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Abstract
This sequel continues our exploration (Fiedler and Rocha in Chaos 33:083127, 2023.
https://doi.org/10.1063/5.0147634) of a deceptively “simple” class of global attrac-
tors, called Sturm due to nodal properties. They arise for the semilinear scalar parabolic
PDE

ut = uxx + f (x, u, ux ) (∗)

on the unit interval 0 < x < 1, under Neumann boundary conditions. This models the
interplay of reaction, advection, and diffusion. Our classification is based on the Sturm
meanders, which arise from a shooting approach to the ODE boundary value problem
of equilibrium solutions u = v(x). Specifically, we address meanders with only three
“noses”, each of which is innermost to a nested family of upper or lower meander arcs.
The Chafee-Infante paradigm of 1974, with cubic nonlinearity f = f (u), features just
two noses.We present, and fully prove, a precise description of global PDE connection
graphs, graded by Morse index, for such gradient-like Morse–Smale systems. The
directed edges denote PDE heteroclinic orbits v1 � v2 between equilibrium vertices
v1, v2 of adjacent Morse index. The connection graphs can be described as a lattice-
like structure of Chafee-Infante subgraphs. However, this simple description requires
us to adjoin a single “equilibrium” vertex, formally, at Morse level −1. Surprisingly,
for parabolic PDEs based on irreversible diffusion, the connection graphs then also
exhibit global time reversibility.
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1 Introduction andmain results

We continue our study [19] of the global dynamics for the scalar reaction-advection–
diffusion equation

ut = uxx + f (x, u, ux ). (1.1)

Subscripts t, x indicate partial derivatives. To be specific, we consider solutions u =
u(t, x) ∈ R on the unit interval 0 < x < 1, with Neumann conditions ux = 0 at
the boundaries x = 0, 1. Equilibria of (1.1), i.e. time-independent solutions u(t, x) =
v(x), equivalently satisfy the “pendulum” equation

0 = vxx + f (x, v, vx ), (1.2)

albeit as a Neumann boundary value problem in the spatial variable x .
The mathematical literature on reaction-diffusion equations alone, as refereed in

Zentralblatt under MSC 35K57, has grown to more than 15,000 entries [35]. We have
already provided detailed mathematical background, and a survey of applications;
see [19] and the many references there. We only recall some of the most important
facts, for the convenience of our readers. Our main goal is to proceed from basic
information on the ODE boundary value problem (1.2), and derive detailed structural
results on the global attractor of the PDE (1.1). However, we do not start from given
nonlinearities f , as the primary object. Due to the (spatial) chaoticity of (1.2) on
large x-intervals, even the task to determine all equilibria can in fact be prohibitively
messy. Quite surprisingly, therefore, it is possible to characterize the class of all ODE
equilibrium “configurations”, qualitatively, by certain permutations σ , as introduced
by Fusco and Rocha [21]. See (1.5) and (1.6) below. Suffice it to assert here that any of
those permutations σ can be represented by an open class of dissipative nonlinearities
f . The 3-nose meanders, which we continue to study in the present paper, are then
defined in terms of Fusco’s permutations σ , rather than by their associated (classes
of) nonlinearities f .

We assume the PDE solution semigroup u(t, ·) generated by the nonlinearity f ∈
C2 to be dissipative: any solution u(t, ·) exists globally in forward time t ≥ 0, and
eventually enters a fixed large ball in a suitable Sobolev space X which contains
C1([0, 1], R). (The sign condition f (x, u, 0) · u < 0, for large |u|, together with
subquadratic growth of f (x, u, p) in |p|, for example, is sufficient for that.) For large
times t → ∞, any large ball in X then limits onto the same maximal compact and
invariant subset A = A f of X which is called the global attractor. In general, the
global attractorA consists of all solutions u(t, ·) which exist globally, for all positive
and negative times t ∈ R, and which remain uniformly bounded in X . In general,
A therefore contains any equilibria, heteroclinic orbits, basin boundaries, or more
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complicated recurrence which might arise. Let E ⊆ A denote the set of equilibria. We
assume all equilibria are hyperbolic.

Two additional structures help to describeA, in our specific setting (1.1). First, (1.1)
possesses a Lyapunov function, alias a variational or gradient-like structure, under
separated boundary conditions; see [9, 23–26, 28, 34]. Therefore, the time-invariant
global attractor consists of equilibria and of solutions u(t, ·), t ∈ R, with forward and
backward limits, i.e.

lim
t→−∞u(t, ·) = v1, lim

t→+∞u(t, ·) = v2. (1.3)

In other words, the α- and ω-limit sets of u(t, ·) are two distinct hyperbolic equilibria
v1 and v2. We call u(t, ·) a heteroclinic or connecting orbit, or instanton, and write
v1 � v2 for such heteroclinically connected equilibria. See Fig. 1c, d for a modest
3-ball example with N = 11 equilibria. Although the gradient-like structure persists
for other separated boundary conditions, the possibility of rotating waves shows that
it may fail under periodic boundary conditions.

The second structure is a Sturm nodal property, which we express by the zero
number z. This nodal property justifies to call the global attractors A Sturm. Let
0 ≤ z(ϕ) ≤ ∞ count the number of strict sign changes of continuous spatial profiles
ϕ : [0, 1] → R, ϕ 	≡ 0. For any two distinct solutions u1, u2 of (1.1), the zero number

t �−→ z(u1(t, ·) − u2(t, ·)) ↘ (1.4)

is then nonincreasing with time t , for t ≥ 0, and finite for t > 0. Moreover z
drops strictly, with increasing t > 0, at any multiple zero of the spatial profile
x �→ u1(t0, x)−u2(t0, x); see [2]. This remains true under other separated or periodic
boundary conditions. See Sturm [32] for the linear autonomous variant, and [27] for
the PDE revival..

The consequences of the Sturm nodal property (1.4) for the nonlinear dynamics of
(1.1) are enormous. For example, Morse–Smale transversality, and hence structural
stability, hold automatically, just given hyperbolicity of equilibria [1, 22]. Already
Sturm observed that all eigenvalues μ0 > μ1 > . . . of the PDE linearization of (1.1)
at any equilibrium v are real and algebraically simple. In fact z(ϕ j ) = j , for the
eigenfunction ϕ j ofμ j . TheMorse index i(v) of v then counts the number of unstable
eigenvalues μ j > 0. The Morse index i(v) is the dimension of the unstable manifold
Wu(v) of v.

In a series of papers, based on the zero number,we have given a purely combinatorial
description of Sturm global attractorsA; see [10–12]. Define the two boundary orders
h0, h1: {1, . . . , N } → E of the equilibria such that

hι(1) < hι(2) < . . . < hι(N ) at x = ι ∈ {0, 1}. (1.5)

SeeFig. 1a, b for an examplewith N = 11 equilibriumprofiles,E = {1, . . . , 11}, h0 =
id, h1 = (1 8 5 4 9 10 3 6 7 2 11). The general combinatorial description of Sturm
global attractors A is based on Fusco’s groundbreaking Sturm permutation σ ∈ SN ,
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defined in [21] as

σ := h−1
0 ◦ h1. (1.6)

Note how σ is trivially invariant under any bijective relabeling � : E1 → E2 of
equilibria, because (�h0)−1(�h1) = h−1

0 h1. Much less trivially, Sturm attractors of
dissipative nonlinearities with the same Sturm permutation σ are C0 orbit-equivalent
[12].

Already in [21], the following explicit recursions have been derived for the Morse
indices i j := i(h0( j)) along the meander:

i1 = iN = 0;
i j+1 = i j + (−1) j+1 sign (σ−1( j + 1) − σ−1( j)).

(1.7)

The zero numbers, z jk := z(h0( j) − h0(k)) ≥ 0 for j 	= k, are given recursively by

zkk := ik;
z1k = zNk = 0;
zk+1,k = min{ik, ik+1};
z j+1,k

= z jk + 1
2 (−1) j+1 · [

sign
(
σ−1( j + 1) − σ−1(k)

) − sign
(
σ−1( j) − σ−1(k)

)]
.

(1.8)

Using a shooting approach to theODEboundary value problem (1.2), the Sturmper-
mutations σ ∈ SN have been characterized, purely combinatorially, as dissipative
Morse meanders in [11]. Here the dissipativeness property, abstractly, requires fixed
σ(1) = 1 and σ(N ) = N . In fact, the shooting meander emanates upwards, towards
vx > 0, from the leftmost (or lowest) equilibrium at σ(1) = 1, and terminates from
below, vx < 0, at x=1. The meander property requires the formal path M of alter-
nating upper and lower half-circle arcs defined by the permutation σ , as in Fig. 1a, to
be Jordan, i.e. non-selfintersecting. For dissipative meanders, the recursion (1.7), and
i1 = 0, define all Morse numbers i j . Note how j and i j are always of opposite parity,
mod 2. In particular, N is odd, and iN=0 follows automatically. The Morse property,
finally, requires nonnegative Morse indices i j ≥ 0 in (1.7), for all j . For brevity, we
also use the term Sturm meanders, for dissipative Morse meanders.

For a simple recipe to determine the Morse property of a meander, the Morse
number increases by 1, along any right turning meander arc, but decreases by 1 along
left turns. This holds, independently, for upper and lower meander arcs, and remains
valid even when the proper orientation of the arc is reversed; see (1.7). For examples
see Figs. 1, 2.

In [10] we have shown how to determine which equilibria v1, v2 possess a hete-
roclinic orbit connection (1.3), explicitly and purely combinatorially from dissipative
Morse meanders σ . In the elegant formulation of Wolfrum [33],

v1 � v2 ⇐⇒ v1, v2 are z-adjacent, and i(v1) > i(v2); (1.9)
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Fig. 1 Example of a Sturm 3-ball global attractor A = clos Wu(O). Equilibria are labeled as E =
{A01, A02, B0

2 , B0
1 , B0

0 , B1
0 , B1

1 , B1
2 = O, A12, A

1
1, A

1
0}, along the h1-axis, i.e. ordered by their boundary

values v(x) at x = 1. Note the Morse indices i(L j
k ) = j + k, for tag L = B, and i = j + k − 1 for

tag L = A. Black dots mark sinks i = 0, and small annotated circles (red, blue) indicate i = 2. The
previous papers [15, 16] established the equivalence of the viewpoints a–c. a The Sturm meander M of
the global attractor A. The meander M is a stylized representation of the curve a �→ (v, vx ), at x = 1,
which results from Neumann initial conditions (v, vx ) = (a, 0), at x = 0, by shooting via the equilibrium
ODE (1.2). Intersections of the meander with the horizontal v-axis indicate equilibria v(x). Transversality
of intersections is equivalent to hyperbolicity of v. b Spatial profiles x �→ v(x) of the equilibria v ∈ E . Note
the different orderings of v(x), by h0 at the left boundary x = 0 (red), but by h1 (blue) and by the Sturm
permutation σ = h−1

0 h1 (red) at the right boundary x = 1. The same orderings characterize the meander

M in a. c The Thom-Smale or Sturm complex S of the boundary 2-sphere �2 = ∂A = ∂Wu(O). The
right and left boundaries A01A

1
1A

1
0 both indicate the unstable manifold of A11 and have to be identified with

each other. Note the 2-cells given by the unstable manifolds of the three equilibria B1
1 , B0

2 , A12 of Morse

index i = 2. The Chafee-Infante 2-cell of B0
2 is shaded gray. d The connection graph C of A. Vertices are

the equilibria, ranked by rows of equal Morse index. Edges (green or black) are directed downwards and
indicate heteroclinic orbits � between Morse-adjacent equilibria. Green rhombics indicate three slanted
Chafee-Infante stacks of height 2 each; black edges mark two vertical Chafee-Infante stacks of height 3;
dashed black/green edges are shared between different stacks. See Sects. 2 and 4 for further details
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see also the comment in the appendix of [16]. Here equilibria v1 	= v2 are called
z-adjacent, if there does not exist any blocking equilibrium w strictly between v1 and
v2, at x = 0 (or, equivalently, at x = 1), such that

z(v1 − w) = z(w − v2) = z(v1 − v2). (1.10)

With (1.9), all heteroclinic orbits then follow from (1.7) and (1.8) above.
Clearly, any heteroclinic orbit u(t, .) : v1 � v2 implies adjacency: by (1.4), any

blockingwwould force z(u(t, .)−w) to drop strictly at the Neumann boundary x = 0,
for some t = t0. This contradicts the equal values (1.10) of z at the limiting equilibria
v1, v2 of u, for t → ±∞.

As a trivial corollary, for example, we conclude v1 � v2, for neighbors v1, v2 on
any boundary order hι . Here we label v1, v2 such that i(v1) = i(v2) + 1; see (1.7).
For in-depth analysis and many more examples see [13, 14, 17, 21, 31].

We summarize the above heteroclinic structure in the directed graded connection
graph C. See Fig. 1d for an example. The connection graph is graded by increas-
ing levels of the Morse indices i of its equilibrium vertices, as a ranking function.
Directed edges are the heteroclinic orbits v1 � v2 running downwards between cer-
tain equilibria of adjacent Morse index. Uniqueness of such heteroclinic orbits, given
v1, v2, had already been observed in lemma 3.5 of [3]. The connection graph in fact
encodes all heteroclinic orbits, due to transitivity of the relation � (by Morse–Smale
transversality), and a cascading principle [3, 6, 10].

For convenience, we also define an augmentation C
 of C, which we call the pointed
connection graph, or the connection graph with a distinguished vertex 
 . This is
reminiscent of Conley theory, where the (empty!) exit set of an attractor is usually
collapsed into a “distinguished” point [5, 29]. We simply add a “distinguished” vertex

 at “Morse” level i = −1, with an edge towards 
 from every sink equilibrium v,
i.e. from every vertex v with Morse index i(v) = 0.

More geometrically, the global attractor A is a signed regular cell complex S. We
call S the Sturm complex or, because the cells are given by the unstable manifolds
of the hyperbolic equilibria, the Thom-Smale complex; see [18, 31]. We call d =
dimA := maxv∈E i(v) the dimension ofA or of the cell complex S. Then at least one
equilibrium O has maximal Morse index i(O) = d, i.e. i(v) ≤ d for all other Morse
indices. If A = closWu(O) is the closure of a single d-cell, then the Thom-Smale
complex turns out to be a closed d-ball [14]. We call this case a Sturm d-ball. See
Fig. 1c for the Sturm 3-ball associated to the meander in Fig. 1a.

In the present paper we discuss Sturm attractors which arise from Sturm meanders
with at most three noses. Noses are defined by j ∈ {1, . . . , N − 1} such that

σ( j + 1) = σ( j) ± 1. (1.11)

For a 3-nose meander see Fig. 1a again. The simplest case, of just two noses, is called
theChafee-Infante attractor. In 1974, this case arose for cubic nonlinearities (2.1); see
[4]. Chafee-Infante components turn out to be fundamental building blocks of 3-nose
connection graphs. We therefore revisit and review this case in Sect. 2.
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We now present our main results on the general case of primitive 3-nose meanders
Mpq . These meanders are characterized by p nested arcs around their upper left
innermost nose arc, above the horizontal axis, and by q nested arcs around their upper
right innermost nose arc.Below the horizontal axis, the only remaining nose is centered
as the innermost of the remaining p + q lower arcs. Since all lower arcs are nested,
we also call that configuration a (lower) rainbow. See Fig. 5b for a general template.

In theorem 2.1 of [19], we have shown that Mpq is a dissipative meander if, and
only if, (p − 1, q + 1) are coprime and p ≥ 2. Moreover, such meanders fail to be
Morse, for p 	= r(q + 1). Therefore, we focus on the 3-nose cases

p = r(q + 1) (1.12)

Note that p− 1 and q + 1 are then coprime, indeed, because r(q + 1) − (p− 1) = 1.
The trivial case r = q = 1 has been illustrated in fig. 3.2(a)-(c) of [19].We therefore

assume r , q ≥ 1, rq > 1, for the rest of this paper. Only for r = 1 have the next
four theorems been proved in [19]. The corollaries have been proved, provided the
theorems hold.

Our first theorem shows that, conversely, all cases (1.12) lead to Morse meanders
Mpq .

1.1 Theorem For p = r(q + 1), let μrq(i) count the vertices with Morse number i , in
the dissipative meanderMpq . Then, for r , q ≥ 1, rq > 1, the nonzero Morse counts
are given by

μrq(i) =

⎧
⎪⎨

⎪⎩

3 + 2i, for 0 ≤ i < min{r , q};
2 + 2min{r , q}, for min{r , q} ≤ i < max{r , q};
2(r + q) + 1 − 2i, for max{r , q} ≤ i ≤ r + q.

(1.13)

In particular, all such meanders Mpq are Sturm.

1.2 Corollary The Morse count functions i �→ μrq(i) have the following symmetry
properties:

(i) up to ordering, the subscript set {r , q} is determined by μrq ;
(ii) conversely, the subscript set determines μrq = μqr ;
(iii) for all 0 ≤ i < r + q, we have μrq(i) = μrq(r + q − 1 − i).

1.3 Definition For the Sturm entourage of primitive 3-nose meandersMr(q+1),q , we
denote the associatedprimitive Sturmpermutation asσrq , theprimitive Sturmattractor
as Arq , and the primitive connection graph as Crq .

For our next result we have to recall the notion of trivial equivalences from Sect. 3
of [19]. In the PDE context (1.1), these consist of the Klein 4-group 〈κ, �〉 with
commuting involutive generators

(κu)(x) := −u(x) ; (1.14)

(�u)(x) := u(1 − x) . (1.15)
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The involution (1.14) therefore simply rotates M ⊂ R
2 by 180◦, i.e.

Mκ := −M. (1.16)

The orientation of the meander curve, however, is reversed. Abusing notation slightly,
let κ also denote the flip permutation

κ( j) := N + 1 − j (1.17)

on j ∈ {1, . . . , N }. Then the meander rotation (1.16) leads to conjugation

σκ = κσκ (1.18)

by the flip involution (1.17).
Spatial reversal � of x , in contrast, interchanges the boundaries x = ι ∈ {0, 1}. The

effect on Sturm permutations σ = h−1
0 ◦ h1 is inversion:

σ� = σ−1. (1.19)

1.4 Theorem The primitive Sturm permutations σrq and σqr are trivially equivalent
under the involutive product κ� of (1.18) and (1.19). In symbols,

σqr = σ
κ�
rq = κ(σrq)

−1κ. (1.20)

1.5 Corollary The primitive 3-nose SturmattractorsArq andAr ′q ′ are orbit equivalent
if, and only if, their subscript sets coincide, up to ordering. In fact Arq and Aqr are
trivially equivalent, under the involutive product κ� of (1.14) and (1.15).

By a simple rotation κ of the meanderM, for example, the 3-ball attractor of Fig. 1
is trivially equivalent to the simple case r = 1, q = 2 with Sturm permutation σ12.

Note theMorse countμrq(r +q) = 1 at maximal i = r +q in (1.13). LetO denote
that unique equilibrium in Arq of maximal Morse index i(O) = r + q = dimArq .

1.6 Theorem The primitive Sturm attractorArq is the closure of the unstable manifold
of the single equilibrium O ∈ Arq . I.e., Arq is a Sturm ball of dimension r + q.

Let �r+q−1 := ∂A = ∂Wu(O) := closWu(O)\Wu(O) denote the invariant
boundary (r + q − 1)-sphere of the (r + q)-dimensional Sturm ball Arq . Quite
surprisingly, the connection graph Crq , restricted to�r+q−1, then turns out to be time-
reversible; see theorem 1.7 below. Although this is also true in the Chafee-Infante case,
it is a quite unexpected phenomenon in general parabolic diffusion equations – which
most of us would rightly consider the paradigm of irreversibility.

Time reversibility in its strongest formmeans the existence of an involutive reversor
R : � → � which reverses the time direction of PDE orbits of (1.1), on a “large”
invariant subset � ⊂ A. Restricted to equilibria v1, v2 ∈ E ⊂ �, strong reversibility
implies the weaker statement

v1 � v2 ⇐⇒ Rv2 � Rv1 (1.21)
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on �. In other words, the reversor R induces an automorphism of the connection di-
graph C|� , which reverses heteroclinic edge orientation. We then call the connection
graph time-reversible.

1.7 Theorem The pointed connection graphs Crq
 are time-reversible.

Consider the pointed connection graph C
 = Cκ
12
 of Fig. 1d, for example. Then

edge-reversing invariance of C
 under rotation by 180◦ illustrates reversibility (1.21)
under the explicit reversor

R : Ak
j ←→ B1−k

2− j (1.22)

of the equilibria on the 2-sphere � := ∂Wu(O) of Fig. 1c.
As in the general case, the artificial edges towards the artificial vertex 
 at “Morse”

index i = −1 do not signify heteroclinic orbits. Since the involutive reversor R on
Crq swaps vertices of Morse levels i and r + q − 1 − i , we have O = R 
 as the
reversor counterpart of 
, in general. The actual heteroclinic orbits emanating from
O, however, cannot be matched by actual counterpart PDE orbits towards 
, under
the reversorR. Therefore reversibility (1.21) for actual heteroclinic orbits can only be
asserted among equilibria atMorse levels i = 0, . . . i(O)−1, i.e. on the flow-invariant
boundary sphere �r+q−1 = ∂Arq = ∂Wu(O) of the Sturm ball Arq = clos Wu(O).
That reversibility on the boundary sphere �r+q−1, of course, is a much deeper reason
for the symmetry of the Morse count function i �→ μrq(i), for 0 ≤ i < r + q, which
we have already encountered in corollary 1.2(iii).

The remaining paper is organized as follows. We briefly recall the Chafee-Infante
paradigm, in Sect. 2, to settle notation. Section3 presents explicit expressions for the
meander permutations σrq of the dissipative meanders Mpq with p = r(q + 1).
This provides a proof of claim (1.20), i.e. of the trivial equivalence of σqr and σrq
stated in theorem 1.4. We also label the vertices ofMpq for a convenient description
of the pointed connection graph Crq
 in terms of pointed Chafee-Infante stacks Cr

and Cq
 . See (2.3), (2.4). The connection graph itself will be described as a lattice
of Chafee-Infante stacks, in our main theorem 4.1. Sections4.1–4.3 will then show
how all remaining theorems 1.1, 1.4, 1.6, and 1.7 follow from the main theorem 4.1.
Theorem 4.1, in turn, is proved in Sect. 5 by a double recursion on, both, r and q. In
Sect. 6, we embark on a discussion of non-Morse variants of our results, with a focus
on time reversibility of 3-nose connection graphs involving suspensions.

2 Chafee–Infante stacks

In this section we recall some facts on the sequence Md , d ≥ 1, of Sturm meanders
with two noses and 2d arcs. This class was studied by Chafee and Infante [4] in the
guise of PDE (1.1) with symmetric cubic nonlinearity f and parameter λ,

f = λ2u(1 − u2), (d − 1)π < λ < dπ. (2.1)
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 A1 A2 A3 B3 B2 B1 B0

(a) Chafee-Infante meander ℳ3 (b) CIS 3⋆

1   6   3   4   5   2   7

 , v

ℳ3
 h0

 vx

 σ3

A0 = ⋆

A1

A2 B1

B0

A3 B2

= B3

Fig. 2 The Chafee-Infante attractor of dimension d = 3; see PDE (1.1) with cubic nonlinearity (2.1). a The
associated stylized SturmmeanderM3. See (2.2), (2.3).bThe pointed connection di-graphCISC3
 , ranked
by Morse index; see (2.4). Time reversibility in the boundary sphere of C3 appears as an automorphism
of C3
 under the 180◦ rotation by the reversor R : A j ↔ B3− j ; see (2.6). Note how the involution R
reverses the Morse ranking, and hence the downward edge orientations

The 2-nose SturmmeanderMd then arises by a time map analysis of the Duffing type
ODE (1.2). We therefore attach the names Chafee-Infante to the meanderMd and its
entourage of Sturm permutation σd , Sturm attractor Ad , connection graph Cd , and
pointed connection graph Cd
 . We call the pointed version Cd
 with 2(d + 1) vertices
a Chafee-Infante stack (CIS) of height d +1. For further details on the following facts
and remarks we refer to Sect. 4 of our prequel [19], as well as to [6, 18, 22].

The Chafee-Infante meander Md is defined by d nested upper arcs, and d nested
lower arcs, correspondingly shifted by one vertex to the right. In other words, Md

consists of an upper and a lower rainbow, each with d nested arcs. Explicitly, the
associated Sturm permutation is

σd( j) =
{

j, for odd j,

N + 1 − j, for even j .
(2.2)

Here j = 1, . . . , N enumerates the N = 2d + 1 equilibria. Note invariance σκ
d =

σ
�

d = σd under the trivial equivalences (1.18) and (1.19).
To describe the pointedCIS Cd
 of height d+1,we label the N = 2d+1 equilibrium

vertices along the horizontal axis as

h1( j) =:
{

A j , for 1 ≤ j ≤ d,

BN− j , for d + 1 ≤ j ≤ N .
(2.3)

We also adjoin the distinguished vertex A0 := 
 . The CIS is then given by

A j+1, Bj � A j , Bj−1. (2.4)

This means that each vertex on the left of (2.4) possesses a directed edge to each vertex
on the right, for all appropriate subscripts. Subscripts range from 1 to d, on the left,
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and from 0 to d − 1 on the right. See Fig. 2 for an illustration of the Chafee-Infante
meander Md , d = 3, and the associated CIS Cd
 of height d + 1 with the 2(d + 1)
vertices A0, . . . , Ad and B0, . . . , Bd .

In particular, the Morse numbers of any vertex L j , with tags L = A, B, are

i(L j ) =
{

j − 1 for L = A,

j for L = B.
(2.5)

Therefore O := Bd is the unique equilibrium of maximal Morse index d. Moreover,
Bd connects to any other vertex E by a di-path in the CIS, i.e. the equilibrium Bd � E
connects to any other equilibrium E , heteroclinically. In particular,Ad = closWu(O)

is a Sturm d-ball and ∂Wu(O) = �d−1 is a sphere of dimension d − 1.
This also proves the following equivalent extremal characterizations of the Chafee-

Infante attractor Ad , among all Sturm attractors [6, 18] :

max: Among all Sturm attractors with N = 2d + 1 ≥ 3 equilibria, Ad is the
unique Sturm attractor with the maximal possible dimension d;

min: Among all Sturm attractors of dimension d ≥ 1, Ad is the unique Sturm
attractor with the smallest possible number N = 2d + 1 of equilibria.

By (2.4), the CIS Cd
 is reversible, e.g. with reversor

R : A j ↔ Bd− j (2.6)

for 0 ≤ j ≤ d; see (1.21). Analogously to Fig. 2, indeed, the automorphism R of
the CIS Cd
 rotates the pointed connection graph by 180◦, reversing the direction of
all edges. On the boundary sphere �d−1, where all edges actually mean heteroclinic
orbits, this establishes time reversibility (1.21) of the actual Chafee-Infante connection
graph Cd .

In Sect. 4, Morse-shifted versions CIS j
d of the CIS Cd
 will play a central role in

our description of the 3-nose pointed connection graphs Crq
 ; see theorem 4.1.

3 Sturm permutations and equilibrium labels

In this section we develop our setting and notation to disentangle the ODE 3-nose
meanders, and to distill the PDE connection graphs from them. Although each of these
two viewpoints is aesthetically pleasing, in its own right, their precise relationship is
somewhat tricky, notationally, and not at all intuitive.We start fromexplicit expressions
(3.2), (3.3) for the meander permutation σrq and its trivially equivalent inverse σ−1

rq ,
in proposition 3.1. This provides an explicit proof of the trivial equivalence (1.20)
claimed in theorem 1.4; see corollary 3.5. In definition 3.2, we introduce labels which
enumerate the vertices of the associated meander, along the horizontal axis h1 and,
alternatively, along the meander h0. Proposition 3.3 then shows consistency of the two
alternative labelings. Based on these labels, the pointed connection graph Crq
 will be
described in the main theorem 4.1 of the next section.
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For any dissipative meander M with N vertices and vertex set E , let hι :
{1, . . . , N } → E denote the enumerations of the vertices along the meander and
along the horizontal axis, i.e. for ι = 0 and ι = 1, respectively. This generalizes the
Sturm case (1.5) to dissipative meanders which are not necessarily Morse. Then (1.6)
defines the associated meander permutation σ and the inverse σ−1 as

σ = h−1
0 ◦ h1 and σ−1 = h−1

1 ◦ h0. (3.1)

3.1 Proposition On their N = 2(r+1)(q+1)−1 vertices, the following two relations
define the meander permutations σ = σrq and their trivially equivalent inverses σ−1

rq ,
simultaneously, via (3.1) :

h1
(
2
(
(q + 1) j + k

) + 1
)

= h0
(
2
(
j + (r + 1)k

) + 1
)

; (3.2)

h1
(
2
(
(q + 1)(r − j) + (q − k) + 1

)) = h0
(
2
(
j + (r + 1)k

))
. (3.3)

The relations hold for all 0 ≤ j ≤ r and 0 ≤ k ≤ q, with the exception of the pair
j = k = 0 in (3.3). Note how (3.2) defines the parity preservingmeander permutations
at odd arguments, from 1 to N, whereas (3.3) addresses even arguments, from 2 to
N − 1.

Proof It is sufficient to show that σ−1 := h−1
1 ◦h0, defined by (3.2), (3.3), is the inverse

of the meander permutation σrq . We verify this, separately, for upper and lower arcs
of the meander M = Mpq , with p = r(q + 1) as in (1.12).

The rainbow lower arcs of Mpq are characterized by the invariant sum

σ−1
rq (n) + σ−1

rq (n + 1) = N + 2, (3.4)

for all even arguments n = 2, . . . , N − 1. Here we use that the meander arc from
vertex A = h0(n) to B = h0(n + 1) is a lower arc, if and only if n is even. Moreover
the positions of A, B along the horizontal axis are enumerated by h−1

1 (A), h−1
1 (B),

respectively. By (3.1), this establishes the lower rainbow characterization (3.4).
We now verify that σ−1 defined via (3.2), (3.3) satisfies the same lower rainbow

characterization (3.4). We therefore insert (3.3) for the even argument n = 2
(
j + (r +

1)k
)
on the right, and (3.2) for odd n+1 = 2

(
j + (r +1)k

)+1. Then σ−1 = h−1
1 ◦h0

from (3.1) implies

σ−1(n) + σ−1(n + 1)

= 2
(
(q + 1)(r − j) + (q − k) + 1

) + 2
(
(q + 1) j + k

) + 1 =
= 2

(
(q + 1)r + q + 1

) + 1 = N + 2,

(3.5)

as required by (3.4).
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Working with upper arcs from A = h0(n) to B = h0(n + 1), i.e. for odd n, we can
analogously verify that the characterizations

σ−1
rq (n) + σ−1

rq (n + 1) = 2p + 1 = 2r(q + 1) + 1, (3.6)

σ−1
rq (n) + σ−1

rq (n + 1) = 4p + 2q + 1 = 4r(q + 1) + 2q. (3.7)

also hold for σ−1. Here we have to insert odd n ∈ {1, . . . , 2r(q+1)−1} from the right
of (3.2), and even n + 1 from the right of (3.3), to verify the characterization (3.6) of
the left upper p-nest, with p = r(q + 1). The analogous characterization (3.7) of the
right upper q-nest has to hold for all odd n ∈ {2r(q+1)+1, . . . , 2(r +1)(q+1)−3}.
We omit the somewhat tedious details, which are analogous to (3.5).

This then verifies that σ indeed describes the same meander Mpq as σrq does.
Therefore σ = σrq , and the proposition is proved. ��

To tackle claim (1.20) concerning the swap r ↔ q, later, we better keep track of r
and q, notationally. We first rewrite (1.6) as

σrq = (hrq0 )−1 ◦ hrq1 ,

σqr = (hqr0 )−1 ◦ hqr1 .
(3.8)

We use the consistent abbreviations

nr jqk := 2
(
(r + 1)k + j

)
,

nqkr j := 2
(
(q + 1) j + k

)
.

(3.9)

The redundant left subscripts q, r just keep track of the ranges of the right subscripts
k, j , respectively. We can then rewrite the defining expressions (3.2), (3.3) for σrq and
(σrq)

−1 more pedantically, but also more concisely, as

hrq1 (nqkr j + 1) = hrq0 (nr jqk + 1) , (3.10)

hrq1 (nq,q+1−k
r ,r− j ) = hrq0 (nr jqk) . (3.11)

The analogous defining expressions for σqr and (σqr )
−1 are simply obtained by the

swaps r ↔ q and j ↔ k to be

hqr1 (nr jqk + 1) = hqr0 (nqkr j + 1) , (3.12)

hqr1 (nr ,r+1− j
q,q−k ) = hqr0 (nqkr j ) . (3.13)
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3.2 Definition For general r , q ≥ 1, we label the vertices of the meander permutation
σrq , etc., along the horizontal h1-axis, as

j odd :
Ar j
qk := hrq1

(
(q + 1)( j − 1) + k + 1

)

Br j
qk := hrq1

(
(q + 1) j + (q − k) + 1

)

j even :
Ar j
qk := hrq1

(
(q + 1)(2r + 1 − j) + (q − k) + 1

)

Br j
qk := hrq1

(
(q + 1)(2r − j) + k + 1

)

(3.14)

Along the meander path hrq0 , alternatively, we label the same vertices as

k odd :
Ar j
qk := hrq0

(
(r + 1)(2q + 1 − k) + (2r + 1 − j)

)

Br j
qk := hrq0

(
(r + 1)(2q + 1 − k) + j

)

k even :
Ar j
qk := hrq0

(
(r + 1)k + j

)

Br j
qk := hrq0

(
(r + 1)(k + 1) + (r − j)

)

(3.15)

See Fig. 3 below for an illustration of the case r = 5, q = 4.

3.3 Proposition The above vertex labelings (3.14) and (3.15) are consistent.

Proof To compare the two definitions, we first substitute j = 2 j ′ + 1 for odd j
and j = 2 j ′ for even j . Similarly we distinguish the parities of k = 2k′, 2k′ + 1.
Omitting primes, after substitution, and invoking notation (3.9), we patiently obtain
the following 8-fold path of duplicate definitions:

hrq1 (nq,q+1−k
r ,r− j ) = Ar ,2 j

q,2k = hrq0 (nr jqk)

hrq1 (nq,q−k
r ,r− j + 1) = Ar ,2 j

q,2k+1 = hrq0 (nr ,r− j
q,q−k + 1)

hrq1 (nqkr j + 1) = Ar ,2 j+1
q,2k = hrq0 (nr jqk + 1)

hrq1 (nq,k+1
r j ) = Ar ,2 j+1

q,2k+1 = hrq0 (nr ,r− j
q,q−k)

(3.16)

hrq1 (nqkr ,r− j + 1) = Br ,2 j
q,2k = hrq0 (nr ,r− j

qk + 1)

hrq1 (nq,k+1
r ,r− j ) = Br ,2 j

q,2k+1 = hrq0 (nr jq,q−k)

hrq1 (nq,q+1−k
r j ) = Br ,2 j+1

q,2k = hrq0 (nr ,r− j
qk )

hrq1 (nq,q−k
r j + 1) = Br ,2 j+1

q,2k+1 = hrq0 (nr jq,q−k + 1)

(3.17)

Of course, second subscripts of L = A, B are bound to enumerate the even/odd
numbers in {0, . . . , q} here, and second superscripts range in {0, . . . , r}. If we now
compare the left and right entries in each row, we recover definition (3.2), (3.3) of σrq
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in the guise of (3.10), (3.11). Therefore the duplicate definitions (3.14) and (3.15) of
our vertex labels are consistent. ��

After these preliminaries, we can now address the swap r ↔ q. First consider the
meander and axis paths

hrqι : {1, . . . , N } → Er
q ,

hqrι : {1, . . . , N } → Eq
r ,

(3.18)

for ι = 0, 1. Here the vertex set Er
q collects all vertex labels Lr j

qk , for tags L ∈ {A, B}
and all j, k. Similarly, Eq

r collects all Lqk
r j . We relate the two vertex sets by the label

map

� : Eq
r → Er

q ,

Lqk
r j �→ Lr j

qk .
(3.19)

Only for r = q, the label map � is a selfmap of Eq
r = Er

q and, in fact, and involution.
The label map � intertwines the four axis and meander paths hqrι and hrqι as follows.

3.4 Lemma With the above notation and, in particular, the label map (3.19) and the
rotation κ from (1.17), the following holds true for all r , q ≥ 1 and ι = 0, 1 :

� ◦ hqrι = hrq1−ι ◦ κ. (3.20)

Proof Wecheck claim (3.20) via the explicit 8-fold path (3.16), (3.17), for the particular
arguments n = nr jqk + 1 and ι = 1. The remaining cases are similar.

The swap-invariant action (1.17) of κ with N + 1 = 2(r + 1)(q + 1) implies

κ(nr jqk + 1) = nr ,r− j
q,q−k + 1 , (3.21)

κ(nqkr j + 1) = nq,q−k
r ,r− j + 1 . (3.22)

Here we only have to check (3.21), explicitly, because (3.22) follows by swap.
We can now use (3.21), and the right hand side of the second line of (3.16), to

evaluate the right hand side of (3.20):

(hrq1−ι ◦ κ) (nr jqk + 1) = hrq0 (nr ,r− j
q,q−k + 1) = Ar ,2 j

q,2k+1. (3.23)

To evaluate the left hand side of (3.20), we invoke the left hand side of the third line
of (3.16) – albeit with switched roles of r and q, as well as j and k:

(� ◦ hqrι ) (nr jqk + 1) = �
(
hqr1 (nr jqk + 1)

) = �(Aq,2k+1
r ,2 j ). (3.24)

In view of the label map (3.19), the two expressions (3.23) and (3.24) coincide. This
proves the lemma. ��
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3.5 Corollary Claim (1.20) of theorem 1.4 holds true, for all r , q ≥ 1. In the Morse
case, the label map � of (3.19) also expresses a trivial equivalence of connection
graphs:

(
E1 �rq E2

) ⇔ (
�−1E1 �qr �−1E2

)
. (3.25)

Here E1, E2 ∈ Er
q refer to equilibrium labels in Er

q , whereas �−1E1,�
−1E2 ∈ Eq

r .
The connection symbol �rq on the left refers to the Sturm permutation σrq , whereas
�qr on the right refers to σqr . In other words, the label map � extends to a direction
preserving isomorphism of the connection di-graphs with their respective labelings:

�Cqr ∼= Crq . (3.26)

Proof We insert (3.20) in the definitions (3.8) of σqr and σrq to obtain

σqr = (hqr0 )−1 ◦ hqr1 = (�hqr0 )−1 ◦ (�hqr1 ) = (hrq1 κ)−1 ◦ (hrq0 κ) = κσ−1
rq κ.

(3.27)

This proves claim (1.20).
To prove claim (3.25), we first introduce the more detailed notation

(h0, h1) : E1 � E2 (3.28)

to indicate a heteroclinic orbit under σ := h−1
0 ◦ h1. For ν = 1, 2, each equilibrium

vν(x) is labeled by the same label Eν under both labeling paths hι : {1, . . . , N } →
E, ι = 0, 1. This meticulous notation is required to keep track of the different vertex
sets Er

q and Eq
r which we use, eventually, to describe the connection graphs Crq and

Cqr of σrq and σqr , respectively.
Proceeding with care, we begin with the trivial equivalence

(
(h0, h1) : E1 �σ E2

) ⇔ (
(h0κ, h1κ) : E1 �κσκ E2

)
, (3.29)

for any meander permutation σ = h−1
0 ◦ h1 and its trivial equivalent κσκ . Note how

the same vertex labels E1 and E2 appear on the right and on the left of the equivalence.
Indeed, the label Eν of an equilibrium profile vν(x), on the left, has to be replaced by
the label of the equilibrium profile κvν(x) = −vν(x), on the right; see (1.14). The
proper vertex label of that equilibrium −vν(x), however, remains the same Eν , on the
right and on the left. The reason is that κ , just like the minus sign, reverses the order
of enumeration on either boundary; see (1.17), (1.18).

For the inverse permutation σ−1 = h−1
1 ◦ h0 we similarly obtain

(
(h0, h1) : E1 �σ E2

) ⇔ (
(h1, h0) : E1 �σ−1 E2

)
. (3.30)

Indeed, this time the same vertex label Eν of an equilibrium profile vν(x), on the left,
applies to the equilibrium profile vν(1 − x), on the right; see (1.17), (1.19).
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For hι := hrqι , we can now combine (3.29) and (3.30), successively, with (1.20)
and (3.20) to obtain

E1 �rq E2 ⇔ (hrq0 , hrq1 ) : E1 � E2 ⇔
⇔ (hrq0 κ, hrq1 κ) : E1 � E2 ⇔
⇔ (hrq1 κ, hrq0 κ) : E1 � E2 ⇔
⇔ (�hqr0 ,�hqr1 ) : E1 � E2 ⇔
⇔ (hqr0 , hqr1 ) : �−1E1 � �−1E2 ⇔ �−1E1 �qr �−1E2

(3.31)

Note how�−1 has relabeled vertices Eν in the last line, only. This proves the corollary.
��

See Fig. 3 again, for an illustration of the case r = 5, q = 4.
It is instructive to compare the succession of labels along the paths hrq1 and hrq0 .

For hrq1 , tags L ∈ {A, B}, and omitting r , q again, we use the abbreviations

L j
↗ := L j

0 . . . L j
q , L j

↘ := L j
q . . . L j

0. (3.32)

For further abbreviation, and as a prequel to the Chafee-Infante stacks CIS j , we also
define formal Chafee-Infante sequences CI j as

CI j :=
{
A j

↗ B j
↘, for j odd,

B j
↗ A j

↘, for j even.
(3.33)

For odd r , (3.14) then determines the vertex labels along hrq1 to be

hrq1 : A1↗ B1↘ A3↗ B3↘ . . . Ar↗ Br↘ Br−1
↗ Ar−1

↘ . . . B2↗ A2↘ B0↗ A0↘
CI1 CI3 . . . CIr CIr−1 . . . CI2 CI0

(3.34)

Here the superscripts are odd, in the left part, ascending from 1 to r . In the right part,
the even superscripts descend from r − 1 to 0.

For even r , we obtain analogously

hrq1 : A1↗ B1↘ A3↗ B3↘ . . . Ar−1
↗ Br−1

↘ Br↗ Ar↘ . . . B2↗ A2↘ B0↗ A0↘
CI1 CI3 . . . CIr−1 CIr . . . CI2 CI0

(3.35)

Note how we have tacitly appended the distinguished vertex hrq1 (N + 1) := 
 = A0
0

at the very end N + 1 = 2(r + 1)(q + 1) of the enumeration, in either case.
For hrq0 we use analogous abbreviations

L↗
k := L0

k . . . Lr
k , L↘

k := Lr
k . . . L0

k , (3.36)

CIk :=
{
A↗
k B↘

k , for k odd,

B↗
k A↘

k , for k even.
(3.37)
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Fig. 3 Visualization of the directed axis path hrq1 (blue) and the meander path hrq0 (red), for r = 5
and q = 4. See definition 3.2, and in particular (3.14), (3.15). We will prove later that horizontal rows
indicate equal Morse levels; see (4.2) and theorem 4.1. Both paths emerge from the i = 0 sink vertex A10
and terminate at sink A01 (black dots). We do not draw the associated meander Mpq , p = r(q + 1), of
N=2(r +1)(q+1)−1 = 59 vertices. For a general meander template see Fig. 5b. The three meander noses,
where the red and blue paths overlap, are dashed blue-red. In order hrq1 of appearance along the horizontal

axis, the three noses are the nose A54B
5
4 of the left upper p-nest, the lower rainbow nose B5

0 B
4
0 , and the nose

B0
3 B

0
4 of the right upper q-nest. Note the distinguished extra vertex hrq0 (0) := 
 = A00 =: hrq1 (N + 1),

prepended to hrq0 by a dashed red line, and appended to hrq1 in dashed blue. The formal Chafee-Infante

sequences CI j of (3.33) are the boundaries of the gray shaded regions, for j = 0, . . . , r . Shaded green
marks the regions CIk , k = 0, . . . , q, of (3.37)

For odd q, (3.15) then determines the vertex labels along hrq0 to be

hrq0 : A↗
0 B↘

0 A↗
2 B↘

2 . . . A↗
q−1 B↘

q−1 B↗
q A↘

q . . . B↗
3 A↘

3 B↗
1 A↘

1
CI0 CI2 . . . CIq−1 CIq . . . CI3 CI1

(3.38)

This time, the subscripts are even, in the left part, and ascending from 0 to q − 1. In
the right part, the odd subscripts descend from q to 1.
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For even q, we obtain analogously

hrq0 : A↗
0 B↘

0 A↗
2 B↘

2 . . . A↗
q B↘

q B↗
q−1 A↘

q−1 . . . B↗
3 A↘

3 B↗
1 A↘

1
CI0 CI2 . . . CIq CIq−1 . . . CI3 CI1

(3.39)

This time, the distinguished vertex hrq0 (0) := 
 = A0
0 has been prepended at the very

beginning of the enumeration, in either case.
In summary, (3.32)–(3.39) enumerate the vertex paths

hrq0 : CI0 CI2 . . . CIk . . . CI3 CI1
hrq1 : CI1 CI3 . . . CI j . . . CI2 CI0

(3.40)

for 0 ≤ j ≤ r and 0 ≤ k ≤ q with the indicated succession of parities.

4 Chafee–Infante lattices

In this section we address the remaining four theorems 1.1, 1.4, 1.6, and 1.7, of
Sect. 1, on the primitive 3-nose Sturm attractorsArq , their dissipativeMorsemeanders
Mr(q+1),q , and their entourage of Sturm permutations σrq and connection graphs
Crq . Theorem 4.1 below describes the pointed connection graphs Crq
 , based on
two alternative decompositions CISrq and CISrq into Morse-shifted Chafee-Infante
stacks (CIS). In Sects. 4.1–4.3 we then show how the connection graph of theorem 4.1
implies the four remaining theorems. The proof of theorem 4.1 itself will be postponed
to Sect. 5.

Consider the vertices L j
k , with tags L ∈ {A, B}, in the Chafee-Infante sequence

CI j introduced in (3.33). The labels fit the definition (2.4) of a Chafee-Infante stack:
for any fixed j ∈ {0, . . . , r}, the obvious vertex bijection Cq
 → CI j is

Lk �→ L j
k , (4.1)

for all 0 ≤ k ≤ q. We define the vertical Morse-shifted Chafee-Infante stack CIS j of
height q + 1, on the vertices provided by CI j , by inducing all directed edges on CIS j

from the Chafee-Infante stack Cq
 , via the map 4.1. To equip the graded graph CIS j

with a ranking function, analogously to (2.5), we define formal Morse levels of any
vertex L j

k ∈ CIS j as

i(L j
k ) =

{
j + k − 1 for L = A,

j + k for L = B.
(4.2)

In other words, the Morse levels of CIS j have been shifted by the superscript j ,
compared to the standard pointed Chafee-Infante connection graph Cq . Note how all
stacks CIS j are mutually vertex disjoint, by construction.
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Fig. 4 The Chafee-Infante lattice of the pointed connection graph Crq
 , for r = 5 and q = 4. See (4.1)–
(4.5), and theorem 4.1. Compare (3.14), (3.15), and Fig. 3 for labels, annotations, and gray/green shading
of Chafee-Infante sequences, which become the two stack decompositions (4.4) and (4.5) of Crq
 into
Morse-shifted Chafee-Infante stacks CIS j and CISk . The graph is graded by the ranking function i of
Morse levels, as indicated on the right. Morse-adjacent heteroclinic orbits in gray shaded vertical Chafee-
Infante stacks CIS j are black edges. Green edges belong to green shaded slanted stacks CISk . Shared
edges of the two stack decompositions are dashed green-black. Downwards arrows have been omitted.
Lower left: the distinguished vertex 
 = A00 resides at formal Morse level i = −1. The dotted edges

towards the distinguished vertex 
 in the stacks CIS0 and CIS0 are formal, and do not correspond to actual
heteroclinic orbits. Note how the connection graph strictly contains both blue/red paths hrqι of Fig. 3.
Indeed, path-adjacent vertices are Morse-adjacent and connected; see (1.7) and (1.9), (1.10)

For any fixed k ∈ {0, . . . , q}, we similarly lift Cr
 → CIk by

L j �→ L j
k , (4.3)

for all 0 ≤ j ≤ r . Analogously to CIS j above, this defines the mutually disjoint
slanted Morse-shifted Chafee-Infante stacks CISk of height r + 1.
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We combine the above Chafee-Infante stacks, respectively, into two graded di-
graphs

CISrq :=
r⋃

j=0

CIS j (vertical), (4.4)

CISrq :=
q⋃

k=0

CISk (slanted). (4.5)

By construction, each stack decomposition defines a graded graph on the same 2(r +
1)(q+1) vertices as the pointed connection graph Crq
 which we aim to describe. The
ranking function byMorse levels i will turn out to be the same, for both graded graphs.
In fact, CISrq decomposes the vertices of Crq
 into the r + 1 Morse-shifted vertical

Chafee-Infante stacks CIS j , each of height q + 1 with vertices Lr j
qk, k = 0, . . . , q,

and tags L = A, B. Alternatively, CISrq rearranges the same vertices Lr j
qk into the

q + 1 Morse-shifted slanted Chafee-Infante stacks CISk of height r + 1.

4.1 Theorem Let rq > 1. In the above notation, the pointed connection graph Crq
 is
the union of the two stack decompositions (4.4) and (4.5), i.e.

Crq
 = CISrq ∪ CISrq . (4.6)

In particular, the sums j + k in the formal Morse levels (4.2) indicate actual Morse
indices.

See Fig. 4 for an illustration of the case r = 5, q = 4 with 2(r + 1)(q + 1) = 60
vertices. Note the two stack decompositions into r + 1 = 6 vertical Chafee-Infante
stacks CIS j of height q + 1 = 5 (shaded gray), and into q + 1 = 5 slanted Chafee-
Infante stacks CISk of height r + 1 = 6 (shaded green). For an explicit version of
the simplest case r = 1, q = 2, rotated by the trivial equivalence κ , see also σ =
σκ
12, A = Aκ

12, C
 = Cκ
12
 sketched in Fig. 1a, c, d. In that case of 2(r+1)(q+1) = 12

vertices, we observe only r + 1 = 2 vertical Chafee-Infante stacks CIS j of height
q + 1 = 3 (black), but 3 slanted Chafee-Infante stacks CISk of height 2 (green).
The trivial equivalence κ of (1.14), (1.17) leaves the pointed connection graph Cκ

12

invariant, down to identical labels.

By a slight abuse of terminology, we call the union (4.6) a Chafee-Infante lattice.
Each Chafee-Infante stack CIS j , CISk , like any acyclic digraph, defines a partial
order on the vertices. Even for a single stack, however, this partial order is not a
lattice. Indeed, the set {A j

k+1 , B j
k } at Morse level i = j + k possesses two candidates

for a “supremum”, and two candidates for an “infimum”, given by subscripts raised
and lowered by 1, respectively. In the standard terminology of lattices, this violates
their required uniqueness. On the other hand, the resulting graph in Fig. 4 just looks
like a lattice fence. In fact, we could enforce strict compliance with the standard
definition, e.g., by an identification of the two tags L = A, B for each Lr j

kq . After such
identification, we even obtain a skew (r + 1) × (q + 1) grid. Averse to further petty
pedantry, we call (4.6) a lattice, anyway.
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We defer the proof of our main theorem 4.1 to Sect. 5. Based on theorem 4.1, for
now, we can already prove the remaining four theorems 1.1, 1.4, 1.6, and 1.7. See also
Fig. 4.

4.1 Proof of theorems 1.1 and 1.4.

The pointed connection graph Crq
 of theorem 4.1 allows us to count equilibria via
the stack decomposition (4.4) into the r + 1 vertical stacks CIS j or, alternatively but
equivalently, via the stack decomposition (4.5) into the q + 1 slanted stacks CISk .
Therefore we may assume r ≤ q, without loss of generality, i.e. min{r , q} = r and
max{r , q} = q. Since the vertical Chafee-Infante stacks CIS j in Crq
 , each of height
q, are shifted upwards in Morse levels by shifts j = 0, . . . , r , their nonzero Morse
counts add up to

μrq(i) =

⎧
⎪⎨

⎪⎩

3 + 2i, for − 1 ≤ i < r;
2(r + 1), for r ≤ i < q;
2(r + q) + 1 − 2i, for q ≤ i ≤ r + q.

(4.7)

For r ≤ q, this proves the Morse counts μrq(i) of claim (1.13), and theorem 1.1.
In particular, the dissipative meander permutations σrq are Morse, hence Sturm.

Since claim (1.20) has already been established in corollary 3.5, this also completes
the proof of theorem 1.4. ��

4.2 Proof of theorem 1.6.

By the Schoenflies theorem [14], it is sufficient to prove that the single equilibrium
O = Br

q of top Morse index i(O) = r + q = dimArq connects heteroclinically to all
other equilibria E . In symbols, Br

q � E .
By Morse–Smale transitivity of the directed edge relation �, it is sufficient to

establish a di-path from Br
q to any equilibrium E , in the connection di-graph Crq . This

is obvious from the twoChafee-Infante stack decompositions of the pointed connection
di-graph Crq
 ⊃ Crq in theorem 4.1. Indeed, consider the stack decomposition (4.4)

into vertical stacks CIS j , j = 0 . . . r , of height q + 1 and with top vertices B j
q ,

respectively. Then the target E is contained in CIS j , for some j . Any top vertex B j
q ,

on the other hand, is contained in the heteroclinic di-path

O = Br
q � . . . � B0

q (4.8)

asserted by the top level slanted stack CISq of height r + 1, in stack decomposition
(4.5). This proves theorem 1.6. ��
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4.3 Proof of theorem 1.7.

For the pointed connection graph Crq
 of theorem 4.1, Fig. 4, consider the vertex map

R : A j
k ↔ Br− j

q−k . (4.9)

In other words, the involutionR rotates Crq
 by 180◦. This maps each of the two stack
decompositions (4.4), (4.5) onto itself. More precisely, the superscripts j = 0, . . . , r
of the decomposition into vertical stacks CIS j are swapped with the superscripts r − j
of the same decomposition. Similarly, the subscripts k = 0, . . . , q of the slanted stacks
CISk are swapped with q − k. Also, the rotationR swaps the vertex tags L ∈ {A, B}.
Therefore, (4.9) defines an automorphism R of the pointed connection graph Crq
 ,
mapping vertices to vertices and edges to edges.

It remains to show thatR reverses edge orientation. We already know thatR swaps
subscripts k ↔ q − k and superscripts j ↔ r − j of vertices L j

k , as well as tags

L ∈ {A, B}. By (4.2), this also swaps Morse levels i = j + k − 1 of A j
k with

(r − j) + (q − k) = r + q − 1 − i of Br− j
q−k , for i = −1, . . . , r + q. Since all edges

� in Crq
 are directed downwards, between adjacent Morse levels i , this shows that
the reversor R indeed reverses all arrows – which proves theorem 1.7. ��

5 Recursion of meanders

This section consists of the proof of our main theorem 4.1 on the structure of the con-
nection graph Crq . We proceed by induction on, both, r ≥ 2 and q ≥ 2. Specifically,
our induction hypothesis is:

Theorem 4.1 holds for, both, the connection graphs

Cr−1,q and Cr ,q−1.
(5.1)

Let C denote what we claim the connection graph Crq to be, i.e.

C := CISrq ∪ CISrq \ {
}; (5.2)

see Fig. 4
We start induction on just r with the claim C = Crq for r = 1, in Sect. 5.1. That

claim has been proved in our prequel [19]. Induction itself is based on two steps. First
we study the suspension M̃′ of the meander M′ := Mκ

p′q , p′ = (r − 1)(q + 1);
see Fig. 5a. The second step is an insertion of a q-nest, as in Fig. 5b, to arrive at the
target meander M := Mpq , p = (q + 1), of our induction. In Sects. 5.2–5.5, we
determine the effects of these steps on the associated connection graphs C′ := Cr−1, q
and C̃′ with respect to C; see (5.12). Section5.6 then utilizes the induction hypothesis
on q − 1. Equivalence corollary 3.5 swaps the position of r and q to play this case
back to the previous sections; see (5.13)–(5.15). Section5.7 determines the very few
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remaining heteroclinic orbits, by the adjacency characterization (1.9). This concludes
the induction step over r and q.

5.1 The case r = 1

The case Cκ
rq with r = 1 has already been treated in theorem 7.6 of [19]. In terms of

the equilibrium labels A′
j , B

′
j ,C

′
j , D

′
j used there:

A′
j � A′

j−1, B
′
j−1, for 1 ≤ j ≤ q;

B ′
j � A′

j−1, B
′
j−1, for 1 ≤ j ≤ q − 1;

C ′
j � B ′

j−1,C
′
j−1, D

′
j−1, for 2 ≤ j ≤ q; C ′

1 � B ′
0, D

′
0;

D′
j � A′

j−1,C
′
j−1, D

′
j−1, for 2 ≤ j ≤ q + 1; D′

1 � A′
0, D

′
0.

(5.3)

See also fig. 7.1 in [19]. Reverting the trivial equivalence κ by 180◦ rotation, the
substitutions

A′
0 �→ A0

1 B ′
0 �→ B0

0 C ′
1 �→ B1

0 D′
0 �→ A1

0

A′
j �→ A0

j+1 B ′
j �→ B0

j C ′
j+1 �→ B1

j D′
j �→ A1

j

A′
q �→ B0

q D′
q+1 �→ B1

q D′
q �→ A1

q

(5.4)

for 0 < j < q − 1 confirm our claim. Here we have compared our current h1 labels
(3.34), for r = 1, with the labels (7.2) of [19], adapted to hκ

1 there.

5.2 Embedding of C�
r−1, q in C, step 1: suspension

From [19], we first recall the precise notion of suspension, for any dissipative meander
M. See Sect. 3 there, for further illustration and commentary. We will then apply
suspension to the dissipative meanderMκ

p′,q with p′ := (r − 1)(q + 1), as in Fig. 5a.
To define suspension, we first label the N vertices E = {E1, . . . , EN } of M,

along the horizontal axis, as E j := h1( j). For the N “interior” vertices {Ẽ1, . . . , ẼN }
among all N+2 suspension vertices Ẽ = {Ẽ0, . . . , ẼN+1}, we choose a corresponding
enumeration Ẽ j = h̃1( j + 1), for j = 1, . . . , N . This embeds old vertices E ⊂ Ẽ into
the suspension via the lifting identification

E j �→ Ẽ j . (5.5)

Henceforth, we write E j = Ẽ j under this identification, for j = 1, . . . , N .
We define the suspension M̃ as an augmentation of M by two overarching arcs

(black in Fig. 5a): an upper arc from the first new vertex Ẽ0 to the last old vertex ẼN =
EN , and a lower arc from the first old vertex Ẽ1 = E1 to the last new vertex ẼN+1.
This extends the previous definition of h̃1 to h̃1( j) := Ẽ j−1 for j = 1, . . . , N + 2.
We can now recall proposition 3.1 of [19] for the entourage of Sturm permutations σ̃ ,
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Fig. 5 Induction step from (r − 1, q) to (r , q), on the level of meander templates M′ := Mκ
p′q and

M := Mpq . Here p′ := (r − 1)(q + 1) , p := r(q + 1). a Suspension (black) of M′ (red and purple)
raises allMorse numbers by 1; see proposition 5.1(iv). Vertex annotation is chosen to coincide withmeander
M in b, for those vertices already present in meander M′. The i = 0 start and termination vertices A11
and A20 of M′ are marked gray. Their Morse indices become i = 1, after suspension. The i = 0 start and

termination vertices A10 and A01 of the suspension M̃′ of M′ are marked black. Suspension reverses the

direction of path h′
0 but not of h

′
1. b Insertion of the q-nest in the suspension M̃′, from left (dashed purple,

shaded gray) to right (solid purple, shaded blue), produces the full meander M. The required left turns of
the inserting arcs, from left to right, lower all Morse numbers again by 1; see (1.7). This makes the Morse
indices of corresponding equilibria coincide, for the solid purple, gray lower left q-nest ofM′ in a and the
upper right q-nest ofM in b, respectively

Morse numbers i , zero numbers z, and (formal) Morse-adjacent edges of C̃ of M̃, as
follows.

5.1 Proposition For any dissipative, but not necessarily Morse, meanderM, the sus-
pension M̃ has the following properties, for all 1 ≤ j, k ≤ N , j 	= k:

(i) σ̃ (1) = 1 and σ̃ (N + 2) = N + 2;
(ii) σ̃ ( j + 1) = N + 2 − σ( j) = κσ( j) + 1;
(iii) i(Ẽ0) = i(ẼN+1) = 0;
(iv) i(Ẽ j ) = i(E j ) + 1;
(v) z(Ẽ j − Ẽ0) = z(Ẽ j − ẼN+1) = 0;
(vi) z(Ẽ j − Ẽk) = z(E j − Ek) + 1;
(vii) Ẽ j � Ẽk ⇐⇒ E j � Ek ;
(viii) Ẽ j � Ẽ0, ẼN+1 , in case all i ≥ 0.

The consequences for Sturm meandersM are summarized in corollary 3.1 of [19].

5.2 Corollary For Sturm meanders M the following holds true.

(i) The suspension σ̃ ∈ SN+2 of any Sturm permutation σ ∈ SN is Sturm.
(ii) All i = 1 equilibria connect heteroclinically, in C̃, towards the two polar i = 0

sinks Ẽ0, ẼN+1 in the bottom row.
(iii) The connection graph C̃ of the suspension M̃ contains the connection graph C

of M, lifted to the rows i ≥ 1.
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With p′ := (r − 1)(q + 1), we apply proposition 5.1 to the dissipative meander
M′ := Mκ

p′,q . Let C′ := Cκ
r−1,q denote the connection graph of M′; see Fig. 5a. By

induction hypothesis (5.1), we may assume M′ to be Sturm. Hence proposition 5.1
and corollary 5.2 apply to the suspension M̃′ of M′, with connection graph C̃′. In
particular, the suspension is also Sturm. By proposition 5.1(iii),(iv), all Morse indices
of the suspension are strictly positive, except for the two new sinks i(A1

0) = 0 = i(A0
1).

By corollary 5.2(ii),(iii), the connection graph C′ is embedded in the suspension C̃′, at
Morse levels raised by 1, and any equilibrium at Morse level 1 possesses edges (i.e.,
heteroclinic orbits) to each of the two new sinks:

A1
1, B

1
0 , A

2
0 � A1

0, A
0
1. (5.6)

We plan to prove claim (4.2) on the Morse indices i of M, by induction on r . We
therefore need to keep track of i , and of the precise vertex labels Lr j

qk , during the

passages fromM′ to M̃, and onwards toM. In Fig. 5a we have already abbreviated
the equilibrium labels L j

k := Lr j
qk according to their appearance on M, in (b). By

induction hypothesis, (4.2) holds for the vertices Lr−1, j
q,k ofMp′,q . In Fig. 5a, however,

that meander appears as M′, i.e. rotated by 180◦. This means that the labels Lr−1, j
q,k

of Mp′,q appear in M′ := Mκ
p′,q in the reverse order of (3.34), (3.35), along the

horizontal h1 axis: odd superscripts j on the right, and even on the left. This proves
the embedding of vertices by the simple identification

Lr j
qk = Lr−1, j−1

qk , (5.7)

for all 1 ≤ j ≤ r , 0 ≤ k ≤ q and tags L = A, B, except for the suspension vertex
A1
0 . Since suspension proposition 5.1(iv), on the other hand, raises Morse indices by

1, the induction hypothesis implies

i(Lr j
qk) = i(Lr−1, j−1

qk ) + 1 =
{

( j − 1) + k − 1 + 1 = j + k − 1, for L = A,

( j − 1) + k + 1 = j + k, for L = B,

(5.8)

as claimed in (4.2). Of course, the i = 0 sinks A1
0 and A0

1 generated by suspension also
fit. In particular, the suspension meander M̃′ is Morse, and hence Sturm. Already, this
identifies the correct Morse indices for all vertices in Er

q \ CI0.
Much more importantly, however, proposition 5.1(vii) also embeds the connection

graph Cr−1,q into the suspension C̃′, in terms of the labels L j
k = Lr j

qk of Fig. 5a. Since

the labels L j
k are already borrowed from Crq , i.e.the target connection graph of our

induction,wedescribe this embedding in terms of that supposed targetC itself; see (5.2)
and Fig. 7. Indeed, the identification (5.7) and the induction hypothesis (5.1) imply that
the connection graph of the suspension C̃′ coincides with C, with the exception of the
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Fig. 6 Induction step, from (r −1, q) to (r , q), on the level of axis and meander paths h′
ι := (hr−1,q

ι )κ and
hι := hrqι , ι = 0, 1. See Fig. 5 for the corresponding meanders, and Fig. 3 for hrqι . The suspension arcs
A10A

2
0 and A11A

0
1 of Fig. 5a are colored black again. The colors, and thicknesses, of h0 and h1 have been

modified, compared to Fig. 3. The q-nest insertion in Fig. 5b creates the new vertices B0
0 . . . B0

q A
0
q . . . A02

(purple), which bound the vertical Chafee-Infante region CI0, shaded blue. The axis path h′
1 (thick blue)

of meander M′ starts at A11 and terminates at A20 (both gray). Thin blue lines mark the extension of h1,

beyond the termination of h′
1 at A20 (gray), towards the termination of h1 at A01 (black). Also note the thin

blue single segment of h1 from the start at A10 (black) to the subsequent start of h′
1 at A11 (gray). On their

overlap, the orientations of h′
1 and h1 coincide. The meander path h′

0 (thick red) also runs from A11 to A20.
Due to suspension, however, the orientations of h′

0 and h0 are opposite on their overlap; see also Fig. 5a.

The new upper right q-nest of M in Fig. 5b generates a thin purple detour of h0 via CI0, for each of the
original thick purple lower left q-nest shortcuts h′

0 inM′. The path h′
0 traverses the shortcut arcs A

1
j+2B

1
j ,

for j = 0, . . . , q − 2, and B1
q B

1
q−1, in alternating directions. The shortcut vertices bound the vertical

Chafee-Infante region CI1, shaded gray. Their CI0 detours of h0 (thin purple) are via stopover vertices
A0j+2B

0
j and B0

q B
0
q−1

vertices and edges involving the first vertical Chafee-Infante stack CIS0. In symbols:

C̃′ \ {A0
1} = C \ CIS0. (5.9)
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Carefully note here that the symbol C on the right hand side stands for what we claim
the connection graph Crq to be; see (5.2).

5.3 Embedding of C�
r−1, q in C, step 2: insertion of q-nest

We can now insert the lower left q-nest of C̃′ to form the upper right q-nest of the
meanderM := Mpq . See Fig. 5b. Since p = p′ + (q + 1) = r(q + 1), the resulting
connection graph C of M is the target claim Crq = C of our induction.

We aim to extend theMorse indices (4.2), (5.8) to include CI0. Trivially, i(A0
1) = 0,

for all dissipative meanders; see (1.7). We therefore have to show that, upon q-nest
insertion,

(i) Morse indices of vertices in embedded C′ are invariant, and
(ii) Morse indices of the inserted upper right q-nest satisfy (4.2)

By Fig. 5, the purple new upper right q-nest arcs in (b) arise, by detours in the
meander M, from the previous purple shortcut arcs in the lower left q-nest of (a), in
the meander M′. Specifically, and ignoring alternating meander orientation, the new
arcs A0

j+2B
0
j , for j = 0, . . . , q −2, and the arc B0

q B
0
q−1 , arise from the previous arcs

A1
j+2B

1
j and B1

q B
1
q−1 by the following detours:

A1
j+2 A

0
j+2 B

0
j B

1
j and B1

q B0
q B0

q−1 B
1
q−1, (5.10)

respectively. See also Fig. 6, where the detours (5.10) in C are marked thin purple, and
the previous shortcuts in C′ are thick purple. Along each detour, the left turning first
arc lowers superscript j and Morse index i by 1. The following left and right turns
lower and raise i by 1, successively. In particular the Morse indices of the previous
vertices remain invariant, as claimed in (i). Moreover, theMorse indices in the inserted
q-nest also satisfy (4.2), as claimed in (ii).

As a trivial corollary, we obtain that A0
1, B0

0 , and A1
0 are the only i = 0 sink vertices

of M.

5.4 Blocking of heteroclinic orbits in Crq which emanate from CI0

The vertices A0
1 and B0

0 are the i = 0 sinks in CI0, by the previous section. No
heteroclinic edges emanate from sinks.

All other heteroclinic orbits emanating from CI0, to any other vertices in Er
q , are

blocked by B0
0 . Indeed, evaluation of zero numbers by half rotation numbers, as in

[21, 31], shows

z(v − B0
0 ) =

{
0, for v ∈ CI0,

0 or 1, otherwise.
(5.11)

Here we use that B0
0 is the first vertex of CI0, along the meander path h0, for the

first alternative; see (3.38), (3.39), and Fig. 6. Also, B0
0 is the first vertex of CI0
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Fig. 7 Induction steps, from (r −1, q) and (r , q−1), to (r , q), on the level of connection graphs C := Crq .
By induction hypothesis on Cκ

r−1,q , and after suspension as in Fig. 5a, we obtain the connection graph
outside the gray shaded region, for Morse levels i ≥ 1. In Sect. 5.5 we show that, indeed, the subsequent
q-nest insertion of Fig. 5b does not block any edge in that part C1 of C. By induction hypothesis on Cκ

r ,q−1,
on the other hand, we obtain the connection graph outside the green shaded region, for Morse levels i ≥ 1,
after suspension as in Fig. 5a. Here we invoke the trivial equivalence κ� to swap the induction to run from
(q − 1, r) to (q, r); see lemma 3.4, corollary 3.5, and Sect. 5.6. The relabeling � of (3.19) then maps
the gray shaded region of (q, r) back to the green shaded region of (r , q). Together, this establishes the
connection graph C, for Morse levels i ≥ 1. The remaining edges, from Morse level i = 1 to the sinks
A01, B

0
0 , and A10 are established in Sect. 5.7

along the horizontal h1-axis; see (3.34), (3.35). All v /∈ CI0, i.e. the vertices of the
second alternative, precede B0

0 along the horizontal h1-axis. In particular, B0
0 blocks

all heteroclinic orbits from CI0 to any remaining equilibria v /∈ CI0, by (1.4) and
(1.10).

5.5 Embedding of C�
r−1, q in C, step 3: the subgraph

In this section, we show that all heteroclinic orbits of C̃′ persist, upon nose insertion,
except possibly those towards the termination sink A0

1. Indeed, Morse numbers in C̃′
remain invariant, under q-nose insertion, by Sect. 5.3. Moreover, zero numbers among
C̃′ remain invariant, because the relevant half-winding numbers of the meander in [21,
31] remain unaffected by nose insertion. Finally, the nose insertion occurs to the right
of all vertices of C̃′, except A0

1; see Fig. 5. Therefore the inserted q-nest cannot block
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any heteroclinic edge in C̃′ \ {A0
1} . This proves the embedding

C̃ κ
r−1, q \ {A0

1} = C \ CI0. (5.12)

As usual, the deletion of the vertices CI0, on the right, also is meant to delete all edges
involving any of those vertices.

5.6 Embedding of C�
r, q−1 in C

So far, we have only embedded the Morse-lifted version of Cκ
r−1, q in the candidate

C for Crq . This establishes Fig. 7 outside the vertical gray shaded region of CI0. We
now address the embedding of the second part of our induction hypothesis (5.1), i.e. of
Cκ
r , q−1 .
To start the induction, with q = 1, we just invoke equivalence corollary 3.5 to

observe the trivial equivalence of Cr1 with the case C1r addressed in Sect. 5.1, albeit
for r replaced by the letter q there.

By induction hypothesis (5.1), the connection graph Cκ
r−1, q then satisfies theorem

4.1. We will show that this establishes Fig. 7, and the case of general r , q it stands for,
outside the slanted green shaded region of CI0. Together with the previous section,
this will establish the proper connection graph Crq = C at all Morse levels i ≥ 1.

We invoke the trivial equivalence (1.20) of σqr = σ
�κ
rq , proved in corollary 3.5,

to swap the subscripts r ↔ q and r ↔ q − 1, respectively. This was achieved
via the intertwining relation (3.20) of lemma 3.4: � hqrι = hrq1−ι κ . Here the label

map �(Lqk
r j ) = Lr j

qk just swaps the pairs of sub- and superscripts, for any vertex
tag L = A, B. From corollary 3.5 we recall how � also induces isomorphisms of
connection graphs with arbitrary vertex labels Eν ∈ E = Eq

r :

(E1 �qr E2) ⇔ (�E1 �rq �E2), i.e.

Cqr ∼= �−1 Crq , and

Cq−1, r ∼= �−1 Cr , q−1.

(5.13)

Here the subscripts on the left refer to Sturm permutation σqr , σq−1, r , whereas on
the right they refer to σrq , σr , q−1 .

On the left side of (5.13), we can therefore recycle the previous arguments of
Sects. 5.2–5.5, with swapped r , q, to obtain the swapped version of embedding (5.12):

C̃ κ
q−1, r \ {A0

1} ∼= �−1(C \ CI0). (5.14)

Applying the label map � once again, proves the claim

C̃ κ
r , q−1 \ {A1

0} ∼= C \ CI0. (5.15)
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The connection graph Crq is associated to the meanderMpq , which we have have
now constructed by (de-)suspension and insertion in two alternativeways. At allMorse
levels i ≥ 1, the connection graph Crq is therefore simply given by the union C of the
subgraphs (5.12) and (5.15). Indeed, the excluded Chafee-Infante sequences CI0 and
CI0, respectively, only intersect in sink B0

0 and 
. For Morse levels i ≥ 1, there is no
intersection. Hence the union C of the subgraphs determines all connectivity within
these two sequences, and identifies them as the Chafee-Infante stacks CIS0,CIS0, for
i ≥ 1. By Sect. 5.4, no further edges emanate from these stacks. This proves theorem
4.1, i.e. Crq=C, at all Morse levels i ≥1.

5.7 Heteroclinic orbits in Crq fromMorse level 1 to 0

It remains to determine all heteroclinic edges from Morse level i = 1 to the three
i = 0 sinks A0

1, B0
0 , and A1

0 appearing in C; see Fig. 4. Adjacency along hrq1 (blue)
or hrq0 (red), as in Fig. 3, establishes all claimed edges, except the dashed green/black
edges B0

1 � A0
1 and B1

0 � A1
0. These latter edges, however, follow from (5.15) and

(5.12), respectively.
To show the absence of any other edges, between i = 1 and i = 0, we first recall

how Sect. 5.4 blocks all heteroclinic orbits which leave CI0 or, by Sect. 5.6, leave CI0 .
This proves absence of the four edges A2

0A
0
1, B1

0 A
0
1, B0

1 A
1
0, and A0

2A
1
0 .

We prove absence of the fifth and final option u(t, ·) : A1
1 � B0

0 for a heteroclinic
edge, by contradiction. Meander winding and (1.8) establish

z(A1
1 − B0

0 ) = 1; (5.16)

see also (5.11). Any heteroclinic edge u(t, ·), however, would have to satisfy

1 = i(A1
1) > lim

t→−∞ z(A1
1 − u(t, ·))

≥ lim
t→+∞ z(A1

1 − u(t, ·)) = z(A1
1 − B0

0 ) = 1, (5.17)

by dropping (1.4) of zero numbers and (5.16). This contradiction eliminates any edge
from A1

1 to B0
0 , and completes the induction proof of theorem 4.1. ��

6 Discussion: non-Morse cases and continued fractions

Let us summarize. Arc configurationsM are Sturm, if and only if they are dissipative
Morsemeanders. TheMorse property, in particular, requires nonnegative formalMorse
indices, i j ≥ 0, in (1.7). We have established the connection graphs of all primitive
3-nose meanders Mpq which are dissipative Morse meanders. The three noses give
rise to an upper left p-nest, i.e. p nested upper arcs, and a right upper q-nest. All lower
arcs are nested, forming a rainbow of p+ q lower arcs. We identify this configuration
with the variant of a lower left q-nest, a lower right p-nest, and an upper rainbow, by
trivial equivalence κ , i.e. by a 180◦ rotation of the meander. “Primitive” means that we
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do not permit suspension arcs, overarching the upper p- and q-nests; but see Sect. 5.2.
A dissipative meander arises, if and only if p−1 and q +1 are coprime. The meander
is Morse, if and only if p = r(q + 1); see theorem 2.1 in [19] and theorem 1.1 above.
The (pointed) connection graph Crq
 is then given by theorem 4.1; see also Fig. 4.

Our discussion below aims at dissipative 3-nosemeanders which are not necessarily
Morse, nor primitive. Let n0 := p + q count the arcs of upper nests. Since p − 1 and
q + 1 are coprime, so are q + 1 and n0 . Our approach is based on the continued
fraction representation of n0/(q + 1). See [30] for background material on continued
fractions. Let s denote the minimal number of iterated suspensions, which are required
to restore the Morse property of the non-Morse permutations, i.e. to provide Sturm
attractors again. We first review our present results, i.e. the case of s = 0 suspensions,
from this viewpoint. We then indicate how trivial isotropy σ−1 = κσκ in the sense
of theorem 1.4, i.e. involutive σκ , are related to symmetry of the continued fraction
under order reversal. Time reversibility, in contrast, requires short continued fractions
of length three; see (6.12). We calculate the Morse polynomials for short continued
fractions, explicitly. This allows us to identify hopeful non-Morse candidates for time
reversibility. To our surprise, all time-reversible connection graphs which we have
encountered by this approach, so far, fall into the same class of Chafee-Infante lattices
Crq
 which we have already encountered in theorem 4.1.

We do not provide full details on these results, in the present discussion. Instead,
we refer to [20]. To fully expose our continuing ignorance, we conclude with table 1
of all 3-nose Sturm meander configurations with n = n0 + s = 63 upper arcs and,
consequently, with N = 127 equilibria. Only three out of the 22 cases listed there are
fully covered by our theorems above.

Specifically, we represent the triple (p, q, n0) by the finite continued fraction

n0
q + 1

= b0 + 1

b1 + 1
b2+ 1

···+ 1
bm

= [b0, b1, b2, . . . , bm] =: b. (6.1)

Here the integers b1, . . . , bm are strictly positive. Admitting bm = 1 whenever neces-
sary, by convention, we may always assume m to be even.

We claim that the continued fractions (6.1), with m ≥ 2 and all bk ≥ 1, are in
1-1 correspondence with the primitive, but not necessarily Morse, 3-nose meanders.
Indeed, integer b = [b0] occur for n0 = b0(q+1), p = n0−q = (b0−1)(q+1)+1.
Integers b ≥ 2 do not lead to 3-nose meanders, because q + 1 ≥ 2 then implies
that (p − 1, q + 1) are not coprime. All Chafee-Infante cases, of only two noses,
arise as b = [0, 1, b2], i.e. via n0 = q = b2 ≥ 1, p = 0. (The case b = 1 of
n0 = 1, q = 0, p = 1 can also be subsumed here, via b = [0, 1, 1] instead.) These
are the only meanders for which b0 = 0, i.e. n0 < q + 1. This proves our claim

The very special Sturm case p = r(q + 1), n0 = (r + 1)(q + 1) − 1 treated in the
present paper just corresponds to

n0
q + 1

= r + 1

1 + 1/q
= [r , 1, q]. (6.2)
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By theorem 4.1, the associated (pointed) connection graph is Crq
 . The Chafee-Infante
cases are included, as p = r = 0.

Let σrq denote the Sturm permutation of (6.2), as before. Up to trivial rotation
equivalence, the inverse permutation (σrq)

−1 is then given by σqr , i.e. by the order
reversed continued fraction

n0
(q + 1)∗

= q + 1

1 + 1/r
= [q, 1, r ] (6.3)

with (q + 1)∗ = r + 1; see theorem 1.4. Here (q + 1)∗ ∈ {1, . . . , n0 − 1} denotes the
inverse of q + 1, in the multiplicative group Z

∗
n0 of elements coprime to n0 . Indeed,

(r + 1)(q + 1) = p+ q + 1 = n0 + 1 ≡ 1 mod n0 , and (6.3) follows explicitly. The
involutive Chafee-Infante case r = 0 corresponds to the multiplicative unit 1 ∈ Z

∗
n0 .

More generally, the continued fractions of multiplicative inverses a∗ a ≡ 1
mod n0 are always related by reversed continued fractions

n0
a

= [b0, b1, . . . , bm] ⇔ n0
a∗ = [bm, . . . , b1, b0]. (6.4)

Skipping a few details, (6.4) follows from §§9-11 in Perron’s classic [30]. In partic-
ular, (6.3) confirms how 3-nose Sturm permutations σ with κ�-isotropy σ = σκ� =
κσ−1κ , i.e. with involutive σκ , arise, if and only if r = q. See also theorem 1.4 and
much more cumbersome Sect. 4.1 above. The total number n = n0 of arcs in the
meander then satisfies

n + 1 = (q + 1)2. (6.5)

See table 1 below, for the “iso” case n = n0 = 63, q = 7, b = [7, 1, 7] of N =
2n + 1 = 127 equilibria.

Perhaps more intriguingly, (6.3) generalizes to the trivial equivalence of the permu-
tation σ of any primitive 3-nose meander Mpq , not necessarily of Morse type, and
the “inverse” σκ�. In other words, the respective sizes of their upper right nests, offset
by 1, are multiplicative inverses

(q + 1)∗ (q + 1) ≡ 1 mod n0, (6.6)

with correspondingly reversed continued fractions (6.1). This fact is not quite obvious,
and will be proved elsewhere [20]. The isotropic case σ = σκ� = κσ−1κ , alias
(q + 1)∗ = q + 1, then arises, if and only if the continued fraction (6.1) is symmetric.
Again by [30], this occurs in general, if and only if

n0 is a divisor of (q + 1)2 − 1 = q(q + 2). (6.7)

Again see table 1 below for the additional “iso” cases n = 63, n0 = 33, 52, 60, 57
and q + 1 = 32, 25, 41, 37.

In fact, there is a deeper connection between 3-nose meanders and the continued
fraction (6.1). Roughly speaking, bk with even index k indicate bk successive lower
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right q-nest suspension-insertions as in Fig. 5 and Sect. 5.2, 5.3. (Slight modifications
are required at k = 0,m.) For odd indices k, we have to perform bk correspondingly
reflected lower left p-nest insertions, each followed by a de-suspension. The two
procedures, by the way, are related to the alternating horizontal and vertical extensions
by bk squares, in the rectangular billiards of [8]. We refer to [20], all the while.

Expectedly, however, de-suspensions give rise to negative “Morse” indices, purely
formally, by recursion (1.7). Indeed, the minimal and maximal Morse indices of the
primitive 3-nose meanders Mpq are given by

imin = 1 −
∑

k odd

bk imax =
∑

k even

bk (6.8)

respectively. Since all bk are strictly positive, the Morse case imin = 0 reduces to
continued fractions (6.1) with m = 2 and b1 = 1. This is just our Sturm case (6.2).

Proceeding recklessly, i.e. purely formally, in presence of negative “Morse” indices
and negative “zero” numbers, we may still construct (meaningless) “connection”
graphs, by the formal blocking rules (1.7)–(1.10). To lend meaning to that purely
formal construct, however, we apply the requisite minimum of s := −imin suspen-
sions. In view of proposition 5.1, this defines a Sturm meander Ms

pq with the usual
entourage of Sturm permutations, attractors, and pointed connection graphs Cspq
 . Let

M̃
(x) = x−1 + μ0 + μ1x + . . . + μd x
d (6.9)

denote the associated (pointed) Morse “polynomial” of positive degree d with Morse
counts μi ≥ 0 and μd > 0. By (6.8) and our construction, the degree d, which is also
the dimension of the global attractor, is simply

d = −1 +
∑

k

bk . (6.10)

We have to sum over all k, this time. Note how (6.10) agrees with d = r + q, in our
Sturm case (6.2) of b1 = 1 with s = 0 suspensions. In general, we obtain coefficients

μ0 = 3, μd−1 = 2 + 1
2m, μd = 1. (6.11)

We are then able to always reconstruct, from the continued fraction b, not only
p, q, n0 but also, the requisite minimal number s = −imin of suspensions to first
reach Morse meanders, the total number n = n0 + s of upper (or lower) arcs, and
the dimension d of the resulting global attractor. Indeed, we recall how the coprime
numerator n0 and denominator q + 1 follow from (6.1), as does p = n0 − q. The
required suspensions s, and therefore n = n0 + s, follow from the summation (6.8) of
odd entries. For the dimension d, we invoke the total sum (6.10).

We derive some consequences of (6.11) for our exploration of time reversibility in
global attractors of 3-nose meanders. Suppose we obtain a time-reversible connection
graph by the above construction. Then the Morse counts must be symmetric, i.e. μi =
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μd−1−i for all i . In particular, μ0 = μd−1 in (6.11) implies m = 2. Therefore, time
reversibility can only occur for short continued fractions, of the form

n0
q + 1

= [b0, b1, b2]. (6.12)

In passing, we note how μd−1 = 3 then justifies our minimal choice of s = −imin
meander suspensions to encounter reversibility, on any the Sturm level. Indeed, any
larger choice of s would generate only μ0 = 2 sink equilibria i = 0, both created
by the last suspension. See proposition 5.1(iii),(iv). This would violate the necessary
condition μ0 = μd−1 for time reversibility.

For short continued fractions (6.12), i.e. for m = 2, the explicit (pointed) Morse
polynomial (6.9) takes the surprising form

(x − 1)3 x
x+1 M̃
(x) = (x − 1)2(xb0+b1+b2 − 1) + x(xb0 − 1)(xb1 − 1)(xb2 − 1).

(6.13)

As a trivial consequence, for example, we can evaluate the number n of arcs after
suspension, directly, as

n = 1
2 M̃
(1) − 1 = b0 + b1 + b2 + b0b1b2 − 1 = d + b0b1b2. (6.14)

Indeed, we just divide (6.13) by (x − 1)3 and interpret the resulting quotients on the
right hand side as derivatives, in the limit x → 1. Substituting (6.10) proves the claim.

For the Chafee-Infante case b = [0, 1, b2]with p = 0, q = b2, we correctly obtain
n = d = b2 arcs, and M̃
(x) = 1

x (1+ x)(1+ . . .+ xb2). For general b = [b0, b1, b2],
we obtain

s = b1 − 1, d = b0 + b1 + b2 − 1, n = d + b0b1b2,
n0 = n − s, q = b1b2, p = n0 − q.

(6.15)

Compare also the first nine rows of table 1 below.
Note how the Morse polynomial (6.13) is invariant under any permutation of

the three continued fraction elements b0, b1, b2. (Invariance under just reversal of
[b0, b1, b2] would follow from trivial equivalence κ�, we recall.) Such invariance
encourages us to ask about the connection graphs in case {b0, b1, b2} = {1, r1, r2}. The
Morse polynomials then coincide with our time-reversible Sturm class n0/(q + 1) =
[r1, 1, r2] of p = r1(r2 + 1), q = r2 , n = n0 = r1r2 + r1 + r2; see (6.2). Let us
therefore address the only related non-Sturm class. Up to trivial κ�-equivalence this
is

n0
q + 1

= [1, r1, r2] (6.16)

with s = −imin = r1 − 1 suspensions; see (6.8). Permutation invariance of (6.13)
implies d = r1 + r2, n = r1r2 + r1 + r2, as before. From (6.15) we obtain n0 =
n − s = r1r2 + r2 + 1, q = r1r2, and p = r2 + 1.
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The full Morse polynomial (6.13) factorizes as

(x − 1)2 x
x+1 M̃
(x) = (x − 1)(x1+r1+r2 − 1) + x(xr1 − 1)(xr2 − 1) =

= (xr1+1 − 1)(xr2+1 − 1).
(6.17)

Upon division by (x −1)2, we readily recognize the factorization into the two Chafee-
Infante stacks ( 1x + 1)(1 + . . . + xr j ), for j = 1, 2; see also theorem 1.1. In view
of theorem 4.1, this is not surprising, since the Morse polynomials of the Sturm case
b = [r1, 1, r2] and the properly suspended non-Sturm case b = [1, r1, r2] coincide, by
permutation invariance of (6.13). This tempts us to speculate – but does not prove in
any way – that the pointed connection graphs of such properly suspended non-Morse
meandersmight coincidewith the time-reversible Chafee-Infante lattices Cr1r2
 . A few
explicit cases look promising, at least.We hope to settle this question in the foreseeable
future [20].

In table 1 we illustrate all 3-nose Sturm meanders for the case of n = 63 upper (or
lower) arcs.Why 63?We have chosen n+1 = 82 to accommodate the “square”Morse
case r = q = 7, in view of (6.5); see also (6.7). Smaller odd squares are squares of
primes, and therefore do not accommodate factorizations n+1 = (r1+1)(r2+1)with
r1 	= r2. The three smaller even squares did not accommodate all feasible combinations
of (ir-)reversibility and (non-)isotropy for the Sturm, non-Sturm, min{b0, b1, b2} =
1, min{b0, b1, b2} = 2 and m ≥ 4 cases, as do occur in our table. This made n = 63
the smallest “universal” choice.

The rows for q are generated starting from the Farey sequence Fn of fractions
n0/(q + 1) with coprime numerators n0 and denominators 1 < q + 1 < n0 ≤ n. The
continued fractions n0/(q + 1) = b = [b0, . . . , bm] provide the required minimal
numbers of s = −imin suspensions, by (6.8), and the attractor dimension d, by (6.10).
Then the nests involve n0 = n − s arcs. Alternatively, of course, n0 and q + 1 follow
directly from the Farey fractions, and provide p − 1, s, as well. The multiplicative
inverses (p − 1)∗, (q + 1)∗ follow most easily from the order reversed continued
fractions b∗ . Of course they share the same values d, s, n0, n, which are invariant
under the trivial equivalence of order reversal. A checkmark “�” in the column “iso”
indicates the κ�-isotropic cases of symmetric b = b∗, i.e. of involutive σκ .

For a more detailed inspection, let us consider length m + 1 = 3 of the continued
fractions b, b∗ , first. Then permutation related b share the same Morse polynomial
(6.13). It is amusing to check the invariance d+b0b1b2 = n = 63 of (6.14), for the first
9 rows of Table 1, in this context. See also (6.15). Only for the three cases of b1 = 1,
however, theorem 4.1 has established explicit time reversibility of the connection
graphs, i.e. of the associated Chafee-Infante lattices Cb0b2
 . This is indicated by a
checkmark “�” in the column “rev”. Reversibility of the remaining four cases with
min{b0, b1, b2} = 1will be addressed in [20], again via the appropriate Chafee-Infante
lattices. Verification checks “(�)” in table 1 have been performedmanually, on a case-
by-case basis, by isomorphism to the pointed connection graphs Cr1r2
 of theorem 4.1
present in each such permutation class.

The general case of lengthm+1 = 3 with all bk ≥ 2, at first glance, still looks like
a “time-reversible” hopeful in terms of the Morse polynomial itself. Indeed symmetry
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Table 1 All 3-nose Sturm meanders with n = 63 upper arcs and 127 equilibria, up to rotation by 180◦

b p − 1 q + 1 d rev iso s n0 (q + 1)∗ (p − 1)∗ b∗

[1,1,31] 31 32 32 � – 0 63 2 61 [31,1,1]

[1,31,1] 1 32 32 (�) � 30 33 32 1 [1,31,1]

[1,3,15] 15 46 18 (�) – 2 61 4 57 [15,3,1]

[1,15,3] 3 46 18 (�) – 14 49 16 33 [3,15,1]

[3,1,15] 47 16 18 � – 0 63 4 59 [15,1,3]

[1,7,7] 7 50 14 (�) – 6 57 8 49 [7,7,1]

[7,1,7] 55 8 14 � � 0 63 8 55 [7,1,7]

[2,2,12] 37 25 15 �� – 1 62 5 57 [12,2,2]

[2,12,2] 27 25 15 �� � 11 52 25 27 [2,12,2]

[1,1,1,8,2] 19 36 12 – – 8 55 26 29 [2,8,1,1,1]

[1,2,1,11,1] 13 38 15 – – 12 51 47 4 [1,11,1,2,1]

[3,1,1,1,5] 45 17 10 – – 1 62 11 51 [5,1,1,1,3]

[1,1,1,4,4] 21 38 10 – – 4 59 14 45 [4,4,1,1,1]

[1,4,1,7,1] 9 44 13 – – 10 53 47 6 [1,7,1,4,1]

[1,2,6,2,1] 19 41 11 – � 3 60 41 19 [1,2,6,2,1]

[1,2,4,1,3] 19 42 10 – – 2 61 16 45 [3,1,4,2,1]

[1,4,2,1,3] 11 48 10 – – 4 59 16 43 [3,1,2,4,1]

[3,1,1,2,3] 44 17 9 – – 2 61 18 43 [3,2,1,1,3]

[2,1,3,2,2] 39 22 9 – – 2 61 25 36 [2,2,3,1,2]

[2,2,1,3,2] 34 25 9 – – 4 59 26 33 [2,3,1,2,2]

[1,1,1,1,5,1,1] 24 37 10 – – 2 61 33 28 [1,1,5,1,1,1,1]

[1,1,1,5,1,1,1] 20 37 10 – � 6 57 37 20 [1,1,1,5,1,1,1]

The column s denotes the number of suspending arcs. Columns p−1 and q+1 indicate the sizes p and q of
the upper left and upper right nests, respectively, with a total of p+q = (p−1)+(q+1) = n0 = n−s arcs.
The leftmost column is the continued fraction expansion of n0/(q + 1) = b = [b0, . . . , bm ], normalized
to even m. The right columns refer to the trivial equivalence which replaces the left Sturm permutation
σ by σκ� = κσ−1κ . This reverses the continued fraction b to become b∗, and produces appropriately
modified nest sizes via the multiplicative inverses (p−1)(p−1)∗ ≡ (q+1)(q+1)∗ ≡ 1 mod n0 . Using
(p − 1) ≡ −(q + 1) mod n0, we may equivalently invoke (p − 1)(q + 1)∗ ≡ (q + 1)(p − 1)∗ ≡ −1
mod n0 .A checkmark “�” in the column “iso” indicates the isotropy of symmetric b = b∗ , i.e. of involutive
κσ . The attractor dimension dim, as well as the suspension and nest counts s = −imin and n0 , are shared
by b, b∗ in each row; see (6.10), (6.8). The column “rev” checks for Morse reversibility. Checkmarks “�”
indicate applications of theorem 4.1. Parentheses “(�)” indicate case-by-case verification. The cases where
the pointed connection graph fails to be time-reversible, even though the pointed Morse polynomial is
reversible, are indicated by a crossed out checkmark “��”. Note how all b = [b0, . . . , bm ] fail to be time-
reversible, for m > 2. Moreover, permutations of such bk produce different Morse polynomials. Often,
they do not even produce the same number 2n + 1 of equilibria, as the absence of most permutations from
the table shows. We have sorted rows by increasing lengths m + 1 ∈ {3, 5, 7} of b, b∗ . Within each length,
we have sorted b lexicographically, up to permutations of bk ; lower instantiations on the left. Horizontal
separators have been omitted between permutation related continued fractions b
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μi = μd−1−i of the Morse counts holds, if and only if

M̃
(x) = xd−1M̃
(1/x). (6.18)

First replacing x by 1/x in (6.13), and then multiplying by xd−1 with d = b0 + b1 +
b2 − 1 according to (6.10) easily verifies that claim. At first, we had therefore placed
checkmarks “�” in the time reversibility column “rev” of table 1, to indicate such
Morse reversibility.

However, there are counterexamples to reversibility of the associated connection
graphs, in case min{b0, b1, b2} ≥ 2. Already the simplest case b = [2, 2, 2] of p =
8, q = 4, n0 = 12, s = 1, d = 5, n = 13, not included in the table, features five
i = 1 saddles with heteroclinic orbits to the left-most sink A of the three sinks at the
adjacent Morse level i = 0. Any of the three equilibria at the reversed, submaximal
Morse level i = d − 1, in contrast, connects to just four equilibria at the lower Morse
level i = d − 2. This discrepancy of an in-degree five at i(A) = 0, and out-degrees
four at i = d − 1, contradicts reversibility of the connection graph.

Consider the simple cases {b0, b1, b2} = {2, 3, 4} next. By trivial equivalence κ� of
inverses (6.4),we only have to consider the three cases b = [2, 3, 4], [2, 4, 3], [3, 2, 4]
of s = 2, 3, 1 suspensions, respectively. Comparing in- and out-degrees, again, each
of the three connection graphs fails to be time-reversible – even though their Morse
polynomials look alluringly reversible. The failure is by the same discrepancy between
Morse levels i = 0, 1 and i = d−1, d−2 as before. The exact samediscrepancies of in-
and out-degrees rule out reversibility of the connection graphs for the two remaining
permutation related cases b = [2, 2, 12] and b = [2, 12, 2] in table 1. We have
therefore indicated these failures by crossing out their two preliminary checkmarks in
the column “rev”: see the entries “���”.

Even worse, the connection graphs and their time reversals are all pairwise non-
isomorphic as connection graphs, in any of the above sets of permutation related
examples. In particular, none of their time reversed connection graphs can appear
from any 3-nose meander and their suspensions. So far, we have not found any isomor-
phisms among connection graphs and their reversals beyond the permutation classes
min{b0, b1, b2} = 1 discussed above, and beyond the trivial equivalences of order
reversal in b. All connection graphs associated to reversible classes were of the same
type Cr1r2
 already encountered in theorem 4.1, for the representative b = [r1, 1, r2].
Since (6.15) identifies these cases by n = (r1 + 1)(r2 + 1) − 1, they simply cor-
respond to the proper divisors of n + 1. Table 1 clearly illustrates that, for the case
n + 1 = 64 = 26 and the associated three permutation classes of the divisor pairs
(r1 + 1, r2 + 1) = (2, 32), (4, 16), and (8, 8), up to interchanging r1 and r2.

On the pessimistic side, suppose n + 1 is prime. Then there are no cases of 3-
nose Sturm attractors where our results apply and, probably, reversibility fails in all
instances.

For larger lengths m + 1 ≥ 5, we have already mentioned irreversibility of the
Morse polynomials, i.e. violation of (6.18) by (6.11). But some permutations of the
bk , other than just order reversal to b∗, even affect the total number n of meander
arcs. This is demonstrated by the marked absence of most such permutation related
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pairs b, b∗ from table 1. A forteriori, such absence demonstrates how even the Morse
polynomials do depend on permutations of the bk .

At present, therefore, we cannot offer any systematic approach to elucidate the
structure of the connection graphs, in that huge maze of remaining open cases. Indeed,
all our results above do not offer more than a first glimpse, so far. All cases beyond
the reversible Chafee-Infante lattices Cr1r2
 remain wide open. And we did not even
attempt a geometric description of the 3-nose attractors A, yet, e.g. in terms of their
(signed) Thom-Smale complexes.

Such are the amazing intricacies of Sturm global attractors with just three meander
noses, at present. And we owe it all to the introduction of Sturm meanders in [21],
with the help of Giorgio Fusco, more than 30 years ago.
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