π
Im

1

Ω

∑
k

TrGSCBA (k, ω → iε)

=
1

π
Im

∫
dεN (ε)

iω̃

ε2 + ∆̃2 + ω̃2
|ω→iε. (S39)

When ∆ivc is finite, one expects to find a gap in Ñ (ε) near zero energy. We denote the value of this gap as ωg .

Estimating the disorder scale Γ

The disorder parameter Γ determines completely the properties of the disorder-averaged Green’s function within our SCBA
treatment. Given the homostrain tensor εhomo

αβ introduced in Eq. (S2), the effective pseudo-gauge field can be expressed as [17]

A =

√
3β

a

(
εhomo
xx − εhomo

yy

2
,−εhomo

xy

)
, (S40)
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where a = 0.246 nm is the monolayer graphene lattice constant, and β ≈ 3.14 is a dimensionless parameter of graphene, which
quantifies the sensitivity of nearest-neighbor hopping strength to a change in their relative distance.

As an example, let us consider a scenario where root-mean-square strain is εRMS, approximate u ≈ 0.1vF [2], and use
~vF /a ≈ 2.68eV , such that

u |ARMS| ≈ 14.5 meV × εRMS [%] . (S41)

In order to continue, we examine the specific example of Gaussian correlated disorder, i.e., assume the following correlations,

〈Ai (r)Aj (r′)〉disorder = δijA2
RMS exp

(
−|r− r′|2

2ξ2
dis.

)
, (S42)

where ξdis. is the disorder correlation length. Following a straightforward Fourier transform, we find

〈Ai (q)Aj (−q)〉disorder = δijA2
RMS

1

Ω
ξ2
dis. exp

(
−|q|

2
ξ2
dis.

2

)
. (S43)

Since we began with the expression in Eq. (S34), our main focus is on momenta near the Fermi level. We thus replace q ≈ kF =
0 in our estimates below. Estimating the MATBG bandwidth as W ≈ 20 meV, and using Eq. (S37) we find

Γ/W ≈ 4ξ2
dis.

Au.c.

(
uARMS

W

)2

≈ 2.1× (εRMS [%]× ξdis. [am])
2
, (S44)

where am ≈
√
Au.c. is the moiré lattice constant.

For example, for εRMS = 0.1% and ξdis. = 3am we find Γ/W ≈ 0.19. We can thus conclude that for appreciable yet rea-
sonable homostrain disorder, Γ may indeed be large enough to diminish both ∆ivc and ωg significantly, and possibly completely
close the gap in the TDOS.

Critical disorder strength

If the energy scale associated with the random strain fluctuations Γ is sufficiently large, the K-IVC order may be completely
washed away, even at zero temperature. Using the linear density of states approximation, we can recover this critical Γc, by
setting ∆ivc, ∆̃ → 0 and T = 0. We note that it is important not to set ∆ivc = ∆̃ exactly, although both quantities are taken to
zero. This is because in the gap equation we must divide both sides by ∆ivc Under these assumptions,

ω̃ = ω +
Γc
W/2

log

(
1 +

(W/2)
2

ω̃2

)
ω̃, (S45)

∆̃ =
∆

1 + Γc

W/2 log
(

1 + (W/2)2

ω̃2

) , (S46)

from which we also calculate

dω = dω̃

[
1− Γc

W/2
log

(
1 +

(W/2)
2

ω̃2

)
+ 2Γc

W/2

ω̃2 + (W/2)
2

]
. (S47)

Plugging this relation into the zero temperature gap equation and changing variables, we find

Uc
U

=

∫ ∞
−∞

dx

2π

1− g log
(
1 + 1

x2

)
+ 2g 1

x2+1

1 + g log
(
1 + 1

x2

) log

(
1 +

1

x2

)
, (S48)

where g = 2Γc/W . The self-consistent Eq. (S48) relates the interaction strength U to the critical disorder strength via a
dimensionless integral. For relatively weak disorder, g � 1, we may expand Eq. (S48) to linear order in g, to find the relation

Γ =
Uc

log 8

(
1− Uc

U

)
, (S49)

which is valid close for U ≈ Uc, such that g � 1.
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FIG. S2. (a) The order parameter ∆ivc as a function of interaction strength and the disorder energy scale Γ. At a given interaction strength U ,
a critical Γ exists at which the order parameter vanishes. (b) The ratio of the gap in the TDOS, ωg , to ∆ivc. As Γ increases, ωg deviates from
∆ivc appreciably. Moreover, there exists a gapless K-IVC region bounded by the vanishing of the gap (black dashed line) and of the order
parameter (blue dashed line). Calculations were done at zero temperature, using the linear DOSNlin..

Gapless K-IVC

Unlike in the translation-symmetry invariant case, the gap in the tunneling density of states, 2ωg , does not necessarily equal
the self-consistent order parameter ∆ivc. More concretely, there exists a regime in which ∆ivc is finite, yet ωg = 0 and the
tunneling density of states is gapless.

Let us find the disorder strength Γg for which this gap closes. To do so, we calculate the tunneling density of states at zero
energy Ñ (ε = 0). Plugging ω → 0 in the expressions for ω̃ and ∆̃, we find

ω̃2 =
(W/2)

2

exp W/2
Γ − 1

− (∆ivc/2)
2
. (S50)

The tunneling density of states is then given by

Ñ (ε = 0) =
1

2π

1

ΓW
× Re {ω̃ω→0} . (S51)

Thus, the gap closes, i.e., there is a finite value of Ñ at zero energy, for

Γ ≥ Γg =
W/2

log
(

1 + W 2

∆2
ivc

) . (S52)

Notice Eq. (S52) is not a closed-form expression for Γg , since in the right hand side ∆ivc depends on Γ itself.
In the main text, we have shown that the gapless K-IVC regime exists over a range of temperatures and disorder strengths.

For completeness, we also show how the gapless K-IVC at zero temperature evolves as a function of the repulsive interaction
strength U . This is plotted in Fig. S2.

Conductivity calculations

The primary method by which the K-IVC gap is extracted in experiments is by derivation of the activation energy from
transport measurements. Namely, the longitudinal conductivity σxx is measured as a function of temperature at the appropriate
filling corresponding to the insulating phase, and fitted to ∝ exp (−Eact./T ), where the activation energy Eact. presumably
coincides with the K-IVC order parameter ∆ivc.

In order to put our results thus far in a similar context, we employ the Kubo-Bastin formula for the dc conductivity [36],

σxx ∝
∫
dε

(
−df
dε

)
S (ε) , (S53)



14

where f is the Fermi function, and the kernel of the integral is

S (ε) =
1

Ω

∑
k

Tr {〈jxImGSCBA (k, ω → iε) jxImGSCBA (k, ω → iε)〉disorder} , (S54)

where the appropriate current operator in our case is jx = ∂kxhMF = uσxτz .
The full calculation of Eq. (S54), including the so-called vertex corrections to the current operator, are beyond the scope of

this work. However, qualitatively most of the disorder effects stemming from the Abrikosov-Gor’kov treatment we perform may
be captured by approximating

S (ε) ≈ 1

Ω

∑
k

Tr {jxImGSCBA (k, ω → iε) jxImGSCBA (k, ω → iε)} , (S55)

where we emphasize that the Green’s function GSCBA is calculated self-consistently accounting for the strain disorder.
Plugging in the Green’s function [Eq. (S33)], we find by a straightforward calculation that the conductivity kernel S (ε) has

the following form,

S (ε) ≈ 1

Ω

∑
k

Re (ω̃)
2 − Im

(
∆̃
)2

(
ε2k + |ω̃|2 +

∣∣∣∆̃∣∣∣2)2

− 4
[
Im
(
ω̃∆̃
)]2
− 4 [Im (ω̃)]

2
ε2k

×

×

1 +
4 [Im (ω̃)]

2
ε2k(

ε2k + |ω̃|2 +
∣∣∣∆̃∣∣∣2)2

− 4
[
Im
(
ω̃∆̃
)]2
− 4 [Im (ω̃)]

2
ε2k

 . (S56)

Notice that ω̃ and ∆̃ are generally both complex numbers and functions of energy ε, through the analytic continuation ω → iε,
preceding the iterative solution of Eqs. (S35)–(S36).

Importantly we find that the functions Reω̃ and Im∆̃ both vanish for |ε| < ωg , i.e., the conductivity kernel S (ε) has a gap
of the size 2ωg . This fact, in conjunction with the relation in Eq. (S53), explains our observation given in the main text, that
the activation energy actually coincides with ωg . To see why, let us approximate S (ε) ≈ S0Θ (|ε| − ωg) (Θ is the Heaviside
function), such that

σxx ∝ S0

∫ ∞
ωg

dε

(
−df
dε

)
=

∫ ∞
ωg

dε
S0

4T cosh2 ε
2T

=
S0

2

(
1− tanh

ωg
2T

)
=

S0

1 + e
ωg
T

, (S57)

which for sufficiently low temperatures T � ωg , leads to the ∝ exp (−ωg/T ) activated behavior.
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