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We investigate classical Heisenberg models on the distorted windmill lattice and discuss their ap-
plicability to the spin-1/2 spin liquid candidate PbCuTe2O6. We first consider a general Heisenberg
model on this lattice with antiferromagnetic interactions Jn (n = 1, 2, 3, 4) up to fourth neighbors.
Setting J1 = J2 (as approximately realized in PbCuTe2O6) we map out the classical ground state
phase diagram in the remaining parameter space and identify a competition between J3 and J4

that opens up interesting magnetic scenarios. Particularly, these couplings tune the ground states
from coplanar commensurate or non-coplanar incommensurate magnetically ordered states to highly
degenerate ground state manifolds with subextensive or extensive degeneracies. In the latter case,
we uncover an unusual classical spin liquid defined on a lattice of corner sharing octahedra. We
then focus on the particular set of interaction parameters Jn that has previously been proposed for
PbCuTe2O6 and investigate the system’s incommensurate magnetic ground state order and finite
temperature multistage ordering mechanism. We perform extensive finite temperature simulations
of the system’s dynamical spin structure factor and compare it with published neutron scattering
data for PbCuTe2O6 at low temperatures. Our results demonstrate that thermal fluctuations in the
classical model can largely explain the signal distribution in the measured spin structure factor but
we also identify distinct differences. Our investigations make use of a variety of different analytical
and numerical approaches for classical spin systems, such as Luttinger-Tisza, classical Monte Carlo,
iterative minimization, and molecular dynamics simulations.

I. INTRODUCTION

Magnetic frustration plays a central role in determin-
ing the collective behavior of interacting spins at low
temperatures. In particular, it can prevent conventional
magnetic long-range order and give rise to exotic phases,
with spin liquids perhaps representing the most notable
ones [1]. From a classical point of view, frustrated spin
systems are often characterized by a large ground state
degeneracy at zero temperature [2, 3]. A typical situa-
tion where this is the case arises when the lattice consists
of clusters of sites, in such a way that neighboring clus-
ters only have one site in common [4–9]. This is, for ex-
ample, realized in the two-dimensional kagome [4] and
in the three-dimensional pyrochlore [5] lattices, where
the corner-sharing units are given by triangles and tetra-
hedra, respectively. If, additionally, antiferromagnetic
Heisenberg interactions couple all spins within a cluster,
the classical ground states are determined by the con-
dition that the spins within each cluster have to sum
up to zero. Depending on details of the spin degrees of
freedom (number of spin components) and the precise
lattice geometry (number of sites in a cluster and num-
ber of clusters per unit cell) these constraints typically
leave sufficient freedom for the relative spin orientations
within a cluster, such that the constraints can be satis-
fied by an infinite number of spin configurations [10, 11].
This creates a situation where, on the one hand, the clas-
sical spins are free to fluctuate, but on the other hand are

constrained in their collective behaviors. A system with
such a ground state was called by Villain a cooperative
paramagnet [12] and is commonly identified as a classical
spin liquid.

Adding quantum fluctuations enables tunneling be-
tween the classical ground states, such that the new (and
now possibly unique) ground state is a macroscopic su-
perposition of the formerly degenerate classical states, a
situation that is particularly promising for producing a
quantum spin liquid [13–15]. Because of the rich variety
of phenomena arising from this construction, the lattices
hosting corner-sharing units have been of central interest
in the field of frustrated magnetism. The most celebrated
examples are the Heisenberg models on the kagome [16–
18] and pyrochlore [5, 10, 11, 19] lattices which, classi-
cally, both have an extensive ground state degeneracy,
that means the number of ground states scales exponen-
tially with the number of lattice sites. When turning
on quantum fluctuations the kagome Heisenberg model
is widely believed to realize a quantum spin liquid [20–
22]. Quantum spin systems on the pyrochlore lattice
are, generally, also good candidates for quantum spin
liquids, however, this is well established only in the case
when the Ising model is perturbed by small transverse
interactions [13, 14, 23, 24], while latest results for the
pyrochlore Heisenberg antiferromagnet rather indicate a
symmetry broken ground state [25–28].

Besides the well-known kagome and pyrochlore net-
works, the distorted windmill lattice [29–31] is an al-
ternative and less explored corner-sharing lattice geome-
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try that, likewise, appears very promising in the context
of possible spin liquid behavior. In fact, the distorted
windmill lattice represents a family of lattices that can
be constructed from the hyperkagome lattice. The lat-
ter is a three-dimensional arrangement of corner-sharing
triangles, where each site participates in two triangles
and which can be thought of as a three-dimensional gen-
eralization of the kagome lattice. Interestingly, there
exists a particular way of deforming the hyperkagome
lattice – described by one real parameter – such that
its point group remains unchanged. By tuning this pa-
rameter, one can realize different corner-sharing geome-
tries [7, 31]. Moreover, several material realizations are
known [32–38], providing concrete possibilities for ob-
taining quantum spin liquids. Among them, PbCuTe2O6

with spin-1/2 Cu2+ ions has recently attracted the great-
est attention. This material realizes a distorted wind-
mill lattice in which the nearest neighbors form iso-
lated triangles, while the second neighbors form a hy-
perkagome network. Since the theoretical predictions
for the Heisenberg interactions indicate that first and
second-neighbor couplings are antiferromagnetic and al-
most equally strong [36], the dominant couplings form
a network of corner-sharing triangles, where each spin
is shared by three triangles. The classical Heisenberg
model for this lattice (which has recently been dubbed
the hyper-hyperkagome model [36]) admits an infinitely
large ground state degeneracy, which, however, is only
subextensive, i.e., the number of ground states scales ex-
ponentially only in the linear system size [30, 31]. Cou-
plings beyond second neighbors which are also present
in the Heisenberg Hamiltonian for PbCuTe2O6 lift this
degeneracy [36].

The experimental findings are consistent with a spin
liquid phase at low temperatures. Particularly, thermo-
dynamic probes do not find any signature of symmetry
breaking via a magnetic phase transition [37] and muon
spin relaxation experiments show no signs of static mag-
netism [38]. Moreover, inelastic neutron scattering on
single crystals shows a broad dispersionless continuum
of magnetic excitations [36] that can be interpreted as
resulting from fractional spinon quasiparticles which are
characteristic for quantum spin liquids. The diffuse spin
structure factor measured by neutron scattering is com-
patible with either a U(1) gapless or a Z2 gapped quan-
tum spin liquid according to a fermionic parton mean
field theory [39].

Inspired by the experimental results on PbCuTe2O6,
this work adds a different perspective on this material by
performing theoretical investigations of the classical ver-
sion of the model Hamiltonian in Ref. [36]. A first focus
in Sec. II is the reexamination of the lattice structure and
the unusual change of connectivity of lattice bonds upon
varying the tuning parameter for the site positions. Sec-
tion III is dedicated to understanding the precise role of
the interactions Jn (n = 1, 2, 3, 4) up to fourth neighbors
in determining the magnetic ground state. The classi-
cal ground state phase diagram, which has so far only

been investigated up to third neighbor interactions [40],
is mapped out including all four interactions and setting
J1 = J2 (as is approximately realized in PbCuTe2O6).
Surprisingly, the seemingly inconspicuous fourth neigh-
bor coupling is found to have significant impact on the
system’s magnetic properties and can tune the network
of interacting spins towards an interesting and previously
unexplored lattice of corner-sharing octahedra. We iden-
tify an extensive ground state degeneracy in this sys-
tem giving rise to an unusual type of classical spin liq-
uid. Moreover, the phase diagram contains regions with
subextensive ground-state degeneracies as well as com-
mensurate and incommensurate ground-state magnetic
orders.
In Sec. IV, we focus on the particular set of couplings

that have previously been proposed to be realized in
PbCuTe2O6 [36]. We investigate in detail the magnetic
properties of this system such as the nature of its in-
commensurate ground state and the sequence of two fi-
nite temperature phase transitions at which this order
builds up. A second focus in Sec. IV lies on investigat-
ing the classical model Hamiltonian for PbCuTe2O6 in
the paramagnetic regime, i.e., above the ordering transi-
tions. Calculating the system’s dynamical spin structure
factor and comparing it with measured neutron scatter-
ing data, we investigate whether thermal fluctuations can
mimic the effects of quantum fluctuations in PbCuTe2O6.
We indeed find that the overall shape of the simulated
spin structure factor agrees well with the measured data,
except for a feature of strong intensity in our simula-
tions that can be associated with the magnetic long-
range order below the critical temperature. These results
shed light on the nature of the observed spin fluctuations
in PbCuTe2O6 and reveal a partial quantum-to-classical
correspondence.

II. LATTICE AND HAMILTONIAN

The magnetic behavior of PbCuTe2O6 is determined
by Cu2+ ions with spin S = 1/2, and these ions form
a distorted windmill lattice [37]. This lattice has twelve
atoms in its cubic unit cell, located at the 12d Wyckoff
positions of the P4132 space group [29]. These positions
depend on a real parameter y ∈ R, as reported in Table I.
By comparing the crystallography data on PbCuTe2O6

with the 12d Wyckoff positions of the P4132 space group,
one obtains y = −0.2258 for this compound [36, 39].
The Hamiltonian for PbCuTe2O6 is given by

H =

4
∑

n=1

Jn
∑

〈i<j〉
n

Si · Sj , (1)

where 〈. . .〉n indicates the sum over the nth-nearest neigh-
bours [36]. The estimates for the interaction strengths Jn
are reported in Table II. Since we focus on the classical
model, the spins are treated as three-component vectors
Si = (Sx

i , S
y
i , S

z
i ) with unitary norm |Si| = 1.
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In the distorted windmill lattice, bonds of the same
length often form connected or disconnected arrange-
ments of equilateral triangles. The special feature of the
distorted windmill lattice is that, by tuning the value
of y, the number and connectivity of these triangles
change. To visualize this, in Fig. 1(a) we plot the side
lengths of the smallest equilateral triangles created by
connecting nth-nearest neighbors, as a function of the
lattice parameter y. Other bond types, which do not
form equilateral triangles are omitted in Fig. 1(a). Since
the change y → y + 1 leaves the lattice invariant, it is
sufficient to consider y in the interval y ∈ [0, 1] only.
The triangles with the smallest side length for a fixed
value of y also correspond to the first nearest neighbours
among all bonds. For y∗ < y < 1 − y∗, y 6= 1/2, with

y∗ = (9−
√
33)/16 ≃ 0.2035, the first nearest neighbours

create isolated triangles, see Fig. 1(b). For 0 ≤ y < y∗,
1− y∗ < y < 1, and y = 1/2 the first nearest neighbours
create a network of corner-sharing triangles, where each
spin is shared by two triangles, see Fig. 1(c). This lattice
has been referred to as the hyperkagome lattice [7]. At
the special points y = y∗ and y = 1 − y∗ the corner-
sharing and isolated triangles have equal size and each
spin belongs to three triangles [30]. At y = 3/8 and
y = 5/8 the isolated triangles formed by the first nearest
neighbors collapse into one point and the positions in the
unit cell become three times degenerate. The resulting
lattice for y = 3/8 and y = 5/8 with four sites per unit
cell corresponds to the so-called trillium lattice [41].

Various discontinuities in the side lengths as a func-
tion of y can be observed in Fig. 1(a). For example, at
y = 0.5 a hyperkagome network is created with much

TABLE I. Positions of the twelve atoms in the cubic unit
cell (with the lattice constant set to unity) of the distorted
windmill lattice, parameterized by the real parameter y ∈
R. For PbCuTe2O6 this value is given by y = −0.2258 [36].
All other sites of the lattice are obtained by adding integer
multiples of the lattice vectors x̂ = (1, 0, 0), ŷ = (0, 1, 0),
ẑ = (0, 0, 1).

Sublattice Position

1 (3/4 + y, 3/8, 1 - y)

2 (1/2 + y, 1/4 - y, 7/8)

3 (5/8, 1/2 - y, 3/4 - y)

4 (1/2 - y, 3/4 - y, 5/8)

5 (3/4 - y, 5/8, 1/2 - y)

6 (7/8, 1/2 + y, 1/4 - y)

7 (1 - y, 3/4 + y, 3/8)

8 (1/4 - y, 7/8, 1/2 + y)

9 (3/8, 1 - y, 3/4 + y)

10 (1/4 + y, 1/8, y)

11 (1/8, y, 1/4 + y)

12 (y, 1/4 + y, 1/8)

smaller bond lengths than at slightly smaller or larger
values of y. This is explained by the observation that at
this point, the two smallest isolated triangles have equal
size and, when combining them, become a hyperkagome
network. The smallest triangles that are truly isolated
then occur with larger bond lengths outside the plotted
region. Other discontinuities in Fig. 1(a) have a similar
origin.
For y = −0.2258 realized in PbCuTe2O6, the first and

second nearest neighbours create, respectively, a network
of isolated and corner-sharing triangles [Fig. 1(b), (c)].
This value [red line in Fig. 1(a)] lies close to the special
point 1−y∗. In fact, it was found that J1 ≃ J2 (Table II),
reflecting the similar geometrical distance between the
first and second neighbor sites. As a result, each spin
interacts almost equally with six other spins, forming a
network of corner-sharing triangles where each site con-
tributes to three triangles. This network has the same
connectivity as the one at y = y∗ and y∗ − 1 formed by
the first nearest neighbors. Because of the higher con-
nectivity with respect to the hyperkagome lattice, the
present case has been referred to as a hyper-hyperkagome
lattice [36].
The magnetic Hamiltonian for PbCuTe2O6 also con-

tains antiferromagnetic interactions between the third
and fourth nearest neighbors (Table II). These form
chains along the x̂, ŷ, ẑ Cartesian directions [Fig. 1(d)]
and the body diagonals [Fig. 1(e)], respectively. In the
next section, we will focus on the role of all these inter-
actions in determining the magnetic ground state.

III. HYPER-HYPERKAGOME MODEL AND
MAGNETIC PHASE DIAGRAM

In this section, we present the T = 0 classical phase di-
agram for the J1-J2-J3-J4 model at J1 = J2, obtained by
combining the Luttinger-Tisza (LT) [42] and the iterative
minimization (IM) [43] techniques. Particularly, we also
discuss the role of the J4 coupling which has not been
considered in previous works [40]. Details of the LT and
IM methods and their comparison are given, respectively,
in the Appendices A and B. The LT method is an analytic
approach where the classical energy is minimized under
the approximation of a partially relaxed spin length con-
straint where only the total spin but not necessarily the
individual spins are normalized. The IM approach, on
the other hand, consists of minimizing the classical en-
ergy numerically, by aligning the spins to the effective
magnetic field created by the surrounding spins, starting

TABLE II. Exchange parameters of the Heisenberg Hamilto-
nian (1) for PbCuTe2O6 from DFT calculations [36].

J1 J2 J3 J4

1.13 meV 1.07 meV 0.59 meV 0.12 meV
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FIG. 1. (a) Side lengths of the smallest triangles in the dis-
torted windmill lattice that are created by connecting bonds
of the same length, as a function of the position parameter
y. Only the two smallest types of isolated triangles (labeled
‘isolated 1’ and ‘isolated 2’) are shown. In these isolated tri-
angles, each spin only takes part in one triangle [as shown in
(b)], such that the coordination number is two. The hyper-
kagome triangles correspond to a network of corner-sharing
triangles [as shown in (c)], with the coordination number
four. At the special points y = y∗ and y = 1 − y∗ with
y∗ = (9 −

√
33)/16 ≃ 0.2035 the hyperkagome and isolated

triangles have equal size and the system has six nearest neigh-
bors. At y = 3/8 and y = 5/8 the smallest isolated triangles
collapse into one point and the positions in the unit cell be-
come three times degenerate, resulting in a lattice with four
sites per unit cell. The classical nearest neighbor Heisenberg
models with y = 0.125 and y = y∗ (dotted gray lines) have
already been studied in Ref. [7] and Refs. [30, 31], respec-
tively. (b)-(e) First to fourth nearest neighbor bonds of the
distorted windmill lattice with y = −0.2258 as realized in
PbCuTe2O6. The black and grey dots correspond to sites in-
side and outside the cubic unit cell, respectively. (b) First
nearest neighbors form isolated triangles. (c) Second nearest
neighbors create a network of corner-sharing (hyperkagome)
triangles. (d) Third nearest neighbours form chains parallel
to the x̂, ŷ, ẑ Cartesian directions. (e) Fourth nearest neigh-
bors form chains along the body diagonals.

from a random configuration. As an iterative technique,
it is prone to detecting local energy minima instead of
global ones. Our procedure to identify the ground state
magnetic order consists of comparing results from IM and
LT. A first insight into the ground state spin configura-
tion is obtained by the magnetic ordering wave vector Q
that minimizes the classical energy within LT. This wave
vector can also be calculated with IM, as it corresponds
to the maxima of the equal-time spin structure factor for
spins belonging to the same sublattice, summed over the
sublattices [40]

Ssub(q) =
12

N

L×L×L
∑

I,J

12
∑

α=1

Sα,ISα,Je
iq(RI−RJ ), (2)

where I, J index the unit cell, α the sublattice and RI

denotes the real space position of the unit cell I. Fur-
thermore, N is the total number of spins in the simulated
system, which is a cube of L × L × L crystallographic
unit cells (N = 12L3). Since Ssub(q) only contains spa-
tial Fourier transforms of spin correlations on the same
sublattice, it describes how spins rotate between differ-
ent unit cells but neglects information on how spins are
correlated within a unit cell. Using Ssub(q) for character-
izing magnetic order can be useful when the lattice has a
large unit cell. Besides that, it can be directly compared
to the LT results, by checking if Q is one of the wave vec-
tors that minimizes the energy within LT. The quantity
Ssub(q) should be distinguished from the equal-time spin
structure factor

S(q) = 1

N

∑

i,j

SiSje
iq(ri−rj), (3)

which uses the actual site positions ri and considers cor-
relations between all sublattices and which will also be
used below.
We consider the set of interactions described in Fig. 1,

fixing J1 = J2 = J (hyper-hyperkagome case) and letting
J3 and J4 vary in the range 0 ≤ J3, J4 ≤ J . Setting J1 =
J2 is motivated by the physical situation in PbCuTe2O6

where y ≃ y∗, i.e., the isolated nearest neighbor triangles
and the hyperkagome triangles are approximately of the
same size, and the same is true for the corresponding
interactions.
As shown in Fig. 2, the phase diagram contains two

different extended phases and different types of ground
state degeneracies at the boundaries, described in more
detail below.

(1) J4 < J3 < J : Incommensurate Q order
In the region where J4 < J3 < J the system orders
magnetically in a non-coplanar spin state with incom-
mensurate wave vector Q, which varies as J3 and J4
vary. The same result was found in Ref. [40] for the case
J4 = 0. This means that, besides a continuous change of
Q, turning on J4 does not change the type of magnetic
order, as long as J4 < J3 holds. The procedure used
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FIG. 2. Classical zero temperature phase diagram for the
Heisenberg model on the distorted windmill lattice with fixed
J1 = J2 = J , as a function of J3 and J4. Four different
cases can be distinguished. (1) In the green region where
J4 < J3 the ground state is magnetically ordered with an
incommensurate wave vector Q. (2) In the red region where
J3 < J4 the ground state has coplanar magnetic order with
Q0 = 0. (3) Along the J3 = J4 line with the point J3 = J4 = 0
included and the point J3 = J4 = J excluded, the degenerate
ground states form a sub-extensive (1D) manifold (M1), equal
to the one found for the J3 = J4 = 0 case [30]. (4) At the
point J3 = J4 = J the degenerate ground states form an
extensive (3D) manifold (M3), as further explained in the
main text. The point associated with PbCuTe2O6 is drawn
by approximating J2 by J1. It corresponds to the ratios J3/J1

and J4/J1, with the values of Ji reported in Table II.

to identify the incommensurate order is explained in
the next section, where we discuss the system’s ground
state and finite temperature properties for the set of
interactions of PbCuTe2O6 (black dot in the phase
diagram in Fig. 2).

(2) J3 < J4 < J : Coplanar Q = 0 order
In the region where J3 < J4 < J the system orders
magnetically in a coplanar state with wave vector
Q0 = 0. This means that the spin arrangement, as
depicted in Fig. 3(a), is the same in each unit cell. Pairs
of spins coupled by J1, J2, and J4 form an angle of 120◦

with each other. On the other hand, the chains formed
by J3 have a ferromagnetic spin alignment. As a conse-
quence, increasing the value of J3 increases the level of
frustration, as this bond gives a positive contribution to
the energy, see Table III for Q0. This spin configuration
is unique up to global spin rotations. A special subgroup
of such rotations consists of permutations of the three
spin directions which form this state.

(3) J3 = J4 6= J : One-dimensional degenerate
ground state manifold
Along the J3 = J4 6= J line, the system is characterized
by a sub-extensive ground state manifold, equal to the
one found for the J3 = J4 = 0 case [30], where the

FIG. 3. (a), (b) Left: Spin configurations in one unit cell
corresponding to (a) the Q0 = (0, 0, 0) coplanar order and
(b) the Q1/3 = 2π(1/3, 1/3, 1/3) coplanar order. The color-
ing of the bonds with interactions J1 (blue), J2 (orange), J3

(green) and J4 (red) matches Fig. 1(b)-(e). Spins with the
same orientation have the same color. Spins with different
colors enclose an angle of 120◦ around each triangle. Right:
Corresponding construction of spin states over the full lat-
tice. The Q0 = (0, 0, 0) unit cell configuration illustrated by
red boxes in (a) is repeated in each unit cell. The spins in the
Q1/3 = 2π(1/3, 1/3, 1/3) unit cell undergo a rotation about
the axis perpendicular to the plane they span, by an angle
Q1/3 · R when proceeding to the other unit cells, where R

denotes the position of the unit cell. Consequently, there are
three distinct spin configurations in one unit cell, indicated by
different colors, that are arranged over the full lattice as de-
picted in (b). (c) Possible ground state configuration for the
J3 = J4 case obtained by mixing the Q0 = (0, 0, 0) (red) and
the Q1/3 = 2π(1/3, 1/3, 1/3) unit cells (from blue to green)
with periodic boundary conditions. The obtained configura-
tion consists of an alternating stacking of Q1/3 and Q0 unit
cells along the (1, 1, 1) direction.

number of degenerate ground states scales exponen-
tially in the linear system size L. We will first briefly
review the J3 = J4 = 0 case and then show how the
results can be generalized to the J3 = J4 6= J case.
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When J3 = J4 = 0, there are two different types of
coplanar ground states, characterized by Q0 = 0 and
Q1/3 = 2π(±1/3,±1/3,±1/3), where the signs ± in the
three components of Q1/3 can be chosen independently.
The Q0 = 0 ground state corresponds to the one found
in the region (2). An example for a Q1/3 state with
the choice of signs given by Q1/3 = 2π(1/3, 1/3, 1/3)
is depicted in Fig. 3(b) for one unit cell. (Note that
here and in the following, the term ‘unit cell’ refers to
the crystallographic unit cell, not to the magnetic one.)
Other combinations of signs correspond to other spin
configurations not shown. The configurations in the
neighboring unit cells are found by rotating the spins
about the axis perpendicular to the plane in which the
spins lie, by an angle given by Q1/3 ·R, where R denotes
the position of the unit cell.
These rotations always involve an angle of 120◦. There-

fore, for each combination of signs, there are three pos-
sible arrangements of spins in the unit cell denoted A,
B, C that are cyclically or anti-cyclically repeated along
each Cartesian direction. Particularly, for the signs as
given in Q1/3 = 2π(1/3, 1/3, 1/3), a cyclic progression
A → B → C → A occurs along all three Cartesian direc-
tions which results in stacked layers of different unit cells
along the (111) direction [see Fig. 3(b)], while other sign
choices lead to stacks along other body diagonals.
Both the Q0 and the Q1/3 coplanar ground states fea-

ture spins in the isolated and hyperkagome triangles that
have angles of 120◦ between each other, see Fig. 2(b) and
Fig. 2(c), respectively. Having the same mutual arrange-
ment of spins in the triangles allows the construction of
an infinite set of ground states, by mixing stacked lay-
ers of A, B, C unit cells (corresponding to a Q1/3 order)
with stacked layers ofQ0 order along the respective body
diagonal. Such a composition of unit cells along the body
diagonal has to be done under a precise set of rules, ex-
plained in Ref. [30], to ensure that the triangles shared
by neighboring unit cells maintain the 120◦ angles. An

TABLE III. Bond contributions cn = 1

N

∑
〈i<j〉n

Si · Sj for

the coplanar Q0, Q1/3 and mixed states, defined such that

H = N
∑4

n=1
Jncn. The mixed state is obtained by mixing a

unit cells with Q0 order and b unit cells with Q1/3 order in
such a way that J1 and J2 triangles remain in energetically
optimal 120◦ spin configurations, see main text for details. As
indicated in the last row, when J3 = J4, the energy contribu-
tion from J3 and J4 bonds given by∼ J3c3+J4c4 = J3(c3+c4)
is independent of the parameters a and b and equal to the Q0

and Q1/3 states.

Q0 state Q1/3 state mixed state

c1 -0.5 -0.5 -0.5

c2 -1 -1 -1

c3 1 -0.125 a−0.125b
a+b

c4 -0.5 0.625 −0.5a+0.625b
a+b

c3 + c4 0.5 0.5 0.5

example of a possible ground state configuration is de-
picted in Fig. 3(c). The existence of mixed ground states
gives rise to an exponentially large ground state degener-
acy ∼ 2L/6, where the exponent scales linearly with the
system size, see Ref. [30].
Remarkably, all the degenerate ground states in the

case J3 = J4 = 0 remain ground states when J3 = J4 6= 0.
This can be understood by examining the energy contri-
butions from the individual J1, J2, J3 and J4 bonds in
the Q0, Q1/3 and mixed states, respectively, reported in
Table III. Particularly, when J3 = J4 the energy contri-
butions from the chain interactions are equal in all three
states and also independent of the precise mixing of Q0

and Q1/3 orders. Furthermore, the corresponding ener-
gies agree with the ones found within IM and LT, indicat-
ing that these degenerate states are also ground states.
Thus, the ground state manifold of the J3 = J4 < J case
is identical to the one in the J3 = J4 = 0 case.
A finite-temperature order-by-disorder transition

towards the Q0 state was previously observed in the
J3 = J4 = 0 case [30]. To investigate whether an
analogous behavior also occurs for J3 = J4 6= 0 we
perform finite-temperature classical Monte Carlo (MC)
simulations of N = 12 × L × L × L spins with periodic
boundary conditions, interacting according to the Hamil-
tonian in Eq. (1). Details of the simulations are given
in Appendix C. We fix J1 = J2 and change the value of
J3 = J4. The specific heat as a function of temperature
shows a peak for each value of J3 = J4, indicating the
presence of an order-by-disorder transition [Fig. 4(a)].
Below the transition the system is always found to be
in the Q0 state, in analogy with the J3 = J4 = 0 case.
The temperature of the order-by-disorder transition
decreases as J3 = J4 increases. This can be understood
by investigating the energy bands from LT which are
obtained by diagonalizing the coupling matrix Jij . As
shown in Fig. 4(b) increasing the value of J3 = J4 causes
a flattening of the lowest band around the minimum
(which forms a line in momentum space), making the
system more prone to explore different configurations
driven by thermal fluctuations. As a consequence,
the order-by-disorder transition shifts towards lower
temperatures.

(4) J3 = J4 = J : Three-dimensional degenerate
ground state manifold
At the point J3 = J4 = J the system features an
extensive ground state manifold where the number of
degenerate ground states scales exponentially in the
number of sites N . This is due to the fact that when
J1 = J2 = J3 = J4 = J , the Hamiltonian can be
rewritten as a sum over spin clusters that have the shape
of irregular octahedra,

H =
J

2

∑

octa

(Socta)
2 + const., (4)

where Socta is the sum of the spins in each irregular octa-
hedral cluster. More precisely, in this specific case, each
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FIG. 4. (a) Specific heat as a function of temperature ob-
tained by MC simulations with L = 8, for J1 = J2 = J and
four different values of J3 = J4 ∈ {0, 0.25, 0.5, 0.75}. For
every value of J3 = J4, the system undergoes an order-by-
disorder transition, as indicated by the peak. By increas-
ing the value of J3 = J4, the temperature of the transition
decreases. (b) Energy e0 of the lowest band from the LT
method, along the momentum cut [h, 0, 0] that contains the
energy minimum emin at Q0 = (0, 0, 0). For better compari-
son of the behaviors at low energies, the bands are shifted by
the respective minimum emin for each value of J3 = J4. The
flattening of the band with increasing J3 = J4 causes a down-
ward shift of the order-by-disorder transition temperature.

spin is coupled to ten other spins with the same interac-
tion strength. These ten spins can be divided into two
groups of five spins, where each group together with the
reference spin forms an irregular octahedra. This prop-
erty holds for each spin in the lattice, creating thus a
network of corner-sharing clusters of six spins. Within
each cluster, all pairs of spins are coupled with the same
interaction J . We call these clusters irregular octahedra
because they have six vertices and eight faces, however,
the triangles composing the faces are not equilateral (as
they would be in a regular octahedron) even though all
interaction strengths are the same [see Fig. 5(a)]. The
underlying lattice created by the center points of the oc-
tahedral clusters is a trillium lattice with four sites in the
cubic unit cell where each site is shared by three trian-
gles [41], see Fig. 5(b). Due to this property, we will refer
to this network as the dual-trillium lattice.
The present case is similar to the well-known classi-

cal Heisenberg model on the pyrochlore lattice, in which
the spins create a network of corner-sharing tetrahedra.
As for the pyrochlore lattice, the origin of the exten-
sive degeneracy on the dual trillium lattice can be un-
derstood from a Maxwellian counting argument [10, 11].
The number of degrees of freedom can be estimated as
F = Nc

2 (n − 1)q, where n is the number of spin compo-
nents, q is the number of spins in a cluster (for the dual
trillium lattice q = 6), and Nc is the number of clusters.
The factor n−1 comes from the fact that the spin’s length
constraint fixes one of its components, while the factor
1/2 is due to the fact that each spin belongs to two clus-
ters. The number of constraints Socta = 0 that determine
the ground state manifold is given by K = nNc. If the
constraints are independent the dimension of the ground

state manifold is given by D = F −K = Nc

2 [n(q−2)− q],
which for q = 6 is extensive for Heisenberg spins with
n = 3 (where D = 3Nc) and for XY spins with n = 2
(where D = Nc). Interestingly, these estimates for the
dimension of the ground state manifolds are even larger
than for the pyrochlore lattice where q = 4 and, conse-
quently, D = Nc for Heisenberg spins and D = 0 for XY
spins.

It is also instructive to compare the magnetic proper-
ties of the dual trillium Heisenberg model and the hyper-
kagome Heisenberg model, since the latter, likewise, fea-
tures an extensive ground state degeneracy [7]. As men-
tioned earlier the hyperkagome network is a special type
of distorted windmill lattice where only J2 bonds but no
other J1, J3, or J4 bonds contribute. In the hyperkagome
lattice, the spins create a network of corner-sharing trian-
gles and the dual lattice that is formed by connecting the
centers of these triangles corresponds to a lattice with two
interconnected trillium lattices, that we call the double-
trillium lattice, see Fig. 5(c) and (d) and Ref. [44]. This
lattice has a doubled unit cell with respect to the tril-
lium lattice, and each site is connected to three sites of
the respective other trillium sublattice (consequently the
double-trillium lattice is bipartite). The classical hyperk-
agome Heisenberg model is characterized by dipolar spin
correlations, which manifest as pinch points in the equal
time spin structure factor [7]. On the other hand, how-
ever, the system shows partial order at low temperatures
T/J . 0.001 [7], where an order-by-disorder transition
drives the system into a phase with coplanar spin config-
urations.

The classical dual trillium Heisenberg model obtained
at J1 = J2 = J3 = J4 = J shows significant differences
compared to the hyperkagome Heisenberg model. First,
the equal time spin structure factor [see Eq. (3)] does
not show any pinch points, neither within the large-N
approximation [17] nor within classical MC, see Fig. 6(a)
for a comparison of the equal time spin structure fac-
tors in the [h, h, l] plane obtained by both methods. As
explained in Ref. [45], the absence of pinch points can
be traced back to the fact that the parent trillium lattice
(that is created by connecting the centers of the irregular
octahedra) is non-bipartite. In contrast, the double tril-
lium lattice (that is created by connecting the centers of
the hyperkagome triangles) is bipartite. A non-bipartite
nature of a lattice of corner-sharing clusters gives rise
to fascinating physical phenomena, most strikingly, these
systems have been proposed to host “classical Z2 spin liq-
uids” [45], which can be understood as the classical coun-
terparts of quantum Z2 spin liquids (see also the recent
works in Refs. [46–48] for general classification schemes
for classical spin liquids). In the classical case, these
phases are characterized by exponentially decaying spin
correlations and an absence of pinch points in the spin
structure factor.

Furthermore, the specific heat from MC simulations
of the classical dual trillium Heisenberg model does not
show any sign of an order-by-disorder transition [see
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FIG. 5. (a) Distorted windmill lattice with y = −0.2258.
The colored bonds represent the J1, J2, J3, and J4 couplings
which are all of equal strength J . We refer to this network as
the dual-trillium lattice. All bonds within an irregular octa-
hedron are illustrated with the same color. (b) Centers of the
irregular octahedra plotted in (a). The centers of the octahe-
dra that share a site are connected by a black line, creating
a nearest neighbor trillium network. The trillium lattice has
four sites per unit cell which are represented by four differ-
ent colors of the sites. These colors match the ones used for
the octahedral bonds in (a). (c) Hyperkagome lattice where
the colored bonds correspond to the hyperkagome couplings
J2 shown in Fig. 1(c). The same color is used for the hy-
perkagome triangles corresponding to the same trillium sub-
lattice of the double-trillium lattice formed by the centers of
the triangles plotted in (d). The centers of the hyperkagome
triangles that share a site are connected by a black line in
(d), creating a double-trillium network. The double-trillium
lattice is bipartite and composed of two trillium sublattices
highlighted here by the two colors that match the colors of
the corresponding hyperkagome triangles in (c).

Fig. 6(b)]. This is in agreement with the argument given
in Ref. [19], according to which a system is expected to
show an order-by-disorder transition if n < (q+2)/(q−2).
In the present case with six-site clusters (q = 6) and
Heisenberg spins (n = 3) this condition is not satis-
fied. Our MC calculations predict a specific heat per
spin that approaches the value cv = kB/2 at low tem-
peratures. This value can again be explained within
the aforementioned Maxwellian counting argument and is
also consistent with the absence of an order-by-disorder
transition in the following way. The D modes in the
ground state manifold (which correspond to flat bands
in LT) do not contribute to the specific heat. The other

FIG. 6. (a) Equal time spin structure factor [Eq. (3)] of the
classical dual trillium Heisenberg model with J1 = J2 = J3 =
J4 = J in the [h, h, l] plane at T/J = 0.01 obtained by means
of MC simulations (right), compared with the one obtained by
means of the large-N approach [17] (left). (b) Specific heat
per spin for the same model as a function of temperature
obtained by MC simulations. No peak is observed down to
T/J = 0.01.

F − D = K = nNc modes contribute with kB/2 to
the specific heat, provided that these are all harmonic
modes. Hence the specific heat per spin is expected to be
cv = nNckB/(2N). Since the number of sites N and the
number of octahedral clusters Nc are related by N = 3Nc

and assuming Heisenberg spins (n = 3) one indeed repro-
duces the value cv = kB/2 fromMC calculations. For this
agreement, it is essential that all K non-flat modes out-
side the ground-state manifold are harmonic. If that was
not the case, particularly, if a subset of the K modes were
quartic [4, 11] (which would then contribute kB/4 to the
specific heat), these modes would be selected within an
order-by-disorder mechanism, in contradiction with our
observations.

The dual trillium lattice constitutes an interesting
platform for investigating novel types of classical spin
liquids. We defer a more detailed investigation of this
system to future work and now focus on the relevance of
the distorted windmill lattice for PbCuTe2O6.

IV. CLASSICAL STUDY OF PbCuTe2O6

In this section, we focus on the classical version of
the Heisenberg Hamiltonian for PbCuTe2O6 in Eq. (1)
with the couplings given in Table II and the site posi-
tions from Table I with y = −0.2258. Besides an in-
vestigation of the magnetic properties of this model, we
discuss to which extent previous experimental results on
PbCuTe2O6 can already be explained on a classical level,
despite the S = 1/2 quantum nature of this compound.
We simulate N = 12×L×L×L classical spins with peri-
odic boundary conditions, using different analytical and
numerical techniques. To characterize the magnetic or-
der at T = 0, we proceed similarly to the previous section
by applying IM and LT. We then study the finite temper-
ature behavior by means of MC simulations. Finally, we
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investigate the magnetic excitations, i.e., the dynamical
spin structure factor in the paramagnetic regime using
molecular dynamics (MD) simulations.

A. Static magnetic order at zero and finite
temperatures

As indicated in the phase diagram in Fig. 2, the clas-
sical Hamiltonian for PbCuTe2O6 has a magnetically or-
dered ground state with an incommensurate wave vec-
tor Q. To identify the incommensurate order by means
of IM we proceeded similarly to Ref. [40], by investi-
gating different linear system sizes L. As reported in
Fig. 7(a), the ground state energy and the correspond-
ing ordering wave vector Q depend on the simulated lin-
ear size L. The lowest energy is found for L = 11 and
the ordering wave vector for this system size is given
by Q = 2π(±3/11,±3/11,±3/11), where all combina-
tions of signs occur and yield identical energies. For
L = 7 and L = 14 we find only slightly larger ground
state energies which differ from the one at L = 11 only
after the fourth decimal digit. The corresponding or-
dering wave vector for L = 7 and L = 14 is given by
Q = 2π(±2/7,±2/7,±2/7). Similar energies for these
two wave vectors are expected, since 2/7 and 3/11 only
differ by approximately 5%. These results are also consis-
tent with LT, where the ordering wave vector Q is found
to be Q = 2π(±ξ,±ξ,±ξ) where ξ = 0.285756(1), i.e.,
very close to 2/7 ≃ 0.285714. The dependence of these
results on the linear size and the presence of two almost
degenerate estimates of the ground state energy indicate
that the exact ground state is not reached by finite-size
simulations. This is the case when Q approaches an ir-
rational number, which corresponds to a ground state
characterized by incommensurate magnetic order.
Next, we study the finite temperature behavior by

means of MC simulations. The energy per spin as a func-
tion of temperature exhibits a drop that becomes steeper
with increasing linear size L [Fig. 7(b)], which is a clear
signature of a phase transition. The position of the en-
ergy drop, i.e., the critical temperature Tc of the transi-
tion again strongly depends on the linear system size L.
This size dependence of Tc is expected since different lin-
ear sizes realize different magnetic orders. By comparing
the critical temperatures of the linear sizes characterized
by the same ordering wave vector Q, one recognizes an-
other type of dependence on the linear size: The critical
temperature Tc decreases with increasing system sizes,
see, for example, the graphs for L = 4, 8, 12 in Fig. 7(b).
Such a behavior could be due to thermal hysteresis ef-
fects [30]. To verify this possibility, we perform simula-
tions starting from a low-temperature configuration and
gradually heating up the system. The curves obtained,
respectively, by heating and cooling the system do not
match around the critical temperature, confirming the
presence of a hysteresis effect [Fig. 7(b) inset]. The en-
ergy jump at the critical temperature and the thermal

FIG. 7. (a) Ground state energy per spin eGS (left) and
ordering wave vector Q = 2π(±m/L,±m/L,±m/L) (right)
of the classical Heisenberg Hamiltonian for PbCuTe2O6 ob-
tained within IM as a function of the linear system size
L. The horizontal blue line marks the optimal wave vector
Q = 2π(±ξ,±ξ,±ξ) with ξ = 0.285756(1) found by means of
LT. (b) Average energy per spin e for different linear system
sizes L as a function of the temperature T , obtained by means
of MC simulations. The energy drop indicates a phase tran-
sition towards a magnetically ordered state. The curve for
L = 13 is almost completely covered by the curve for L = 12.
Inset: Hysteresis loop for L = 11. The arrow pointing down
(up) indicates that the curve is obtained by decreasing (in-
creasing) the temperature during a MC simulation.

hysteresis effect are indications that the phase transition
is of first order [49].
Because of the strong dependence of the results on the

linear system size, it is difficult to give a precise estimate
of the transition temperature. Suitable system sizes L
for quantifying the transition temperature are L = 11
and L = 14 since they yield the lowest ground state en-
ergies in IM and, additionally, L = 14 is the largest sim-
ulated system size that realizes the ordering wave vector
Q = 2π(±2/7,±2/7,±2/7). Thus, we locate the critical
temperature around the transitions observed upon cool-
ing at Tc = 3.3K for L = 11 and Tc = 3.25K for L = 14.

To study the magnetically ordered low-temperature
regime in more detail, we focus on L = 11 for the rest of
this subsection. According to our previous results, this
value provides the lowest ground state energy among all
simulated system sizes. The specific heat as a function of
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FIG. 8. (a) Specific heat for L = 11 as a function of tempera-
ture for the classical Heisenberg Hamiltonian for PbCuTe2O6,
obtained by means of MC simulations. The peak at Tc = 3.3K
corresponds to the onset of the magnetic long-range order.
The peak at Tc2 = 1.05K is associated with additional dis-
crete lattice symmetry breaking, as discussed in the main
text. (b) Ssub(q) at q = Q1 and q = Q2 as a function
of the temperature, obtained by means of MC simulations
at finite temperature and with IM at T = 0. The vectors
Q1 and Q2 are two distinct combinations of signs in the
ordering wave vector Q = 2π(±3/11,±3/11,±3/11). The
gray line marks the total intensity

∑
q∈HBZ

Ssub(q) = N/2
where the summation is only done over half of the first Bril-
louin zone (HBZ) since the other half is identical due to
Ssub(q) = Ssub(−q). This value N/2 results from a sum
rule and is independent of the temperature. (c) Ssub(q) in
the [h, k, k] plane, obtained from one MC run at T = 3K
(left) and T = 0.5K (right). At Tc2 < T = 3K < Tc a
peak emerges in Ssub(q) at Q1 = ±2π(−3/11, 3/11, 3/11).
At T = 0.5K < Tc2 a second less intense peak emerges in
Ssub(q) at Q2 = ±2π(3/11, 3/11, 3/11).

temperature displays two peaks, one at Tc = 3.3K and
another, less pronounced peak at Tc2 = 1.05K [Fig. 8(a)].
The peak at Tc corresponds to the position of the en-
ergy drop in Fig. 7(b) and marks the onset of magnetic
long-range order. To investigate the origin of the sec-
ond peak in the specific heat at Tc2 we consider the

Fourier transform of the spin-spin correlations Ssub(q)
as defined in Eq. (2). (Since Ssub(q) only takes into
account the spin-spin correlations within the same sub-
lattice, it is periodic in momentum space with respect
to the first Brillouin zone.) Particularly insightful is
Ssub(q = Q) as a function of temperature at the ordering
wave vector Q, which is Q = 2π(±3/11,±3/11,±3/11)
for L = 11, where we now explicitly distinguish be-
tween different combinations of signs in this vector [see
Fig. 8(b)]. The results at T > 0 (T = 0) in Fig. 8(b)
are obtained by means of MC calculations (IM calcu-
lations). We find that the onset of magnetic order at
Tc is associated with the selection of a particular sign
combination in Q = 2π(±3/11,±3/11,±3/11) (due to
the random initialization and spin updates within MC,
this selection is also random in each MC run). Denot-
ing this chosen wave vector as Q1, below Tc we observe
the onset of a finite weight in Ssub(q = Q1). Note that,
since Eq. (2) is invariant with respect to momentum in-
version q → −q the same signal is also found at −Q1,
i.e., Ssub(q = Q1) = Ssub(q = −Q1). Below Tc2 , we
find that, additionally, Ssub(q = Q2) acquires a finite
weight, where Q2 corresponds to another selected com-
bination of signs in Q = 2π(±3/11,±3/11,±3/11). The
sum Ssub(Q1) + Ssub(Q2) exhibits a small kink at Tc2

and accounts for almost the total intensity at T = 0.
This indicates that the changes which the system under-
goes at Tc2 do not just correspond to a redistribution of
signal in Ssub(q) but rather the generation of additional
signal, pointing towards another magnetic ordering tran-
sition associated with the formation of enhanced static
magnetic moments. To further illustrate the presence of
the additional magnetic Bragg peak, in Fig. 8(c) we show
Ssub(q) in a plane that contains both Q1 and Q2, at two
different temperatures Tc2 < T < Tc and T < Tc2 , from a
single MC run. The fact that we observe this transition
for all simulated system sizes, indicates that this is an
intrinsic feature of the system, rather than a finite size
effect.

The physical picture that emerges is the following: The
spins undergo a two-stage ordering mechanism, in which
at Tc they first develop magnetic order characterized by
a single ordering wave vector Q1. At the lower tem-
perature Tc2 additional long-range correlations described
by another (symmetry related) wave vector Q2 set in.
This corresponds to the loss of certain types of fluctu-
ations that are still allowed for Tc2 < T < Tc. Since
the presence of two peaks of unequal height at Q1 and
Q2 represents a weight distribution in Ssub(q) with lower
momentum space symmetries compared to the presence
of just one peak atQ1, we expect that the magnetic order
that develops at Tc2 is associated with additional lattice
symmetry breaking. A possible explanation for the oc-
currence of two consecutive phase transitions is provided
by the LT approach. Within this method a single-Qmag-
netic ordering in the ground state is allowed, but with
the caveat that the length constraint of individual spins
is not fulfilled. At sufficiently large temperatures (i.e., in
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the temperature range Tc2 < T < Tc) a single-Q state
can nevertheless be realized since thermal fluctuations
reduce the static magnetic moment such that the spin’s
length constraint is effectively relaxed. With decreasing
temperature and the loss of thermal fluctuations, how-
ever, the fulfillment of the individual length constraints
eventually requires an additional ordering wave vector
Q2 which leads to the observed second phase transition
at Tc2 . Such a multi-Q ordering in the ground state is
not common but can occur when the interactions are
particularly complex and generate a high level of frus-
tration [50, 51].
In summary, the classical Heisenberg model corre-

sponding to PbCuTe2O6 orders magnetically in a state
with incommensurate Q. This behavior is very different
from the one obtained experimentally for PbCuTe2O6.
In fact, both thermodynamic probes and inelastic neu-
tron scattering (INS) experiments show no sign of mag-
netic order down to T = 0.01K [36, 37]. This indicates
that quantum effects, completely neglected in the clas-
sical model, play an important role in determining the
behavior of the real material at low temperatures.

B. Dynamics

As pointed out in the previous section, the low-
temperature magnetic behavior of the classical Heisen-
berg model in Eq. (1) differs strongly from the one of the
real material PbCuTe2O6: While the model Hamiltonian
exhibits magnetic order below Tc ≃ 3.3K, the material
shows no sign of a magnetic phase transition down to
T = 0.01K. These differences are also reflected in the
low-temperature properties of the dynamical spin struc-
ture factor. A magnetically ordered classical spin system
gives rise to well-defined dispersive spin wave features
in the spin structure factor, in contrast to the disper-
sionless and broad features found in INS experiments on
PbCuTe2O6 [36]. Thus, classical simulations performed
at the same temperature as INS experiments (i.e., be-
low the critical temperature Tc of the classical model),
do not reproduce the dynamical spin structure factors
from experiments. On the other hand, in the paramag-
netic regime at T > Tc the classical model also shows
broad and dispersionless features, due to the absence of
magnetic order caused by thermal fluctuations. Conse-
quently, in this regime, it is possible to attempt a com-
parison between the simulated classical model at suitably
chosen temperatures T > Tc and the experimental data.
In the following, we will investigate whether thermal fluc-
tuations at T > Tc can indeed mimic the strong quan-
tum fluctuations observed in PbCuTe2O6 at low temper-
atures.
We compute the dynamical spin structure factor at

T > Tc by means of molecular dynamics (MD) simula-
tions. Due to the absence of magnetic order in this tem-
perature regime, possible finite size effects resulting from
the incompatibility of the finite system and incommen-

surate ordering wave vectors are not present. As a con-
sequence, we can fix the linear system size to a moderate
(i.e., not too large) value L = 8. For this system size, the
critical temperature is given by Tc = 3.25K. MD simula-
tions consist of numerically solving the classical equations
of motion for the spins, where the starting spin configura-
tion is taken from a snapshot of a MC run at a given tem-
perature, when the system has reached thermal equilib-
rium. Further numerical details are given in Appendix D.
Within MD simulations the dynamical spin structure fac-
tor S(q, ω) is accessible via the Fourier transform of the
time-dependent spin-spin correlation function

S(q, ω) = βω|F(q)|2
N
√
Nt

Nt
∑

nt=0

e−iωntδt
N
∑

i,j

eiq(ri−rj)Si(t)Si(0),

(5)
where ri is the position of site i. Furthermore, Nt is the
number of time steps and δt is the time step size. The
factors F(q) and βω correspond respectively to the form
factor for the Cu2+ ions [52] and a commonly used factor
to take into account the differences between quantum and
classical statistics [53].
In the specific case of an isotropic Heisenberg model as

the one under exam, S(q, ω) in Eq.(5) corresponds to the
perpendicular structure factor. The latter is used to com-
pare theoretical calculations with INS data [53, 54], be-
cause it takes into account the impossibility of neutrons
to probe excitations with momentum parallel to the scat-
tering direction. Also note that, since S(q, ω) contains
the actual site positions ri which are non-integer multi-
ples of the lattice vectors in direct space, this quantity
is not periodic in the first Brillouin zone. To take into
account the spin length S = 1/2 of the Cu2+ ions in our
comparisons between theory and experiment, we rescale
the frequency ω by a factor of 2. This can be justified
by linear spin wave theory where the spin wave energies
are proportional to S and match the classical ones from
MD simulations (where spins are normalized as |Si| = 1)
when S = 1. Consequently, to adjust the energy scales
of a classical MD simulation with the energy scales of a
spin-wave approach at S = 1/2, we need to rescale our
MD results according to ω → ω/2.
We compute the dynamical spin structure factor by

means of MD simulations for four different temperatures
T = 4K, 5K, 6K, 7K in the paramagnetic regime and
compare it with INS data from Ref. [36]. In Fig. 9(a)
and (b) the comparison is shown for the [h, k, 0] plane
while Fig. 9(d) and (e) present the comparison in the
[h, h, l] plane. The MD results in these plots are ob-
tained at T = 4K and T = 7K, while the INS data has
been measured at T < 0.1K. The simulated inelastic
spin structure factor is also shown at T = 3K < Tc to
highlight the changes which the system undergoes when
entering the magnetically ordered phase.
In the [h, k, 0] plane [see Fig. 9(a), (b)], the MD simula-

tions are able to reproduce the ring-shape features found
in experiments. However, the regions of highest intensi-
ties on this ring do not occur around (h, k, 0) = (±2, 0, 0)
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FIG. 9. (a) Dynamical spin structure factor from MD in the [h, k, 0] plane, integrated in the energy range 0.415meV ≤ ω ≤
0.604meV, at T = 4K and T = 7K (top) compared with the one at T = 3K (bottom). (b) Dynamical structure factor at
T = 0.1K from INS experiments in the [h, k, 0] plane, integrated in the energy range 0.4meV ≤ ω ≤ 0.6meV [36]. (c) Dynamical
spin structure factor from INS and MD as a function of h along the line cut [h, 1.69, 0] where the signal is integrated in the
perpendicular direction [0, k, 0] respectively over 1.125 ≤ k ≤ 2 (MD) and 1.1 . k . 2 (INS), as indicated by the orange shaded
region in (a) and (b). Subfigures (d) and (e) show the same as (a) and (b) but now in the [h, h, l] plane. The colored arrows
in the simulated data at T = 3K mark the Bragg peaks discussed in the main text. The experimental data are additionally
integrated along the perpendicular direction [h,−h, 0] in the range −0.1 ≤ h ≤ 0.1. (f) Dynamical spin structure factor from
INS and MD as a function of h along the line cut [h, h, 1.69] where the MD signal is integrated in the perpendicular direction
[0, 0, l] respectively over 1.25 ≤ l ≤ 2.125 (MD) and 1.2 . k . 2.1 (INS), as indicated by the orange shaded region in (d) and
(e). (g) From left to right: dynamical spin structure factor along the [0.3, 0.3, l] direction and as a function of frequency ω,
computed by means of MD simulations at T = 4K, 5K, 6K, 7K. The white dashed lines mark the positions of the Bragg peaks
below Tc at (±0.25,±0.25,±1.75) [green arrow in (d)] and (±0.25,±0.25,±3.25) [yellow arrow in (d)]. The simulated data
are integrated along the perpendicular direction [h, h, 0] in the range 0.25 ≤ h ≤ 0.375 [white shaded area in (d)]. The finite
resolution in energy of the INS data (δE = 0.18meV ) is added to the simulated data by means of a Gaussian broadening. (h)
Dynamical spin structure factor along the [0.3, 0.3, l] direction from INS experiments at T < 0.1K [36]. The intensity at low
frequencies is due to non-magnetic incoherent background and is not reproduced in MD simulations. In all plots, the simulated
intensity is rescaled such that the maximum matches the one from the INS experiments.

and (0,±2, 0), as seen in the experimental data, but are
shifted towards (±1,±1, 0). At T = 3K, i.e., below
the critical temperature, the inelastic structure factor
continues to display similar broad and ring-shaped fea-
tures. This is because the [h, k, 0] plane does not contain

magnetic Bragg peaks and, consequently, the signal at
T = 3K stems from the fluctuating part of the spins.

In the [h, h, l] plane [see Fig. 9(d), (e)], the simulated
inelastic spin structure factors at T = 4K and T = 7K
again reproduce the overall ring-like distribution of sig-
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nal observed in INS experiments, except for the region
around (±1,±1, 0) which appears overemphasized in our
simulations, as already mentioned above. Interestingly,
even weaker features outside the ring are contained in
our MD results in the [h, h, l] plane such as two radial
streaks at l > 2 and a feature of enhanced intensity at
h ≃ 2. Below Tc the simulated magnetic structure fac-
tor shows multiple magnetic Bragg peaks in the [h, h, l]
plane, the one with the highest intensity is located at
(h, h, l) = (±1.25,±1.25,±0.25) [pink arrow in Fig. 9(d)].
This peak position is consistent with our findings for the
system’s ground state order from IM in Fig. 7(a) where
an ordering wave vector Q = 2π(±m/L,±m/L,±m/L)
withm/L = 1/4 was found for L = 8. More precisely, the
dominant magnetic Bragg peak at (±1.25,±1.25,±0.25)
can be written as (±(1+m/L),±(1+m/L),±m/L)where
the integer parts correspond to reciprocal lattices vec-
tors. This dominant peak also explains the strong sim-
ulated signal at T > Tc in the nearby region around
(h, h, l) = (±1,±1, 0) which can be interpreted as a
molten remnant of the magnetic long-range order. In
contrast, the INS data does not show a particularly
strong signal around (h, h, l) = (±1.25,±1.25,±0.25).
This indicates that despite the obvious similarities be-
tween the calculated and the measured data, the spin
structure factor from INS cannot be simply interpreted as
displaying smeared remnants of classical magnetic Bragg
peaks.

The plots in Fig. 9(c) and (f) show the same compar-
ison between MD results and INS data but now along
line cuts in the [h, k, 0] and [h, h, l] planes as indicated
by the shaded regions in Fig. 9(a), (b) and Fig. 9(d),
(e), respectively. Furthermore, to match the process-
ing of the INS data, the calculated spin structure fac-
tor has been integrated in a direction perpendicular to
the line cut, as indicated by the width of the shaded re-
gions. These plots demonstrate that in the temperature
range 4K ≤ T ≤ 7K the width of simulated features in
the spin structure factor approximately agrees with the
typical broadening from quantum fluctuations in the INS
data (overall, however, the changes of our results within
this temperature range are rather small). They also con-
firm our observation that the best agreement between
MD and INS data occurs in the [h, h, l] plane away from
the (±1,±1, 0) region, where the simulated results along
the investigated line cut reproduce the experimental data
even within error bars [Fig. 9(f)]. On the other hand, for
the plotted line cut in the [h, k, 0] plane which contains
contributions from the strong signal at (±1,±1, 0), larger
deviations between theory and experiment are observed
[Fig. 9(c)].

Finally, in Fig. 9(g) we report the simulated dy-
namical spin structure factor in a plane spanned by
the frequency ω (vertical axis) and the [0.3, 0.3, l]
momentum direction (horizontal axis). At all simulated
temperatures T = 4K, 5K, 6K, 7K, the MD results
exhibit a rather featureless region of strong signal. With
decreasing temperature, the features in the simulated

data become slightly more distinct and the intensity
shifts towards lower frequencies, reminiscent of spin
waves. The wave vectors where the intensities are
largest at low frequencies correspond to the mag-
netic Bragg peaks at (±m/L,±m/L,±(2 − m/L)) =
(±0.25,±0.25,±1.75) and (±m/L,±m/L,±(3 +
m/L)) = (±0.25,±0.25,±3.25) (where m/L = 1/4 for
the simulated system size L = 8), see, respectively,
green and yellow arrows in Fig. 9(d). The second peak
is clearly less intense than the first peak, also due to
the form factor in S(q, ω) that reduces the intensity at
large wave vectors. Comparing these observations with
experimental results, INS data [Fig. 9(h)] show a similar
dispersionless and smeared feature, whose intensity
reaches up to maximal energies 1.5meV . ω . 2meV, in
agreement with our calculations. The MD simulations
are also able to reproduce this maximum intensity region
in the correct momentum space position. More precisely,
the INS data show large intensities at (±0.3,±0.3,−1.67)
which is compatible with the Bragg peak position at
(±0.25,±0.25,±1.75) found in the classical simulations
below Tc.
Overall, our classical simulations at finite tempera-

tures correctly reproduce the main features of the dy-
namical spin structure factor of PbCuTe2O6 measured
at much lower temperatures and subject to strong quan-
tum fluctuations. An exception is the region around
(h, k, l) = (±1,±1, 0) where our calculated signal is com-
parably large. This region in momentum space is close to
the dominant Bragg peak position observed in the mag-
netically ordered low-temperature regime of the classical
model. This indicates that despite the demonstrated sim-
ilar effects of thermal fluctuations in the classical model
and quantum fluctuations in PbCuTe2O6, the spin struc-
ture factor of PbCuTe2O6 cannot be purely explained by
molten remnants of classical magnetic long-range order.
On the other hand, the signal distribution in the mea-
sured spin structure factor of PbCuTe2O6 can be con-
sistently interpreted in terms of spin liquid behavior, as
already demonstrated in previous works [36, 39].

V. CONCLUSIONS

In the first part of this work, we investigated the clas-
sical T = 0 phase diagram of the hyper-hyperkagome
J1 = J2 Heisenberg model with varying chain interac-
tions J3 and J4. We identified a rich variety of ground
states in this phase diagram, with a subextensive de-
generate manifold along the J3 = J4 line, and an ex-
tensive manifold for the point J1 = J2 = J3 = J4.
We expect that, when extending the phase diagram for
J3, J4 > J1 = J2, further subextensively degenerate lines
can be found, which connect to the J1 = J2 = J3 = J4
point. In fact, highly degenerate points are often con-
junctions of subextensively degenerate lines in parameter
space [43, 55]. Our preliminary LT calculations, indeed,
show that for the line cuts J1 = J2 = J3, J4 > J1 and
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J1 = J2 = J4, J3 > J1 the minima of the lowest energy
band form a surface in momentum space.

It remains an open question how the presented phase
diagram changes when quantum fluctuations are taken
into account. The latter usually lift classical ground state
degeneracies and stabilize new phases that do not have
a classical counterpart [56–58]. The experimental results
on PbCuTe2O6 can be considered as a first indication
of how quantum fluctuations affect the classical system.
In fact, the results of the classical study presented in
this work strongly differ from the quantum picture that
has emerged from experiments. First, the classical model
has a phase transition at around Tc = 3.3K towards a
magnetically ordered state, that is absent in the real ma-
terial. It is worth mentioning that further experimental
works on PbCuTe2O6 identified a ferroelectric transition
at T ≃ 1K [59, 60]. For a rough estimate of whether this
ferromagnetic transition could be related to the magnetic
transition we found at Tc = 3.3K, one needs to adjust
the temperature (energy) scales of our classical simu-
lation with spins normalized to one (|S| = 1) and the
S = 1/2 degrees of freedom of the Cu2+ magnetic ions.
Since critical temperatures of magnetic transitions are
expected to scale as ∼ S2, this means that the ferroelec-
tric transition temperature has to be divided by S2 = 1/4
to compare it with our simulated transition temperature
(assuming that the ferroelectric transition was accom-
panied by magnetic order). This would give a critical
temperature of T = 4K, that is higher than Tc = 3.3K
found for the classical model. If the observed ferroelectric
transition was accompanied by magnetic order occurring
at the same transition temperature, we would expect the
classical model to predict a higher critical temperature
than observed in experiments. This is because quantum
fluctuations are expected to lower magnetic transition
temperatures. Indeed, there is no evidence for magnetic
long-range order at any temperature in PbCuTe2O6 and
quantum fluctuations have been experimentally demon-
strated to play an important role in suppressing order.

Finally, our simulated dynamical spin structure fac-
tors in the paramagnetic regime show an overall good
agreement with experimental data. This indicates that
thermal fluctuations are able to reproduce the broad fea-
tures in the experimental dynamical spin structure factor
caused by quantum fluctuations. There are already exist-
ing examples for materials that show a good agreement
between the dynamical structure factors from classical
simulations and INS experiments at different tempera-
tures [53, 61]. However, in these cases, the behavior of
the system does not change drastically when quantum
fluctuations are taken into account. More specifically, no
phase transition occurs between the temperature used in
the simulations and the one at which the INS experi-
ments are carried out. The temperature for the classical
simulations is tuned to get the best match between sim-
ulated and measured dynamical structure factors. This
usually results in a higher temperature with respect to
the experimental one, in agreement with the fact that

the materials are also subject to quantum fluctuations.
In the present case, at the temperature of the INS exper-
iments, the classical model is magnetically ordered, while
the real material does not show any magnetic phase tran-
sition. Nevertheless, the dynamical spin structure factor
in the paramagnetic regime of the classical model is able
to reproduce the main features found by means of INS
experiments. Although it is not possible to draw spe-
cific conclusions on the nature of quantum fluctuations
based on this agreement, identifying and explaining such
quantum-to-classical correspondences [62] will remain an
interesting research direction that may give new insights
into the quantum ground states of strongly frustrated
spin systems.
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Appendix A: Luttinger-Tsiza (LT)

To apply the LT method we proceed as follows. First
we rewrite the Hamiltonian in Eq. (1) as

H =
1

2

∑

α,β

∑

i∈α,j∈β

Ji,j(∆ri,j)SiSj , (A1)

where i, j index the sites and α, β = 1 . . . 12 index the
sublattices. Furthermore, ri is the position of the site i
and ∆ri,j = ri − rj .
Then we define the Fourier transform of the spins on

the individual sublattices

S̃α(q) =
1

√

N/12

∑

i∈α

e−iqriSi, (A2)

and its inverse

Si∈α =
1

√

N/12

∑

q

eiqri S̃(q). (A3)

Inserting Eq. (A3) into Eq. (A1) we obtain

H =
∑

q

∑

α,β

J̃α,β(q)S̃α(q)S̃β(q), (A4)

where

J̃α,β(q) =
1

2

∑

i∈α,j∈β

Ji,j(∆ri,j)e
iq(ri−rj), (A5)
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is the Fourier transform of the interaction matrix.

The ground state energy and the magnetic ordering
vector correspond respectively to the minimum in q space
of the lowest eigenvalue of the matrix J̃α,β(q) in Eq. (A5)
and the wave vector q where this minimum is located. In
the case of a non-Bravais lattice (such as our distorted
windmill lattice), the LT method only provides a lower
bound to the ground state energy and the predicted Q

ordering may not correspond to the exact ground state
order [63]. In fact, this procedure ensures that the spin
length constraint |Si| = 1 (the so-called strong con-
straint) is satisfied only globally,

∑

i |Si|2 = N (which
is referred to as the weak constraint). As a consequence,
the obtained ground state could be ruled out when the
strong constraint is also imposed.

In this work, we performed the diagonalization of
J̃α,β(q) numerically: each component of q = (qx, qy, qz)
in Eq. (A5) is discretised in finite steps between −π and
+π, and for each value of q the diagonalization of the
12× 12 matrix in Eq. (A5) is carried out.

Appendix B: Iterative Minimisation (IM)

The IM method consists of finding the classical ground
state, based on the property that in a ground state, all
spins are aligned to the effective magnetic field created
by the surrounding spins with which they interact. More
precisely, we start by rewriting the Hamiltonian in Eq. (1)
as

H = −
∑

i

Beff
i Si, (B1)

where

Beff
i = −1

2

∑

j

Ji,jSj (B2)

is the effective local magnetic field to which the spin Si

is subject, due to the Heisenberg interactions with other
spins. The procedure is simple, we first initialize a finite
number of spins, in our case N = 12 × L× L × L spins,
in a random configuration. We then select a random site
and align it to its effective magnetic field

Si →
Beff

i

|Beff
i | , (B3)

where the magnetic field Beff
i on the right-hand side is

divided by its norm to keep the spin length equal to one.
We iterate this procedure until the energy per spin does
not change up to the 10th decimal digit. The Q ordering
wave vector is obtained by the wave vector q at which
Ssub(q) in Eq. (2) calculated from the resulting spin con-
figuration has its maximum.

Coplanar configurations are characterized by the ne-
matic order parameter [18]

Qν,µ =
1

N

∑

i

(

Sν
i S

µ
i − 1

3
δν,µ

)

, (B4)

where ν, µ = x, y, z. In particular, the trace of the second
moment of (B4)

∑

µ,ν

Qµ,νQν,µ =
1

N2

∑

i,j

(

(SiSj)
2 − 1

3

)

, (B5)

is equal to 1/6 in a coplanar configuration [18]. This
quantity has been used to determine whether a spin con-
figuration is coplanar or not.
We remark that IM does not have any control over

whether it reaches the real ground state or a metastable
state. Thus, one has to perform different attempts with
the same linear system size L, and then check for con-
vergence to the same result when varying the linear size
L.

Appendix C: Classical Monte Carlo (MC)

We simulated the Heisenberg model given in Eq. (1)
on the distorted windmill lattice with periodic boundary
conditions using different linear sizes L, which correspond
to a total number of spins N = 12×L×L×L. A single
MC step includes N local heat-bath moves [64], followed
by 3 overrelaxation moves [65]. Each run is initialized
with a random spin configuration and gradually cooled
down from T ≃ 2J to T ≃ 0.02J , where J corresponds
to the largest coupling. Physical quantities are averaged
over 2 · 105 MC steps, after 3 · 105 MC steps for thermal-
ization.

Appendix D: Molecular Dynamics (MD)

We performed molecular dynamics simulations to com-
pute the Fourier transform of the time-dependent spin-
spin correlation function S(q, ω) defined in Eq. (5) at
a fixed temperature. The starting configuration is taken
from the MC simulations. The spins are then evolved in
time according to the equation of motion

dSi

dt
= Si ×Beff

i , (D1)

whereBeff
i is defined in Eq. (B2). This equation describes

the precession of the spins around their local effective
field. We numerically integrate Eq. (D1) with a fourth-
order Runge-Kutta method. This procedure is repeated
for different starting configurations at a fixed temper-
ature and then averaged over 50 independent runs. To
compute S(q, ω), we employed the approach described in
Ref. [53]. This consists of accumulating the time Fourier
transform of each spin component during the simulation,
rather than computing the time-dependent correlations
and Fourier transform afterward.
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